WO2022102429A1 - Control device, control system, and control method - Google Patents

Control device, control system, and control method Download PDF

Info

Publication number
WO2022102429A1
WO2022102429A1 PCT/JP2021/039934 JP2021039934W WO2022102429A1 WO 2022102429 A1 WO2022102429 A1 WO 2022102429A1 JP 2021039934 W JP2021039934 W JP 2021039934W WO 2022102429 A1 WO2022102429 A1 WO 2022102429A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable portion
sensor
work machine
bucket
region
Prior art date
Application number
PCT/JP2021/039934
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 太田
陽輔 角野
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US18/034,315 priority Critical patent/US20230392354A1/en
Publication of WO2022102429A1 publication Critical patent/WO2022102429A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles

Definitions

  • the present invention relates to a technique for controlling a work machine having a moving part.
  • Patent Document 1 describes a technique for controlling a movable portion of a ground leveling machine to be movable.
  • Patent Document 1 has a problem that the position of the movable part of the leveling machine may deviate from a desired region due to various errors in control.
  • One aspect of the present invention has been made in view of the above problems, and one example of the present invention is to provide a technique for moving a moving part of a work machine to a desired region with higher accuracy.
  • the control device is a control device for controlling a work machine having a movable portion, and is a movement control means for controlling the work machine so as to move the movable portion to a destination region.
  • a correction control means for controlling the work machine to correct the position of the movable portion by detecting the positional relationship between the region and the movable portion with reference to the detection value of the sensor is provided.
  • the control system is a control system including a control device for controlling a work machine having a movable portion and a sensor, and the control device moves the movable portion to a destination region.
  • the control method is a control method in which a control device controls a work machine having a movable portion, and controls the work machine so as to move the movable portion to a destination region. It also includes controlling the work machine to correct the position of the movable portion by detecting the positional relationship between the region and the movable portion with reference to the detection value of the sensor.
  • the movable part of the work machine can be moved to a desired region with higher accuracy.
  • FIG. 1 is a block diagram showing a configuration of the control system 1.
  • the control system 1 is a system for controlling a work machine having a movable portion.
  • the control system 1 includes a control device 10 and a sensor E.
  • the control device 10 is connected to the sensor E so that the detected value of the sensor E can be acquired.
  • the control device 10 may be connected to the sensor E by wire.
  • Specific examples of the wired connection include USB (Universal Serial Bus), serial communication, and the like.
  • the control device 10 may be connected to the sensor E via a network.
  • the network include, for example, wireless LAN (Local Area Network), wired LAN, WAN (Wide Area Network), public line network, mobile data communication network (3G, LTE: Long Term Evolution, 4G, 5G). , Local 5G, etc.), or a combination of these networks.
  • wireless LAN Local Area Network
  • wired LAN Local Area Network
  • WAN Wide Area Network
  • public line network mobile data communication network
  • the configuration for connecting the control device 10 and the sensor E is not limited to these.
  • the control device 10 controls the work machine via the network.
  • Specific examples of the network are as described above, but are not limited thereto.
  • FIG. 2 is a block diagram showing the configuration of the control device 10.
  • the control device 10 is a device that controls a work machine having a movable portion. As shown in FIG. 2, the control device 10 includes a movement control unit 11 and a correction control unit 12.
  • the movement control unit 11 is configured to realize the movement control means in this exemplary embodiment.
  • the correction control unit 12 is configured to realize the correction control means in this exemplary embodiment.
  • the movement control unit 11 controls the work machine so as to move the movable unit to the destination area. Specifically, the movement control unit 11 transmits an operation control signal for moving the movable unit to the destination region to the controller mounted on the work machine. For such operation control signal generation processing and transmission processing, known techniques corresponding to the target work machine can be adopted.
  • the correction control unit 12 controls the work machine to correct the position of the movable part by detecting the positional relationship between the moving destination area and the movable part with reference to the detection value of the sensor E. Specifically, the correction control unit 12 corrects the position of the movable portion so that the positional relationship between the destination area and the movable portion does not satisfy the predetermined condition. Take control. As predetermined conditions, various conditions for determining the positional relationship between two regions in space can be adopted.
  • the correction control unit 12 calculates the difference between the target position in the destination region and the actual position of the movable portion as the positional relationship between the destination region and the movable portion. Further, the correction control unit 12 determines that the position of the movable unit is corrected when the difference is out of the predetermined range. In this case, the correction control unit 12 corrects the position of the movable unit so that the difference is within a predetermined range.
  • the conditions for determining the positional relationship between the moving destination area and the movable portion and the process for correcting the position of the movable portion are not limited to these.
  • the sensor E is a sensor for detecting the positional relationship between the destination area and the movable portion.
  • the sensor E may include a two-dimensional or three-dimensional sensor that scans the space including the destination region.
  • specific examples of the sensor E include a camera (for example, a depth camera, a stereo camera, a ToF (Time-of-Flight) camera, etc.), a laser sensor (for example, 2DLiDAR, 3DLiDAR, etc.), a radar sensor, and the like. However, it is not limited to these.
  • FIG. 3 is a flow chart showing the flow of the control method S1. As shown in FIG. 3, the control method S1 includes step S11 and step S12.
  • Step S11 the movement control unit 11 controls the work machine so as to move the movable unit to the destination area.
  • step S12 the correction control unit 12 controls the work machine to correct the position of the movable portion by detecting the positional relationship between the destination region and the movable portion with reference to the detection value of the sensor E. ..
  • the movement control unit 11 moves the movable portion to the destination region
  • the correction control unit 12 detects the positional relationship between the movement destination region and the movable portion, thereby positioning the movable portion. To correct.
  • the movable portion can be moved to the destination region with higher accuracy.
  • FIG. 4 is a block diagram showing the configuration of the control system 1A.
  • the control system 1A includes a control device 10A and three-dimensional sensors E5 and E6.
  • the control system 1A is a system for controlling the backhoe 8. More specifically, the control system 1A is a system that controls the backhoe 8 to carry the scooped earth and sand OBJ and load it on the dump truck 9.
  • the control device 10A is communicably connected to the three-dimensional sensors E5, E6 and the controller 830 of the backhoe 8 via the network N1.
  • the network N1 is, for example, a wireless LAN (Local Area Network), a wired LAN, a WAN (Wide Area Network), a public line network, a mobile data communication network, or a combination of these networks.
  • a wireless LAN Local Area Network
  • a wired LAN Local Area Network
  • a WAN Wide Area Network
  • public line network a public line network
  • a mobile data communication network or a combination of these networks.
  • the configuration of the network N1 is not limited to these.
  • the control device 10A may be mounted on the backhoe 8.
  • the backhoe 8 constitutes an example of the "working machine having a movable part" described in the claims.
  • the earth and sand OBJ constitutes an example of the moving object described in the claims. Carrying earth and sand OBJ is an example of "moving a moving object" described in the claims.
  • the bucket 824 included in the backhoe 8 constitutes an example of "a device for moving a moving object to the region" included in the "movable portion” described in the claims.
  • the loading target area 910 of the dump truck 9 constitutes an example of the "destination area” described in the claims. Moving the bucket 824 to the loading area 910 is an example of "moving the movable portion to the destination area" described in the claims.
  • the backhoe 8 operates according to the control by the control device 10A. As shown in FIG. 4, the backhoe 8 includes a traveling unit 810, a movable unit 820 attached to the traveling unit 810, and a controller 830. Further, the backhoe 8 is equipped with sensors E1 to E4.
  • the traveling unit 810 is a traveling unit that enables the backhoe 8 to move forward, backward, turn right, and turn left.
  • the traveling unit 810 travels using, for example, an endless track belt.
  • the movable portion 820 includes a swivel portion 821, a boom 822 attached to the swivel portion 821, an arm 823 attached to the tip of the boom 822, and a bucket 824 attached to the tip of the arm 823.
  • the swivel portion 821 can swivel on the traveling portion 810 in a plane perpendicular to the paper surface in the figure.
  • the plane perpendicular to the paper surface in FIG. 4 is a horizontal plane, and therefore, this plane is referred to as a “horizontal plane” for convenience below.
  • the boom 822 can reciprocate around the boom shaft 822A in a plane substantially perpendicular to the horizontal plane.
  • the arm 823 has the same turning surface as the boom 822, and can reciprocate around the arm shaft 823A.
  • the bucket 824 has the same swivel surface as the swivel surface of the arm 823, and can reciprocate swivel around the bucket shaft 824A.
  • the posture of the backhoe 8 changes as each portion of the movable portion 820 turns.
  • the movable portion 820 refers to the swivel portion 821, the boom 822, the arm 823, and the bucket 824.
  • Sensors E1 to E4 are a group of sensors mounted on the backhoe 8. Sensors E1 to E4 each detect the posture of the backhoe 8. Sensors E1 to E4 are examples of the second sensor described in the claims. The posture of the backhoe 8 changes, for example, depending on the turning angle of each portion of the movable portion 820. In this example, each of the sensors E1 to E4 is a sensor that detects the turning angle of the turning portion 821, the boom 822, the arm 823, or the bucket 824.
  • the sensor E1 is, for example, a gyro sensor that detects the turning angle of the turning portion 821. Further, the sensor E1 may be an encoder that detects the rotation speed of the motor that swivels the swivel portion 821.
  • the sensor E2 is a tilt sensor or a gyro sensor that detects the angle of the boom 822 from the horizontal plane. The sensor E2 may be an encoder that detects the moving distance of the rod of the hydraulic cylinder that turns the boom 822.
  • the sensor E3 is, for example, a tilt sensor, a gyro sensor, or an encoder that detects the angle of the arm 823 with respect to the boom 822.
  • the sensor E4 is, for example, a tilt sensor, a gyro sensor, or an encoder that detects the angle of the bucket 824 with respect to the arm 823.
  • the sensors E2 to E4 may be installed outside the backhoe 8 or may be installed inside the backhoe 8, respectively.
  • the sensors E2 to E4 are tilt sensors, acceleration sensors, gyro sensors, stroke sensors, encoders, and the like, respectively.
  • the sensors E2 to E4 are a pressure sensor, a flow rate sensor, a cylinder sensor, a hydraulic pressure sensor, a stroke sensor, or the like, respectively.
  • the types of the sensors E1 to E4 are not limited to this.
  • the mounting positions of the sensors E1 to E4 are not limited to the positions shown in the figure.
  • the controller 830 has a processor, a memory, and a communication interface (all not shown).
  • the controller 830 acquires the detected values of the sensors E1 to E5 by reading and executing the program stored in the memory, and transmits the acquired detected values to the control device 10A via the communication interface.
  • the detected values of the sensors E1 to E5 may be directly acquired by the controller 10A instead of being acquired by the controller 830 and transmitted to the controller 10A.
  • the controller 830 controls each part of the backhoe 8 according to the operation control signal received from the control device 10A via the communication interface by reading and executing the program stored in the memory.
  • the controller 830 swivels a part or all of the swivel portion 821, the boom 822, the arm 823, and the bucket 824 according to the operation control signal. For example, when part or all of the swivel portion 821, the boom 822, and the arm 823 is swiveled, the position of the bucket 824 changes and the bucket 824 moves. Further, for example, when the bucket 824 is swiveled, the bucket 824 performs an operation of scooping up the earth and sand OBJ, an operation of loading, or an operation of discharging the earth and sand (an operation of unloading the scooped earth and sand OBJ from the bucket 824).
  • the configuration of the dump truck 9 which is the loading destination of the earth and sand OBJ carried by the backhoe 8 will be described.
  • the dump truck 9 has a loading target area 910.
  • the loading target area 910 is, for example, a vessel.
  • the earth and sand OBJ is discharged from the bucket 824 at the upper part of the loading target area 910, it is loaded into the loading target area 910.
  • the three-dimensional sensor E5 is a sensor that detects the surrounding environment of the backhoe 8. Specifically, the three-dimensional sensor E5 is a sensor that three-dimensionally detects an object in the space SP2 including the excavation area. Hereinafter, the three-dimensional sensor E5 may be simply referred to as the sensor E5.
  • Space SP2 includes, for example, earth and sand OBJ as an object. Further, when excavating the earth and sand OBJ, the space SP2 further includes a bucket 824 as an object.
  • the three-dimensional sensor E6 is a sensor that three-dimensionally detects an object in the space SP1 including the loading target area 910.
  • the three-dimensional sensor E6 is an example of the first sensor described in the claims. Hereinafter, the three-dimensional sensor E6 may be simply referred to as the sensor E6.
  • the space SP1 includes, for example, a vessel constituting the loading target area 910 as an object. Further, when there is an earth and sand OBJ already loaded in the loading target area 910, the space SP1 further includes the earth and sand OBJ as an object. Further, when the movement control of the bucket 824 is completed, the space SP1 further includes the bucket 824 as an object.
  • the three-dimensional sensors E5 and E6 are configured by a three-dimensional laser scanner.
  • the three-dimensional sensors E5 and E6 measure the three-dimensional shape of the object by irradiating each object in the spaces SP2 and SP1 with a laser beam.
  • the measurement data is represented by, for example, point cloud data in a three-dimensional space.
  • Each point cloud data includes three-dimensional coordinates, color information, reflectance and the like.
  • the three-dimensional sensor E6 is not limited to the three-dimensional laser scanner.
  • the three-dimensional sensors E5 and E6 include a camera (for example, a depth camera, a stereo camera, a ToF (Time-of-Flight) camera, etc.), a laser sensor (for example, 3DLiDAR, etc.), a radar sensor, and the like. However, it is not limited to these.
  • control device configuration A detailed configuration of the control device 10A according to this exemplary embodiment will be described.
  • the control device 10A includes a control unit 110A, a storage unit 120A, and a communication unit 130A.
  • the control unit 110A includes a movement control unit 11A, a correction control unit 12A, a posture estimation unit 13A, and a target position determination unit 14A. Details of each part will be described later.
  • the storage unit 120A stores the determination rule R1.
  • the communication unit 130A communicates with the controller 830 of the backhoe 8 and the three-dimensional sensor E6 under the control of the control unit 110A.
  • the control unit 110A controls the communication unit 130A to transmit and receive data, and the control unit 110A simply transmits and receives data.
  • the determination rule R1 is a rule referred to for determining whether or not to correct the position of the bucket 824. Specifically, the determination rule R1 is a rule that corrects the position of the bucket 824 when the difference between the target position in the loading target area 910 and the position of the actual bucket 824 is out of the predetermined range.
  • the movement control unit 11A controls the backhoe 8 so as to move the bucket 824 to the loading target area 910 with reference to each detection value of a part or all of the sensors E1 to E6.
  • the sensors E1 to E4 are examples of the second sensor described in the claims as described above, and are sensors that detect the posture of the backhoe 8. That is, the movement control unit 11A controls the backhoe 8 so as to move the bucket 824 to the loading target area 910 with reference to at least the detection values of the sensors E1 to E4 that detect the posture of the backhoe 8.
  • the movement control unit 11A is configured to realize the movement control means in this exemplary embodiment.
  • the correction control unit 12A detects the positional relationship between the loading target area 910 and the bucket 824 with reference to the detection value of the three-dimensional sensor E6. Further, the correction control unit 12A controls the backhoe 8 so as to correct the position of the bucket 824 based on the detected positional relationship.
  • the three-dimensional sensor E6 is an example of the first sensor described in the claims as described above.
  • the correction control unit 12A is configured to realize the correction control means in this exemplary embodiment.
  • the correction control unit 12A determines whether or not to correct the position of the bucket 824 according to the determination rule R1. That is, the correction control unit 12A calculates the difference between the target position in the loading target area 910 and the actual position of the bucket 824 as the positional relationship between the loading target area 910 and the bucket 824. Further, the correction control unit 12A determines that the position of the bucket 824 is corrected when the difference is out of the predetermined range. In this case, the correction control unit 12A corrects the position of the bucket 824 so that the difference is within a predetermined range.
  • the posture estimation unit 13A estimates the posture of the backhoe 8 with reference to each detected value of a part or all of the sensors E1 to E6. For example, the posture estimation unit 13A estimates the current turning angle of each part of the movable part 820, the position of the bucket 824, and the like as the posture of the backhoe 8.
  • the posture of the bucket 824 estimated by the posture estimation unit 13A is also referred to as an estimated posture.
  • the target position determination unit 14A determines a target position in the loading target area 910 with reference to each detected value of a part or all of the sensors E1 to E6.
  • the target position is a target position of the destination of the bucket 824 in the loading target area 910.
  • the target position is the position where the operation of loading the earth and sand OBJ should be performed.
  • the target position determination unit 14A determines the target position according to the accumulation state of the sediment OBJ in the loading target area 910 by referring to the detected value of the three-dimensional sensor E6.
  • FIG. 5 is a flow chart showing the flow of the control method S1A. As shown in FIG. 5, the control method S1A includes steps S101 to S109.
  • step S101 the target position determination unit 14A determines the target position in the loading target area 910 with reference to each detection value of a part or all of the sensors E1 to E6. A specific example of the process of determining the target position will be described later.
  • step S102 the movement control unit 11A moves the bucket 824 to the target position.
  • the movement control unit 11A refers to the estimated posture of the bucket 824 and generates an operation control signal for moving the bucket 824 to the target position.
  • the estimated posture of the bucket 824 is estimated by the posture estimation unit 13A with reference to each detected value of a part or all of the sensors E1 to E6.
  • the target position is estimated by the target position determination unit 14A with reference to each detected value of a part or all of the sensors E1 to E6.
  • the movement control unit 11A refers to the estimated posture and the target position based on each detection value of a part or all of the sensors E1 to E6, and generates an operation control signal for moving the bucket 824 to the target position. ..
  • the operation control signal is an operation control signal for changing the posture of the backhoe 8, and includes, for example, a turning direction and a turning amount in which each part of the movable part 820 should be turned.
  • the movement control unit 11A transmits the generated operation control signal to the controller 830 of the backhoe 8. As a result, the backhoe 8 performs an operation of moving the bucket 824 according to the received operation control signal.
  • step S103 the movement control unit 11A determines whether or not the movement operation of the backhoe 8 has been completed. Specifically, for example, when the movement control unit 11A receives information from the controller 830 of the backhoe 8 indicating that the movement operation based on the operation control signal transmitted in step S102 is completed, the movement operation is completed. You may judge that. The process of step S103 is repeatedly executed until it is determined to be Yes.
  • Step S104 If it is determined to be Yes in step S103, in step S104, the correction control unit 12A acquires information indicating a target position in the loading target area 910. Here, the correction control unit 12A acquires information indicating the target position determined in step S101.
  • step S105 the correction control unit 12A refers to the detected value of the three-dimensional sensor E6 and acquires information indicating the actual position of the bucket 824. Specifically, the correction control unit 12A identifies the point cloud data indicating the three-dimensional shape of the bucket 824 among the point cloud data generated by the three-dimensional sensor E6, thereby indicating the actual position of the bucket 824. To get. The correction control unit 12A may specify the point cloud data indicating the three-dimensional shape of the bucket 824 based on the characteristics of the three-dimensional shape of the bucket 824.
  • step S106 the correction control unit 12A detects the positional relationship between the loading target area 910 and the bucket 824. Specifically, the correction control unit 12A calculates the difference between the target position and the actual position of the bucket 824. For example, the correction control unit 12A may calculate the difference between the target position and the actual position of the bucket 824 on a plane with the loading target area 910 viewed from above.
  • step S107 the correction control unit 12A determines whether or not the calculated difference is within a predetermined range. If it is determined to be Yes in the step, the control device 10A ends the control method S1A.
  • Step S108 If No is determined in step S107, the correction control unit 12A determines the correction direction and the correction amount of the position of the bucket 824 based on the calculated difference in step S108.
  • step S109 the correction control unit 12A generates an operation control signal for correcting the position of the bucket 824 based on the determined correction direction and correction amount.
  • the operation control signal is an operation control signal for changing the posture of the backhoe 8, and includes, for example, a turning direction and a turning amount in which each part of the movable part 820 should be turned.
  • the correction control unit 12A transmits the generated operation control signal to the controller 830 of the backhoe 8.
  • the backhoe 8 performs an operation of correcting the position of the bucket 824 according to the received operation control signal. That is, the backhoe 8 performs an operation of moving the bucket 824 in order to correct the position of the bucket 824.
  • the correction control unit 12A repeats the process from step S105.
  • FIG. 6 is a schematic diagram showing a specific example of the control method S1A.
  • FIG. 6 schematically shows the dump truck 9 viewed from above.
  • the center line L1 is the center line of the bucket 824-1 projected on a plane (here, referred to as a horizontal plane) with the dump truck 9 viewed from above.
  • the center line of the bucket 824 is a straight line passing through the center in the width direction of the bucket 824 in the horizontal plane.
  • the width direction of the bucket 824 is a direction orthogonal to the turning direction of the bucket 824 in the horizontal plane. That is, the center line of the bucket 824 is a straight line extending in the turning direction of the bucket 824.
  • the position of the bucket 824-1 is represented using the center line L1.
  • the center line L2 is an example of the target position determined by the target position determination unit 14A.
  • the target position is represented using the center line L2.
  • the center line L2 is the center line of the loading target area 910 projected on the horizontal plane, and is the target position where the center line L1 of the bucket 824-1 is expected to be arranged.
  • Bucket 824-2 and arm 823-2 schematically represent bucket 824 and arm 823 that are expected to be in the target position.
  • each of them may be referred to as a bucket 824.
  • the target position determination unit 14A determines the center line L2 of the loading target area 910 as the target position with reference to each detection value of a part or all of the sensors E1 to E6.
  • the center line L2 of the loading target area 910 is a straight line passing through the center in the width direction of the loading target area 910 in the horizontal plane.
  • the width direction of the loading target area 910 is a direction perpendicular to the forward / backward direction of the dump truck 9 on the horizontal plane. That is, the center line of the loading target area 910 is a straight line extending in the forward / backward direction.
  • the center lines L1 and L2 are parallel, it is not limited to the fact that they are parallel.
  • the center lines L2a and L2b indicate a predetermined range of the positions of the bucket 824-1 allowed with respect to the target position.
  • the center lines L2a and L2b may be lines obtained by translating the center line L2 by + d and ⁇ d in the width direction.
  • + d and ⁇ d are threshold values that define the lower limit and the upper limit of the predetermined range.
  • the center lines L2a and L2b are not limited to lines obtained by translating the center line L2.
  • the center lines L2a and L2b may be lines obtained by rotating the center line L2 by + d ⁇ and ⁇ d ⁇ about the reference point.
  • + d ⁇ and ⁇ d ⁇ are threshold values that define the lower limit and the upper limit of the predetermined range.
  • the correction control unit 12A obtains the difference between the center lines L1 and L2 as the difference between the actual position of the bucket 824-1 and the target position. For example, the correction control unit 12A may obtain the angle formed by the center lines L1 and L2 as the difference between the center lines L1 and L2. Further, for example, the correction control unit 12A may obtain the distance between the center lines L1 and L2 at the tip portions of the buckets 824-1 and 824-2. When the difference between the center lines L1 and L2 is not within the predetermined range, the correction control unit 12A controls to correct the position of the bucket 824-1 so that the difference is within the predetermined range.
  • the correction control unit 12A changes the posture of the movable unit 820 in order to correct the position of the bucket 824-1. For example, the correction control unit 12A calculates a turning direction and a turning amount in which each part of the movable part 820 should be turned in order to keep the difference within a predetermined range.
  • the arrow AR shown in FIG. 6 schematically indicates the turning direction and the turning amount determined by the correction control unit 12A. Further, the correction control unit 12A generates an operation control signal based on the calculated turning direction and turning amount, and transmits the operation control signal to the backhoe 8.
  • the correction control unit 12A again refers to the detection value of the three-dimensional sensor E6 to detect the actual bucket 824-1 and its center thereof. Find the line L1. Then, the correction control unit 12A generates an operation control signal and transmits it to the backhoe 8 until the difference between the center line L1 and the center line L2 is within a predetermined range, and repeats the process of obtaining the difference again. As a result, the position of the bucket 824 is corrected.
  • the correction control unit 12A has described an example of calculating the above-mentioned difference using the center lines L1 and L2 of each bucket 824.
  • the correction control unit 12A may calculate the difference using the center point of the region of the bucket 824 projected on the horizontal plane and the center point of the loading target area 910.
  • the correction control unit 12A may calculate the distance between the actual center point of the bucket 824-1 and the center point of the loading target area 910, which is the target position.
  • a range of 0 or more and a threshold d or less is defined as a predetermined range.
  • the correction control unit 12A is not limited to the center line or the center point, and may calculate the difference by using other information.
  • the movement control unit 11A moves the bucket 824 to the loading target area 910, and the correction control unit 12A determines that the difference between the target position in the loading target area 910 and the actual position of the bucket 824 is The position of the bucket 824 is corrected so as to be within the predetermined range.
  • the detection values of the sensors E1 to E6 referred to by the movement control unit 11A include measurement errors due to internal factors, external environmental factors, etc.
  • the actual position of the bucket 824 after correction is the target. This is because it is closer to the position.
  • the actual position of the bucket 824 is detected again, and the target position and the actual position of the bucket 824 are set.
  • the process of correcting the position of the bucket 824 is repeated until the difference is within the predetermined range. This is because the actual bucket 824 moves more accurately in a region within a predetermined range based on the target position.
  • FIG. 4 is a block diagram showing the configuration of the control system 1B.
  • the control system 1B is configured in substantially the same manner as the control system 1A according to the exemplary embodiment 2, except that the control device 10B is provided in place of the control device 10A.
  • Other points are the same as those of the control system 1A.
  • control device configuration A detailed configuration of the control device 10B according to this exemplary embodiment will be described.
  • the control device 10B includes a control unit 110B, a storage unit 120B, and a communication unit 130A.
  • the control unit 110B includes a movement control unit 11A, a correction control unit 12B, a posture estimation unit 13A, and a target position determination unit 14A.
  • the storage unit 120B stores the determination rule R2 in place of the determination rule R1 in the exemplary embodiment 2.
  • the details of the determination rule R2 and the correction control unit 12B will be described.
  • Other configurations are the same as those of the exemplary embodiment 2.
  • the determination rule R2 is a rule for determining whether or not to correct the position of the bucket 824. Specifically, the determination rule R2 is a rule that the position of the bucket 824 is corrected when the entire bucket 824 is not included in the loading target area 910.
  • the correction control unit 12B differs from the correction control unit 12A in the second embodiment in the details of the process of detecting the positional relationship between the loading target area 910 and the bucket 824. Other points are configured in the same manner as the correction control unit 12A.
  • the correction control unit 12B determines whether or not to correct the position of the bucket 824 according to the determination rule R2. That is, the correction control unit 12B detects the inclusion relationship between the bucket 824 and the loading target area 910 as the positional relationship between the loading target area 910 and the bucket 824. Further, the correction control unit 12B corrects the position of the bucket 824 when the entire bucket 824 is not included in the loading target area 910, that is, when at least a part of the bucket 824 is outside the loading target area 910. judge. In this case, the correction control unit 12B corrects the position of the bucket 824 so that the bucket 824 is included in the loading target area 910.
  • the bucket 824 is an example of the "at least predetermined portion of the movable portion" described in the claims.
  • the correction control unit 12B is configured to realize the correction control means in this exemplary embodiment.
  • FIG. 8 is a flow chart showing the flow of the control method S1B.
  • the control method S1B includes steps S101 to S103, S204, S105, S206 to S207, and S108 to S109.
  • steps S204, S105, S206 and S207 will be described.
  • the other steps are as described in the control method S1A.
  • step S204 If it is determined to be Yes in step S103, in step S204, the correction control unit 12B refers to the detected value of the three-dimensional sensor E6 and acquires information indicating the position of the loading target area 910. Specifically, the correction control unit 12B identifies the point cloud data indicating the three-dimensional shape of the loading target area 910 from the point cloud data generated by the three-dimensional sensor E6, thereby specifying the loading target area 910. Get the information indicating the position. The correction control unit 12B may specify the point cloud data indicating the three-dimensional shape of the loading target area 910 based on the characteristics of the three-dimensional shape of the loading target area 910.
  • step S105 the correction control unit 12B refers to the detected value of the three-dimensional sensor E6 and acquires information indicating the actual position of the bucket 824.
  • the details of the processing of the step are as described in the exemplary embodiment 2.
  • step S206 the correction control unit 12B detects the inclusion relationship between the loading target area 910 and the bucket 824.
  • step S207 the correction control unit 12B determines whether or not the entire bucket 824 is included in the loading target area 910 based on the detection result of step S206. When it is determined as No in step S207, the correction control unit 12B executes steps S108 to S109 in the same manner as in the exemplary embodiment 2 and controls to correct the position of the bucket 824. If it is determined to be Yes in step S207, the control device 10B ends the control method S1B.
  • FIG. 9 is a schematic diagram showing a specific example of the control method S1B.
  • FIG. 9 schematically shows a dump truck 9 viewed from above.
  • the bucket 824-1 and the arm 823-1 schematically show the actual bucket 824 and the arm 823 detected by the correction control unit 12B.
  • the region A1 is a region of the bucket 824-1 projected on a plane (here, referred to as a horizontal plane) when the dump truck 9 is viewed from above.
  • the area A2 is the area of the loading target area 910 projected on the horizontal plane.
  • the correction control unit 12B determines whether or not the entire area A1 is included in the area A2.
  • the correction control unit 12B buckets so that the entire area A1 is included in the area A2 when the entire area A1 is not included in the area A2 (that is, when at least a part of the area A1 is outside the area A2). Control is performed to correct the position of 824-1.
  • the arrow AR shown in FIG. 9 schematically shows the turning direction and the turning amount determined by the correction control unit 12B.
  • the details of the control in which the correction control unit 12B changes the posture of the movable unit 820 in order to correct the position of the bucket 824-1 are as described in the specific example of the second embodiment.
  • the correction control unit 12B detects the bucket 824-1 again and determines the inclusion relationship of the regions A1 and A2. To detect. Then, the correction control unit 12B generates an operation control signal and transmits it to the backhoe 8 until the entire area A1 is included in the area A2, and repeats the process of detecting the inclusion relationship again. As a result, the position of the bucket 824 is corrected.
  • the movement control unit 11A moves the bucket 824 to the loading target area 910, and the correction control unit 12B corrects the position of the bucket 824 so that the entire bucket 824 is included in the loading target area 910. do.
  • the actual position of the bucket 824 after correction is the product. This is because it is sufficiently included in the inclusion target area 910.
  • the correction control unit 12B controls to correct the position of the bucket 824, the actual position of the bucket 824 is detected again, and the entire bucket 824 is included in the loading target area 910. The process of correcting the position of the bucket 824 is repeated until the result is obtained. This is because the entire bucket 824 moves more accurately within the loading target area 910.
  • the correction control unit 12B detects the positional relationship between the loading target area 910 and the bucket 824 with reference to the detection value of the three-dimensional sensor E6 only. Therefore, even if the target position itself determined based on the detected values of the sensors E1 to E6 includes an error with respect to the target position in the real space, the error can be corrected.
  • correction control units 12A and 12B generate the operation control signal by referring to the table for generating the operation control signal, and refer to the position of the corrected bucket 824. You may modify the table.
  • the storage units 120A and 120B store the table.
  • the table includes information relating the correction amount of the position of the bucket 824 and the turning amount of each part of the movable part 820.
  • the correction control units 12A and 12B refer to the table and generate an operation control signal using the turning amount of each part of the movable unit 820 associated with the correction amount of the bucket 824. Further, the correction control units 12A and 12B control to correct the position of the bucket 824 using the operation control signal, and then the corrected position intended by the operation control signal and the bucket 824 detected after the correction. Detect the difference from the actual position. Further, the correction control units 12A and 12B correct the table based on the detected difference.
  • the correction control units 12A and 12B generate an operation control signal for turning the boom 822 by the turning amount ⁇ with reference to the table in order to move the bucket 824 by 1 cm.
  • the bucket 824 actually moves more than 1 cm as a result of transmitting the operation control signal to the backhoe 8.
  • the correction control units 12A and 12B correct the turning amount associated with the correction amount of 1 cm of the bucket 824 to a value smaller than ⁇ in the table.
  • the correction control unit 12A, 12B uses the sensor E6, which is one of the sensors E1 to E6 used by the movement control unit 11A, as the sensor used to correct the position of the bucket 824.
  • the correction control units 12A and 12B may correct the position of the bucket 824 using a sensor different from the sensor group used by the movement control unit 11A.
  • the correction control units 12A and 12B may use a two-dimensional sensor instead of the three-dimensional sensor E6.
  • An example of a two-dimensional sensor is a camera that captures the surroundings and generates a two-dimensional image. In this case, the camera generates a captured image which is a two-dimensional image captured from above the loading target area 910. In this case, the correction control units 12A and 12B detect the positional relationship between the bucket 824 and the loading target area 910 in the captured image.
  • the correction control units 12A and 12B have described an example of detecting the positional relationship in the horizontal plane as the “positional relationship between the bucket 824 and the loading target area 910”.
  • the "positional relationship between the bucket 824 and the loading target area 910" is not limited to the positional relationship on the horizontal plane.
  • the correction control units 12A and 12B may determine the positional relationship on a surface other than the horizontal plane.
  • the surface other than the horizontal surface may be, for example, a vertical surface. In this case, the correction control units 12A and 12B can correct the position of the bucket 824 in the vertical direction.
  • the correction control units 12A and 12B may determine the positional relationship on the horizontal plane and the vertical plane, respectively, and perform control to correct the position of the bucket 824 by integrating the judgment results. In this case, the correction control units 12A and 12B can correct the position of the bucket 824 in the horizontal direction and the vertical direction. Further, the correction control units 12A and 12B may determine the positional relationship in the three-dimensional space. In this case, the correction control units 12A and 12B can correct the position of the bucket 824 three-dimensionally.
  • a robot or a construction machine can be applied as a working machine.
  • a crane may be applied instead of the backhoe 8.
  • hooks can be applied instead of bucket 824.
  • the destination area of the moving target to be moved by using the hook is applied.
  • the work machine is not limited to the crane, but may be another construction machine or another robot.
  • the controller (830) is not limited to being mounted on the work machine (backhoe 8), but may be installed outside the work machine (backhoe 8).
  • the movement control unit 11 (11A, 11B) transmits an operation control signal to the controller (830) installed outside the work machine (backhoe 8).
  • the controller (830) controls the drive unit of the moving mechanism that moves the movable unit (bucket 824) of the work machine (backhoe 8) by wireless communication according to the received operation control signal.
  • the controller (830) controls the drive unit via the relay device.
  • the relay device is installed in a place where the drive unit can be controlled by wireless communication (for example, around a work machine, in a work site, etc.).
  • the work machine (backhoe 8) is replaced with or in addition to the controller, the operation unit (operation lever, etc.), and the operation unit drive device (attachment) attached to the operation unit. Etc.) and may have.
  • the operation unit accepts an operation by an operator for moving the movable unit (bucket 824).
  • the operation unit drive device is a device that drives the operation unit instead of the operator.
  • the movement control unit 11 (11A) controls the work machine by transmitting the operation control signal to the operation unit drive device in place of or in addition to transmitting the operation control signal to the controller (830). Control.
  • the work machine (backhoe 8) on which the operator can board can be controlled.
  • the movement control unit 11 (11A) may generate an operation control signal for controlling the work machine (backhoe 8) based on the operation of the operator.
  • the movement control unit 11 (11A) may be configured by another computer installed in a place physically different from the computer constituting the correction control unit 12 (12A, 12B).
  • the operator can remotely move the movable portion (bucket 824) of the work machine (backhoe 8).
  • the position of the movable portion (bucket 824) moved by the operator can be moved to the destination area (loading target area 910) with higher accuracy.
  • the movement control unit 11A may control the bucket 824 to move to the loading target area 910 without referring to the detected values of the sensors E1 to E6. ..
  • the target position in the loading target area 910 may be predetermined.
  • the movement control unit 11A can generate an operation control signal for moving the bucket 824 to a predetermined target position without referring to the estimated posture based on the detected values of the sensors E1 to E6.
  • Such an operation control signal includes a predetermined turning direction and turning amount for each part of the movable part 820.
  • the movement control unit 11A may, for example, generate such an operation control signal based on the past control results up to a predetermined target position.
  • the backhoe 8 does not necessarily have to be equipped with the sensors E1 to E4. Further, the control devices 10A and 10B do not necessarily have to include the posture estimation unit 13A and the target position determination unit 14A.
  • the sensor E5 may be mounted on the backhoe 8. Further, the sensor E5 may be installed in another place where the object contained in the space SP2 can be detected. For example, the sensor E5 may be installed at a position (for example, a ceiling, a pillar, etc.) where the excavation area can be overlooked. Further, when the shape change due to excavation of the earth and sand OBJ in the space SP2 is small, the sensor E5 does not necessarily have to be installed. Further, the sensor E5 may be any sensor that detects the surrounding environment of the backhoe 8, and is not limited to the three-dimensional sensor. Further, the sensor E5 may be used to control the traveling of the traveling unit 810.
  • the backhoe 8 may be equipped with another sensor for controlling the traveling of the traveling unit 810.
  • the other sensor may be, for example, a camera, a ToF, a laser sensor, or a radar sensor that captures the traveling direction of the back hoe 8. May be.
  • control devices 10, 10A and 10B may be realized by hardware such as an integrated circuit (IC chip) or by software.
  • control devices 10, 10A, and 10B are realized by, for example, a computer that executes a program instruction, which is software that realizes each function.
  • a computer that executes a program instruction, which is software that realizes each function.
  • An example of such a computer (hereinafter referred to as computer C) is shown in FIG.
  • the computer C includes at least one processor C1 and at least one memory C2.
  • a program P for operating the computer C as the control devices 10, 10A, and 10B is recorded in the memory C2.
  • the processor C1 reads the program P from the memory C2 and executes it, so that the functions of the control devices 10, 10A, and 10B are realized.
  • Examples of the processor C1 include CPU (Central Processing Unit), GPU (Graphic Processing Unit), DSP (Digital Signal Processor), MPU (Micro Processing Unit), FPU (Floating point number Processing Unit), and PPU (Physics Processing Unit). , Microcontrollers, or combinations thereof.
  • the memory C2 for example, a flash memory, an HDD (Hard Disk Drive), an SSD (Solid State Drive), or a combination thereof can be used.
  • the computer C may further include a RAM (RandomAccessMemory) for expanding the program P at the time of execution and temporarily storing various data. Further, the computer C may further include a communication interface for transmitting / receiving data to / from another device. Further, the computer C may further include an input / output interface for connecting an input / output device such as a keyboard, a mouse, a display, and a printer.
  • RAM RandomAccessMemory
  • the computer C may further include a communication interface for transmitting / receiving data to / from another device. Further, the computer C may further include an input / output interface for connecting an input / output device such as a keyboard, a mouse, a display, and a printer.
  • the program P can be recorded on a non-temporary tangible recording medium M that can be read by the computer C.
  • a recording medium M for example, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • the computer C can acquire the program P via such a recording medium M.
  • the program P can be transmitted via a transmission medium.
  • a transmission medium for example, a communication network, a broadcast wave, or the like can be used.
  • the computer C can also acquire the program P via such a transmission medium.
  • Appendix 1 A control device that controls a work machine with moving parts.
  • a movement control means for controlling the work machine so as to move the movable portion to a destination area,
  • a correction control means for controlling the work machine to correct the position of the movable portion by detecting the positional relationship between the region and the movable portion with reference to the detection value of the sensor. Equipped with a control device.
  • the movable part can be moved to the destination area more accurately.
  • the correction control means is used for the movement destination. This is because the position of the movable portion is corrected by detecting the positional relationship between the region and the movable portion.
  • Appendix 2 The control device according to Appendix 1, wherein the sensor includes a first sensor that three-dimensionally detects an object in a space including the region.
  • the positional relationship between the movable part and the destination area can be detected three-dimensionally, so that the movable part can be moved to the destination area more accurately.
  • the movement control means controls the work machine so as to move the movable portion to the region with reference to the detection value of the second sensor that detects the posture of the work machine.
  • the control device according to Appendix 2, wherein the correction control means controls the work machine so as to correct the position of the movable portion with reference to the detection value of the first sensor.
  • the movable part can be accurately moved to the destination region.
  • the position of the movable part can be brought closer to the target position.
  • the moving object can be moved more reliably to the destination area.
  • the work machine has a configuration in which the movable portion is moved by changing the posture.
  • the control device according to any one of Supplementary note 1 to Supplementary note 6, wherein the correction control means controls the work machine so as to change the posture in order to correct the position of the movable portion.
  • the posture of the work machine can be controlled so as to correct the position of the movable part.
  • a control system including a control device for controlling a work machine having a moving part and a sensor.
  • the control device A movement control means for controlling the work machine so as to move the movable portion to a destination area, A correction control means for controlling the work machine to correct the position of the movable portion by detecting the positional relationship between the region and the movable portion with reference to the detection value of the sensor. Equipped with a control system.
  • Appendix 9 The control system according to Appendix 8, wherein the sensor includes a first sensor that three-dimensionally detects an object in a space including the region.
  • the movement control means controls the work machine so as to move the movable portion to the region with reference to the detection value of the second sensor that detects the posture of the work machine.
  • the work machine has a configuration in which the movable portion is moved by changing the posture.
  • the control system according to any one of Supplementary note 8 to Supplementary note 13, wherein the correction control means controls the work machine so as to change the posture in order to correct the position of the movable portion.
  • Appendix 15 It is a control method for controlling a work machine having a moving part. Controlling the work machine to move the movable part to the destination area, and Controlling the work machine to correct the position of the movable portion by detecting the positional relationship between the region and the movable portion with reference to the detection value of the sensor. Control methods, including.
  • Appendix 16 The control method according to Appendix 15, wherein the sensor includes a first sensor that three-dimensionally detects an object in a space including the region.
  • Appendix 18 Any one of Appendix 15 to 17, which corrects the position of the movable portion so that the difference between the target position and the position of the movable portion in the region is within a predetermined range with reference to the detection value of the sensor. The control method described in.
  • the work machine has a configuration in which the movable portion is moved by changing the posture.
  • the control method according to any one of Supplementary note 15 to Supplementary note 20, wherein the correction control means controls the work machine so as to change the posture in order to correct the position of the movable portion.
  • Appendix 22 A program that causes a computer to function as a control device for controlling a work machine having moving parts.
  • the computer A movement control means for controlling the work machine so as to move the movable portion to a destination area, A correction control means for controlling the work machine to correct the position of the movable portion by detecting the positional relationship between the region and the movable portion with reference to the detection value of the sensor.
  • the movement control means controls the work machine so as to move the movable portion to the region with reference to the detection value of the second sensor that detects the posture of the work machine.
  • the work machine has a configuration in which the movable portion is moved by changing the posture.
  • the program according to any one of Supplementary note 22 to Supplementary note 27, wherein the correction control means controls the work machine so as to change the posture in order to correct the position of the movable portion.
  • a storage medium that stores a program that causes a computer to function as a control device for controlling a work machine having a movable part.
  • the program is the computer.
  • a movement control means for controlling the work machine so as to move the movable portion to a destination area
  • a correction control means for controlling the work machine to correct the position of the movable portion by detecting the positional relationship between the region and the movable portion with reference to the detection value of the sensor.
  • a storage medium that stores a program that functions as.
  • the processor includes at least one processor, and the processor refers to a movement control process that controls the work machine so as to move the movable portion to a destination region, and a detection value of the sensor, and the region and the movable portion.
  • a control device that executes a correction control process that controls the work machine so as to correct the position of the movable portion by detecting the positional relationship with the movable portion.
  • the control device may further include a memory, and the memory may store a program for causing the processor to execute the movement control process and the correction control process.
  • the program may also be recorded on a computer-readable, non-temporary, tangible recording medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

The present invention moves a movable part of a work machine more precisely to a desired region. Provided is a control device (10) that controls a work machine having a movable part, said control device (10) comprising: a movement control unit (11) that controls the work machine such that the movable part is moved to a movement destination region; and a correction control unit (12) that refers to the value detected by a sensor and detects the positional relationship between the movement destination region and the movable part so as to control the work machine such that the position of the movable part is corrected.

Description

制御装置、制御システム、および制御方法Control devices, control systems, and control methods
 本発明は、可動部を有する作業機械を制御する技術に関する。 The present invention relates to a technique for controlling a work machine having a moving part.
 可動部を有する作業機械を制御する技術が知られている。例えば、特許文献1には、地ならし機の可動部を可動させるよう制御する技術が記載されている。 The technique of controlling a work machine having a moving part is known. For example, Patent Document 1 describes a technique for controlling a movable portion of a ground leveling machine to be movable.
日本国公開特許公報特開2000-136549号公報Japanese Patent Publication No. 2000-136549
 特許文献1に記載の技術においては、制御における各種の誤差に起因して、地ならし機の可動部の位置が所望の領域からずれることがある、という問題があった。 The technique described in Patent Document 1 has a problem that the position of the movable part of the leveling machine may deviate from a desired region due to various errors in control.
 本発明の一態様は、上記の問題に鑑みてなされたものであり、その目的の一例は、作業機械の可動部をより精度よく所望の領域に移動させる技術を提供することである。 One aspect of the present invention has been made in view of the above problems, and one example of the present invention is to provide a technique for moving a moving part of a work machine to a desired region with higher accuracy.
 本発明の一態様に係る制御装置は、可動部を有する作業機械を制御する制御装置であって、前記可動部を移動先の領域まで移動させるよう、前記作業機械を制御する移動制御手段と、センサの検出値を参照して、前記領域と前記可動部との位置関係を検出することにより、前記可動部の位置を補正するよう前記作業機械を制御する補正制御手段と、を備える。 The control device according to one aspect of the present invention is a control device for controlling a work machine having a movable portion, and is a movement control means for controlling the work machine so as to move the movable portion to a destination region. A correction control means for controlling the work machine to correct the position of the movable portion by detecting the positional relationship between the region and the movable portion with reference to the detection value of the sensor is provided.
 本発明の一態様に係る制御システムは、可動部を有する作業機械を制御する制御装置と、センサとを含む制御システムであって、前記制御装置が、前記可動部を移動先の領域まで移動させるよう、前記作業機械を制御する移動制御手段と、前記センサの検出値を参照して、前記領域と前記可動部との位置関係を検出することにより、前記可動部の位置を補正するよう前記作業機械を制御する補正制御手段と、を備える。 The control system according to one aspect of the present invention is a control system including a control device for controlling a work machine having a movable portion and a sensor, and the control device moves the movable portion to a destination region. The work of correcting the position of the movable portion by detecting the positional relationship between the region and the movable portion by referring to the movement control means for controlling the work machine and the detection value of the sensor. It is provided with a correction control means for controlling the machine.
 本発明の一態様に係る制御方法は、可動部を有する作業機械を制御装置が制御する制御方法であって、前記可動部を移動先の領域まで移動させるよう、前記作業機械を制御すること、および、センサの検出値を参照して、前記領域と前記可動部との位置関係を検出することにより、前記可動部の位置を補正するよう前記作業機械を制御すること、を含む。 The control method according to one aspect of the present invention is a control method in which a control device controls a work machine having a movable portion, and controls the work machine so as to move the movable portion to a destination region. It also includes controlling the work machine to correct the position of the movable portion by detecting the positional relationship between the region and the movable portion with reference to the detection value of the sensor.
 本発明の一態様によれば、作業機械の可動部をより精度よく所望の領域に移動させることができる。 According to one aspect of the present invention, the movable part of the work machine can be moved to a desired region with higher accuracy.
本発明の例示的実施形態1に係る制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the control system which concerns on Embodiment 1 of this invention. 本発明の例示的実施形態1に係る制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the control device which concerns on Embodiment 1 of this invention. 本発明の例示的実施形態1に係る制御方法の流れを示すフロー図である。It is a flow figure which shows the flow of the control method which concerns on the exemplary Embodiment 1 of this invention. 本発明の例示的実施形態2に係る制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the control system which concerns on Embodiment 2 of this invention. 本発明の例示的実施形態2に係る制御方法の流れを示すフロー図である。It is a flow figure which shows the flow of the control method which concerns on Embodiment 2 of this invention. 本発明の例示的実施形態2における制御方法の具体例を示す模式図である。It is a schematic diagram which shows the specific example of the control method in Embodiment 2 of this invention. 本発明の例示的実施形態3に係る制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the control system which concerns on Embodiment 3 of this invention. 本発明の例示的実施形態3に係る制御方法の流れを示すフロー図である。It is a flow figure which shows the flow of the control method which concerns on the exemplary Embodiment 3 of this invention. 本発明の例示的実施形態3における制御方法の具体例を示す模式図である。It is a schematic diagram which shows the specific example of the control method in Embodiment 3 of this invention. 本発明の各例示的実施形態における制御装置のハードウェア構成の一例を示すブロック図である。It is a block diagram which shows an example of the hardware composition of the control device in each exemplary Embodiment of this invention.
 〔例示的実施形態1〕
 本発明の第1の例示的実施形態について、図面を参照して詳細に説明する。本例示的実施形態は、後述する例示的実施形態の基本となる形態である。
[Exemplary Embodiment 1]
A first exemplary embodiment of the invention will be described in detail with reference to the drawings. This exemplary embodiment is the basis of the exemplary embodiments described below.
 <制御システムの構成>
 本例示的実施形態に係る制御システム1の構成について、図1を参照して説明する。図1は、制御システム1の構成を示すブロック図である。制御システム1は、可動部を有する作業機械を制御するシステムである。図1に示すように、制御システム1は、制御装置10と、センサEとを含む。制御装置10は、センサEの検出値を取得可能にセンサEに接続される。例えば、制御装置10は、センサEに有線接続されていてもよい。有線接続の具体例としては、例えば、USB(Universal Serial Bus)、又は、シリアル通信等が挙げられる。また、例えば、制御装置10は、ネットワークを介してセンサEに接続されてもよい。この場合、ネットワークの具体例としては、例えば、無線LAN(Local Area Network)、有線LAN、WAN(Wide Area Network)、公衆回線網、モバイルデータ通信網(3G、LTE:Long Term Evolution、4G、5G、ローカル5G等)、又は、これらのネットワークの組み合わせが挙げられる。ただし、制御装置10およびセンサEを接続する構成は、これらに限定されない。また、例えば、制御装置10は、ネットワークを介して作業機械を制御する。ネットワークの具体例としては、上述した通りであるが、これらに限られない。
<Control system configuration>
The configuration of the control system 1 according to this exemplary embodiment will be described with reference to FIG. FIG. 1 is a block diagram showing a configuration of the control system 1. The control system 1 is a system for controlling a work machine having a movable portion. As shown in FIG. 1, the control system 1 includes a control device 10 and a sensor E. The control device 10 is connected to the sensor E so that the detected value of the sensor E can be acquired. For example, the control device 10 may be connected to the sensor E by wire. Specific examples of the wired connection include USB (Universal Serial Bus), serial communication, and the like. Further, for example, the control device 10 may be connected to the sensor E via a network. In this case, specific examples of the network include, for example, wireless LAN (Local Area Network), wired LAN, WAN (Wide Area Network), public line network, mobile data communication network (3G, LTE: Long Term Evolution, 4G, 5G). , Local 5G, etc.), or a combination of these networks. However, the configuration for connecting the control device 10 and the sensor E is not limited to these. Further, for example, the control device 10 controls the work machine via the network. Specific examples of the network are as described above, but are not limited thereto.
 (制御装置の構成)
 本例示的実施形態に係る制御装置10の詳細な構成について、図2を参照して説明する。図2は、制御装置10の構成を示すブロック図である。制御装置10は、可動部を有する作業機械を制御する装置である。図2に示すように、制御装置10は、移動制御部11と、補正制御部12とを含む。なお、移動制御部11は、本例示的実施形態において移動制御手段を実現する構成である。補正制御部12は、本例示的実施形態において補正制御手段を実現する構成である。
(Control device configuration)
A detailed configuration of the control device 10 according to this exemplary embodiment will be described with reference to FIG. FIG. 2 is a block diagram showing the configuration of the control device 10. The control device 10 is a device that controls a work machine having a movable portion. As shown in FIG. 2, the control device 10 includes a movement control unit 11 and a correction control unit 12. The movement control unit 11 is configured to realize the movement control means in this exemplary embodiment. The correction control unit 12 is configured to realize the correction control means in this exemplary embodiment.
 移動制御部11は、可動部を移動先の領域まで移動させるよう、作業機械を制御する。具体的には、移動制御部11は、作業機械に搭載されたコントローラに対して、可動部を移動先の領域まで移動させるための動作制御信号を送信する。そのような動作制御信号の生成処理および送信処理については、対象となる作業機械に応じた公知の技術を採用可能である。 The movement control unit 11 controls the work machine so as to move the movable unit to the destination area. Specifically, the movement control unit 11 transmits an operation control signal for moving the movable unit to the destination region to the controller mounted on the work machine. For such operation control signal generation processing and transmission processing, known techniques corresponding to the target work machine can be adopted.
 補正制御部12は、センサEの検出値を参照して、移動先の領域と可動部との位置関係を検出することにより、可動部の位置を補正するよう作業機械を制御する。具体的には、補正制御部12は、移動先の領域と可動部との位置関係が所定条件を満たしていない場合に、当該位置関係が所定条件を満たすように、可動部の位置を補正する制御を行う。所定条件としては、空間における2つの領域間の位置関係を判定するための各種の条件を採用可能である。 The correction control unit 12 controls the work machine to correct the position of the movable part by detecting the positional relationship between the moving destination area and the movable part with reference to the detection value of the sensor E. Specifically, the correction control unit 12 corrects the position of the movable portion so that the positional relationship between the destination area and the movable portion does not satisfy the predetermined condition. Take control. As predetermined conditions, various conditions for determining the positional relationship between two regions in space can be adopted.
 例えば、補正制御部12は、移動先の領域と可動部との位置関係として、移動先の領域における目標位置と、実際の可動部の位置との差分を算出する。また、補正制御部12は、当該差分が所定範囲外である場合に、可動部の位置を補正すると判定する。この場合、補正制御部12は、当該差分が所定範囲内となるよう、可動部の位置を補正する。ただし、移動先の領域と可動部との位置関係を判定するための条件、および、可動部の位置を補正する処理は、これらに限られない。 For example, the correction control unit 12 calculates the difference between the target position in the destination region and the actual position of the movable portion as the positional relationship between the destination region and the movable portion. Further, the correction control unit 12 determines that the position of the movable unit is corrected when the difference is out of the predetermined range. In this case, the correction control unit 12 corrects the position of the movable unit so that the difference is within a predetermined range. However, the conditions for determining the positional relationship between the moving destination area and the movable portion and the process for correcting the position of the movable portion are not limited to these.
 (センサの構成)
 センサEは、移動先の領域と可動部との位置関係を検出するためのセンサである。具体的には、センサEは、移動先の領域を含む空間を走査する2次元又は3次元のセンサを含んでもよい。例えば、センサEの具体例としては、カメラ(例えば、デプスカメラ、ステレオカメラ、ToF(Time-of-Flight)カメラ等)、レーザセンサ(例えば、2DLiDAR、3DLiDAR等)、又はレーダセンサ等が挙げられるが、これらに限られない。
(Sensor configuration)
The sensor E is a sensor for detecting the positional relationship between the destination area and the movable portion. Specifically, the sensor E may include a two-dimensional or three-dimensional sensor that scans the space including the destination region. For example, specific examples of the sensor E include a camera (for example, a depth camera, a stereo camera, a ToF (Time-of-Flight) camera, etc.), a laser sensor (for example, 2DLiDAR, 3DLiDAR, etc.), a radar sensor, and the like. However, it is not limited to these.
 <制御方法の流れ>
 以上のように構成された制御システム1において、制御装置10は、制御方法S1を実行する。制御方法S1の流れについて、図3を参照して説明する。図3は、制御方法S1の流れを示すフロー図である。図3に示すように、制御方法S1は、ステップS11と、ステップS12とを含む。
<Flow of control method>
In the control system 1 configured as described above, the control device 10 executes the control method S1. The flow of the control method S1 will be described with reference to FIG. FIG. 3 is a flow chart showing the flow of the control method S1. As shown in FIG. 3, the control method S1 includes step S11 and step S12.
 (ステップS11)
 ステップS11において、移動制御部11は、可動部を移動先の領域まで移動させるよう、作業機械を制御する。
(Step S11)
In step S11, the movement control unit 11 controls the work machine so as to move the movable unit to the destination area.
 (ステップS12)
 ステップS12において、補正制御部12は、センサEの検出値を参照して、移動先の領域と可動部との位置関係を検出することにより、可動部の位置を補正するよう作業機械を制御する。
(Step S12)
In step S12, the correction control unit 12 controls the work machine to correct the position of the movable portion by detecting the positional relationship between the destination region and the movable portion with reference to the detection value of the sensor E. ..
 <本例示的実施形態の効果>
 本例示的実施形態において、移動制御部11が可動部を移動先の領域まで移動させ、補正制御部12が、移動先の領域と可動部との位置関係を検出することにより、可動部の位置を補正する。その結果、本例示的実施形態は、可動部をより精度よく移動先の領域に移動させることができる。
<Effect of this exemplary embodiment>
In this exemplary embodiment, the movement control unit 11 moves the movable portion to the destination region, and the correction control unit 12 detects the positional relationship between the movement destination region and the movable portion, thereby positioning the movable portion. To correct. As a result, in this exemplary embodiment, the movable portion can be moved to the destination region with higher accuracy.
 〔例示的実施形態2〕
 本発明の第2の例示的実施形態について、図面を参照して詳細に説明する。なお、例示的実施形態1にて説明した構成要素と同じ機能を有する構成要素については、同じ符号を付し、その説明を繰り返さない。
[Exemplary Embodiment 2]
A second exemplary embodiment of the invention will be described in detail with reference to the drawings. The components having the same functions as those described in the first embodiment are designated by the same reference numerals, and the description thereof will not be repeated.
 <制御システムの構成>
 本例示的実施形態に係る制御システム1Aの構成について、図4を参照して説明する。図4は、制御システム1Aの構成を示すブロック図である。図4に示すように、制御システム1Aは、制御装置10Aと、三次元センサE5、E6とを含む。制御システム1Aは、バックホウ8を制御するシステムである。より具体的には、制御システム1Aは、バックホウ8を、掬い取った土砂OBJを運搬してダンプトラック9に積み込むよう制御するシステムである。制御装置10Aは、ネットワークN1を介して、三次元センサE5、E6およびバックホウ8のコントローラ830と通信可能に接続される。ネットワークN1は、例えば、無線LAN(Local Area Network)、有線LAN、WAN(Wide Area Network)、公衆回線網、モバイルデータ通信網、又は、これらのネットワークの組み合わせである。ただし、ネットワークN1の構成はこれらに限定されない。なお、制御装置10Aは、バックホウ8に搭載されていてもよい。
<Control system configuration>
The configuration of the control system 1A according to this exemplary embodiment will be described with reference to FIG. FIG. 4 is a block diagram showing the configuration of the control system 1A. As shown in FIG. 4, the control system 1A includes a control device 10A and three-dimensional sensors E5 and E6. The control system 1A is a system for controlling the backhoe 8. More specifically, the control system 1A is a system that controls the backhoe 8 to carry the scooped earth and sand OBJ and load it on the dump truck 9. The control device 10A is communicably connected to the three-dimensional sensors E5, E6 and the controller 830 of the backhoe 8 via the network N1. The network N1 is, for example, a wireless LAN (Local Area Network), a wired LAN, a WAN (Wide Area Network), a public line network, a mobile data communication network, or a combination of these networks. However, the configuration of the network N1 is not limited to these. The control device 10A may be mounted on the backhoe 8.
 ここで、バックホウ8は、特許請求の範囲に記載した「可動部を有する作業機械」の一例を構成する。また、土砂OBJは、特許請求の範囲に記載した移動対象物の一例を構成する。土砂OBJを運搬することは、特許請求の範囲に記載した「移動対象物を移動する」ことの一例である。また、バックホウ8が有するバケット824は、特許請求の範囲に記載した「可動部」に含まれる「移動対象物を前記領域まで移動させる器具」の一例を構成する。また、ダンプトラック9の積込対象エリア910は、特許請求の範囲に記載した「移動先の領域」の一例を構成する。バケット824を積込対象エリア910まで移動させることは、特許請求の範囲に記載した「可動部を移動先の領域まで移動する」ことの一例である。 Here, the backhoe 8 constitutes an example of the "working machine having a movable part" described in the claims. Further, the earth and sand OBJ constitutes an example of the moving object described in the claims. Carrying earth and sand OBJ is an example of "moving a moving object" described in the claims. Further, the bucket 824 included in the backhoe 8 constitutes an example of "a device for moving a moving object to the region" included in the "movable portion" described in the claims. Further, the loading target area 910 of the dump truck 9 constitutes an example of the "destination area" described in the claims. Moving the bucket 824 to the loading area 910 is an example of "moving the movable portion to the destination area" described in the claims.
 (バックホウの構成)
 制御システム1Aの制御対象であるバックホウ8の構成について説明する。バックホウ8は、制御装置10Aによる制御に従って動作する。図4に示すように、バックホウ8は、走行部810と、走行部810に取り付けられた可動部820と、コントローラ830とを含む。また、バックホウ8は、センサE1~E4を搭載する。
(Structure of backhoe)
The configuration of the backhoe 8 to be controlled by the control system 1A will be described. The backhoe 8 operates according to the control by the control device 10A. As shown in FIG. 4, the backhoe 8 includes a traveling unit 810, a movable unit 820 attached to the traveling unit 810, and a controller 830. Further, the backhoe 8 is equipped with sensors E1 to E4.
 走行部810は、バックホウ8の前進、後進、右折、左折を可能とする走行部である。走行部810は、例えば無限軌道ベルトを用いて走行する。可動部820は、旋回部821と、旋回部821に取り付けられたブーム822と、ブーム822の先端部に取り付けられたアーム823と、アーム823の先端部に取り付けられたバケット824と、を含む。 The traveling unit 810 is a traveling unit that enables the backhoe 8 to move forward, backward, turn right, and turn left. The traveling unit 810 travels using, for example, an endless track belt. The movable portion 820 includes a swivel portion 821, a boom 822 attached to the swivel portion 821, an arm 823 attached to the tip of the boom 822, and a bucket 824 attached to the tip of the arm 823.
 旋回部821は、走行部810の上で、図の紙面に垂直な平面内での旋回が可能である。なお、バックホウ8が水平な地面にある場合は、図4の紙面に垂直な平面は水平面となるため、以下ではこの面を便宜的に「水平面」と称する。ブーム822は、ブーム軸822Aを中心に、水平面に略垂直な平面内で往復旋回が可能である。アーム823は、ブーム822と同じ旋回面で、アーム軸823Aを中心に往復旋回が可能である。バケット824は、アーム823の旋回面と同じ旋回面で、バケット軸824Aを中心に往復旋回が可能である。可動部820の各部が旋回することにより、バックホウ8の姿勢が変化する。なお、可動部820の各部とは、旋回部821、ブーム822、アーム823、およびバケット824を指す。 The swivel portion 821 can swivel on the traveling portion 810 in a plane perpendicular to the paper surface in the figure. When the backhoe 8 is on a horizontal ground, the plane perpendicular to the paper surface in FIG. 4 is a horizontal plane, and therefore, this plane is referred to as a “horizontal plane” for convenience below. The boom 822 can reciprocate around the boom shaft 822A in a plane substantially perpendicular to the horizontal plane. The arm 823 has the same turning surface as the boom 822, and can reciprocate around the arm shaft 823A. The bucket 824 has the same swivel surface as the swivel surface of the arm 823, and can reciprocate swivel around the bucket shaft 824A. The posture of the backhoe 8 changes as each portion of the movable portion 820 turns. The movable portion 820 refers to the swivel portion 821, the boom 822, the arm 823, and the bucket 824.
 センサE1~E4は、バックホウ8に搭載されるセンサ群である。センサE1~E4は、それぞれ、バックホウ8の姿勢を検出する。センサE1~E4は、特許請求の範囲に記載した第2センサの一例である。バックホウ8の姿勢は、例えば、可動部820の各部の旋回角度によって変化する。この例では、センサE1~E4のそれぞれは、旋回部821、ブーム822、アーム823、またはバケット824の旋回角度を検出するセンサである。 Sensors E1 to E4 are a group of sensors mounted on the backhoe 8. Sensors E1 to E4 each detect the posture of the backhoe 8. Sensors E1 to E4 are examples of the second sensor described in the claims. The posture of the backhoe 8 changes, for example, depending on the turning angle of each portion of the movable portion 820. In this example, each of the sensors E1 to E4 is a sensor that detects the turning angle of the turning portion 821, the boom 822, the arm 823, or the bucket 824.
 具体的には、センサE1は、旋回部821の旋回角度を検出する、例えばジャイロセンサである。また、センサE1は、旋回部821を旋回させるモータの回転数を検出するエンコーダでもよい。センサE2は、ブーム822の水平面からの角度を検出する傾斜センサ又はジャイロセンサである。センサE2は、ブーム822を旋回させる油圧シリンダのロッドの移動距離を検出するエンコーダでもよい。センサE3は、アーム823の、ブーム822に対する角度を検出する、例えば傾斜センサ、ジャイロセンサ、又はエンコーダである。センサE4は、バケット824の、アーム823に対する角度を検出する、例えば傾斜センサ、ジャイロセンサ、又はエンコーダである。なお、センサE2~E4は、それぞれ、バックホウ8の外部に設置されてもよいし、内部に設置されてもよい。外部に設置される場合、センサE2~E4は、それぞれ、傾斜センサ、加速度センサ、ジャイロセンサ、ストロークセンサ、又はエンコーダ等である。また、内部に設置される場合、センサE2~E4は、それぞれ、圧力センサ、流量センサ、シリンダセンサ、油圧センサ、又はストロークセンサ等である。ただし、センサE1~E4それぞれの種類は、これに限られない。また、センサE1~E4の搭載位置は、図示の位置に限られない。 Specifically, the sensor E1 is, for example, a gyro sensor that detects the turning angle of the turning portion 821. Further, the sensor E1 may be an encoder that detects the rotation speed of the motor that swivels the swivel portion 821. The sensor E2 is a tilt sensor or a gyro sensor that detects the angle of the boom 822 from the horizontal plane. The sensor E2 may be an encoder that detects the moving distance of the rod of the hydraulic cylinder that turns the boom 822. The sensor E3 is, for example, a tilt sensor, a gyro sensor, or an encoder that detects the angle of the arm 823 with respect to the boom 822. The sensor E4 is, for example, a tilt sensor, a gyro sensor, or an encoder that detects the angle of the bucket 824 with respect to the arm 823. The sensors E2 to E4 may be installed outside the backhoe 8 or may be installed inside the backhoe 8, respectively. When installed externally, the sensors E2 to E4 are tilt sensors, acceleration sensors, gyro sensors, stroke sensors, encoders, and the like, respectively. When installed inside, the sensors E2 to E4 are a pressure sensor, a flow rate sensor, a cylinder sensor, a hydraulic pressure sensor, a stroke sensor, or the like, respectively. However, the types of the sensors E1 to E4 are not limited to this. Further, the mounting positions of the sensors E1 to E4 are not limited to the positions shown in the figure.
 コントローラ830は、プロセッサ、メモリおよび通信インタフェース(何れも不図示)を有する。コントローラ830は、メモリに記憶されたプログラムを読み込んで実行することにより、センサE1~E5の検出値を取得し、取得した検出値を、通信インタフェースを介して制御装置10Aに送信する。なお、センサE1~E5の検出値は、コントローラ830が取得して制御装置10Aに送信する代わりに、制御装置10Aが直接取得してもよい。また、コントローラ830は、メモリに記憶されたプログラムを読み込んで実行することにより、通信インタフェースを介して制御装置10Aから受信した動作制御信号にしたがって、バックホウ8の各部を制御する。 The controller 830 has a processor, a memory, and a communication interface (all not shown). The controller 830 acquires the detected values of the sensors E1 to E5 by reading and executing the program stored in the memory, and transmits the acquired detected values to the control device 10A via the communication interface. The detected values of the sensors E1 to E5 may be directly acquired by the controller 10A instead of being acquired by the controller 830 and transmitted to the controller 10A. Further, the controller 830 controls each part of the backhoe 8 according to the operation control signal received from the control device 10A via the communication interface by reading and executing the program stored in the memory.
 例えば、コントローラ830は、動作制御信号にしたがって、旋回部821、ブーム822、アーム823、およびバケット824の一部または全部を旋回させる。例えば、旋回部821、ブーム822、およびアーム823の一部または全部を旋回させた場合、バケット824の位置が変化し、バケット824が移動する。また、例えば、バケット824を旋回させた場合、バケット824は、土砂OBJを掬い取る動作、積み込む動作、又は放土する動作(掬い取った土砂OBJをバケット824から降ろす動作)を行う。 For example, the controller 830 swivels a part or all of the swivel portion 821, the boom 822, the arm 823, and the bucket 824 according to the operation control signal. For example, when part or all of the swivel portion 821, the boom 822, and the arm 823 is swiveled, the position of the bucket 824 changes and the bucket 824 moves. Further, for example, when the bucket 824 is swiveled, the bucket 824 performs an operation of scooping up the earth and sand OBJ, an operation of loading, or an operation of discharging the earth and sand (an operation of unloading the scooped earth and sand OBJ from the bucket 824).
 (ダンプトラックの構成)
 バックホウ8が運搬する土砂OBJの積込み先であるダンプトラック9の構成について説明する。図4に示すように、ダンプトラック9は、積込対象エリア910を有する。積込対象エリア910は、例えば、ベッセルである。土砂OBJは、積込対象エリア910の上部でバケット824から放土されると、積込対象エリア910に積み込まれる。
(Dump truck configuration)
The configuration of the dump truck 9 which is the loading destination of the earth and sand OBJ carried by the backhoe 8 will be described. As shown in FIG. 4, the dump truck 9 has a loading target area 910. The loading target area 910 is, for example, a vessel. When the earth and sand OBJ is discharged from the bucket 824 at the upper part of the loading target area 910, it is loaded into the loading target area 910.
 (三次元センサの構成)
 三次元センサE5は、バックホウ8の周辺環境を検出するセンサである。具体的には、三次元センサE5は、掘削エリアを含む空間SP2内の対象物を三次元的に検出するセンサである。以降、三次元センサE5を、単にセンサE5と記載する場合もある。空間SP2には、対象物として、例えば、土砂OBJが含まれる。また、土砂OBJの掘削時には、空間SP2には、対象物として、さらにバケット824が含まれる。
(3D sensor configuration)
The three-dimensional sensor E5 is a sensor that detects the surrounding environment of the backhoe 8. Specifically, the three-dimensional sensor E5 is a sensor that three-dimensionally detects an object in the space SP2 including the excavation area. Hereinafter, the three-dimensional sensor E5 may be simply referred to as the sensor E5. Space SP2 includes, for example, earth and sand OBJ as an object. Further, when excavating the earth and sand OBJ, the space SP2 further includes a bucket 824 as an object.
 三次元センサE6は、積込対象エリア910を含む空間SP1内の対象物を三次元的に検出するセンサである。三次元センサE6は、特許請求の範囲に記載した第1センサの一例である。以降、三次元センサE6を、単にセンサE6と記載する場合もある。空間SP1には、対象物として、例えば、積込対象エリア910を構成するベッセルが含まれる。また、積込対象エリア910に既に積み込まれた土砂OBJがある場合、空間SP1には、対象物として、さらに土砂OBJが含まれる。また、バケット824の移動制御が終了している場合、空間SP1には、対象物として、さらにバケット824が含まれる。 The three-dimensional sensor E6 is a sensor that three-dimensionally detects an object in the space SP1 including the loading target area 910. The three-dimensional sensor E6 is an example of the first sensor described in the claims. Hereinafter, the three-dimensional sensor E6 may be simply referred to as the sensor E6. The space SP1 includes, for example, a vessel constituting the loading target area 910 as an object. Further, when there is an earth and sand OBJ already loaded in the loading target area 910, the space SP1 further includes the earth and sand OBJ as an object. Further, when the movement control of the bucket 824 is completed, the space SP1 further includes the bucket 824 as an object.
 例えば、三次元センサE5、E6は、三次元レーザスキャナによって構成される。この場合、三次元センサE5、E6は、空間SP2、SP1内の各対象物にレーザ光線を照射することにより対象物の立体形状を計測する。計測データは、例えば、三次元空間の点群データにより表される。各点群データは、3次元座標、色情報、反射率等を含む。ただし、三次元センサE6は、三次元レーザスキャナに限られない。例えば、三次元センサE5、E6の具体例としては、カメラ(例えば、デプスカメラ、ステレオカメラ、ToF(Time-of-Flight)カメラ等)、レーザセンサ(例えば、3DLiDAR等)、又はレーダセンサ等が挙げられるが、これらに限られない。 For example, the three-dimensional sensors E5 and E6 are configured by a three-dimensional laser scanner. In this case, the three-dimensional sensors E5 and E6 measure the three-dimensional shape of the object by irradiating each object in the spaces SP2 and SP1 with a laser beam. The measurement data is represented by, for example, point cloud data in a three-dimensional space. Each point cloud data includes three-dimensional coordinates, color information, reflectance and the like. However, the three-dimensional sensor E6 is not limited to the three-dimensional laser scanner. For example, specific examples of the three-dimensional sensors E5 and E6 include a camera (for example, a depth camera, a stereo camera, a ToF (Time-of-Flight) camera, etc.), a laser sensor (for example, 3DLiDAR, etc.), a radar sensor, and the like. However, it is not limited to these.
 (制御装置の構成)
 本例示的実施形態に係る制御装置10Aの詳細な構成について説明する。図4に示すように、制御装置10Aは、制御部110Aと、記憶部120Aと、通信部130Aとを含む。制御部110Aは、移動制御部11Aと、補正制御部12Aと、姿勢推定部13Aと、目標位置決定部14Aとを含む。各部の詳細については後述する。記憶部120Aは、判定ルールR1を格納する。通信部130Aは、制御部110Aの制御の基に、バックホウ8のコントローラ830および三次元センサE6と通信を行う。以降、制御部110Aが通信部130Aを制御してデータを送受信することを、単に、制御部110Aがデータを送受信する、とも記載する。
(Control device configuration)
A detailed configuration of the control device 10A according to this exemplary embodiment will be described. As shown in FIG. 4, the control device 10A includes a control unit 110A, a storage unit 120A, and a communication unit 130A. The control unit 110A includes a movement control unit 11A, a correction control unit 12A, a posture estimation unit 13A, and a target position determination unit 14A. Details of each part will be described later. The storage unit 120A stores the determination rule R1. The communication unit 130A communicates with the controller 830 of the backhoe 8 and the three-dimensional sensor E6 under the control of the control unit 110A. Hereinafter, it is also described that the control unit 110A controls the communication unit 130A to transmit and receive data, and the control unit 110A simply transmits and receives data.
 (判定ルールR1)
 判定ルールR1は、バケット824の位置を補正するか否かを判定するために参照されるルールである。具体的には、判定ルールR1は、積込対象エリア910における目標位置と、実際のバケット824の位置との差分が所定範囲外である場合に、バケット824の位置を補正するとのルールである。
(Judgment rule R1)
The determination rule R1 is a rule referred to for determining whether or not to correct the position of the bucket 824. Specifically, the determination rule R1 is a rule that corrects the position of the bucket 824 when the difference between the target position in the loading target area 910 and the position of the actual bucket 824 is out of the predetermined range.
 (移動制御部)
 移動制御部11Aは、センサE1~E6の一部又は全部の各検出値を参照して、バケット824を積込対象エリア910まで移動させるよう、バックホウ8を制御する。ここで、センサE1~E4は、前述したように、特許請求の範囲に記載した第2センサの一例であり、バックホウ8の姿勢を検出するセンサである。つまり、移動制御部11Aは、バックホウ8の姿勢を検出するセンサE1~E4の検出値を少なくとも参照して、バケット824を積込対象エリア910まで移動させるよう、バックホウ8を制御する。なお、移動制御部11Aは、本例示的実施形態において移動制御手段を実現する構成である。
(Movement control unit)
The movement control unit 11A controls the backhoe 8 so as to move the bucket 824 to the loading target area 910 with reference to each detection value of a part or all of the sensors E1 to E6. Here, the sensors E1 to E4 are examples of the second sensor described in the claims as described above, and are sensors that detect the posture of the backhoe 8. That is, the movement control unit 11A controls the backhoe 8 so as to move the bucket 824 to the loading target area 910 with reference to at least the detection values of the sensors E1 to E4 that detect the posture of the backhoe 8. The movement control unit 11A is configured to realize the movement control means in this exemplary embodiment.
 (補正制御部)
 補正制御部12Aは、三次元センサE6の検出値を参照して、積込対象エリア910とバケット824との位置関係を検出する。また、補正制御部12Aは、検出した位置関係に基づいて、バケット824の位置を補正するようバックホウ8を制御する。ここで、三次元センサE6は、前述したように、特許請求の範囲に記載した第1センサの一例である。なお、補正制御部12Aは、本例示的実施形態において補正制御手段を実現する構成である。
(Correction control unit)
The correction control unit 12A detects the positional relationship between the loading target area 910 and the bucket 824 with reference to the detection value of the three-dimensional sensor E6. Further, the correction control unit 12A controls the backhoe 8 so as to correct the position of the bucket 824 based on the detected positional relationship. Here, the three-dimensional sensor E6 is an example of the first sensor described in the claims as described above. The correction control unit 12A is configured to realize the correction control means in this exemplary embodiment.
 具体的には、補正制御部12Aは、判定ルールR1にしたがって、バケット824の位置を補正するか否かを判定する。すなわち、補正制御部12Aは、積込対象エリア910とバケット824との位置関係として、積込対象エリア910における目標位置と、実際のバケット824の位置との差分を算出する。また、補正制御部12Aは、当該差分が所定範囲外である場合に、バケット824の位置を補正すると判定する。この場合、補正制御部12Aは、当該差分が所定範囲内となるよう、バケット824の位置を補正する。 Specifically, the correction control unit 12A determines whether or not to correct the position of the bucket 824 according to the determination rule R1. That is, the correction control unit 12A calculates the difference between the target position in the loading target area 910 and the actual position of the bucket 824 as the positional relationship between the loading target area 910 and the bucket 824. Further, the correction control unit 12A determines that the position of the bucket 824 is corrected when the difference is out of the predetermined range. In this case, the correction control unit 12A corrects the position of the bucket 824 so that the difference is within a predetermined range.
 (姿勢推定部)
 姿勢推定部13Aは、センサE1~E6の一部又は全部の各検出値を参照して、バックホウ8の姿勢を推定する。例えば、姿勢推定部13Aは、バックホウ8の姿勢として、可動部820の各部の現在の旋回角度、およびバケット824の位置等を推定する。以降、姿勢推定部13Aが推定したバケット824の姿勢を、推定姿勢とも記載する。
(Posture estimation unit)
The posture estimation unit 13A estimates the posture of the backhoe 8 with reference to each detected value of a part or all of the sensors E1 to E6. For example, the posture estimation unit 13A estimates the current turning angle of each part of the movable part 820, the position of the bucket 824, and the like as the posture of the backhoe 8. Hereinafter, the posture of the bucket 824 estimated by the posture estimation unit 13A is also referred to as an estimated posture.
 (目標位置決定部)
 目標位置決定部14Aは、センサE1~E6の一部又は全部の各検出値を参照して、積込対象エリア910における目標位置を決定する。目標位置とは、積込対象エリア910においてバケット824の移動先の目標となる位置である。換言すると、目標位置とは、土砂OBJを積み込む動作を行うべき位置である。例えば、目標位置決定部14Aは、三次元センサE6の検出値を参照することにより、積込対象エリア910における土砂OBJの堆積状況に応じて、目標位置を決定する。
(Target position determination unit)
The target position determination unit 14A determines a target position in the loading target area 910 with reference to each detected value of a part or all of the sensors E1 to E6. The target position is a target position of the destination of the bucket 824 in the loading target area 910. In other words, the target position is the position where the operation of loading the earth and sand OBJ should be performed. For example, the target position determination unit 14A determines the target position according to the accumulation state of the sediment OBJ in the loading target area 910 by referring to the detected value of the three-dimensional sensor E6.
 <制御方法の流れ>
 以上のように構成された制御システム1Aにおいて、制御装置10Aは、制御方法S1Aを実行する。制御方法S1Aの流れについて、図5を参照して説明する。図5は、制御方法S1Aの流れを示すフロー図である。図5に示すように、制御方法S1Aは、ステップS101~S109を含む。
<Flow of control method>
In the control system 1A configured as described above, the control device 10A executes the control method S1A. The flow of the control method S1A will be described with reference to FIG. FIG. 5 is a flow chart showing the flow of the control method S1A. As shown in FIG. 5, the control method S1A includes steps S101 to S109.
 (ステップS101)
 ステップS101において、目標位置決定部14Aは、センサE1~E6の一部又は全部の各検出値を参照して、積込対象エリア910における目標位置を決定する。目標位置を決定する処理の具体例については後述する。
(Step S101)
In step S101, the target position determination unit 14A determines the target position in the loading target area 910 with reference to each detection value of a part or all of the sensors E1 to E6. A specific example of the process of determining the target position will be described later.
 (ステップS102)
 ステップS102において、移動制御部11Aは、バケット824を目標位置まで移動させる。具体的には、移動制御部11Aは、バケット824の推定姿勢を参照して、バケット824を目標位置まで移動させるための動作制御信号を生成する。ここで、バケット824の推定姿勢は、姿勢推定部13AがセンサE1~E6の一部または全部の各検出値を参照して推定したものである。また、目標位置は、目標位置決定部14AがセンサE1~E6の一部または全部の各検出値を参照して推定したものである。換言すると、移動制御部11Aは、センサE1~E6の一部または全部の各検出値に基づく推定姿勢および目標位置を参照して、バケット824を目標位置まで移動させるための動作制御信号を生成する。動作制御信号は、バックホウ8の姿勢を変化させるための動作制御信号であり、例えば、可動部820の各部を旋回させるべき旋回方向および旋回量を含む。また、移動制御部11Aは、生成した動作制御信号を、バックホウ8のコントローラ830に送信する。これにより、バックホウ8は、受信した動作制御信号にしたがって、バケット824を移動させる動作を行う。
(Step S102)
In step S102, the movement control unit 11A moves the bucket 824 to the target position. Specifically, the movement control unit 11A refers to the estimated posture of the bucket 824 and generates an operation control signal for moving the bucket 824 to the target position. Here, the estimated posture of the bucket 824 is estimated by the posture estimation unit 13A with reference to each detected value of a part or all of the sensors E1 to E6. Further, the target position is estimated by the target position determination unit 14A with reference to each detected value of a part or all of the sensors E1 to E6. In other words, the movement control unit 11A refers to the estimated posture and the target position based on each detection value of a part or all of the sensors E1 to E6, and generates an operation control signal for moving the bucket 824 to the target position. .. The operation control signal is an operation control signal for changing the posture of the backhoe 8, and includes, for example, a turning direction and a turning amount in which each part of the movable part 820 should be turned. Further, the movement control unit 11A transmits the generated operation control signal to the controller 830 of the backhoe 8. As a result, the backhoe 8 performs an operation of moving the bucket 824 according to the received operation control signal.
 (ステップS103)
 ステップS103において、移動制御部11Aは、バックホウ8の移動動作が終了したか否かを判断する。具体的には、例えば、移動制御部11Aは、バックホウ8のコントローラ830から、ステップS102で送信した動作制御信号に基づく移動動作が終了したことを示す情報を受信した場合に、移動動作が終了したと判断してもよい。ステップS103の処理は、Yesと判断されるまで繰り返し実行される。
(Step S103)
In step S103, the movement control unit 11A determines whether or not the movement operation of the backhoe 8 has been completed. Specifically, for example, when the movement control unit 11A receives information from the controller 830 of the backhoe 8 indicating that the movement operation based on the operation control signal transmitted in step S102 is completed, the movement operation is completed. You may judge that. The process of step S103 is repeatedly executed until it is determined to be Yes.
 (ステップS104)
 ステップS103でYesと判断された場合、ステップS104において、補正制御部12Aは、積込対象エリア910における目標位置を示す情報を取得する。ここでは、補正制御部12Aは、ステップS101で決定された目標位置を示す情報を取得する。
(Step S104)
If it is determined to be Yes in step S103, in step S104, the correction control unit 12A acquires information indicating a target position in the loading target area 910. Here, the correction control unit 12A acquires information indicating the target position determined in step S101.
 (ステップS105)
 ステップS105において、補正制御部12Aは、三次元センサE6の検出値を参照して、バケット824の実際の位置を示す情報を取得する。具体的には、補正制御部12Aは、三次元センサE6が生成した点群データのうち、バケット824の三次元形状を示す点群データを特定することにより、バケット824の実際の位置を示す情報を取得する。なお、補正制御部12Aは、バケット824の三次元形状の特徴に基づいて、バケット824の三次元形状を示す点群データを特定してもよい。
(Step S105)
In step S105, the correction control unit 12A refers to the detected value of the three-dimensional sensor E6 and acquires information indicating the actual position of the bucket 824. Specifically, the correction control unit 12A identifies the point cloud data indicating the three-dimensional shape of the bucket 824 among the point cloud data generated by the three-dimensional sensor E6, thereby indicating the actual position of the bucket 824. To get. The correction control unit 12A may specify the point cloud data indicating the three-dimensional shape of the bucket 824 based on the characteristics of the three-dimensional shape of the bucket 824.
 (ステップS106)
 ステップS106において、補正制御部12Aは、積込対象エリア910とバケット824との位置関係を検出する。具体的には、補正制御部12Aは、目標位置とバケット824の実際の位置との差分を算出する。例えば、補正制御部12Aは、積込対象エリア910を上面視した平面において、目標位置およびバケット824の実際の位置との差分を算出してもよい。
(Step S106)
In step S106, the correction control unit 12A detects the positional relationship between the loading target area 910 and the bucket 824. Specifically, the correction control unit 12A calculates the difference between the target position and the actual position of the bucket 824. For example, the correction control unit 12A may calculate the difference between the target position and the actual position of the bucket 824 on a plane with the loading target area 910 viewed from above.
 (ステップS107)
 ステップS107において、補正制御部12Aは、算出した差分が所定範囲内であるか否かを判断する。当該ステップにおいてYesと判断した場合、制御装置10Aは、制御方法S1Aを終了する。
(Step S107)
In step S107, the correction control unit 12A determines whether or not the calculated difference is within a predetermined range. If it is determined to be Yes in the step, the control device 10A ends the control method S1A.
 (ステップS108)
 ステップS107においてNoと判断した場合、ステップS108において、補正制御部12Aは、算出した差分に基づいて、バケット824の位置の補正方向および補正量を決定する。
(Step S108)
If No is determined in step S107, the correction control unit 12A determines the correction direction and the correction amount of the position of the bucket 824 based on the calculated difference in step S108.
 (ステップS109)
 ステップS109において、補正制御部12Aは、決定した補正方向および補正量に基づいて、バケット824の位置を補正するための動作制御信号を生成する。動作制御信号は、バックホウ8の姿勢を変化させるための動作制御信号であり、例えば、可動部820の各部を旋回させるべき旋回方向および旋回量を含む。補正制御部12Aは、生成した動作制御信号を、バックホウ8のコントローラ830に送信する。これにより、バックホウ8は、受信した動作制御信号にしたがって、バケット824の位置を補正する動作を行う。すなわち、バックホウ8は、バケット824の位置を補正するために、バケット824を移動させる動作を行う。以降、補正制御部12Aは、ステップS105からの処理を繰り返す。
(Step S109)
In step S109, the correction control unit 12A generates an operation control signal for correcting the position of the bucket 824 based on the determined correction direction and correction amount. The operation control signal is an operation control signal for changing the posture of the backhoe 8, and includes, for example, a turning direction and a turning amount in which each part of the movable part 820 should be turned. The correction control unit 12A transmits the generated operation control signal to the controller 830 of the backhoe 8. As a result, the backhoe 8 performs an operation of correcting the position of the bucket 824 according to the received operation control signal. That is, the backhoe 8 performs an operation of moving the bucket 824 in order to correct the position of the bucket 824. After that, the correction control unit 12A repeats the process from step S105.
 <制御方法の具体例>
 制御方法S1Aの具体例について、図6を参照して説明する。図6は、制御方法S1Aの具体例を示す模式図である。図6は、上面視したダンプトラック9を模式的に示している。
<Specific example of control method>
A specific example of the control method S1A will be described with reference to FIG. FIG. 6 is a schematic diagram showing a specific example of the control method S1A. FIG. 6 schematically shows the dump truck 9 viewed from above.
 図6において、バケット824-1およびアーム823-1は、補正制御部12Aが検出した実際のバケット824およびアーム823を模式的に示す。中心線L1は、ダンプトラック9を上面視した平面(ここでは、水平面と称する)に投影されたバケット824-1の中心線である。ここで、バケット824の中心線とは、水平面においてバケット824の幅方向の中心を通る直線である。なお、バケット824の幅方向とは、水平面においてバケット824の旋回方向に直交する方向である。つまり、バケット824の中心線は、バケット824の旋回方向に伸びる直線である。本具体例では、バケット824-1の位置を、中心線L1を用いて表す。 In FIG. 6, the bucket 824-1 and the arm 823-1 schematically show the actual bucket 824 and the arm 823 detected by the correction control unit 12A. The center line L1 is the center line of the bucket 824-1 projected on a plane (here, referred to as a horizontal plane) with the dump truck 9 viewed from above. Here, the center line of the bucket 824 is a straight line passing through the center in the width direction of the bucket 824 in the horizontal plane. The width direction of the bucket 824 is a direction orthogonal to the turning direction of the bucket 824 in the horizontal plane. That is, the center line of the bucket 824 is a straight line extending in the turning direction of the bucket 824. In this specific example, the position of the bucket 824-1 is represented using the center line L1.
 また、中心線L2は、目標位置決定部14Aが決定した目標位置の一例である。換言すると、本具体例では、目標位置を、中心線L2を用いて表す。中心線L2は、水平面に投影された積込対象エリア910の中心線であり、バケット824-1の中心線L1が配置されることが期待される目標位置である。バケット824-2およびアーム823-2は、目標位置にあることが期待されるバケット824およびアーム823を模式的に示す。以降、バケット824-1および824-2を特に区別して説明する必要がない場合には、各々をバケット824と記載することもある。 Further, the center line L2 is an example of the target position determined by the target position determination unit 14A. In other words, in this specific example, the target position is represented using the center line L2. The center line L2 is the center line of the loading target area 910 projected on the horizontal plane, and is the target position where the center line L1 of the bucket 824-1 is expected to be arranged. Bucket 824-2 and arm 823-2 schematically represent bucket 824 and arm 823 that are expected to be in the target position. Hereinafter, when it is not necessary to separately explain the buckets 824-1 and 824-2, each of them may be referred to as a bucket 824.
 この例では、目標位置決定部14Aは、センサE1~E6の一部又は全部の各検出値を参照して、積込対象エリア910の中心線L2を目標位置として決定する。積込対象エリア910の中心線L2は、水平面において積込対象エリア910の幅方向の中心を通る直線である。なお、積込対象エリア910の幅方向とは、水平面においてダンプトラック9の前進・後進方向に垂直な方向である。つまり、積込対象エリア910の中心線は、当該前進・後進方向に伸びる直線である。なお、図6では、中心線L1およびL2が平行であるものとして記載されているが、これらが平行であることを限定するものではない。 In this example, the target position determination unit 14A determines the center line L2 of the loading target area 910 as the target position with reference to each detection value of a part or all of the sensors E1 to E6. The center line L2 of the loading target area 910 is a straight line passing through the center in the width direction of the loading target area 910 in the horizontal plane. The width direction of the loading target area 910 is a direction perpendicular to the forward / backward direction of the dump truck 9 on the horizontal plane. That is, the center line of the loading target area 910 is a straight line extending in the forward / backward direction. Although it is described in FIG. 6 that the center lines L1 and L2 are parallel, it is not limited to the fact that they are parallel.
 また、中心線L2aおよびL2bは、目標位置に対して許容されるバケット824-1の位置の所定範囲を示す。換言すると、中心線L1が中心線L2aからL2bまでの範囲に含まれていれば、バケット824-1の位置は目標位置に対して許容される範囲内である。例えば、中心線L2aおよびL2bは、中心線L2を幅方向に+dおよび-dだけ平行移動させた線であってもよい。この場合、+dおよび-dは、所定範囲の下限および上限を規定する閾値である。なお、中心線L2aおよびL2bは、中心線L2を平行移動させた線に限られない。例えば、中心線L2aおよびL2bは、中心線L2を、基準点を中心として+dθおよび-dθだけ回転させた線であってもよい。この場合、+dθおよび-dθは、所定範囲の下限および上限を規定する閾値である。 Further, the center lines L2a and L2b indicate a predetermined range of the positions of the bucket 824-1 allowed with respect to the target position. In other words, if the center line L1 is included in the range from the center line L2a to L2b, the position of the bucket 824-1 is within the allowable range with respect to the target position. For example, the center lines L2a and L2b may be lines obtained by translating the center line L2 by + d and −d in the width direction. In this case, + d and −d are threshold values that define the lower limit and the upper limit of the predetermined range. The center lines L2a and L2b are not limited to lines obtained by translating the center line L2. For example, the center lines L2a and L2b may be lines obtained by rotating the center line L2 by + dθ and −dθ about the reference point. In this case, + dθ and −dθ are threshold values that define the lower limit and the upper limit of the predetermined range.
 補正制御部12Aは、実際のバケット824-1の位置と目標位置との差分として、中心線L1およびL2の差分を求める。例えば、補正制御部12Aは、中心線L1およびL2の差分として、中心線L1およびL2のなす角度を求めてもよい。また、例えば、補正制御部12Aは、バケット824-1および824-2の各先端部における中心線L1およびL2の間の距離を求めてもよい。補正制御部12Aは、中心線L1およびL2の差分が所定範囲内でない場合には、所定範囲内となるようバケット824-1の位置を補正する制御を行う。具体的には、補正制御部12Aは、バケット824-1の位置を補正するために、可動部820の姿勢を変化させる。例えば、補正制御部12Aは、当該差分を所定範囲内とするために可動部820の各部を旋回させるべき旋回方向および旋回量を算出する。図6に示す矢印ARは、補正制御部12Aが決定した旋回方向および旋回量を模式的に示す。また、補正制御部12Aは、算出した旋回方向および旋回量に基づき動作制御信号を生成し、バックホウ8に送信する。 The correction control unit 12A obtains the difference between the center lines L1 and L2 as the difference between the actual position of the bucket 824-1 and the target position. For example, the correction control unit 12A may obtain the angle formed by the center lines L1 and L2 as the difference between the center lines L1 and L2. Further, for example, the correction control unit 12A may obtain the distance between the center lines L1 and L2 at the tip portions of the buckets 824-1 and 824-2. When the difference between the center lines L1 and L2 is not within the predetermined range, the correction control unit 12A controls to correct the position of the bucket 824-1 so that the difference is within the predetermined range. Specifically, the correction control unit 12A changes the posture of the movable unit 820 in order to correct the position of the bucket 824-1. For example, the correction control unit 12A calculates a turning direction and a turning amount in which each part of the movable part 820 should be turned in order to keep the difference within a predetermined range. The arrow AR shown in FIG. 6 schematically indicates the turning direction and the turning amount determined by the correction control unit 12A. Further, the correction control unit 12A generates an operation control signal based on the calculated turning direction and turning amount, and transmits the operation control signal to the backhoe 8.
 また、補正制御部12Aは、送信した動作制御信号に対応するバックホウ8の動作が終了すると、再度、三次元センサE6の検出値を参照して、実際のバケット824-1を検出し、その中心線L1を求める。そして、補正制御部12Aは、中心線L1および中心線L2の差分が所定範囲内となるまで、動作制御信号を生成してバックホウ8に送信し、再度差分を求める処理を繰り返す。これにより、バケット824の位置が補正される。 Further, when the operation of the backhoe 8 corresponding to the transmitted operation control signal is completed, the correction control unit 12A again refers to the detection value of the three-dimensional sensor E6 to detect the actual bucket 824-1 and its center thereof. Find the line L1. Then, the correction control unit 12A generates an operation control signal and transmits it to the backhoe 8 until the difference between the center line L1 and the center line L2 is within a predetermined range, and repeats the process of obtaining the difference again. As a result, the position of the bucket 824 is corrected.
 (差分を算出する処理のバリエーション)
 なお、本具体例では、補正制御部12Aは、各バケット824の中心線L1およびL2を用いて、上述した差分を算出する例について説明した。これに限らず、補正制御部12Aは、水平面に投影されたバケット824の領域の中心点および積込対象エリア910の中心点を用いて、当該差分を算出してもよい。この場合、補正制御部12Aは、バケット824-1の実際の中心点と、目標位置である積込対象エリア910の中心点との距離を算出してもよい。この場合、所定範囲として、0以上閾値d以下の範囲が定められる。なお、補正制御部12Aは、中心線または中心点に限らず、その他の情報を用いて当該差分を算出してもよい。
(Variations of processing to calculate the difference)
In this specific example, the correction control unit 12A has described an example of calculating the above-mentioned difference using the center lines L1 and L2 of each bucket 824. Not limited to this, the correction control unit 12A may calculate the difference using the center point of the region of the bucket 824 projected on the horizontal plane and the center point of the loading target area 910. In this case, the correction control unit 12A may calculate the distance between the actual center point of the bucket 824-1 and the center point of the loading target area 910, which is the target position. In this case, a range of 0 or more and a threshold d or less is defined as a predetermined range. The correction control unit 12A is not limited to the center line or the center point, and may calculate the difference by using other information.
 <本例示的実施形態の効果>
 本例示的実施形態は、バックホウ8のバケット824をより精度よく積込対象エリア910に移動させることができる。以下、その理由について詳細に説明する。
<Effect of this exemplary embodiment>
In this exemplary embodiment, the bucket 824 of the backhoe 8 can be moved to the loading target area 910 more accurately. The reason for this will be described in detail below.
 本例示的実施形態では、移動制御部11Aが、バケット824を積込対象エリア910まで移動させ、補正制御部12Aが、積込対象エリア910における目標位置と実際のバケット824の位置との差分が所定範囲内となるようバケット824の位置を補正する。これにより、移動制御部11Aが参照するセンサE1~E6の検出値に、内部的要因又は外部環境要因などによる測定誤差が含まれていたとしても、補正後の実際のバケット824の位置は、目標位置により近づくからである。さらに、本例示的実施形態では、補正制御部12Aが、バケット824の位置を補正する制御を行った後、再度バケット824の実際の位置を検出し、目標位置とバケット824の実際の位置との差分が所定範囲内となるまで、バケット824の位置を補正する処理を繰り返す。これにより、実際のバケット824は、目標位置に基づく所定範囲内の領域により精度よく移動するからである。 In this exemplary embodiment, the movement control unit 11A moves the bucket 824 to the loading target area 910, and the correction control unit 12A determines that the difference between the target position in the loading target area 910 and the actual position of the bucket 824 is The position of the bucket 824 is corrected so as to be within the predetermined range. As a result, even if the detection values of the sensors E1 to E6 referred to by the movement control unit 11A include measurement errors due to internal factors, external environmental factors, etc., the actual position of the bucket 824 after correction is the target. This is because it is closer to the position. Further, in the present exemplary embodiment, after the correction control unit 12A controls to correct the position of the bucket 824, the actual position of the bucket 824 is detected again, and the target position and the actual position of the bucket 824 are set. The process of correcting the position of the bucket 824 is repeated until the difference is within the predetermined range. This is because the actual bucket 824 moves more accurately in a region within a predetermined range based on the target position.
 〔例示的実施形態3〕
 本発明の第3の例示的実施形態について、図面を参照して詳細に説明する。なお、例示的実施形態2にて説明した構成要素と同じ機能を有する構成要素については、同じ符号を付し、その説明を繰り返さない。
[Exemplary Embodiment 3]
A third exemplary embodiment of the invention will be described in detail with reference to the drawings. The components having the same functions as those described in the second embodiment are designated by the same reference numerals, and the description thereof will not be repeated.
 <制御システムの構成>
 本例示的実施形態に係る制御システム1Bの構成について、図7を参照して説明する。図4は、制御システム1Bの構成を示すブロック図である。図7に示すように、制御システム1Bは、例示的実施形態2に係る制御システム1Aとほぼ同様に構成されるが、制御装置10Aに替えて制御装置10Bを備える点が異なる。その他の点については、制御システム1Aと同様に構成される。
<Control system configuration>
The configuration of the control system 1B according to this exemplary embodiment will be described with reference to FIG. 7. FIG. 4 is a block diagram showing the configuration of the control system 1B. As shown in FIG. 7, the control system 1B is configured in substantially the same manner as the control system 1A according to the exemplary embodiment 2, except that the control device 10B is provided in place of the control device 10A. Other points are the same as those of the control system 1A.
 (制御装置の構成)
 本例示的実施形態に係る制御装置10Bの詳細な構成について説明する。図7に示すように、制御装置10Bは、制御部110Bと、記憶部120Bと、通信部130Aとを含む。制御部110Bは、移動制御部11Aと、補正制御部12Bと、姿勢推定部13Aと、目標位置決定部14Aとを含む。記憶部120Bは、例示的実施形態2における判定ルールR1に代えて判定ルールR2を記憶する。以下では、判定ルールR2および補正制御部12Bの詳細について説明する。その他の構成については、例示的実施形態2と同様である。
(Control device configuration)
A detailed configuration of the control device 10B according to this exemplary embodiment will be described. As shown in FIG. 7, the control device 10B includes a control unit 110B, a storage unit 120B, and a communication unit 130A. The control unit 110B includes a movement control unit 11A, a correction control unit 12B, a posture estimation unit 13A, and a target position determination unit 14A. The storage unit 120B stores the determination rule R2 in place of the determination rule R1 in the exemplary embodiment 2. Hereinafter, the details of the determination rule R2 and the correction control unit 12B will be described. Other configurations are the same as those of the exemplary embodiment 2.
 (判定ルールR2)
 判定ルールR2は、バケット824の位置を補正するか否かを判定するためのルールである。具体的には、判定ルールR2は、バケット824全体が積込対象エリア910に含まれない場合に、バケット824の位置を補正するとのルールである。
(Judgment rule R2)
The determination rule R2 is a rule for determining whether or not to correct the position of the bucket 824. Specifically, the determination rule R2 is a rule that the position of the bucket 824 is corrected when the entire bucket 824 is not included in the loading target area 910.
 (補正制御部)
 補正制御部12Bは、例示的実施形態2における補正制御部12Aに対して、積込対象エリア910とバケット824との位置関係を検出する処理の詳細が異なる。その他の点については、補正制御部12Aと同様に構成される。
(Correction control unit)
The correction control unit 12B differs from the correction control unit 12A in the second embodiment in the details of the process of detecting the positional relationship between the loading target area 910 and the bucket 824. Other points are configured in the same manner as the correction control unit 12A.
 具体的には、補正制御部12Bは、判定ルールR2にしたがって、バケット824の位置を補正するか否かを判定する。すなわち、補正制御部12Bは、積込対象エリア910とバケット824との位置関係として、バケット824と積込対象エリア910との包含関係を検出する。また、補正制御部12Bは、バケット824全体が積込対象エリア910に含まれない場合、つまり、バケット824の少なくとも一部が積込対象エリア910外にある場合に、バケット824の位置を補正すると判定する。この場合、補正制御部12Bは、バケット824が積込対象エリア910に含まれるよう、バケット824の位置を補正する。ここで、バケット824は、特許請求の範囲に記載した「可動部の少なくとも所定部分」の一例である。なお、補正制御部12Bは、本例示的実施形態において補正制御手段を実現する構成である。 Specifically, the correction control unit 12B determines whether or not to correct the position of the bucket 824 according to the determination rule R2. That is, the correction control unit 12B detects the inclusion relationship between the bucket 824 and the loading target area 910 as the positional relationship between the loading target area 910 and the bucket 824. Further, the correction control unit 12B corrects the position of the bucket 824 when the entire bucket 824 is not included in the loading target area 910, that is, when at least a part of the bucket 824 is outside the loading target area 910. judge. In this case, the correction control unit 12B corrects the position of the bucket 824 so that the bucket 824 is included in the loading target area 910. Here, the bucket 824 is an example of the "at least predetermined portion of the movable portion" described in the claims. The correction control unit 12B is configured to realize the correction control means in this exemplary embodiment.
 <制御方法の流れ>
 以上のように構成された制御システム1Bにおいて、制御装置10Bは、制御方法S1Bを実行する。制御方法S1Bの流れについて、図8を参照して説明する。図8は、制御方法S1Bの流れを示すフロー図である。図8に示すように、制御方法S1Bは、ステップS101~S103、S204、S105、S206~S207、S108~S109を含む。以下では、ステップS204、S105、S206およびS207について説明する。その他のステップについては、制御方法S1Aにおいて説明した通りである。
<Flow of control method>
In the control system 1B configured as described above, the control device 10B executes the control method S1B. The flow of the control method S1B will be described with reference to FIG. FIG. 8 is a flow chart showing the flow of the control method S1B. As shown in FIG. 8, the control method S1B includes steps S101 to S103, S204, S105, S206 to S207, and S108 to S109. Hereinafter, steps S204, S105, S206 and S207 will be described. The other steps are as described in the control method S1A.
 (ステップS204)
 ステップS103でYesと判断された場合、ステップS204において、補正制御部12Bは、三次元センサE6の検出値を参照して、積込対象エリア910の位置を示す情報を取得する。具体的には、補正制御部12Bは、三次元センサE6が生成した点群データのうち、積込対象エリア910の三次元形状を示す点群データを特定することにより、積込対象エリア910の位置を示す情報を取得する。なお、補正制御部12Bは、積込対象エリア910の三次元形状の特徴に基づいて、積込対象エリア910の三次元形状を示す点群データを特定してもよい。
(Step S204)
If it is determined to be Yes in step S103, in step S204, the correction control unit 12B refers to the detected value of the three-dimensional sensor E6 and acquires information indicating the position of the loading target area 910. Specifically, the correction control unit 12B identifies the point cloud data indicating the three-dimensional shape of the loading target area 910 from the point cloud data generated by the three-dimensional sensor E6, thereby specifying the loading target area 910. Get the information indicating the position. The correction control unit 12B may specify the point cloud data indicating the three-dimensional shape of the loading target area 910 based on the characteristics of the three-dimensional shape of the loading target area 910.
 (ステップS105)
 ステップS105において、補正制御部12Bは、三次元センサE6の検出値を参照して、バケット824の実際の位置を示す情報を取得する。当該ステップの処理の詳細については例示的実施形態2において説明した通りである。
(Step S105)
In step S105, the correction control unit 12B refers to the detected value of the three-dimensional sensor E6 and acquires information indicating the actual position of the bucket 824. The details of the processing of the step are as described in the exemplary embodiment 2.
 (ステップS206)
 ステップS206において、補正制御部12Bは、積込対象エリア910とバケット824との包含関係を検出する。
(Step S206)
In step S206, the correction control unit 12B detects the inclusion relationship between the loading target area 910 and the bucket 824.
 (ステップS207)
 ステップS207において、補正制御部12Bは、ステップS206の検出結果に基づいて、バケット824全体が積込対象エリア910に含まれるか否かを判断する。ステップS207においてNoと判断した場合、補正制御部12Bは、例示的実施形態2と同様にステップS108~S109を実行し、バケット824の位置を補正する制御を行う。ステップS207においてYesと判断した場合、制御装置10Bは、制御方法S1Bを終了する。
(Step S207)
In step S207, the correction control unit 12B determines whether or not the entire bucket 824 is included in the loading target area 910 based on the detection result of step S206. When it is determined as No in step S207, the correction control unit 12B executes steps S108 to S109 in the same manner as in the exemplary embodiment 2 and controls to correct the position of the bucket 824. If it is determined to be Yes in step S207, the control device 10B ends the control method S1B.
 <制御方法の具体例>
 制御方法S1Bの具体例について、図9を参照して説明する。図9は、制御方法S1Bの具体例を示す模式図である。図9は、上面視したダンプトラック9を模式的に示す。
<Specific example of control method>
A specific example of the control method S1B will be described with reference to FIG. FIG. 9 is a schematic diagram showing a specific example of the control method S1B. FIG. 9 schematically shows a dump truck 9 viewed from above.
 図9において、バケット824-1およびアーム823-1は、補正制御部12Bが検出した実際のバケット824およびアーム823を模式的に示す。領域A1は、ダンプトラック9を上面視したときの平面(ここでは、水平面と称する)に投影されたバケット824-1の領域である。領域A2は、水平面に投影された積込対象エリア910の領域である。補正制御部12Bは、領域A1全体が領域A2に含まれているか否かを判断する。補正制御部12Bは、領域A1全体が領域A2に含まれていない場合(すなわち、領域A1の少なくとも一部が領域A2外にある場合)には、領域A1全体が領域A2に含まれるよう、バケット824-1の位置を補正する制御を行う。図9に示す矢印ARは、補正制御部12Bが決定した旋回方向および旋回量を模式的に示す。補正制御部12Bが、バケット824-1の位置を補正するために可動部820の姿勢を変化させる制御の詳細については、例示的実施形態2の具体例において説明した通りである。 In FIG. 9, the bucket 824-1 and the arm 823-1 schematically show the actual bucket 824 and the arm 823 detected by the correction control unit 12B. The region A1 is a region of the bucket 824-1 projected on a plane (here, referred to as a horizontal plane) when the dump truck 9 is viewed from above. The area A2 is the area of the loading target area 910 projected on the horizontal plane. The correction control unit 12B determines whether or not the entire area A1 is included in the area A2. The correction control unit 12B buckets so that the entire area A1 is included in the area A2 when the entire area A1 is not included in the area A2 (that is, when at least a part of the area A1 is outside the area A2). Control is performed to correct the position of 824-1. The arrow AR shown in FIG. 9 schematically shows the turning direction and the turning amount determined by the correction control unit 12B. The details of the control in which the correction control unit 12B changes the posture of the movable unit 820 in order to correct the position of the bucket 824-1 are as described in the specific example of the second embodiment.
 また、補正制御部12Bは、バケット824-1の位置を補正するための動作制御信号に対応するバックホウ8の動作が終了すると、再度バケット824-1を検出して領域A1およびA2の包含関係を検出する。そして、補正制御部12Bは、領域A1全体が領域A2に含まれるまで、動作制御信号を生成してバックホウ8に送信し、再度包含関係を検出する処理を繰り返す。これにより、バケット824の位置が補正される。 Further, when the operation of the backhoe 8 corresponding to the operation control signal for correcting the position of the bucket 824-1 is completed, the correction control unit 12B detects the bucket 824-1 again and determines the inclusion relationship of the regions A1 and A2. To detect. Then, the correction control unit 12B generates an operation control signal and transmits it to the backhoe 8 until the entire area A1 is included in the area A2, and repeats the process of detecting the inclusion relationship again. As a result, the position of the bucket 824 is corrected.
 <本例示的実施形態の効果>
 本例示的実施形態は、バックホウ8のバケット824をより精度よく積込対象エリア910に移動させることができる。以下、その理由について詳細に説明する。
<Effect of this exemplary embodiment>
In this exemplary embodiment, the bucket 824 of the backhoe 8 can be moved to the loading target area 910 more accurately. The reason for this will be described in detail below.
 本例示的実施形態では、移動制御部11Aが、バケット824を積込対象エリア910まで移動させ、補正制御部12Bが、バケット824全体が積込対象エリア910に含まれるようバケット824の位置を補正する。これにより、移動制御部11Aが参照するセンサE1~E6の検出値に、内部的要因又は外部環境要因などによる測定誤差が含まれていたとしても、補正後の実際のバケット824の位置は、積込対象エリア910により充分に含まれるからである。さらに、本例示的実施形態では、補正制御部12Bが、バケット824の位置を補正する制御を行った後、再度バケット824の実際の位置を検出し、バケット824全体が積込対象エリア910に含まれるまで、バケット824の位置を補正する処理を繰り返す。これにより、バケット824全体が、積込対象エリア910内により精度よく移動するからである。 In this exemplary embodiment, the movement control unit 11A moves the bucket 824 to the loading target area 910, and the correction control unit 12B corrects the position of the bucket 824 so that the entire bucket 824 is included in the loading target area 910. do. As a result, even if the detection values of the sensors E1 to E6 referred to by the movement control unit 11A include a measurement error due to an internal factor or an external environmental factor, the actual position of the bucket 824 after correction is the product. This is because it is sufficiently included in the inclusion target area 910. Further, in the present exemplary embodiment, after the correction control unit 12B controls to correct the position of the bucket 824, the actual position of the bucket 824 is detected again, and the entire bucket 824 is included in the loading target area 910. The process of correcting the position of the bucket 824 is repeated until the result is obtained. This is because the entire bucket 824 moves more accurately within the loading target area 910.
 また、他の理由について説明する。本例示的実施形態においては、補正制御部12Bが、三次元センサE6のみの検出値を参照して積込対象エリア910およびバケット824の位置関係を検出する。このため、センサE1~E6の検出値に基づき決定した目標位置自体が、実空間における目標位置に対する誤差を含んでいたとしても、当該誤差を補正することができるからである。 In addition, I will explain other reasons. In this exemplary embodiment, the correction control unit 12B detects the positional relationship between the loading target area 910 and the bucket 824 with reference to the detection value of the three-dimensional sensor E6 only. Therefore, even if the target position itself determined based on the detected values of the sensors E1 to E6 includes an error with respect to the target position in the real space, the error can be corrected.
 〔その他の変形例〕
 <補正制御部の変形例>
 上述した例示的実施形態2又は3において、補正制御部12A、12Bは、動作制御信号を生成するためのテーブルを参照して動作制御信号を生成するとともに、補正後のバケット824の位置を参照して当該テーブルを修正してもよい。この場合、記憶部120A、120Bは、当該テーブルを記憶する。
[Other variants]
<Modification example of correction control unit>
In the above-described exemplary embodiment 2 or 3, the correction control units 12A and 12B generate the operation control signal by referring to the table for generating the operation control signal, and refer to the position of the corrected bucket 824. You may modify the table. In this case, the storage units 120A and 120B store the table.
 例えば、当該テーブルは、バケット824の位置の補正量と、可動部820の各部の旋回量とを関連付けた情報を含む。補正制御部12A、12Bは、当該テーブルを参照して、バケット824の補正量に関連付けられた可動部820の各部の旋回量を用いて動作制御信号を生成する。また、補正制御部12A、12Bは、当該動作制御信号を用いてバケット824の位置を補正する制御を行った後、当該動作制御信号が意図した補正後の位置と、補正後に検出したバケット824の実際の位置との差分を検出する。また、補正制御部12A、12Bは、検出した差分に基づいて、当該テーブルを修正する。例えば、バケット824の補正量1センチメートルに対して、ブーム822の旋回量αが関連付けられている例について説明する。補正制御部12A、12Bは、バケット824を1センチメートル移動させるために、当該テーブルを参照してブーム822を旋回量αだけ旋回させる動作制御信号を生成する。このとき、当該動作制御信号をバックホウ8に送信した結果、バケット824が、実際には1センチメートルを超えて移動したとする。この場合、補正制御部12A、12Bは、当該テーブルにおいて、バケット824の補正量1センチメートルに関連付けられた旋回量を、αより小さい値に修正する。 For example, the table includes information relating the correction amount of the position of the bucket 824 and the turning amount of each part of the movable part 820. The correction control units 12A and 12B refer to the table and generate an operation control signal using the turning amount of each part of the movable unit 820 associated with the correction amount of the bucket 824. Further, the correction control units 12A and 12B control to correct the position of the bucket 824 using the operation control signal, and then the corrected position intended by the operation control signal and the bucket 824 detected after the correction. Detect the difference from the actual position. Further, the correction control units 12A and 12B correct the table based on the detected difference. For example, an example in which the swivel amount α of the boom 822 is associated with the correction amount 1 cm of the bucket 824 will be described. The correction control units 12A and 12B generate an operation control signal for turning the boom 822 by the turning amount α with reference to the table in order to move the bucket 824 by 1 cm. At this time, it is assumed that the bucket 824 actually moves more than 1 cm as a result of transmitting the operation control signal to the backhoe 8. In this case, the correction control units 12A and 12B correct the turning amount associated with the correction amount of 1 cm of the bucket 824 to a value smaller than α in the table.
 <補正制御部が用いるセンサの変形例>
 上述した例示的実施形態2又は3において、補正制御部12A、12Bは、バケット824の位置を補正するために用いるセンサとして、移動制御部11Aが用いるセンサE1~E6の何れかであるセンサE6を用いる例について説明した。これに限らず、補正制御部12A、12Bは、移動制御部11Aが用いるセンサ群とは異なるセンサを用いてバケット824の位置を補正してもよい。
<Modification example of the sensor used by the correction control unit>
In the above-described exemplary embodiment 2 or 3, the correction control unit 12A, 12B uses the sensor E6, which is one of the sensors E1 to E6 used by the movement control unit 11A, as the sensor used to correct the position of the bucket 824. An example to be used has been described. Not limited to this, the correction control units 12A and 12B may correct the position of the bucket 824 using a sensor different from the sensor group used by the movement control unit 11A.
 また、上述した例示的実施形態2又は3において、補正制御部12A、12Bは、三次元センサE6の代わりに二次元センサを用いてもよい。二次元センサの一例としては、周囲を撮像して二次元画像を生成するカメラが挙げられる。この場合、カメラは、積込対象エリア910を上方から撮像した二次元画像である撮像画像を生成する。この場合、補正制御部12A、12Bは、撮像画像において、バケット824および積込対象エリア910の位置関係を検出する。 Further, in the above-described exemplary embodiment 2 or 3, the correction control units 12A and 12B may use a two-dimensional sensor instead of the three-dimensional sensor E6. An example of a two-dimensional sensor is a camera that captures the surroundings and generates a two-dimensional image. In this case, the camera generates a captured image which is a two-dimensional image captured from above the loading target area 910. In this case, the correction control units 12A and 12B detect the positional relationship between the bucket 824 and the loading target area 910 in the captured image.
 <位置関係を検出する面の変形例>
 上述した例示的実施形態2又は3において、補正制御部12A、12Bは、「バケット824と積込対象エリア910との位置関係」として、水平面における位置関係を検出する例について説明した。ただし、「バケット824と積込対象エリア910との位置関係」は、水平面における位置関係に限らない。例えば、補正制御部12A、12Bは、水平面以外の面において当該位置関係を判断してもよい。水平面以外の面とは、例えば、垂直面であってもよい。この場合、補正制御部12A、12Bは、バケット824の位置を垂直方向において補正することが可能となる。また、補正制御部12A、12Bは、水平面および垂直面においてそれぞれ当該位置関係を判断し、各判断結果を総合してバケット824の位置を補正する制御を行ってもよい。この場合、補正制御部12A、12Bは、バケット824の位置を、水平方向および垂直方向において補正することが可能となる。また、補正制御部12A、12Bは、三次元空間において当該位置関係を判断してもよい。この場合、補正制御部12A、12Bは、バケット824の位置を、三次元的に補正することができる。
<Example of deformation of the surface that detects the positional relationship>
In the above-described exemplary embodiment 2 or 3, the correction control units 12A and 12B have described an example of detecting the positional relationship in the horizontal plane as the “positional relationship between the bucket 824 and the loading target area 910”. However, the "positional relationship between the bucket 824 and the loading target area 910" is not limited to the positional relationship on the horizontal plane. For example, the correction control units 12A and 12B may determine the positional relationship on a surface other than the horizontal plane. The surface other than the horizontal surface may be, for example, a vertical surface. In this case, the correction control units 12A and 12B can correct the position of the bucket 824 in the vertical direction. Further, the correction control units 12A and 12B may determine the positional relationship on the horizontal plane and the vertical plane, respectively, and perform control to correct the position of the bucket 824 by integrating the judgment results. In this case, the correction control units 12A and 12B can correct the position of the bucket 824 in the horizontal direction and the vertical direction. Further, the correction control units 12A and 12B may determine the positional relationship in the three-dimensional space. In this case, the correction control units 12A and 12B can correct the position of the bucket 824 three-dimensionally.
 <作業機械の変形例>
 上述した各例示的実施形態において、作業機械として、ロボットまたは建設機械を適用可能である。例えば、例示的実施形態2および3において、バックホウ8の代わりに、クレーンを適用してもよい。この場合、各例示的実施形態において、バケット824の代わりにフックを適用することができる。また、この場合、積込対象エリア910の代わりに、フックを用いて移動する移動対象物の移動先の領域を適用する。なお、作業機械は、クレーンに限られず、その他の建設機械、又は、その他のロボットであってもよい。
<Modification example of work machine>
In each of the above-mentioned exemplary embodiments, a robot or a construction machine can be applied as a working machine. For example, in exemplary embodiments 2 and 3, a crane may be applied instead of the backhoe 8. In this case, in each exemplary embodiment, hooks can be applied instead of bucket 824. Further, in this case, instead of the loading target area 910, the destination area of the moving target to be moved by using the hook is applied. The work machine is not limited to the crane, but may be another construction machine or another robot.
 また、上述した各例示的実施形態において、コントローラ(830)は、作業機械(バックホウ8)に搭載されることに限らず、作業機械(バックホウ8)の外部に設置されていてもよい。この場合、移動制御部11(11A、11B)は、作業機械(バックホウ8)の外部に設置されたコントローラ(830)に対して動作制御信号を送信する。当該コントローラ(830)は、受信した動作制御信号にしたがって、作業機械(バックホウ8)の可動部(バケット824)を移動させる移動機構の駆動部を、無線通信により制御する。また、コントローラ(830)が、作業機械から遠隔地(例えば、クラウド上)に設置されている場合、コントローラ(830)は、中継装置を介して当該駆動部を制御する。この場合、中継装置は、当該駆動部を無線通信により制御可能な場所(例えば、作業機械の周辺、作業敷地内等)に設置される。 Further, in each of the above-described exemplary embodiments, the controller (830) is not limited to being mounted on the work machine (backhoe 8), but may be installed outside the work machine (backhoe 8). In this case, the movement control unit 11 (11A, 11B) transmits an operation control signal to the controller (830) installed outside the work machine (backhoe 8). The controller (830) controls the drive unit of the moving mechanism that moves the movable unit (bucket 824) of the work machine (backhoe 8) by wireless communication according to the received operation control signal. When the controller (830) is installed in a remote location (for example, on the cloud) from the work machine, the controller (830) controls the drive unit via the relay device. In this case, the relay device is installed in a place where the drive unit can be controlled by wireless communication (for example, around a work machine, in a work site, etc.).
 また、上述した各例示的実施形態において、作業機械(バックホウ8)は、コントローラに代えて、または、加えて、操作部(操作レバー等)と、操作部に取り付けられた操作部駆動装置(アタッチメント等)とを有していてもよい。ここで、操作部は、可動部(バケット824)を移動させるためのオペレータによる操作を受け付ける。また、操作部駆動装置は、オペレータの代わりに操作部を駆動する装置である。 Further, in each of the above-described exemplary embodiments, the work machine (backhoe 8) is replaced with or in addition to the controller, the operation unit (operation lever, etc.), and the operation unit drive device (attachment) attached to the operation unit. Etc.) and may have. Here, the operation unit accepts an operation by an operator for moving the movable unit (bucket 824). Further, the operation unit drive device is a device that drives the operation unit instead of the operator.
 この場合、移動制御部11(11A)は、コントローラ(830)に動作制御信号を送信することに代えて、または、加えて、操作部駆動装置に動作制御信号を送信することにより、作業機械を制御する。これにより、各例示的実施形態は、オペレータが搭乗可能な作業機械(バックホウ8)を制御対象とすることが可能となる。 In this case, the movement control unit 11 (11A) controls the work machine by transmitting the operation control signal to the operation unit drive device in place of or in addition to transmitting the operation control signal to the controller (830). Control. Thereby, in each exemplary embodiment, the work machine (backhoe 8) on which the operator can board can be controlled.
 また、上述した各例示的実施形態において、移動制御部11(11A)は、オペレータの操作に基づいて、作業機械(バックホウ8)を制御するための動作制御信号を生成してもよい。この場合、移動制御部11(11A)は、補正制御部12(12A、12B)を構成するコンピュータとは物理的に異なる場所に設置された他のコンピュータによって構成されてもよい。これにより、オペレータは、遠隔から作業機械(バックホウ8)の可動部(バケット824)を移動させる操作を行うことが可能である。この場合、各例示的実施形態は、オペレータが移動させた可動部(バケット824)の位置を、より精度よく移動先の領域(積込対象エリア910)に移動させることができる。 Further, in each of the above-described exemplary embodiments, the movement control unit 11 (11A) may generate an operation control signal for controlling the work machine (backhoe 8) based on the operation of the operator. In this case, the movement control unit 11 (11A) may be configured by another computer installed in a place physically different from the computer constituting the correction control unit 12 (12A, 12B). As a result, the operator can remotely move the movable portion (bucket 824) of the work machine (backhoe 8). In this case, in each exemplary embodiment, the position of the movable portion (bucket 824) moved by the operator can be moved to the destination area (loading target area 910) with higher accuracy.
 また、上述した例示的実施形態2、3において、移動制御部11Aは、センサE1~E6の検出値を参照することなく、バケット824を積込対象エリア910まで移動させるよう制御を行ってもよい。例えば、積込対象エリア910における目標位置が予め定められている場合がある。この場合、移動制御部11Aは、センサE1~E6の各検出値に基づく推定姿勢を参照することなく、定められた目標位置までバケット824を移動させるための動作制御信号を生成可能である。このような動作制御信号は、可動部820の各部について所定の旋回方向および旋回量を含む。移動制御部11Aは、例えば、このような動作制御信号を、定められた目標位置までの過去の制御結果に基づいて生成すればよい。この場合、例示的実施形態2、3において、バックホウ8は、必ずしもセンサE1~E4を搭載していなくてもよい。また、制御装置10A、10Bは、必ずしも姿勢推定部13Aおよび目標位置決定部14Aを含んでいなくてもよい。 Further, in the above-described exemplary embodiments 2 and 3, the movement control unit 11A may control the bucket 824 to move to the loading target area 910 without referring to the detected values of the sensors E1 to E6. .. For example, the target position in the loading target area 910 may be predetermined. In this case, the movement control unit 11A can generate an operation control signal for moving the bucket 824 to a predetermined target position without referring to the estimated posture based on the detected values of the sensors E1 to E6. Such an operation control signal includes a predetermined turning direction and turning amount for each part of the movable part 820. The movement control unit 11A may, for example, generate such an operation control signal based on the past control results up to a predetermined target position. In this case, in the exemplary embodiments 2 and 3, the backhoe 8 does not necessarily have to be equipped with the sensors E1 to E4. Further, the control devices 10A and 10B do not necessarily have to include the posture estimation unit 13A and the target position determination unit 14A.
 また、上述した例示的実施形態2、3において、センサE5は、バックホウ8に搭載されてもよい。また、センサE5は、空間SP2に含まれる対象物を検出可能なその他の場所に設置されていてもよい。例えば、センサE5は、掘削エリアを俯瞰できる位置(一例として、天井、柱等)に設置されてもよい。また、空間SP2における土砂OBJの掘削による形状変化が小さい場合、センサE5は、必ずしも設置されていなくてもよい。また、センサE5は、バックホウ8の周辺環境を検出するセンサであればよく、三次元センサに限られない。また、センサE5は、走行部810の走行を制御するために用いられてもよい。 Further, in the above-mentioned exemplary embodiments 2 and 3, the sensor E5 may be mounted on the backhoe 8. Further, the sensor E5 may be installed in another place where the object contained in the space SP2 can be detected. For example, the sensor E5 may be installed at a position (for example, a ceiling, a pillar, etc.) where the excavation area can be overlooked. Further, when the shape change due to excavation of the earth and sand OBJ in the space SP2 is small, the sensor E5 does not necessarily have to be installed. Further, the sensor E5 may be any sensor that detects the surrounding environment of the backhoe 8, and is not limited to the three-dimensional sensor. Further, the sensor E5 may be used to control the traveling of the traveling unit 810.
 また、上述した例示的実施形態2、3において、バックホウ8には、走行部810の走行を制御するための他のセンサが搭載されていてもよい。他のセンサは、例えば、バックホウ8の進行方向を撮像するカメラ、ToF、レーザセンサ、又はレーダセンサであってもよい。であってもよい。 Further, in the above-mentioned exemplary embodiments 2 and 3, the backhoe 8 may be equipped with another sensor for controlling the traveling of the traveling unit 810. The other sensor may be, for example, a camera, a ToF, a laser sensor, or a radar sensor that captures the traveling direction of the back hoe 8. May be.
 〔ソフトウェアによる実現例〕
 制御装置10、10A、10Bの一部又は全部の機能は、集積回路(ICチップ)等のハードウェアによって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of implementation by software]
Some or all the functions of the control devices 10, 10A and 10B may be realized by hardware such as an integrated circuit (IC chip) or by software.
 後者の場合、制御装置10、10A、10Bは、例えば、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータによって実現される。このようなコンピュータの一例(以下、コンピュータCと記載する)を図10に示す。コンピュータCは、少なくとも1つのプロセッサC1と、少なくとも1つのメモリC2と、を備えている。メモリC2には、コンピュータCを制御装置10、10A、10Bとして動作させるためのプログラムPが記録されている。コンピュータCにおいて、プロセッサC1は、プログラムPをメモリC2から読み取って実行することにより、制御装置10、10A、10Bの各機能が実現される。 In the latter case, the control devices 10, 10A, and 10B are realized by, for example, a computer that executes a program instruction, which is software that realizes each function. An example of such a computer (hereinafter referred to as computer C) is shown in FIG. The computer C includes at least one processor C1 and at least one memory C2. A program P for operating the computer C as the control devices 10, 10A, and 10B is recorded in the memory C2. In the computer C, the processor C1 reads the program P from the memory C2 and executes it, so that the functions of the control devices 10, 10A, and 10B are realized.
 プロセッサC1としては、例えば、CPU(Central Processing Unit)、GPU(Graphic Processing Unit)、DSP(Digital Signal Processor)、MPU(Micro Processing Unit)、FPU(Floating point number Processing Unit)、PPU(Physics Processing Unit)、マイクロコントローラ、又は、これらの組み合わせなどを用いることができる。メモリC2としては、例えば、フラッシュメモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)、又は、これらの組み合わせなどを用いることができる。 Examples of the processor C1 include CPU (Central Processing Unit), GPU (Graphic Processing Unit), DSP (Digital Signal Processor), MPU (Micro Processing Unit), FPU (Floating point number Processing Unit), and PPU (Physics Processing Unit). , Microcontrollers, or combinations thereof. As the memory C2, for example, a flash memory, an HDD (Hard Disk Drive), an SSD (Solid State Drive), or a combination thereof can be used.
 なお、コンピュータCは、プログラムPを実行時に展開したり、各種データを一時的に記憶したりするためのRAM(Random Access Memory)を更に備えていてもよい。また、コンピュータCは、他の装置との間でデータを送受信するための通信インタフェースを更に備えていてもよい。また、コンピュータCは、キーボードやマウス、ディスプレイやプリンタなどの入出力機器を接続するための入出力インタフェースを更に備えていてもよい。 Note that the computer C may further include a RAM (RandomAccessMemory) for expanding the program P at the time of execution and temporarily storing various data. Further, the computer C may further include a communication interface for transmitting / receiving data to / from another device. Further, the computer C may further include an input / output interface for connecting an input / output device such as a keyboard, a mouse, a display, and a printer.
 また、プログラムPは、コンピュータCが読み取り可能な、一時的でない有形の記録媒体Mに記録することができる。このような記録媒体Mとしては、例えば、テープ、ディスク、カード、半導体メモリ、又はプログラマブルな論理回路などを用いることができる。コンピュータCは、このような記録媒体Mを介してプログラムPを取得することができる。また、プログラムPは、伝送媒体を介して伝送することができる。このような伝送媒体としては、例えば、通信ネットワーク、又は放送波などを用いることができる。コンピュータCは、このような伝送媒体を介してプログラムPを取得することもできる。 Further, the program P can be recorded on a non-temporary tangible recording medium M that can be read by the computer C. As such a recording medium M, for example, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. The computer C can acquire the program P via such a recording medium M. Further, the program P can be transmitted via a transmission medium. As such a transmission medium, for example, a communication network, a broadcast wave, or the like can be used. The computer C can also acquire the program P via such a transmission medium.
 〔付記事項1〕
 本発明は、上述した実施形態に限定されるものでなく、請求項に示した範囲で種々の変更が可能である。例えば、上述した実施形態に開示された技術的手段を適宜組み合わせて得られる実施形態についても、本発明の技術的範囲に含まれる。
[Appendix 1]
The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the claims. For example, an embodiment obtained by appropriately combining the technical means disclosed in the above-described embodiment is also included in the technical scope of the present invention.
 〔付記事項2〕
 上述した実施形態の一部又は全部は、以下のようにも記載され得る。ただし、本発明は、以下の記載する態様に限定されるものではない。
[Appendix 2]
Some or all of the embodiments described above may also be described as follows. However, the present invention is not limited to the aspects described below.
 (付記1)
 可動部を有する作業機械を制御する制御装置であって、
 前記可動部を移動先の領域まで移動させるよう、前記作業機械を制御する移動制御手段と、
 センサの検出値を参照して、前記領域と前記可動部との位置関係を検出することにより、前記可動部の位置を補正するよう前記作業機械を制御する補正制御手段と、
 を備えた、制御装置。
(Appendix 1)
A control device that controls a work machine with moving parts.
A movement control means for controlling the work machine so as to move the movable portion to a destination area,
A correction control means for controlling the work machine to correct the position of the movable portion by detecting the positional relationship between the region and the movable portion with reference to the detection value of the sensor.
Equipped with a control device.
 上記の構成により、可動部をより精度よく移動先の領域に移動させることができる。その理由は、移動制御手段が可動部を移動先の領域まで移動させる制御を行った後、可動部の実際の位置が所望の領域からずれる場合があっても、補正制御手段が、移動先の領域と可動部との位置関係を検出することにより、可動部の位置を補正するからである。 With the above configuration, the movable part can be moved to the destination area more accurately. The reason is that even if the actual position of the movable part deviates from the desired area after the movement control means controls to move the movable part to the destination area, the correction control means is used for the movement destination. This is because the position of the movable portion is corrected by detecting the positional relationship between the region and the movable portion.
 (付記2)
 前記センサは、前記領域を含む空間内の対象物を三次元的に検出する第1センサを含む、付記1に記載の制御装置。
(Appendix 2)
The control device according to Appendix 1, wherein the sensor includes a first sensor that three-dimensionally detects an object in a space including the region.
 上記の構成により、可動部および移動先の領域の位置関係を三次元的に検出することができるため、可動部をさらに精度よく移動先の領域に移動させることができる。 With the above configuration, the positional relationship between the movable part and the destination area can be detected three-dimensionally, so that the movable part can be moved to the destination area more accurately.
 (付記3)
 前記移動制御手段は、前記作業機械の姿勢を検出する第2センサの検出値を参照して、前記可動部を前記領域まで移動させるよう前記作業機械を制御し、
 前記補正制御手段は、前記第1センサの検出値を参照して、前記可動部の位置を補正するよう前記作業機械を制御する、付記2に記載の制御装置。
(Appendix 3)
The movement control means controls the work machine so as to move the movable portion to the region with reference to the detection value of the second sensor that detects the posture of the work machine.
The control device according to Appendix 2, wherein the correction control means controls the work machine so as to correct the position of the movable portion with reference to the detection value of the first sensor.
 上記の構成により、移動制御に用いられる第2センサの検出値に測定誤差が含まれていたとしても、可動部を精度よく移動先の領域に移動させることができる。 With the above configuration, even if the detection value of the second sensor used for movement control includes a measurement error, the movable part can be accurately moved to the destination region.
 (付記4)
 前記補正制御手段は、前記領域における目標位置と前記可動部の位置との差分が所定範囲内となるよう、前記可動部の位置を補正する、付記1から3の何れか1つに記載の制御装置。
(Appendix 4)
The control according to any one of Supplementary note 1 to 3, wherein the correction control means corrects the position of the movable portion so that the difference between the target position and the position of the movable portion in the region is within a predetermined range. Device.
 上記の構成により、可動部の位置を目標位置により近づけることができる。 With the above configuration, the position of the movable part can be brought closer to the target position.
 (付記5)
 前記補正制御手段は、前記可動部の少なくとも所定部分が前記領域に含まれるよう、前記可動部の位置を補正する、付記1から3の何れか1つに記載の制御装置。
(Appendix 5)
The control device according to any one of Supplementary note 1 to 3, wherein the correction control means corrects the position of the movable portion so that at least a predetermined portion of the movable portion is included in the region.
 上記の構成により、可動部の少なくとも所定部分が移動先の領域に含まれる確実性を高めることができる。 With the above configuration, it is possible to increase the certainty that at least a predetermined portion of the movable portion is included in the destination area.
 (付記6)
 前記可動部は、移動対象物を前記領域まで移動させる器具を含む、付記1から5の何れか1つに記載の制御装置。
(Appendix 6)
The control device according to any one of Supplementary note 1 to 5, wherein the movable portion includes an instrument for moving a moving object to the region.
 上記の構成により、移動対象物を移動先の領域までより確実に移動させることができる。 With the above configuration, the moving object can be moved more reliably to the destination area.
 (付記7)
 前記作業機械は、姿勢を変化させることにより前記可動部を移動する構成を有し、
 前記補正制御手段は、前記可動部の位置を補正するために前記姿勢を変化させるよう前記作業機械を制御する、付記1から付記6の何れか1つに記載の制御装置。
(Appendix 7)
The work machine has a configuration in which the movable portion is moved by changing the posture.
The control device according to any one of Supplementary note 1 to Supplementary note 6, wherein the correction control means controls the work machine so as to change the posture in order to correct the position of the movable portion.
 上記の構成により、可動部の位置を補正するよう作業機械の姿勢を制御することができる。 With the above configuration, the posture of the work machine can be controlled so as to correct the position of the movable part.
 (付記8)
 可動部を有する作業機械を制御する制御装置と、センサとを含む制御システムであって、
 前記制御装置が、
 前記可動部を移動先の領域まで移動させるよう、前記作業機械を制御する移動制御手段と、
 前記センサの検出値を参照して、前記領域と前記可動部との位置関係を検出することにより、前記可動部の位置を補正するよう前記作業機械を制御する補正制御手段と、
 を備えた、制御システム。
(Appendix 8)
A control system including a control device for controlling a work machine having a moving part and a sensor.
The control device
A movement control means for controlling the work machine so as to move the movable portion to a destination area,
A correction control means for controlling the work machine to correct the position of the movable portion by detecting the positional relationship between the region and the movable portion with reference to the detection value of the sensor.
Equipped with a control system.
 上記の構成により、付記1と同様の効果を奏する。 With the above configuration, the same effect as in Appendix 1 is achieved.
 (付記9)
 前記センサは、前記領域を含む空間内の対象物を三次元的に検出する第1センサを含む、付記8に記載の制御システム。
(Appendix 9)
The control system according to Appendix 8, wherein the sensor includes a first sensor that three-dimensionally detects an object in a space including the region.
 上記の構成により、付記2と同様の効果を奏する。 With the above configuration, the same effect as in Appendix 2 is achieved.
 (付記10)
 前記移動制御手段は、前記作業機械の姿勢を検出する第2センサの検出値を参照して、前記可動部を前記領域まで移動させるよう前記作業機械を制御し、
 前記補正制御手段は、前記第1センサの検出値を参照して、前記可動部の位置を補正するよう前記作業機械を制御する、付記9に記載の制御システム。
(Appendix 10)
The movement control means controls the work machine so as to move the movable portion to the region with reference to the detection value of the second sensor that detects the posture of the work machine.
The control system according to Appendix 9, wherein the correction control means controls the work machine so as to correct the position of the movable portion with reference to the detection value of the first sensor.
 上記の構成により、付記3と同様の効果を奏する。 With the above configuration, the same effect as in Appendix 3 is achieved.
 (付記11)
 前記補正制御手段は、前記領域における目標位置と前記可動部の位置との差分が所定範囲内となるよう、前記可動部の位置を補正する、付記8から10の何れか1つに記載の制御システム。
(Appendix 11)
The control according to any one of Supplementary note 8 to 10, wherein the correction control means corrects the position of the movable portion so that the difference between the target position and the position of the movable portion in the region is within a predetermined range. system.
 上記の構成により、付記4と同様の効果を奏する。 With the above configuration, the same effect as in Appendix 4 is achieved.
 (付記12)
 前記補正制御手段は、前記可動部の少なくとも所定部分が前記領域に含まれるよう、前記可動部の位置を補正する、付記8から10の何れか1つに記載の制御システム。
(Appendix 12)
The control system according to any one of Supplementary note 8 to 10, wherein the correction control means corrects the position of the movable portion so that at least a predetermined portion of the movable portion is included in the region.
 上記の構成により、付記5と同様の効果を奏する。 With the above configuration, the same effect as in Appendix 5 is achieved.
 (付記13)
 前記可動部は、移動対象物を前記領域まで移動させる器具を含む、付記8から12の何れか1つに記載の制御システム。
(Appendix 13)
The control system according to any one of Supplementary note 8 to 12, wherein the movable portion includes an instrument for moving an object to be moved to the region.
 上記の構成により、付記6と同様の効果を奏する。 With the above configuration, the same effect as in Appendix 6 is achieved.
 (付記14)
 前記作業機械は、姿勢を変化させることにより前記可動部を移動する構成を有し、
 前記補正制御手段は、前記可動部の位置を補正するために前記姿勢を変化させるよう前記作業機械を制御する、付記8から付記13の何れか1つに記載の制御システム。
(Appendix 14)
The work machine has a configuration in which the movable portion is moved by changing the posture.
The control system according to any one of Supplementary note 8 to Supplementary note 13, wherein the correction control means controls the work machine so as to change the posture in order to correct the position of the movable portion.
 上記の構成により、付記7と同様の効果を奏する。 With the above configuration, the same effect as in Appendix 7 is achieved.
 (付記15)
 可動部を有する作業機械を制御する制御方法であって、
 前記可動部を移動先の領域まで移動させるよう、前記作業機械を制御すること、および、
 センサの検出値を参照して、前記領域と前記可動部との位置関係を検出することにより、前記可動部の位置を補正するよう前記作業機械を制御すること、
 を含む、制御方法。
(Appendix 15)
It is a control method for controlling a work machine having a moving part.
Controlling the work machine to move the movable part to the destination area, and
Controlling the work machine to correct the position of the movable portion by detecting the positional relationship between the region and the movable portion with reference to the detection value of the sensor.
Control methods, including.
 上記の構成により、付記1と同様の効果を奏する。 With the above configuration, the same effect as in Appendix 1 is achieved.
 (付記16)
 前記センサは、前記領域を含む空間内の対象物を三次元的に検出する第1センサを含む、付記15に記載の制御方法。
(Appendix 16)
The control method according to Appendix 15, wherein the sensor includes a first sensor that three-dimensionally detects an object in a space including the region.
 上記の構成により、付記2と同様の効果を奏する。 With the above configuration, the same effect as in Appendix 2 is achieved.
 (付記17)
 前記可動部を移動先の領域まで移動させるよう前記作業機械を制御するために、前記作業機械の姿勢を検出する第2センサの検出値を参照し、
 前記可動部の位置を補正するよう前記作業機械を制御するために、前記第1センサの検出値を参照する、付記16に記載の制御方法。
(Appendix 17)
In order to control the work machine so as to move the movable part to the destination area, the detection value of the second sensor that detects the posture of the work machine is referred to.
The control method according to Appendix 16, wherein the detection value of the first sensor is referred to in order to control the work machine so as to correct the position of the movable portion.
 上記の構成により、付記3と同様の効果を奏する。 With the above configuration, the same effect as in Appendix 3 is achieved.
 (付記18)
 前記センサの検出値を参照して、前記領域における目標位置と前記可動部の位置との差分が所定範囲内となるよう、前記可動部の位置を補正する、付記15から17の何れか1つに記載の制御方法。
(Appendix 18)
Any one of Appendix 15 to 17, which corrects the position of the movable portion so that the difference between the target position and the position of the movable portion in the region is within a predetermined range with reference to the detection value of the sensor. The control method described in.
 上記の構成により、付記4と同様の効果を奏する。 With the above configuration, the same effect as in Appendix 4 is achieved.
 (付記19)
 前記センサの検出値を参照して、前記可動部の少なくとも所定部分が前記領域に含まれるよう、前記可動部の位置を補正する、付記15から17の何れか1つに記載の制御方法。
(Appendix 19)
The control method according to any one of Supplementary note 15 to 17, wherein the position of the movable portion is corrected so that at least a predetermined portion of the movable portion is included in the region with reference to the detection value of the sensor.
 上記の構成により、付記5と同様の効果を奏する。 With the above configuration, the same effect as in Appendix 5 is achieved.
 (付記20)
 前記可動部は、移動対象物を前記領域まで移動させる器具を含む、付記15から付記19の何れか1つに記載の制御方法。
(Appendix 20)
The control method according to any one of Supplementary note 15 to Supplementary note 19, wherein the movable portion includes an instrument for moving a moving object to the region.
 上記の構成により、付記6と同様の効果を奏する。 With the above configuration, the same effect as in Appendix 6 is achieved.
 (付記21)
 前記作業機械は、姿勢を変化させることにより前記可動部を移動する構成を有し、
 前記補正制御手段は、前記可動部の位置を補正するために前記姿勢を変化させるよう前記作業機械を制御する、付記15から付記20の何れか1つに記載の制御方法。
(Appendix 21)
The work machine has a configuration in which the movable portion is moved by changing the posture.
The control method according to any one of Supplementary note 15 to Supplementary note 20, wherein the correction control means controls the work machine so as to change the posture in order to correct the position of the movable portion.
 上記の構成により、付記7と同様の効果を奏する。 With the above configuration, the same effect as in Appendix 7 is achieved.
 (付記22)
 コンピュータを、可動部を有する作業機械を制御する制御装置として機能させるプログラムであって、
 前記コンピュータを、
 前記可動部を移動先の領域まで移動させるよう、前記作業機械を制御する移動制御手段と、
 センサの検出値を参照して、前記領域と前記可動部との位置関係を検出することにより、前記可動部の位置を補正するよう前記作業機械を制御する補正制御手段と、
として機能させるプログラム。
(Appendix 22)
A program that causes a computer to function as a control device for controlling a work machine having moving parts.
The computer
A movement control means for controlling the work machine so as to move the movable portion to a destination area,
A correction control means for controlling the work machine to correct the position of the movable portion by detecting the positional relationship between the region and the movable portion with reference to the detection value of the sensor.
A program that functions as.
 上記の構成により、付記1と同様の効果を奏する。 With the above configuration, the same effect as in Appendix 1 is achieved.
 (付記23)
 前記センサは、前記領域を含む空間内の対象物を三次元的に検出する第1センサを含む、付記22に記載のプログラム。
(Appendix 23)
22. The program according to Appendix 22, wherein the sensor includes a first sensor that three-dimensionally detects an object in a space including the region.
 上記の構成により、付記2と同様の効果を奏する。 With the above configuration, the same effect as in Appendix 2 is achieved.
 (付記24)
 前記移動制御手段は、前記作業機械の姿勢を検出する第2センサの検出値を参照して、前記可動部を前記領域まで移動させるよう前記作業機械を制御し、
 前記補正制御手段は、前記第1センサの検出値を参照して、前記可動部の位置を補正するよう前記作業機械を制御する、付記23に記載のプログラム。
(Appendix 24)
The movement control means controls the work machine so as to move the movable portion to the region with reference to the detection value of the second sensor that detects the posture of the work machine.
The program according to Appendix 23, wherein the correction control means controls the work machine so as to correct the position of the movable portion with reference to the detection value of the first sensor.
 上記の構成により、付記3と同様の効果を奏する。 With the above configuration, the same effect as in Appendix 3 is achieved.
 (付記25)
 前記補正制御手段は、前記領域における目標位置と前記可動部の位置との差分が所定範囲内となるよう、前記可動部の位置を補正する、付記22から24の何れか1つに記載のプログラム。
(Appendix 25)
The program according to any one of Supplementary note 22 to 24, wherein the correction control means corrects the position of the movable portion so that the difference between the target position and the position of the movable portion in the region is within a predetermined range. ..
 上記の構成により、付記4と同様の効果を奏する。 With the above configuration, the same effect as in Appendix 4 is achieved.
 (付記26)
 前記補正制御手段は、前記可動部の少なくとも所定部分が前記領域に含まれるよう、前記可動部の位置を補正する、付記22から24の何れか1つに記載のプログラム。
(Appendix 26)
The program according to any one of Supplementary note 22 to 24, wherein the correction control means corrects the position of the movable portion so that at least a predetermined portion of the movable portion is included in the region.
 上記の構成により、付記5と同様の効果を奏する。 With the above configuration, the same effect as in Appendix 5 is achieved.
 (付記27)
 前記可動部は、移動対象物を前記領域まで移動させる器具を含む、付記22から26の何れか1つに記載のプログラム。
(Appendix 27)
The program according to any one of Supplementary note 22 to 26, wherein the movable portion includes an instrument for moving an object to be moved to the region.
 上記の構成により、付記6と同様の効果を奏する。 With the above configuration, the same effect as in Appendix 6 is achieved.
 (付記28)
 前記作業機械は、姿勢を変化させることにより前記可動部を移動する構成を有し、
 前記補正制御手段は、前記可動部の位置を補正するために前記姿勢を変化させるよう前記作業機械を制御する、付記22から付記27の何れか1つに記載のプログラム。
(Appendix 28)
The work machine has a configuration in which the movable portion is moved by changing the posture.
The program according to any one of Supplementary note 22 to Supplementary note 27, wherein the correction control means controls the work machine so as to change the posture in order to correct the position of the movable portion.
 上記の構成により、付記7と同様の効果を奏する。 With the above configuration, the same effect as in Appendix 7 is achieved.
 (付記29)
 コンピュータを、可動部を有する作業機械を制御する制御装置として機能させるプログラムを記憶した記憶媒体であって、
 前記プログラムは、前記コンピュータを、
 前記可動部を移動先の領域まで移動させるよう、前記作業機械を制御する移動制御手段と、
 センサの検出値を参照して、前記領域と前記可動部との位置関係を検出することにより、前記可動部の位置を補正するよう前記作業機械を制御する補正制御手段と、
として機能させるプログラムを記憶した記憶媒体。
(Appendix 29)
A storage medium that stores a program that causes a computer to function as a control device for controlling a work machine having a movable part.
The program is the computer.
A movement control means for controlling the work machine so as to move the movable portion to a destination area,
A correction control means for controlling the work machine to correct the position of the movable portion by detecting the positional relationship between the region and the movable portion with reference to the detection value of the sensor.
A storage medium that stores a program that functions as.
 (付記30)
 少なくとも1つのプロセッサを備え、前記プロセッサは、前記可動部を移動先の領域まで移動させるよう、前記作業機械を制御する移動制御処理と、センサの検出値を参照して、前記領域と前記可動部との位置関係を検出することにより、前記可動部の位置を補正するよう前記作業機械を制御する補正制御処理と、を実行する制御装置。
(Appendix 30)
The processor includes at least one processor, and the processor refers to a movement control process that controls the work machine so as to move the movable portion to a destination region, and a detection value of the sensor, and the region and the movable portion. A control device that executes a correction control process that controls the work machine so as to correct the position of the movable portion by detecting the positional relationship with the movable portion.
 なお、この制御装置は、更にメモリを備えていてもよく、このメモリには、前記移動制御処理と、前記補正制御処理と、を前記プロセッサに実行させるためのプログラムが記憶されていてもよい。また、このプログラムは、コンピュータ読み取り可能な一時的でない有形の記録媒体に記録されていてもよい。 The control device may further include a memory, and the memory may store a program for causing the processor to execute the movement control process and the correction control process. The program may also be recorded on a computer-readable, non-temporary, tangible recording medium.
1、1A、1B 制御システム
10、10A、10B 制御装置
11、11A 移動制御部
12、12A、12B 補正制御部
13A 姿勢推定部
14A 目標位置決定部
110A、110B 制御部
120A、120B 記憶部
130A 通信部
820 可動部
824 バケット
910 積込対象エリア(移動先の領域)
 
 
1, 1A, 1B Control system 10, 10A, 10B Control device 11, 11A Movement control unit 12, 12A, 12B Correction control unit 13A Posture estimation unit 14A Target position determination unit 110A, 110B Control unit 120A, 120B Storage unit 130A Communication unit 820 Movable part 824 Bucket 910 Loading target area (destination area)

Claims (18)

  1.  可動部を有する作業機械を制御する制御装置であって、
     前記可動部を移動先の領域まで移動させるよう、前記作業機械を制御する移動制御手段と、
     センサの検出値を参照して、前記領域と前記可動部との位置関係を検出することにより、前記可動部の位置を補正するよう前記作業機械を制御する補正制御手段と、
     を備えた、制御装置。
    A control device that controls a work machine with moving parts.
    A movement control means for controlling the work machine so as to move the movable portion to a destination area,
    A correction control means for controlling the work machine to correct the position of the movable portion by detecting the positional relationship between the region and the movable portion with reference to the detection value of the sensor.
    Equipped with a control device.
  2.  前記センサは、前記領域を含む空間内の対象物を三次元的に検出する第1センサを含む、請求項1に記載の制御装置。 The control device according to claim 1, wherein the sensor includes a first sensor that three-dimensionally detects an object in a space including the region.
  3.  前記移動制御手段は、前記作業機械の姿勢を検出する第2センサの検出値を参照して、前記可動部を前記領域まで移動させるよう前記作業機械を制御し、
     前記補正制御手段は、前記第1センサの検出値を参照して、前記可動部の位置を補正するよう前記作業機械を制御する、請求項2に記載の制御装置。
    The movement control means controls the work machine so as to move the movable portion to the region with reference to the detection value of the second sensor that detects the posture of the work machine.
    The control device according to claim 2, wherein the correction control means controls the work machine so as to correct the position of the movable portion with reference to the detection value of the first sensor.
  4.  前記補正制御手段は、前記領域における目標位置と前記可動部の位置との差分が所定範囲内となるよう、前記可動部の位置を補正する、請求項1から3の何れか1項に記載の制御装置。 The correction control means according to any one of claims 1 to 3, wherein the correction control means corrects the position of the movable portion so that the difference between the target position and the position of the movable portion in the region is within a predetermined range. Control device.
  5.  前記補正制御手段は、前記可動部の少なくとも所定部分が前記領域に含まれるよう、前記可動部の位置を補正する、請求項1から3の何れか1項に記載の制御装置。 The control device according to any one of claims 1 to 3, wherein the correction control means corrects the position of the movable portion so that at least a predetermined portion of the movable portion is included in the region.
  6.  前記可動部は、移動対象物を前記領域まで移動させる器具を含む、請求項1から5の何れか1項に記載の制御装置。 The control device according to any one of claims 1 to 5, wherein the movable portion includes an instrument for moving a moving object to the region.
  7.  可動部を有する作業機械を制御する制御装置と、センサとを含む制御システムであって、
     前記制御装置が、
     前記可動部を移動先の領域まで移動させるよう、前記作業機械を制御する移動制御手段と、
     前記センサの検出値を参照して、前記領域と前記可動部との位置関係を検出することにより、前記可動部の位置を補正するよう前記作業機械を制御する補正制御手段と、
     を備えた、制御システム。
    A control system including a control device for controlling a work machine having a moving part and a sensor.
    The control device
    A movement control means for controlling the work machine so as to move the movable portion to a destination area,
    A correction control means for controlling the work machine to correct the position of the movable portion by detecting the positional relationship between the region and the movable portion with reference to the detection value of the sensor.
    Equipped with a control system.
  8.  前記センサは、前記領域を含む空間内の対象物を三次元的に検出する第1センサを含む、請求項7に記載の制御システム。 The control system according to claim 7, wherein the sensor includes a first sensor that three-dimensionally detects an object in a space including the region.
  9.  前記移動制御手段は、前記作業機械の姿勢を検出する第2センサの検出値を参照して、前記可動部を前記領域まで移動させるよう前記作業機械を制御し、
     前記補正制御手段は、前記第1センサの検出値を参照して、前記可動部の位置を補正するよう前記作業機械を制御する、請求項8に記載の制御システム。
    The movement control means controls the work machine so as to move the movable portion to the region with reference to the detection value of the second sensor that detects the posture of the work machine.
    The control system according to claim 8, wherein the correction control means controls the work machine so as to correct the position of the movable portion with reference to the detection value of the first sensor.
  10.  前記補正制御手段は、前記領域における目標位置と前記可動部の位置との差分が所定範囲内となるよう、前記可動部の位置を補正する、請求項7から9の何れか1項に記載の制御システム。 The correction control means according to any one of claims 7 to 9, wherein the correction control means corrects the position of the movable portion so that the difference between the target position and the position of the movable portion in the region is within a predetermined range. Control system.
  11.  前記補正制御手段は、前記可動部の少なくとも所定部分が前記領域に含まれるよう、前記可動部の位置を補正する、請求項7から9の何れか1項に記載の制御システム。 The control system according to any one of claims 7 to 9, wherein the correction control means corrects the position of the movable portion so that at least a predetermined portion of the movable portion is included in the region.
  12.  前記可動部は、移動対象物を前記領域まで移動させる器具を含む、請求項7から11の何れか1項に記載の制御システム。 The control system according to any one of claims 7 to 11, wherein the movable portion includes an instrument for moving a moving object to the region.
  13.  可動部を有する作業機械を制御する制御方法であって、
     前記可動部を移動先の領域まで移動させるよう、前記作業機械を制御すること、および、
     センサの検出値を参照して、前記領域と前記可動部との位置関係を検出することにより、前記可動部の位置を補正するよう前記作業機械を制御すること、
     を含む、制御方法。
    It is a control method for controlling a work machine having a moving part.
    Controlling the work machine to move the movable part to the destination area, and
    Controlling the work machine to correct the position of the movable portion by detecting the positional relationship between the region and the movable portion with reference to the detection value of the sensor.
    Control methods, including.
  14.  前記センサは、前記領域を含む空間内の対象物を三次元的に検出する第1センサを含む、請求項13に記載の制御方法。 The control method according to claim 13, wherein the sensor includes a first sensor that three-dimensionally detects an object in a space including the region.
  15.  前記可動部を移動先の領域まで移動させるよう前記作業機械を制御するために、前記作業機械の姿勢を検出する第2センサの検出値を参照し、
     前記可動部の位置を補正するよう前記作業機械を制御するために、前記第1センサの検出値を参照する、請求項14に記載の制御方法。
    In order to control the work machine so as to move the movable part to the destination area, the detection value of the second sensor that detects the posture of the work machine is referred to.
    The control method according to claim 14, wherein the working machine is controlled so as to correct the position of the movable portion, and the detection value of the first sensor is referred to.
  16.  前記センサの検出値を参照して、前記領域における目標位置と前記可動部の位置との差分が所定範囲内となるよう、前記可動部の位置を補正する、請求項13から15の何れか1項に記載の制御方法。 Any one of claims 13 to 15, which corrects the position of the movable portion so that the difference between the target position and the position of the movable portion in the region is within a predetermined range with reference to the detection value of the sensor. The control method described in the section.
  17.  前記センサの検出値を参照して、前記可動部の少なくとも所定部分が前記領域に含まれるよう、前記可動部の位置を補正する、請求項13から15の何れか1項に記載の制御方法。 The control method according to any one of claims 13 to 15, wherein the position of the movable portion is corrected so that at least a predetermined portion of the movable portion is included in the region with reference to the detection value of the sensor.
  18.  前記可動部は、移動対象物を前記領域まで移動させる器具を含む、請求項13から請求項17の何れか1項に記載の制御方法。
     
    The control method according to any one of claims 13 to 17, wherein the movable portion includes an instrument for moving a moving object to the region.
PCT/JP2021/039934 2020-11-11 2021-10-29 Control device, control system, and control method WO2022102429A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/034,315 US20230392354A1 (en) 2020-11-11 2021-10-29 Control device, control system, and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-188136 2020-11-11
JP2020188136A JP2022077328A (en) 2020-11-11 2020-11-11 Control device, control system, and control method

Publications (1)

Publication Number Publication Date
WO2022102429A1 true WO2022102429A1 (en) 2022-05-19

Family

ID=81602177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039934 WO2022102429A1 (en) 2020-11-11 2021-10-29 Control device, control system, and control method

Country Status (3)

Country Link
US (1) US20230392354A1 (en)
JP (1) JP2022077328A (en)
WO (1) WO2022102429A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089389A (en) * 2014-10-30 2016-05-23 日立建機株式会社 Rotation support device for work machine
JP2020126363A (en) * 2019-02-01 2020-08-20 株式会社小松製作所 Image processing system, image processing method, generation method of learnt model, and data set for leaning
JP2020165259A (en) * 2019-03-29 2020-10-08 住友重機械工業株式会社 Shovel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089389A (en) * 2014-10-30 2016-05-23 日立建機株式会社 Rotation support device for work machine
JP2020126363A (en) * 2019-02-01 2020-08-20 株式会社小松製作所 Image processing system, image processing method, generation method of learnt model, and data set for leaning
JP2020165259A (en) * 2019-03-29 2020-10-08 住友重機械工業株式会社 Shovel

Also Published As

Publication number Publication date
US20230392354A1 (en) 2023-12-07
JP2022077328A (en) 2022-05-23

Similar Documents

Publication Publication Date Title
JP7263127B2 (en) MAP GENERATION SYSTEM AND MAP GENERATION METHOD
JP6676825B2 (en) Work machine
JP6674846B2 (en) Shape measuring system, work machine and shape measuring method
US20210246625A1 (en) Control device, loading machine, and control method
US10352021B2 (en) Work equipment control device and work machine
JP7071203B2 (en) Work machine
US11459735B2 (en) Display control system, display control device, and display control method
JP2016008484A (en) Construction machinery
US20210254312A1 (en) Control device and control method for work machine
JP7290165B2 (en) Drilling system, control device and control method
US20180266071A1 (en) Work equipment control device and work machine
CN113874862A (en) Construction machine
JP7372029B2 (en) Display control device, display control system, and display control method
JP7342205B2 (en) Loading machine control device and control method
JP2021001436A (en) Work machine
WO2022102429A1 (en) Control device, control system, and control method
WO2022097570A1 (en) Control device, control system, and control method
WO2017061512A1 (en) Work-performing method, control system for work machine, and work machine
JP2020016147A (en) Shape measurement system and shape measurement method
US20230193588A1 (en) Work system and control method
CN108867727A (en) A kind of excavator
WO2022102294A1 (en) Control device, control system, and control method
JP2020143449A (en) Work machine
US20240200309A1 (en) Control method, control system, control device, and recording medium
JP2021096129A (en) Satellite positioning method, satellite positioning device, satellite positioning system, and construction machinery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891676

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18034315

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891676

Country of ref document: EP

Kind code of ref document: A1