WO2022230821A1 - Method for manufacturing organic semiconductor element - Google Patents

Method for manufacturing organic semiconductor element Download PDF

Info

Publication number
WO2022230821A1
WO2022230821A1 PCT/JP2022/018762 JP2022018762W WO2022230821A1 WO 2022230821 A1 WO2022230821 A1 WO 2022230821A1 JP 2022018762 W JP2022018762 W JP 2022018762W WO 2022230821 A1 WO2022230821 A1 WO 2022230821A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
solvent
less
composition
Prior art date
Application number
PCT/JP2022/018762
Other languages
French (fr)
Japanese (ja)
Inventor
誠 保科
優記 大嶋
延軍 李
君偉 沈
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to KR1020237036806A priority Critical patent/KR20240004364A/en
Priority to CN202280031351.1A priority patent/CN117296451A/en
Priority to JP2023517515A priority patent/JPWO2022230821A1/ja
Publication of WO2022230821A1 publication Critical patent/WO2022230821A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport

Definitions

  • the present invention relates to a method for manufacturing an organic semiconductor element capable of suitably forming a functional film, which is an organic film made of a functional material.
  • Organic semiconductor elements include organic electroluminescent elements and organic transistors.
  • a method for manufacturing an organic electroluminescence element a method of forming a film of an organic material by a vacuum deposition method and laminating the films is generally used.
  • a manufacturing method with more efficient use of materials there has been active research into a manufacturing method using a wet film-forming method in which organic materials in solution are deposited by an ink-jet method or the like and laminated.
  • the most stable method is to give the composition a cross-linking group or a polymerizable group, and then treat it after coating to form a bond to make it insoluble.
  • Patent Document 1 as an insolubilization method using a semiconductor material that does not contain a cross-linking group or a polymerizable group, it is partially insoluble by one or more of heat, vacuum, and drying in the open air, and the dissolved residue is washed away.
  • Patent Document 2 discloses a method of partially insolubilizing a polymer layered as a semiconductor material by heating it at a temperature higher than its glass transition temperature.
  • Patent Literature 3 discloses that the charge transport layer can be made insoluble by heating, electromagnetic wave irradiation, particularly UV irradiation, even in the absence of a crosslinkable group.
  • Patent Document 4 discloses a method in which thermally dissociable and soluble groups are dissociated and insolubilized by chemical change due to heat.
  • Patent Literature 2 is also based on the assumption that the residue after washing is used, and is similar in that the laminated material itself is not completely insolubilized.
  • Patent Document 3 also assumes the use of the residue after washing, but states that partial dissolution is more suitable for interfacial mixing with the upper layer. However, it impairs the use of optical interference, and in blue and phosphorescent green elements with shorter wavelengths, it may lead to deterioration in efficiency and lifetime.
  • the film thickness of the remainder is said to depend on the molecular weight, and in order to obtain a charge transport layer of 20 nm, it is necessary to use a charge transport material with a weight molecular weight of 300,000.
  • the charge transport layer preferably has a thickness of 50 to 150 nm. Forming a charge transport layer is difficult.
  • the method of insolubilizing the thermally dissociable soluble group by chemical change, as disclosed in Patent Document 4, may impede the efficiency of the device in terms of contamination of the upper layer with dissociated substances.
  • the functional material that constitutes the lower layer is a low-soluble material with a molecular weight of several hundred thousand, insolubilization is facilitated.
  • the use of a functional material with a large molecular weight increases the viscosity of the coating composition and adversely affects the coating properties, which in turn limits the thick film construction and high definition that require high-concentration ink.
  • Insolubilization treatment of the lower layer is required to be carried out in a short time and at a low temperature, and since the coating is applied to a panel having a larger area, it is required to withstand solvent infiltration for a long time required for coating.
  • the composition serving as the upper layer is as follows.
  • the first composition comprises a first functional material;
  • the first functional material comprises an arylamine polymer having a weight average molecular weight of 15,000 to 50,000 and having neither a crosslinkable group, a polymerizable group, nor a detachable solubilizing group,
  • the second composition contains a solvent and has a viscosity of 15 mPa s or less at 23 ° C., A method for producing an organic semiconductor device, wherein the solvent contains at least one first solvent component having a viscosity of 3 mPa ⁇ s or more at 23°C.
  • the solvent further comprises a second solvent component having a viscosity of less than 3 mPa s at 23°C,
  • the first composition comprises a first functional material;
  • the first functional material comprises an arylamine polymer having neither a cross-linking group, a polymerizing group, nor a leaving solubilizing group;
  • the second composition contains a solvent and has a viscosity of 15 mPa s or less at 23 ° C.,
  • the solvent contains at least one first solvent component having a flow activation energy of 17 kJ/mol or more, A method for producing an organic semiconductor device, wherein the solvent further contains a second solvent component having a viscosity of less than 3 mPa ⁇ s at 23°C.
  • Ar 51 is selected from at least one of an optionally substituted aromatic hydrocarbon group and an optionally substituted aromatic heterocyclic group, wherein one group or a plurality of groups are linked
  • Each of the substituents is a group other than a cross-linking group, a polymerizing group, or a detachable solubilizing group.
  • Ar 52 is one group selected from at least one of an optionally substituted divalent aromatic hydrocarbon group and an optionally substituted divalent aromatic heterocyclic group, or Represents a divalent group in which a plurality of groups are linked, the linkage is made directly or via a linking group, and the substituents are all groups other than a cross-linking group, a polymerizing group, or a detachable solubilizing group. .
  • Ar 51 and Ar 52 may combine directly or via a linking group to form a ring. However, Ar 51 and Ar 52 have neither a cross-linking group, a polymerizing group nor a leaving solubilizing group. )
  • the arylamine polymer includes a structure in which a plurality of benzene ring structures are linked at the para position in the main chain, and at least one of the plurality of benzene ring structures is positioned next to the carbon atom that bonds to the adjacent benzene ring structure.
  • the method for producing an organic semiconductor device according to [6] or [7], wherein the repeating unit represented by the formula (50) is represented by the following formula (54).
  • a method for producing an organic semiconductor device according to [12] the second composition comprises a second functional material different from the first functional material; The method for producing an organic semiconductor device according to any one of [1] to [11], wherein the second functional material contains a low molecular weight aromatic compound having a molecular weight of less than 2000.
  • the heating in the step of providing the first functional film is performed at a temperature lower than the glass transition point of the arylamine polymer. .
  • a cross-linking group, a polymerizable group, and a detachable solubilizing group can be imparted to the functional film to make it insoluble by treatment after coating.
  • Another film can be formed on the functional film without using an organic substance.
  • the organic substance contained in the functional film can be widely selected, and the composition for forming the upper layer can be widely selected. It is possible to provide a method for manufacturing an organic electroluminescence device that enables lamination of functional materials with excellent luminous life and coating properties.
  • FIG. 1 is a schematic cross-sectional view showing a structural example of a general organic electroluminescence device.
  • the first composition comprises a first functional material
  • the first functional material has both a cross-linking group, a polymerizing group and a detachable solubilizing group.
  • the second composition contains a solvent, and has a viscosity of 15 mPa s or less at 23 ° C.
  • the solvent has a viscosity of 15 mPa s or less at 23 ° C.
  • a method for producing an organic semiconductor device comprising at least one first solvent component having a viscosity of 3 mPa ⁇ s or more.
  • the second composition contains a solvent and has a viscosity at 23 ° C. of 15 mPa s or less, and the solvent has a flow activation energy of 17 kJ / mol or more.
  • a method for producing an organic semiconductor device comprising at least one solvent component, the solvent further comprising a second solvent component having a viscosity of less than 3 mPa ⁇ s at 23°C.
  • the second composition contains a solvent and has a viscosity of 15 mPa s or less at 23 ° C., and the solvent has a viscosity of 3 mPa s or more at 23 ° C.
  • At least one solvent component is included, the solvent further includes a second solvent component having a viscosity of less than 3 mPa s at 23 ° C., and the flow activation energy of the first solvent component is 17 kJ / mol or more.
  • a method for producing an organic semiconductor device is included, the solvent further includes a second solvent component having a viscosity of less than 3 mPa s at 23 ° C., and the flow activation energy of the first solvent component is 17 kJ / mol or more.
  • the element can be produced. It is possible to realize an organic semiconductor device having a functional film with excellent luminous efficiency and luminous life by reducing adverse effects on the life and luminous efficiency when used as an organic electroluminescence device.
  • the arylamine polymer has neither a cross-linking group, a polymerizing group, nor a detachable solubilizing group, a polymer with a small molecular weight that can suppress the increase in viscosity due to concentration is used as a functional material, and is applied and heated. A first functional membrane can be obtained.
  • the second composition constituting the second functional film has a viscosity of 15 mPa ⁇ s or less at 23°C and a first solvent component satisfying the viscosity of 3 mPa ⁇ s or more at 23°C, or , contains a first solvent component that satisfies a flow activation energy of 17 kJ / mol or more and a second solvent component that satisfies a viscosity of less than 3 mPa s at 23 ° C., so that the first functional film as a lower layer is crosslinked Even if it does not have a group, a polymerizable group, or a detachable solubilizing group, the dissolution of the first functional film and the dissolution of the dissolved component of the second It is possible to prevent performance deterioration due to contamination of the functional film.
  • the first functional material that does not contain a structure that deteriorates the characteristics is used for the first functional film, and the same Prevents elution of the first functional material and mixing into the second functional film when the second composition is applied to the film to form the second functional film, thereby improving the characteristics can do.
  • the structures that degrade the properties are cross-linking groups, polymerizing groups, and detachable solubilizing groups.
  • the organic semiconductor device is an organic electroluminescence device, such properties mean luminescence properties.
  • the long-term insoluble durability property of the first functional material is realized, so that the coating on a large-sized substrate is facilitated.
  • the first functional film is a film obtained by applying and heating the first composition, and the second functional film is formed on this film.
  • the first functional film in the case of the organic electroluminescence device shown in FIG. 1, for example, the hole injection layer 3 formed on the anode 2 or the hole injection layer 3 A hole transport layer 4 may be mentioned.
  • the second functional film is a functional film obtained by applying the second composition on the surface of the first functional film.
  • the hole transport layer 4 formed on the hole injection layer 3 or the light emitting layer 5 formed on the hole transport layer 4 can be cited. be done.
  • the first composition comprises a first functional material, the first functional material containing an arylamine polymer without cross-linking groups, polymerizing groups and leaving solubilizing groups. It also usually contains a solvent (organic solvent).
  • the first composition may contain one type of the above arylamine polymer as the first functional material, or may contain two or more types in any combination and in any ratio. .
  • the first composition may contain functional materials other than the first functional material, such as electron-accepting compounds and charge-transporting materials described later.
  • the first functional material is an arylamine polymer having neither a crosslinkable group, a polymerizable group, nor a detachable solubilizing group, and is, for example, a polymer having a repeating unit represented by the following formula (50). .
  • Ar 51 is selected from at least one of an optionally substituted aromatic hydrocarbon group and an optionally substituted aromatic heterocyclic group, wherein one group or a plurality of groups are linked
  • Each of the substituents is a group other than a cross-linking group, a polymerizing group, or a detachable solubilizing group.
  • Ar 52 is one group selected from at least one of an optionally substituted divalent aromatic hydrocarbon group and an optionally substituted divalent aromatic heterocyclic group, or Represents a divalent group in which a plurality of groups are linked, the linkage is made directly or via a linking group, and the substituents are all groups other than a cross-linking group, a polymerizing group, or a detachable solubilizing group. .
  • Ar 51 and Ar 52 may combine directly or via a linking group to form a ring. However, Ar 51 and Ar 52 have neither a cross-linking group, a polymerizing group nor a leaving solubilizing group. )
  • crosslinking group The arylamine polymer used for the first functional material has neither a crosslinkable group, a polymerizable group, nor a removable solubilizing group.
  • the cross-linking group means a group that reacts with other cross-linking groups located in the vicinity of the cross-linking group by irradiation with heat and/or active energy rays to form a new chemical bond.
  • the reactive group may be the same group as the bridging group or a different group.
  • cross-linking groups include, but are not limited to, alkenyl group-containing groups, conjugated diene structure-containing groups, alkynyl group-containing groups, oxirane structure-containing groups, oxetane structure-containing groups, aziridine structure-containing groups, azide groups, anhydrous Examples thereof include a group containing a maleic acid structure, a group containing an alkenyl group bonded to an aromatic ring, and a cyclobutene ring condensed to an aromatic ring.
  • Specific examples of the cross-linking group include groups selected from the following cross-linking group T.
  • R 3 represents an alkyl group having 1 to 4 carbon atoms. From the viewpoint of easy formation of an oxetane ring, R 3 is particularly preferably a methyl group or an ethyl group.
  • R XL represents a methylene group, an oxygen atom or a sulfur atom, and n XL represents an integer of 0-5. When multiple R XL are present, they may be the same or different, and when multiple n XL are present, they may be the same or different.
  • * and *1 represent binding positions. These cross-linking groups may have substituents.
  • the polymerizable group not possessed by the arylamine polymer used in the first functional material refers to a functional group that undergoes a polymerization reaction in the usual reaction of polymerizing a monomer to obtain a polymer.
  • the detachable solubilizing group that the arylamine polymer used for the first functional material does not have is a group that exhibits solubility in a solvent, and a specific It represents a group that thermally dissociates at a temperature or higher (for example, 70° C. or higher). Dissociation of such a leaving soluble group reduces the solubility of the polymer in a solvent.
  • the detachable solubilizing group includes, for example, the “thermally dissociable solubilizing group” described in Japanese Patent Application Laid-Open No. 2010-059417.
  • Ar 52 is an optionally substituted divalent aromatic hydrocarbon group and an optionally substituted divalent aromatic represents a group in which one or more groups selected from at least one heterocyclic group are linked. When multiple selected groups are linked, they may be linked directly or via a linking group.
  • the substituents that the aromatic hydrocarbon group and the aromatic heterocyclic group may have are substituents other than a bridging group, a polymerizing group, or a detachable solubilizing group, and the substituent group Z described later. Groups similar to are preferred.
  • the cross-linking group, the polymerizable group and the detachable solubilizing group may be collectively referred to as "cross-linking group, etc.”.
  • the aromatic hydrocarbon group preferably has 6 or more and 60 or less carbon atoms, and specifically includes a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, and chrysene ring. , triphenylene ring, acenaphthene ring, fluoranthene ring, fluorene ring and the like.
  • a divalent group with 2 to 10 linked groups can be mentioned, and a divalent group with 2 to 5 linked groups is preferred.
  • a divalent group of a benzene ring means "a benzene ring having a divalent free atom valence", that is, a phenylene group.
  • the aromatic heterocyclic group preferably has 3 or more and 60 or less carbon atoms, and specifically includes a furan ring, a benzofuran ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, and an oxadiazole ring.
  • indole ring carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine 5- to 6-membered rings such as ring, pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, cinnoline ring, quinoxaline ring, phenanthridine ring, perimidine ring, quinazoline ring, quinazolinone ring, azulene ring or a divalent group of 2 to 4 condensed rings, or a group in which
  • the divalent groups in which a plurality of optionally substituted aromatic hydrocarbon groups or optionally substituted aromatic heterocyclic groups are linked directly or via a linking group are the same group.
  • the group having a plurality of linked groups is preferably a divalent group in which 2 to 10 groups are linked, more preferably a divalent group in which 2 to 5 groups are linked.
  • Ar 51 is at least one of an optionally substituted aromatic hydrocarbon group and an optionally substituted aromatic heterocyclic group represents a group in which one group or a plurality of groups are linked together, selected from
  • the substituents that the aromatic hydrocarbon group and the aromatic heterocyclic group may have are substituents other than a bridging group, a polymerizing group, or a detachable solubilizing group, and the substituent group Z described later. Groups similar to are preferred.
  • the aromatic hydrocarbon group preferably has 6 or more and 60 or less carbon atoms, and specifically includes a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, and chrysene ring. , a triphenylene ring, an acenaphthene ring, a fluoranthene ring, a fluorene ring and the like, a monovalent 6-membered ring or a 2 to 5 condensed ring monovalent group, or a group in which a plurality of these are linked.
  • a monovalent group in which 2 to 10 groups are linked is exemplified, and a monovalent group in which 2 to 5 groups are linked is preferable.
  • a monovalent group of a benzene ring means "a benzene ring having a monovalent free atom valence", that is, a phenyl group.
  • the aromatic heterocyclic group preferably has 3 or more and 60 or less carbon atoms, and specifically includes a furan ring, a benzofuran ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, and an oxadiazole ring.
  • indole ring carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine 5- to 6-membered rings such as ring, pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, cinnoline ring, quinoxaline ring, phenanthridine ring, perimidine ring, quinazoline ring, quinazolinone ring, azulene ring or a monovalent group of 2 to 4 condensed rings, or a group in which
  • the monovalent group in which a plurality of optionally substituted aromatic hydrocarbon groups or optionally substituted aromatic heterocyclic groups are linked may be a group in which a plurality of the same groups are linked. , may be a group in which a plurality of different groups are linked.
  • the group having a plurality of linked groups is preferably a monovalent group in which 2 to 10 groups are linked, more preferably a monovalent group in which 2 to 5 groups are linked.
  • Ar 51 is preferably an aromatic hydrocarbon group which may have a substituent other than a cross-linking group, etc., from the viewpoint of excellent charge transportability and durability.
  • Benzene ring or fluorene ring monovalent group that may be A fluorenyl group which may have a substituent is more preferred, and a 2-fluorenyl group which may have a substituent other than a cross-linking group is particularly preferred.
  • Substituents other than the cross-linking group that the aromatic hydrocarbon group and aromatic heterocyclic group of Ar 51 may have are not particularly limited as long as they do not significantly reduce the properties of the present polymer.
  • the substituent is preferably a group selected from the group Z of substituents described below, more preferably an alkyl group, an alkoxy group, an aromatic hydrocarbon group, or an aromatic heterocyclic group, and still more preferably an alkyl group.
  • Ar 51 is preferably a fluorenyl group substituted with an alkyl group having 1 to 24 carbon atoms, particularly a 2-fluorenyl group substituted with an alkyl group having 4 to 12 carbon atoms. preferable. Furthermore, a 9-alkyl-2-fluorenyl group in which the 9-position of the 2-fluorenyl group is substituted with an alkyl group is preferred, and a 9,9′-dialkyl-2-fluorenyl group in which the 9-position is substituted with an alkyl group is particularly preferred.
  • At least one of the 9- and 9'-positions is a fluorenyl group substituted with an alkyl group, which tends to improve the solubility in solvents and the durability of the fluorene ring. Furthermore, since both the 9- and 9'-positions are alkyl-substituted fluorenyl groups, the solubility in solvents and the durability of the fluorene ring tend to be further improved.
  • Ar 51 is also preferably a spirobifluorenyl group from the viewpoint of solubility in a coating solvent.
  • Ar 51 may bond with Ar 52 directly or via a linking group to form a ring.
  • the content of the repeating unit represented by formula (50) is not particularly limited, but the repeating unit represented by formula (50) is usually 10 mol in the polymer. % or more, preferably 30 mol % or more, more preferably 40 mol % or more, even more preferably 50 mol % or more.
  • the repeating unit may be composed only of repeating units represented by formula (50), that is, 100 mol %, but the organic electroluminescent device and For the purpose of balancing various performances in the case of formula (50), it may have a repeating unit other than the formula (50).
  • the content of the repeating unit represented by formula (50) in the polymer is usually 99 mol % or less, preferably 95 mol % or less.
  • terminal group refers to the terminal structure of a polymer formed by an endcapping agent used to terminate polymerization of the polymer.
  • the terminal group of the polymer containing the repeating unit represented by formula (50) is preferably a hydrocarbon group.
  • the hydrocarbon group is preferably a hydrocarbon group having 1 to 60 carbon atoms, more preferably a hydrocarbon group having 1 to 40 carbon atoms, and a hydrocarbon group having 1 to 30 carbon atoms. is more preferred.
  • hydrocarbon groups include the following. carbon, such as methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group, n-hexyl group, cyclohexyl group, dodecyl group
  • a linear, branched or cyclic alkyl group whose number is usually 1 or more, preferably 4 or more, usually 24 or less, preferably 12 or less
  • An aromatic hydrocarbon group having usually 6 or more and 36 or less carbon atoms, preferably 24 or less, such as a
  • hydrocarbon groups may further have a substituent, and the substituent that may further have is preferably an alkyl group or an aromatic hydrocarbon group. When there are a plurality of these substituents which may be additionally contained, they may be combined with each other to form a ring.
  • the terminal group is preferably an alkyl group or an aromatic hydrocarbon group, more preferably an aromatic hydrocarbon group.
  • Substituent group Z includes an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkoxycarbonyl group, a dialkylamino group, a diarylamino group, an arylalkylamino group, an acyl group, a halogen atom, A group consisting of haloalkyl groups, alkylthio groups, arylthio groups, silyl groups, siloxy groups, cyano groups, aromatic hydrocarbon groups and aromatic heterocyclic groups. These substituents may contain any structure of linear, branched and cyclic.
  • substituent group Z include the following structures. linear, branched, or cyclic alkyl having 1 or more carbon atoms, preferably 4 or more carbon atoms, 24 or less, preferably 12 or less, more preferably 8 or less, and more preferably 6 or less Base. Specific examples include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group, n-hexyl group, cyclohexyl group and dodecyl group. etc.
  • Specific examples include a dimethylamino group and a diethylamino group.
  • Specific examples include a diphenylamino group, a ditolylamino group, an N-carbazolyl group and the like.
  • a specific example is a phenylmethylamino group.
  • Specific examples include an acetyl group and a benzoyl group.
  • halogen atoms such as fluorine atoms and chlorine atoms
  • Specific examples include a trifluoromethyl group and the like.
  • Specific examples include a methylthio group, an ethylthio group, and the like.
  • an arylthio group having 4 or more, preferably 5 or more carbon atoms and 36 or less, preferably 24 or less;
  • Specific examples include a phenylthio group, a naphthylthio group, a pyridylthio group, and the like.
  • an aromatic heterocyclic group having 3 or more, preferably 4 or more, and 36 or less, preferably 24 or less carbon atoms; Specific examples include a thienyl group and a pyridyl group.
  • the above substituents may have any structure of linear, branched or cyclic.
  • substituent groups Z described above alkyl groups, alkoxy groups, aromatic hydrocarbon groups, and aromatic heterocyclic groups are preferred. From the viewpoint of charge transportability, it is more preferable not to have a substituent. Further, each substituent in the substituent group Z may further have a substituent. Examples of these substituents include the same substituents as in the substituent group Z described above. Substituents which may further be present are preferably not present, or alkyl groups having 8 or less carbon atoms, alkoxy groups having 8 or less carbon atoms, or phenyl groups, more preferably alkyl groups having 6 or less carbon atoms. group, an alkoxy group having 6 or less carbon atoms, or a phenyl group. From the viewpoint of charge transport properties, it is more preferable not to have additional substituents.
  • Ar 51 is a group represented by the following formula (51), the following formula (52), or the following formula (53). Preferably.
  • Ar 53 and Ar 54 are each independently selected from at least one of an optionally substituted divalent aromatic hydrocarbon group and an optionally substituted aromatic heterocyclic group It represents a divalent group in which one group or a plurality of groups are linked, and the linkage is made directly or via a linking group.
  • Ar 55 is 1 selected from at least one of an optionally substituted aromatic hydrocarbon group and an optionally substituted aromatic heterocyclic group or 1 in which a plurality of groups are linked represents a valence group, the link being made directly or via a linking group.
  • Ar 56 represents a hydrogen atom or a substituent.
  • each aromatic hydrocarbon group and each aromatic heterocyclic group may have, and Ar 56 in the case of being a substituent, are substituents other than a bridging group and the like.
  • Ar 53 and Ar 54 are each independently a divalent aromatic hydrocarbon group optionally having a substituent and optionally having a substituent It represents a divalent group in which one group or a plurality of groups selected from at least one of divalent aromatic heterocyclic groups are linked, and the linkage is made directly or via a linking group.
  • it is an optionally substituted divalent aromatic hydrocarbon group or a group in which a plurality of optionally substituted divalent aromatic hydrocarbon groups are linked.
  • the substituents which the aromatic hydrocarbon group and the aromatic heterocyclic group may have are substituents other than a bridging group and the like, and the same groups as in the substituent group Z are preferable.
  • the aromatic hydrocarbon group and aromatic heterocyclic group for Ar 53 and Ar 54 the same aromatic hydrocarbon group and aromatic heterocyclic group as for Ar 52 can be used.
  • the valent group may be a group in which a plurality of the same groups are linked, or may be a group in which a plurality of different groups are linked.
  • a divalent group in which 2 to 10 groups are linked is preferable, and a divalent group in which 2 to 5 groups are linked is preferable.
  • Ar 53 is preferably one divalent aromatic hydrocarbon group optionally having substituent(s) or a group in which 2 to 6 are linked, and is preferably a divalent aromatic hydrocarbon group optionally having substituent(s).
  • a group having one aromatic hydrocarbon group or a group having 2 to 4 linked aromatic hydrocarbon groups is more preferable. More preferred is biphenylene in which two optionally substituted phenylene rings are linked.
  • the groups are preferably groups in which the multiple linked divalent aromatic hydrocarbon groups are bonded so as not to be conjugated. Specifically, it preferably contains a 1,3-phenylene group or a group having a substituent and having a twisted structure due to the steric effect of the substituent.
  • the substituent that Ar 53 may have is a substituent other than a cross-linking group and the like, and the same groups as those in the substituent group Z are preferable.
  • Ar 53 has no substituents.
  • Ar 54 has one divalent aromatic hydrocarbon group or divalent aromatic hydrocarbon groups which may be the same or different from the viewpoint of excellent charge transportability and excellent durability. is preferably a group in which a plurality of is linked, and the divalent aromatic hydrocarbon group may have a substituent. When a plurality of divalent aromatic hydrocarbon groups are linked, the number of divalent aromatic hydrocarbon groups is preferably 2 or more and 10 or less, more preferably 6 or less, and particularly preferably 3 or less from the viewpoint of film stability.
  • Preferred aromatic hydrocarbon structures are benzene ring, naphthalene ring, anthracene ring and fluorene ring, and more preferred are benzene ring and fluorene ring.
  • a group in which a plurality of groups are linked a group in which 2 to 4 phenylene rings which may have a substituent are linked, or a phenylene ring which may have a substituent and a substituent may be used.
  • a group in which fluorene rings are linked is preferred. It is also preferable that the number of phenylene rings which may have a substituent is one.
  • Biphenylene in which two optionally substituted phenylene rings are linked is particularly preferable from the viewpoint of expanding LUMO.
  • any one of the substituent group Z or a combination thereof can be used.
  • the above substituent is preferably other than N-carbazolyl group, indolocarbazolyl group and indenocarbazolyl group, and more preferable substituent groups are phenyl group, naphthyl group and fluorenyl group. Moreover, it is also preferable not to have a substituent.
  • Ar 55 is selected from at least one of an optionally substituted aromatic hydrocarbon group and an optionally substituted aromatic heterocyclic group or a plurality of groups linked together represents a monovalent group, and the link is made directly or via a linking group.
  • it is an optionally substituted monovalent aromatic hydrocarbon group or a group in which a plurality of optionally substituted monovalent aromatic hydrocarbon groups are linked.
  • the substituents which the aromatic hydrocarbon group and the aromatic heterocyclic group may have are substituents other than a bridging group and the like, and the same groups as in the substituent group Z are preferable.
  • a monovalent group in which 2 to 10 groups are linked is preferable, and 2 to 5 groups are linked. More preferably, it is a linked monovalent group.
  • the aromatic hydrocarbon group and aromatic heterocyclic group the same aromatic hydrocarbon group and aromatic heterocyclic group as those for Ar 51 can be used.
  • Ar 55 preferably has a structure represented by any of schemes 2 below. Furthermore, from the viewpoint of distributing the LUMO of the molecule, a-1 to a-4, b-1 to b-9, c-1 to c-4, d-1 to d-16, and e shown in Scheme 2 below Structures selected from -1 to e-4 are preferred. Furthermore, from the viewpoint of promoting the spread of the LUMO of the molecule by having an electron-withdrawing group, a-1 to a-4, b-1 to b-9, d-1 to d-12, and e-1 Structures selected from ⁇ e-4 are preferred.
  • the triplet level is high, a-1 to a-4, d-1 to Structures selected from d-12, and e-1 through e-4 are preferred. Further, from the viewpoint of easy synthesis and excellent stability, d-1 and d-10 are more preferable, and the benzene ring structure of d-1 is particularly preferable.
  • R 31 and R 32 in Scheme 2 are each independently an optionally substituted linear, branched or cyclic alkyl group.
  • the number of carbon atoms in the alkyl group is not particularly limited, in order to maintain the solubility of the polymer, the number of carbon atoms is preferably 1 or more and 6 or less, more preferably 3 or less, and more preferably a methyl group or an ethyl group. .
  • R 31 and R 32 may be the same or different, and when a plurality of R 31 and R 32 are present, they may be the same or different, but All R 31 and R 32 are preferably the same group because they can be distributed around the nitrogen atom and are easy to synthesize.
  • any one of the substituent group Z or a combination thereof can be used. From the viewpoint of durability and charge transport properties, it is preferably selected from the same substituents as the substituents that Ar 54 may have.
  • Ar 56 represents a hydrogen atom or a substituent.
  • Ar 56 is a substituent, it is not particularly limited, but is preferably an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group.
  • Preferred structures are monovalent structures similar to the aromatic hydrocarbon structures and aromatic heterocyclic structures exemplified for Ar 53 and Ar 54 .
  • Ar 56 is a substituent, it is not a bridging group or the like.
  • Ar 56 is a substituent, it is preferably bonded to the 3-position of carbazole from the viewpoint of improving durability.
  • an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group is preferable. It is more preferably an aromatic hydrocarbon group which may have a group.
  • Ar 56 is preferably a hydrogen atom from the viewpoint of ease of synthesis and charge transport properties.
  • Ar 56 is an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group
  • substituents listed in the above substituent group Z groups, preferred substituents are the same, and substituents which these substituents may further have are also the same.
  • Ar 51 in the repeating unit represented by formula (50) above is also preferably a group represented by formula (52) below.
  • formula (52) a group represented by formula (52) below.
  • LUMO is distributed in the aromatic hydrocarbon group or aromatic heterocyclic group between the nitrogen atoms of each other, and the main chain amine in formula (50) This is thought to be due to the fact that the influence on the amine is suppressed and the durability of the main chain amine to electrons and excitons is improved.
  • Ar 61 and Ar 62 are each independently from at least one of an optionally substituted divalent aromatic hydrocarbon group and an optionally substituted divalent aromatic heterocyclic group It represents a divalent group to which one or more selected groups are linked, and the linkage is made directly or via a linking group.
  • Ar 63 to Ar 65 are each independently a hydrogen atom or a substituent. * represents the bonding position to the nitrogen atom in formula (50).
  • each aromatic hydrocarbon group and each aromatic heterocyclic group may have, and Ar 63 to Ar 65 when they are substituents, are substituents other than bridging groups and the like.
  • Ar 63 to Ar 65 are each independently the same as Ar 56 in formula (51).
  • Ar 62 is one group selected from at least one of an optionally substituted divalent aromatic hydrocarbon group and an optionally substituted divalent aromatic heterocyclic group, or It represents a divalent group in which a plurality of groups are linked, and the linkage is made directly or via a linking group. Preferably, it is an optionally substituted divalent aromatic hydrocarbon group or a group in which a plurality of optionally substituted divalent aromatic hydrocarbon groups are linked.
  • a specific structure of Ar 62 is the same as Ar 54 in formula (51).
  • a specific preferred group for Ar 62 is a divalent group of a benzene ring, a naphthalene ring, an anthracene ring, or a fluorene ring, or a group in which a plurality of these are linked, more preferably a divalent group of a benzene ring or a fluorene ring.
  • the phenylene group preferably has no substituents other than the linking position so that Ar 62 is not twisted due to the steric effect of the substituents.
  • the fluorenylene group preferably has substituents at the 9 and 9′ positions from the viewpoint of improving solubility and durability of the fluorene structure.
  • Ar61 is the same group as Ar 53 in formula (52), and the preferred structure is also the same.
  • Ar 51 (Preferred Ar 51 : Formula (53)) At least one Ar 51 in the repeating unit represented by formula (50) above is also preferably a group represented by formula (53) below.
  • Ar 71 represents a divalent aromatic hydrocarbon group which may have a substituent
  • Ar 72 and Ar 73 are each independently one group selected from at least one of an optionally substituted aromatic hydrocarbon group and an optionally substituted aromatic heterocyclic group Alternatively, it represents a divalent group in which a plurality of groups are linked, and the linkage is made directly or via a linking group.
  • Ring HA is an aromatic heterocyclic ring containing a nitrogen atom
  • X 2 and Y 2 each independently represent a C atom or an N atom, and when X 2 or Y 2 is a C atom, it has a substituent may be )
  • Ar 71 is the same group as Ar 53 in formula (51).
  • Ar 71 is one optionally substituted divalent aromatic hydrocarbon group or a group in which 2 to 10 optionally substituted divalent aromatic hydrocarbon groups are linked. is preferable, and a group in which one divalent aromatic hydrocarbon group which may have a substituent or 2 to 8 divalent aromatic hydrocarbon groups which may have a substituent are linked is further Among them, a group in which 2 to 6 optionally substituted divalent aromatic hydrocarbon groups are linked is more preferable.
  • Ar 71 is particularly preferably a group in which 2 to 6 optionally substituted benzene rings are linked, and a quaterphenylene group in which 4 optionally substituted benzene rings are linked. Most preferred.
  • Ar 71 preferably contains at least one, more preferably two or more, benzene rings linked at the 1 and 3 positions, which are non-conjugated sites.
  • Ar 71 is a group in which a plurality of optionally substituted divalent aromatic hydrocarbon groups are linked, from the viewpoint of charge transport property or durability, it is preferable that all of them are directly linked and linked. . Therefore, as Ar 71 , a preferred structure connecting N of the main chain of the polymer and ring HA in formula (53) is as shown in the following structural formula.
  • the two "-*" represent a site where one is bonded to the N of the main chain of the polymer and the other is bonded to the ring HA of the formula (53). Either of the two "-*" may be bonded to the N of the main chain of the polymer or may be bonded to the ring HA.
  • any one of the substituent group Z or a combination thereof can be used.
  • a preferred range of the substituent that Ar 71 may have is the same group as Ar 53 in formula (51) above, and a more preferred structure is the same as the preferred group for Ar 53 .
  • X2 and Y2 each independently represent a C (carbon) atom or an N (nitrogen) atom.
  • X 2 or Y 2 is a C atom, it may have a substituent.
  • Both X 2 and Y 2 are preferably N atoms from the viewpoint of facilitating localization of LUMO around ring HA.
  • any one of the above-mentioned substituent group Z or a combination thereof can be used as the substituent which may be possessed. From the viewpoint of charge transportability, it is more preferable not to have a substituent.
  • Ar 72 and Ar73 are each independently selected from at least one of an optionally substituted aromatic hydrocarbon group and an optionally substituted aromatic heterocyclic group. represents a divalent group in which a group or a plurality of groups are linked, and the linkage is made directly or via a linking group;
  • Ar 72 and Ar 73 are each independently represented by a-1 to a-4, b-1 to b- 9, c-1 to c-4, d-1 to d-16, and e-1 to e-4. Furthermore, from the viewpoint of promoting the spread of the LUMO of the molecule by having an electron-withdrawing group, a-1 to a-4, b-1 to b-9, c-1 to c-5, d-1 to Structures selected from d-12, and e-1 through e-4 are preferred.
  • a-1 to a-4, d-1 to Structures selected from d-12, and e-1 through e-4 are preferred.
  • a structure selected from d-1 to d-12 and e-1 to e-4 is more preferable.
  • Ar 72 and Ar 73 have the same structure, and d-1 or d-10 is preferable, and d-1 is particularly preferably a benzene ring structure.
  • Ar 72 and Ar 73 may have, any one of those shown as the above (substituent group Z) or a combination thereof can be used. From the viewpoint of durability and charge-transporting properties, it is a substituent other than the cross-linking group and the like, and is preferably the same group as the substituent group Z described above.
  • the arylamine polymer having a repeating unit represented by the above formula (50) includes a structure in which a plurality of benzene ring structures are linked to the main chain at the para position, and at least one of the plurality of benzene ring structures is adjacent to each other. At least one of the two carbon atoms adjacent to the carbon atom bonded to the benzene ring structure preferably has a substituent. Either one or both of the two adjacent benzene ring structures may be part of a condensed ring. This is because the glass transition temperature of the arylamine polymer is lowered, making it easier for the layer to harden.
  • the repeating unit represented by the formula (50) is a repeating unit represented by the following formula (54), a repeating unit represented by the following formula (55), a repeating unit represented by the following formula (56), or a repeating unit represented by the following formula (56).
  • a repeating unit represented by the formula (57) is preferable, and a repeating unit represented by the following formula (54) is more preferable.
  • Ar 51 is the same as Ar 51 in formula (50) above, X is -C(R 7 )(R 8 )-, -N(R 9 )- or -C(R 11 )(R 12 )-C(R 13 )(R 14 )-; R 1 and R 2 are each independently an alkyl group optionally having a substituent other than a cross-linking group, R 7 to R 9 and R 11 to R 14 are each independently a hydrogen atom, an alkyl group which may have a substituent other than a bridging group, or a substituent other than a bridging group.
  • a and b are each independently an integer of 0 to 4; c is an integer from 1 to 3, d is an integer from 0 to 4,
  • R 1s When there are multiple R 1s , the multiple R 1s may be the same or different, When there are multiple R 2 s, the multiple R 2s may be the same or different.
  • R 1 , R 2 ) R 1 and R 2 in the repeating unit represented by formula (54) are each independently an alkyl group optionally having a substituent other than a bridging group or the like.
  • the alkyl group is a linear, branched or cyclic alkyl group. Although the number of carbon atoms in the alkyl group is not particularly limited, it is preferably 1 or more, preferably 8 or less, more preferably 6 or less, and even more preferably 3 or less, in order to maintain the solubility of the polymer. More preferably, the alkyl group is a methyl group or an ethyl group.
  • the plurality of R 1 When there is a plurality of R 1 , the plurality of R 1 may be the same or different, and when there is a plurality of R 2 , the plurality of R 2 may be the same or different.
  • the case where R 1 is plural includes the case where a is an integer of 2 or more, the case where c is an integer of 2 or more, or the case where both are R 1 may be the same or different.
  • R 2 and the case where R 2 is plural includes the case where b is an integer of 2 or more, the case where d is an integer of 2 or more, or both.
  • multiple R 2 may be the same or different. All R 1 and R 2 are preferably the same group because the charge can be uniformly distributed around the nitrogen atom and the synthesis is easy.
  • the alkyl groups of R 1 and R 2 may have substituents other than a cross-linking group. Substituents other than the bridging group and the like include groups mentioned as preferred groups of alkyl groups, aralkyl groups and aromatic hydrocarbon groups for R 7 to R 9 and R 11 to R 14 described later.
  • the alkyl groups of R 1 and R 2 most preferably have no substituent from the viewpoint of low voltage.
  • R 7 to R 9 and R 11 to R 14 are each independently a hydrogen atom, an alkyl group which may have a substituent other than a bridging group, or a substituent other than a bridging group. aralkyl group, or an aromatic hydrocarbon group which may have a substituent other than a bridging group or the like.
  • the alkyl group is not particularly limited, the number of carbon atoms is preferably 1 or more, preferably 24 or less, more preferably 8 or less, and even more preferably 6 or less, because it tends to improve the solubility of the polymer. Also, the alkyl group may have a linear, branched or cyclic structure.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group and n-hexyl group. , n-octyl group, cyclohexyl group, dodecyl group and the like.
  • the aralkyl group is not particularly limited, the number of carbon atoms is preferably 5 or more, preferably 60 or less, and more preferably 40 or less, because it tends to improve the solubility of the polymer.
  • aralkyl group examples include 1,1-dimethyl-1-phenylmethyl group, 1,1-di(n-butyl)-1-phenylmethyl group, 1,1-di(n-hexyl)- 1-phenylmethyl group, 1,1-di(n-octyl)-1-phenylmethyl group, phenylmethyl group, phenylethyl group, 3-phenyl-1-propyl group, 4-phenyl-1-n-butyl group , 1-methyl-1-phenylethyl group, 5-phenyl-1-n-propyl group, 6-phenyl-1-n-hexyl group, 6-naphthyl-1-n-hexyl group, 7-phenyl-1- n-heptyl group, 8-phenyl-1-n-octyl group, 4-phenylcyclohexyl group and the like.
  • the aromatic hydrocarbon group is not particularly limited, the number of carbon atoms is preferably 6 or more, preferably 60 or less, and more preferably 30 or less, because it tends to improve the solubility of the polymer.
  • aromatic hydrocarbon group examples include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, acenaphthene ring, fluoranthene ring, and fluorene.
  • a 6-membered monocyclic or 2-5 condensed monovalent group such as a ring, or a group in which a plurality of these are linked, and the like can be mentioned.
  • R 7 to R 9 are preferably methyl groups or aromatic hydrocarbon groups, R 7 and R 8 are more preferably methyl groups, and R 9 is a phenyl group. is more preferable.
  • alkyl groups, aralkyl groups and aromatic hydrocarbon groups of R 7 to R 9 and R 11 to R 14 may have substituents other than bridging groups.
  • Substituents other than the bridging group include the groups exemplified as preferred alkyl groups, aralkyl groups and aromatic hydrocarbon groups for R 7 to R 9 and R 11 to R 14 above.
  • the alkyl groups, aralkyl groups and aromatic hydrocarbon groups of R 7 to R 9 and R 11 to R 14 most preferably have no substituents from the viewpoint of low voltage.
  • a and b are each independently an integer of 0-4.
  • the value represented by a+b is preferably 1 or more, more preferably each of a and b is 2 or less, and more preferably both a and b are 1.
  • the structure in which a is 1 or more is defined independently by c phenylene groups when c is 1 or more, and the structure in which b is 1 or more includes d phenylene groups when d is 1 or more. are independently defined in groups.
  • the value represented by a + b is 1 or more, the aromatic ring of the main chain is twisted due to steric hindrance, and the solubility of the polymer in a solvent is excellent, and the coating film formed by a wet film formation method and heat-treated. tend to have excellent insolubility in solvents. Therefore, when the value represented by a+b is 1 or more, when another organic layer, that is, the second functional film is formed on the first functional film by a wet film-forming method, an organic solvent is used. The elution of the polymer, such as the arylamine polymer, contained in the first composition into the containing second composition is suppressed. As a result, the formed second functional film is less affected, and the operating life of the organic semiconductor element is considered to be further extended.
  • c is an integer of 1-3 and d is an integer of 0-4.
  • Each of c and d is preferably 2 or less, more preferably c and d are equal, and it is particularly preferable that both c and d are 1 or both c and d are 2.
  • both c and d in the repeating unit represented by the above formula (54) are 1 or both c and d are 2 and both a and b are 2 or 1, R 1 and R 2 are most preferably bonded at symmetrical positions.
  • the binding of R 1 and R 2 at positions symmetrical to each other means the binding position of R 1 and R 2 with respect to the fluorene ring, carbazole ring or 9,10-dihydrophenanthrene derivative structure in formula (54). is symmetrical. At this time, 180° rotation around the main chain is regarded as the same structure.
  • (X) X in the above formula (54) is preferably -C(R 7 )(R 8 )- or -N(R 9 )- because of its high stability during charge transport, and -C(R 7 )(R 8 )— is more preferred.
  • the repeating unit represented by the above formula (54) is particularly preferably a repeating unit represented by any one of the following formulas (54-1) to (54-4).
  • Ar 51 , R 1 , R 2 and X are the same as Ar 51 , R 1 , R 2 and X in formula (54), respectively, but R 1 and R 2 are the same, and R 1 and R 2 are preferably bonded at symmetrical positions.
  • main chain of repeating unit represented by formula (54) Although the main chain structure excluding the nitrogen atom in the above formula (54) is not particularly limited, examples thereof include the following structures.
  • Ar 51 is the same as Ar 51 in the formula (50), R 3 and R 6 are each independently an alkyl group optionally having a substituent other than a cross-linking group, R 4 and R 5 are each independently an alkyl group optionally having a substituent other than a bridging group, etc., an alkoxy group optionally having a substituent other than a bridging group etc., or a group other than a bridging group etc. is an aralkyl group optionally having a substituent of l is 0 or 1, m is 1 or 2, n is 0 or 1, p is 0 or 1, q is 0 or 1; )
  • R 3 , R 6 ) R 3 and R 6 in the repeating unit represented by formula (55) are each independently an alkyl group optionally having a substituent other than a bridging group or the like.
  • alkyl group include the same as those for R 1 and R 2 in the formula (54), and the same substituents and preferred structures as those for R 1 and R 2 may be included.
  • R4 , R5) R 4 and R 5 in the repeating unit represented by the above formula (55) are each independently an alkyl group optionally having a substituent other than a bridging group or the like, or a substituent other than a bridging group or the like. It is an alkoxy group which may have or an aralkyl group which may have a substituent other than a bridging group or the like.
  • the alkyl group is a linear, branched or cyclic alkyl group.
  • the number of carbon atoms in the alkyl group is not particularly limited, it is preferably 1 or more, preferably 24 or less, more preferably 8 or less, and even more preferably 6 or less, because it tends to improve the solubility of the polymer.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group and n-hexyl. group, n-octyl group, cyclohexyl group, dodecyl group and the like.
  • the alkoxy group is not particularly limited, and the alkyl group represented by R 10 of the alkoxy group (-OR 10 ) may have any structure of linear, branched or cyclic, and improves the solubility of the polymer. Therefore, the number of carbon atoms is preferably 1 or more, preferably 24 or less, and more preferably 12 or less.
  • alkoxy group examples include methoxy group, ethoxy group, n-propoxy group, n-butoxy group, hexyloxy group, 1-methylpentyloxy group, cyclohexyloxy group and the like.
  • the aralkyl group is not particularly limited, the number of carbon atoms is preferably 5 or more, preferably 60 or less, and more preferably 40 or less, because it tends to improve the solubility of the polymer.
  • aralkyl group examples include 1,1-dimethyl-1-phenylmethyl group, 1,1-di(n-butyl)-1-phenylmethyl group, 1,1-di(n-hexyl) -1-phenylmethyl group, 1,1-di(n-octyl)-1-phenylmethyl group, phenylmethyl group, phenylethyl group, 3-phenyl-1-propyl group, 4-phenyl-1-n-butyl group, 1-methyl-1-phenylethyl group, 5-phenyl-1-n-propyl group, 6-phenyl-1-n-hexyl group, 6-naphthyl-1-n-hexyl group, 7-phenyl-1 -n-heptyl group, 8-phenyl-1-n-octyl group, 4-phenylcyclohexyl group and the like.
  • l and n are each independent, and the value represented by l+n is preferably 1 or more, more preferably 1 or 2, and still more preferably 2.
  • the value represented by l+n is within the above range, the solubility of the polymer contained in the first functional film is increased, and precipitation from the first composition containing the polymer tends to be suppressed. It is in.
  • n 1 or 2
  • the organic semiconductor device is an organic electroluminescent device, it can be driven at a low voltage, and the hole injection ability, transport ability, and durability tend to be improved, so it should be 1. is preferred.
  • main chain of repeating unit represented by formula (55) Although the main chain structure excluding the nitrogen atom in formula (55) is not particularly limited, examples thereof include the following structures.
  • Ar 51 is the same as Ar 51 in the formula (50), Ar 41 is a divalent aromatic hydrocarbon group which may have a substituent other than a bridging group or the like and a divalent aromatic heterocyclic group which may have a substituent other than a bridging group or the like. represents a divalent group in which one group or a plurality of groups selected from at least one are linked, and the linkage is made directly or via a linking group; R 41 and R 42 are each independently an alkyl group optionally having a substituent other than a bridging group, t is 1 or 2; u is 0 or 1, r and s are each independently an integer of 0-4. )
  • R41 , R42 ) R 41 and R 42 in the repeating unit represented by formula (56) are each independently an alkyl group optionally having a substituent other than a bridging group or the like.
  • the alkyl group is a linear, branched or cyclic alkyl group.
  • the number of carbon atoms in the alkyl group is not particularly limited, but in order to maintain the solubility of the polymer, the number of carbon atoms is preferably 1 or more, preferably 10 or less, more preferably 8 or less, and more preferably 6 or less. More preferably, the alkyl group is a methyl group or a hexyl group.
  • R 41 and R 42 When a plurality of R 41 and R 42 are present in the repeating unit represented by formula (56) above, the plurality of R 41 and R 42 may be the same or different.
  • the case where R 41 is plural includes the case where r is 2 or more, the case where t is 2 or more, or both.
  • the case where R 42 is plural means the case where s is 2 or more.
  • r and s are each independently an integer of 0-4.
  • the value represented by r+s is preferably 1 or more, and r and s are each preferably 2 or less.
  • the drive life of the organic semiconductor device is considered to be further extended for the same reason as a and b in the formula (54).
  • t is 1 or 2, and u is 0 or 1.
  • t is preferably 1 and u is preferably 1.
  • Ar 41 is a divalent aromatic hydrocarbon group which may have a substituent other than a bridging group or the like and a divalent aromatic heterocyclic group which may have a substituent other than a bridging group or the like. represents a divalent group in which one group or a plurality of groups selected from at least one are linked, and the linkage is made directly or via a linking group;
  • aromatic hydrocarbon group and aromatic hydrocarbon group for Ar 41 include the same groups as for Ar 52 in the formula (50).
  • aromatic hydrocarbon group and the substituent that the aromatic hydrocarbon group may have are preferably the same groups as in the above substituent group Z, and the substituent that may be further included in the above substituent group Z is preferably the same as
  • repeating unit represented by formula (56) Although the repeating unit represented by formula (56) is not particularly limited, examples thereof include the following structures.
  • Ar 51 is the same as Ar 51 in the formula (50), R 17 to R 19 each independently represent an alkyl group optionally having a substituent other than a bridging group, etc., an alkoxy group optionally having a substituent other than a bridging group etc., a group other than a bridging group etc.
  • An aralkyl group which may have a substituent, an aromatic hydrocarbon group which may have a substituent other than a bridging group, or an aromatic heterocyclic ring which may have a substituent other than a bridging group represents the group, f, g, and h each independently represent an integer of 0 to 4, the value represented by f + g + h is 1 or more, e represents an integer of 0 to 3; )
  • the aromatic hydrocarbon group and aromatic heterocyclic group in R 17 to R 19 are each independently the same aromatic hydrocarbon group and aromatic heterocyclic group as those mentioned for Ar 51 above, and Substituents other than the cross-linking group that these groups may have are preferably the same groups as in the above-described substituent group Z or.
  • the alkyl group and aralkyl group in R 17 to R 19 are preferably the same groups as the alkyl group and aralkyl group mentioned above for R 7 , respectively . Groups similar to are preferred.
  • the alkoxy groups in R 17 to R 19 are preferably the alkoxy groups listed in the above substituent group Z, and the substituents other than the cross-linking group that may be contained are also the same as those in the above substituent group Z.
  • (f, g, h) f, g, and h each independently represent an integer of 0 to 4, and the value represented by f+g+h is 1 or more.
  • g is independently defined by e phenylene groups when e is 2 or more.
  • the value represented by f + h is preferably 1 or more, More preferably, the value represented by f + h is 1 or more, and f, g, and h are all 2 or less, More preferably, the value represented by f + h is 1 or more, and both f and h are 1 or less, Most preferably, both f and h are 1.
  • R 17 and R 19 are preferably bonded at symmetrical positions.
  • R 17 and R 19 are preferably the same, and g is more preferably 2.
  • the two R 18 are most preferably attached to each other in the para position, and when g is 2, the two R 18 are most preferably the same.
  • the binding positions where R 17 and R 19 are symmetrical to each other refer to the following binding positions. However, for notation, 180° rotation about the main chain is regarded as the same structure.
  • repeating unit represented by formula (57) above is preferably a repeating unit represented by formula (58) below.
  • the binding positions are preferably 2- and 5-positions.
  • g 0, i.e., when there is no steric hindrance by R 18 ;
  • R 17 and R 19 can be bonded at positions symmetrical to each other.
  • the binding positions are preferably 2- and 5-positions.
  • R 17 and R 19 can be combined at symmetrical positions.
  • the weight-average molecular weight (Mw) of the arylamine polymer is usually 3,000,000 or less, preferably 1,000,000 or less, more preferably 1,000,000 or less. is 500,000 or less, more preferably 200,000 or less, particularly preferably 100,000 or less, most preferably 50,000 or less.
  • the weight average molecular weight is usually 2,500 or more, preferably 5,000 or more, more preferably 10,000 or more, still more preferably 15,000 or more, and particularly preferably 17,000 or more.
  • the weight-average molecular weight of the arylamine polymer When the weight-average molecular weight of the arylamine polymer is equal to or less than the above upper limit, solubility in a solvent is obtained, and the film-forming property tends to be excellent. Further, when the weight average molecular weight of the arylamine polymer is at least the above lower limit, the glass transition temperature, melting point, and vaporization temperature of the arylamine polymer are suppressed from being lowered, and heat resistance may be improved. Conventionally, it was believed that an arylamine polymer having a weight-average molecular weight of 15,000 to 50,000 and having no cross-linking group or the like could not achieve industrially practical insolubility. By using the composition of the present invention, it is possible to achieve industrially required durability to the upper layer solvent for 2 minutes or more, preferably 15 minutes or more, even with relatively low-temperature and short-time firing.
  • the number average molecular weight (Mn) of the arylamine polymer is usually 2,500,000 or less, preferably 750,000 or less, more preferably 400,000 or less, particularly preferably 100,000 or less, and most preferably 40000 or less.
  • the number average molecular weight is usually 2,000 or more, preferably 4,000 or more, more preferably 6,000 or more, and still more preferably 8,000 or more.
  • the dispersity (Mw/Mn) in the arylamine polymer is preferably 3.5 or less, more preferably 2.5 or less, and particularly preferably 2.0 or less.
  • the lower limit value is ideally 1 because the smaller the value of the degree of dispersion, the better.
  • the weight average molecular weight and number average molecular weight of a polymer are usually determined by SEC (size exclusion chromatography) measurement. In SEC measurement, the higher the molecular weight, the shorter the elution time, and the lower the molecular weight, the longer the elution time. By conversion, the weight average molecular weight and number average molecular weight are calculated.
  • arylamine polymer (Concrete example) Specific examples of the arylamine polymer are shown below, but the arylamine polymer in the present embodiment is not limited to these.
  • the numbers in the chemical formulas represent the molar ratio of repeating units. n represents the number of repetitions.
  • arylamine polymers may be random copolymers, alternating copolymers, block copolymers, graft copolymers, or the like, and the sequence of the monomers is not limited.
  • arylamine polymer containing the repeating unit represented by formula (56) are shown below, but the arylamine polymer in the present embodiment is not limited to these.
  • the numbers in the chemical formulas represent the molar ratio of repeating units. n represents the number of repetitions.
  • arylamine polymers may be random copolymers, alternating copolymers, block copolymers, graft copolymers, or the like, and the sequence of the monomers is not limited.
  • the method for producing the arylamine polymer contained in the first functional material is not particularly limited and is arbitrary. Examples thereof include a polymerization method by Suzuki reaction, a polymerization method by Grignard reaction, a polymerization method by Yamamoto reaction, a polymerization method by Ullmann reaction, a polymerization method by Buchwald-Hartwig reaction, and the like.
  • Z represents a halogen atom such as I, Br, Cl, F.
  • Ar 1 , R 1 , R 2 , X, a to d represent Ar 1 , R 1 in the above formula (54). , R 2 , X, a to d are synonymous.
  • Z represents a halogen atom such as I, Br, Cl, F.
  • Ar 2 , R 3 to R 6 , l to n, p, and q represent Ar 2 , are synonymous with R 3 to R 6 , l to n, p, and q.
  • the reaction for forming an N-aryl bond is usually carried out in the presence of a base such as potassium carbonate, sodium tert-butoxy, or triethylamine. It can also be carried out in the presence of a transition metal catalyst such as copper or a palladium complex.
  • a base such as potassium carbonate, sodium tert-butoxy, or triethylamine. It can also be carried out in the presence of a transition metal catalyst such as copper or a palladium complex.
  • the content of the arylamine polymer in the first composition is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and It is usually 70% by mass or less, preferably 60% by mass or less, more preferably 50% by mass or less, and particularly preferably 20% by mass or less.
  • the content of the arylamine polymer is within the above range, the formed first functional film is less likely to have defects and less likely to have uneven film thickness, which is preferable.
  • the first composition usually contains a solvent.
  • the solvent is preferably one that dissolves the arylamine polymer.
  • a solvent that dissolves the arylamine polymer in the first composition at room temperature in an amount of usually 0.05% by mass or more, preferably 0.5% by mass or more, more preferably 1% by mass or more, is suitable. .
  • solvents include aromatic solvents such as toluene, xylene, mesitylene, cyclohexylbenzene and methylnaphthalene; halogen-containing solvents such as 1,2-dichloroethane, chlorobenzene and o-dichlorobenzene; ethylene glycol dimethyl ether and ethylene glycol diethyl.
  • Ethers aliphatic ethers such as propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4- Ether solvents such as aromatic ethers such as methoxytoluene, 2,3-dimethylanisole and 2,4-dimethylanisole; Aliphatic ester solvents such as ethyl acetate, n-butyl acetate, ethyl lactate and n-butyl lactate; Ester-based solvents such as aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, isopropyl benzoate, propyl benzoate, and n-butyl benzoate; Organic solvents used in the composition for forming the injection layer and the composition
  • solvent may be used, or two or more types may be used in any combination and in any ratio.
  • the surface tension of the solvent at 20°C is usually less than 40 dyn/cm, preferably 36 dyn/cm or less, more preferably 33 dyn/cm or less.
  • the lower limit of the surface tension is not particularly limited, it is usually 20 dyn/cm or more.
  • the vapor pressure of the solvent at 25°C is usually 10 mmHg or less, preferably 5 mmHg or less, and usually 0.1 mmHg or more.
  • solvents include aromatic solvents such as toluene, xylene, mesitylene, and cyclohexylbenzene, ether solvents, and ester solvents.
  • the solubility of the solvent in water at 25° C. is preferably 1% by mass or less, more preferably 0.1% by mass or less, and the smaller the better.
  • the content of the solvent in the first composition is usually 10% by mass or more, preferably 30% by mass or more, more preferably 50% by mass or more, and particularly preferably 80% by mass or more.
  • the content of the solvent is at least the above lower limit, the flatness and uniformity of the formed layer can be improved.
  • the upper limit of the solvent content is not particularly limited, it is usually 99.95% by mass or less.
  • the second composition is a composition that is applied onto the first functional film to form a second functional film.
  • the second composition contains a solvent and has a viscosity of 15 mPa ⁇ s or less at 23°C.
  • the solvent contains at least one first solvent component that satisfies a viscosity of 3 mPa ⁇ s or more at 23°C, or at least one first solvent component that satisfies a flow activation energy of 17 kJ/mol or more and 23°C. and at least one second solvent component that satisfies a viscosity of less than 3 mPa ⁇ s.
  • the second composition may contain a second functional material different from the first functional material contained in the first composition.
  • a functional material such as a light-emitting material is usually the second functional material.
  • the viscosity of the first solvent component at 23°C is 3 mPa ⁇ s or more, but this does not dissolve the first functional film.
  • the viscosity is preferably 4 mPa ⁇ s or more, more preferably 5 mPa ⁇ s or more.
  • the viscosity of the first solvent component is desirably 20 mPa ⁇ s or less.
  • the solvent may contain only the first solvent component, or may contain other solvent components.
  • the upper limit of the viscosity of the second composition changes depending on the application method.
  • the viscosity of the second composition at 23° C. is preferably 15 mPa ⁇ s or less, more preferably 12 mPa ⁇ s or less, and 10 mPa ⁇ s or less from the viewpoint of facilitating ejection from an inkjet head when applied by an inkjet device. is more preferred.
  • the viscosity of the second composition at 23° C. is preferably 1 mPa ⁇ s or more, more preferably 2 mPa ⁇ s or more.
  • the viscosity in the present embodiment is a value measured using an E-type viscometer RE85L (manufactured by Toki Sangyo Co., Ltd.) under a 23° C. environment with a cone plate rotation speed of 20 rpm to 100 rpm.
  • the immersion time is long.
  • the temperature of the second composition decreases and the viscosity increases.
  • a solvent with a high viscosity temperature dependence flow activation energy
  • a solvent with a lower initial viscosity is used as the first solvent component
  • the first solvent in the second composition is It is possible to lower the composition ratio.
  • another aspect of the present invention includes a first solvent component having a flow activation energy of 17 kJ/mol or more and a second solvent component having a viscosity of less than 3 mPa ⁇ s.
  • the flow activation energy of the first solvent component is 17 kJ/mol or more, more preferably 19 kJ/mol or more, and still more preferably 21 kJ/mol or more.
  • the upper limit is not particularly limited, it is preferably 40 kJ/mol or less, more preferably 35 kJ/mol or less, still more preferably 32 kJ/mol or less, and particularly preferably 30 kJ/mol or less.
  • the larger the flow activation energy the larger the increase in viscosity due to the decrease in temperature when the latent heat is taken away by volatilization of the solvent, which is preferable.
  • the solvent includes a first solvent component having a viscosity at 23° C. of 3 mPa ⁇ s or more and a flow activation energy of 17 kJ/mol or more; A second solvent component having a viscosity at °C of less than 3 mPa ⁇ s is included.
  • Preferred ranges for the viscosity at 23° C. and flow activation energy of the first solvent component are as described above.
  • the viscosity at 23 ° C. is 3 mPa s or more
  • the flow activation energy is 17 kJ / mol or more can be used.
  • the numbers in parentheses after the solvents indicate flow activation energy (unit: kJ/mol).
  • Flow activation energy is E in the following formula (I). Flow activation energy is determined from the slope of the logarithm of viscosity plotted against the reciprocal of temperature by measuring the viscosity of the solvent at different temperatures.
  • the second composition contains at least one first solvent component that satisfies a viscosity of 3 mPa s or more at 23 ° C. and / or a flow activation energy of 17 kJ / mol or more, so that the first function Even if the arylamine polymer of the functional film is not insolubilized by a cross-linking group or the like, and the thin film contains the first functional material with a small molecular weight that is baked at a relatively low temperature for a short time, the reaction time is 2 minutes or more.
  • An industrially required insolubilization durability of preferably 5 minutes or more, more preferably 15 minutes or more can be achieved.
  • the heat treatment causes rearrangement on the surface and interface of the first functional membrane prior to the bulk, forming a relatively insoluble cover and preventing solvent permeation and elution into the interior of the first functional membrane. This is considered to be because it can be suppressed.
  • the easiness of penetration into the inside varies depending on the volume and shape of the solvent molecules contained in the second composition, and the internal degree of freedom.
  • the greater the intermolecular force between the solvent molecules the greater the impediment to permeation and dispersion. More accurately, the plurality of factors described above are determined by the relational expression (A) described later, but for simplicity, one or more first solvent components having a viscosity of 3 mPa s or more at 23 ° C. are used. can be achieved with
  • the first solvent component preferably has an aromatic hydrocarbon structure. Specifically, benzoic acid, biphenyl, naphthalene, etc. A solvent component having a structure is included.
  • the Hansen solubility parameter ⁇ P of the first solvent component preferably satisfies ⁇ P ⁇ 10, and more preferably satisfies ⁇ P ⁇ 7. Due to the insolubilization property of the first functional film, the durability time tends to be shortened by a highly polar solvent.
  • the theoretical surface area ( ⁇ 2 ), volume ( ⁇ 3 ), and boiling point (° C.) calculated by the COSMO-RS solvation model of the first solvent component, and the viscosity at 23° C. (mPa s ) satisfies the following relational expression (A).
  • the first solvent component satisfies the following relational expression (A)
  • insolubilization can be achieved for a longer period of time.
  • Viscosity in the above relational expression (A) is the viscosity (mPa ⁇ s) of the first solvent component at 23°C.
  • Boiling point is the boiling point at atmospheric pressure of the first solvent component.
  • the "theoretical surface area” and “volume” of the first solvent component are described in A. Klamt, “COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design", Elsevier Science, 1st edition (September 29, 2005). To put it simply, it is a value obtained by multiplying the volume obtained by superimposing VDW spheres on the atoms of the structure-optimized molecule and its surface area (cavity volume used for COSMO calculation).
  • Each coefficient in the above relational expression (A) is a numerical value obtained experimentally.
  • Viscosity indicates the force that holds the solvent molecules together, and correlates with the difficulty of penetrating and dispersing into the first functional film.
  • the larger the volume of the solvent molecules the more difficult it is to permeate the first functional membrane, but the larger the surface area for the same volume, the less spherical, and the smaller the cross-sectional area, that is, the more easily permeable direction. Therefore, a smaller surface area is preferable.
  • a solvent with a lower boiling point evaporates more easily, and lowers the temperature of the second composition by the heat of vaporization, resulting in an effect of increasing the viscosity of the solvent.
  • the effect of the solvent on the underlying functional material film is suppressed.
  • the value represented by the left side of the above relational expression (A) is more preferably 160 or more, and even more preferably 180 or more.
  • the first solvent component that satisfies the above relational expression (A) include isoamyl benzoate (3.45), fenchone (3.47), decylbenzene (3.5), and hexyl benzoate (4.08).
  • the second composition may contain other solvents than the first solvent component.
  • a solvent other than the first solvent component may include a second solvent component having a lower viscosity than the first solvent component. That is, the second solvent component is a solvent having a viscosity of less than 3 mPa ⁇ s at 23°C. Specifically, among the solvents exemplified as the solvents contained in the first composition, those having a viscosity of less than 3 mPa ⁇ s at 23° C. can be mentioned.
  • the second solvent component is preferably included when the flow activation energy of the first solvent component satisfies 17 kJ/mol or more.
  • the flow activation energy of the second solvent component is preferably 10 kJ/mol or more, more preferably 12 kJ/mol or more, still more preferably 14 kJ/mol or more.
  • the upper limit is not particularly limited, it is preferably 18 kJ/mol or less, more preferably 17 kJ/mol or less, even more preferably 16 kJ/mol or less, and even more preferably 15 kJ/mol or less.
  • the viscosity of the second composition When applied by an inkjet device, it is desirable to reduce the viscosity of the second composition as a whole by including a low-viscosity second solvent component from the viewpoint of proper ejection from an inkjet head.
  • the boiling point of the second solvent component is preferably 180° C. or higher from the viewpoint of avoiding drying in the process of applying the second composition and providing the second functional film.
  • Such second solvent components include, for example, ethyl benzoate, tetralin, 2-ethylnaphthalene, ethyl toluate, cyclohexylbenzene, and butyl benzoate.
  • the first solvent component is preferably contained in the second composition in a total amount of 15% by mass or more, more preferably 20% by mass or more, and still more preferably 25% by mass or more.
  • the upper limit of the total content of the first solvent component is not particularly limited, it is usually 99% by mass or less.
  • the total content of the first solvent component is preferably 95% by mass or less, and when the second solvent component is contained, the total content of the first solvent component The amount is preferably 90% by mass or less.
  • the total content of the first solvent component is preferably 70% by mass or less, more preferably 50% by mass or less.
  • the ratio of the first solvent component to the total of the first solvent component and the second solvent component is preferably 10% or more, more preferably 15% or more, by mass. The reason for this is that when considering the order of evaporation of the mixed solvent, it is desirable that a certain amount of the first solvent component remains until the second solvent component, which does not correspond to the first solvent component, evaporates.
  • the ratio of the second solvent component to the total of the first solvent component and the second solvent component is preferably 30% by mass or more. When it is 30% by mass or more, the temperature of the first solvent can be appropriately lowered by evaporation of the second solvent component, and the viscosity of the first solvent component can be increased.
  • the ratio of the second solvent component is more preferably 50% by mass or more, most preferably 70% by mass or more. From the viewpoint of flatness of the functional film, the ratio of the second solvent component is preferably 90% by mass or less, and from the viewpoint of leaving a certain amount of the first solvent component until the second solvent component evaporates. , the ratio of the second solvent component is more preferably 85% by mass or less.
  • the boiling point of the second solvent component is preferably lower than the boiling point of the first solvent component, preferably 280° C. or lower, and preferably 250° C., from the viewpoint of evaporating earlier than the first solvent component. More preferably: On the other hand, the boiling point of the second solvent component is preferably 180° C. or higher, more preferably 200° C. or higher, from the viewpoint of drying control in large-area coating.
  • the second composition contains a first solvent component having a viscosity of 3 mPa ⁇ s or more at 23°C.
  • the viscosity of the composition is preferably low (viscosity of 15 mPa ⁇ s or less at 23° C.) from the viewpoint of ejection properties in inkjet coating.
  • the second composition has a second solvent component with a viscosity of less than 3 mPa ⁇ s at 23°C.
  • the second solvent component is preferably included when the flow activation energy of the first solvent component satisfies 17 kJ/mol or more.
  • the second solvent component is a low-viscosity solvent (viscosity less than 3 mPa ⁇ s at 23° C.) and tends to volatilize before the first solvent component. At that time, the heat of vaporization is removed and the temperature of the second composition is lowered. Since the flow activation energy of the first solvent component is high, the viscosity of the remaining second composition is high, so that it is difficult to permeate the first functional layer, which is the lower layer, which is preferable from the viewpoint of insolubilization.
  • the second composition may contain a second functional material different from the first functional material.
  • the organic semiconductor device is an organic electroluminescent device and the second functional film is a hole transport layer
  • examples of the second functional material include a hole transport material.
  • it may contain the same arylamine polymer as the arylamine polymer of formula (50) that the first functional film has, and a hole-transporting material described later can also be used.
  • the second functional material may be a light-emitting material such as a phosphorescent light-emitting material, or a charge transport material, which will be described later. can be done. It is also preferable that the second functional material contains a low-molecular-weight aromatic compound. When the second functional material is low molecular weight, the viscosity of the second composition can be made lower than when it is high molecular weight.
  • the viscosity of the second composition as a whole tends to increase, but the second functional material is Low molecular weights are easily tolerated.
  • the molecular weight of the low molecular weight aromatic compound is preferably less than 5,000, more preferably 4,000 or less, even more preferably 3,000 or less, and particularly preferably less than 2,000.
  • the second composition in the present embodiment may contain only one type of the second functional material, or may contain two or more types.
  • the contents of the first functional material and the second functional material in the first composition and the second composition in the present embodiment are not particularly limited, but each is preferably 0.1% by weight. Above, it is more preferably 0.5% by weight or more, more preferably 1.0% by weight or more, preferably 20% by weight or less, still more preferably 15% by weight or less, and more preferably 10% by weight or less.
  • a method for manufacturing an organic semiconductor device includes steps of applying and heating a first composition to provide a first functional film, and applying a second composition on the first functional film. and providing a second functional film by applying.
  • the organic semiconductor device is an organic electroluminescent device
  • the first functional film is a hole injection layer and the second functional film is a hole transport layer
  • examples i) or ii) below, in which the first functional film is the hole-transporting layer and the second functional film is the emitting layer include, but are not limited to.
  • a substrate provided with an electrode usually has a minute region in which light emitting pixels are partitioned by partition walls called a bank.
  • the first functional film is formed by applying the first composition of the present embodiment by, for example, ejecting it into the minute regions partitioned by the banks, drying it, and heating it as appropriate.
  • the ejection method is a method of ejecting a droplet smaller than the minute area partitioned by the bank from a minute nozzle, and by ejecting a plurality of droplets, the minute area partitioned by the bank is filled with the first composition. preferably fulfilled.
  • An ink jet method is preferable as the ejection method.
  • the first composition is filled into minute areas defined by banks, and then vacuum-dried. Vacuum drying is volatilizing the solvent by reducing the pressure.
  • the solvent can be volatilized by vacuum drying, but it is preferable to then heat dry to ensure sufficient drying.
  • the heating temperature is preferably a temperature and time at which the first functional film does not crystallize or aggregate.
  • the heating temperature is usually 50°C or higher, preferably 80°C or higher, more preferably 100°C or higher, more preferably 120°C or higher, and usually 200°C or higher. °C or lower, preferably 180 °C or lower, more preferably 150 °C or lower.
  • the heating time is usually 1 minute or more, preferably 3 minutes or more, more preferably 5 minutes or more, and usually 120 minutes or less, preferably 90 minutes or less, more preferably 60 minutes or less.
  • the heating temperature is usually 80° C. or higher, preferably 100° C. or higher, more preferably 150° C. or higher, more preferably 200° C. or higher, It is usually 300° C. or lower, preferably 270° C. or lower, more preferably 240° C. or lower.
  • the heating time is usually 1 minute or more, preferably 3 minutes or more, more preferably 5 minutes or more, and usually 120 minutes or less, preferably 90 minutes or less, more preferably 60 minutes or less.
  • the heating temperature in the step of providing the first functional film is preferably lower as long as the solvent is removed and the required insolubilization durability time is achieved. good.
  • the heating method can be carried out by hot plate, oven, infrared irradiation, etc.
  • infrared irradiation that directly gives molecular vibration
  • a heating time close to the above lower limit is sufficient. requires a long time.
  • oven heating that is, in the case of heating with a gas in the oven, usually air or an inert gas such as nitrogen or argon, it takes time to raise the temperature, so a heating time close to the upper limit of the above heating time is preferable.
  • the heating time is appropriately adjusted depending on the heating method.
  • a second functional film is formed by applying a second composition onto the first functional film formed in the bank by application and heating.
  • the method of application is preferably an inkjet method.
  • the second composition to be applied contains at least one first solvent component that satisfies a viscosity of 3 mPa s or more at 23° C. and/or a flow activation energy of 17 kJ/mol or more,
  • the first functional film does not dissolve for a time longer than the industrially required time.
  • industrially the process of forming a film on a large substrate by a coating method, particularly an inkjet method, is applied to the first functional film, and then the second composition is included in the second composition. It takes at least 2 minutes or more for the solvent to evaporate.
  • immersion means that the second composition exists in contact with the first functional film entirely or partially in a liquid state.
  • the first functional film does not dissolve when immersed for preferably 2 minutes or longer, more preferably 5 minutes or longer, still more preferably 10 minutes or longer, and even more preferably 15 minutes or longer.
  • the atmospheric pressure and temperature are assumed to be 1 Pa or more and 50° C. or less, respectively.
  • “until the solvent evaporates” means until the entire solvent contained in the second composition evaporates. That is, when the solvent contained in the second composition is only the first solvent component, it means until the first solvent component evaporates and disappears, and the solvent contained in the second composition is the first solvent component. In the case of one solvent component and a second solvent component, it means until all of them have evaporated. In addition, it is not necessary that the amount of residual solvent is strictly zero when the solvent evaporates. Since residual solvent may remain depending on the boiling point of the solvent, if the concentration in the second functional film on a volume basis is 100 ppm or less, it can be considered that the solvent has evaporated.
  • the first functional film does not need to be insolubilized at all positions in its cross-sectional direction. Even with polymeric materials that do not form chemical bonds due to cross-linking groups, etc., if an arylamine polymer with an appropriate molecular structure and molecular weight is thermally treated, the rearrangement proceeds on the surface and interface ahead of the bulk portion, Forms a surface that is difficult to be eluted by the solvent during coating of the upper layer. At this time, most of the thin film maintains an amorphous state and dissolves rapidly after the surface is eluted.
  • the first functional film it is possible to use a low-molecular weight functional material that is advantageous for simpler heat treatment such as low temperature and short time, high definition, and flexibility in film thickness design within the range where this insolubility can be achieved.
  • the effect of the second composition on the durability time until the first functional film starts dissolving depends on the solvent molecules contained in the second composition, especially the first solvent component. It varies depending on the volume, surface area, internal degrees of freedom, intermolecular forces between solvent molecules, etc. Although there is little correlation with the Hansen solubility parameter .delta.P of solvent molecules, solvent molecules having .delta.P larger than a certain value tend to shorten the durability time and should be avoided.
  • the present inventors have experimentally clarified the criteria for selecting preferred solvent molecules, and established a judgment formula. This is the following relational expression (A) mentioned above. 32 x viscosity - 4.3 x theoretical surface area + 5.4 x volume - boiling point > 150 (A) Also, this judgment can be made simply by the viscosity of the solvent.
  • the second composition as a whole must have a viscosity suitable for ejection, that is, 15 mPa ⁇ It is required to have a viscosity of s or less.
  • 15 mPa ⁇ s or less is not essential.
  • the content of the first functional material or the second functional material contained in the first functional film or the second functional film is usually 70% by weight or more, preferably 80% by weight. Above, more preferably 90% by weight or more, particularly preferably 95% by weight or more, most preferably substantially 100% by weight, the upper limit is 100% by weight. Substantially 100% by weight means that the functional film may contain trace amounts of additives, residual solvents and impurities. When the content of the functional material in the functional film is within this range, the function of the functional material can be exhibited more effectively.
  • organic electroluminescent device (hereinafter referred to as "organic electroluminescent device in the present embodiment") ) will be described with reference to FIG. 1 .
  • FIG. 1 is a schematic cross-sectional view showing a structural example of an organic electroluminescence device 10 according to this embodiment.
  • 1 is a substrate
  • 2 is an anode
  • 3 is a hole injection layer
  • 4 is a hole transport layer
  • 5 is a light emitting layer
  • 6 is a hole blocking layer
  • 7 is an electron transport layer
  • 8 is an electron injection layer
  • 9 each represent a cathode.
  • the organic electroluminescent element in this embodiment has the anode 2, the light emitting layer 5 and the cathode 9 as essential constituent layers, but if necessary, as shown in FIG. It may have another functional layer between it and the layer 5 .
  • the substrate 1 serves as a support for the organic electroluminescence device.
  • a quartz or glass plate, a metal plate or metal foil, a plastic film or sheet, or the like is used as the substrate 1.
  • Glass plates; transparent synthetic resin plates such as polyester, polymethacrylate, polycarbonate and polysulfone are particularly preferred.
  • the gas barrier property of the substrate is large, because deterioration of the organic electroluminescence element due to outside air passing through the substrate is unlikely to occur. Therefore, a method of providing a dense silicon oxide film or the like on at least one surface of a synthetic resin substrate to ensure gas barrier properties is also one of the preferable methods.
  • the anode 2 is an electrode that plays a role of injecting holes into the layer on the light-emitting layer 5 side.
  • the anode 2 is generally made of metal such as aluminum, gold, silver, nickel, palladium, platinum, metal oxide such as indium and/or tin oxide, metal halide such as copper iodide, carbon black, or poly (3-methylthiophene), polypyrrole, polyaniline, and other conductive polymers.
  • Formation of the anode 2 is usually carried out by a method such as a sputtering method, a vacuum deposition method, or the like.
  • a method such as a sputtering method, a vacuum deposition method, or the like.
  • metal fine particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, conductive polymer fine powder, etc.
  • the anode 2 can also be formed by dispersing it in a binder resin solution and coating it on the substrate 1 .
  • a conductive polymer a thin film can be formed directly on the substrate 1 by electrolytic polymerization.
  • the anode 2 can be formed by coating the substrate 1 with a conductive polymer (Appl. Phys. Lett., Vol. 60, p. 2711, 1992).
  • the anode 2 usually has a single-layer structure, but it can also have a laminated structure consisting of multiple materials, if desired.
  • the thickness of the anode 2 may be appropriately selected according to the required transparency and the like.
  • the visible light transmittance is usually 60% or more, preferably 80% or more.
  • the thickness of the anode 2 is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • the thickness of the anode 2 is arbitrary as long as it is opaque.
  • a substrate 1 that also functions as the anode 2 may be used. It is also possible to laminate different conductive materials on top of the anode 2 described above.
  • the surface of the anode 2 is treated with ultraviolet (UV)/ozone, oxygen plasma, or argon plasma. It is also preferable to
  • the hole injection layer 3 is a layer into which holes flow from the electrode when transporting holes from the anode 2 to the light emitting layer 5 .
  • the hole injection layer 3 is usually formed on the anode 2 .
  • a method for forming the hole injection layer 3 may be a vacuum deposition method or a wet film formation method, and is not particularly limited.
  • the hole injection layer 3 is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
  • the thickness of the hole injection layer 3 is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • the composition for forming a hole injection layer usually contains a hole transport material and a solvent as constituent materials of the hole injection layer 3 .
  • the hole-transporting material is a compound having a hole-transporting property that is usually used in the hole-injection layer 3 of an organic electroluminescent device, and may be a polymer compound such as a polymer, or a monomer. may be a low-molecular-weight compound, but a high-molecular-weight compound is preferred.
  • a compound having an ionization potential of 4.5 eV to 6.0 eV is preferable as the hole transport material from the viewpoint of a charge injection barrier from the anode 2 to the hole injection layer 3 .
  • hole-transporting materials include aromatic amine derivatives, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, compounds in which tertiary amines are linked with fluorene groups, hydrazone derivatives, silazane derivatives, and silanamine derivatives.
  • phosphamine derivatives quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylenevinylene derivatives, polythienylenevinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, carbon and the like.
  • Derivatives in the present specification include, for example, aromatic amine derivatives, aromatic amines themselves and compounds having an aromatic amine as a main skeleton. may be
  • the hole-transporting material used as the material for the hole-injection layer 3 may contain any one of such compounds alone, or may contain two or more of them. When two or more hole-transporting materials are contained, the combination is arbitrary, but one or two or more aromatic tertiary amine polymer compounds and one or two other hole-transporting materials It is preferable to use the above together.
  • aromatic amine compounds are preferable, and aromatic tertiary amine compounds are particularly preferable, in terms of amorphousness and visible light transmittance.
  • the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes compounds having a group derived from an aromatic tertiary amine.
  • the type of the aromatic tertiary amine compound is not particularly limited, but from the viewpoint of uniform light emission due to the surface smoothing effect, a polymer compound (polymeric compound in which repeating units are linked) having a weight average molecular weight of 1000 or more and 1000000 or less is further used. preferable.
  • Preferred examples of aromatic tertiary amine polymer compounds include polymer compounds having repeating units represented by the following formula (1) or (11).
  • Ar 3 represents an optionally substituted aromatic hydrocarbon group or aromatic heterocyclic group
  • Ar 4 represents an optionally substituted divalent aromatic hydrocarbon group represents a divalent group in which one or more groups selected from at least one of and a divalent aromatic heterocyclic group are linked, and the linking is performed directly or via a linking group.
  • Ar 4 in the formula (1) is an aromatic carbonized aromatic compound in which a plurality of Ar 4 in the formula (1) are linked via a linking group represented by the following formula (2) in terms of excellent hole injection into the light-emitting layer.
  • a hydrogen group or an aromatic heterocyclic group is preferred.
  • R 8 and R 9 each independently represent a hydrogen atom or an optionally substituted alkyl group, aromatic hydrocarbon group, or aromatic heterocyclic group. When multiple R 8 and R 9 are present, they may be the same or different. )
  • Ar 11 , Ar 12 and Ar 14 each independently represent an optionally substituted divalent aromatic ring group having 30 or less carbon atoms, and Ar 13 has 30 carbon atoms which may be substituted.
  • aromatic ring group refers to at least one of an aromatic hydrocarbon ring group and an aromatic heterocyclic group.
  • aromatic ring groups for Ar 11 , Ar 12 and Ar 14 include monocyclic rings, 2 to 6 condensed rings, and groups in which two or more of these aromatic rings are linked.
  • monocyclic or 2- to 6-condensed aromatic ring groups include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring and acenaphthene ring.
  • fluoranthene ring fluorene ring, biphenyl group, terphenyl group, quaterphenyl group, furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, Divalent groups derived from pyridazine ring, pyrimidine ring, triazinzin
  • a divalent group derived from a benzene ring, a naphthalene ring, a fluorene ring, a pyridine ring or a carbazole ring, or a biphenyl group is preferable because it efficiently delocalizes a negative charge and is excellent in stability and heat resistance.
  • the aromatic ring group for Ar 13 are the same as those for Ar 11 , Ar 12 and Ar 14 .
  • R 11 represents an alkyl group, an aromatic ring group, or a trivalent group consisting of an alkyl group having 40 or less carbon atoms and an aromatic ring group, which may have a substituent.
  • R 12 represents an alkyl group, an aromatic ring group, or a divalent group consisting of an alkyl group having 40 or less carbon atoms and an aromatic ring group, which may have a substituent.
  • Ar 31 is a monovalent represents an aromatic ring group or a monovalent bridging group, and these groups may have a substituent.
  • q' represents an integer of 1 to 4.When q'is 2 or more, multiple R 12 may be the same or different, and a plurality of Ar 31 may be the same or different.
  • the asterisk (*) indicates a bond with the nitrogen atom of formula (11).
  • the aromatic ring group for R 11 is preferably one monocyclic or condensed ring aromatic ring group having 3 to 30 carbon atoms, or a group in which 2 to 6 of them are linked, and specific examples include benzene. Trivalent groups derived from rings, fluorene rings, naphthalene rings, carbazole rings, dibenzofuran rings, dibenzothiophene rings and groups in which 2 to 6 of these are linked.
  • the alkyl group for R 11 is preferably a linear, branched, or cyclic alkyl group having 1 to 12 carbon atoms, and specific examples thereof include methane, ethane, propane, isopropane, butane, isobutane, pentane, and hexane.
  • the group consisting of an alkyl group having 40 or less carbon atoms and an aromatic ring group for R 11 is preferably a linear, branched or ring-containing alkyl group having 1 to 12 carbon atoms and a single alkyl group having 3 to 30 carbon atoms. Examples thereof include groups in which one or two to six aromatic ring groups, which are rings or condensed rings, are linked.
  • aromatic ring group for R 12 examples include a benzene ring, a fluorene ring, a naphthalene ring, a carbazole ring, a dibenzofuran ring, a dibenzothiophene ring, and a divalent group derived from a linking ring having 30 or less carbon atoms to which these are linked. be done.
  • alkyl group for R 12 include bivalent groups derived from methane, ethane, propane, isopropane, butane, isobutane, pentane, hexane and octane.
  • aromatic ring group for Ar 31 examples include a benzene ring, a fluorene ring, a naphthalene ring, a carbazole ring, a dibenzofuran ring, a dibenzothiophene ring, and a monovalent group derived from a linking ring having 30 or less carbon atoms in which these are linked. be done.
  • Preferred examples of the structure of formula (12) include the following structure, and the benzene ring or fluorene ring of the main chain in the structure below which is the partial structure of R 11 may further have a substituent.
  • Examples of the cross-linking group for Ar 31 include a group derived from a benzocyclobutene ring, a naphthocyclobutene ring or an oxetane ring, a vinyl group, an acryl group, and the like.
  • a group derived from a benzocyclobutene ring or a naphthocyclobutene ring is preferred from the viewpoint of compound stability.
  • x and y each independently represent an integer of 0 or more.
  • Ar 21 and Ar 23 each independently represent a divalent aromatic ring group, and these groups are substituents.
  • Ar 22 represents a monovalent aromatic ring group which may have a substituent
  • R 13 represents an alkyl group, an aromatic ring group, or a divalent group consisting of an alkyl group and an aromatic ring group. These groups may have substituents
  • Ar 32 represents a monovalent aromatic ring group or a monovalent bridging group, and these groups may have substituents.
  • (*) indicates a bond with the nitrogen atom of formula (11).)
  • Examples of the aromatic ring groups of Ar 21 and Ar 23 are the same as those of Ar 11 , Ar 12 and Ar 14 .
  • aromatic ring groups for Ar 22 and Ar 32 include monocyclic rings, 2 to 6 condensed rings, and groups in which two or more of these aromatic rings are linked. Specific examples include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, acenaphthene ring, fluoranthene ring, fluorene ring, biphenyl group and terphenyl group.
  • a monovalent group derived from a benzene ring, a naphthalene ring, a fluorene ring, a pyridine ring, or a carbazole ring, or a biphenyl group is preferable because it efficiently delocalizes a negative charge and is excellent in stability and heat resistance.
  • Examples of the alkyl group or aromatic ring group for R 13 are the same as those for R 12 .
  • the cross-linking group for Ar 32 is not particularly limited, but preferred examples include a group derived from a benzocyclobutene ring, naphthocyclobutene ring or oxetane ring, vinyl group, acryl group and the like.
  • Each of Ar 11 to Ar 14 , R 11 to R 13 , Ar 21 to Ar 23 , Ar 31 to Ar 32 , Q 11 and Q 12 further has a substituent as long as it does not contradict the spirit of the present invention.
  • the molecular weight of the substituent is preferably 400 or less, more preferably 250 or less.
  • the type of substituent is not particularly limited, but examples thereof include one or more selected from the following substituent group W.
  • an alkyl group or an alkoxy group is preferable from the viewpoint of improving solubility, and an aromatic hydrocarbon group or an aromatic heterocyclic group is preferable from the viewpoint of charge transportability and stability.
  • a polymer compound having a repeating unit represented by the following formula (14) exhibits extremely high hole injection/transport properties. preferable.
  • R 21 to R 25 each independently represent an arbitrary substituent. Specific examples of the substituents of R 21 to R 25 are described in [Substituent Group W] above. is the same as for the substituents s and t each independently represent an integer of 0 or more and 5 or less. u, v, and w each independently represent an integer of 0 to 4; )
  • aromatic tertiary amine polymer compounds include polymer compounds containing repeating units represented by the following formula (15) and/or formula (16).
  • each of Ar 45 , Ar 47 and Ar 48 independently has an optionally substituted monovalent aromatic hydrocarbon group or a substituent
  • Ar 44 and Ar 46 each independently represents a monovalent aromatic heterocyclic group which may be substituted, or a divalent aromatic hydrocarbon group which may be substituted or each of R 41 to R 43 independently represents a hydrogen atom or any substituent.
  • R 41 to R 43 are preferably a hydrogen atom or a substituent described in [Substituent group W] above, more preferably a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or an aromatic hydrocarbon. or an aromatic heterocyclic group.
  • the hole injection layer-forming composition preferably contains an electron-accepting compound as a constituent material of the hole injection layer 3 .
  • the electron-accepting compound is preferably a compound that has oxidizing power and the ability to accept one electron from the above-mentioned hole-transporting material.
  • a compound having an electron affinity of 4.0 eV or more is preferable, and a compound having an electron affinity of 5.0 eV or more is more preferable.
  • electron-accepting compounds include the group consisting of triarylboron compounds, metal halides, Lewis acids, organic acids, onium salts, salts of arylamines and metal halides, and salts of arylamines and Lewis acids.
  • the electron-accepting compound includes an onium salt substituted with an organic group such as 4-isopropyl-4′-methyldiphenyliodonium tetrakis(pentafluorophenyl)borate, triphenylsulfonium tetrafluoroborate (international publication No. 2005/089024, International Publication No. 2017/164268); iron (III) chloride (Japanese Patent Laid-Open No.
  • high-valent inorganic compounds such as ammonium peroxodisulfate; cyano such as tetracyanoethylene compounds, aromatic boron compounds such as tris(pentafluorophenyl)borane (Japanese Patent Laid-Open No. 2003-31365); fullerene derivatives; iodine; ions and the like.
  • the electron-accepting compound can improve the electrical conductivity of the hole-injection layer 3 by oxidizing the hole-transporting material.
  • the material of the hole injection layer 3 may contain other components in addition to the above-mentioned hole transporting material and electron accepting compound as long as the effects of the present invention are not significantly impaired.
  • At least one of the solvents of the composition for forming a hole injection layer used in the wet film-forming method is preferably a compound capable of dissolving the constituent material of the hole injection layer 3 described above.
  • the solvent is the first solvent component or the second solvent component in the present embodiment.
  • solvents examples include ether-based solvents, ester-based solvents, aromatic hydrocarbon-based solvents, and amide-based solvents.
  • ether-based solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, aromatic ethers such as phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole and 2,4-dimethylanisole;
  • aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and propylene glycol-1-monomethyl ether acetate (PGMEA)
  • 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole aromatic ethers such as phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxy
  • ester-based solvents include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
  • aromatic hydrocarbon solvents examples include toluene, xylene, cyclohexylbenzene, 3-isopropylbiphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, and methylnaphthalene.
  • amide solvents examples include N,N-dimethylformamide and N,N-dimethylacetamide.
  • dimethylsulfoxide and the like can also be used.
  • aromatic esters and aromatic ethers are preferred.
  • One type of these solvents may be used alone, or two or more types may be used in any combination and ratio.
  • the concentration of the hole-transporting material in the hole-injection layer-forming composition is arbitrary as long as it does not significantly impair the effects of the present invention.
  • the concentration of the hole transport material in the composition for forming a hole injection layer is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, and still more preferably 0, from the viewpoint of uniformity of the film thickness. .5% by weight or more.
  • the concentration of the hole transport material in the composition for forming a hole injection layer is preferably 70% by weight or less, more preferably 60% by weight or less, and even more preferably 50% by weight or less. It is preferable that this density is small in that film thickness unevenness is less likely to occur.
  • the concentration is preferably large from the viewpoint that defects are less likely to occur in the formed hole injection layer.
  • the hole injection layer 3 is formed by a wet film formation method
  • the material constituting the hole injection layer 3 is usually mixed with an appropriate solvent (solvent for the hole injection layer) to form a film formation composition
  • a film formation composition A composition for forming a hole injection layer
  • this composition for forming a hole injection layer 3 is applied on a layer corresponding to the lower layer of the hole injection layer (usually, the anode 2) by an appropriate method.
  • the hole injection layer 3 is formed by forming a film using a heat treatment and drying it.
  • the hole injection layer 3 can be formed, for example, as follows.
  • One or two or more of the constituent materials of the hole injection layer 3 (the aforementioned hole transport material, electron-accepting compound, etc.) are placed in a crucible placed in a vacuum vessel (when two or more materials are used, each crucible), and the inside of the vacuum chamber is evacuated to about 10 ⁇ 4 Pa by a suitable vacuum pump.
  • the crucible is heated (each crucible is heated when two or more materials are used) to control the evaporation amount (when two or more materials are used, each evaporation amount is independent controlled evaporation) to form a hole injection layer 3 on the anode 2 of the substrate 1 placed opposite the crucible.
  • a mixture thereof can be placed in a crucible, heated and evaporated to form the hole injection layer 3 .
  • the degree of vacuum during vapor deposition is not limited as long as it does not significantly impair the effects of the present invention.
  • the degree of vacuum during vapor deposition is usually 0.1 ⁇ 10 ⁇ 6 Torr (0.13 ⁇ 10 ⁇ 4 Pa) or more and 9.0 ⁇ 10 ⁇ 6 Torr (12.0 ⁇ ⁇ 4 Pa) or less.
  • the vapor deposition rate is not limited as long as it does not significantly impair the effects of the present invention.
  • the deposition rate is usually 0.1 ⁇ /second or more and 5.0 ⁇ /second or less.
  • the film formation temperature during vapor deposition is not limited as long as it does not significantly impair the effects of the present invention.
  • the film forming temperature during vapor deposition is preferably 10° C. or higher and 50° C. or lower.
  • the hole transport layer 4 is a layer that transports from the anode 2 to the light emitting layer 5 .
  • the hole transport layer 4 is formed on the hole injection layer 3 when the hole injection layer 3 is present, or on the anode 2 when the hole injection layer 3 is not present.
  • the method for forming the hole transport layer 4 may be a vacuum deposition method or a wet film formation method, and is not particularly limited. From the viewpoint of reducing dark spots, the hole transport layer 4 is preferably formed by a wet film formation method.
  • the hole transport layer 4 contains a hole transport material.
  • the hole transport material forming the hole transport layer 4 a material having high hole transport properties and capable of efficiently transporting injected holes is preferable. Therefore, the hole-transporting material forming the hole-transporting layer 4 has a small ionization potential, a high transparency to visible light, a large hole mobility, an excellent stability, and an impurity that acts as a trap. is less likely to occur during manufacture or use.
  • the hole-transporting layer 4 is in contact with the light-emitting layer 5, so that the hole-transporting layer 4 does not quench light emitted from the light-emitting layer 5 or form an exciplex with the light-emitting layer 5 to reduce efficiency. preferable.
  • any material conventionally used as a constituent material for the hole-transporting layer 4 may be used.
  • Materials for the hole transport layer 4 include, for example, arylamine derivatives, fluorene derivatives, spiro derivatives, carbazole derivatives, pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, phenanthroline derivatives, phthalocyanine derivatives, porphyrin derivatives, and silole derivatives. , oligothiophene derivatives, condensed polycyclic aromatic derivatives, and metal complexes.
  • the hole-transporting material for forming the hole-transporting layer 4 the hole-transporting material used in the composition for forming the hole-injection layer can be used.
  • hole transport materials for the hole transport layer 4 include polyvinylcarbazole derivatives, polyarylamine derivatives (arylamine polymers), polyvinyltriphenylamine derivatives, polyfluorene derivatives, polyarylene derivatives, and polyarylene containing tetraphenylbenzidine.
  • polyarylamine derivatives and polyarylene derivatives are preferable as the hole transport material for the hole transport layer 4 .
  • Specific examples of polyarylamine derivatives and polyarylene derivatives include those described in Japanese Patent Application Laid-Open No. 2008-98619.
  • As the polyarylamine derivative it is preferable to use an aromatic tertiary amine polymer compound represented by formula (50).
  • a composition for forming a hole transport layer is prepared in the same manner as in the formation of the hole injection layer 3, followed by wet film formation and drying.
  • the composition for forming a hole transport layer contains a solvent in addition to the hole transport material described above.
  • the solvent to be used is the same as that used for the composition for forming the hole injection layer.
  • the film forming conditions, drying conditions, etc. are the same as those for forming the hole injection layer 3 .
  • the hole transport layer-forming composition is the second composition in the present embodiment
  • the solvent is the first solvent component or the second solvent component in the present embodiment.
  • the film forming conditions and the like are the same as those for forming the hole injection layer 3 described above.
  • the film thickness of the hole-transporting layer 4 is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, taking into consideration factors such as penetration of the low-molecular-weight material into the light-emitting layer 5 and swelling of the hole-transporting material. It is preferably 200 nm or less.
  • the light-emitting layer 5 is a layer that is excited by recombination of holes injected from the anode 2 and electrons injected from the cathode 9 between electrodes to which an electric field is applied, and becomes a main light source.
  • the light-emitting layer 5 is generally formed on the hole-transport layer 4 when the hole-transport layer 4 is present and on the hole-injection layer 3 when the hole-injection layer 3 is present. If neither the hole-transporting layer 4 nor the hole-injecting layer 3 is present above, they are formed on the anode 2 .
  • the light-emitting layer material usually contains a light-emitting material and a charge-transporting material serving as a host.
  • the light-emitting material any known material that is usually used as a light-emitting material for organic electroluminescence devices can be applied, and there is no particular limitation. Substances can be used.
  • the light-emitting material may be a fluorescent light-emitting material or a phosphorescent light-emitting material, but is preferably a phosphorescent light-emitting material from the viewpoint of internal quantum efficiency. More preferably, the red emitting material and the green emitting material are phosphorescent emitting materials, and the blue emitting material is fluorescent emitting material.
  • the second composition in the present embodiment is a composition for forming a light-emitting layer
  • a phosphorescent material is a material that emits light from an excited triplet state.
  • metal complex compounds containing Ir, Pt, Eu, etc. are typical examples, and materials containing metal complexes are preferable as the structure of the material.
  • the long-period periodic table (unless otherwise specified, the long-period periodic table ) include Werner-type complexes or organometallic complex compounds containing a metal selected from Groups 7 to 11 as a central metal.
  • phosphorescent light-emitting materials include, for example, International Publication No. 2014/024889, International Publication No. 2015-087961, International Publication No. 2016/194784, and phosphorescent materials described in Japanese Patent Application Laid-Open No. 2014-074000. is mentioned.
  • a compound represented by the following formula (201) or a compound represented by the following formula (205) is preferable, and a compound represented by the following formula (201) is more preferable.
  • ring A1 represents an optionally substituted aromatic hydrocarbon ring structure or an optionally substituted aromatic heterocyclic ring structure.
  • Ring A2 represents an aromatic heterocyclic structure optionally having a substituent.
  • R 201 and R 202 each independently represent a structure represented by formula (202), and "*" represents the bonding position with ring A1 or ring A2.
  • R 201 and R 202 may be the same or different, and when multiple R 201 and R 202 are present, they may be the same or different.
  • Ar 201 and Ar 203 each independently represent an optionally substituted aromatic hydrocarbon ring structure or an optionally substituted aromatic heterocyclic ring structure.
  • Ar 202 is an optionally substituted aromatic hydrocarbon ring structure, an optionally substituted aromatic heterocyclic ring structure, or an optionally substituted aliphatic hydrocarbon structure represents In formula (201), the substituents bonded to ring A1, the substituents bonded to ring A2, or the substituents bonded to ring A1 and the substituents bonded to ring A2 are bonded to each other to form a ring.
  • B 201 -L 200 -B 202 represents an anionic bidentate ligand.
  • B 201 and B 202 each independently represent a carbon atom, an oxygen atom or a nitrogen atom, and these atoms may be atoms constituting a ring.
  • L 200 represents a single bond or an atomic group forming a bidentate ligand together with B 201 and B 202 .
  • B 201 -L 200 -B 202 When there are multiple groups of B 201 -L 200 -B 202 , they may be the same or different.
  • i1 and i2 each independently represent an integer of 0 to 12
  • i3 represents an integer of 0 or more with the upper limit of the number that can be substituted for Ar 202
  • i4 represents an integer of 0 or more with the upper limit of the number that can be substituted for Ar 201
  • k1 and k2 each independently represent an integer of 0 or more, with the upper limit being the number that can be substituted on ring A1 and ring A2
  • z represents an integer of 1 to 3;
  • substituent is preferably a group selected from the following substituent group S.
  • An alkoxy group preferably an alkoxy group having 1 to 20 carbon atoms, more preferably an alkoxy group having 1 to 12 carbon atoms, and still more preferably an alkoxy group having 1 to 6 carbon atoms.
  • an aryloxy group preferably an aryloxy group having 6 to 20 carbon atoms, more preferably an aryloxy group having 6 to 14 carbon atoms, still more preferably an aryloxy group having 6 to 12 carbon atoms, particularly preferably an aryloxy group having 6 carbon atoms; aryloxy group.
  • a heteroaryloxy group preferably a heteroaryloxy group having 3 to 20 carbon atoms, more preferably a heteroaryloxy group having 3 to 12 carbon atoms.
  • an alkylamino group preferably an alkylamino group having 1 to 20 carbon atoms, more preferably an alkylamino group having 1 to 12 carbon atoms;
  • An arylamino group preferably an arylamino group having 6 to 36 carbon atoms, more preferably an arylamino group having 6 to 24 carbon atoms.
  • An aralkyl group preferably an aralkyl group having 7 to 40 carbon atoms, more preferably an aralkyl group having 7 to 18 carbon atoms, and still more preferably an aralkyl group having 7 to 12 carbon atoms.
  • a heteroaralkyl group preferably a heteroaralkyl group having 7 to 40 carbon atoms, more preferably a heteroaralkyl group having 7 to 18 carbon atoms.
  • an alkenyl group preferably an alkenyl group having 2 to 20 carbon atoms, more preferably an alkenyl group having 2 to 12 carbon atoms, still more preferably an alkenyl group having 2 to 8 carbon atoms, particularly preferably an alkenyl group having 2 to 6 carbon atoms .
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms, more preferably an alkynyl group having 2 to 12 carbon atoms;
  • An aryl group preferably an aryl group having 6 to 30 carbon atoms, more preferably an aryl group having 6 to 24 carbon atoms, still more preferably an aryl group having 6 to 18 carbon atoms, particularly preferably an aryl group having 6 to 14 carbon atoms .
  • a heteroaryl group preferably a heteroaryl group having 3 to 30 carbon atoms, more preferably a heteroaryl group having 3 to 24 carbon atoms, still more preferably a heteroaryl group having 3 to 18 carbon atoms, particularly preferably 3 to 3 carbon atoms 14 heteroaryl groups.
  • An alkylsilyl group preferably an alkylsilyl group having 1 to 20 carbon atoms, more preferably an alkylsilyl group having 1 to 12 carbon atoms.
  • An arylsilyl group preferably an arylsilyl group in which the aryl group has 6 to 20 carbon atoms, more preferably an arylsilyl group in which the aryl group has 6 to 14 carbon atoms.
  • an alkylcarbonyl group preferably an alkylcarbonyl group having 2 to 20 carbon atoms
  • - an arylcarbonyl group preferably an arylcarbonyl group having 7 to 20 carbon atoms
  • One or more hydrogen atoms in the above substituent group S may be replaced with fluorine atoms, or one or more hydrogen atoms may be replaced with deuterium atoms.
  • aryl is an aromatic hydrocarbon ring and heteroaryl is a heteroaromatic ring.
  • substituent group S preferably an alkyl group, an alkoxy group, an aryloxy group, an arylamino group, an aralkyl group, an alkenyl group, an aryl group, a heteroaryl group, an alkylsilyl group, an arylsilyl group, and groups thereof a group in which one or more hydrogen atoms of is replaced with a fluorine atom, a fluorine atom, a cyano group, or -SF5 , More preferably, an alkyl group, an alkoxy group, an aryloxy group, an arylamino group, an aralkyl group, an alkenyl group, an aryl group, a heteroaryl group, an alkylsilyl group, an arylsilyl group, and one or more hydrogen atoms of these groups are a group substituted with a fluorine atom, a fluorine atom, a cyano group, or —SF5
  • substituent groups S may further have a substituent selected from the substituent group S as a substituent.
  • Preferred groups, more preferred groups, further preferred groups, particularly preferred groups, and most preferred groups of the substituents which may be present are the same as the preferred groups in the substituent group S.
  • Ring A1 represents an optionally substituted aromatic hydrocarbon ring structure or an optionally substituted aromatic heterocyclic ring structure.
  • the aromatic hydrocarbon ring is preferably an aromatic hydrocarbon ring having 6 to 30 carbon atoms. Specifically, benzene ring, naphthalene ring, anthracene ring, triphenylyl ring, acenaphthene ring, fluoranthene ring, and fluorene ring are preferred.
  • an aromatic heterocyclic ring having 3 to 30 carbon atoms containing any one of a nitrogen atom, an oxygen atom, or a sulfur atom as a heteroatom is preferable.
  • furan ring benzofuran ring, thiophene ring and benzothiophene ring.
  • Ring A1 is more preferably a benzene ring, a naphthalene ring or a fluorene ring, particularly preferably a benzene ring or a fluorene ring, most preferably a benzene ring.
  • Ring A2 represents an aromatic heterocyclic structure optionally having a substituent.
  • the aromatic heterocyclic ring is preferably an aromatic heterocyclic ring having 3 to 30 carbon atoms containing a nitrogen atom, an oxygen atom or a sulfur atom as a heteroatom.
  • Ring A1 and Ring A2 Preferred combinations of ring A1 and ring A2 are represented by (ring A1-ring A2), (benzene ring-pyridine ring), (benzene ring-quinoline ring), (benzene ring-quinoxaline ring), (benzene ring- quinazoline ring), (benzene ring-benzothiazole ring), (benzene ring-imidazole ring), (benzene ring-pyrrole ring), (benzene ring-diazole ring), and (benzene ring-thiophene ring).
  • Ring A1 and the ring A2 may have may be optionally selected, but one or more substituents selected from the substituent group S are preferable.
  • Ar201 and Ar 203 each independently represent an optionally substituted aromatic hydrocarbon ring structure or an optionally substituted aromatic heterocyclic ring structure.
  • Ar 202 is an optionally substituted aromatic hydrocarbon ring structure, an optionally substituted aromatic heterocyclic ring structure, or an optionally substituted aliphatic hydrocarbon structure represents
  • the aromatic hydrocarbon ring structure is preferably an aromatic ring structure having 6 to 30 carbon atoms. is a group hydrocarbon ring. Specifically, benzene ring, naphthalene ring, anthracene ring, triphenylyl ring, acenaphthene ring, fluoranthene ring and fluorene ring are preferred, benzene ring, naphthalene ring and fluorene ring are more preferred, and benzene ring is most preferred.
  • Ar 201 or Ar 202 is an optionally substituted benzene ring
  • at least one benzene ring is preferably bonded to the adjacent structure at the ortho- or meta-position, and at least one More preferably, one benzene ring is attached to the adjacent structure at the meta position.
  • Ar 201 , Ar 202 and Ar 203 is a fluorene ring optionally having a substituent
  • the 9- and 9′-positions of the fluorene ring have a substituent or are bonded to the adjacent structure. preferably.
  • Ar 201 , Ar 202 and Ar 203 is an aromatic heterocyclic structure which may have a substituent
  • the aromatic heterocyclic structure preferably contains a nitrogen atom, an oxygen atom, or
  • Ar 201 , Ar 202 and Ar 203 is a carbazole ring optionally having a substituent
  • the N-position of the carbazole ring may have a substituent or be bonded to an adjacent structure. preferable.
  • Ar 202 is an optionally substituted aliphatic hydrocarbon structure, it is an aliphatic hydrocarbon structure having a linear, branched or cyclic structure, preferably having 1 to 24 carbon atoms. more preferably 1 or more and 12 or less carbon atoms, more preferably 1 or more and 8 or less carbon atoms.
  • i1 and i2 each independently represent an integer of 0-12, preferably an integer of 1-12, more preferably an integer of 1-8, more preferably an integer of 1-6. Within this range, an improvement in solubility and an improvement in charge transport properties can be expected.
  • i3 preferably represents an integer of 0-5, more preferably an integer of 0-2, more preferably 0 or 1.
  • i4 preferably represents an integer of 0 to 2, more preferably 0 or 1.
  • Each of k1 and k2 independently represents an integer of preferably 0 to 3, more preferably an integer of 1 to 3, more preferably 1 or 2, and particularly preferably 1.
  • the substituents that Ar 201 , Ar 202 , and Ar 203 may have can be arbitrarily selected, but are preferably one or more substituents selected from the above substituent group S, and preferred groups are also the above-mentioned substituents.
  • group S more preferably unsubstituted (hydrogen atom), alkyl group or aryl group, particularly preferably unsubstituted (hydrogen atom) or alkyl group, most preferably unsubstituted (hydrogen atom ) or a tertiary butyl group.
  • the tertiary butyl group preferably substitutes for Ar 203 when Ar 203 exists, for Ar 202 when Ar 203 does not exist, and for Ar 201 when Ar 202 and Ar 203 do not exist.
  • the compound represented by the above formula (201) is preferably a compound satisfying any one or more of the following (I) to (IV).
  • the structure represented by formula (202) is a structure having a group to which benzene rings are linked, that is, a benzene ring structure, i1 is an integer of 1 to 6, and at least one of the benzene rings is in the ortho position. Alternatively, it is preferably bound to the adjacent structure at the meta position. Such a structure is expected to improve the solubility and the charge transport property.
  • Ar 201 is an aromatic hydrocarbon structure or an aromatic heterocyclic structure
  • i1 is 1
  • Ar 202 is an aliphatic hydrocarbon structure
  • i2 is an integer of 1 to 12
  • Ar 203 is a benzene ring structure
  • i3 is 0 or 1
  • Ar 201 is the above aromatic hydrocarbon structure, more preferably a structure in which 1 to 5 benzene rings are linked, more preferably one benzene ring.
  • Such a structure is expected to improve the solubility and the charge transport property.
  • B 201 -L 200 -B 202 The structure represented by B 201 -L 200 -B 202 is preferably a structure represented by the following formula (203) or the following formula (204).
  • R 211 , R 212 and R 213 each independently represent a substituent.
  • ring B3 represents an aromatic heterocyclic structure containing a nitrogen atom, which may have a substituent. Ring B3 is preferably a pyridine ring.
  • the phosphorescent material represented by the above formula (201) is not particularly limited, but the following are preferred.
  • a phosphorescent material represented by the following formula (205) is also preferable.
  • M 2 represents a metal
  • T represents a carbon atom or a nitrogen atom.
  • R 92 to R 95 each independently represent a substituent. However, when T is a nitrogen atom, R 94 and R95 are not available.
  • M 2 in formula (205) include metals selected from Groups 7 to 11 of the periodic table. Among them, ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold are preferred, and divalent metals such as platinum and palladium are particularly preferred.
  • R 92 and R 93 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, a cyano group, an amino group, an acyl group, an alkoxycarbonyl group, a carboxyl group, represents an alkoxy group, an alkylamino group, an aralkylamino group, a haloalkyl group, a hydroxyl group, an aryloxy group, an aromatic hydrocarbon group or an aromatic heterocyclic group;
  • R94 and R95 each independently represent a substituent represented by the same examples as R92 and R93 .
  • R 92 to R 95 may further have a substituent.
  • the substituents may be the substituents described above.
  • any two or more groups selected from R 92 to R 95 may be linked together to form a ring.
  • the molecular weight of the phosphorescent material is preferably 5,000 or less, more preferably 4,000 or less, and particularly preferably 3,000 or less. Also, the molecular weight of the phosphorescent material is preferably 800 or more, more preferably 1000 or more, and even more preferably 1200 or more. It is believed that within this molecular weight range, the phosphorescent light-emitting material is not agglomerated and uniformly mixed with the charge-transporting material, making it possible to obtain a light-emitting layer with high light-emitting efficiency.
  • the molecular weight of the phosphorescent light-emitting material has a high Tg, melting point, decomposition temperature, etc., and the phosphorescent light-emitting material and the formed light-emitting layer have excellent heat resistance, and the film quality due to gas generation, recrystallization, molecular migration, etc. A large value is preferable from the viewpoint that it is difficult to cause a decrease in the concentration of impurities and an increase in the concentration of impurities due to thermal decomposition of the material.
  • the molecular weight of the phosphorescent light-emitting material is preferably small in terms of facilitating purification of the organic compound.
  • the charge-transporting material used in the light-emitting layer is a material having a skeleton with excellent charge-transporting properties, and may be selected from electron-transporting materials, hole-transporting materials, and bipolar materials capable of transporting both electrons and holes. preferable.
  • skeletons with excellent charge transport properties include aromatic structures, aromatic amine structures, triarylamine structures, dibenzofuran structures, naphthalene structures, phenanthrene structures, phthalocyanine structures, porphyrin structures, thiophene structures, benzylphenyl structures, fluorene structure, quinacridone structure, triphenylene structure, carbazole structure, pyrene structure, anthracene structure, phenanthroline structure, quinoline structure, pyridine structure, pyrimidine structure, triazine structure, oxadiazole structure, imidazole structure, and the like.
  • a compound having a pyridine structure, a pyrimidine structure, or a triazine structure is more preferable, and a compound having a pyrimidine structure or a triazine structure, from the viewpoint of being a material having excellent electron-transporting properties and having a relatively stable structure. is more preferred.
  • a hole-transporting material is a compound having a structure having excellent hole-transporting properties.
  • a pyrene structure is preferable as a structure having excellent hole transport properties, and a carbazole structure, a dibenzofuran structure, or a triarylamine structure is more preferable.
  • the charge-transporting material used in the light-emitting layer preferably has a condensed ring structure of three or more rings, and is a compound having two or more condensed ring structures of three or more rings or a compound having at least one condensed ring of five or more rings. is more preferred. These compounds increase the rigidity of the molecules, making it easier to obtain the effect of suppressing the degree of molecular motion in response to heat. Further, the 3 or more condensed rings and the 5 or more condensed rings preferably have an aromatic hydrocarbon ring or an aromatic heterocyclic ring from the viewpoint of charge transportability and material durability.
  • condensed ring structures having three or more rings include anthracene structure, phenanthrene structure, pyrene structure, chrysene structure, naphthacene structure, triphenylene structure, fluorene structure, benzofluorene structure, indenofluorene structure, indolofluorene structure, Carbazole structure, indenocarbazole structure, indolocarbazole structure, dibenzofuran structure, dibenzothiophene structure and the like.
  • a carbazole structure or an indolocarbazole structure is more preferred from the viewpoint of durability against electric charges.
  • At least one of the charge-transporting materials in the light-emitting layer is preferably a material having a pyrimidine skeleton or a triazine skeleton, from the viewpoint of the durability of the organic electroluminescent device against charges.
  • the charge-transporting material of the light-emitting layer is preferably a polymeric material from the viewpoint of excellent flexibility.
  • a light-emitting layer formed using a material having excellent flexibility is preferable as a light-emitting layer of an organic electroluminescent device formed on a flexible substrate.
  • the weight-average molecular weight is preferably 5,000 or more, more preferably 10,000 or more, and preferably 1,000,000 or less, more preferably 500,000 or less, more preferably 100,000 or less.
  • the charge-transporting material for the light-emitting layer is A low molecular weight is preferred.
  • the molecular weight is preferably 5,000 or less, more preferably 4,000 or less, particularly preferably 3,000 or less, and most preferably 2 ,000 or less, preferably 300 or more, more preferably 350 or more, and still more preferably 400 or more.
  • the fluorescent light-emitting material is not particularly limited, but a compound represented by the following formula (211) is preferable.
  • Ar 241 represents an optionally substituted aromatic hydrocarbon condensed ring structure
  • Ar 242 and Ar 243 are each independently an optionally substituted alkyl group
  • It represents an aromatic hydrocarbon group, an aromatic heterocyclic group, or a group in which these are bonded.
  • n41 is an integer of 1-4.
  • Ar 241 preferably represents an aromatic hydrocarbon condensed ring structure having 10 to 30 carbon atoms, and specific ring structures include naphthalene, acenaphthene, fluorene, anthracene, phenathrene, fluoranthene, pyrene, tetracene, chrysene, perylene and the like. mentioned. Ar 241 is more preferably an aromatic hydrocarbon condensed ring structure having 12 to 20 carbon atoms, and specific ring structures include acenaphthene, fluorene, anthracene, phenathrene, fluoranthene, pyrene, tetracene, chrysene, and perylene. . Ar 241 is more preferably an aromatic hydrocarbon condensed ring structure having 16 to 18 carbon atoms, and specific ring structures include fluoranthene, pyrene and chrysene.
  • n41 is an integer of 1-4, preferably an integer of 1-3, more preferably 1 or 2, most preferably 2.
  • the alkyl group for Ar 242 and Ar 243 is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms.
  • the aromatic hydrocarbon group for Ar 242 and Ar 243 is preferably an aromatic hydrocarbon group having 6 to 30 carbon atoms, more preferably an aromatic hydrocarbon group having 6 to 24 carbon atoms, most preferably a phenyl group. , is a naphthyl group.
  • the aromatic heterocyclic group for Ar 242 and Ar 243 is preferably an aromatic heterocyclic group having 3 to 30 carbon atoms, more preferably an aromatic heterocyclic group having 5 to 24 carbon atoms, specifically carbazolyl. group, dibenzofuranyl group and dibenzothiophenyl group are preferred, and dibenzofuranyl group is more preferred.
  • the substituent that Ar 241 , Ar 242 , and Ar 243 may have is preferably a group selected from the above substituent group S, more preferably a hydrocarbon group contained in the substituent group S, and still more preferably is a hydrocarbon group among preferred groups for the group S of substituents.
  • the charge-transporting material used together with the fluorescent light-emitting material is not particularly limited, but is preferably represented by the following formula (212).
  • R 251 and R 252 are each independently a structure represented by the following formula (213), R 253 represents a substituent, and when there are multiple R 253 , they are the same.
  • n43 is an integer of 0-8.
  • Ar 254 and Ar 255 are each independently an aromatic hydrocarbon structure optionally having a substituent, or a substituted represents a heteroaromatic ring structure optionally having a group, Ar 254 and Ar 255 may be the same or different when there are a plurality of each, n44 is an integer of 1 to 5, n45 is An integer from 0 to 5.
  • Ar 254 is preferably an optionally substituted monocyclic or condensed ring aromatic hydrocarbon structure having 6 to 30 carbon atoms, more preferably optionally substituted , is a monocyclic or condensed ring aromatic hydrocarbon structure having 6 to 12 carbon atoms.
  • Ar 255 is preferably an optionally substituted monocyclic or condensed ring aromatic hydrocarbon structure having 6 to 30 carbon atoms, or an optionally substituted carbon number of 6 to 30 is an aromatic heterocyclic ring structure that is a condensed ring of Ar 255 is more preferably an optionally substituted monocyclic or condensed ring aromatic hydrocarbon structure having 6 to 12 carbon atoms, or an optionally substituted carbon number of 6 to It is an aromatic heterocyclic ring structure with 12 condensed rings.
  • n44 is preferably an integer of 1-3, more preferably 1 or 2.
  • n45 is preferably an integer of 0-3, more preferably an integer of 0-2.
  • the substituent that the substituents R 253 , Ar 254 and Ar 255 may have is preferably a group selected from the above substituent group S. More preferably, it is a hydrocarbon group contained in the substituent group S, and more preferably a hydrocarbon group among groups preferable as the substituent group S.
  • the weight molecular weight of the fluorescence emitting material and the charge transport material is preferably 5,000 or less, more preferably 4,000 or less, particularly preferably 3,000 or less, and most preferably 2,000 or less. Also, it is preferably 300 or more, more preferably 350 or more, and still more preferably 400 or more.
  • a hole blocking layer 6 may be provided between the light emitting layer 5 and an electron injection layer 8 which will be described later.
  • the hole-blocking layer 6 is a layer of the electron-transporting layer that also plays a role of blocking holes moving from the anode 2 from reaching the cathode 9 .
  • the hole blocking layer 6 is a layer laminated on the light emitting layer 5 so as to be in contact with the interface of the light emitting layer 5 on the cathode 9 side.
  • the hole-blocking layer 6 has a role of blocking holes moving from the anode 2 from reaching the cathode 9 and a role of efficiently transporting electrons injected from the cathode 9 toward the light-emitting layer 5. have.
  • Physical properties required for the material constituting the hole blocking layer 6 include high electron mobility and low hole mobility, a large energy gap (difference between HOMO and LUMO), and an excited triplet energy level (T1 ) is high.
  • Examples of materials for the hole blocking layer 6 satisfying these conditions include bis(2-methyl-8-quinolinolato)(phenolato)aluminum, bis(2-methyl-8-quinolinolato)(triphenylsilanolate)aluminum, and the like.
  • mixed ligand complexes bis (2-methyl-8-quinolato) aluminum- ⁇ -oxo-bis- (2-methyl-8-quinolinolato) aluminum binuclear metal complexes such as metal complexes, distyrylbiphenyl derivatives and the like Styryl compounds (Japanese Patent Laid-Open No. 11-242996), triazole derivatives such as 3-(4-biphenylyl)-4-phenyl-5(4-tert-butylphenyl)-1,2,4-triazole (Japan JP-A-7-41759), phenanthroline derivatives such as bathocuproine (JP-A-10-79297), and the like.
  • the compound having at least one pyridine ring substituted at the 2,4,6 positions described in International Publication No. 2005/022962 is also preferable as the material for the hole blocking layer 6 .
  • the method for forming the hole blocking layer 6 is not limited.
  • the hole blocking layer 6 can be formed by a wet film forming method, a vapor deposition method, or other methods.
  • the film thickness of the hole blocking layer 6 is arbitrary as long as it does not significantly impair the effects of the present invention.
  • the thickness of the hole blocking layer 6 is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less.
  • the electron transport layer 7 is a layer for transporting electrons provided between the light emitting layer 5 and the cathode 9 .
  • the electron injection efficiency from the cathode 9 or the adjacent layer on the cathode 9 side is usually high, and the injected electrons having high electron mobility can be efficiently transported.
  • a compound that can Compounds satisfying these conditions include, for example, metal complexes such as aluminum complexes and lithium complexes of 8-hydroxyquinoline (JP-A-59-194393), metal complexes of 10-hydroxybenzo[h]quinoline, Oxadiazole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzene (US Pat.
  • Electron transporting materials used in the electron transporting layer 7 include electron transporting organic compounds typified by nitrogen-containing heterocyclic compounds such as bathophenanthroline and metal complexes such as aluminum complexes of 8-hydroxyquinoline, sodium, potassium, and cesium.
  • Lithium by doping an alkali metal such as rubidium (described in JP-A-10-270171, JP-A-2002-100478, JP-A-2002-100482, etc.), electron injection It is preferable because it makes it possible to achieve both transportability and excellent film quality. It is also effective to dope the electron-transporting organic compound with an inorganic salt such as lithium fluoride or cesium carbonate.
  • the method for forming the electron transport layer 7 is not limited.
  • the electron transport layer 7 can be formed by a wet film-forming method, a vapor deposition method, or other methods.
  • the film thickness of the electron transport layer 7 is arbitrary as long as it does not significantly impair the effects of the present invention.
  • the thickness of the electron transport layer 7 is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • an electron injection layer 8 may be provided between the electron transport layer 7 and the cathode 9, which will be described later.
  • the electron injection layer 8 is made of an inorganic salt or the like.
  • Examples of materials for the electron injection layer 8 include lithium fluoride (LiF), magnesium fluoride (MgF 2 ), lithium oxide (Li 2 O), cesium (II) carbonate (CsCO 3 ), and the like (Applied Physics Letters). , 1997, Vol.70, pp.152; Japanese Patent Laid-Open No. 10-74586; IEEE Transactions on Electron Devices, 1997, Vol.44, pp.1245; SID 04 Digest, pp.154, etc.).
  • the electron injection layer 8 Since the electron injection layer 8 often does not have a charge transport property, it is preferably used as an extremely thin film in order to efficiently perform electron injection, and the film thickness is usually 0.1 nm or more, preferably 5 nm or less. be.
  • the cathode 9 is an electrode that plays a role of injecting electrons into the layer on the light emitting layer 5 side.
  • Materials for the cathode 9 generally include metals such as aluminum, gold, silver, nickel, palladium and platinum, metal oxides such as indium and/or tin oxides, metal halides such as copper iodide, carbon black, Alternatively, conductive polymers such as poly(3-methylthiophene), polypyrrole, polyaniline, and the like can be used. Among these, metals having a low work function are preferred for efficient electron injection, and suitable metals such as tin, magnesium, indium, calcium, aluminum and silver, or alloys thereof are used. Specific examples include low work function alloy electrodes such as magnesium-silver alloys, magnesium-indium alloys, and aluminum-lithium alloys.
  • Only one material may be used for the cathode 9, or two or more materials may be used in any combination and ratio.
  • the film thickness of the cathode 9 varies depending on the required transparency.
  • the visible light transmittance is usually 60% or more, preferably 80% or more.
  • the thickness of the cathode 9 is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • the thickness of the cathode 9 can be arbitrary as long as it can be opaque, and the cathode can be the same as the substrate.
  • a metal having a high work function and being stable to the atmosphere is used for the purpose of protecting the cathode made of a low work function metal such as an alkali metal such as sodium or cesium, or an alkaline earth metal such as barium or calcium.
  • a metal having a high work function and being stable to the atmosphere is used for the purpose of protecting the cathode made of a low work function metal such as an alkali metal such as sodium or cesium, or an alkaline earth metal such as barium or calcium.
  • Lamination of metal layers is preferable because it increases the stability of the device.
  • Metals such as aluminum, silver, copper, nickel, chromium, gold, platinum, etc. are used for this purpose. These materials may be used alone, or two or more of them may be used in any combination and ratio.
  • the organic electroluminescence element in this embodiment may have another configuration without departing from the spirit thereof.
  • any layer may be provided between the anode 2 and the cathode 9 in addition to the layers described above. It may be omitted.
  • the layer structure described above it is also possible to stack components other than the substrate in the reverse order.
  • the injection layer 3 and the anode 2 may be provided in this order.
  • the organic electroluminescent element in the present embodiment may be configured as a single organic electroluminescent element, or may be applied to a configuration in which a plurality of organic electroluminescent elements are arranged in an array. It may be applied to a configuration arranged in a -Y matrix.
  • Each layer described above may contain components other than those described as materials as long as the effects of the present invention are not significantly impaired.
  • Organic electroluminescence device such as an organic EL display device or an organic EL lighting can be formed by providing two or more organic electroluminescence elements that emit light in different colors.
  • this organic electroluminescence device by using at least one, preferably all organic electroluminescence elements as the organic electroluminescence elements of the present embodiment, a high-quality organic electroluminescence device can be provided.
  • Organic EL display device There are no particular restrictions on the type and structure of the organic EL display device using the organic electroluminescence device of the present embodiment, and the organic electroluminescence device of the present embodiment can be assembled according to a conventional method.
  • an organic EL display device can be formed by a method as described in "Organic EL Display” (Ohmsha, August 20, 2004, written by Shizuo Tokito, Chihaya Adachi, and Hideyuki Murata). can.
  • Arylamine polymer 1 represented by the above formula was synthesized by a conventionally known method.
  • the weight average molecular weight was 29140
  • the molecular weight distribution represented by weight average molecular weight/number average molecular weight was 1.25
  • the glass transition point was 229°C.
  • a glass substrate having a thickness of 0.7 mm and a size of 25 ⁇ 37 mm was washed with UV/ozone.
  • a first composition was prepared by dissolving the arylamine polymer 1 produced above as a first functional material in anisole as a solvent, and a film was formed on the entire surface of a glass substrate by spin coating.
  • the content of the arylamine polymer in the first composition is 3.2 wt%. This was heated at 220° C. for 30 minutes in an N 2 atmosphere to obtain an insolubilized first functional film with a thickness of 100 nm.
  • the holding time (immersion time), the viscosity of the solvent component at 23° C., and the Hansen solubility parameter ⁇ P of the solvent component are as shown in Table 1, and the structural formula of each solvent component is also shown.
  • the second composition above contains only the solvent component. Therefore, the viscosity of the second composition at 23 ° C. is the same as the viscosity of the solvent component and the viscosity of the second composition when there is only one solvent component, that is, in the cases of Examples 1 to 8 and Comparative Examples 1 to 4. Viscosity is the same.
  • the viscosity of Example 8 is more than 15 mPa s, when actually obtaining an organic semiconductor device, the addition of a low-viscosity solvent, the decrease in the solid content concentration in the second composition, and the increase in viscosity It is preferable to set the viscosity of the second composition to 15 mPa ⁇ s or less by using a low-molecular-weight solid content that is difficult to dissolve.
  • the viscosity of the second composition is determined by the viscosity of the two solvent components and their content ratio.
  • the film thickness of the first functional film was determined by a reflection spectroscopic film thickness meter OPTM. Reflection spectra were measured at eight in-plane locations of the first functional film, and the measurement locations were the same among the substrates, and the reflection spectra were measured before and after ⁇ immersion of the first functional film>.
  • the concentration of the arylamine polymer in the first composition and the number of spin-coating rotations in advance nine types of thin films having different thicknesses of the first functional film were prepared, and the KOSAKA Surfcoder was used.
  • a calibrated optical model was generated by correlating the step thickness and reflectance spectra measured by . From the measured reflection spectrum, an optical model was used to calculate the optical film thickness at eight locations.
  • E-type viscometer RE85L manufactured by Toki Sangyo Co., Ltd.
  • Example 9 and Example 10 which contain the first solvent component of Example 5 and the second solvent component of Comparative Example 5, the residual film rate is high, and the appropriate solvent is included as the first solvent. Thus, it was found that the elution of the first functional material can be suppressed even in the presence of the second solvent.

Abstract

The present invention relates to a method for manufacturing an organic semiconductor element, the method comprising a step for applying and heating a first composition to provide a first functional film, and a step for applying a second composition on the first functional film to provide a second functional film, the first composition including a first functional material, wherein the first functional material includes an arylamine polymer having none of a bridging group, a polymerization group, or a cleavable solubilizing group, and having a weight-average molecular weight of 15000 to 50000 inclusive, and the second composition includes a solvent and has a viscosity of less than or equal to 15 mPa・s at 23℃, the solvent including at least one first solvent component having a viscosity of greater than or equal to 3 mPa・s at 23℃.

Description

有機半導体素子の製造方法Method for manufacturing organic semiconductor element
 本発明は、機能性材料からなる有機膜である機能性膜を好適に形成できる有機半導体素子の製造方法に関する。 The present invention relates to a method for manufacturing an organic semiconductor element capable of suitably forming a functional film, which is an organic film made of a functional material.
 有機半導体素子として、有機電界発光素子や有機トランジスタ等がある。その中で、有機電界発光素子の製造方法としては、有機材料を真空蒸着法により成膜し、積層する製造方法が一般的である。これに対し、近年、より材料使用効率に優れた製造方法として、溶液化した有機材料をインクジェット法等により成膜し、積層する湿式成膜による製造方法の研究が盛んになってきている。 Organic semiconductor elements include organic electroluminescent elements and organic transistors. Among them, as a method for manufacturing an organic electroluminescence element, a method of forming a film of an organic material by a vacuum deposition method and laminating the films is generally used. On the other hand, in recent years, as a manufacturing method with more efficient use of materials, there has been active research into a manufacturing method using a wet film-forming method in which organic materials in solution are deposited by an ink-jet method or the like and laminated.
 複数の層を湿式成膜で積層して有機電界発光素子を形成するためには、塗布後の薄膜を、上層に塗布する組成物に対して不溶とする必要がある。一般的に、組成物に架橋基や重合基を持たせ、塗布後の処理によって結合を生成し不溶とする方式が、最も安定に用いられる。 In order to form an organic electroluminescent element by laminating a plurality of layers by wet film formation, it is necessary to make the thin film after application insoluble in the composition applied to the upper layer. In general, the most stable method is to give the composition a cross-linking group or a polymerizable group, and then treat it after coating to form a bond to make it insoluble.
 しかし、架橋基や重合基を有する機能材料を用いて作製した正孔輸送層上に発光層を積層すると、特に青色素子の寿命や、青色・緑色素子の発光効率に、悪影響を及ぼす事が分かっている。 However, it has been found that laminating a light-emitting layer on a hole-transporting layer fabricated using a functional material having a cross-linking group or a polymerizable group has an adverse effect on the lifetime of blue devices and the luminous efficiency of blue and green devices. ing.
 例えば、特許文献1では、架橋基や重合基を含まない半導体材料を用いた不溶化の方法として、熱、真空及び外気乾燥処理の1又は2以上により部分的に不溶とし、溶解する残部を洗浄除去して不溶化部分のみを用いる手法が開示されている。
 特許文献2には、半導体材料として積層したポリマーを、そのガラス転移温度より高い温度で加熱することで部分的に不溶性とする手法が開示されている。
 特許文献3には、電荷輸送層を加熱、電磁波照射、特にUV照射することにより、架橋性基が存在しなくても、電荷輸送層を不溶性にできることが開示されている。
 特許文献4には、熱解離可溶性基が、熱による化学変化により解離して不溶化する方法が開示されている。
For example, in Patent Document 1, as an insolubilization method using a semiconductor material that does not contain a cross-linking group or a polymerizable group, it is partially insoluble by one or more of heat, vacuum, and drying in the open air, and the dissolved residue is washed away. A method using only the insolubilized portion as a base is disclosed.
Patent Document 2 discloses a method of partially insolubilizing a polymer layered as a semiconductor material by heating it at a temperature higher than its glass transition temperature.
Patent Literature 3 discloses that the charge transport layer can be made insoluble by heating, electromagnetic wave irradiation, particularly UV irradiation, even in the absence of a crosslinkable group.
Patent Document 4 discloses a method in which thermally dissociable and soluble groups are dissociated and insolubilized by chemical change due to heat.
日本国特表2005-537628号公報Japanese Patent Publication No. 2005-537628 日本国特開2013-065564号公報Japanese Patent Application Laid-Open No. 2013-065564 日本国特開2014-212126号公報Japanese Patent Application Laid-Open No. 2014-212126 日本国特開2010-059417号公報Japanese Patent Application Laid-Open No. 2010-059417
 しかしながら、特許文献1に開示されたような、架橋基や重合基を含まない半導体材料を用いた不溶化の方法は、完全な不溶化には至っていない。特許文献2に開示された方法も、洗浄残部の利用を想定しており、積層した材料そのものの完全な不溶化には至っていない点、同様である。
 特許文献3も、洗浄残部の利用を想定しているが、部分的な溶解は上層との界面混合により好適であるとしている。しかし、光学干渉の利用が損なわれるうえ、より短波長の青色素子・燐光緑色素子では、効率・寿命の劣化につながる恐れがある。また、残部の膜厚は分子量に依存するとされており、20nmの電荷輸送層を得るためには、重量分子量30万の電荷輸送材料を用いることが必要になる。異物によるリークの回避や色純度の高い光学干渉条件を得られる、2次の干渉を用いるためには、電荷輸送層は50~150nmの膜厚が好適であり、この手法にてその膜厚の電荷輸送層を形成することは難しい。
 特許文献4に開示されたような、熱解離可溶性基の化学変化を用いて不溶化する方法は、解離物の上層への混入の点で、素子効率への障害となる可能性がある。
However, the insolubilization method using a semiconductor material that does not contain a cross-linking group or a polymerizable group, such as that disclosed in Patent Document 1, does not result in complete insolubilization. The method disclosed in Patent Literature 2 is also based on the assumption that the residue after washing is used, and is similar in that the laminated material itself is not completely insolubilized.
Patent Document 3 also assumes the use of the residue after washing, but states that partial dissolution is more suitable for interfacial mixing with the upper layer. However, it impairs the use of optical interference, and in blue and phosphorescent green elements with shorter wavelengths, it may lead to deterioration in efficiency and lifetime. Also, the film thickness of the remainder is said to depend on the molecular weight, and in order to obtain a charge transport layer of 20 nm, it is necessary to use a charge transport material with a weight molecular weight of 300,000. In order to avoid leaks due to foreign matter and obtain optical interference conditions with high color purity, the charge transport layer preferably has a thickness of 50 to 150 nm. Forming a charge transport layer is difficult.
The method of insolubilizing the thermally dissociable soluble group by chemical change, as disclosed in Patent Document 4, may impede the efficiency of the device in terms of contamination of the upper layer with dissociated substances.
 また、一般的に、上層を構成する組成物で用いられる溶媒を、下層を構成する材料に対して溶解性の低い“直交溶媒”とすることが有効であることが知られている。しかし、塗布型有機電界発光素子では、積層する2層の機能性材料の構造が近く、直交溶媒の利用には制限がある。 In addition, it is generally known that it is effective to use an "orthogonal solvent" that has low solubility in the material that constitutes the lower layer as the solvent used in the composition that constitutes the upper layer. However, in the coating type organic electroluminescence device, the structure of the two layers of functional materials to be laminated is close, and the use of the orthogonal solvent is limited.
 また、下層を構成する機能性材料を、分子量が数十万の溶解性の低い材料とすると不溶化が容易になる。しかし、分子量の大きい機能性材料を用いることは、塗布組成物の粘度を高め、塗布性への悪影響を及ぼし、ひいては、高濃度インクを必要とする厚膜構成や高精細化に制約をもたらす。 Also, if the functional material that constitutes the lower layer is a low-soluble material with a molecular weight of several hundred thousand, insolubilization is facilitated. However, the use of a functional material with a large molecular weight increases the viscosity of the coating composition and adversely affects the coating properties, which in turn limits the thick film construction and high definition that require high-concentration ink.
 さらに、湿式成膜による有機半導体素子の製造の産業化が近づく中、一層実用的な不溶化が求められている。下層の不溶化処理を短時間かつ低温で行うこと、また、より大面積のパネルに塗布するため、塗布に要する長い時間の溶媒浸潤に耐えることが求められている。 Furthermore, as the industrialization of the production of organic semiconductor elements by wet film formation approaches, more practical insolubilization is required. Insolubilization treatment of the lower layer is required to be carried out in a short time and at a low temperature, and since the coating is applied to a panel having a larger area, it is required to withstand solvent infiltration for a long time required for coating.
 本発明は、上記を鑑みてなされたものである。すなわち、有機半導体素子を構成する有機物を含む機能性膜を湿式成膜により形成する場合において、上層を設けた際の機能性膜の不溶性に優れ、広く利用可能な半導体発光素子の製造方法を提供することを目的とする。
 より具体的には、上記有機物に架橋基、重合基又は脱離性可溶化基を持たせることなく、良好な不溶化の効果を奏することを目的とする。また、上記有機物及び上層を広く選択できることで、発光効率・発光寿命及び塗布性に優れる機能性材料の積層を可能にする有機電界発光素子の製造方法を提供することを目的とする。
The present invention has been made in view of the above. That is, in the case of forming a functional film containing an organic substance constituting an organic semiconductor device by wet film formation, the functional film is excellent in insolubility when the upper layer is provided, and a method for manufacturing a semiconductor light emitting device that can be widely used is provided. intended to
More specifically, the object is to exhibit a good insolubilizing effect without imparting a cross-linking group, a polymerizable group or a detachable solubilizing group to the organic substance. Another object of the present invention is to provide a method for manufacturing an organic electroluminescence device that enables lamination of functional materials with excellent luminous efficiency, luminous life and coatability by allowing a wide selection of the organic substance and upper layer.
 本発明者らが鋭意検討した結果、機能性膜を構成する有機物が、架橋基、重合基及び脱離性可溶化基のいずれも有さない場合であっても、その上層となる組成物が特定の要件を満たすことで、上記課題を解決できることを見出した。
 すなわち、本発明の要旨は、以下の通りである。
As a result of intensive studies by the present inventors, even when the organic substance constituting the functional film does not have any of a cross-linking group, a polymerizing group, and a detachable solubilizing group, the composition serving as the upper layer is We have found that the above problems can be solved by satisfying specific requirements.
That is, the gist of the present invention is as follows.
[1]
 第一の組成物を塗布及び加熱して第一の機能性膜を設ける工程と、
 前記第一の機能性膜の上に第二の組成物を塗布して第二の機能性膜を設ける工程と、を有し、
 前記第一の組成物は第一の機能性材料を含み、
 前記第一の機能性材料は、架橋基、重合基及び脱離性可溶化基のいずれも有さない、重量平均分子量が15000以上50000のアリールアミンポリマーを含み、
 前記第二の組成物は溶媒を含み、かつ23℃における粘度が15mPa・s以下であり、
 前記溶媒が、23℃における粘度が3mPa・s以上である第一の溶媒成分を少なくとも一種含む、有機半導体素子の製造方法。
[2]
 前記溶媒が、23℃における粘度が3mPa・s未満である第二の溶媒成分をさらに含み、
 前記第一の溶媒成分の流動活性化エネルギーが17kJ/mol以上である、[1]に有機半導体素子の製造方法。
[3]
 第一の組成物を塗布及び加熱して第一の機能性膜を設ける工程と、
 前記第一の機能性膜の上に第二の組成物を塗布して第二の機能性膜を設ける工程と、を有し、
 前記第一の組成物は第一の機能性材料を含み、
 前記第一の機能性材料は、架橋基、重合基及び脱離性可溶化基のいずれも有さないアリールアミンポリマーを含み、
 前記第二の組成物は溶媒を含み、かつ23℃における粘度が15mPa・s以下であり、
 前記溶媒が、流動活性化エネルギーが17kJ/mol以上である第一の溶媒成分を少なくとも一種含み、
 前記溶媒が、23℃における粘度が3mPa・s未満である第二の溶媒成分をさらに含む、有機半導体素子の製造方法。
[4]
 前記アリールアミンポリマーの重量平均分子量が15000以上50000以下である[3]に記載の有機半導体素子の製造方法。
[5]
 第一の組成物を塗布及び加熱して第一の機能性膜を設ける工程と、
 前記第一の機能性膜の上に第二の組成物を塗布して第二の機能性膜を設ける工程と、を有し、
 前記第一の組成物は第一の機能性材料を含み、
 前記第一の機能性材料は、架橋基、重合基及び脱離性可溶化基のいずれも有さないアリールアミンポリマーを含み、
 前記第二の組成物は溶媒を含み、かつ23℃における粘度が15mPa・s以下であり、
 前記溶媒が、23℃における粘度が3mPa・s以上である第一の溶媒成分を少なくとも一種含み、
 前記溶媒が、23℃における粘度が3mPa・s未満である第二の溶媒成分をさらに含み、
 前記第一の溶媒成分の流動活性化エネルギーが17kJ/mol以上である、有機半導体素子の製造方法。
[6]
 前記アリールアミンポリマーは、下記式(50)で表される繰り返し単位を有する、[1]~[5]のいずれか1つに記載の有機半導体素子の製造方法。
[1]
applying and heating the first composition to provide a first functional film;
and providing a second functional film by applying a second composition on the first functional film,
the first composition comprises a first functional material;
The first functional material comprises an arylamine polymer having a weight average molecular weight of 15,000 to 50,000 and having neither a crosslinkable group, a polymerizable group, nor a detachable solubilizing group,
The second composition contains a solvent and has a viscosity of 15 mPa s or less at 23 ° C.,
A method for producing an organic semiconductor device, wherein the solvent contains at least one first solvent component having a viscosity of 3 mPa·s or more at 23°C.
[2]
The solvent further comprises a second solvent component having a viscosity of less than 3 mPa s at 23°C,
The method for producing an organic semiconductor device according to [1], wherein the flow activation energy of the first solvent component is 17 kJ/mol or more.
[3]
applying and heating the first composition to provide a first functional film;
and providing a second functional film by applying a second composition on the first functional film,
the first composition comprises a first functional material;
the first functional material comprises an arylamine polymer having neither a cross-linking group, a polymerizing group, nor a leaving solubilizing group;
The second composition contains a solvent and has a viscosity of 15 mPa s or less at 23 ° C.,
The solvent contains at least one first solvent component having a flow activation energy of 17 kJ/mol or more,
A method for producing an organic semiconductor device, wherein the solvent further contains a second solvent component having a viscosity of less than 3 mPa·s at 23°C.
[4]
The method for producing an organic semiconductor device according to [3], wherein the arylamine polymer has a weight average molecular weight of 15,000 or more and 50,000 or less.
[5]
applying and heating the first composition to provide a first functional film;
and providing a second functional film by applying a second composition on the first functional film,
the first composition comprises a first functional material;
the first functional material comprises an arylamine polymer having neither a cross-linking group, a polymerizing group, nor a leaving solubilizing group;
The second composition contains a solvent and has a viscosity of 15 mPa s or less at 23 ° C.,
The solvent contains at least one first solvent component having a viscosity of 3 mPa s or more at 23° C.,
The solvent further comprises a second solvent component having a viscosity of less than 3 mPa s at 23°C,
A method for producing an organic semiconductor device, wherein the flow activation energy of the first solvent component is 17 kJ/mol or more.
[6]
The method for producing an organic semiconductor device according to any one of [1] to [5], wherein the arylamine polymer has a repeating unit represented by the following formula (50).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(50)中、
 Ar51は、置換基を有していてもよい芳香族炭化水素基及び置換基を有していてもよい芳香族複素環基の少なくとも一方から選択される、1つの基又は複数の基が連結した基を表し、前記置換基はいずれも架橋基、重合基又は脱離性可溶化基以外の基である。
 Ar52は、置換基を有していてもよい2価の芳香族炭化水素基及び置換基を有していてもよい2価の芳香族複素環基の少なくとも一方から選択される1つの基又は複数の基が連結した2価の基を表し、前記連結は直接又は連結基を介してなされており、前記置換基はいずれも架橋基、重合基又は脱離性可溶化基以外の基である。
 Ar51とAr52は直接又は連結基を介して結合して環を形成していてもよい。
 ただし、Ar51、Ar52は架橋基、重合基及び脱離性可溶化基のいずれも有さない。)
(In formula (50),
Ar 51 is selected from at least one of an optionally substituted aromatic hydrocarbon group and an optionally substituted aromatic heterocyclic group, wherein one group or a plurality of groups are linked Each of the substituents is a group other than a cross-linking group, a polymerizing group, or a detachable solubilizing group.
Ar 52 is one group selected from at least one of an optionally substituted divalent aromatic hydrocarbon group and an optionally substituted divalent aromatic heterocyclic group, or Represents a divalent group in which a plurality of groups are linked, the linkage is made directly or via a linking group, and the substituents are all groups other than a cross-linking group, a polymerizing group, or a detachable solubilizing group. .
Ar 51 and Ar 52 may combine directly or via a linking group to form a ring.
However, Ar 51 and Ar 52 have neither a cross-linking group, a polymerizing group nor a leaving solubilizing group. )
[7]
 前記アリールアミンポリマーが、主鎖に複数のベンゼン環構造がパラ位で連結した構造を含み、前記複数のベンゼン環構造のうち少なくとも1つが、隣り合うベンゼン環構造と結合する炭素原子の隣に位置する2つの炭素原子のうち少なくとも一つが置換基を有する、[6]に記載の有機半導体素子の製造方法。
[8]
 前記式(50)で表される繰り返し単位が下記式(54)で表される、[6]又は[7]に記載の有機半導体素子の製造方法。
[7]
The arylamine polymer includes a structure in which a plurality of benzene ring structures are linked at the para position in the main chain, and at least one of the plurality of benzene ring structures is positioned next to the carbon atom that bonds to the adjacent benzene ring structure. The method for producing an organic semiconductor element according to [6], wherein at least one of the two carbon atoms to have a substituent.
[8]
The method for producing an organic semiconductor device according to [6] or [7], wherein the repeating unit represented by the formula (50) is represented by the following formula (54).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(54)中、
 Ar51は前記式(50)におけるAr51と同様であり、
 Xは、-C(R)(R)-、-N(R)-又は-C(R11)(R12)-C(R13)(R14)-であり、
 R及びRは、それぞれ独立して、置換基を有していてもよいアルキル基であり、前記置換基は架橋基、重合基又は脱離性可溶化基以外の基であり、
 R~R及びR11~R14は、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、又は置換基を有していてもよい芳香族炭化水素基であり、前記置換基はいずれも架橋基、重合基又は脱離性可溶化基以外の基であり、
 a及びbは、それぞれ独立して、0~4の整数であり、
 cは、1~3の整数であり、
 dは、0~4の整数であり、
 Rが複数ある場合は、複数のRは同一であっても異なっていてもよく、
 Rが複数ある場合は、複数のRは同一であっても異なっていてもよい。)
(In formula (54),
Ar 51 is the same as Ar 51 in the formula (50),
X is -C(R 7 )(R 8 )-, -N(R 9 )- or -C(R 11 )(R 12 )-C(R 13 )(R 14 )-;
R 1 and R 2 are each independently an optionally substituted alkyl group, and the substituent is a group other than a cross-linking group, a polymerizing group or a detachable solubilizing group;
R 7 to R 9 and R 11 to R 14 are each independently a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aralkyl group, or a substituted an aromatic hydrocarbon group that may be
a and b are each independently an integer of 0 to 4;
c is an integer from 1 to 3,
d is an integer from 0 to 4,
When there are multiple R 1s , the multiple R 1s may be the same or different,
When there are multiple R 2 s, the multiple R 2s may be the same or different. )
[9]
 前記式(54)においてa+bで表される値が1以上である、[8]に記載の有機半導体素子の製造方法。
[10]
 前記第一の溶媒成分のハンセン溶解度パラメーターδPがδP<7の関係を満たす、[1]~[9]のいずれか1つに記載の有機半導体素子の製造方法。
[11]
 前記第二の組成物が前記第一の機能性膜の上に塗布されてから、前記溶媒が蒸発するまでに、2分以上を要する、[1]~[10]のいずれか1つに記載の有機半導体素子の製造方法。
[12]
 前記第二の組成物は、前記第一の機能性材料とは異なる第二の機能性材料を含み、
 前記第二の機能性材料は、分子量が2000未満である低分子芳香族化合物を含む、[1]~[11]のいずれか1つに記載の有機半導体素子の製造方法。
[13]
 前記第一の機能性膜が正孔輸送層であり、前記第二の機能性膜が発光層である、[1]~[12]のいずれか1つに記載の有機半導体素子の製造方法。
[14]
 前記第一の機能性膜を設ける工程における加熱が、前記アリールアミンポリマーのガラス転移点より低い温度で行われる、[1]~[13]のいずれか1つに記載の有機半導体素子の製造方法。
[15]
 前記第一の溶媒成分の、COSMO-RS溶媒和モデルで計算された理論表面積(Å)、体積(Å)及び沸点(℃)、並びに、23℃における粘度(mPa・s)が下記関係式(A)を満たす、[1]~[14]のいずれか1つに記載の有機半導体素子の製造方法。
  32×粘度-4.3×理論表面積+5.4×体積-沸点>150・・・(A)
[16]
 前記第二の組成物における前記第一の溶媒成分の合計の含有量が15質量%以上である、[1]~[15]のいずれか1つに記載の有機半導体素子の製造方法。
[17]
 前記第一の溶媒成分が芳香族炭化水素構造を含む、[1]~[16]のいずれか1つに記載の有機半導体素子の製造方法。
[9]
The method for producing an organic semiconductor element according to [8], wherein the value represented by a+b in the formula (54) is 1 or more.
[10]
The method for producing an organic semiconductor device according to any one of [1] to [9], wherein the Hansen solubility parameter δP of the first solvent component satisfies the relationship δP<7.
[11]
According to any one of [1] to [10], it takes 2 minutes or more for the solvent to evaporate after the second composition is applied onto the first functional film. A method for producing an organic semiconductor device according to
[12]
the second composition comprises a second functional material different from the first functional material;
The method for producing an organic semiconductor device according to any one of [1] to [11], wherein the second functional material contains a low molecular weight aromatic compound having a molecular weight of less than 2000.
[13]
The method for producing an organic semiconductor device according to any one of [1] to [12], wherein the first functional film is a hole transport layer and the second functional film is a light emitting layer.
[14]
The method for producing an organic semiconductor device according to any one of [1] to [13], wherein the heating in the step of providing the first functional film is performed at a temperature lower than the glass transition point of the arylamine polymer. .
[15]
The theoretical surface area (Å 2 ), volume (Å 3 ) and boiling point (° C.) of the first solvent component calculated by the COSMO-RS solvation model, and the viscosity (mPa s) at 23° C. are in the following relationship: The method for producing an organic semiconductor device according to any one of [1] to [14], which satisfies the formula (A).
32 x viscosity - 4.3 x theoretical surface area + 5.4 x volume - boiling point > 150 (A)
[16]
The method for producing an organic semiconductor device according to any one of [1] to [15], wherein the total content of the first solvent component in the second composition is 15% by mass or more.
[17]
The method for producing an organic semiconductor device according to any one of [1] to [16], wherein the first solvent component contains an aromatic hydrocarbon structure.
 本発明は、有機半導体素子を構成する有機物を含む機能性膜を湿式成膜により形成する場合において、架橋基、重合基、脱離性可溶化基を持たせて塗布後の処理によって不溶とできる有機物を用いることなく、その機能性膜上に別の膜を形成させることができる。機能性膜に含まれる有機物を広く選択でき、また、上層となる別の膜を形成する組成物も広く選択できることから、例えば、有機半導体素子が有機電界発光素子である場合には、発光効率・発光寿命及び塗布性に優れる機能性材料の積層を可能にする有機電界発光素子の製造方法を提供することができる。 According to the present invention, in the case of forming a functional film containing an organic substance constituting an organic semiconductor element by wet film formation, a cross-linking group, a polymerizable group, and a detachable solubilizing group can be imparted to the functional film to make it insoluble by treatment after coating. Another film can be formed on the functional film without using an organic substance. The organic substance contained in the functional film can be widely selected, and the composition for forming the upper layer can be widely selected. It is possible to provide a method for manufacturing an organic electroluminescence device that enables lamination of functional materials with excellent luminous life and coating properties.
図1は、一般的な有機電界発光素子の構造例を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing a structural example of a general organic electroluminescence device.
 本発明者らは、下記(a)~(c)のいずれかの製造方法を用いることで、上記課題を解決できることを見出した。 The inventors have found that the above problems can be solved by using any one of the following production methods (a) to (c).
(a)第一の組成物を塗布及び加熱して第一の機能性膜を設ける工程と、前記第一の機能性膜の上に第二の組成物を塗布して第二の機能性膜を設ける工程と、を有し、前記第一の組成物は第一の機能性材料を含み、前記第一の機能性材料は、架橋基、重合基及び脱離性可溶化基のいずれも有さない、重量平均分子量が15000以上50000のアリールアミンポリマーを含み、前記第二の組成物は溶媒を含み、かつ23℃における粘度が15mPa・s以下であり、前記溶媒が、23℃における粘度が3mPa・s以上である第一の溶媒成分を少なくとも一種含む、有機半導体素子の製造方法。 (a) applying and heating a first composition to provide a first functional film; and applying a second composition on the first functional film to form a second functional film. and, wherein the first composition comprises a first functional material, and the first functional material has both a cross-linking group, a polymerizing group and a detachable solubilizing group. does not contain an arylamine polymer having a weight average molecular weight of 15000 or more and 50000, the second composition contains a solvent, and has a viscosity of 15 mPa s or less at 23 ° C., and the solvent has a viscosity of 15 mPa s or less at 23 ° C. A method for producing an organic semiconductor device, comprising at least one first solvent component having a viscosity of 3 mPa·s or more.
(b)第一の組成物を塗布及び加熱して第一の機能性膜を設ける工程と、前記第一の機能性膜の上に第二の組成物を塗布して第二の機能性膜を設ける工程と、を有し、前記第一の組成物は第一の機能性材料を含み、前記第一の機能性材料は、架橋基、重合基及び脱離性可溶化基のいずれも有さないアリールアミンポリマーを含み、前記第二の組成物は溶媒を含み、かつ23℃における粘度が15mPa・s以下であり、前記溶媒が、流動活性化エネルギーが17kJ/mol以上である第一の溶媒成分を少なくとも一種含み、前記溶媒が、23℃における粘度が3mPa・s未満である第二の溶媒成分をさらに含む、有機半導体素子の製造方法。 (b) applying and heating a first composition to form a first functional film; and applying a second composition onto the first functional film to form a second functional film. and, wherein the first composition comprises a first functional material, and the first functional material has both a cross-linking group, a polymerizing group and a detachable solubilizing group. The second composition contains a solvent and has a viscosity at 23 ° C. of 15 mPa s or less, and the solvent has a flow activation energy of 17 kJ / mol or more. A method for producing an organic semiconductor device, comprising at least one solvent component, the solvent further comprising a second solvent component having a viscosity of less than 3 mPa·s at 23°C.
(c)第一の組成物を塗布及び加熱して第一の機能性膜を設ける工程と、前記第一の機能性膜の上に第二の組成物を塗布して第二の機能性膜を設ける工程と、を有し、前記第一の組成物は第一の機能性材料を含み、前記第一の機能性材料は、架橋基、重合基及び脱離性可溶化基のいずれも有さないアリールアミンポリマーを含み、前記第二の組成物は溶媒を含み、かつ23℃における粘度が15mPa・s以下であり、前記溶媒が、23℃における粘度が3mPa・s以上である第一の溶媒成分を少なくとも一種含み、前記溶媒が、23℃における粘度が3mPa・s未満である第二の溶媒成分をさらに含み、前記第一の溶媒成分の流動活性化エネルギーが17kJ/mol以上である、有機半導体素子の製造方法。 (c) applying and heating a first composition to form a first functional film; and applying a second composition onto the first functional film to form a second functional film. and, wherein the first composition comprises a first functional material, and the first functional material has both a cross-linking group, a polymerizing group and a detachable solubilizing group. The second composition contains a solvent and has a viscosity of 15 mPa s or less at 23 ° C., and the solvent has a viscosity of 3 mPa s or more at 23 ° C. At least one solvent component is included, the solvent further includes a second solvent component having a viscosity of less than 3 mPa s at 23 ° C., and the flow activation energy of the first solvent component is 17 kJ / mol or more. A method for producing an organic semiconductor device.
 本実施形態に係る製造方法によれば、有機物として、アリールアミンポリマーに架橋基、重合基又は脱離性可溶化基を持たせて塗布後の処理によって不溶とする方式を用いないため、素子の寿命や、有機電界発光素子とした場合の発光効率への悪影響を軽減し、発光効率や発光寿命に優れる機能性膜を有する有機半導体素子を実現することができる。また、アリールアミンポリマーが架橋基、重合基及び脱離性可溶化基のいずれも有さないため、濃度による粘度上昇を抑えうる小さい分子量の高分子を機能性材料として用い、塗布及び加熱して第一の機能性膜を得ることができる。 According to the manufacturing method according to the present embodiment, since a system in which the arylamine polymer is provided with a cross-linking group, a polymerizable group, or a detachable solubilizing group as an organic substance and is made insoluble by a treatment after coating is not used, the element can be produced. It is possible to realize an organic semiconductor device having a functional film with excellent luminous efficiency and luminous life by reducing adverse effects on the life and luminous efficiency when used as an organic electroluminescence device. In addition, since the arylamine polymer has neither a cross-linking group, a polymerizing group, nor a detachable solubilizing group, a polymer with a small molecular weight that can suppress the increase in viscosity due to concentration is used as a functional material, and is applied and heated. A first functional membrane can be obtained.
 第二の機能性膜を構成する第二の組成物の23℃における粘度が15mPa・s以下であり、かつ、23℃における粘度が3mPa・s以上を満たす第一の溶媒成分を含むか、又は、流動活性化エネルギーが17kJ/mol以上を満たす第一の溶媒成分と23℃における粘度が3mPa・s未満を満たす第二の溶媒成分とを含むため、下層である第一の機能性膜が架橋基、重合基、及び脱離性可溶化基のいずれも有さない場合であっても、産業上必要な浸漬時間に於いて、第一の機能性膜の溶解と、溶解した成分の第二の機能性膜への混入による性能劣化を防ぐことができる。 The second composition constituting the second functional film has a viscosity of 15 mPa·s or less at 23°C and a first solvent component satisfying the viscosity of 3 mPa·s or more at 23°C, or , contains a first solvent component that satisfies a flow activation energy of 17 kJ / mol or more and a second solvent component that satisfies a viscosity of less than 3 mPa s at 23 ° C., so that the first functional film as a lower layer is crosslinked Even if it does not have a group, a polymerizable group, or a detachable solubilizing group, the dissolution of the first functional film and the dissolution of the dissolved component of the second It is possible to prevent performance deterioration due to contamination of the functional film.
 本実施形態における第一の組成物及び第二の組成物を用いた製造方法によれば、第一の機能性膜に特性を劣化する構造を含まない第一の機能性材料を用い、さらに同膜上への第二の組成物を塗布して第二の機能性膜を成膜する際に第一の機能性材料の溶出と、第二の機能性膜への混入を防ぎ、特性を向上することができる。なお、特性を劣化する構造とは、架橋基や重合基、脱離性可溶化基であり、有機半導体素子が有機電界発光素子である場合には、かかる特性とは発光特性を意味する。
 また、上記製造方法によれば、第一の機能性材料の長時間の不溶耐久特性を実現することから、大型基板への塗布が容易となる。
According to the manufacturing method using the first composition and the second composition of the present embodiment, the first functional material that does not contain a structure that deteriorates the characteristics is used for the first functional film, and the same Prevents elution of the first functional material and mixing into the second functional film when the second composition is applied to the film to form the second functional film, thereby improving the characteristics can do. The structures that degrade the properties are cross-linking groups, polymerizing groups, and detachable solubilizing groups. When the organic semiconductor device is an organic electroluminescence device, such properties mean luminescence properties.
Moreover, according to the above manufacturing method, the long-term insoluble durability property of the first functional material is realized, so that the coating on a large-sized substrate is facilitated.
 その他の効果として、高純度な第二の機能性膜形成にあたって、第一の機能性膜を形成した後の洗浄が必要なくなり、従前は不溶化のために行っていた加熱条件(温度・時間)を緩和することができる事が挙げられる。また、第一の機能性材料を低分子量化しても、それに伴う不溶耐久特性の劣化の影響を抑えられる。このため、第一の機能性材料に小さい分子量の材料を用いて、高精細化や厚膜積層などの第一の組成物の粘度が上がりやすいプロセスを実現可能とする効果が得られる。 Other effects include the elimination of the need for washing after the formation of the first functional film in the formation of the second functional film with high purity, and the heating conditions (temperature and time) that were previously used for insolubilization. There are things that can be mitigated. In addition, even if the first functional material has a low molecular weight, the accompanying deterioration of the insoluble durability can be suppressed. Therefore, by using a material with a small molecular weight as the first functional material, it is possible to achieve a process in which the viscosity of the first composition tends to increase, such as high definition and thick film lamination.
 以下、具体例を示しながら、本発明を詳細に説明するが、これら具体例に限られるものではない。 Although the present invention will be described in detail below with specific examples, it is not limited to these specific examples.
<第一の機能性膜、第二の機能性膜>
 第一の機能性膜は、第一の組成物を塗布及び加熱することにより得られる膜であり、本膜の上に第二の機能性膜が形成される。第一の機能性膜としては、図1に示す有機電界発光素子の場合には、例えば、陽極2の上に形成される正孔注入層3、または正孔注入層3の上に形成される正孔輸送層4が挙げられる。
<First Functional Film, Second Functional Film>
The first functional film is a film obtained by applying and heating the first composition, and the second functional film is formed on this film. As the first functional film, in the case of the organic electroluminescence device shown in FIG. 1, for example, the hole injection layer 3 formed on the anode 2 or the hole injection layer 3 A hole transport layer 4 may be mentioned.
 第二の機能性膜は、第一の機能性膜の表面上に第二の組成物を塗布することで得られる機能性膜である。図1に示す有機電界発光素子の場合には、例えば、正孔注入層3の上に形成される正孔輸送層4、または、正孔輸送層4の上に形成される発光層5が挙げられる。 The second functional film is a functional film obtained by applying the second composition on the surface of the first functional film. In the case of the organic electroluminescence device shown in FIG. 1, for example, the hole transport layer 4 formed on the hole injection layer 3 or the light emitting layer 5 formed on the hole transport layer 4 can be cited. be done.
<第一の組成物>
 第一の組成物は第一の機能性材料を含み、第一の機能性材料は架橋基、重合基及び脱離性可溶化基のいずれも有さないアリールアミンポリマーを含有する。また、通常は溶媒(有機溶媒)も含有する。
 第一の組成物は、第一の機能性材料として上記アリールアミンポリマーを1種類含有するものであってもよく、2種類以上を任意の組み合わせ及び任意の比率で含有するものであってもよい。
 第一の組成物は、第一の機能性材料以外の機能性材料を有していてもよく、例えば後述の電子受容性化合物、電荷輸送性材料等が挙げられる。
<First composition>
The first composition comprises a first functional material, the first functional material containing an arylamine polymer without cross-linking groups, polymerizing groups and leaving solubilizing groups. It also usually contains a solvent (organic solvent).
The first composition may contain one type of the above arylamine polymer as the first functional material, or may contain two or more types in any combination and in any ratio. .
The first composition may contain functional materials other than the first functional material, such as electron-accepting compounds and charge-transporting materials described later.
<第一の機能性材料>
 第一の機能性材料は、架橋基、重合基及び脱離性可溶化基のいずれも有さないアリールアミンポリマーであり、例えば下記式(50)で表される繰り返し単位を有する重合体である。
<First functional material>
The first functional material is an arylamine polymer having neither a crosslinkable group, a polymerizable group, nor a detachable solubilizing group, and is, for example, a polymer having a repeating unit represented by the following formula (50). .
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式(50)中、
 Ar51は、置換基を有していてもよい芳香族炭化水素基及び置換基を有していてもよい芳香族複素環基の少なくとも一方から選択される、1つの基又は複数の基が連結した基を表し、前記置換基はいずれも架橋基、重合基又は脱離性可溶化基以外の基である。
 Ar52は、置換基を有していてもよい2価の芳香族炭化水素基及び置換基を有していてもよい2価の芳香族複素環基の少なくとも一方から選択される1つの基又は複数の基が連結した2価の基を表し、前記連結は直接又は連結基を介してなされており、前記置換基はいずれも架橋基、重合基又は脱離性可溶化基以外の基である。
 Ar51とAr52は直接又は連結基を介して結合して環を形成していてもよい。
 ただし、Ar51、Ar52は架橋基、重合基及び脱離性可溶化基のいずれも有さない。)
(In formula (50),
Ar 51 is selected from at least one of an optionally substituted aromatic hydrocarbon group and an optionally substituted aromatic heterocyclic group, wherein one group or a plurality of groups are linked Each of the substituents is a group other than a cross-linking group, a polymerizing group, or a detachable solubilizing group.
Ar 52 is one group selected from at least one of an optionally substituted divalent aromatic hydrocarbon group and an optionally substituted divalent aromatic heterocyclic group, or Represents a divalent group in which a plurality of groups are linked, the linkage is made directly or via a linking group, and the substituents are all groups other than a cross-linking group, a polymerizing group, or a detachable solubilizing group. .
Ar 51 and Ar 52 may combine directly or via a linking group to form a ring.
However, Ar 51 and Ar 52 have neither a cross-linking group, a polymerizing group nor a leaving solubilizing group. )
(架橋基)
 第一の機能性材料に用いるアリールアミンポリマーは、架橋基、重合基、脱離性可溶化基のいずれも有さない。
 ここで架橋基とは、熱及び/又は活性エネルギー線の照射により、該架橋基の近傍に位置する他の架橋基と反応して、新規な化学結合を生成する基のことをいう。この場合、反応する基は架橋基と同一の基あるいは異なった基の場合もある。
(crosslinking group)
The arylamine polymer used for the first functional material has neither a crosslinkable group, a polymerizable group, nor a removable solubilizing group.
Here, the cross-linking group means a group that reacts with other cross-linking groups located in the vicinity of the cross-linking group by irradiation with heat and/or active energy rays to form a new chemical bond. In this case, the reactive group may be the same group as the bridging group or a different group.
 架橋基としては、限定されないが、アルケニル基を含む基、共役ジエン構造を含む基、アルキニル基を含む基、オキシラン構造を含む基、オキセタン構造を含む基、アジリジン構造を含む基、アジド基、無水マレイン酸構造を含む基、芳香族環に結合したアルケニル基を含む基、芳香族環に縮環したシクロブテン環などが挙げられる。架橋基の具体例としては、例えば、下記架橋基群Tから選ばれる基が挙げられる。 Examples of cross-linking groups include, but are not limited to, alkenyl group-containing groups, conjugated diene structure-containing groups, alkynyl group-containing groups, oxirane structure-containing groups, oxetane structure-containing groups, aziridine structure-containing groups, azide groups, anhydrous Examples thereof include a group containing a maleic acid structure, a group containing an alkenyl group bonded to an aromatic ring, and a cyclobutene ring condensed to an aromatic ring. Specific examples of the cross-linking group include groups selected from the following cross-linking group T.
(架橋基群T) (Crosslinking Group T)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記架橋基群Tにおいて、Rは炭素数1~4のアルキル基を表す。オキセタン環を形成しやすい観点から、Rはメチル基、エチル基が特に好ましい。RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよく、nXLが複数存在する場合、それらは同一でも異なっていてもよい。*及び*1は結合位置を表す。これらの架橋基は置換基を有していてもよい。 In the above cross-linking group T, R 3 represents an alkyl group having 1 to 4 carbon atoms. From the viewpoint of easy formation of an oxetane ring, R 3 is particularly preferably a methyl group or an ethyl group. R XL represents a methylene group, an oxygen atom or a sulfur atom, and n XL represents an integer of 0-5. When multiple R XL are present, they may be the same or different, and when multiple n XL are present, they may be the same or different. * and *1 represent binding positions. These cross-linking groups may have substituents.
(重合基)
 第一の機能性材料に用いるアリールアミンポリマーが有さない重合基とは、通常行われる、モノマーを重合してポリマーを得る反応において、重合反応する官能基のことをいう。
(polymerization group)
The polymerizable group not possessed by the arylamine polymer used in the first functional material refers to a functional group that undergoes a polymerization reaction in the usual reaction of polymerizing a monomer to obtain a polymer.
(脱離性可溶化基)
 第一の機能性材料に用いるアリールアミンポリマーが有さない脱離性可溶化基とは、溶媒に対して可溶性を示す基であり、結合している基(例えば、炭化水素環)から特定の温度以上(例えば70℃以上)で熱解離する基を表す。このような脱離性可溶性基が解離することにより、重合体の溶媒への溶解度は低下する。
 脱離性可溶化基としては、例えば日本国特開2010-059417号公報に記載の「熱解離可溶性基」が挙げられる。
(Leaving Solubilizing Group)
The detachable solubilizing group that the arylamine polymer used for the first functional material does not have is a group that exhibits solubility in a solvent, and a specific It represents a group that thermally dissociates at a temperature or higher (for example, 70° C. or higher). Dissociation of such a leaving soluble group reduces the solubility of the polymer in a solvent.
The detachable solubilizing group includes, for example, the “thermally dissociable solubilizing group” described in Japanese Patent Application Laid-Open No. 2010-059417.
(Ar52:主鎖)
 上記式(50)で表される繰り返し単位中において、Ar52は、置換基を有していてもよい2価の芳香族炭化水素基及び置換基を有していてもよい2価の芳香族複素環基の少なくとも一方から選択される、1つの基又は複数の基が連結した基を表す。選択された複数の基が連結する場合、それらは直接連結していても、連結基を介して連結していてもよい。ここで、該芳香族炭化水素基及び該芳香族複素環基が有してもよい置換基は架橋基、重合基又は脱離性可溶化基以外の置換基であり、後述の置換基群Zと同様の基が好ましい。なお、本明細書において、架橋基、重合基及び脱離性可溶化基をまとめて「架橋基等」と称することがある。
(Ar 52 : main chain)
In the repeating unit represented by the above formula (50), Ar 52 is an optionally substituted divalent aromatic hydrocarbon group and an optionally substituted divalent aromatic represents a group in which one or more groups selected from at least one heterocyclic group are linked. When multiple selected groups are linked, they may be linked directly or via a linking group. Here, the substituents that the aromatic hydrocarbon group and the aromatic heterocyclic group may have are substituents other than a bridging group, a polymerizing group, or a detachable solubilizing group, and the substituent group Z described later. Groups similar to are preferred. In this specification, the cross-linking group, the polymerizable group and the detachable solubilizing group may be collectively referred to as "cross-linking group, etc.".
 芳香族炭化水素基としては、炭素数が6以上、60以下が好ましく、具体的には、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環等の、6員環の単環若しくは2~5縮合環の2価の基又はこれらが複数連結した基が挙げられる。複数個連結される場合は、2~10連結した2価の基が挙げられ、2~5の基が連結した2価の基であることが好ましい。なお、例えば「ベンゼン環の2価の基」とは、「2価の遊離原子価を有するベンゼン環」、すなわち、フェニレン基を意味する。 The aromatic hydrocarbon group preferably has 6 or more and 60 or less carbon atoms, and specifically includes a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, and chrysene ring. , triphenylene ring, acenaphthene ring, fluoranthene ring, fluorene ring and the like. When a plurality of groups are linked, a divalent group with 2 to 10 linked groups can be mentioned, and a divalent group with 2 to 5 linked groups is preferred. In addition, for example, "a divalent group of a benzene ring" means "a benzene ring having a divalent free atom valence", that is, a phenylene group.
 芳香族複素環基としては、炭素数が3以上、60以下が好ましく、具体的には、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シンノリン環、キノキサリン環、フェナントリジン環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環等の、5~6員環の単環若しくは2~4縮合環の2価の基又はこれらが複数連結した基が挙げられる。複数個連結される場合は、2~10の基が連結した2価の基が好ましく、2~5の基が連結した2価の基であることがより好ましい。 The aromatic heterocyclic group preferably has 3 or more and 60 or less carbon atoms, and specifically includes a furan ring, a benzofuran ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, and an oxadiazole ring. , indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine 5- to 6-membered rings such as ring, pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, cinnoline ring, quinoxaline ring, phenanthridine ring, perimidine ring, quinazoline ring, quinazolinone ring, azulene ring or a divalent group of 2 to 4 condensed rings, or a group in which a plurality of these are linked. When a plurality of groups are linked, a divalent group in which 2 to 10 groups are linked is preferable, and a divalent group in which 2 to 5 groups are linked is more preferable.
 置換基を有していてもよい芳香族炭化水素基若しくは置換基を有していてもよい芳香族複素環基が直接若しくは連結基を介して複数個連結した2価の基としては、同じ基が複数連結した基でもよく、異なる基が複数連結した基でも構わない。複数個連結される基としては2~10の基が連結した2価の基が好ましく、2~5の基が連結した2価の基であることがより好ましい。 The divalent groups in which a plurality of optionally substituted aromatic hydrocarbon groups or optionally substituted aromatic heterocyclic groups are linked directly or via a linking group are the same group. may be a group in which a plurality of is linked, or may be a group in which a plurality of different groups are linked. The group having a plurality of linked groups is preferably a divalent group in which 2 to 10 groups are linked, more preferably a divalent group in which 2 to 5 groups are linked.
(Ar51:側鎖)
 上記式(50)で表される繰り返し単位中において、Ar51は、置換基を有していてもよい芳香族炭化水素基及び置換基を有していてもよい芳香族複素環基の少なくとも一方から選択される、1つの基又は複数の基が連結した基を表す。ここで、該芳香族炭化水素基及び該芳香族複素環基が有してもよい置換基は架橋基、重合基又は脱離性可溶化基以外の置換基であり、後述の置換基群Zと同様の基が好ましい。
(Ar 51 : side chain)
In the repeating unit represented by the above formula (50), Ar 51 is at least one of an optionally substituted aromatic hydrocarbon group and an optionally substituted aromatic heterocyclic group represents a group in which one group or a plurality of groups are linked together, selected from Here, the substituents that the aromatic hydrocarbon group and the aromatic heterocyclic group may have are substituents other than a bridging group, a polymerizing group, or a detachable solubilizing group, and the substituent group Z described later. Groups similar to are preferred.
 芳香族炭化水素基としては、炭素数が6以上、60以下が好ましく、具体的には、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環等の、6員環の単環若しくは2~5縮合環の1価の基又はこれらが複数連結した基が挙げられる。複数個連結される場合は、2~10の基が連結した1価の基が挙げられ、2~5の基が連結した1価の基であることが好ましい。なお、例えば「ベンゼン環の1価の基」とは、「1価の遊離原子価を有するベンゼン環」、すなわち、フェニル基を意味する。 The aromatic hydrocarbon group preferably has 6 or more and 60 or less carbon atoms, and specifically includes a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, and chrysene ring. , a triphenylene ring, an acenaphthene ring, a fluoranthene ring, a fluorene ring and the like, a monovalent 6-membered ring or a 2 to 5 condensed ring monovalent group, or a group in which a plurality of these are linked. When a plurality of groups are linked, a monovalent group in which 2 to 10 groups are linked is exemplified, and a monovalent group in which 2 to 5 groups are linked is preferable. For example, "a monovalent group of a benzene ring" means "a benzene ring having a monovalent free atom valence", that is, a phenyl group.
 芳香族複素環基としては、炭素数が3以上、60以下が好ましく、具体的には、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シンノリン環、キノキサリン環、フェナントリジン環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環等の、5~6員環の単環若しくは2~4縮合環の1価の基又はこれらが複数連結した基が挙げられる。複数個連結される場合は、2~10の基が連結した1価の基が好ましく、2~5の基が連結した1価の基であることがより好ましい。 The aromatic heterocyclic group preferably has 3 or more and 60 or less carbon atoms, and specifically includes a furan ring, a benzofuran ring, a thiophene ring, a benzothiophene ring, a pyrrole ring, a pyrazole ring, an imidazole ring, and an oxadiazole ring. , indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine 5- to 6-membered rings such as ring, pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, cinnoline ring, quinoxaline ring, phenanthridine ring, perimidine ring, quinazoline ring, quinazolinone ring, azulene ring or a monovalent group of 2 to 4 condensed rings, or a group in which a plurality of these are linked. When a plurality of groups are linked, a monovalent group in which 2 to 10 groups are linked is preferable, and a monovalent group in which 2 to 5 groups are linked is more preferable.
 置換基を有していてもよい芳香族炭化水素基若しくは置換基を有していてもよい芳香族複素環基が複数個連結した1価の基としては、同じ基が複数連結した基でもよく、異なる基が複数連結した基でも構わない。複数個連結される基としては2~10の基が連結した1価の基が好ましく、2~5の基が連結した1価の基であることがより好ましい。 The monovalent group in which a plurality of optionally substituted aromatic hydrocarbon groups or optionally substituted aromatic heterocyclic groups are linked may be a group in which a plurality of the same groups are linked. , may be a group in which a plurality of different groups are linked. The group having a plurality of linked groups is preferably a monovalent group in which 2 to 10 groups are linked, more preferably a monovalent group in which 2 to 5 groups are linked.
 Ar51は、電荷輸送性が優れる点、耐久性に優れる点から、架橋基等以外の置換基を有していてもよい芳香族炭化水素基が好ましく、中でも架橋基等以外の置換基を有していてもよいベンゼン環又はフルオレン環の1価の基、すなわち、架橋基等以外の置換基を有していてもよいフェニル基又はフルオレニル基がより好ましく、架橋基等以外の置換基を有していてもよいフルオレニル基がさらに好ましく、架橋基等以外の置換基を有していてもよい2-フルオレニル基が特に好ましい。 Ar 51 is preferably an aromatic hydrocarbon group which may have a substituent other than a cross-linking group, etc., from the viewpoint of excellent charge transportability and durability. Benzene ring or fluorene ring monovalent group that may be A fluorenyl group which may have a substituent is more preferred, and a 2-fluorenyl group which may have a substituent other than a cross-linking group is particularly preferred.
 Ar51の芳香族炭化水素基及び芳香族複素環基が有してもよい架橋基等以外の置換基としては、本重合体の特性を著しく低減させないものであれば、特に制限はない。当該置換基は、好ましくは、後述の置換基群Zから選ばれる基が挙げられ、アルキル基、アルコキシ基、芳香族炭化水素基、芳香族複素環基がより好ましく、アルキル基がさらに好ましい。 Substituents other than the cross-linking group that the aromatic hydrocarbon group and aromatic heterocyclic group of Ar 51 may have are not particularly limited as long as they do not significantly reduce the properties of the present polymer. The substituent is preferably a group selected from the group Z of substituents described below, more preferably an alkyl group, an alkoxy group, an aromatic hydrocarbon group, or an aromatic heterocyclic group, and still more preferably an alkyl group.
 Ar51は、塗布溶媒への溶解性の点から、炭素数1~24のアルキル基で置換されたフルオレニル基が好ましく、特に、炭素数4~12のアルキル基で置換された2-フルオレニル基が好ましい。さらに、2-フルオレニル基の9位がアルキル基で置換された9-アルキル-2-フルオレニル基が好ましく、特に、アルキル基で2置換された9,9’-ジアルキル-2-フルオレニル基が好ましい。 From the viewpoint of solubility in a coating solvent, Ar 51 is preferably a fluorenyl group substituted with an alkyl group having 1 to 24 carbon atoms, particularly a 2-fluorenyl group substituted with an alkyl group having 4 to 12 carbon atoms. preferable. Furthermore, a 9-alkyl-2-fluorenyl group in which the 9-position of the 2-fluorenyl group is substituted with an alkyl group is preferred, and a 9,9′-dialkyl-2-fluorenyl group in which the 9-position is substituted with an alkyl group is particularly preferred.
 9位及び9’位の少なくとも一方がアルキル基で置換されたフルオレニル基であることにより、溶媒に対する溶解性及びフルオレン環の耐久性が向上する傾向にある。さらに、9位及び9’位の両方がアルキル基で置換されたフルオレニル基であることにより、溶媒に対する溶解性及びフルオレン環の耐久性がさらに向上する傾向にある。 At least one of the 9- and 9'-positions is a fluorenyl group substituted with an alkyl group, which tends to improve the solubility in solvents and the durability of the fluorene ring. Furthermore, since both the 9- and 9'-positions are alkyl-substituted fluorenyl groups, the solubility in solvents and the durability of the fluorene ring tend to be further improved.
 また、Ar51は、塗布溶媒への溶解性の点から、スピロビフルオレニル基であることも好ましい。 Ar 51 is also preferably a spirobifluorenyl group from the viewpoint of solubility in a coating solvent.
 また、Ar51は、Ar52と直接又は連結基を介して結合して環を形成してもよい。 In addition, Ar 51 may bond with Ar 52 directly or via a linking group to form a ring.
(式(50)で表される繰り返し単位の含有量)
 第一の機能性膜が含有する重合体において、式(50)で表される繰り返し単位の含有量は特に制限されないが、式(50)で表される繰り返し単位は重合体中に通常10モル%以上含まれ、30モル%以上含まれることが好ましく、40モル%以上含まれることがより好ましく、50モル%以上含まれることがさらに好ましい。
(Content of repeating unit represented by formula (50))
In the polymer contained in the first functional film, the content of the repeating unit represented by formula (50) is not particularly limited, but the repeating unit represented by formula (50) is usually 10 mol in the polymer. % or more, preferably 30 mol % or more, more preferably 40 mol % or more, even more preferably 50 mol % or more.
 第一の機能性膜が含有する重合体は、繰り返し単位が、式(50)で表される繰り返し単位のみから構成されていてもよい、すなわち、100モル%でもよいが、有機電界発光素子とした場合の諸性能をバランスさせる目的から、式(50)とは別の繰り返し単位を有していてもよい。その場合、重合体中の式(50)で表される繰り返し単位の含有量は、通常99モル%以下であり、好ましくは95モル%以下である。 In the polymer contained in the first functional film, the repeating unit may be composed only of repeating units represented by formula (50), that is, 100 mol %, but the organic electroluminescent device and For the purpose of balancing various performances in the case of formula (50), it may have a repeating unit other than the formula (50). In that case, the content of the repeating unit represented by formula (50) in the polymer is usually 99 mol % or less, preferably 95 mol % or less.
(末端基)
 本明細書において、末端基とは、重合体の重合終了時に用いるエンドキャップ剤によって形成された、重合体の末端部の構造のことを指す。第一の機能性膜において、式(50)で表される繰り返し単位を含む重合体の末端基は炭化水素基であることが好ましい。炭化水素基としては、電荷輸送性の観点から、炭素数1以上60以下の炭化水素基が好ましく、炭素数1以上40以下の炭化水素基がより好ましく、炭素数1以上30以下の炭化水素基がさらに好ましい。
(terminal group)
As used herein, a terminal group refers to the terminal structure of a polymer formed by an endcapping agent used to terminate polymerization of the polymer. In the first functional membrane, the terminal group of the polymer containing the repeating unit represented by formula (50) is preferably a hydrocarbon group. From the viewpoint of charge transportability, the hydrocarbon group is preferably a hydrocarbon group having 1 to 60 carbon atoms, more preferably a hydrocarbon group having 1 to 40 carbon atoms, and a hydrocarbon group having 1 to 30 carbon atoms. is more preferred.
 炭化水素基としては、例えば、下記が挙げられる。
 メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、tert-ブチル基、n-ヘキシル基、シクロヘキシル基、ドデシル基等の、炭素数が通常1以上であり、好ましくは4以上であり、通常24以下であり、好ましくは12以下である、直鎖、分岐、又は環状のアルキル基;
 ビニル基等の、炭素数が通常2以上、24以下であり、好ましくは12以下である、直鎖、分岐、又は環状のアルケニル基;
 エチニル基等の、炭素数が通常2以上、24以下であり、好ましくは12以下である、直鎖又は分岐のアルキニル基;
 フェニル基、ナフチル基等の、炭素数が通常6以上、36以下であり、好ましくは24以下である芳香族炭化水素基。
Examples of hydrocarbon groups include the following.
carbon, such as methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group, n-hexyl group, cyclohexyl group, dodecyl group A linear, branched or cyclic alkyl group whose number is usually 1 or more, preferably 4 or more, usually 24 or less, preferably 12 or less;
A linear, branched, or cyclic alkenyl group having usually 2 or more and 24 or less, preferably 12 or less carbon atoms, such as a vinyl group;
A linear or branched alkynyl group having usually 2 or more and 24 or less, preferably 12 or less carbon atoms, such as an ethynyl group;
An aromatic hydrocarbon group having usually 6 or more and 36 or less carbon atoms, preferably 24 or less, such as a phenyl group or a naphthyl group.
 これら炭化水素基はさらに置換基を有していてもよく、さらに有していてもよい置換基はアルキル基又は芳香族炭化水素基が好ましい。これらさらに有していてもよい置換基が複数ある場合は、互いに結合して環を形成していてもよい。 These hydrocarbon groups may further have a substituent, and the substituent that may further have is preferably an alkyl group or an aromatic hydrocarbon group. When there are a plurality of these substituents which may be additionally contained, they may be combined with each other to form a ring.
 末端基は、好ましくは、電荷輸送性及び耐久性の観点から、アルキル基又は芳香族炭化水素基であり、更に好ましくは芳香族炭化水素基である。 From the viewpoint of charge transportability and durability, the terminal group is preferably an alkyl group or an aromatic hydrocarbon group, more preferably an aromatic hydrocarbon group.
(置換基群Z)
 置換基群Zは、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルコキシカルボニル基、ジアルキルアミノ基、ジアリールアミノ基、アリールアルキルアミノ基、アシル基、ハロゲン原子、ハロアルキル基、アルキルチオ基、アリールチオ基、シリル基、シロキシ基、シアノ基、芳香族炭化水素基、及び芳香族複素環基よりなる群である。これらの置換基は直鎖、分岐及び環状のいずれの構造を含んでいてもよい。
(Substituent group Z)
Substituent group Z includes an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkoxycarbonyl group, a dialkylamino group, a diarylamino group, an arylalkylamino group, an acyl group, a halogen atom, A group consisting of haloalkyl groups, alkylthio groups, arylthio groups, silyl groups, siloxy groups, cyano groups, aromatic hydrocarbon groups and aromatic heterocyclic groups. These substituents may contain any structure of linear, branched and cyclic.
 置換基群Zとして、より具体的には、以下の構造が挙げられる。
 炭素数が1以上であり、好ましくは4以上であり、24以下、好ましくは12以下であり、さらに好ましくは8以下であり、より好ましくは6以下である、直鎖、分岐、又は環状のアルキル基。具体例としてはメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、tert-ブチル基、n-ヘキシル基、シクロヘキシル基、ドデシル基等が挙げられる。
 炭素数が1以上、24以下、好ましくは12以下であるアルコキシ基。具体例としては、メトキシ基、エトキシ基等が挙げられる。
 炭素数4以上、好ましくは5以上であり、36以下、好ましくは24以下である、アリールオキシ基若しくはヘテロアリールオキシ基。具体例としては、フェノキシ基、ナフトキシ基、ピリジルオキシ基等が挙げられる。
 炭素数2以上、24以下、好ましくは12以下であるアルコキシカルボニル基。具体例としては、メトキシカルボニル基、エトキシカルボニル基等が挙げられる。
 炭素数2以上、24以下、好ましくは12以下であるジアルキルアミノ基。具体例としては、ジメチルアミノ基、ジエチルアミノ基等が挙げられる。
 炭素数10以上、好ましくは12以上であり、36以下、好ましくは24以下のジアリールアミノ基。具体例としては、ジフェニルアミノ基、ジトリルアミノ基、N-カルバゾリル基等が挙げられる。
 炭素数7以上、36以下、好ましくは24以下であるアリールアルキルアミノ基。具体例としては、フェニルメチルアミノ基が挙げられる。
 炭素数2以上、24以下、好ましくは12以下であるアシル基。具体例としては、アセチル基、ベンゾイル基が挙げられる。
 フッ素原子、塩素原子等のハロゲン原子;
 炭素数1以上、12以下、好ましくは6以下のハロアルキル基。具体例としては、トリフルオロメチル基等が挙げられる。
 炭素数1以上、24以下、好ましくは12以下のアルキルチオ基。具体例としては、メチルチオ基、エチルチオ基等が挙げられる。
 炭素数4以上、好ましくは5以上であり、36以下、好ましくは24以下であるアリールチオ基。具体的には、フェニルチオ基、ナフチルチオ基、ピリジルチオ基等が挙げられる。
 炭素数が通常2以上、好ましくは3以上であり、通常36以下、好ましくは24以下であるシリル基。具体例としては、トリメチルシリル基、トリフェニルシリル基等が挙げられる。
 炭素数2以上、好ましくは3以上であり、通常36以下、好ましくは24以下であるシロキシ基。具体例としては、トリメチルシロキシ基、トリフェニルシロキシ基等が挙げられる。
 シアノ基。
 炭素数6以上、36以下、好ましくは24以下である芳香族炭化水素基。具体例としては、フェニル基、ナフチル基等が挙げられる。
 炭素数3以上、好ましくは4以上であり、36以下、好ましくは24以下である芳香族複素環基。具体例としては、チエニル基、ピリジル基等が挙げられる。
 上記置換基は、直鎖、分岐又は環状のいずれの構造を含んでいてもよい。
More specific examples of the substituent group Z include the following structures.
linear, branched, or cyclic alkyl having 1 or more carbon atoms, preferably 4 or more carbon atoms, 24 or less, preferably 12 or less, more preferably 8 or less, and more preferably 6 or less Base. Specific examples include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group, n-hexyl group, cyclohexyl group and dodecyl group. etc.
an alkoxy group having 1 or more and 24 or less, preferably 12 or less carbon atoms; Specific examples include a methoxy group, an ethoxy group, and the like.
an aryloxy group or heteroaryloxy group having 4 or more, preferably 5 or more carbon atoms and 36 or less, preferably 24 or less carbon atoms; Specific examples include phenoxy group, naphthoxy group, pyridyloxy group and the like.
an alkoxycarbonyl group having 2 or more and 24 or less, preferably 12 or less carbon atoms; Specific examples include a methoxycarbonyl group, an ethoxycarbonyl group, and the like.
A dialkylamino group having 2 or more and 24 or less, preferably 12 or less carbon atoms. Specific examples include a dimethylamino group and a diethylamino group.
A diarylamino group having 10 or more, preferably 12 or more, and 36 or less, preferably 24 or less carbon atoms. Specific examples include a diphenylamino group, a ditolylamino group, an N-carbazolyl group and the like.
an arylalkylamino group having 7 or more and 36 or less, preferably 24 or less carbon atoms; A specific example is a phenylmethylamino group.
an acyl group having 2 or more and 24 or less, preferably 12 or less carbon atoms; Specific examples include an acetyl group and a benzoyl group.
halogen atoms such as fluorine atoms and chlorine atoms;
A haloalkyl group having 1 or more and 12 or less, preferably 6 or less carbon atoms. Specific examples include a trifluoromethyl group and the like.
an alkylthio group having 1 or more and 24 or less, preferably 12 or less carbon atoms; Specific examples include a methylthio group, an ethylthio group, and the like.
an arylthio group having 4 or more, preferably 5 or more carbon atoms and 36 or less, preferably 24 or less; Specific examples include a phenylthio group, a naphthylthio group, a pyridylthio group, and the like.
A silyl group having usually 2 or more, preferably 3 or more, and usually 36 or less, preferably 24 or less carbon atoms. Specific examples include a trimethylsilyl group and a triphenylsilyl group.
A siloxy group having 2 or more carbon atoms, preferably 3 or more carbon atoms, and usually 36 or less, preferably 24 or less carbon atoms. Specific examples include a trimethylsiloxy group and a triphenylsiloxy group.
Cyano group.
An aromatic hydrocarbon group having 6 or more and 36 or less, preferably 24 or less carbon atoms. Specific examples include a phenyl group and a naphthyl group.
an aromatic heterocyclic group having 3 or more, preferably 4 or more, and 36 or less, preferably 24 or less carbon atoms; Specific examples include a thienyl group and a pyridyl group.
The above substituents may have any structure of linear, branched or cyclic.
 上記の置換基群Zの中でも、好ましくは、アルキル基、アルコキシ基、芳香族炭化水素基、芳香族複素環基である。電荷輸送性の観点からは、置換基を有さないことがさらに好ましい。
 また、上記置換基群Zの各置換基は更に置換基を有していてもよい。それら置換基としては、上記置換基群Zと同じのものが挙げられる。更に有していてもよい置換基は、好ましくは、有さないか、炭素数8以下のアルキル基、炭素数8以下のアルコキシ基、またはフェニル基であり、より好ましくは炭素数6以下のアルキル基、炭素数6以下のアルコキシ基、またはフェニル基である。電荷輸送性の観点からは、さらなる置換基を有さないことがより好ましい。
Among the substituent groups Z described above, alkyl groups, alkoxy groups, aromatic hydrocarbon groups, and aromatic heterocyclic groups are preferred. From the viewpoint of charge transportability, it is more preferable not to have a substituent.
Further, each substituent in the substituent group Z may further have a substituent. Examples of these substituents include the same substituents as in the substituent group Z described above. Substituents which may further be present are preferably not present, or alkyl groups having 8 or less carbon atoms, alkoxy groups having 8 or less carbon atoms, or phenyl groups, more preferably alkyl groups having 6 or less carbon atoms. group, an alkoxy group having 6 or less carbon atoms, or a phenyl group. From the viewpoint of charge transport properties, it is more preferable not to have additional substituents.
(好ましいAr51)
 また、重合体としては、上記式(50)で表される繰り返し単位におけるAr51の少なくとも一つが、下記式(51)、下記式(52)、又は下記式(53)で表される基であることが好ましい。
(Preferred Ar 51 )
Further, as the polymer, at least one of Ar 51 in the repeating unit represented by the formula (50) is a group represented by the following formula (51), the following formula (52), or the following formula (53). Preferably.
(好ましいAr51:式(51)) (Preferred Ar 51 : Formula (51))
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式(51)中、
 *は式(50)の主鎖のNとの結合を表し、
 Ar53、Ar54は、それぞれ独立に、置換基を有していてもよい2価の芳香族炭化水素基及び置換基を有していてもよい芳香族複素環基の少なくとも一方から選択される1つの基又は複数の基が連結した2価の基を表し、当該連結は直接若しくは連結基を介してなされている。
 Ar55は置換基を有していてもよい芳香族炭化水素基及び置換基を有していてもよい芳香族複素環基の少なくとも一方から選択される1つの基又は複数の基が連結した1価の基を表し、当該連結は直接若しくは連結基を介してなされている。
 Ar56は水素原子又は置換基を表す。)
(In formula (51),
* represents a bond to the main chain N of formula (50),
Ar 53 and Ar 54 are each independently selected from at least one of an optionally substituted divalent aromatic hydrocarbon group and an optionally substituted aromatic heterocyclic group It represents a divalent group in which one group or a plurality of groups are linked, and the linkage is made directly or via a linking group.
Ar 55 is 1 selected from at least one of an optionally substituted aromatic hydrocarbon group and an optionally substituted aromatic heterocyclic group or 1 in which a plurality of groups are linked represents a valence group, the link being made directly or via a linking group.
Ar 56 represents a hydrogen atom or a substituent. )
 ここで、各芳香族炭化水素基及び各芳香族複素環基が有してもよい置換基、並びに置換基である場合のAr56は、架橋基等以外の置換基である。 Here, the substituents that each aromatic hydrocarbon group and each aromatic heterocyclic group may have, and Ar 56 in the case of being a substituent, are substituents other than a bridging group and the like.
(Ar53、Ar54
 前記式(51)で表される基において、Ar53、Ar54は、それぞれ独立に、置換基を有していてもよい2価の芳香族炭化水素基及び置換基を有していてもよい2価の芳香族複素環基の少なくとも一方から選択される1つの基又は複数の基が連結した2価の基を表し、当該連結は直接若しくは連結基を介してなされている。
 好ましくは、置換基を有していてもよい2価の芳香族炭化水素基又は置換基を有していてもよい2価の芳香族炭化水素基が複数連結した基である。ここで、該芳香族炭化水素基及び該芳香族複素環基が有してもよい置換基は架橋基等以外の置換基であり、前記置換基群Zと同様の基が好ましい。
 Ar53及びAr54の芳香族炭化水素基及び芳香族複素環基は、前記Ar52と同様の芳香族炭化水素基及び芳香族複素環基を用いることが出来る。
( Ar53 , Ar54 )
In the group represented by the formula (51), Ar 53 and Ar 54 are each independently a divalent aromatic hydrocarbon group optionally having a substituent and optionally having a substituent It represents a divalent group in which one group or a plurality of groups selected from at least one of divalent aromatic heterocyclic groups are linked, and the linkage is made directly or via a linking group.
Preferably, it is an optionally substituted divalent aromatic hydrocarbon group or a group in which a plurality of optionally substituted divalent aromatic hydrocarbon groups are linked. Here, the substituents which the aromatic hydrocarbon group and the aromatic heterocyclic group may have are substituents other than a bridging group and the like, and the same groups as in the substituent group Z are preferable.
As the aromatic hydrocarbon group and aromatic heterocyclic group for Ar 53 and Ar 54 , the same aromatic hydrocarbon group and aromatic heterocyclic group as for Ar 52 can be used.
 置換基を有していてもよい芳香族炭化水素基及び置換基を有していてもよい芳香族複素環基の少なくとも一方から選択される複数の基が直接若しくは連結基を介して連結した2価の基としては、同じ基が複数連結した基でもよく、異なる基が複数連結した基でも構わない。
 上記の2価の基が複数個連結される場合は、2~10の基が連結した2価の基が好ましく、2~5の基が連結した2価の基であることが好ましい。
2 in which a plurality of groups selected from at least one of an optionally substituted aromatic hydrocarbon group and an optionally substituted aromatic heterocyclic group are linked directly or via a linking group; The valent group may be a group in which a plurality of the same groups are linked, or may be a group in which a plurality of different groups are linked.
When a plurality of the above divalent groups are linked, a divalent group in which 2 to 10 groups are linked is preferable, and a divalent group in which 2 to 5 groups are linked is preferable.
 Ar53は、置換基を有していてもよい2価の芳香族炭化水素基が1個であるか、2乃至6個連結した基が好ましく、置換基を有していてもよい2価の芳香族炭化水素基が1個であるか、2乃至4個連結した基がさらに好ましく、中でも置換基を有していてもよいフェニレン環が1個であるか、2乃至4個連結した基がより好ましく、置換基を有していてもよいフェニレン環が2個連結したビフェニレンが特に好ましい。
 また、これら2価の芳香族炭化水素基又は2価の芳香族複素環基が複数連結する場合、好ましくは複数連結した2価の芳香族炭化水素基が共役しないように結合した基である。具体的には、1,3-フェニレン基、又は置換基を有し置換基の立体効果によって捻じれ構造となる基を含むことが好ましい。
Ar 53 is preferably one divalent aromatic hydrocarbon group optionally having substituent(s) or a group in which 2 to 6 are linked, and is preferably a divalent aromatic hydrocarbon group optionally having substituent(s). A group having one aromatic hydrocarbon group or a group having 2 to 4 linked aromatic hydrocarbon groups is more preferable. More preferred is biphenylene in which two optionally substituted phenylene rings are linked.
In addition, when a plurality of these divalent aromatic hydrocarbon groups or divalent aromatic heterocyclic groups are linked, the groups are preferably groups in which the multiple linked divalent aromatic hydrocarbon groups are bonded so as not to be conjugated. Specifically, it preferably contains a 1,3-phenylene group or a group having a substituent and having a twisted structure due to the steric effect of the substituent.
 Ar53が有していてもよい置換基は架橋基等以外の置換基であり、前記置換基群Zと同様の基が好ましい。好ましくは、Ar53は置換基を有さない。 The substituent that Ar 53 may have is a substituent other than a cross-linking group and the like, and the same groups as those in the substituent group Z are preferable. Preferably Ar 53 has no substituents.
 Ar54は電荷輸送性が優れる点、耐久性に優れる点から、2価の芳香族炭化水素基が1個であるか、同一であっても異なっていてもよい2価の芳香族炭化水素基が複数連結した基が好ましく、該2価の芳香族炭化水素基は置換基を有していてもよい。複数連結する場合の2価の芳香族炭化水素基の数は2以上10以下が好ましく、6以下がさらに好ましく、3以下が膜の安定性の観点からは特に好ましい。 Ar 54 has one divalent aromatic hydrocarbon group or divalent aromatic hydrocarbon groups which may be the same or different from the viewpoint of excellent charge transportability and excellent durability. is preferably a group in which a plurality of is linked, and the divalent aromatic hydrocarbon group may have a substituent. When a plurality of divalent aromatic hydrocarbon groups are linked, the number of divalent aromatic hydrocarbon groups is preferably 2 or more and 10 or less, more preferably 6 or less, and particularly preferably 3 or less from the viewpoint of film stability.
 好ましい芳香族炭化水素構造としては、ベンゼン環、ナフタレン環、アントラセン環、フルオレン環であり、より好ましくはベンゼン環およびフルオレン環である。
 複数連結した基としては、置換基を有していてもよいフェニレン環が2乃至4個連結した基、または、置換基を有していてもよいフェニレン環と置換基を有していてもよいフルオレン環が連結した基が好ましい。また、置換基を有していてもよいフェニレン環が1個であることも好ましい。LUMOが広がる観点から置換基を有していてもよいフェニレン環が2個連結したビフェニレンが特に好ましい。
Preferred aromatic hydrocarbon structures are benzene ring, naphthalene ring, anthracene ring and fluorene ring, and more preferred are benzene ring and fluorene ring.
As a group in which a plurality of groups are linked, a group in which 2 to 4 phenylene rings which may have a substituent are linked, or a phenylene ring which may have a substituent and a substituent may be used. A group in which fluorene rings are linked is preferred. It is also preferable that the number of phenylene rings which may have a substituent is one. Biphenylene in which two optionally substituted phenylene rings are linked is particularly preferable from the viewpoint of expanding LUMO.
 Ar54が有していてもよい置換基としては、前記置換基群Zのいずれか、またはこれらの組み合わせを用いることができる。上記置換基は、N-カルバゾリル基、インドロカルバゾリル基、インデノカルバゾリル基以外であることが好ましく、より好ましい置換基としては、フェニル基、ナフチル基、フルオレニル基である。また、置換基を有さないことも好ましい。 As the substituent that Ar 54 may have, any one of the substituent group Z or a combination thereof can be used. The above substituent is preferably other than N-carbazolyl group, indolocarbazolyl group and indenocarbazolyl group, and more preferable substituent groups are phenyl group, naphthyl group and fluorenyl group. Moreover, it is also preferable not to have a substituent.
(Ar55
 Ar55は、置換基を有していてもよい芳香族炭化水素基及び置換基を有していてもよい芳香族複素環基の少なくとも一方から選択される1つの基又は複数の基が連結した1価の基を表し、当該連結はが直接若しくは連結基を介してなされている。好ましくは、置換基を有していてもよい1価の芳香族炭化水素基又は置換基を有していてもよい1価の芳香族炭化水素基が複数連結した基である。
 ここで、該芳香族炭化水素基及び該芳香族複素環基が有してもよい置換基は架橋基等以外の置換基であり、前記置換基群Zと同様の基が好ましい。
( Ar55 )
Ar 55 is selected from at least one of an optionally substituted aromatic hydrocarbon group and an optionally substituted aromatic heterocyclic group or a plurality of groups linked together represents a monovalent group, and the link is made directly or via a linking group. Preferably, it is an optionally substituted monovalent aromatic hydrocarbon group or a group in which a plurality of optionally substituted monovalent aromatic hydrocarbon groups are linked.
Here, the substituents which the aromatic hydrocarbon group and the aromatic heterocyclic group may have are substituents other than a bridging group and the like, and the same groups as in the substituent group Z are preferable.
 該芳香族炭化水素基及び該芳香族複素環基の少なくとも一方から選択される基が複数個連結する場合は、2~10の基が連結した1価の基が好ましく、2~5の基が連結した1価の基であることがより好ましい。
 芳香族炭化水素基、芳香族複素環基としては、前記Ar51と同様の芳香族炭化水素基及び芳香族複素環基を用いることが出来る。
When a plurality of groups selected from at least one of the aromatic hydrocarbon group and the aromatic heterocyclic group are linked, a monovalent group in which 2 to 10 groups are linked is preferable, and 2 to 5 groups are linked. More preferably, it is a linked monovalent group.
As the aromatic hydrocarbon group and aromatic heterocyclic group, the same aromatic hydrocarbon group and aromatic heterocyclic group as those for Ar 51 can be used.
 Ar55としては、下記スキーム2のいずれかで表される構造を有することが好ましい。更には、分子のLUMOを分布させる観点から下記スキーム2に示すa-1~a-4、b-1~b-9、c-1~c-4、d-1~d-16、及びe-1~e-4から選択される構造が好ましい。
 更に電子求引性基を有することにより分子のLUMOが広がることを促進する観点から、a-1~a-4、b-1~b-9、d-1~d-12、及びe-1~e-4から選択される構造が好ましい。更に三重項レベルが高い、第二の機能性膜を発光層とした際に、発光層に形成された励起子を閉じ込める、といった効果の観点から、a-1~a-4、d-1~d-12、及びe-1~e-4から選択される構造が好ましい。
 また、簡易に合成でき、安定性に優れる観点からは、d-1及びd-10がさらに好ましく、d-1のベンゼン環構造が特に好ましい。
Ar 55 preferably has a structure represented by any of schemes 2 below. Furthermore, from the viewpoint of distributing the LUMO of the molecule, a-1 to a-4, b-1 to b-9, c-1 to c-4, d-1 to d-16, and e shown in Scheme 2 below Structures selected from -1 to e-4 are preferred.
Furthermore, from the viewpoint of promoting the spread of the LUMO of the molecule by having an electron-withdrawing group, a-1 to a-4, b-1 to b-9, d-1 to d-12, and e-1 Structures selected from ~e-4 are preferred. Furthermore, from the viewpoint of the effect of confining the excitons formed in the light-emitting layer when the second functional film is used as the light-emitting layer, the triplet level is high, a-1 to a-4, d-1 to Structures selected from d-12, and e-1 through e-4 are preferred.
Further, from the viewpoint of easy synthesis and excellent stability, d-1 and d-10 are more preferable, and the benzene ring structure of d-1 is particularly preferable.
 更にこれら構造に置換基を有していてもよい。なお、構造式中“-*”はAr54との結合位置を表し、“-*”が複数ある場合は、それらのうちいずれか一つがAr54との結合位置であることを表す。 Further, these structures may have substituents. In the structural formula, "-*" represents the binding position with Ar54 , and when there are multiple "-*"s, any one of them represents the binding position with Ar54 .
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(R31及びR32
 スキーム2のR31及びR32は、各々独立に、置換基を有していてもよい直鎖、分岐又は環状のアルキル基であることが好ましい。アルキル基の炭素数は特に限定されないが、重合体の溶解性を維持するために、炭素数が1以上、6以下が好ましく、3以下がより好ましく、メチル基又はエチル基であることが更に好ましい。
(R 31 and R 32 )
Preferably, R 31 and R 32 in Scheme 2 are each independently an optionally substituted linear, branched or cyclic alkyl group. Although the number of carbon atoms in the alkyl group is not particularly limited, in order to maintain the solubility of the polymer, the number of carbon atoms is preferably 1 or more and 6 or less, more preferably 3 or less, and more preferably a methyl group or an ethyl group. .
 R31及びR32は同一であっても異なっていてもよく、R31及びR32がそれぞれ複数存在する場合には、それらも同一であっても異なっていてもよいが、電荷を均一的に窒素原子の周りに分布することができ、更に合成も容易であることから、全てのR31及びR32は同一の基であることが好ましい。 R 31 and R 32 may be the same or different, and when a plurality of R 31 and R 32 are present, they may be the same or different, but All R 31 and R 32 are preferably the same group because they can be distributed around the nitrogen atom and are easy to synthesize.
 Ar55が有していてもよい置換基としては、前記置換基群Zのいずれかまたは、これらの組み合わせを用いることができる。耐久性および電荷輸送性の観点から、上記のAr54が有してもよい置換基と同じ置換基から選ばれることが好ましい。 As the substituent that Ar 55 may have, any one of the substituent group Z or a combination thereof can be used. From the viewpoint of durability and charge transport properties, it is preferably selected from the same substituents as the substituents that Ar 54 may have.
(Ar56
 Ar56は、水素原子または置換基を表す。Ar56が置換基である場合、特に限定はされないが、好ましくは置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基である。好ましい構造としては、前記Ar53、Ar54で挙げた芳香族炭化水素構造、芳香族複素環構造と同様であって1価である構造である。
 ただし、Ar56が置換基である場合、架橋基等ではない。
( Ar56 )
Ar 56 represents a hydrogen atom or a substituent. When Ar 56 is a substituent, it is not particularly limited, but is preferably an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group. Preferred structures are monovalent structures similar to the aromatic hydrocarbon structures and aromatic heterocyclic structures exemplified for Ar 53 and Ar 54 .
However, when Ar 56 is a substituent, it is not a bridging group or the like.
 Ar56が置換基である場合、カルバゾールの3位に結合していることが、耐久性向上の観点から好ましい。また、耐久性向上及び電荷輸送性の観点からは、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基であることが好ましく、置換基を有していてもよい芳香族炭化水素基であることがさらに好ましい。
 Ar56は、合成のし易さ及び電荷輸送性の観点からは、水素原子であることが好ましい。
When Ar 56 is a substituent, it is preferably bonded to the 3-position of carbazole from the viewpoint of improving durability. In addition, from the viewpoint of durability improvement and charge transport property, an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group is preferable. It is more preferably an aromatic hydrocarbon group which may have a group.
Ar 56 is preferably a hydrogen atom from the viewpoint of ease of synthesis and charge transport properties.
 Ar56が置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基である場合の置換基としては、前記置換基群Zに挙げられる置換基と同様であり、好ましい置換基も同様であり、それら置換基がさらに有していてもよい置換基も同様である。 When Ar 56 is an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group, the substituents listed in the above substituent group Z groups, preferred substituents are the same, and substituents which these substituents may further have are also the same.
(好ましいAr51:式(52))
 上記式(50)で表される繰り返し単位におけるAr51の少なくとも一つは、下記式(52)で表される基であることも好ましい。この理由は、下記式(52)中の2つのカルバゾール構造において、互いの窒素原子間の芳香族炭化水素基又は芳香族複素環基にLUMOが分布することで、式(50)における主鎖アミンへの影響が抑制され、主鎖アミンの電子や励起子に対する耐久性が向上するためと考えられる。
(Preferred Ar 51 : Formula (52))
At least one Ar 51 in the repeating unit represented by formula (50) above is also preferably a group represented by formula (52) below. The reason for this is that in the two carbazole structures in the following formula (52), LUMO is distributed in the aromatic hydrocarbon group or aromatic heterocyclic group between the nitrogen atoms of each other, and the main chain amine in formula (50) This is thought to be due to the fact that the influence on the amine is suppressed and the durability of the main chain amine to electrons and excitons is improved.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式(52)中、
 Ar61及びAr62は、それぞれ独立に、置換基を有していてもよい2価の芳香族炭化水素基及び置換基を有していてもよい2価の芳香族複素環基の少なくとも一方から選択される1つの基又は複数の基が連結した2価の基を表し、当該連結は直接若しくは連結基を介してなされる。
 Ar63~Ar65は、それぞれ独立に、水素原子又は置換基である。
 *は式(50)中の窒素原子への結合位置を表す。)
(In formula (52),
Ar 61 and Ar 62 are each independently from at least one of an optionally substituted divalent aromatic hydrocarbon group and an optionally substituted divalent aromatic heterocyclic group It represents a divalent group to which one or more selected groups are linked, and the linkage is made directly or via a linking group.
Ar 63 to Ar 65 are each independently a hydrogen atom or a substituent.
* represents the bonding position to the nitrogen atom in formula (50). )
 ただし、各芳香族炭化水素基及び各芳香族複素環基が有してもよい置換基、並びに置換基である場合のAr63~Ar65は、架橋基等以外の置換基である。 However, the substituents that each aromatic hydrocarbon group and each aromatic heterocyclic group may have, and Ar 63 to Ar 65 when they are substituents, are substituents other than bridging groups and the like.
(Ar63~Ar65
 Ar63~Ar65は、それぞれ独立して、式(51)におけるAr56と同様である。
(Ar 63 -Ar 65 )
Ar 63 to Ar 65 are each independently the same as Ar 56 in formula (51).
(Ar62
 Ar62は、置換基を有していてもよい2価の芳香族炭化水素基及び置換基を有していてもよい2価の芳香族複素環基の少なくとも一方から選択される1つの基又は複数の基が連結した2価の基を表し、当該連結は直接若しくは連結基を介してなされている。好ましくは、置換基を有していてもよい2価の芳香族炭化水素基又は置換基を有していてもよい2価の芳香族炭化水素基が複数連結した基である。
 Ar62の具体的な構造は、式(51)におけるAr54と同様である。
( Ar62 )
Ar 62 is one group selected from at least one of an optionally substituted divalent aromatic hydrocarbon group and an optionally substituted divalent aromatic heterocyclic group, or It represents a divalent group in which a plurality of groups are linked, and the linkage is made directly or via a linking group. Preferably, it is an optionally substituted divalent aromatic hydrocarbon group or a group in which a plurality of optionally substituted divalent aromatic hydrocarbon groups are linked.
A specific structure of Ar 62 is the same as Ar 54 in formula (51).
 Ar62の具体的な好ましい基は、ベンゼン環、ナフタレン環、アントラセン環、フルオレン環の2価の基又はこれらが複数連結した基であり、より好ましくは、ベンゼン環の2価の基、フルオレン環の2価の基又はこれが複数連結した基であり、特に好ましくは、ベンゼン環が1,4位の2価で連結した1,4-フェニレン基、フルオレン環の2,7位の2価で連結した2,7-フルオレニレン基、又はこれらが複数連結した基であり、最も好ましくは、“1,4-フェニレン基-2,7-フルオレニレン基-1,4-フェニレン基-”を含む基である。 A specific preferred group for Ar 62 is a divalent group of a benzene ring, a naphthalene ring, an anthracene ring, or a fluorene ring, or a group in which a plurality of these are linked, more preferably a divalent group of a benzene ring or a fluorene ring. or a group in which a plurality of these are linked, particularly preferably a 1,4-phenylene group in which a benzene ring is linked at the 1,4-position divalent, and a fluorene ring linked at the 2,7-position divalent 2,7-fluorenylene group or a group in which a plurality of these are linked, most preferably a group containing "1,4-phenylene group-2,7-fluorenylene group-1,4-phenylene group-" .
 Ar62のこれら好ましい構造において、フェニレン基は連結位置以外に置換基を有さないことが、置換基の立体効果によるAr62のねじれが生じず好ましい。また、フルオレニレン基は、9,9’位に置換基を有している方が、溶解性及びフルオレン構造の耐久性向上の観点から好ましい。 In these preferred structures of Ar 62 , the phenylene group preferably has no substituents other than the linking position so that Ar 62 is not twisted due to the steric effect of the substituents. Further, the fluorenylene group preferably has substituents at the 9 and 9′ positions from the viewpoint of improving solubility and durability of the fluorene structure.
(Ar61
 Ar61は、式(52)におけるAr53と同様の基であり、好ましい構造も同様である。
( Ar61 )
Ar 61 is the same group as Ar 53 in formula (52), and the preferred structure is also the same.
(好ましいAr51:式(53))
 上記式(50)で表される繰り返し単位におけるAr51の少なくとも一つは、下記式(53)で表される基であることも好ましい。
(Preferred Ar 51 : Formula (53))
At least one Ar 51 in the repeating unit represented by formula (50) above is also preferably a group represented by formula (53) below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式(53)中、
 *は式(50)の主鎖のNとの結合を表し、
 Ar71は、置換基を有していてもよい2価の芳香族炭化水素基を表し、
 Ar72及びAr73は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基及び置換基を有していてもよい芳香族複素環基の少なくとも一方から選択される1つの基又は複数の基が連結した2価の基を表し、当該連結は直接若しくは連結基を介してなされる。
 環HAは窒素原子を含む芳香族複素環であり、X、Yは、それぞれ独立にC原子又はN原子を表し、X又はYが、C原子の場合は、置換基を有していてもよい。)
(In formula (53),
* represents a bond to the main chain N of formula (50),
Ar 71 represents a divalent aromatic hydrocarbon group which may have a substituent,
Ar 72 and Ar 73 are each independently one group selected from at least one of an optionally substituted aromatic hydrocarbon group and an optionally substituted aromatic heterocyclic group Alternatively, it represents a divalent group in which a plurality of groups are linked, and the linkage is made directly or via a linking group.
Ring HA is an aromatic heterocyclic ring containing a nitrogen atom, X 2 and Y 2 each independently represent a C atom or an N atom, and when X 2 or Y 2 is a C atom, it has a substituent may be )
(Ar71
 Ar71は、式(51)におけるAr53と同様の基である。
 Ar71としては、置換基を有していてもよい2価の芳香族炭化水素基1個又は置換基を有していてもよい2価の芳香族炭化水素基が2~10個連結した基が好ましく、置換基を有していてもよい2価の芳香族炭化水素基1個か置換基を有していてもよい2価の芳香族炭化水素基が2~8個連結した基が更に好ましく、中でも置換基を有していてもよい2価の芳香族炭化水素基が2~6個連結した基であることがよりさらに好ましい。
 Ar71としては、特に、置換基を有していてもよいベンゼン環が2~6個連結した基が好ましく、置換基を有していてもよいベンゼン環が4個連結したクアテルフェニレン基が最も好ましい。
( Ar71 )
Ar 71 is the same group as Ar 53 in formula (51).
Ar 71 is one optionally substituted divalent aromatic hydrocarbon group or a group in which 2 to 10 optionally substituted divalent aromatic hydrocarbon groups are linked. is preferable, and a group in which one divalent aromatic hydrocarbon group which may have a substituent or 2 to 8 divalent aromatic hydrocarbon groups which may have a substituent are linked is further Among them, a group in which 2 to 6 optionally substituted divalent aromatic hydrocarbon groups are linked is more preferable.
Ar 71 is particularly preferably a group in which 2 to 6 optionally substituted benzene rings are linked, and a quaterphenylene group in which 4 optionally substituted benzene rings are linked. Most preferred.
 また、Ar71は非共役部位である1,3位で連結したベンゼン環を少なくとも1つ含むことが好ましく、2以上含むことが更に好ましい。
 Ar71が置換基を有していてもよい2価の芳香族炭化水素基が複数連結した基の場合、電荷輸送性又は耐久性の観点から、全て直接結合して連結していることが好ましい。
 このため、Ar71として、重合体の主鎖のNと式(53)中の環HAとの間を繋ぐ好ましい構造は、下記の構造式に挙げられる通りである。下記構造式のうち、2つの“-*”は、一方が重合体の主鎖のNと、他方が式(53)の環HAと、結合する部位を表す。2つの”-*”のうち、どちらが重合体の主鎖のNと結合していても、環HAと結合していてもよい。
In addition, Ar 71 preferably contains at least one, more preferably two or more, benzene rings linked at the 1 and 3 positions, which are non-conjugated sites.
When Ar 71 is a group in which a plurality of optionally substituted divalent aromatic hydrocarbon groups are linked, from the viewpoint of charge transport property or durability, it is preferable that all of them are directly linked and linked. .
Therefore, as Ar 71 , a preferred structure connecting N of the main chain of the polymer and ring HA in formula (53) is as shown in the following structural formula. In the structural formula below, the two "-*" represent a site where one is bonded to the N of the main chain of the polymer and the other is bonded to the ring HA of the formula (53). Either of the two "-*" may be bonded to the N of the main chain of the polymer or may be bonded to the ring HA.
Figure JPOXMLDOC01-appb-C000013

 
Figure JPOXMLDOC01-appb-C000013

 
 Ar71が有していてもよい置換基としては、前記置換基群Zのいずれか又はこれらの組み合わせを用いることができる。Ar71が有していてもよい置換基の好ましい範囲は、前述の式(51)におけるAr53と同様の基であり、より好ましい構造は当該Ar53の好ましい基と同様である。 As the substituent that Ar 71 may have, any one of the substituent group Z or a combination thereof can be used. A preferred range of the substituent that Ar 71 may have is the same group as Ar 53 in formula (51) above, and a more preferred structure is the same as the preferred group for Ar 53 .
(X及びY
 X及びYは、それぞれ独立に、C(炭素)原子又はN(窒素)原子を表す。X又はYが、C原子の場合は、置換基を有していてもよい。
 環HAの周辺にLUMOをより局在化させやすい観点からX、YはいずれもN原子であることが好ましい。
( X2 and Y2 )
X2 and Y2 each independently represent a C (carbon) atom or an N (nitrogen) atom. When X 2 or Y 2 is a C atom, it may have a substituent.
Both X 2 and Y 2 are preferably N atoms from the viewpoint of facilitating localization of LUMO around ring HA.
 X又はYがC原子の場合に有していてもよい置換基としては、前記置換基群Zのいずれか又はこれらの組み合わせを用いることができる。電荷輸送性の観点からは、置換基を有さないことが更に好ましい。 When X 2 or Y 2 is a C atom, any one of the above-mentioned substituent group Z or a combination thereof can be used as the substituent which may be possessed. From the viewpoint of charge transportability, it is more preferable not to have a substituent.
(Ar72及びAr73
 Ar72及びAr73は、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基及び置換基を有していてもよい芳香族複素環基の少なくとも一方から選択される、1つの基又は複数の基が連結した2価の基を表し、前記連結は直接若しくは連結基を介してなされている。
( Ar72 and Ar73 )
Ar 72 and Ar 73 are each independently selected from at least one of an optionally substituted aromatic hydrocarbon group and an optionally substituted aromatic heterocyclic group. represents a divalent group in which a group or a plurality of groups are linked, and the linkage is made directly or via a linking group;
 分子のLUMOを分布させる観点から、Ar72及びAr73は、それぞれ独立に、式(51)のAr55として示された上記スキーム2に示すa-1~a-4、b-1~b-9、c-1~c-4、d-1~d-16、及びe-1~e-4から選択される構造と同じ構造を有することが好ましい。
 更に電子求引性基を有することにより分子のLUMOが広がることを促進する観点から、a-1~a-4、b-1~b-9、c-1~c-5、d-1~d-12、及びe-1~e-4から選択される構造が好ましい。
 更に三重項レベルが高い、第二の機能性膜を発光層とした際に、発光層に形成された励起子を閉じ込める、といった効果の観点から、a-1~a-4、d-1~d-12、及びe-1~e-4から選択される構造が好ましい。
 また、分子の凝集を防ぐ観点からは、d-1~d-12、及びe-1~e-4から選択される構造が更に好ましい。簡易に合成でき、安定性に優れる観点からは、Ar72とAr73とは同じ構造であり、かつ、d-1又はd-10が好ましく、d-1のベンゼン環構造が特に好ましい。
From the viewpoint of distributing the LUMO of the molecule, Ar 72 and Ar 73 are each independently represented by a-1 to a-4, b-1 to b- 9, c-1 to c-4, d-1 to d-16, and e-1 to e-4.
Furthermore, from the viewpoint of promoting the spread of the LUMO of the molecule by having an electron-withdrawing group, a-1 to a-4, b-1 to b-9, c-1 to c-5, d-1 to Structures selected from d-12, and e-1 through e-4 are preferred.
Furthermore, from the viewpoint of the effect of confining the excitons formed in the light-emitting layer when the second functional film is used as the light-emitting layer, the triplet level is high, a-1 to a-4, d-1 to Structures selected from d-12, and e-1 through e-4 are preferred.
Further, from the viewpoint of preventing aggregation of molecules, a structure selected from d-1 to d-12 and e-1 to e-4 is more preferable. From the viewpoint of easy synthesis and excellent stability, Ar 72 and Ar 73 have the same structure, and d-1 or d-10 is preferable, and d-1 is particularly preferably a benzene ring structure.
 またこれら構造に置換基を有していてもよい。構造式中“-*”は環HAとの結合部位を表す。“-*”が複数ある場合は、それらのうちいずれか一つが環HAと結合する部位であることを表す。 These structures may also have substituents. "-*" in the structural formula represents a binding site with ring HA. When there are multiple "-*"s, it means that one of them is the site that binds to the ring HA.
 Ar72及びAr73が有していてもよい置換基としては、上記(置換基群Z)として示したうちのいずれか又はこれらの組み合わせを用いることができる。耐久性及び電荷輸送性の観点から、架橋基等以外の置換基であり、上記置換基群Zと同様の基が好ましい。 As the substituents that Ar 72 and Ar 73 may have, any one of those shown as the above (substituent group Z) or a combination thereof can be used. From the viewpoint of durability and charge-transporting properties, it is a substituent other than the cross-linking group and the like, and is preferably the same group as the substituent group Z described above.
(好ましい主鎖)
 上記式(50)で表される繰り返し単位を有するアリールアミンポリマーは、主鎖に複数のベンゼン環構造がパラ位で連結した構造を含み、上記複数のベンゼン環構造のうち少なくとも1つが、隣り合うベンゼン環構造と結合する炭素原子の隣に位置する2つの炭素原子のうち少なくとも一つが置換基を有することが好ましい。前記隣り合う2つのベンゼン環構造は、いずれか一方又は両方が縮合環の一部であってもよい。これは、アリールアミンポリマーのガラス転移温度が下がり、層が固まりやすくなるためである。
(preferred main chain)
The arylamine polymer having a repeating unit represented by the above formula (50) includes a structure in which a plurality of benzene ring structures are linked to the main chain at the para position, and at least one of the plurality of benzene ring structures is adjacent to each other. At least one of the two carbon atoms adjacent to the carbon atom bonded to the benzene ring structure preferably has a substituent. Either one or both of the two adjacent benzene ring structures may be part of a condensed ring. This is because the glass transition temperature of the arylamine polymer is lowered, making it easier for the layer to harden.
 上記式(50)で表される繰り返し単位は、下記式(54)で表される繰り返し単位、下記式(55)で表される繰り返し単位、下記式(56)で表される繰り返し単位又は下記式(57)で表される繰り返し単位が好ましく、下記式(54)で表される繰り返し単位がより好ましい。 The repeating unit represented by the formula (50) is a repeating unit represented by the following formula (54), a repeating unit represented by the following formula (55), a repeating unit represented by the following formula (56), or a repeating unit represented by the following formula (56). A repeating unit represented by the formula (57) is preferable, and a repeating unit represented by the following formula (54) is more preferable.
(式(54)で表される繰り返し単位) (Repeating unit represented by formula (54))
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式(54)中、
 Ar51は上記式(50)におけるAr51と同様であり、
 Xは、-C(R)(R)-、-N(R)-又は-C(R11)(R12)-C(R13)(R14)-であり、
 R及びRは、それぞれ独立して、架橋基等以外の置換基を有していてもよいアルキル基であり、
 R~R及びR11~R14は、それぞれ独立して、水素原子、架橋基等以外の置換基を有していてもよいアルキル基、架橋基等以外の置換基を有していてもよいアラルキル基、又は架橋基等以外の置換基を有していてもよい芳香族炭化水素基であり、
 a及びbは、それぞれ独立して、0~4の整数であり、
 cは、1~3の整数であり、
 dは、0~4の整数であり、
 Rが複数ある場合は、複数のRは同一であっても異なっていてもよく、
 Rが複数ある場合は、複数のRは同一であっても異なっていてもよい。)
(In formula (54),
Ar 51 is the same as Ar 51 in formula (50) above,
X is -C(R 7 )(R 8 )-, -N(R 9 )- or -C(R 11 )(R 12 )-C(R 13 )(R 14 )-;
R 1 and R 2 are each independently an alkyl group optionally having a substituent other than a cross-linking group,
R 7 to R 9 and R 11 to R 14 are each independently a hydrogen atom, an alkyl group which may have a substituent other than a bridging group, or a substituent other than a bridging group. an aralkyl group, or an aromatic hydrocarbon group which may have a substituent other than a bridging group,
a and b are each independently an integer of 0 to 4;
c is an integer from 1 to 3,
d is an integer from 0 to 4,
When there are multiple R 1s , the multiple R 1s may be the same or different,
When there are multiple R 2 s, the multiple R 2s may be the same or different. )
(R、R
 上記式(54)で表される繰り返し単位中のR及びRは、それぞれ独立して、架橋基等以外の置換基を有していてもよいアルキル基である。
(R 1 , R 2 )
R 1 and R 2 in the repeating unit represented by formula (54) are each independently an alkyl group optionally having a substituent other than a bridging group or the like.
 該アルキル基は、直鎖、分岐又は環状のアルキル基である。アルキル基の炭素数は特に限定されないが、重合体の溶解性を維持するために、1以上が好ましく、また、8以下が好ましく、6以下がより好ましく、3以下がさらに好ましい。該アルキル基は、メチル基又はエチル基であることがさらに好ましい。 The alkyl group is a linear, branched or cyclic alkyl group. Although the number of carbon atoms in the alkyl group is not particularly limited, it is preferably 1 or more, preferably 8 or less, more preferably 6 or less, and even more preferably 3 or less, in order to maintain the solubility of the polymer. More preferably, the alkyl group is a methyl group or an ethyl group.
 Rが複数ある場合は、複数のRは同一であっても異なっていてもよく、Rが複数ある場合は、複数のRは同一であっても異なっていてもよい。なお、Rが複数ある場合とは、aが2以上の整数である場合と、cが2以上の整数である場合と、その両方である場合とがあるが、そのいずれにおいても、複数のRは同一であっても異なっていてもよい。Rについても同様であり、Rが複数ある場合とは、bが2以上の整数である場合と、dが2以上の整数である場合と、その両方である場合とがあるが、そのいずれにおいても、複数のRは同一であっても異なっていてもよい。
 電荷を均一的に窒素原子の周りに分布することができ、さらに合成も容易であることから、全てのRとRは同一の基であることが好ましい。
When there is a plurality of R 1 , the plurality of R 1 may be the same or different, and when there is a plurality of R 2 , the plurality of R 2 may be the same or different. In addition, the case where R 1 is plural includes the case where a is an integer of 2 or more, the case where c is an integer of 2 or more, or the case where both are R 1 may be the same or different. The same applies to R 2 , and the case where R 2 is plural includes the case where b is an integer of 2 or more, the case where d is an integer of 2 or more, or both. In any case, multiple R 2 may be the same or different.
All R 1 and R 2 are preferably the same group because the charge can be uniformly distributed around the nitrogen atom and the synthesis is easy.
 R、Rのアルキル基は、架橋基等以外の置換基を有していてもよい。架橋基等以外の置換基は、後述するR~R及びR11~R14のアルキル基、アラルキル基及び芳香族炭化水素基の好ましい基として挙げる基が挙げられる。
 R、Rのアルキル基は、低電圧化の観点からは、置換基を有さないことが最も好ましい。
The alkyl groups of R 1 and R 2 may have substituents other than a cross-linking group. Substituents other than the bridging group and the like include groups mentioned as preferred groups of alkyl groups, aralkyl groups and aromatic hydrocarbon groups for R 7 to R 9 and R 11 to R 14 described later.
The alkyl groups of R 1 and R 2 most preferably have no substituent from the viewpoint of low voltage.
(R~R及びR11~R14
 R~R及びR11~R14は、それぞれ独立して、水素原子、架橋基等以外の置換基を有していてもよいアルキル基、架橋基等以外の置換基を有していてもよいアラルキル基、又は架橋基等以外の置換基を有していてもよい芳香族炭化水素基である。
(R 7 to R 9 and R 11 to R 14 )
R 7 to R 9 and R 11 to R 14 are each independently a hydrogen atom, an alkyl group which may have a substituent other than a bridging group, or a substituent other than a bridging group. aralkyl group, or an aromatic hydrocarbon group which may have a substituent other than a bridging group or the like.
 該アルキル基は特に限定されないが、重合体の溶解性を向上できる傾向にあるため、炭素数は1以上が好ましく、また、24以下が好ましく、8以下がより好ましく、6以下がさらに好ましい。また、該アルキル基は直鎖、分岐又は環状の各構造であってもよい。 Although the alkyl group is not particularly limited, the number of carbon atoms is preferably 1 or more, preferably 24 or less, more preferably 8 or less, and even more preferably 6 or less, because it tends to improve the solubility of the polymer. Also, the alkyl group may have a linear, branched or cyclic structure.
 該アルキル基として、具体的には、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、tert-ブチル基、n-ヘキシル基、n-オクチル基、シクロヘキシル基、ドデシル基等が挙げられる。 Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group and n-hexyl group. , n-octyl group, cyclohexyl group, dodecyl group and the like.
 該アラルキル基は特に限定されないが、重合体の溶解性を向上できる傾向にあるため、炭素数は5以上が好ましく、また、60以下が好ましく、40以下がより好ましい。 Although the aralkyl group is not particularly limited, the number of carbon atoms is preferably 5 or more, preferably 60 or less, and more preferably 40 or less, because it tends to improve the solubility of the polymer.
 該アラルキル基として、具体的には、1,1-ジメチル-1-フェニルメチル基、1,1-ジ(n-ブチル)-1-フェニルメチル基、1,1-ジ(n-ヘキシル)-1-フェニルメチル基、1,1-ジ(n-オクチル)-1-フェニルメチル基、フェニルメチル基、フェニルエチル基、3-フェニル-1-プロピル基、4-フェニル-1-n-ブチル基、1-メチル-1-フェニルエチル基、5-フェニル-1-n-プロピル基、6-フェニル-1-n-ヘキシル基、6-ナフチル-1-n-ヘキシル基、7-フェニル-1-n-ヘプチル基、8-フェニル-1-n-オクチル基、4-フェニルシクロヘキシル基等が挙げられる。 Specific examples of the aralkyl group include 1,1-dimethyl-1-phenylmethyl group, 1,1-di(n-butyl)-1-phenylmethyl group, 1,1-di(n-hexyl)- 1-phenylmethyl group, 1,1-di(n-octyl)-1-phenylmethyl group, phenylmethyl group, phenylethyl group, 3-phenyl-1-propyl group, 4-phenyl-1-n-butyl group , 1-methyl-1-phenylethyl group, 5-phenyl-1-n-propyl group, 6-phenyl-1-n-hexyl group, 6-naphthyl-1-n-hexyl group, 7-phenyl-1- n-heptyl group, 8-phenyl-1-n-octyl group, 4-phenylcyclohexyl group and the like.
 該芳香族炭化水素基としては特に限定されないが、重合体の溶解性を向上できる傾向にあるため、炭素数は6以上が好ましく、また、60以下が好ましく、30以下がより好ましい。 Although the aromatic hydrocarbon group is not particularly limited, the number of carbon atoms is preferably 6 or more, preferably 60 or less, and more preferably 30 or less, because it tends to improve the solubility of the polymer.
 該芳香族炭化水素基として、具体的には、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環等の、6員環の単環若しくは2~5縮合環の1価の基、又はこれらが複数連結した基等が挙げられる。 Specific examples of the aromatic hydrocarbon group include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, acenaphthene ring, fluoranthene ring, and fluorene. A 6-membered monocyclic or 2-5 condensed monovalent group such as a ring, or a group in which a plurality of these are linked, and the like can be mentioned.
 電荷輸送性及び耐久性向上の観点から、R~Rはメチル基又は芳香族炭化水素基が好ましく、R及びRはメチル基であることがより好ましく、Rはフェニル基であることがより好ましい。 From the viewpoint of improving charge transport properties and durability, R 7 to R 9 are preferably methyl groups or aromatic hydrocarbon groups, R 7 and R 8 are more preferably methyl groups, and R 9 is a phenyl group. is more preferable.
 R~R及びR11~R14のアルキル基、アラルキル基及び芳香族炭化水素基は、架橋基以外の置換基を有していてもよい。架橋基以外の置換基は、上記R~R及びR11~R14のアルキル基、アラルキル基及び芳香族炭化水素基の好ましい基として挙げた基が挙げられる。 The alkyl groups, aralkyl groups and aromatic hydrocarbon groups of R 7 to R 9 and R 11 to R 14 may have substituents other than bridging groups. Substituents other than the bridging group include the groups exemplified as preferred alkyl groups, aralkyl groups and aromatic hydrocarbon groups for R 7 to R 9 and R 11 to R 14 above.
 R~R及びR11~R14のアルキル基、アラルキル基及び芳香族炭化水素基は、低電圧化の観点からは、置換基を有さないことが最も好ましい。 The alkyl groups, aralkyl groups and aromatic hydrocarbon groups of R 7 to R 9 and R 11 to R 14 most preferably have no substituents from the viewpoint of low voltage.
(a、b、c及びd)
 上記式(54)で表される繰り返し単位中において、a及びbはそれぞれ独立して、0~4の整数である。a+bで表される値は1以上であることが好ましく、さらに、a及びbは、各々2以下であることが好ましく、aとbの両方が1であることがより好ましい。なお、aが1以上である構造はcが1以上である場合にc個のフェニレン基でそれぞれ独立に定義され、bが1以上である構造はdが1以上である場合にd個のフェニレン基でそれぞれ独立に定義される。
(a, b, c and d)
In the repeating unit represented by the above formula (54), a and b are each independently an integer of 0-4. The value represented by a+b is preferably 1 or more, more preferably each of a and b is 2 or less, and more preferably both a and b are 1. The structure in which a is 1 or more is defined independently by c phenylene groups when c is 1 or more, and the structure in which b is 1 or more includes d phenylene groups when d is 1 or more. are independently defined in groups.
 a+bで表される値が1以上であると、主鎖の芳香環が立体障害により捻じれ、重合体の溶媒への溶解性が優れると共に、湿式成膜法で形成し加熱処理された塗膜は溶媒への不溶性に優れる傾向にある。したがって、a+bで表される値が1以上であると、第一の機能性膜上へ湿式成膜法で別の有機層、すなわち第二の機能性膜を形成する場合には、有機溶媒を含む第二の組成物中への、第一の組成物中に含まれるアリールアミンポリマーといった重合体の溶出が抑えられる。その結果、形成された第二の機能性膜への影響が少なく、有機半導体素子の駆動寿命はさらに長くなると考えられる。 When the value represented by a + b is 1 or more, the aromatic ring of the main chain is twisted due to steric hindrance, and the solubility of the polymer in a solvent is excellent, and the coating film formed by a wet film formation method and heat-treated. tend to have excellent insolubility in solvents. Therefore, when the value represented by a+b is 1 or more, when another organic layer, that is, the second functional film is formed on the first functional film by a wet film-forming method, an organic solvent is used. The elution of the polymer, such as the arylamine polymer, contained in the first composition into the containing second composition is suppressed. As a result, the formed second functional film is less affected, and the operating life of the organic semiconductor element is considered to be further extended.
 上記式(54)で表される繰り返し単位中において、cは1~3の整数であり、dは0~4の整数である。c及びdは、各々2以下であることが好ましく、cとdは等しいことがさらに好ましく、cとdの両方が1であるか、又はcとdの両方が2であることが特に好ましい。 In the repeating unit represented by the above formula (54), c is an integer of 1-3 and d is an integer of 0-4. Each of c and d is preferably 2 or less, more preferably c and d are equal, and it is particularly preferable that both c and d are 1 or both c and d are 2.
 上記式(54)で表される繰り返し単位中のcとdの両方が1であるか又はcとdの両方が2であり、且つ、aとbの両方が2又は1である場合、RとRは、互いに対称な位置に結合していることが最も好ましい。 When both c and d in the repeating unit represented by the above formula (54) are 1 or both c and d are 2 and both a and b are 2 or 1, R 1 and R 2 are most preferably bonded at symmetrical positions.
 ここで、RとRとが互いに対称な位置に結合するとは、式(54)におけるフルオレン環、カルバゾール環又は9,10-ジヒドロフェナントレン誘導体構造に対して、RとRの結合位置が対称であることをいう。このとき、主鎖を軸とする180度回転は同一構造とみなす。 Here, the binding of R 1 and R 2 at positions symmetrical to each other means the binding position of R 1 and R 2 with respect to the fluorene ring, carbazole ring or 9,10-dihydrophenanthrene derivative structure in formula (54). is symmetrical. At this time, 180° rotation around the main chain is regarded as the same structure.
(X)
 上記式(54)におけるXは、電荷輸送時の安定性が高いことから、-C(R)(R)-又は-N(R)-であることが好ましく、-C(R)(R)-であることがより好ましい。
(X)
X in the above formula (54) is preferably -C(R 7 )(R 8 )- or -N(R 9 )- because of its high stability during charge transport, and -C(R 7 )(R 8 )— is more preferred.
(好ましい繰り返し単位)
 上記式(54)で表される繰り返し単位は、下記式(54-1)~式(54-4)のいずれかで示される繰り返し単位であることが特に好ましい。
(preferred repeating unit)
The repeating unit represented by the above formula (54) is particularly preferably a repeating unit represented by any one of the following formulas (54-1) to (54-4).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上記式において、Ar51、R、R及びXは、式(54)におけるAr51、R、R及びXとそれぞれ同様であるが、R及びRは同一であり、且つ、RとRは互いに対称な位置に結合していることが好ましい。 In the above formula, Ar 51 , R 1 , R 2 and X are the same as Ar 51 , R 1 , R 2 and X in formula (54), respectively, but R 1 and R 2 are the same, and R 1 and R 2 are preferably bonded at symmetrical positions.
(式(54)で表される繰り返し単位の主鎖の具体例)
 上記式(54)中の窒素原子を除いた主鎖構造は特に限定されないが、例えば以下のような構造が挙げられる。
(Specific example of main chain of repeating unit represented by formula (54))
Although the main chain structure excluding the nitrogen atom in the above formula (54) is not particularly limited, examples thereof include the following structures.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(式(55)で表される繰り返し単位) (Repeating unit represented by formula (55))
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(式(55)中、
 Ar51は前記式(50)におけるAr51と同様であり、
 R及びRは、それぞれ独立して、架橋基等以外の置換基を有していてもよいアルキル基であり、
 R及びRは、それぞれ独立して、架橋基等以外の置換基を有していてもよいアルキル基、架橋基等以外の置換基を有していてもよいアルコキシ基又は架橋基等以外の置換基を有していてもよいアラルキル基であり、
 lは、0又は1であり、
 mは、1又は2であり、
 nは、0又は1であり、
 pは、0又は1であり、
 qは、0又は1である。)
(In formula (55),
Ar 51 is the same as Ar 51 in the formula (50),
R 3 and R 6 are each independently an alkyl group optionally having a substituent other than a cross-linking group,
R 4 and R 5 are each independently an alkyl group optionally having a substituent other than a bridging group, etc., an alkoxy group optionally having a substituent other than a bridging group etc., or a group other than a bridging group etc. is an aralkyl group optionally having a substituent of
l is 0 or 1,
m is 1 or 2,
n is 0 or 1,
p is 0 or 1,
q is 0 or 1; )
(R、R
 上記式(55)で表される繰り返し単位中のR及びRは、それぞれ独立して、架橋基等以外の置換基を有していてもよいアルキル基である。
 アルキル基としては、前記式(54)におけるR及びRと同様のものが挙げられ、有していてもよい置換基及び好ましい構造もR及びRと同様のものが挙げられる。
(R 3 , R 6 )
R 3 and R 6 in the repeating unit represented by formula (55) are each independently an alkyl group optionally having a substituent other than a bridging group or the like.
Examples of the alkyl group include the same as those for R 1 and R 2 in the formula (54), and the same substituents and preferred structures as those for R 1 and R 2 may be included.
(R、R
 上記式(55)で表される繰り返し単位中のR及びRは、それぞれ独立して、架橋基等以外の置換基を有していてもよいアルキル基、架橋基等以外の置換基を有していてもよいアルコキシ基又は架橋基等以外の置換基を有していてもよいアラルキル基である。
( R4 , R5)
R 4 and R 5 in the repeating unit represented by the above formula (55) are each independently an alkyl group optionally having a substituent other than a bridging group or the like, or a substituent other than a bridging group or the like. It is an alkoxy group which may have or an aralkyl group which may have a substituent other than a bridging group or the like.
 該アルキル基は、直鎖、分岐又は環状のアルキル基である。該アルキル基の炭素数は特に限定されないが、重合体の溶解性を向上できる傾向にあるため、1以上が好ましく、また、24以下が好ましく、8以下がより好ましく、6以下がさらに好ましい。 The alkyl group is a linear, branched or cyclic alkyl group. Although the number of carbon atoms in the alkyl group is not particularly limited, it is preferably 1 or more, preferably 24 or less, more preferably 8 or less, and even more preferably 6 or less, because it tends to improve the solubility of the polymer.
 該アルキル基としては、具体的には、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、tert-ブチル基、n-ヘキシル基、n-オクチル基、シクロヘキシル基、ドデシル基等が挙げられる。 Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group and n-hexyl. group, n-octyl group, cyclohexyl group, dodecyl group and the like.
 該アルコキシ基は特に限定されず、アルコキシ基(-OR10)のR10で表されるアルキル基は、直鎖、分岐又は環状のいずれの構造であってもよく、重合体の溶解性を向上できる傾向にあるため、炭素数が1以上が好ましく、また、24以下が好ましく、12以下がより好ましい。 The alkoxy group is not particularly limited, and the alkyl group represented by R 10 of the alkoxy group (-OR 10 ) may have any structure of linear, branched or cyclic, and improves the solubility of the polymer. Therefore, the number of carbon atoms is preferably 1 or more, preferably 24 or less, and more preferably 12 or less.
 該アルコキシ基としては、具体的には、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、ヘキシロキシ基、1-メチルペンチルオキシ基、シクロヘキシルオキシ基等が挙げられる。 Specific examples of the alkoxy group include methoxy group, ethoxy group, n-propoxy group, n-butoxy group, hexyloxy group, 1-methylpentyloxy group, cyclohexyloxy group and the like.
 該アラルキル基は特に限定されないが、重合体の溶解性を向上できる傾向にあるため、炭素数は5以上が好ましく、また、60以下が好ましく、40以下がより好ましい。 Although the aralkyl group is not particularly limited, the number of carbon atoms is preferably 5 or more, preferably 60 or less, and more preferably 40 or less, because it tends to improve the solubility of the polymer.
 該アラルキル基としては、具体的には、1,1-ジメチル-1-フェニルメチル基、1,1-ジ(n-ブチル)-1-フェニルメチル基、1,1-ジ(n-ヘキシル)-1-フェニルメチル基、1,1-ジ(n-オクチル)-1-フェニルメチル基、フェニルメチル基、フェニルエチル基、3-フェニル-1-プロピル基、4-フェニル-1-n-ブチル基、1-メチル-1-フェニルエチル基、5-フェニル-1-n-プロピル基、6-フェニル-1-n-ヘキシル基、6-ナフチル-1-n-ヘキシル基、7-フェニル-1-n-ヘプチル基、8-フェニル-1-n-オクチル基、4-フェニルシクロヘキシル基などが挙げられる。 Specific examples of the aralkyl group include 1,1-dimethyl-1-phenylmethyl group, 1,1-di(n-butyl)-1-phenylmethyl group, 1,1-di(n-hexyl) -1-phenylmethyl group, 1,1-di(n-octyl)-1-phenylmethyl group, phenylmethyl group, phenylethyl group, 3-phenyl-1-propyl group, 4-phenyl-1-n-butyl group, 1-methyl-1-phenylethyl group, 5-phenyl-1-n-propyl group, 6-phenyl-1-n-hexyl group, 6-naphthyl-1-n-hexyl group, 7-phenyl-1 -n-heptyl group, 8-phenyl-1-n-octyl group, 4-phenylcyclohexyl group and the like.
(l、m及びn)
 lは0又は1を表し、nは0又は1を表す。
(l, m and n)
l represents 0 or 1; n represents 0 or 1;
 l及びnは各々独立であり、l+nで表される値は1以上が好ましく、1又は2がより好ましく、2がさらに好ましい。l+nで表される値が上記範囲であることで、第一の機能性膜が含有する重合体の溶解性を高くし、該重合体を含有する第一の組成物からの析出も抑制できる傾向にある。 l and n are each independent, and the value represented by l+n is preferably 1 or more, more preferably 1 or 2, and still more preferably 2. When the value represented by l+n is within the above range, the solubility of the polymer contained in the first functional film is increased, and precipitation from the first composition containing the polymer tends to be suppressed. It is in.
 mは1又は2を表し、有機半導体素子が有機電界発光素子である場合には低電圧で駆動でき、正孔注入能、輸送能、耐久性も向上する傾向にあることから、1であることが好ましい。 m represents 1 or 2, and when the organic semiconductor device is an organic electroluminescent device, it can be driven at a low voltage, and the hole injection ability, transport ability, and durability tend to be improved, so it should be 1. is preferred.
(p及びq)
 pは0又は1を表し、qは0又は1を表す。なお、p=1である場合はl=1の場合であり、q=1である場合はn=1の場合である。l=n=1の場合、pとqは同時に0となることはない。pとqが同時に0とならないことで、第一の機能性膜が含有する重合体の溶解性を高くし、該重合体を含有する第一の組成物からの析出も抑制できる傾向にある。また、前記a及びbと同様の理由により、p+qで表される値が1以上であると有機半導体素子の駆動寿命はさらに長くなると考えられ、好ましい。
(p and q)
p represents 0 or 1; q represents 0 or 1; Note that the case of p=1 corresponds to the case of l=1, and the case of q=1 corresponds to the case of n=1. When l=n=1, p and q cannot be 0 at the same time. When p and q are not 0 at the same time, the solubility of the polymer contained in the first functional film is increased, and precipitation from the first composition containing the polymer tends to be suppressed. For the same reason as a and b above, it is considered that the driving life of the organic semiconductor element is further extended when the value represented by p+q is 1 or more, which is preferable.
(式(55)で表される繰り返し単位の主鎖の具体例)
 式(55)中の窒素原子を除いた主鎖構造は特に限定されないが、例えば以下のような構造が挙げられる。
(Specific example of main chain of repeating unit represented by formula (55))
Although the main chain structure excluding the nitrogen atom in formula (55) is not particularly limited, examples thereof include the following structures.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
(式(56)で表される繰り返し単位) (Repeating unit represented by formula (56))
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
(式(56)中、
 Ar51は前記式(50)におけるAr51と同様であり、
 Ar41は、架橋基等以外の置換基を有していてもよい2価の芳香族炭化水素基及び架橋基等以外の置換基を有していてもよい2価の芳香族複素環基の少なくとも一方から選択される、1つの基又は複数の基が連結した2価の基を表し、上記連結は直接若しくは連結基を介してなされる。
 R41及びR42は、それぞれ独立して、架橋基等以外の置換基を有していてもよいアルキル基であり、
 tは、1又は2であり、
 uは、0又は1であり、
 r及びsは、それぞれ独立して、0~4の整数である。)
(In formula (56),
Ar 51 is the same as Ar 51 in the formula (50),
Ar 41 is a divalent aromatic hydrocarbon group which may have a substituent other than a bridging group or the like and a divalent aromatic heterocyclic group which may have a substituent other than a bridging group or the like. represents a divalent group in which one group or a plurality of groups selected from at least one are linked, and the linkage is made directly or via a linking group;
R 41 and R 42 are each independently an alkyl group optionally having a substituent other than a bridging group,
t is 1 or 2;
u is 0 or 1,
r and s are each independently an integer of 0-4. )
(R41、R42
 上記式(56)で表される繰り返し単位中のR41、R42は、それぞれ独立して、架橋基等以外の置換基を有していてもよいアルキル基である。
( R41 , R42 )
R 41 and R 42 in the repeating unit represented by formula (56) are each independently an alkyl group optionally having a substituent other than a bridging group or the like.
 該アルキル基は、直鎖、分岐又は環状のアルキル基である。アルキル基の炭素数は特に限定されないが、重合体の溶解性を維持するために、炭素数は1以上が好ましく、また、10以下が好ましく、8以下がより好ましく、6以下がより好ましい。該アルキル基はメチル基又はヘキシル基であることがさらに好ましい。 The alkyl group is a linear, branched or cyclic alkyl group. The number of carbon atoms in the alkyl group is not particularly limited, but in order to maintain the solubility of the polymer, the number of carbon atoms is preferably 1 or more, preferably 10 or less, more preferably 8 or less, and more preferably 6 or less. More preferably, the alkyl group is a methyl group or a hexyl group.
 R41及びR42が上記式(56)で表される繰り返し単位中に複数ある場合は、複数のR41及びR42は同一であっても異なっていてもよい。R41が複数ある場合とは、rが2以上である場合、tが2以上である場合、又はその両方である場合が挙げられる。R42が複数ある場合とは、sが2以上である場合である。 When a plurality of R 41 and R 42 are present in the repeating unit represented by formula (56) above, the plurality of R 41 and R 42 may be the same or different. The case where R 41 is plural includes the case where r is 2 or more, the case where t is 2 or more, or both. The case where R 42 is plural means the case where s is 2 or more.
(r、s、t及びu)
 式(56)で表される繰り返し単位中において、r及びsはそれぞれ独立して、0~4の整数である。r+sで表される値は1以上であることが好ましく、さらに、r及びsは、各々2以下であることが好ましい。なお、rは、tが1以上の場合にt個のフェニレン基でそれぞれ独立に定義され、sは、u=1の場合に定義される。
 r+sで表される値が1以上であると、前記式(54)におけるa及びbと同様の理由により、有機半導体素子の駆動寿命はさらに長くなると考えられる。
(r, s, t and u)
In the repeating unit represented by formula (56), r and s are each independently an integer of 0-4. The value represented by r+s is preferably 1 or more, and r and s are each preferably 2 or less. When t is 1 or more, r is independently defined for t phenylene groups, and s is defined when u=1.
When the value represented by r+s is 1 or more, the drive life of the organic semiconductor device is considered to be further extended for the same reason as a and b in the formula (54).
 上記式(56)で表される繰り返し単位中において、tは1又は2であり、uは0又は1である。tは1が好ましく、uは1が好ましい。 In the repeating unit represented by formula (56) above, t is 1 or 2, and u is 0 or 1. t is preferably 1 and u is preferably 1.
(Ar41
 Ar41は、架橋基等以外の置換基を有していてもよい2価の芳香族炭化水素基及び架橋基等以外の置換基を有していてもよい2価の芳香族複素環基の少なくとも一方から選択される1つの基又は複数の基が連結した2価の基を表し、上記連結は直接若しくは連結基を介してなされる。
( Ar41 )
Ar 41 is a divalent aromatic hydrocarbon group which may have a substituent other than a bridging group or the like and a divalent aromatic heterocyclic group which may have a substituent other than a bridging group or the like. represents a divalent group in which one group or a plurality of groups selected from at least one are linked, and the linkage is made directly or via a linking group;
 Ar41における芳香族炭化水素基及び芳香族炭化水素基としては、前記式(50)におけるAr52と同様の基が挙げられる。また、芳香族炭化水素基及び芳香族炭化水素基が有していてもよい置換基は、上記置換基群Zと同様の基が好ましく、さらに有していてよい置換基も上記置換基群Zと同様であることが好ましい。 The aromatic hydrocarbon group and aromatic hydrocarbon group for Ar 41 include the same groups as for Ar 52 in the formula (50). In addition, the aromatic hydrocarbon group and the substituent that the aromatic hydrocarbon group may have are preferably the same groups as in the above substituent group Z, and the substituent that may be further included in the above substituent group Z is preferably the same as
(式(56)で表される繰り返し単位の具体例)
 式(56)で表される繰り返し単位は特に限定されないが、例えば以下のような構造が挙げられる。
(Specific example of repeating unit represented by formula (56))
Although the repeating unit represented by formula (56) is not particularly limited, examples thereof include the following structures.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
(式(57)で表される繰り返し単位) (Repeating unit represented by formula (57))
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
(式(57)中、
 Ar51は前記式(50)におけるAr51と同様であり、
 R17~R19は、各々独立に、架橋基等以外の置換基を有していてもよいアルキル基、架橋基等以外の置換基を有していてもよいアルコキシ基、架橋基等以外の置換基を有していてもよいアラルキル基、架橋基等以外の置換基を有していてもよい芳香族炭化水素基又は架橋基等以外の置換基を有していてもよい芳香族複素環基を表し、
 f、g、hは、各々独立して、0~4の整数を表し、f+g+hで表される値は1以上であり、
 eは0~3の整数を表す。)
(In formula (57),
Ar 51 is the same as Ar 51 in the formula (50),
R 17 to R 19 each independently represent an alkyl group optionally having a substituent other than a bridging group, etc., an alkoxy group optionally having a substituent other than a bridging group etc., a group other than a bridging group etc. An aralkyl group which may have a substituent, an aromatic hydrocarbon group which may have a substituent other than a bridging group, or an aromatic heterocyclic ring which may have a substituent other than a bridging group represents the group,
f, g, and h each independently represent an integer of 0 to 4, the value represented by f + g + h is 1 or more,
e represents an integer of 0 to 3; )
(R17~R19
 R17~R19における芳香族炭化水素基、芳香族複素環基は、各々独立に、前記Ar51で挙げた芳香族炭化水素基、芳香族複素環基とそれぞれ同様の基である、また、これらの基が有していてもよい架橋基以外置換基は、上記置換基群Z又と同様の基が好ましい。
 R17~R19におけるアルキル基及びアラルキル基は、前記Rで挙げたアルキル基及びアラルキル基とそれぞれ同様の基が好ましく、さらに有していてもよい架橋基等以外の置換基も前記Rと同様の基が好ましい。
 R17~R19におけるアルコキシ基は、上記置換基群Zで挙げたアルコキシ基が好ましく、さらに有していてもよい架橋基等以外の置換基も上記置換基群Zと同様である。
(R 17 to R 19 )
The aromatic hydrocarbon group and aromatic heterocyclic group in R 17 to R 19 are each independently the same aromatic hydrocarbon group and aromatic heterocyclic group as those mentioned for Ar 51 above, and Substituents other than the cross-linking group that these groups may have are preferably the same groups as in the above-described substituent group Z or.
The alkyl group and aralkyl group in R 17 to R 19 are preferably the same groups as the alkyl group and aralkyl group mentioned above for R 7 , respectively . Groups similar to are preferred.
The alkoxy groups in R 17 to R 19 are preferably the alkoxy groups listed in the above substituent group Z, and the substituents other than the cross-linking group that may be contained are also the same as those in the above substituent group Z.
(f、g、h)
 f、g、hは、各々独立して、0~4の整数を表し、f+g+hで表される値は1以上である。なお、gは、eが2以上の場合にe個のフェニレン基でそれぞれ独立に定義される。
 f+hで表される値は1以上であることが好ましく、
 f+hで表される値は1以上、且つ、f、g及びhはいずれも2以下であることがより好ましく、
 f+hで表される値は1以上、且つ、f、hはいずれも1以下であることがさらに好ましく、
 f、hはいずれも1であることが最も好ましい。
 f及びhがいずれも1である場合、R17とR19は互いに対称な位置に結合していることが好ましい。
 また、R17とR19とは同一であることが好ましく、gは2であることがより好ましい。
 gが2である場合、2つのR18は互いにパラ位に結合していることが最も好ましく、gが2である場合、2つのR18は同一であることが最も好ましい。
 ここで、R17とR19が互いに対称な位置に結合するとは、下記の結合位置のことを言う。ただし、表記上、主鎖を軸とする180度回転は同一構造とみなす。
(f, g, h)
f, g, and h each independently represent an integer of 0 to 4, and the value represented by f+g+h is 1 or more. In addition, g is independently defined by e phenylene groups when e is 2 or more.
The value represented by f + h is preferably 1 or more,
More preferably, the value represented by f + h is 1 or more, and f, g, and h are all 2 or less,
More preferably, the value represented by f + h is 1 or more, and both f and h are 1 or less,
Most preferably, both f and h are 1.
When f and h are both 1, R 17 and R 19 are preferably bonded at symmetrical positions.
Also, R 17 and R 19 are preferably the same, and g is more preferably 2.
When g is 2, the two R 18 are most preferably attached to each other in the para position, and when g is 2, the two R 18 are most preferably the same.
Here, the binding positions where R 17 and R 19 are symmetrical to each other refer to the following binding positions. However, for notation, 180° rotation about the main chain is regarded as the same structure.
Figure JPOXMLDOC01-appb-C000035

 
Figure JPOXMLDOC01-appb-C000035

 
 また、上記式(57)で表される繰り返し単位は、下記式(58)で表される繰り返し単位であることが好ましい。 Further, the repeating unit represented by formula (57) above is preferably a repeating unit represented by formula (58) below.
(式(58)で表される繰り返し単位) (Repeating unit represented by formula (58))
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 上記式(58)で表される繰り返し単位の場合、g=0または2であることが好ましい。g=2の場合、結合位置は2位と5位が好ましい。g=0の場合、すなわちR18による立体障害が無い場合、及びg=2であり結合位置は2位と5位である場合、すなわち立体障害が2つのR18が結合するベンゼン環の対角位置となる場合は、R17とR19とが互いに対称な位置に結合することが可能である。 In the case of the repeating unit represented by formula (58) above, g=0 or 2 is preferred. When g=2, the binding positions are preferably 2- and 5-positions. When g = 0, i.e., when there is no steric hindrance by R 18 ; In the case of positions, R 17 and R 19 can be bonded at positions symmetrical to each other.
 また、上記式(58)で表される繰り返し単位は、e=3である下記式(59)で示される繰り返し単位であることがさらに好ましい。 Further, the repeating unit represented by the above formula (58) is more preferably a repeating unit represented by the following formula (59) where e=3.
(式(59)で表される繰り返し単位) (Repeating unit represented by formula (59))
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 上記式(59)で表される繰り返し単位の場合、g=0または2であることが好ましい。g=2の場合、結合位置は2位と5位が好ましい。g=0の場合、すなわちR18による立体障害が無い場合、及びg=2であり結合位置は2位と5位である場合、すなわち、立体障害が2つのR18が結合するベンゼン環の対角位置となる場合は、R17とR19とが互いに対称な位置に結合することが可能である。 In the case of the repeating unit represented by formula (59) above, g=0 or 2 is preferred. When g=2, the binding positions are preferably 2- and 5-positions. When g = 0, i.e., when there is no steric hindrance by R 18 , and when g = 2 and the binding positions are 2-position and 5-position, i . In the case of angular positions, R 17 and R 19 can be combined at symmetrical positions.
(アリールアミンポリマーの分子量)
 以下、第一の機能性膜に含まれるアリールアミンポリマーの分子量について記す。
(Molecular weight of arylamine polymer)
The molecular weight of the arylamine polymer contained in the first functional film is described below.
 アリールアミンポリマー、好ましくは上記式(50)で表される繰り返し単位を含むアリールアミンポリマーの重量平均分子量(Mw)は、通常3,000,000以下、好ましくは1,000,000以下、より好ましくは500,000以下、さらに好ましくは200,000以下、特に好ましくは100,000以下、最も好ましくは50,000以下である。また、当該重量平均分子量は、通常2,500以上、好ましくは5,000以上、より好ましくは10,000以上、さらに好ましくは15,000以上、特に好ましくは17,000以上である。 The weight-average molecular weight (Mw) of the arylamine polymer, preferably the arylamine polymer containing the repeating unit represented by the above formula (50), is usually 3,000,000 or less, preferably 1,000,000 or less, more preferably 1,000,000 or less. is 500,000 or less, more preferably 200,000 or less, particularly preferably 100,000 or less, most preferably 50,000 or less. The weight average molecular weight is usually 2,500 or more, preferably 5,000 or more, more preferably 10,000 or more, still more preferably 15,000 or more, and particularly preferably 17,000 or more.
 アリールアミンポリマーの重量平均分子量が上記上限値以下であることで、溶媒に対する溶解性が得られ、成膜性に優れる傾向にある。また、該アリールアミンポリマーの重量平均分子量が上記下限値以上であることで、アリールアミンポリマーのガラス転移温度、融点及び気化温度の低下が抑制され、耐熱性が向上する場合がある。
 従来、重量平均分子量15000~50000の架橋基等を有さないアリールアミンポリマーでは、産業上実用的な不溶性を得られないと考えられていた。本発明の組成物を用いることで、比較的低温・短時間の焼成でも、産業上必要な2分以上、好ましくは15分以上の上層溶媒への耐久を達成できる。
When the weight-average molecular weight of the arylamine polymer is equal to or less than the above upper limit, solubility in a solvent is obtained, and the film-forming property tends to be excellent. Further, when the weight average molecular weight of the arylamine polymer is at least the above lower limit, the glass transition temperature, melting point, and vaporization temperature of the arylamine polymer are suppressed from being lowered, and heat resistance may be improved.
Conventionally, it was believed that an arylamine polymer having a weight-average molecular weight of 15,000 to 50,000 and having no cross-linking group or the like could not achieve industrially practical insolubility. By using the composition of the present invention, it is possible to achieve industrially required durability to the upper layer solvent for 2 minutes or more, preferably 15 minutes or more, even with relatively low-temperature and short-time firing.
 また、アリールアミンポリマーにおける数平均分子量(Mn)は、通常2,500,000以下、好ましくは750,000以下、より好ましくは400,000以下、特に好ましくは100,000以下であり、最も好ましくは40000以下である。また、当該数平均分子量は、通常2,000以上、好ましくは4,000以上、より好ましくは6,000以上、さらに好ましくは8,000以上である。 In addition, the number average molecular weight (Mn) of the arylamine polymer is usually 2,500,000 or less, preferably 750,000 or less, more preferably 400,000 or less, particularly preferably 100,000 or less, and most preferably 40000 or less. Moreover, the number average molecular weight is usually 2,000 or more, preferably 4,000 or more, more preferably 6,000 or more, and still more preferably 8,000 or more.
 さらに、アリールアミンポリマーにおける分散度(Mw/Mn)は、好ましくは3.5以下、さらに好ましくは2.5以下、特に好ましくは2.0以下である。なお、分散度は値が小さい程よいため、下限値は理想的には1である。アリールアミンポリマーの分散度が、上記上限値以下であると、精製が容易で、また溶媒に対する溶解性や電荷輸送能が良好である。 Furthermore, the dispersity (Mw/Mn) in the arylamine polymer is preferably 3.5 or less, more preferably 2.5 or less, and particularly preferably 2.0 or less. Note that the lower limit value is ideally 1 because the smaller the value of the degree of dispersion, the better. When the degree of dispersion of the arylamine polymer is equal to or less than the above upper limit, purification is easy, and solubility in solvents and charge transportability are good.
 通常、重合体の重量平均分子量及び数平均分子量はSEC(サイズ排除クロマトグラフィー)測定により決定される。SEC測定では高分子量成分ほど溶出時間が短く、低分子量成分ほど溶出時間が長くなるが、分子量既知のポリスチレン(標準試料)の溶出時間から算出した校正曲線を用いて、サンプルの溶出時間を分子量に換算することによって、重量平均分子量及び数平均分子量が算出される。 The weight average molecular weight and number average molecular weight of a polymer are usually determined by SEC (size exclusion chromatography) measurement. In SEC measurement, the higher the molecular weight, the shorter the elution time, and the lower the molecular weight, the longer the elution time. By conversion, the weight average molecular weight and number average molecular weight are calculated.
(具体例)
 アリールアミンポリマーの具体例を以下に示すが、本実施形態におけるアリールアミンポリマーはこれらに限定されるものではない。なお、化学式中の数字は繰り返し単位のモル比を表す。nは繰り返し数を表す。
(Concrete example)
Specific examples of the arylamine polymer are shown below, but the arylamine polymer in the present embodiment is not limited to these. The numbers in the chemical formulas represent the molar ratio of repeating units. n represents the number of repetitions.
 これらのアリールアミンポリマーは、ランダム共重合体、交互共重合体、ブロック共重合体、又はグラフト共重合体等のいずれでもよく、単量体の配列順序には限定されない。 These arylamine polymers may be random copolymers, alternating copolymers, block copolymers, graft copolymers, or the like, and the sequence of the monomers is not limited.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 式(56)で表される繰り返し単位を含むアリールアミンポリマーの具体例を以下に示すが、本実施形態におけるアリールアミンポリマーはこれらに限定されるものではない。なお、化学式中の数字は繰返し単位のモル比を表す。nは繰り返し数を表す。 Specific examples of the arylamine polymer containing the repeating unit represented by formula (56) are shown below, but the arylamine polymer in the present embodiment is not limited to these. The numbers in the chemical formulas represent the molar ratio of repeating units. n represents the number of repetitions.
 これらのアリールアミンポリマーは、ランダム共重合体、交互共重合体、ブロック共重合体、又はグラフト共重合体等のいずれでもよく、単量体の配列順序には限定されない。 These arylamine polymers may be random copolymers, alternating copolymers, block copolymers, graft copolymers, or the like, and the sequence of the monomers is not limited.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
(アリールアミンポリマーの製造方法)
 第一の機能性材料が含有するアリールアミンポリマーの製造方法は特には制限されず任意である。例えば、Suzuki反応による重合方法、Grignard反応による重合方法、Yamamoto反応による重合方法、Ullmann反応による重合方法、Buchwald-Hartwig反応による重合方法等などが挙げられる。
(Method for producing arylamine polymer)
The method for producing the arylamine polymer contained in the first functional material is not particularly limited and is arbitrary. Examples thereof include a polymerization method by Suzuki reaction, a polymerization method by Grignard reaction, a polymerization method by Yamamoto reaction, a polymerization method by Ullmann reaction, a polymerization method by Buchwald-Hartwig reaction, and the like.
 Ullmann反応による重合方法及びBuchwald-Hartwig反応による重合方法の場合、例えば、下記式(2a)で表されるジハロゲン化アリールと下記式(2b)で表される1級アミノアリールとを反応させることにより、下記式(2)で表される繰り返し単位、すなわち上記式(54)で表される繰り返し単位を含む重合体が合成される。 In the case of the polymerization method by the Ullmann reaction and the polymerization method by the Buchwald-Hartwig reaction, for example, by reacting a dihalogenated aryl represented by the following formula (2a) with a primary aminoaryl represented by the following formula (2b) , a polymer containing a repeating unit represented by the following formula (2), that is, a repeating unit represented by the above formula (54) is synthesized.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
(上記反応式中、ZはI、Br、Cl、F等のハロゲン原子を表す。また、Ar、R、R、X、a~dは上記式(54)におけるAr、R、R、X、a~dと、それぞれ同義である。) (In the above reaction formula, Z represents a halogen atom such as I, Br, Cl, F. Ar 1 , R 1 , R 2 , X, a to d represent Ar 1 , R 1 in the above formula (54). , R 2 , X, a to d are synonymous.)
 また、Ullmann反応による重合方法及びBuchwald-Hartwig反応による重合方法の場合、例えば、下記式(3a)で表されるジハロゲン化アリールと下記式(3b)で表される1級アミノアリールとを反応させることにより、下記式(3)で表される繰り返し単位、すなわち上記式(55)で表される繰り返し単位を含む重合体が合成される。 Further, in the case of the polymerization method by the Ullmann reaction and the polymerization method by the Buchwald-Hartwig reaction, for example, a dihalogenated aryl represented by the following formula (3a) and a primary aminoaryl represented by the following formula (3b) are reacted. As a result, a polymer containing repeating units represented by the following formula (3), that is, repeating units represented by the above formula (55) is synthesized.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
(上記反応式中、ZはI、Br、Cl、F等のハロゲン原子を表す。また、Ar、R~R、l~n、p、qは上記式(55)におけるAr、R~R、l~n、p、qと、それぞれ同義である。) (In the above reaction formula, Z represents a halogen atom such as I, Br, Cl, F. Ar 2 , R 3 to R 6 , l to n, p, and q represent Ar 2 , are synonymous with R 3 to R 6 , l to n, p, and q.)
 なお、上記の重合方法において、通常、N-アリール結合を形成する反応は、例えば炭酸カリウム、tert-ブトキシナトリウム、トリエチルアミン等の塩基存在下で行う。また、例えば銅やパラジウム錯体等の遷移金属触媒存在下で行うこともできる。 In the polymerization method described above, the reaction for forming an N-aryl bond is usually carried out in the presence of a base such as potassium carbonate, sodium tert-butoxy, or triethylamine. It can also be carried out in the presence of a transition metal catalyst such as copper or a palladium complex.
(アリールアミンポリマーの含有量)
 第一の組成物中の上記のアリールアミンポリマーの含有量は、通常0.01質量%以上であり、好ましくは0.1質量%以上、さらに好ましくは0.5質量%以上であり、また、通常70質量%以下、好ましくは60質量%以下、さらに好ましくは50質量%以下であり、特に好ましくは20質量%以下である。アリールアミンポリマーの含有量が上記範囲内であると、形成した第一の機能性膜に欠陥が生じ難く、また膜厚ムラが生じ難いため好ましい。
(Content of arylamine polymer)
The content of the arylamine polymer in the first composition is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and It is usually 70% by mass or less, preferably 60% by mass or less, more preferably 50% by mass or less, and particularly preferably 20% by mass or less. When the content of the arylamine polymer is within the above range, the formed first functional film is less likely to have defects and less likely to have uneven film thickness, which is preferable.
(溶媒)
 第一の組成物は、通常、溶媒を含有する。この溶媒は、アリールアミンポリマーを溶解するものが好ましい。具体的には、アリールアミンポリマーを第一の組成物中に、室温で通常0.05質量%以上、好ましくは0.5質量%以上、さらに好ましくは1質量%以上溶解させる溶媒が好適である。
(solvent)
The first composition usually contains a solvent. The solvent is preferably one that dissolves the arylamine polymer. Specifically, a solvent that dissolves the arylamine polymer in the first composition at room temperature in an amount of usually 0.05% by mass or more, preferably 0.5% by mass or more, more preferably 1% by mass or more, is suitable. .
 溶媒の具体例としては、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン、メチルナフタレン等の芳香族系溶媒;1,2-ジクロロエタン、クロロベンゼン、o-ジクロロベンゼン等の含ハロゲン溶媒;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテル等のエーテル系溶媒;酢酸エチル、酢酸n-ブチル、乳酸エチル、乳酸n-ブチル等の脂肪族エステル系溶媒;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸イソプロピル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル等のエステル系溶媒;等の有機溶媒、その他、後述の正孔注入層形成用組成物や正孔輸送層形成用組成物に用いられる有機溶媒が挙げられる。 Specific examples of solvents include aromatic solvents such as toluene, xylene, mesitylene, cyclohexylbenzene and methylnaphthalene; halogen-containing solvents such as 1,2-dichloroethane, chlorobenzene and o-dichlorobenzene; ethylene glycol dimethyl ether and ethylene glycol diethyl. Ethers, aliphatic ethers such as propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4- Ether solvents such as aromatic ethers such as methoxytoluene, 2,3-dimethylanisole and 2,4-dimethylanisole; Aliphatic ester solvents such as ethyl acetate, n-butyl acetate, ethyl lactate and n-butyl lactate; Ester-based solvents such as aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, isopropyl benzoate, propyl benzoate, and n-butyl benzoate; Organic solvents used in the composition for forming the injection layer and the composition for forming the hole transport layer can be mentioned.
 なお、溶媒は、1種類を用いてもよく、2種類以上を任意の組み合わせ及び任意の比率で併用してもよい。 It should be noted that one type of solvent may be used, or two or more types may be used in any combination and in any ratio.
 溶媒の20℃における表面張力は、通常40dyn/cm未満、好ましくは36dyn/cm以下、より好ましくは33dyn/cm以下である。表面張力の下限は特に限定されないが、通常20dyn/cm以上である。 The surface tension of the solvent at 20°C is usually less than 40 dyn/cm, preferably 36 dyn/cm or less, more preferably 33 dyn/cm or less. Although the lower limit of the surface tension is not particularly limited, it is usually 20 dyn/cm or more.
 また一方で、溶媒の25℃における蒸気圧は、通常10mmHg以下であり、好ましくは5mmHg以下であり、通常0.1mmHg以上である。このような溶媒を使用することにより、有機半導体素子を湿式成膜法により製造するプロセスに好適で、アリールアミンポリマーの性質に適した第一の組成物を調製することができる。 On the other hand, the vapor pressure of the solvent at 25°C is usually 10 mmHg or less, preferably 5 mmHg or less, and usually 0.1 mmHg or more. By using such a solvent, it is possible to prepare the first composition suitable for the process of manufacturing an organic semiconductor device by a wet film-forming method and suitable for the properties of the arylamine polymer.
 このような溶媒の具体例としては、前述したトルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族系溶媒、エーテル系溶媒及びエステル系溶媒が挙げられる。 Specific examples of such solvents include aromatic solvents such as toluene, xylene, mesitylene, and cyclohexylbenzene, ether solvents, and ester solvents.
 ところで、水分は有機半導体素子の性能劣化を引き起こす可能性があり、中でも、有機電界発光素子とした際の連続駆動時の輝度低下を特に促進するおそれがある。そこで、湿式成膜中に残留する水分をできる限り低減するために、溶媒の25℃における水の溶解度は、1質量%以下が好ましく、0.1質量%以下がより好ましく、小さいほど好ましい。 By the way, moisture may cause deterioration in the performance of the organic semiconductor element, and among other things, it may accelerate the decrease in luminance during continuous driving when used as an organic electroluminescence element. Therefore, in order to reduce water remaining during wet film formation as much as possible, the solubility of the solvent in water at 25° C. is preferably 1% by mass or less, more preferably 0.1% by mass or less, and the smaller the better.
 第一の組成物中の溶媒の含有量は、通常10質量%以上、好ましくは30質量%以上、より好ましくは50質量%以上、特に好ましくは80質量%以上である。溶媒の含有量が上記下限以上であることにより、形成される層の平坦さ及び均一さを良好にすることができる。溶媒の含有量の上限は特に限定されないが、通常99.95質量%以下である。 The content of the solvent in the first composition is usually 10% by mass or more, preferably 30% by mass or more, more preferably 50% by mass or more, and particularly preferably 80% by mass or more. When the content of the solvent is at least the above lower limit, the flatness and uniformity of the formed layer can be improved. Although the upper limit of the solvent content is not particularly limited, it is usually 99.95% by mass or less.
<第二の組成物>
 第二の組成物は、第一の機能性膜の上に塗布して第二の機能性膜を形成させる組成物である。第二の組成物は溶媒を含み、かつ23℃における粘度が15mPa・s以下である。該溶媒は、23℃における粘度が3mPa・s以上を満たす第一の溶媒成分を少なくとも一種含むか、又は、流動活性化エネルギーが17kJ/mol以上を満たす第一の溶媒成分の少なくとも一種と23℃における粘度が3mPa・s未満を満たす第二の溶媒成分の少なくとも一種とを含有する。
<Second composition>
The second composition is a composition that is applied onto the first functional film to form a second functional film. The second composition contains a solvent and has a viscosity of 15 mPa·s or less at 23°C. The solvent contains at least one first solvent component that satisfies a viscosity of 3 mPa·s or more at 23°C, or at least one first solvent component that satisfies a flow activation energy of 17 kJ/mol or more and 23°C. and at least one second solvent component that satisfies a viscosity of less than 3 mPa·s.
 また、第二の組成物は、第一の組成物に含まれる第一の機能性材料とは異なる、第二の機能性材料を含有していてもよい。例えば、有機半導体素子が有機電界発光素子であり、第二の機能性膜が発光層である場合は、通常、発光材料等の機能性材料が第二の機能性材料となる。 Also, the second composition may contain a second functional material different from the first functional material contained in the first composition. For example, when the organic semiconductor device is an organic electroluminescent device and the second functional film is a light-emitting layer, a functional material such as a light-emitting material is usually the second functional material.
 本発明の一形態として、第一の溶媒成分の23℃における粘度は3mPa・s以上であるが、これにより、第一の機能性膜を溶かさない。粘度は4mPa・s以上が好ましく、5mPa・s以上がより好ましい。また、ピクセル内の膜平坦性の観点から、第一の溶媒成分の粘度は、20mPa・s以下であることが望ましい。かかる形態において、溶媒は、第一の溶媒成分のみを含んでいてもよく、他の溶媒成分を含んでいてもよい。 As one aspect of the present invention, the viscosity of the first solvent component at 23°C is 3 mPa·s or more, but this does not dissolve the first functional film. The viscosity is preferably 4 mPa·s or more, more preferably 5 mPa·s or more. Moreover, from the viewpoint of film flatness within the pixel, the viscosity of the first solvent component is desirably 20 mPa·s or less. In such a form, the solvent may contain only the first solvent component, or may contain other solvent components.
 第二の組成物の粘度の上限は塗布方法によって変わる。第二の組成物の23℃における粘度は、インクジェット装置により塗布する場合、インクジェットヘッドからの吐出を容易にする観点から、15mPa・s以下が好ましく、12mPa・s以下がより好ましく、10mPa・s以下がさらに好ましい。また、吐出安定性の観点から、第二の組成物の23℃における粘度は1mPa・s以上であることが好ましく、2mPa・s以上であることがさらに好ましい。 The upper limit of the viscosity of the second composition changes depending on the application method. The viscosity of the second composition at 23° C. is preferably 15 mPa·s or less, more preferably 12 mPa·s or less, and 10 mPa·s or less from the viewpoint of facilitating ejection from an inkjet head when applied by an inkjet device. is more preferred. From the viewpoint of ejection stability, the viscosity of the second composition at 23° C. is preferably 1 mPa·s or more, more preferably 2 mPa·s or more.
 なお、本実施形態における粘度は、E型粘度計RE85L(東機産業製)を用いて、23℃環境下にて、コーンプレート回転数20rpm~100rpmにより測定される値である。 The viscosity in the present embodiment is a value measured using an E-type viscometer RE85L (manufactured by Toki Sangyo Co., Ltd.) under a 23° C. environment with a cone plate rotation speed of 20 rpm to 100 rpm.
 第二の組成物を大面積塗布する場合、浸漬時間が長時間に渡る。この間に順次溶媒の蒸発が進むことで第二の組成物の温度が下がり、粘度が増加する。第一の溶媒成分として粘度の温度依存性(流動活性化エネルギー)が高いものを用いると、第一の溶媒成分としてより低い初期粘度の溶媒を用い、第二の組成物中の第一の溶媒組成比を下げることが可能である。このように、溶媒の初期粘度を低くすることでインクジェット法を用いた吐出を行う際に、より適した組成物とすることができる。
 この観点から、本発明の別の一形態としては、流動活性化エネルギーが17kJ/mol以上である第一の溶媒成分及び、粘度が3mPa・s未満である第二の溶媒成分を含む。第一の溶媒成分の流動活性化エネルギーは、17kJ/mol以上であり、より好ましくは19kJ/mol以上、さらに好ましくは21kJ/mol以上である。また、上限は特に限定されないが、40kJ/mol以下が好ましく、より好ましくは35kJ/mol以下、さらに好ましくは32kJ/mol以下、特に好ましくは30kJ/mol以下である。流動活性化エネルギーが大きいほど、溶媒の揮発によって潜熱を奪われた際の温度低下による粘度上昇が大きく好ましい。
When the second composition is applied over a large area, the immersion time is long. As the evaporation of the solvent progresses during this time, the temperature of the second composition decreases and the viscosity increases. When a solvent with a high viscosity temperature dependence (flow activation energy) is used as the first solvent component, a solvent with a lower initial viscosity is used as the first solvent component, and the first solvent in the second composition is It is possible to lower the composition ratio. By reducing the initial viscosity of the solvent in this way, the composition can be made more suitable for ejection using an inkjet method.
From this point of view, another aspect of the present invention includes a first solvent component having a flow activation energy of 17 kJ/mol or more and a second solvent component having a viscosity of less than 3 mPa·s. The flow activation energy of the first solvent component is 17 kJ/mol or more, more preferably 19 kJ/mol or more, and still more preferably 21 kJ/mol or more. Although the upper limit is not particularly limited, it is preferably 40 kJ/mol or less, more preferably 35 kJ/mol or less, still more preferably 32 kJ/mol or less, and particularly preferably 30 kJ/mol or less. The larger the flow activation energy, the larger the increase in viscosity due to the decrease in temperature when the latent heat is taken away by volatilization of the solvent, which is preferable.
 本発明のさらなる別の一態様として、溶媒は、23℃における粘度は3mPa・s以上であり、かつ、流動活性化エネルギーは、17kJ/mol以上である第一の溶媒成分を含み、さらに、23℃における粘度が3mPa・s未満を満たす第二の溶媒成分を含む。第一の溶媒成分の23℃における粘度及び流動活性化エネルギーの好ましい範囲は、上述したとおりである。 As yet another aspect of the present invention, the solvent includes a first solvent component having a viscosity at 23° C. of 3 mPa·s or more and a flow activation energy of 17 kJ/mol or more; A second solvent component having a viscosity at °C of less than 3 mPa·s is included. Preferred ranges for the viscosity at 23° C. and flow activation energy of the first solvent component are as described above.
<第一の溶媒成分の具体例>
 第二の組成物に含まれる溶媒が含有する第一の溶媒成分としては、例えば、第一の組成物が有している溶媒にて前述した化合物のうち、23℃における粘度が3mPa・s以上のものを用いることができ、例えば、安息香酸イソアミル(3.36)、2-イソプロピルナフタレン(3.45)、フェンコン(3.47)、デシルベンゼン(3.5)、安息香酸ヘキシル(4.08)、3-エチルビフェニル(5.01)、安息香酸2-エチルヘキシル(5.9)、イソ酪酸2-フェノキシエチル(6.28)、4-イソプロピルビフェニル(6.61)、4-メトキシ安息香酸エチル(6.77)、α-テトラロン(7.2)、炭酸tert-ブチルフェニル(7.24)、1-ナフトアルデヒド(7.24)、酢酸2-フェノキシエチル(7.56)、安息香酸ベンジル(8.45)、フタル酸ジエチル(10.58)、1,1-ジフェニルペンタン(10.8)、炭酸ベンジルフェニル(16.2)が挙げられる。なお、上記溶媒の後に付した括弧内の数字は、23℃における粘度(単位:mPa・s)を示す。
<Specific examples of the first solvent component>
As the first solvent component contained in the solvent contained in the second composition, for example, among the compounds described above in the solvent contained in the first composition, the viscosity at 23 ° C. is 3 mPa s or more For example, isoamyl benzoate (3.36), 2-isopropylnaphthalene (3.45), fenchone (3.47), decylbenzene (3.5), hexyl benzoate (4.5). 08), 3-ethylbiphenyl (5.01), 2-ethylhexyl benzoate (5.9), 2-phenoxyethyl isobutyrate (6.28), 4-isopropylbiphenyl (6.61), 4-methoxybenzoate ethyl acetate (6.77), α-tetralone (7.2), tert-butylphenyl carbonate (7.24), 1-naphthaldehyde (7.24), 2-phenoxyethyl acetate (7.56), benzoin benzyl acid (8.45), diethyl phthalate (10.58), 1,1-diphenylpentane (10.8), benzylphenyl carbonate (16.2). The number in parentheses after the solvent indicates the viscosity (unit: mPa·s) at 23°C.
 また、第二の組成物に含まれる溶媒が含有する第一の溶媒成分としては、例えば、第一の組成物が有している溶媒にて前述した化合物のうち、流動活性化エネルギーが17kJ/mol以上のものを用いることができ、例えば、安息香酸イソアミル(17.9)、フェンコン(17.8)、安息香酸ヘキシル(19.5)、安息香酸2-エチルヘキシル(23.4)、4-イソプロピルビフェニル(24.6)、安息香酸ベンジル(24.5)、1,1-ジフェニルペンタン(29.7)、炭酸ベンジルフェニル(32.6)が挙げられる。なお、上記溶媒の後に付した括弧内の数字は、流動活性化エネルギー(単位:kJ/mol)を示す。
 流動活性化エネルギーは、下記式(I)におけるEである。流動活性化エネルギーは、溶媒の粘度を温度を変えて測定し、温度の逆数に対する粘度の対数をプロットし、その傾きから求める。 
 η=Aexp(E/RT)   (I) 
   η:粘度(cP) 
   A:定数 
   E:流動活性化エネルギー(kJ/mol) 
   R:気体定数(8.314J/K/mol) 
   T:温度(K)
により求めることができる。
Further, as the first solvent component contained in the solvent contained in the second composition, for example, among the compounds described above in the solvent contained in the first composition, the flow activation energy is 17 kJ / mol or more can be used. Isopropylbiphenyl (24.6), benzyl benzoate (24.5), 1,1-diphenylpentane (29.7), benzylphenyl carbonate (32.6). The numbers in parentheses after the solvents indicate flow activation energy (unit: kJ/mol).
Flow activation energy is E in the following formula (I). Flow activation energy is determined from the slope of the logarithm of viscosity plotted against the reciprocal of temperature by measuring the viscosity of the solvent at different temperatures.
η=Aexp(E/RT) (I)
η: Viscosity (cP)
A: Constant
E: flow activation energy (kJ/mol)
R: gas constant (8.314 J/K/mol)
T: temperature (K)
can be obtained by
 第二の組成物が、23℃における粘度が3mPa・s以上及び/又は流動活性化エネルギーが17kJ/mol以上を満たす第一の溶媒成分を1種以上含有していることで、第一の機能性膜のアリールアミンポリマーが架橋基等により不溶化されたものでなく、比較的低温・短時間で焼成された分子量の小さい第一の機能性材料を含有した薄膜であっても、2分以上、好ましくは5分以上、より好ましくは15分以上の、産業上必要な不溶化耐久性を達成することができる。これは、熱処理により、第一の機能性膜の表面や界面で、バルクより先に再配列が起こり、比較的不溶なカバーを形成し、第一の機能性膜内部への溶媒浸透や溶出を抑制できるためであると考えられる。この内部への浸透のしやすさは、第二の組成物に含まれる溶媒分子の体積や形状、内部自由度によって変動する。また、溶媒分子間の分子間力が大きいほど浸透分散の障害となる。上記複数の要因は、より正確には後述する関係式(A)によって判定されるが、簡易的には、23℃における粘度が3mPa・s以上である第一の溶媒成分を1種以上用いることで達成できる。 The second composition contains at least one first solvent component that satisfies a viscosity of 3 mPa s or more at 23 ° C. and / or a flow activation energy of 17 kJ / mol or more, so that the first function Even if the arylamine polymer of the functional film is not insolubilized by a cross-linking group or the like, and the thin film contains the first functional material with a small molecular weight that is baked at a relatively low temperature for a short time, the reaction time is 2 minutes or more. An industrially required insolubilization durability of preferably 5 minutes or more, more preferably 15 minutes or more can be achieved. This is because the heat treatment causes rearrangement on the surface and interface of the first functional membrane prior to the bulk, forming a relatively insoluble cover and preventing solvent permeation and elution into the interior of the first functional membrane. This is considered to be because it can be suppressed. The easiness of penetration into the inside varies depending on the volume and shape of the solvent molecules contained in the second composition, and the internal degree of freedom. In addition, the greater the intermolecular force between the solvent molecules, the greater the impediment to permeation and dispersion. More accurately, the plurality of factors described above are determined by the relational expression (A) described later, but for simplicity, one or more first solvent components having a viscosity of 3 mPa s or more at 23 ° C. are used. can be achieved with
 第一の溶媒成分は、第二の機能性材料の溶解性を確保する観点からは、芳香族炭化水素構造を有するものが好ましく、具体的には、安息香酸系、ビフェニル系、ナフタレン系などの構造を有する溶媒成分が挙げられる。 From the viewpoint of ensuring the solubility of the second functional material, the first solvent component preferably has an aromatic hydrocarbon structure. Specifically, benzoic acid, biphenyl, naphthalene, etc. A solvent component having a structure is included.
 第一の溶媒成分のハンセン溶解度パラメーターδPは、δP<10を満たすことが好ましく、さらにδP<7を満たすことがより好ましい。第一の機能性膜の不溶化特性により、高い極性の溶媒により耐久時間が短縮する傾向にあるが、δPがこの範囲であることにより、より十分な不溶化耐久時間を確保できる。 The Hansen solubility parameter δP of the first solvent component preferably satisfies δP<10, and more preferably satisfies δP<7. Due to the insolubilization property of the first functional film, the durability time tends to be shortened by a highly polar solvent.
 また、好ましくは、第一の溶媒成分の、COSMO-RS溶媒和モデルで計算された理論表面積(Å)、体積(Å)、および沸点(℃)、並びに23℃における粘度(mPa・s)について下記関係式(A)を満たす。第一の溶媒成分が下記関係式(A)を満たすことにより、より長時間の不溶化を実現することができる。
  32×粘度-4.3×理論表面積+5.4×体積-沸点>150・・・(A)
Also preferably, the theoretical surface area (Å 2 ), volume (Å 3 ), and boiling point (° C.) calculated by the COSMO-RS solvation model of the first solvent component, and the viscosity at 23° C. (mPa s ) satisfies the following relational expression (A). When the first solvent component satisfies the following relational expression (A), insolubilization can be achieved for a longer period of time.
32 x viscosity - 4.3 x theoretical surface area + 5.4 x volume - boiling point > 150 (A)
 上記関係式(A)において「粘度」は、第一の溶媒成分の23℃における粘度(mPa・s)である。「沸点」は、第一の溶媒成分の大気圧における沸点である。第一の溶媒成分の「理論表面積」及び「体積」はA・クラムト(A.Klamt)、「COSMO-RS:From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design」、Elsevier Science、 1st edition(September 29,2005)に記載の方法で算出される値である。簡易に説明するならば、構造最適化した分子の原子にVDW球を重ねて得られる体積およびその表面積(COSMO法計算に用いるCavity体積)を積算して得られる値である。
 上記関係式(A)における各係数は実験的に求められた数値である。
"Viscosity" in the above relational expression (A) is the viscosity (mPa·s) of the first solvent component at 23°C. "Boiling point" is the boiling point at atmospheric pressure of the first solvent component. The "theoretical surface area" and "volume" of the first solvent component are described in A. Klamt, "COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design", Elsevier Science, 1st edition (September 29, 2005). To put it simply, it is a value obtained by multiplying the volume obtained by superimposing VDW spheres on the atoms of the structure-optimized molecule and its surface area (cavity volume used for COSMO calculation).
Each coefficient in the above relational expression (A) is a numerical value obtained experimentally.
 粘度は、溶媒分子間でまとまる力を示し、第一の機能性膜への浸透・分散しにくさに相関する。また、溶媒分子の体積が大きいほど第一の機能性膜へ浸透しにくくなるが、同じ体積に対して表面積が大きくなるほど球状から離れ、断面積の小さい、すなわち浸透しやすい方向を有する形状となるため、表面積が小さいほうが好ましい。沸点が小さい溶媒ほど蒸発しやすく、気化熱によって第二の組成物の温度を下げ、結果的に溶媒粘度を上げる効果を示す。加えて、溶媒の気化によって第二の組成物中の固形材料濃度を上げることで、溶媒の下地機能材料膜への作用を抑制する。  Viscosity indicates the force that holds the solvent molecules together, and correlates with the difficulty of penetrating and dispersing into the first functional film. In addition, the larger the volume of the solvent molecules, the more difficult it is to permeate the first functional membrane, but the larger the surface area for the same volume, the less spherical, and the smaller the cross-sectional area, that is, the more easily permeable direction. Therefore, a smaller surface area is preferable. A solvent with a lower boiling point evaporates more easily, and lowers the temperature of the second composition by the heat of vaporization, resulting in an effect of increasing the viscosity of the solvent. In addition, by increasing the solid material concentration in the second composition by evaporating the solvent, the effect of the solvent on the underlying functional material film is suppressed.
 上記関係式(A)の左辺で表される値は、不溶化の観点からは160以上がより好ましく、180以上がさらに好ましい。また、上記関係式(A)を満たす第一の溶媒成分としては、例えば安息香酸イソアミル(3.45)、フェンコン(3.47)、デシルベンゼン(3.5)、安息香酸ヘキシル(4.08)、安息香線2-エチルヘキシル(5.9)、イソ酪酸2-フェノキシエチル(6.28)、4-イソプロピルビフェニル(6.61)、4-メトキシ安息香酸エチル(6.77)、炭酸tert-ブチルフェニル(7.24)、1-ナフトアルデヒド(7.24)、酢酸2-フェノキシエチル(7.56)、安息香酸ベンジル(8.45)、1,1-ジフェニルペンタン(10.8)、炭酸ベンジルフェニル(16.2)が挙げられる。なお、上記溶媒の後に付した括弧内の数字は、23℃における粘度を示す。 From the viewpoint of insolubilization, the value represented by the left side of the above relational expression (A) is more preferably 160 or more, and even more preferably 180 or more. Examples of the first solvent component that satisfies the above relational expression (A) include isoamyl benzoate (3.45), fenchone (3.47), decylbenzene (3.5), and hexyl benzoate (4.08). ), 2-ethylhexyl benzoate (5.9), 2-phenoxyethyl isobutyrate (6.28), 4-isopropylbiphenyl (6.61), ethyl 4-methoxybenzoate (6.77), tert- carbonate butylphenyl (7.24), 1-naphthaldehyde (7.24), 2-phenoxyethyl acetate (7.56), benzyl benzoate (8.45), 1,1-diphenylpentane (10.8), Benzylphenyl carbonate (16.2) can be mentioned. The numbers in parentheses after the above solvents indicate the viscosity at 23°C.
<その他の溶媒成分・組成>
 第二の組成物は、第一の溶媒成分以外の他の溶媒を含んでもよい。第一の溶媒成分以外の他の溶媒としては第一の溶媒成分よりも粘度が低い第二の溶媒成分を有していてもよい。すなわち、第二の溶媒成分とは、23℃における粘度が3mPa・s未満の溶媒である。具体的には、第一の組成物に含まれる溶媒として例示したもののうち、23℃における粘度が3mPa・s未満のものが挙げられる。第二の溶媒成分は、第一の溶媒成分の流動活性化エネルギーが17kJ/mol以上を満たす場合に含まれることが好ましい。
<Other solvent components/composition>
The second composition may contain other solvents than the first solvent component. A solvent other than the first solvent component may include a second solvent component having a lower viscosity than the first solvent component. That is, the second solvent component is a solvent having a viscosity of less than 3 mPa·s at 23°C. Specifically, among the solvents exemplified as the solvents contained in the first composition, those having a viscosity of less than 3 mPa·s at 23° C. can be mentioned. The second solvent component is preferably included when the flow activation energy of the first solvent component satisfies 17 kJ/mol or more.
 第二の溶媒成分の流動活性化エネルギーは10kJ/mol以上が好ましく、より好ましくは12kJ/mol以上、さらに好ましくは14kJ/mol以上である。また、上限は特に限定されないが、18kJ/mol以下が好ましく、より好ましくは17kJ/mol以下であり、さらにより好ましくは16kJ/mol以下であり、特にさらに好ましくは15kJ/mol以下である。 The flow activation energy of the second solvent component is preferably 10 kJ/mol or more, more preferably 12 kJ/mol or more, still more preferably 14 kJ/mol or more. Although the upper limit is not particularly limited, it is preferably 18 kJ/mol or less, more preferably 17 kJ/mol or less, even more preferably 16 kJ/mol or less, and even more preferably 15 kJ/mol or less.
 インクジェット装置により塗布する場合、インクジェットヘッドからの吐出適正の観点から、低粘度の第二の溶媒成分を含んで第二の組成物全体の粘度を下げることが望ましい。中でも、第二の組成物を塗布して第二の機能性膜を設ける工程内での乾燥を避ける観点から、第二の溶媒成分の沸点は180℃以上が好ましい。
 このような第二の溶媒成分は、例えば、安息香酸エチル、テトラリン、2-エチルナフタレン、トルイル酸エチル、シクロヘキシルベンゼン、安息香酸ブチルが挙げられる。
When applied by an inkjet device, it is desirable to reduce the viscosity of the second composition as a whole by including a low-viscosity second solvent component from the viewpoint of proper ejection from an inkjet head. Among them, the boiling point of the second solvent component is preferably 180° C. or higher from the viewpoint of avoiding drying in the process of applying the second composition and providing the second functional film.
Such second solvent components include, for example, ethyl benzoate, tetralin, 2-ethylnaphthalene, ethyl toluate, cyclohexylbenzene, and butyl benzoate.
 第一の溶媒成分は、不溶化時間確保の観点から、第二の組成物において、合計で15質量%以上含まれることが好ましく、より好ましくは20質量%以上、さらに好ましくは25質量%以上である。第一の溶媒成分の合計の含有量の上限は特に限定されないが、通常99質量%以下である。また、通常の固形分濃度を鑑みると、第一の溶媒成分の合計の含有量は95質量%以下が好ましく、第二の溶媒成分を含有する場合には、第一の溶媒成分の合計の含有量は90質量%以下が好ましい。さらに、溶媒の蒸発性の観点からは、第一の溶媒成分の合計の含有量は70質量%以下が好ましく、50質量%以下がより好ましい。 From the viewpoint of securing the insolubilization time, the first solvent component is preferably contained in the second composition in a total amount of 15% by mass or more, more preferably 20% by mass or more, and still more preferably 25% by mass or more. . Although the upper limit of the total content of the first solvent component is not particularly limited, it is usually 99% by mass or less. In addition, considering the usual solid content concentration, the total content of the first solvent component is preferably 95% by mass or less, and when the second solvent component is contained, the total content of the first solvent component The amount is preferably 90% by mass or less. Furthermore, from the viewpoint of the evaporativity of the solvent, the total content of the first solvent component is preferably 70% by mass or less, more preferably 50% by mass or less.
 第二の組成物の溶媒が、第一の溶媒成分に加えて第二の溶媒成分を含む混合溶媒の場合、第一の溶媒成分と第二の溶媒成分の合計に対する第一の溶媒成分の比率は質量比で10%以上が好ましく、15%以上がより好ましい。その理由は、混合溶媒の蒸発順を考慮する場合、第一の溶媒成分に該当しない第二の溶媒成分が蒸発するまで、一定量の第一の溶媒成分が残ることが望ましいからである。 When the solvent of the second composition is a mixed solvent containing the second solvent component in addition to the first solvent component, the ratio of the first solvent component to the total of the first solvent component and the second solvent component is preferably 10% or more, more preferably 15% or more, by mass. The reason for this is that when considering the order of evaporation of the mixed solvent, it is desirable that a certain amount of the first solvent component remains until the second solvent component, which does not correspond to the first solvent component, evaporates.
 第一の溶媒成分と第二の溶媒成分の合計に対する第二の溶媒成分の割合は、30質量%以上であることが好ましい。30質量%以上であることにより、第二の溶媒成分の蒸発により第一の溶媒の温度を適切に下げることができ、第一の溶媒成分の粘度を高めることができる。第二の溶媒成分の割合は50質量%以上であることがさらに好ましく、70質量%以上が最も好ましい。
 機能性膜の平坦性の観点から、第二の溶媒成分の割合は90質量%以下であることが好ましく、第二の溶媒成分が蒸発するまでに一定量の第一の溶媒成分を残す観点から、第二の溶媒成分の割合は85質量%以下がより好ましい。
 また、第二の溶媒成分の沸点は、第一の溶媒成分よりも早期に蒸発させる観点から、第一の溶媒成分の沸点よりも低いことが好ましく、280℃以下であることが好ましく、250℃以下であることがさらに好ましい。一方、大面積塗布における乾燥制御の観点から、第二の溶媒成分の沸点は180℃以上が好ましく、200℃以上であることがさらに好ましい。
The ratio of the second solvent component to the total of the first solvent component and the second solvent component is preferably 30% by mass or more. When it is 30% by mass or more, the temperature of the first solvent can be appropriately lowered by evaporation of the second solvent component, and the viscosity of the first solvent component can be increased. The ratio of the second solvent component is more preferably 50% by mass or more, most preferably 70% by mass or more.
From the viewpoint of flatness of the functional film, the ratio of the second solvent component is preferably 90% by mass or less, and from the viewpoint of leaving a certain amount of the first solvent component until the second solvent component evaporates. , the ratio of the second solvent component is more preferably 85% by mass or less.
In addition, the boiling point of the second solvent component is preferably lower than the boiling point of the first solvent component, preferably 280° C. or lower, and preferably 250° C., from the viewpoint of evaporating earlier than the first solvent component. More preferably: On the other hand, the boiling point of the second solvent component is preferably 180° C. or higher, more preferably 200° C. or higher, from the viewpoint of drying control in large-area coating.
 前述の通り下層である第一の機能層を溶かさない観点からは第二の組成物が23℃における粘度が3mPa・s以上である第一の溶媒成分を有していることが好ましい。一方、インクジェット塗布の吐出性の観点からは組成物の粘度は、低い(23℃における粘度が15mPa・s以下)ことが好ましい。第二の組成物の全体的な粘度低下の観点から、第二の組成物が、23℃における粘度が3mPa・s未満である第二の溶媒成分を有することが好ましい。
 また、第二の溶媒成分は、第一の溶媒成分の流動活性化エネルギーが17kJ/mol以上を満たす場合に含まれることが好ましい。第一の溶媒成分の流動活性化エネルギーが17kJ/mol以上であることにより、上記インクジェットの吐出性と下層の不溶解性を両立させやすい。第二の溶媒成分は、低粘度の溶媒(23℃における粘度が3mPa・s未満)であり、第一の溶媒成分よりも先に揮発する傾向にある。その際に気化熱を奪い、第二の組成物の温度を低下させる。第一の溶媒成分の流動活性化エネルギーが高いことで、残った第二の組成物の粘度が高くなるため、下層である第一の機能層に浸透しにくく、不溶化の観点から好ましい。
From the viewpoint of not dissolving the first functional layer, which is the lower layer, as described above, it is preferable that the second composition contains a first solvent component having a viscosity of 3 mPa·s or more at 23°C. On the other hand, the viscosity of the composition is preferably low (viscosity of 15 mPa·s or less at 23° C.) from the viewpoint of ejection properties in inkjet coating. From the point of view of reducing the overall viscosity of the second composition, it is preferred that the second composition has a second solvent component with a viscosity of less than 3 mPa·s at 23°C.
Also, the second solvent component is preferably included when the flow activation energy of the first solvent component satisfies 17 kJ/mol or more. When the flow activation energy of the first solvent component is 17 kJ/mol or more, it is easy to achieve both the jetting property of the inkjet and the insolubility of the lower layer. The second solvent component is a low-viscosity solvent (viscosity less than 3 mPa·s at 23° C.) and tends to volatilize before the first solvent component. At that time, the heat of vaporization is removed and the temperature of the second composition is lowered. Since the flow activation energy of the first solvent component is high, the viscosity of the remaining second composition is high, so that it is difficult to permeate the first functional layer, which is the lower layer, which is preferable from the viewpoint of insolubilization.
 第二の組成物は、第一の機能性材料とは異なる第二の機能性材料を含んでいてもよい。
 有機半導体素子が有機電界発光素子であり、第二の機能性膜が正孔輸送層である場合、第二の機能性材料としては、例えば正孔輸送材料が挙げられる、正孔輸送材料としては例えば、第一の機能性膜が有する式(50)のアリールアミンポリマーと同様のものを含んでいてもよく、後述の正孔輸送材料を用いることもできる。
The second composition may contain a second functional material different from the first functional material.
When the organic semiconductor device is an organic electroluminescent device and the second functional film is a hole transport layer, examples of the second functional material include a hole transport material. For example, it may contain the same arylamine polymer as the arylamine polymer of formula (50) that the first functional film has, and a hole-transporting material described later can also be used.
 有機半導体素子が有機電界発光素子であり、第二の機能性膜が発光層である場合、第二の機能性材料としては、後述する燐光発光材料等の発光材料、または電荷輸送材料を用いることができる。また、第二の機能性材料として、低分子芳香族化合物を含むことも好ましい。第二の機能性材料が低分子である場合、高分子である場合よりも第二の組成物の粘度を低くできる。第一の溶媒成分として高粘度の溶媒を用いる場合や、第一の溶媒成分を高い組成比率で用いる場合、第二の組成物全体の粘度が上がる傾向にあるが、第二の機能性材料が低分子であれば許容しやすい。 When the organic semiconductor device is an organic electroluminescent device and the second functional film is a light-emitting layer, the second functional material may be a light-emitting material such as a phosphorescent light-emitting material, or a charge transport material, which will be described later. can be done. It is also preferable that the second functional material contains a low-molecular-weight aromatic compound. When the second functional material is low molecular weight, the viscosity of the second composition can be made lower than when it is high molecular weight. When a high-viscosity solvent is used as the first solvent component, or when the first solvent component is used at a high composition ratio, the viscosity of the second composition as a whole tends to increase, but the second functional material is Low molecular weights are easily tolerated.
 低分子芳香族化合物としては、例えば、発光層に用いる電荷輸送材料として後述するものを用いることができる。低分子芳香族化合物の分子量は、好ましくは5000未満、より好ましくは4000以下、さらに好ましくは3000以下、特に好ましくは2000未満である。 As the low-molecular-weight aromatic compound, for example, those described later as charge-transporting materials used in the light-emitting layer can be used. The molecular weight of the low molecular weight aromatic compound is preferably less than 5,000, more preferably 4,000 or less, even more preferably 3,000 or less, and particularly preferably less than 2,000.
 本実施形態における第二の組成物には、第二の機能性材料が1種のみ含まれていてもよく、2種以上が含まれていてもよい。 The second composition in the present embodiment may contain only one type of the second functional material, or may contain two or more types.
(溶媒と機能性材料の含有量)
 本実施形態における第一の組成物及び第二の組成物中の第一の機能性材料及び第二の機能性材料の含有量には特に制限はないが、各々、好ましくは0.1重量%以上、さらに好ましくは0.5重量%以上、より好ましくは1.0重量%以上であり、好ましくは20重量%以下、さらに好ましくは15重量%以下、より好ましくは10重量%以下である。
(content of solvent and functional material)
The contents of the first functional material and the second functional material in the first composition and the second composition in the present embodiment are not particularly limited, but each is preferably 0.1% by weight. Above, it is more preferably 0.5% by weight or more, more preferably 1.0% by weight or more, preferably 20% by weight or less, still more preferably 15% by weight or less, and more preferably 10% by weight or less.
<湿式成膜法による成膜>
 本実施形態に係る有機半導体素子の製造方法は、第一の組成物を塗布及び加熱して第一の機能性膜を設ける工程と、前記第一の機能性膜の上に第二の組成物を塗布して第二の機能性膜を設ける工程と、を有する。
 これらの工程として、有機半導体素子が有機電界発光素子である場合には、例えば、第一の機能性膜が正孔注入層であり、第二の機能性膜が正孔輸送層である場合、又は、第一の機能性膜が正孔輸送層であり、第二の機能性膜が発光層である、以下の例i)又はii)が挙げられるが、これらに限られるものではない。
<Film formation by wet film formation method>
A method for manufacturing an organic semiconductor device according to the present embodiment includes steps of applying and heating a first composition to provide a first functional film, and applying a second composition on the first functional film. and providing a second functional film by applying.
As these steps, when the organic semiconductor device is an organic electroluminescent device, for example, when the first functional film is a hole injection layer and the second functional film is a hole transport layer, Alternatively, examples i) or ii) below, in which the first functional film is the hole-transporting layer and the second functional film is the emitting layer, include, but are not limited to.
i)陽極上に第一の組成物を塗布及び加熱して第一の機能性膜として正孔注入層を設ける工程と、正孔注入層の上に第二の組成物を塗布して第二の機能性膜として正孔輸送層を設ける工程。
ii)正孔注入層上に第一の組成物を塗布及び加熱して第一の機能性膜として正孔輸送層を設ける工程と、正孔輸送層の上に第二の組成物を塗布して第二の機能性膜として発光層を設ける工程。
i) applying and heating a first composition on the anode to provide a hole injection layer as a first functional film; A step of providing a hole transport layer as a functional film of.
ii) applying and heating a first composition on the hole injection layer to provide a hole transport layer as a first functional film; and applying a second composition on the hole transport layer. and providing a light-emitting layer as a second functional film.
 本実施形態における有機半導体素子が有機電界発光素子である場合、通常、電極が設けられた基板に、発光画素をバンクと呼ばれる隔壁で区画された微小領域を有する。このバンクで区画された微小領域内に本実施形態における第一の組成物を吐出することなどによって塗布し、乾燥して、適宜加熱することによって第一の機能性膜を形成する。 When the organic semiconductor element in the present embodiment is an organic electroluminescence element, a substrate provided with an electrode usually has a minute region in which light emitting pixels are partitioned by partition walls called a bank. The first functional film is formed by applying the first composition of the present embodiment by, for example, ejecting it into the minute regions partitioned by the banks, drying it, and heating it as appropriate.
 吐出方法は、微小なノズルからバンクで区画された微小領域よりも小さい液滴を吐出する方法であり、複数の液滴を吐出することによってバンクで区画された微小領域を第一の組成物で満たすことが好ましい。吐出法としては好ましくはインクジェット法である。 The ejection method is a method of ejecting a droplet smaller than the minute area partitioned by the bank from a minute nozzle, and by ejecting a plurality of droplets, the minute area partitioned by the bank is filled with the first composition. preferably fulfilled. An ink jet method is preferable as the ejection method.
 湿式成膜法では、バンクで区画された微小領域を第一の組成物で満たしたのち、真空乾燥する。真空乾燥とは、減圧することにより溶媒を揮発させることである。 In the wet film-forming method, the first composition is filled into minute areas defined by banks, and then vacuum-dried. Vacuum drying is volatilizing the solvent by reducing the pressure.
 真空乾燥により溶媒の大半は揮発させることが可能であるが、十分乾燥させるために、次いで加熱乾燥を行うことが好ましい。加熱温度は第一の機能性膜が結晶化または凝集しない温度および時間とすることが好ましい。 Most of the solvent can be volatilized by vacuum drying, but it is preferable to then heat dry to ensure sufficient drying. The heating temperature is preferably a temperature and time at which the first functional film does not crystallize or aggregate.
 第一の組成物が低分子材料である機能性材料を含む場合、加熱温度は通常50℃以上、好ましくは80℃以上、更に好ましくは100℃以上、より好ましくは120℃以上であり、通常200℃以下、好ましくは180℃以下、更に好ましくは150℃以下である。加熱時間は通常1分以上、好ましくは3分以上、より好ましくは5分以上であり、通常120分以下、好ましくは90分以下、より好ましくは60分以下である。 When the first composition contains a functional material that is a low-molecular weight material, the heating temperature is usually 50°C or higher, preferably 80°C or higher, more preferably 100°C or higher, more preferably 120°C or higher, and usually 200°C or higher. °C or lower, preferably 180 °C or lower, more preferably 150 °C or lower. The heating time is usually 1 minute or more, preferably 3 minutes or more, more preferably 5 minutes or more, and usually 120 minutes or less, preferably 90 minutes or less, more preferably 60 minutes or less.
 第一の機能性材料は高分子材料であるアリールアミンポリマーを含むことから、加熱温度は通常80℃以上、好ましくは100℃以上、更に好ましくは150℃以上、より好ましくは200℃以上であり、通常300℃以下、好ましくは270℃以下、更に好ましくは240℃以下である。加熱時間は通常1分以上、好ましくは3分以上、より好ましくは5分以上であり、通常120分以下、好ましくは90分以下、より好ましくは60分以下である。 Since the first functional material contains an arylamine polymer which is a polymeric material, the heating temperature is usually 80° C. or higher, preferably 100° C. or higher, more preferably 150° C. or higher, more preferably 200° C. or higher, It is usually 300° C. or lower, preferably 270° C. or lower, more preferably 240° C. or lower. The heating time is usually 1 minute or more, preferably 3 minutes or more, more preferably 5 minutes or more, and usually 120 minutes or less, preferably 90 minutes or less, more preferably 60 minutes or less.
 溶媒の除去、必要な不溶化耐久時間が達成される範囲において、第一の機能性膜を設ける工程における加熱温度はより低いことが好ましく、アリールアミンポリマーのガラス転移点より低い温度で行われてもよい。 The heating temperature in the step of providing the first functional film is preferably lower as long as the solvent is removed and the required insolubilization durability time is achieved. good.
 加熱方法は、ホットプレート、オーブン、赤外線照射等により実施することができる。分子振動を直接与える赤外線照射の場合の加熱時間は上記下限に近い時間で十分であり、熱源に基板が直接接するかまたは熱源と基板が極めて近くに配置されるホットプレート加熱の場合は赤外線照射よりは長い時間が必要である。オーブン加熱の場合、即ち、オーブン内の気体、通常は空気または窒素若しくはアルゴンなどの不活性ガスによる加熱の場合は、温度上昇に時間を要するため、上記加熱時間の上限に近い加熱時間が好ましい。加熱方法によって加熱時間は適宜調整される。 The heating method can be carried out by hot plate, oven, infrared irradiation, etc. In the case of infrared irradiation that directly gives molecular vibration, a heating time close to the above lower limit is sufficient. requires a long time. In the case of oven heating, that is, in the case of heating with a gas in the oven, usually air or an inert gas such as nitrogen or argon, it takes time to raise the temperature, so a heating time close to the upper limit of the above heating time is preferable. The heating time is appropriately adjusted depending on the heating method.
 塗布及び加熱によりバンク内に形成された第一の機能性膜上に、第二の組成物を塗布することで第二の機能性膜を形成させる。塗布の方法は、第一の組成物と同様、インクジェット法が好ましい。 A second functional film is formed by applying a second composition onto the first functional film formed in the bank by application and heating. As with the first composition, the method of application is preferably an inkjet method.
 本実施形態において、塗布される第二の組成物が、23℃における粘度が3mPa・s以上及び/又は流動活性化エネルギーが17kJ/mol以上を満たす第一の溶媒成分を少なくとも一種含有するため、産業上必要な時間以上の時間は、第一の機能性膜を溶かさない。ここで、産業上、塗布方式、特にインクジェット方式で大型基板上に成膜するプロセスは、第一の機能性膜上に第二の組成物が塗布されてから、第二の組成物に含まれる溶媒が蒸発するまでに、最短で2分以上を要する、すなわち、最短で2分以上浸漬されるものが想定される。ここで浸漬とは、第二の組成物が第一の機能性膜上の全面又は部分的に液体状態で接した状態で存在していることを意味する。
 そのため、好ましくは2分以上、より好ましくは5分以上、さらに好ましくは10分以上、よりさらに好ましくは15分以上の浸漬に対し、第一の機能性膜が溶解しない事が好ましい。この際の気圧、温度としては、それぞれ1Pa以上、50℃以下が想定される。
In this embodiment, the second composition to be applied contains at least one first solvent component that satisfies a viscosity of 3 mPa s or more at 23° C. and/or a flow activation energy of 17 kJ/mol or more, The first functional film does not dissolve for a time longer than the industrially required time. Here, industrially, the process of forming a film on a large substrate by a coating method, particularly an inkjet method, is applied to the first functional film, and then the second composition is included in the second composition. It takes at least 2 minutes or more for the solvent to evaporate. Here, immersion means that the second composition exists in contact with the first functional film entirely or partially in a liquid state.
Therefore, it is preferable that the first functional film does not dissolve when immersed for preferably 2 minutes or longer, more preferably 5 minutes or longer, still more preferably 10 minutes or longer, and even more preferably 15 minutes or longer. At this time, the atmospheric pressure and temperature are assumed to be 1 Pa or more and 50° C. or less, respectively.
 ここで、溶媒が蒸発するまでとは、第二の組成物に含まれる溶媒全体が蒸発してなくなるまでという意味である。すなわち、第二の組成物に含まれる溶媒が第一の溶媒成分のみである場合には、第一の溶媒成分が蒸発してなくなるまでを意味し、第二の組成物に含まれる溶媒が第一の溶媒成分及び第二の溶媒成分である場合には、そのすべてが蒸発してなくなるまでを意味する。
 また、溶媒が蒸発してなくなるとは、残留溶媒量が厳密に0である必要はない。溶媒の沸点によっては残留溶媒が残る場合があることから、第二の機能性膜における体積基準での濃度が100ppm以下であれば、蒸発してなくなったとみなすことができる。
Here, "until the solvent evaporates" means until the entire solvent contained in the second composition evaporates. That is, when the solvent contained in the second composition is only the first solvent component, it means until the first solvent component evaporates and disappears, and the solvent contained in the second composition is the first solvent component. In the case of one solvent component and a second solvent component, it means until all of them have evaporated.
In addition, it is not necessary that the amount of residual solvent is strictly zero when the solvent evaporates. Since residual solvent may remain depending on the boiling point of the solvent, if the concentration in the second functional film on a volume basis is 100 ppm or less, it can be considered that the solvent has evaporated.
 なお、第一の機能性膜は、その断面方向のすべての位置に於いて不溶化する必要はない。架橋基等による化学結合を生じない高分子材料であっても、適切な分子構造・分子量のアリールアミンポリマーに熱的な処理を行うと、表面や界面はバルク部分に先んじて再配列が進み、上層塗布時の溶媒によって溶出しにくい表面を形成する。このとき、薄膜の大部分はアモルファス状態を維持し、表面の溶出後は速やかに溶解する。 It should be noted that the first functional film does not need to be insolubilized at all positions in its cross-sectional direction. Even with polymeric materials that do not form chemical bonds due to cross-linking groups, etc., if an arylamine polymer with an appropriate molecular structure and molecular weight is thermally treated, the rearrangement proceeds on the surface and interface ahead of the bulk portion, Forms a surface that is difficult to be eluted by the solvent during coating of the upper layer. At this time, most of the thin film maintains an amorphous state and dissolves rapidly after the surface is eluted.
 第一の機能性膜は、この不溶性を達成しうる範囲において、低温、短時間といったより簡易な熱処理、高精細化や膜厚設計自由度に有利な低分子量の機能材料を用いることができる。 For the first functional film, it is possible to use a low-molecular weight functional material that is advantageous for simpler heat treatment such as low temperature and short time, high definition, and flexibility in film thickness design within the range where this insolubility can be achieved.
 上記の不溶化状態において、この第一の機能性膜の溶解開始までの耐久時間に及ぼす第二の組成物の影響は、第二の組成物に含有される溶媒分子、特に第一の溶媒成分の体積・表面積・内部自由度・溶媒分子間の分子間力等により変動する。溶媒分子のハンセン溶解度パラメーターδPには殆ど相関しないが、一定以上大きなδPを有する溶媒分子は、耐久時間を縮める傾向があり、避けることが望ましい。
 本発明者らは、好ましい溶媒分子の選定基準を実験的に解明し、判定式を定めた。これが、先述した下記関係式(A)である。
  32×粘度-4.3×理論表面積+5.4×体積-沸点>150・・・(A)
 また、この判定は、簡易的にはおおよそ溶媒の粘度によって可能である。
In the above insolubilized state, the effect of the second composition on the durability time until the first functional film starts dissolving depends on the solvent molecules contained in the second composition, especially the first solvent component. It varies depending on the volume, surface area, internal degrees of freedom, intermolecular forces between solvent molecules, etc. Although there is little correlation with the Hansen solubility parameter .delta.P of solvent molecules, solvent molecules having .delta.P larger than a certain value tend to shorten the durability time and should be avoided.
The present inventors have experimentally clarified the criteria for selecting preferred solvent molecules, and established a judgment formula. This is the following relational expression (A) mentioned above.
32 x viscosity - 4.3 x theoretical surface area + 5.4 x volume - boiling point > 150 (A)
Also, this judgment can be made simply by the viscosity of the solvent.
 また、第二の組成物を第一の機能性膜上に塗布する際には、インクジェット装置が用いられることを想定し、第二の組成物全体として吐出に適した粘度であること、すなわち15mPa・s以下の粘度である事を要件とする。ただし、塗布法によっては、15mPa・s以下を必須とするものではない。 In addition, when applying the second composition onto the first functional film, assuming that an inkjet device is used, the second composition as a whole must have a viscosity suitable for ejection, that is, 15 mPa・It is required to have a viscosity of s or less. However, depending on the coating method, 15 mPa·s or less is not essential.
〔第一の機能性膜及び第二の機能性膜〕
 第一の機能性膜又は第二の機能性膜中に含まれる、第一の機能性材料又は第二の機能性材料の含有量は、各々通常70重量%以上であり、好ましくは80重量%以上、さらに好ましくは90重量%以上、特に好ましくは95重量%以上であり、実質的に100重量%であることが最も好ましく、上限は100重量%である。実質的に100重量%であるとは、機能性膜に微量の添加剤、残留溶媒及び不純物が含まれる場合があるということである。機能性膜中の機能性材料の含有量がこの範囲であることにより、機能性材料の機能をより効果的に発現させることができる。
[First Functional Film and Second Functional Film]
The content of the first functional material or the second functional material contained in the first functional film or the second functional film is usually 70% by weight or more, preferably 80% by weight. Above, more preferably 90% by weight or more, particularly preferably 95% by weight or more, most preferably substantially 100% by weight, the upper limit is 100% by weight. Substantially 100% by weight means that the functional film may contain trace amounts of additives, residual solvents and impurities. When the content of the functional material in the functional film is within this range, the function of the functional material can be exhibited more effectively.
〔有機電界発光素子の層構成と形成方法〕
 本実施形態における第一の組成物と第二の組成物とを用いて製造される有機半導体素子が有機電界発光素子である場合(以下、「本実施形態における有機電界発光素子」と称す場合がある。)の層構成及びその形成方法の実施の形態の好ましい例を、図1を参照して説明する。
[Layer structure and formation method of organic electroluminescent device]
When the organic semiconductor device manufactured using the first composition and the second composition in the present embodiment is an organic electroluminescent device (hereinafter referred to as "organic electroluminescent device in the present embodiment") ) will be described with reference to FIG. 1 .
 図1は本実施形態における有機電界発光素子10の構造例を示す模式断面図である。図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は正孔阻止層、7は電子輸送層、8は電子注入層、9は陰極を各々表す。 FIG. 1 is a schematic cross-sectional view showing a structural example of an organic electroluminescence device 10 according to this embodiment. In FIG. 1, 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, 5 is a light emitting layer, 6 is a hole blocking layer, 7 is an electron transport layer, 8 is an electron injection layer, 9 each represent a cathode.
 本実施形態における有機電界発光素子は、陽極2、発光層5及び陰極9を必須の構成層とするが、必要に応じて、図1に示すように陽極2と発光層5及び陰極9と発光層5との間に他の機能層を有していてもよい。 The organic electroluminescent element in this embodiment has the anode 2, the light emitting layer 5 and the cathode 9 as essential constituent layers, but if necessary, as shown in FIG. It may have another functional layer between it and the layer 5 .
[基板]
 基板1は、有機電界発光素子の支持体となるものである。
 基板1としては、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシート等が用いられる。特にガラス板;ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホン等の透明な合成樹脂の板が好ましい。
[substrate]
The substrate 1 serves as a support for the organic electroluminescence device.
As the substrate 1, a quartz or glass plate, a metal plate or metal foil, a plastic film or sheet, or the like is used. Glass plates; transparent synthetic resin plates such as polyester, polymethacrylate, polycarbonate and polysulfone are particularly preferred.
 合成樹脂基板を使用する場合には、ガスバリア性に留意するのが好ましい。基板のガスバリア性は、基板を通過した外気による有機電界発光素子の劣化が起こり難いので、大きいことが好ましい。このため、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を確保する方法も好ましい方法の一つである。 When using a synthetic resin substrate, it is preferable to pay attention to gas barrier properties. It is preferable that the gas barrier property of the substrate is large, because deterioration of the organic electroluminescence element due to outside air passing through the substrate is unlikely to occur. Therefore, a method of providing a dense silicon oxide film or the like on at least one surface of a synthetic resin substrate to ensure gas barrier properties is also one of the preferable methods.
[陽極]
 陽極2は、発光層5側の層への正孔注入の役割を果たす電極である。
 陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、インジウム及び/又はスズの酸化物等の金属酸化物、ヨウ化銅等のハロゲン化金属、カーボンブラック、或いは、ポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等により構成される。
[anode]
The anode 2 is an electrode that plays a role of injecting holes into the layer on the light-emitting layer 5 side.
The anode 2 is generally made of metal such as aluminum, gold, silver, nickel, palladium, platinum, metal oxide such as indium and/or tin oxide, metal halide such as copper iodide, carbon black, or poly (3-methylthiophene), polypyrrole, polyaniline, and other conductive polymers.
 陽極2の形成は、通常、スパッタリング法、真空蒸着法等の方法により行われることが多い。
 銀等の金属微粒子、ヨウ化銅等の微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末等を用いて陽極2を形成する場合には、これらの微粒子などを適当なバインダー樹脂溶液に分散させて、基板1上に塗布することにより、陽極2を形成することもできる。
 導電性高分子の場合は、電解重合により直接基板1上に薄膜を形成することもできる。
 また、基板1上に導電性高分子を塗布して陽極2を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。
Formation of the anode 2 is usually carried out by a method such as a sputtering method, a vacuum deposition method, or the like.
When the anode 2 is formed by using metal fine particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, conductive polymer fine powder, etc., these fine particles are appropriately used. The anode 2 can also be formed by dispersing it in a binder resin solution and coating it on the substrate 1 .
In the case of a conductive polymer, a thin film can be formed directly on the substrate 1 by electrolytic polymerization.
Alternatively, the anode 2 can be formed by coating the substrate 1 with a conductive polymer (Appl. Phys. Lett., Vol. 60, p. 2711, 1992).
 陽極2は通常は単層構造であるが、所望により複数の材料からなる積層構造とすることも可能である。 The anode 2 usually has a single-layer structure, but it can also have a laminated structure consisting of multiple materials, if desired.
 陽極2の厚みは、必要とする透明性などに応じて適宜選択すればよい。
 透明性が必要とされる場合は、可視光の透過率を、通常60%以上、好ましくは80%以上とすることが好ましい。この場合、陽極2の厚みは、通常5nm以上、好ましくは10nm以上で、通常1000nm以下、好ましくは500nm以下程度である。
 不透明でよい場合は、陽極2の厚みは任意である。
 陽極2の機能を兼ね備えた基板1を用いてもよい。上記の陽極2の上に異なる導電材料を積層することも可能である。
The thickness of the anode 2 may be appropriately selected according to the required transparency and the like.
When transparency is required, the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness of the anode 2 is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
The thickness of the anode 2 is arbitrary as long as it is opaque.
A substrate 1 that also functions as the anode 2 may be used. It is also possible to laminate different conductive materials on top of the anode 2 described above.
 陽極2に付着した不純物を除去し、イオン化ポテンシャルを調整して正孔注入性を向上させることを目的に、陽極2表面を紫外線(UV)/オゾン処理したり、酸素プラズマ、アルゴンプラズマ処理したりすることも好ましい。 For the purpose of removing impurities adhering to the anode 2 and adjusting the ionization potential to improve the hole injection property, the surface of the anode 2 is treated with ultraviolet (UV)/ozone, oxygen plasma, or argon plasma. It is also preferable to
[正孔注入層]
 正孔注入層3は、陽極2から発光層5へ正孔を輸送するにあたり、正孔が電極から流れ込む層である。正孔注入層3を設ける場合は、正孔注入層3は、通常、陽極2上に形成される。
[Hole injection layer]
The hole injection layer 3 is a layer into which holes flow from the electrode when transporting holes from the anode 2 to the light emitting layer 5 . When providing the hole injection layer 3 , the hole injection layer 3 is usually formed on the anode 2 .
 正孔注入層3の形成方法は、真空蒸着法でも、湿式成膜法でもよく、特に制限はない。正孔注入層3は、ダークスポット低減の観点から湿式成膜法により形成することが好ましい。
 正孔注入層3の膜厚は、通常5nm以上、好ましくは10nm以上で、通常1000nm以下、好ましくは500nm以下の範囲である。
A method for forming the hole injection layer 3 may be a vacuum deposition method or a wet film formation method, and is not particularly limited. The hole injection layer 3 is preferably formed by a wet film formation method from the viewpoint of reducing dark spots.
The thickness of the hole injection layer 3 is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
(正孔輸送材料)
 正孔注入層形成用組成物は通常、正孔注入層3の構成材料として正孔輸送材料及び溶剤を含有する。
(Hole transport material)
The composition for forming a hole injection layer usually contains a hole transport material and a solvent as constituent materials of the hole injection layer 3 .
 正孔輸送材料は、通常、有機電界発光素子の正孔注入層3に使用される、正孔輸送性を有する化合物であれば、重合体などの高分子化合物であっても、単量体などの低分子化合物であってもよいが、高分子化合物であることが好ましい。 The hole-transporting material is a compound having a hole-transporting property that is usually used in the hole-injection layer 3 of an organic electroluminescent device, and may be a polymer compound such as a polymer, or a monomer. may be a low-molecular-weight compound, but a high-molecular-weight compound is preferred.
 正孔輸送材料としては、陽極2から正孔注入層3への電荷注入障壁の観点から4.5eV~6.0eVのイオン化ポテンシャルを有する化合物が好ましい。正孔輸送材料の例としては、芳香族アミン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボン等が挙げられる。 A compound having an ionization potential of 4.5 eV to 6.0 eV is preferable as the hole transport material from the viewpoint of a charge injection barrier from the anode 2 to the hole injection layer 3 . Examples of hole-transporting materials include aromatic amine derivatives, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, compounds in which tertiary amines are linked with fluorene groups, hydrazone derivatives, silazane derivatives, and silanamine derivatives. , phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylenevinylene derivatives, polythienylenevinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, carbon and the like.
 本明細書における誘導体とは、例えば芳香族アミン誘導体を例にするならば、芳香族アミンそのもの及び芳香族アミンを主骨格とする化合物を含むものであり、重合体であっても、単量体であってもよい。 Derivatives in the present specification include, for example, aromatic amine derivatives, aromatic amines themselves and compounds having an aromatic amine as a main skeleton. may be
 正孔注入層3の材料として用いられる正孔輸送材料は、このような化合物のうち何れか1種を単独で含有していてもよく、2種以上を含有していてもよい。2種以上の正孔輸送材料を含有する場合、その組み合わせは任意であるが、芳香族三級アミン高分子化合物の1種又は2種以上と、その他の正孔輸送材料の1種又は2種以上とを併用することが好ましい。 The hole-transporting material used as the material for the hole-injection layer 3 may contain any one of such compounds alone, or may contain two or more of them. When two or more hole-transporting materials are contained, the combination is arbitrary, but one or two or more aromatic tertiary amine polymer compounds and one or two other hole-transporting materials It is preferable to use the above together.
 正孔輸送材料としては、上記例示した中でも非晶質性、可視光の透過率の点から、芳香族アミン化合物が好ましく、特に芳香族三級アミン化合物が好ましい。芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。 Among the above-mentioned hole-transporting materials, aromatic amine compounds are preferable, and aromatic tertiary amine compounds are particularly preferable, in terms of amorphousness and visible light transmittance. The aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes compounds having a group derived from an aromatic tertiary amine.
 芳香族三級アミン化合物の種類は特に制限されないが、表面平滑化効果による均一な発光の点から、重量平均分子量が1000以上、1000000以下の高分子化合物(繰り返し単位が連なる重合型化合物)がさらに好ましい。芳香族三級アミン高分子化合物の好ましい例として、下記式(1)又は下記式(11)で表される繰り返し単位を有する高分子化合物が挙げられる。 The type of the aromatic tertiary amine compound is not particularly limited, but from the viewpoint of uniform light emission due to the surface smoothing effect, a polymer compound (polymeric compound in which repeating units are linked) having a weight average molecular weight of 1000 or more and 1000000 or less is further used. preferable. Preferred examples of aromatic tertiary amine polymer compounds include polymer compounds having repeating units represented by the following formula (1) or (11).
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
(式(1)中、
Arは、置換基を有していてもよい、芳香族炭化水素基又は芳香族複素環基を表し、Arは、置換基を有していてもよい、二価の芳香族炭化水素基及び二価の芳香族複素環基の少なくとも一方から選択される1つの基又は複数の基が連結した2価の基を表し、上記連結は直接又は連結基を介してなされる。)
(In formula (1),
Ar 3 represents an optionally substituted aromatic hydrocarbon group or aromatic heterocyclic group, Ar 4 represents an optionally substituted divalent aromatic hydrocarbon group represents a divalent group in which one or more groups selected from at least one of and a divalent aromatic heterocyclic group are linked, and the linking is performed directly or via a linking group. )
 上記式(1)において、芳香族炭化水素基及び芳香族複素環基が、連結基を介して複数個連結したものである場合の連結基は、二価の連結基であり、例えば-O-基、-C(=O)-基及び(置換基を有していていてもよい)-CH-基から選ばれる基を任意の順番で1~30個、好ましくは1~5個、更に好ましくは1~3個連結してなる基が挙げられる。 In the above formula (1), when the aromatic hydrocarbon group and the aromatic heterocyclic group are multiple linked via a linking group, the linking group is a divalent linking group, for example -O- 1 to 30, preferably 1 to 5, groups selected from -C(=O)- groups and (optionally substituted) -CH 2 - groups in any order, and further A group formed by connecting 1 to 3 groups is preferable.
 連結基の中では、発光層への正孔注入に優れる点で、式(1)中のArが、下記式(2)で表される連結基を介して複数個連結された芳香族炭化水素基または芳香族複素環基であることが好ましい。 Among the linking groups, Ar 4 in the formula (1) is an aromatic carbonized aromatic compound in which a plurality of Ar 4 in the formula (1) are linked via a linking group represented by the following formula (2) in terms of excellent hole injection into the light-emitting layer. A hydrogen group or an aromatic heterocyclic group is preferred.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
(式(2)中、
dは1~10の整数を表し、
及びRは、各々独立して、水素原子又は置換基を有していてもよい、アルキル基、芳香族炭化水素基、又は芳香族複素環基を表す。
、Rが複数個存在する場合、それらは同じであっても異なっていてもよい。)
(In formula (2),
d represents an integer from 1 to 10,
R 8 and R 9 each independently represent a hydrogen atom or an optionally substituted alkyl group, aromatic hydrocarbon group, or aromatic heterocyclic group.
When multiple R 8 and R 9 are present, they may be the same or different. )
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
(上記式(11)中、j、k、l’、m’、n’、p’は、各々独立に、0以上の整数を表す。但し、l’+m’≧1である。Ar11、Ar12、Ar14は、それぞれ独立に、置換基を有していてもよい炭素数30以下の2価の芳香環基を表す。Ar13は、置換基を有していてもよい炭素数30以下の2価の芳香環基または下記式(12)で表される2価の基を表し、Q11、Q12は、各々独立に、酸素原子、硫黄原子、置換基を有していてもよい炭素数6以下の炭化水素鎖を表し、S~Sは、各々独立に、下記式(13)で表される基で表される。
 なお、ここでいう芳香環基とは、芳香族炭化水素環基及び芳香族複素環基の少なくとも一方のことを言う。)
(In the above formula (11), j, k, l′, m′, n′, and p′ each independently represent an integer of 0 or more, provided that l′+m′≧1. Ar 11 , Ar 12 and Ar 14 each independently represent an optionally substituted divalent aromatic ring group having 30 or less carbon atoms, and Ar 13 has 30 carbon atoms which may be substituted. Represents the following divalent aromatic ring group or a divalent group represented by the following formula (12), wherein Q 11 and Q 12 each independently have an oxygen atom, a sulfur atom, or a substituent. It represents a good hydrocarbon chain having 6 or less carbon atoms, and S 1 to S 4 are each independently represented by a group represented by the following formula (13).
The term "aromatic ring group" as used herein refers to at least one of an aromatic hydrocarbon ring group and an aromatic heterocyclic group. )
 Ar11、Ar12、Ar14の芳香環基の例としては、単環、2~6縮合環又はこれらの芳香族環が2つ以上連結した基が挙げられる。
 単環又は2~6縮合環の芳香環基の具体例としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環、ビフェニル基、ターフェニル基、クアテルフェニル基、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ペリミジン環、キナゾリン環、キナゾリノン環もしくはアズレン環由来の2価の基が挙げられる。中でも負電荷を効率良く非局在化すること、安定性、耐熱性に優れることから、ベンゼン環、ナフタレン環、フルオレン環、ピリジン環もしくはカルバゾール環由来の2価の基またはビフェニル基が好ましい。
 Ar13の芳香環基の例としては、Ar11、Ar12、Ar14の場合と同様である。
Examples of aromatic ring groups for Ar 11 , Ar 12 and Ar 14 include monocyclic rings, 2 to 6 condensed rings, and groups in which two or more of these aromatic rings are linked.
Specific examples of monocyclic or 2- to 6-condensed aromatic ring groups include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring and acenaphthene ring. , fluoranthene ring, fluorene ring, biphenyl group, terphenyl group, quaterphenyl group, furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, Divalent groups derived from pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, shinoline ring, quinoxaline ring, phenanthridine ring, perimidine ring, quinazoline ring, quinazolinone ring or azulene ring. Among them, a divalent group derived from a benzene ring, a naphthalene ring, a fluorene ring, a pyridine ring or a carbazole ring, or a biphenyl group is preferable because it efficiently delocalizes a negative charge and is excellent in stability and heat resistance.
Examples of the aromatic ring group for Ar 13 are the same as those for Ar 11 , Ar 12 and Ar 14 .
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
(上記式(12)中、R11は、アルキル基、芳香環基または炭素数40以下のアルキル基と芳香環基からなる3価の基を表し、これらは置換基を有していてもよい。R12は、アルキル基、芳香環基または炭素数40以下のアルキル基と芳香環基からなる2価の基を表し、これらは置換基を有していてもよい。Ar31は、1価の芳香環基、又は1価の架橋基を表し、これらの基は置換基を有していてもよい。q’は1~4の整数を表す。q’が2以上の場合、複数のR12は同一であっても異なっていてもよく、複数のAr31は同一であっても異なっていてもよい。アスタリスク(*)は式(11)の窒素原子との結合手を示す。) (In formula (12) above, R 11 represents an alkyl group, an aromatic ring group, or a trivalent group consisting of an alkyl group having 40 or less carbon atoms and an aromatic ring group, which may have a substituent. R 12 represents an alkyl group, an aromatic ring group, or a divalent group consisting of an alkyl group having 40 or less carbon atoms and an aromatic ring group, which may have a substituent.Ar 31 is a monovalent represents an aromatic ring group or a monovalent bridging group, and these groups may have a substituent.q'represents an integer of 1 to 4.When q'is 2 or more, multiple R 12 may be the same or different, and a plurality of Ar 31 may be the same or different.The asterisk (*) indicates a bond with the nitrogen atom of formula (11).)
 R11の芳香環基としては、炭素数3以上30以下の単環又は縮合環である芳香環基1つであるか、又はそれらが2~6連結した基が好ましく、具体例としては、ベンゼン環、フルオレン環、ナフタレン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環及びこれらが2~6連結した基由来の3価の基が挙げられる。
 R11のアルキル基としては、炭素数1以上12以下の直鎖、分岐、又は環を含むアルキル基が好ましく、具体例としては、メタン、エタン、プロパン、イソプロパン、ブタン、イソブタン、ペンタン、ヘキサン、オクタン由来の基等が挙げられる。
 R11の炭素数40以下のアルキル基と芳香環基からなる基としては、好ましくは炭素数1以上12以下の直鎖、分岐、又は環を含むアルキル基と、炭素数3以上30以下の単環又は縮合環である芳香環基1つ又は2~6連結した基とが連結した基が挙げられる。
The aromatic ring group for R 11 is preferably one monocyclic or condensed ring aromatic ring group having 3 to 30 carbon atoms, or a group in which 2 to 6 of them are linked, and specific examples include benzene. Trivalent groups derived from rings, fluorene rings, naphthalene rings, carbazole rings, dibenzofuran rings, dibenzothiophene rings and groups in which 2 to 6 of these are linked.
The alkyl group for R 11 is preferably a linear, branched, or cyclic alkyl group having 1 to 12 carbon atoms, and specific examples thereof include methane, ethane, propane, isopropane, butane, isobutane, pentane, and hexane. , groups derived from octane, and the like.
The group consisting of an alkyl group having 40 or less carbon atoms and an aromatic ring group for R 11 is preferably a linear, branched or ring-containing alkyl group having 1 to 12 carbon atoms and a single alkyl group having 3 to 30 carbon atoms. Examples thereof include groups in which one or two to six aromatic ring groups, which are rings or condensed rings, are linked.
 R12の芳香環基の具体例としては、ベンゼン環、フルオレン環、ナフタレン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環及びこれらが連結した炭素数30以下の連結環由来の2価の基が挙げられる。
 R12のアルキル基の具体例としては、メタン、エタン、プロパン、イソプロパン、ブタン、イソブタン、ペンタン、ヘキサン、オクタン由来の2価の基等が挙げられる。
Specific examples of the aromatic ring group for R 12 include a benzene ring, a fluorene ring, a naphthalene ring, a carbazole ring, a dibenzofuran ring, a dibenzothiophene ring, and a divalent group derived from a linking ring having 30 or less carbon atoms to which these are linked. be done.
Specific examples of the alkyl group for R 12 include bivalent groups derived from methane, ethane, propane, isopropane, butane, isobutane, pentane, hexane and octane.
 Ar31の芳香環基の具体例としては、ベンゼン環、フルオレン環、ナフタレン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環及びこれらが連結した炭素数30以下の連結環由来の1価の基が挙げられる。 Specific examples of the aromatic ring group for Ar 31 include a benzene ring, a fluorene ring, a naphthalene ring, a carbazole ring, a dibenzofuran ring, a dibenzothiophene ring, and a monovalent group derived from a linking ring having 30 or less carbon atoms in which these are linked. be done.
 式(12)の好ましい構造の例としては以下の構造が挙げられ、R11の部分構造である下記構造における主鎖のベンゼン環またはフルオレン環はさらに置換基を有していてもよい。 Preferred examples of the structure of formula (12) include the following structure, and the benzene ring or fluorene ring of the main chain in the structure below which is the partial structure of R 11 may further have a substituent.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 Ar31の架橋基の例としては、ベンゾシクロブテン環、ナフトシクロブテン環またはオキセタン環由来の基、ビニル基、アクリル基等が挙げられる。化合物の安定性からベンゾシクロブテン環またはナフトシクロブテン環由来の基が好ましい。 Examples of the cross-linking group for Ar 31 include a group derived from a benzocyclobutene ring, a naphthocyclobutene ring or an oxetane ring, a vinyl group, an acryl group, and the like. A group derived from a benzocyclobutene ring or a naphthocyclobutene ring is preferred from the viewpoint of compound stability.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
(上記式(13)中、x、yは、それぞれ独立に0以上の整数を表す。Ar21、Ar23は、それぞれ独立に、2価の芳香環基を表し、これらの基は置換基を有していてもよい。Ar22は置換基を有していてもよい1価の芳香環基を表し、R13は、アルキル基、芳香環基、またはアルキル基と芳香環基からなる2価の基を表し、これらは置換基を有していてもよい。Ar32は1価の芳香環基又は1価の架橋基を表し、これらの基は置換基を有していてもよい。アスタリスク(*)は式(11)の窒素原子との結合手を示す。) (In the above formula (13), x and y each independently represent an integer of 0 or more. Ar 21 and Ar 23 each independently represent a divalent aromatic ring group, and these groups are substituents. Ar 22 represents a monovalent aromatic ring group which may have a substituent, and R 13 represents an alkyl group, an aromatic ring group, or a divalent group consisting of an alkyl group and an aromatic ring group. These groups may have substituents, and Ar 32 represents a monovalent aromatic ring group or a monovalent bridging group, and these groups may have substituents. (*) indicates a bond with the nitrogen atom of formula (11).)
 Ar21、Ar23の芳香環基の例としては、Ar11、Ar12、Ar14の場合と同様である。 Examples of the aromatic ring groups of Ar 21 and Ar 23 are the same as those of Ar 11 , Ar 12 and Ar 14 .
 Ar22、Ar32の芳香環基の例としては、単環、2~6縮合環又はこれらの芳香族環が2つ以上連結した基が挙げられる。具体例としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環、ビフェニル基、ターフェニル基、クアテルフェニル基、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ペリミジン環、キナゾリン環、キナゾリノン環もしくはアズレン環由来の1価の基が挙げられる。中でも負電荷を効率良く非局在化すること、安定性、耐熱性に優れることから、ベンゼン環、ナフタレン環、フルオレン環、ピリジン環もしくはカルバゾール環由来の1価の基またはビフェニル基が好ましい。 Examples of aromatic ring groups for Ar 22 and Ar 32 include monocyclic rings, 2 to 6 condensed rings, and groups in which two or more of these aromatic rings are linked. Specific examples include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, triphenylene ring, acenaphthene ring, fluoranthene ring, fluorene ring, biphenyl group and terphenyl group. , quaterphenyl group, furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring , thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, shinoline ring, quinoxaline ring, phenanthridine ring, perimidine ring, quinazoline ring, quinazolinone ring or azulene ring-derived monovalent group. Among them, a monovalent group derived from a benzene ring, a naphthalene ring, a fluorene ring, a pyridine ring, or a carbazole ring, or a biphenyl group is preferable because it efficiently delocalizes a negative charge and is excellent in stability and heat resistance.
 R13のアルキル基または芳香環基の例としては、R12と同様である。 Examples of the alkyl group or aromatic ring group for R 13 are the same as those for R 12 .
 Ar32の架橋基は特に限定しないが、好ましい例としては、ベンゾシクロブテン環、ナフトシクロブテン環もしくはオキセタン環由来の基、ビニル基、アクリル基等が挙げられる。 The cross-linking group for Ar 32 is not particularly limited, but preferred examples include a group derived from a benzocyclobutene ring, naphthocyclobutene ring or oxetane ring, vinyl group, acryl group and the like.
 上記Ar11~Ar14、R11~R13、Ar21~Ar23、Ar31~Ar32、Q11、Q12はいずれも、本発明の趣旨に反しない限りにおいて、更に置換基を有していてもよい。置換基の分子量としては、400以下が好ましく、中でも250以下がより好ましい。置換基の種類は特に制限されないが、例としては、下記の置換基群Wから選ばれる1種又は2種以上が挙げられる。 Each of Ar 11 to Ar 14 , R 11 to R 13 , Ar 21 to Ar 23 , Ar 31 to Ar 32 , Q 11 and Q 12 further has a substituent as long as it does not contradict the spirit of the present invention. may be The molecular weight of the substituent is preferably 400 or less, more preferably 250 or less. The type of substituent is not particularly limited, but examples thereof include one or more selected from the following substituent group W.
[置換基群W]
 メチル基、エチル基等の、炭素数が1以上、好ましくは10以下、さらに好ましくは8以下のアルキル基;ビニル基等の、炭素数が2以上、好ましくは11以下、さらに好ましくは5以下のアルケニル基;エチニル基等の、炭素数が2以上、好ましくは11以下、さらに好ましくは5以下のアルキニル基;メトキシ基、エトキシ基等の、炭素数が1以上、好ましくは10以下、さらに好ましくは6以下のアルコキシ基;フェノキシ基、ナフトキシ基、ピリジルオキシ基等の、炭素数が4以上、好ましくは5以上、好ましくは25以下、さらに好ましくは14以下のアリールオキシ基;メトキシカルボニル基、エトキシカルボニル基等の、炭素数が2以上、好ましくは11以下、さらに好ましくは7以下のアルコキシカルボニル基;ジメチルアミノ基、ジエチルアミノ基等の、炭素数が2以上、好ましくは20以下、さらに好ましくは12以下のジアルキルアミノ基;ジフェニルアミノ基、ジトリルアミノ基、N-カルバゾリル基等の、炭素数が10以上、好ましくは12以上、好ましくは30以下、さらに好ましくは22以下のジアリールアミノ基;フェニルメチルアミノ基等の、炭素数が6以上、さらに好ましくは7以上、好ましくは25以下、さらに好ましくは17以下のアリールアルキルアミノ基;アセチル基、ベンゾイル基等の、炭素数が2以上、好ましくは10以下、さらに好ましくは7以下のアシル基;フッ素原子、塩素原子等のハロゲン原子;トリフルオロメチル基等の、炭素数が1以上、好ましくは8以下、さらに好ましくは4以下のハロアルキル基;メチルチオ基、エチルチオ基等の、炭素数が1以上、好ましくは10以下、さらに好ましくは6以下のアルキルチオ基;フェニルチオ基、ナフチルチオ基、ピリジルチオ基等の、炭素数が4以上、好ましくは5以上、好ましくは25以下、さらに好ましくは14以下のアリールチオ基;トリメチルシリル基、トリフェニルシリル基等の、炭素数が2以上、好ましくは3以上、好ましくは33以下、さらに好ましくは26以下のシリル基;トリメチルシロキシ基、トリフェニルシロキシ基等の、炭素数が2以上、好ましくは3以上、好ましくは33以下、さらに好ましくは26以下のシロキシ基;シアノ基;フェニル基、ナフチル基等の、炭素数が6以上、好ましくは30以下、さらに好ましくは18以下の芳香族炭化水素基;チエニル基、ピリジル基等の、炭素数が3以上、好ましくは4以上、好ましくは28以下、さらに好ましくは17以下の芳香族複素環基。
[Substituent group W]
an alkyl group having 1 or more carbon atoms, preferably 10 or less, more preferably 8 or less, such as a methyl group or an ethyl group; alkenyl group; alkynyl group having 2 or more carbon atoms, preferably 11 or less, more preferably 5 or less such as ethynyl group; Alkoxy group of 6 or less; Aryloxy group having 4 or more carbon atoms, preferably 5 or more, preferably 25 or less, more preferably 14 or less such as phenoxy group, naphthoxy group, pyridyloxy group; methoxycarbonyl group, ethoxycarbonyl group Alkoxycarbonyl groups having 2 or more carbon atoms, preferably 11 or less, more preferably 7 or less, such as groups; dialkylamino group; diarylamino group having 10 or more carbon atoms, preferably 12 or more, preferably 30 or less, more preferably 22 or less, such as diphenylamino group, ditolylamino group, N-carbazolyl group; phenylmethylamino group, etc. An arylalkylamino group having 6 or more carbon atoms, more preferably 7 or more carbon atoms, preferably 25 or less, and more preferably 17 or less carbon atoms; preferably 7 or less acyl group; fluorine atom, halogen atom such as chlorine atom; haloalkyl group having 1 or more carbon atoms, preferably 8 or less, more preferably 4 or less such as trifluoromethyl group; methylthio group, ethylthio group Alkylthio groups having 1 or more, preferably 10 or less, more preferably 6 or less carbon atoms, such as; more preferably 14 or less arylthio group; a silyl group having 2 or more carbon atoms, preferably 3 or more, preferably 33 or less, more preferably 26 or less, such as trimethylsilyl group and triphenylsilyl group; trimethylsiloxy group, triphenyl a siloxy group having 2 or more carbon atoms, preferably 3 or more, preferably 33 or less, more preferably 26 or less; a cyano group; a phenyl group, a naphthyl group or the like, having 6 or more carbon atoms, preferably 30; below, more preferably 18 or less aromatic hydrocarbon group; thienyl group, pyridyl group, etc. , an aromatic heterocyclic group having 3 or more, preferably 4 or more, preferably 28 or less, more preferably 17 or less carbon atoms.
 上記置換基群Wのうち、溶解性を向上させる観点からアルキル基又はアルコキシ基が好ましく、電荷輸送性及び安定性の観点から芳香族炭化水素基又は芳香族複素環基が好ましい。 Among the above substituent group W, an alkyl group or an alkoxy group is preferable from the viewpoint of improving solubility, and an aromatic hydrocarbon group or an aromatic heterocyclic group is preferable from the viewpoint of charge transportability and stability.
 特に、式(11)で表される繰り返し単位を有する高分子化合物の中でも、下記式(14)で表される繰り返し単位を有する高分子化合物が、正孔注入・輸送性が非常に高くなるので好ましい。 In particular, among polymer compounds having a repeating unit represented by the formula (11), a polymer compound having a repeating unit represented by the following formula (14) exhibits extremely high hole injection/transport properties. preferable.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
(上記式(14)中、R21~R25は各々独立に、任意の置換基を表す。R21~R25の置換基の具体例は、前述の[置換基群W]に記載されている置換基と同様である。
 s、tは各々独立に、0以上、5以下の整数を表す。
 u、v、wは各々独立に、0以上、4以下の整数を表す。)
(In formula (14) above, R 21 to R 25 each independently represent an arbitrary substituent. Specific examples of the substituents of R 21 to R 25 are described in [Substituent Group W] above. is the same as for the substituents
s and t each independently represent an integer of 0 or more and 5 or less.
u, v, and w each independently represent an integer of 0 to 4; )
 芳香族三級アミン高分子化合物の好ましい例として、下記式(15)及び/又は式(16)で表される繰り返し単位を含む高分子化合物が挙げられる。 Preferred examples of aromatic tertiary amine polymer compounds include polymer compounds containing repeating units represented by the following formula (15) and/or formula (16).
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
(上記式(15)、式(16)中、Ar45、Ar47及びAr48は各々独立して、置換基を有していてもよい1価の芳香族炭化水素基又は置換基を有していてもよい1価の芳香族複素環基を表す。Ar44及びAr46は各々独立して、置換基を有していてもよい2価の芳香族炭化水素基、又は置換基を有していてもよい2価の芳香族複素環基を表す。R41~R43は各々独立して、水素原子又は任意の置換基を表す。) (In the above formulas (15) and (16), each of Ar 45 , Ar 47 and Ar 48 independently has an optionally substituted monovalent aromatic hydrocarbon group or a substituent Ar 44 and Ar 46 each independently represents a monovalent aromatic heterocyclic group which may be substituted, or a divalent aromatic hydrocarbon group which may be substituted or each of R 41 to R 43 independently represents a hydrogen atom or any substituent.)
 Ar45、Ar47及びAr48の具体例、好ましい例、有していてもよい置換基の例及び好ましい置換基の例は、Ar22と同様であり、Ar44及びAr46の具体例、好ましい例、有していてもよい置換基の例及び好ましい置換基の例は、Ar11、Ar12及びAr14と同様である。R41~R43として好ましくは、水素原子又は前述の[置換基群W]に記載されている置換基であり、更に好ましくは、水素原子、アルキル基、アルコキシ基、アミノ基、芳香族炭化水素基または芳香族複素環基である。 Specific examples and preferred examples of Ar 45 , Ar 47 and Ar 48 , examples of optionally substituted substituents and preferred examples of substituents are the same as for Ar 22 , and specific examples and preferred examples of Ar 44 and Ar 46 Examples, examples of substituents which may be present, and examples of preferred substituents are the same as for Ar 11 , Ar 12 and Ar 14 . R 41 to R 43 are preferably a hydrogen atom or a substituent described in [Substituent group W] above, more preferably a hydrogen atom, an alkyl group, an alkoxy group, an amino group, or an aromatic hydrocarbon. or an aromatic heterocyclic group.
 以下に、本実施形態において適用可能な、式(15)、式(16)で表される繰り返し単位の好ましい具体例を挙げるが、本発明はこれらに限定されるものではない。 Preferable specific examples of the repeating units represented by formulas (15) and (16) applicable to the present embodiment are listed below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
(電子受容性化合物)
 正孔注入層形成用組成物は、正孔注入層3の構成材料として、電子受容性化合物を含有していることが好ましい。
(Electron-accepting compound)
The hole injection layer-forming composition preferably contains an electron-accepting compound as a constituent material of the hole injection layer 3 .
 電子受容性化合物とは、酸化力を有し、上述の正孔輸送材料から1電子受容する能力を有する化合物が好ましい。具体的には、電子受容性化合物としては、電子親和力が4.0eV以上である化合物が好ましく、5.0eV以上の化合物がさらに好ましい。 The electron-accepting compound is preferably a compound that has oxidizing power and the ability to accept one electron from the above-mentioned hole-transporting material. Specifically, as the electron-accepting compound, a compound having an electron affinity of 4.0 eV or more is preferable, and a compound having an electron affinity of 5.0 eV or more is more preferable.
 このような電子受容性化合物としては、例えばトリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、オニウム塩、アリールアミンとハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種又は2種以上の化合物等が挙げられる。さらに具体的には、電子受容性化合物としては、4-イソプロピル-4’-メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラート、トリフェニルスルホニウムテトラフルオロボラート等の有機基の置換したオニウム塩(国際公開第2005/089024号、国際公開第2017/164268号);塩化鉄(III)(日本国特開平11-251067号公報)、ペルオキソ二硫酸アンモニウム等の高原子価の無機化合物;テトラシアノエチレン等のシアノ化合物、トリス(ペンタフルオロフェニル)ボラン(日本国特開2003-31365号公報)等の芳香族ホウ素化合物;フラーレン誘導体;ヨウ素;ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、ショウノウスルホン酸イオン等のスルホン酸イオン等が挙げられる。 Examples of such electron-accepting compounds include the group consisting of triarylboron compounds, metal halides, Lewis acids, organic acids, onium salts, salts of arylamines and metal halides, and salts of arylamines and Lewis acids. One or two or more compounds selected from More specifically, the electron-accepting compound includes an onium salt substituted with an organic group such as 4-isopropyl-4′-methyldiphenyliodonium tetrakis(pentafluorophenyl)borate, triphenylsulfonium tetrafluoroborate (international publication No. 2005/089024, International Publication No. 2017/164268); iron (III) chloride (Japanese Patent Laid-Open No. 11-251067), high-valent inorganic compounds such as ammonium peroxodisulfate; cyano such as tetracyanoethylene compounds, aromatic boron compounds such as tris(pentafluorophenyl)borane (Japanese Patent Laid-Open No. 2003-31365); fullerene derivatives; iodine; ions and the like.
 電子受容性化合物は、正孔輸送材料を酸化することにより正孔注入層3の導電率を向上させることができる。 The electron-accepting compound can improve the electrical conductivity of the hole-injection layer 3 by oxidizing the hole-transporting material.
(その他の構成材料)
 正孔注入層3の材料としては、本発明の効果を著しく損なわない限り、上述の正孔輸送材料や電子受容性化合物に加えて、さらに、その他の成分を含有させてもよい。
(Other constituent materials)
The material of the hole injection layer 3 may contain other components in addition to the above-mentioned hole transporting material and electron accepting compound as long as the effects of the present invention are not significantly impaired.
(溶剤)
 湿式成膜法に用いる正孔注入層形成用組成物の溶剤のうち少なくとも1種は、上述の正孔注入層3の構成材料を溶解しうる化合物であることが好ましい。
(solvent)
At least one of the solvents of the composition for forming a hole injection layer used in the wet film-forming method is preferably a compound capable of dissolving the constituent material of the hole injection layer 3 described above.
 正孔注入層形成用組成物が本実施形態における第二の組成物である場合は、溶剤は本実施形態における第一の溶媒成分や第二の溶媒成分である。 When the composition for forming a hole injection layer is the second composition in the present embodiment, the solvent is the first solvent component or the second solvent component in the present embodiment.
 溶剤として例えばエーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤などが挙げられる。 Examples of solvents include ether-based solvents, ester-based solvents, aromatic hydrocarbon-based solvents, and amide-based solvents.
 エーテル系溶剤としては、例えばエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテル等が挙げられる。 Examples of ether-based solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, aromatic ethers such as phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole and 2,4-dimethylanisole;
 エステル系溶剤としては、例えば酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル等が挙げられる。 Examples of ester-based solvents include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
 芳香族炭化水素系溶剤としては、例えばトルエン、キシレン、シクロヘキシルベンゼン、3-イソプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、メチルナフタレン等が挙げられる。 Examples of aromatic hydrocarbon solvents include toluene, xylene, cyclohexylbenzene, 3-isopropylbiphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, and methylnaphthalene.
 アミド系溶剤としては、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。
 その他、ジメチルスルホキシド等も用いることができる。
 中でも好ましくは、芳香族エステル、芳香族エーテルである。
Examples of amide solvents include N,N-dimethylformamide and N,N-dimethylacetamide.
In addition, dimethylsulfoxide and the like can also be used.
Among them, aromatic esters and aromatic ethers are preferred.
 これらの溶剤は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。 One type of these solvents may be used alone, or two or more types may be used in any combination and ratio.
 正孔注入層形成用組成物中の正孔輸送材料の濃度は、本発明の効果を著しく損なわない限り任意である。
 正孔注入層形成用組成物中の正孔輸送材料の濃度は、膜厚の均一性の点から、好ましくは0.01重量%以上、より好ましくは0.1重量%以上、さらに好ましくは0.5重量%以上である。正孔注入層形成用組成物中の正孔輸送材料の濃度は、好ましくは70重量%以下、より好ましくは60重量%以下、さらに好ましくは50重量%以下である。この濃度は、膜厚ムラが生じ難い点では小さいことが好ましい。また、この濃度は、成膜された正孔注入層に欠陥が生じ難い点では大きいことが好ましい。
The concentration of the hole-transporting material in the hole-injection layer-forming composition is arbitrary as long as it does not significantly impair the effects of the present invention.
The concentration of the hole transport material in the composition for forming a hole injection layer is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, and still more preferably 0, from the viewpoint of uniformity of the film thickness. .5% by weight or more. The concentration of the hole transport material in the composition for forming a hole injection layer is preferably 70% by weight or less, more preferably 60% by weight or less, and even more preferably 50% by weight or less. It is preferable that this density is small in that film thickness unevenness is less likely to occur. In addition, the concentration is preferably large from the viewpoint that defects are less likely to occur in the formed hole injection layer.
(湿式成膜法による正孔注入層の形成)
 湿式成膜法により正孔注入層3を形成する場合、通常は、正孔注入層3を構成する材料を適切な溶剤(正孔注入層用溶剤)と混合して成膜用の組成物(正孔注入層形成用組成物)を調製し、この正孔注入層3形成用組成物を適切な手法により、正孔注入層の下層に該当する層(通常は、陽極2)上に塗布して成膜し、乾燥することにより正孔注入層3を形成する。
(Formation of hole injection layer by wet film formation method)
When the hole injection layer 3 is formed by a wet film formation method, the material constituting the hole injection layer 3 is usually mixed with an appropriate solvent (solvent for the hole injection layer) to form a film formation composition ( A composition for forming a hole injection layer) is prepared, and this composition for forming a hole injection layer 3 is applied on a layer corresponding to the lower layer of the hole injection layer (usually, the anode 2) by an appropriate method. Then, the hole injection layer 3 is formed by forming a film using a heat treatment and drying it.
(真空蒸着法による正孔注入層3の形成)
 真空蒸着法により正孔注入層3を形成する場合には、例えば以下のようにして正孔注入層3を形成することができる。
 正孔注入層3の構成材料(前述の正孔輸送材料、電子受容性化合物等)の1種又は2種以上を真空容器内に設置されたるつぼに入れ(2種以上の材料を用いる場合は各々のるつぼに入れ)、真空容器内を適当な真空ポンプで10-4Pa程度まで排気する。この後、るつぼを加熱して(2種以上の材料を用いる場合は各々のるつぼを加熱して)、蒸発量を制御して蒸発させ(2種以上の材料を用いる場合は各々独立に蒸発量を制御して蒸発させ)、るつぼと向き合って置かれた基板1の陽極2上に正孔注入層3を形成させる。2種以上の材料を用いる場合は、それらの混合物をるつぼに入れ、加熱、蒸発させて正孔注入層3を形成することもできる。
(Formation of hole injection layer 3 by vacuum deposition method)
When the hole injection layer 3 is formed by vacuum deposition, the hole injection layer 3 can be formed, for example, as follows.
One or two or more of the constituent materials of the hole injection layer 3 (the aforementioned hole transport material, electron-accepting compound, etc.) are placed in a crucible placed in a vacuum vessel (when two or more materials are used, each crucible), and the inside of the vacuum chamber is evacuated to about 10 −4 Pa by a suitable vacuum pump. After that, the crucible is heated (each crucible is heated when two or more materials are used) to control the evaporation amount (when two or more materials are used, each evaporation amount is independent controlled evaporation) to form a hole injection layer 3 on the anode 2 of the substrate 1 placed opposite the crucible. When two or more materials are used, a mixture thereof can be placed in a crucible, heated and evaporated to form the hole injection layer 3 .
 蒸着時の真空度は、本発明の効果を著しく損なわない限り限定されない。
 蒸着時の真空度は、通常0.1×10-6Torr(0.13×10-4Pa)以上、9.0×10-6Torr(12.0×-4Pa)以下である。
 蒸着速度は、本発明の効果を著しく損なわない限り限定されない。
 蒸着速度は、通常0.1Å/秒以上、5.0Å/秒以下である。
 蒸着時の成膜温度は、本発明の効果を著しく損なわない限り限定されない。
 蒸着時の成膜温度は、好ましくは10℃以上、50℃以下で行われる。
The degree of vacuum during vapor deposition is not limited as long as it does not significantly impair the effects of the present invention.
The degree of vacuum during vapor deposition is usually 0.1×10 −6 Torr (0.13×10 −4 Pa) or more and 9.0×10 −6 Torr (12.0× −4 Pa) or less.
The vapor deposition rate is not limited as long as it does not significantly impair the effects of the present invention.
The deposition rate is usually 0.1 Å/second or more and 5.0 Å/second or less.
The film formation temperature during vapor deposition is not limited as long as it does not significantly impair the effects of the present invention.
The film forming temperature during vapor deposition is preferably 10° C. or higher and 50° C. or lower.
[正孔輸送層]
 正孔輸送層4は、陽極2から発光層5へ輸送する層である。通常、正孔輸送層4は、正孔注入層3がある場合には正孔注入層3の上に、正孔注入層3が無い場合には陽極2の上に形成する。
[Hole transport layer]
The hole transport layer 4 is a layer that transports from the anode 2 to the light emitting layer 5 . Usually, the hole transport layer 4 is formed on the hole injection layer 3 when the hole injection layer 3 is present, or on the anode 2 when the hole injection layer 3 is not present.
 正孔輸送層4の形成方法は、真空蒸着法でも、湿式成膜法でもよく、特に制限はない。正孔輸送層4は、ダークスポット低減の観点から湿式成膜法により形成することが好ましい。 The method for forming the hole transport layer 4 may be a vacuum deposition method or a wet film formation method, and is not particularly limited. From the viewpoint of reducing dark spots, the hole transport layer 4 is preferably formed by a wet film formation method.
 正孔輸送層4は正孔輸送材料を含む。正孔輸送層4を形成する正孔輸送材料としては、正孔輸送性が高く、かつ、注入された正孔を効率よく輸送することができる材料であることが好ましい。そのために、正孔輸送層4を形成する正孔輸送材料は、イオン化ポテンシャルが小さく、可視光の光に対して透明性が高く、正孔移動度が大きく、安定性に優れ、トラップとなる不純物が製造時や使用時に発生しにくいことが好ましい。多くの場合、正孔輸送層4は、発光層5に接するため、発光層5からの発光を消光したり、発光層5との間でエキサイプレックスを形成して効率を低下させたりしないことが好ましい。 The hole transport layer 4 contains a hole transport material. As the hole transport material forming the hole transport layer 4, a material having high hole transport properties and capable of efficiently transporting injected holes is preferable. Therefore, the hole-transporting material forming the hole-transporting layer 4 has a small ionization potential, a high transparency to visible light, a large hole mobility, an excellent stability, and an impurity that acts as a trap. is less likely to occur during manufacture or use. In many cases, the hole-transporting layer 4 is in contact with the light-emitting layer 5, so that the hole-transporting layer 4 does not quench light emitted from the light-emitting layer 5 or form an exciplex with the light-emitting layer 5 to reduce efficiency. preferable.
 正孔輸送層4の正孔輸送材料としては、従来、正孔輸送層4の構成材料として用いられている材料であればよい。正孔輸送層4の材料としては、例えばアリールアミン誘導体、フルオレン誘導体、スピロ誘導体、カルバゾール誘導体、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、シロール誘導体、オリゴチオフェン誘導体、縮合多環芳香族誘導体、金属錯体などが挙げられる。正孔輸送層4を形成する正孔輸送材料としては、前記正孔注入層形成用組成物に用いられる正孔輸送材料を用いることもできる。 As the hole-transporting material for the hole-transporting layer 4, any material conventionally used as a constituent material for the hole-transporting layer 4 may be used. Materials for the hole transport layer 4 include, for example, arylamine derivatives, fluorene derivatives, spiro derivatives, carbazole derivatives, pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, phenanthroline derivatives, phthalocyanine derivatives, porphyrin derivatives, and silole derivatives. , oligothiophene derivatives, condensed polycyclic aromatic derivatives, and metal complexes. As the hole-transporting material for forming the hole-transporting layer 4, the hole-transporting material used in the composition for forming the hole-injection layer can be used.
 正孔輸送層4の正孔輸送材料としては、例えばポリビニルカルバゾール誘導体、ポリアリールアミン誘導体(アリールアミンポリマー)、ポリビニルトリフェニルアミン誘導体、ポリフルオレン誘導体、ポリアリーレン誘導体、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン誘導体、ポリアリーレンビニレン誘導体、ポリシロキサン誘導体、ポリチオフェン誘導体、ポリ(p-フェニレンビニレン)誘導体等が挙げられる。
 これらは、交互共重合体、ランダム重合体、ブロック重合体又はグラフト共重合体のいずれであってもよい。また、主鎖に枝分かれがあり末端部が3つ以上ある高分子や、所謂デンドリマーであってもよい。
Examples of hole transport materials for the hole transport layer 4 include polyvinylcarbazole derivatives, polyarylamine derivatives (arylamine polymers), polyvinyltriphenylamine derivatives, polyfluorene derivatives, polyarylene derivatives, and polyarylene containing tetraphenylbenzidine. Ethersulfone derivatives, polyarylenevinylene derivatives, polysiloxane derivatives, polythiophene derivatives, poly(p-phenylenevinylene) derivatives and the like.
These may be alternating copolymers, random polymers, block polymers or graft copolymers. Also, a polymer having a branched main chain and three or more terminal portions, or a so-called dendrimer may be used.
 中でも、正孔輸送層4の正孔輸送材料としては、ポリアリールアミン誘導体やポリアリーレン誘導体が好ましい。
 ポリアリールアミン誘導体及びポリアリーレン誘導体の具体例等は、日本国特開2008-98619号公報に記載のものなどが挙げられる。
 ポリアリールアミン誘導体としては、式(50)で表されるような芳香族三級アミン高分子化合物を用いることが好ましい。
Among them, polyarylamine derivatives and polyarylene derivatives are preferable as the hole transport material for the hole transport layer 4 .
Specific examples of polyarylamine derivatives and polyarylene derivatives include those described in Japanese Patent Application Laid-Open No. 2008-98619.
As the polyarylamine derivative, it is preferable to use an aromatic tertiary amine polymer compound represented by formula (50).
 湿式成膜法で正孔輸送層4を形成する場合は、上記正孔注入層3の形成と同様にして、正孔輸送層形成用組成物を調製した後、湿式成膜後、乾燥させる。
 正孔輸送層形成用組成物には、上述の正孔輸送材料の他、溶剤を含有する。用いる溶剤は、上記正孔注入層形成用組成物に用いたものと同様である。また、成膜条件、乾燥条件等も正孔注入層3の形成の場合と同様である。
 正孔輸送層形成用組成物が本実施形態における第二の組成物である場合は、溶剤は本実施形態における第一の溶媒成分や前記第二の溶媒成分である。
 真空蒸着法により正孔輸送層4を形成する場合もまた、その成膜条件等は上記正孔注入層3の形成の場合と同様である。
When the hole transport layer 4 is formed by a wet film formation method, a composition for forming a hole transport layer is prepared in the same manner as in the formation of the hole injection layer 3, followed by wet film formation and drying.
The composition for forming a hole transport layer contains a solvent in addition to the hole transport material described above. The solvent to be used is the same as that used for the composition for forming the hole injection layer. Further, the film forming conditions, drying conditions, etc. are the same as those for forming the hole injection layer 3 .
When the hole transport layer-forming composition is the second composition in the present embodiment, the solvent is the first solvent component or the second solvent component in the present embodiment.
When the hole transport layer 4 is formed by the vacuum vapor deposition method, the film forming conditions and the like are the same as those for forming the hole injection layer 3 described above.
 正孔輸送層4の膜厚は、発光層5中の低分子材料の浸み込みや正孔輸送材料の膨潤など要素を考慮し、通常5nm以上、好ましくは10nm以上であり、通常300nm以下、好ましくは200nm以下である。 The film thickness of the hole-transporting layer 4 is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, taking into consideration factors such as penetration of the low-molecular-weight material into the light-emitting layer 5 and swelling of the hole-transporting material. It is preferably 200 nm or less.
[発光層]
 発光層5は、電界を与えられた電極間において、陽極2から注入された正孔と、陰極9から注入された電子との再結合により励起されて、主たる発光源となる層である。発光層5は、通常、正孔輸送層4がある場合には正孔輸送層4の上に、正孔輸送層4が無く、正孔注入層3がある場合には正孔注入層3の上に、正孔輸送層4も正孔注入層3も無い場合は、陽極2の上に形成する。
[Light emitting layer]
The light-emitting layer 5 is a layer that is excited by recombination of holes injected from the anode 2 and electrons injected from the cathode 9 between electrodes to which an electric field is applied, and becomes a main light source. The light-emitting layer 5 is generally formed on the hole-transport layer 4 when the hole-transport layer 4 is present and on the hole-injection layer 3 when the hole-injection layer 3 is present. If neither the hole-transporting layer 4 nor the hole-injecting layer 3 is present above, they are formed on the anode 2 .
<発光層用材料>
 発光層用材料は、通常、発光材料とホストとなる電荷輸送材料を含む。
<Material for Light Emitting Layer>
The light-emitting layer material usually contains a light-emitting material and a charge-transporting material serving as a host.
<発光材料>
 発光材料としては、通常、有機電界発光素子の発光材料として使用されている任意の公知の材料を適用することができ、特に制限はなく、所望の発光波長で発光し、発光効率が良好である物質を用いればよい。発光材料は、蛍光発光材料であってもよく、燐光発光材料であってもよいが、内部量子効率の観点から、好ましくは燐光発光材料である。さらに好ましくは、赤発光材料と緑発光材料は燐光発光材料であり、青発光材料は蛍光発光材料である。
<Luminescent material>
As the light-emitting material, any known material that is usually used as a light-emitting material for organic electroluminescence devices can be applied, and there is no particular limitation. Substances can be used. The light-emitting material may be a fluorescent light-emitting material or a phosphorescent light-emitting material, but is preferably a phosphorescent light-emitting material from the viewpoint of internal quantum efficiency. More preferably, the red emitting material and the green emitting material are phosphorescent emitting materials, and the blue emitting material is fluorescent emitting material.
 本実施形態における第二の組成物が発光層形成用組成物である場合、以下の燐光発光材料、蛍光発光材料及び電荷輸送材料を用いることが好ましい。 When the second composition in the present embodiment is a composition for forming a light-emitting layer, it is preferable to use the following phosphorescent light-emitting material, fluorescent light-emitting material, and charge transport material.
<燐光発光材料>
 燐光発光材料とは、励起三重項状態から発光を示す材料をいう。例えば、Ir、Pt、Euなどを有する金属錯体化合物がその代表例であり、材料の構造として、金属錯体を含むものが好ましい。
<Phosphorescent Material>
A phosphorescent material is a material that emits light from an excited triplet state. For example, metal complex compounds containing Ir, Pt, Eu, etc. are typical examples, and materials containing metal complexes are preferable as the structure of the material.
 金属錯体の中でも、三重項状態を経由して発光する燐光発光性有機金属錯体として、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)第7~11族から選ばれる金属を中心金属として含むウェルナー型錯体又は有機金属錯体化合物が挙げられる。
 このような燐光発光材料としては、例えば、国際公開第2014/024889号、国際公開第2015-087961号、国際公開第2016/194784号、日本国特開2014-074000号公報に記載の燐光発光材料が挙げられる。好ましくは、下記式(201)で表される化合物、又は下記式(205)で表される化合物が好ましく、より好ましくは下記式(201)で表される化合物である。
Among metal complexes, the long-period periodic table (unless otherwise specified, the long-period periodic table ) include Werner-type complexes or organometallic complex compounds containing a metal selected from Groups 7 to 11 as a central metal.
Examples of such phosphorescent light-emitting materials include, for example, International Publication No. 2014/024889, International Publication No. 2015-087961, International Publication No. 2016/194784, and phosphorescent materials described in Japanese Patent Application Laid-Open No. 2014-074000. is mentioned. A compound represented by the following formula (201) or a compound represented by the following formula (205) is preferable, and a compound represented by the following formula (201) is more preferable.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 式(201)において、環A1は置換基を有していてもよい芳香族炭化水素環構造又は置換基を有していてもよい芳香族複素環構造を表す。
 環A2は置換基を有していてもよい芳香族複素環構造を表す。
 R201、R202は各々独立に、式(202)で表される構造であり、“*”は環A1又は環A2との結合位置を表す。R201、R202は同じであっても異なっていてもよく、R201、R202がそれぞれ複数存在する場合、それらは同じであっても異なっていてもよい。
In formula (201), ring A1 represents an optionally substituted aromatic hydrocarbon ring structure or an optionally substituted aromatic heterocyclic ring structure.
Ring A2 represents an aromatic heterocyclic structure optionally having a substituent.
R 201 and R 202 each independently represent a structure represented by formula (202), and "*" represents the bonding position with ring A1 or ring A2. R 201 and R 202 may be the same or different, and when multiple R 201 and R 202 are present, they may be the same or different.
 式(202)において、Ar201、Ar203は、各々独立に、置換基を有していてもよい芳香族炭化水素環構造、又は置換基を有していてもよい芳香族複素環構造を表す。
 Ar202は、置換基を有していてもよい芳香族炭化水素環構造、置換基を有していてもよい芳香族複素環構造、又は置換基を有していてもよい脂肪族炭化水素構造を表す。
 式(201)の環A1に結合する置換基同士、環A2に結合する置換基同士、又は環A1に結合する置換基と環A2に結合する置換基同士は、互いに結合して環を形成してもよい。
In formula (202), Ar 201 and Ar 203 each independently represent an optionally substituted aromatic hydrocarbon ring structure or an optionally substituted aromatic heterocyclic ring structure. .
Ar 202 is an optionally substituted aromatic hydrocarbon ring structure, an optionally substituted aromatic heterocyclic ring structure, or an optionally substituted aliphatic hydrocarbon structure represents
In formula (201), the substituents bonded to ring A1, the substituents bonded to ring A2, or the substituents bonded to ring A1 and the substituents bonded to ring A2 are bonded to each other to form a ring. may
 B201-L200-B202は、アニオン性の2座配位子を表す。B201及びB202は、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。L200は、単結合、又は、B201及びB202とともに2座配位子を構成する原子団を表す。B201-L200-B202が複数存在する場合、それらは同一でも異なっていてもよい。 B 201 -L 200 -B 202 represents an anionic bidentate ligand. B 201 and B 202 each independently represent a carbon atom, an oxygen atom or a nitrogen atom, and these atoms may be atoms constituting a ring. L 200 represents a single bond or an atomic group forming a bidentate ligand together with B 201 and B 202 . When there are multiple groups of B 201 -L 200 -B 202 , they may be the same or different.
 なお、式(201)、式(202)において、
 i1、i2はそれぞれ独立に、0以上12以下の整数を表し、
 i3は、Ar202に置換可能な数を上限とする0以上の整数を表し、
 i4は、Ar201に置換可能な数を上限とする0以上の整数を表し、
 k1及びk2はそれぞれ独立に、環A1、環A2に置換可能な数を上限とする0以上の整数を表し、
 zは1~3の整数を表す。
Note that in formulas (201) and (202),
i1 and i2 each independently represent an integer of 0 to 12,
i3 represents an integer of 0 or more with the upper limit of the number that can be substituted for Ar 202 ,
i4 represents an integer of 0 or more with the upper limit of the number that can be substituted for Ar 201 ,
k1 and k2 each independently represent an integer of 0 or more, with the upper limit being the number that can be substituted on ring A1 and ring A2;
z represents an integer of 1 to 3;
(置換基)
 特に断りのない場合、置換基としては、次の置換基群Sから選ばれる基が好ましい。
(substituent)
Unless otherwise specified, the substituent is preferably a group selected from the following substituent group S.
<置換基群S>
・アルキル基、好ましくは炭素数1~20のアルキル基、より好ましくは炭素数1~12のアルキル基、さらに好ましくは炭素数1~8のアルキル基、特に好ましくは炭素数1~6のアルキル基。
・アルコキシ基、好ましくは炭素数1~20のアルコキシ基、より好ましくは炭素数1~12のアルコキシ基、さらに好ましくは炭素数1~6のアルコキシ基。
・アリールオキシ基、好ましくは炭素数6~20のアリールオキシ基、より好ましくは炭素数6~14のアリールオキシ基、さらに好ましくは炭素数6~12のアリールオキシ基、特に好ましくは炭素数6のアリールオキシ基。
・ヘテロアリールオキシ基、好ましくは炭素数3~20のヘテロアリールオキシ基、より好ましくは炭素数3~12のヘテロアリールオキシ基。
・アルキルアミノ基、好ましくは炭素数1~20のアルキルアミノ基、より好ましくは炭素数1~12のアルキルアミノ基。
・アリールアミノ基、好ましくは炭素数6~36のアリールアミノ基、より好ましくは炭素数6~24のアリールアミノ基。
・アラルキル基、好ましくは炭素数7~40のアラルキル基、より好ましくは炭素数7~18のアラルキル基、さらに好ましくは炭素数7~12のアラルキル基。
・ヘテロアラルキル基、好ましくは炭素数7~40のヘテロアラルキル基、より好ましくは炭素数7~18のヘテロアラルキル基。
・アルケニル基、好ましくは炭素数2~20のアルケニル基、より好ましくは炭素数2~12のアルケニル基、さらに好ましくは炭素数2~8のアルケニル基、特に好ましくは炭素数2~6のアルケニル基。
・アルキニル基、好ましくは炭素数2~20のアルキニル基、より好ましくは炭素数2~12のアルキニル基。
・アリール基、好ましくは炭素数6~30のアリール基、より好ましくは炭素数6~24のアリール基、さらに好ましくは炭素数6~18のアリール基、特に好ましくは炭素数6~14のアリール基。
・ヘテロアリール基、好ましくは炭素数3~30のヘテロアリール基、より好ましくは炭素数3~24のヘテロアリール基、さらに好ましくは炭素数3~18のヘテロアリール基、特に好ましくは炭素数3~14のヘテロアリール基。
・アルキルシリル基、好ましくはアルキル基の炭素数が1~20であるアルキルシリル基、より好ましくはアルキル基の炭素数が1~12であるアルキルシリル基。
・アリールシリル基、好ましくはアリール基の炭素数が6~20であるアリールシリル基、より好ましくはアリール基の炭素数が6~14であるアリールシリル基。
・アルキルカルボニル基、好ましくは炭素数2~20のアルキルカルボニル基。
・アリールカルボニル基、好ましくは炭素数7~20のアリールカルボニル基。
・水素原子、重水素原子、フッ素原子、シアノ基、又は、-SF
<Substituent group S>
- an alkyl group, preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 8 carbon atoms, particularly preferably an alkyl group having 1 to 6 carbon atoms .
- An alkoxy group, preferably an alkoxy group having 1 to 20 carbon atoms, more preferably an alkoxy group having 1 to 12 carbon atoms, and still more preferably an alkoxy group having 1 to 6 carbon atoms.
- an aryloxy group, preferably an aryloxy group having 6 to 20 carbon atoms, more preferably an aryloxy group having 6 to 14 carbon atoms, still more preferably an aryloxy group having 6 to 12 carbon atoms, particularly preferably an aryloxy group having 6 carbon atoms; aryloxy group.
- A heteroaryloxy group, preferably a heteroaryloxy group having 3 to 20 carbon atoms, more preferably a heteroaryloxy group having 3 to 12 carbon atoms.
- an alkylamino group, preferably an alkylamino group having 1 to 20 carbon atoms, more preferably an alkylamino group having 1 to 12 carbon atoms;
- An arylamino group, preferably an arylamino group having 6 to 36 carbon atoms, more preferably an arylamino group having 6 to 24 carbon atoms.
- An aralkyl group, preferably an aralkyl group having 7 to 40 carbon atoms, more preferably an aralkyl group having 7 to 18 carbon atoms, and still more preferably an aralkyl group having 7 to 12 carbon atoms.
- A heteroaralkyl group, preferably a heteroaralkyl group having 7 to 40 carbon atoms, more preferably a heteroaralkyl group having 7 to 18 carbon atoms.
- an alkenyl group, preferably an alkenyl group having 2 to 20 carbon atoms, more preferably an alkenyl group having 2 to 12 carbon atoms, still more preferably an alkenyl group having 2 to 8 carbon atoms, particularly preferably an alkenyl group having 2 to 6 carbon atoms .
- an alkynyl group, preferably an alkynyl group having 2 to 20 carbon atoms, more preferably an alkynyl group having 2 to 12 carbon atoms;
- An aryl group, preferably an aryl group having 6 to 30 carbon atoms, more preferably an aryl group having 6 to 24 carbon atoms, still more preferably an aryl group having 6 to 18 carbon atoms, particularly preferably an aryl group having 6 to 14 carbon atoms .
- a heteroaryl group, preferably a heteroaryl group having 3 to 30 carbon atoms, more preferably a heteroaryl group having 3 to 24 carbon atoms, still more preferably a heteroaryl group having 3 to 18 carbon atoms, particularly preferably 3 to 3 carbon atoms 14 heteroaryl groups.
An alkylsilyl group, preferably an alkylsilyl group having 1 to 20 carbon atoms, more preferably an alkylsilyl group having 1 to 12 carbon atoms.
- An arylsilyl group, preferably an arylsilyl group in which the aryl group has 6 to 20 carbon atoms, more preferably an arylsilyl group in which the aryl group has 6 to 14 carbon atoms.
- an alkylcarbonyl group, preferably an alkylcarbonyl group having 2 to 20 carbon atoms;
- an arylcarbonyl group, preferably an arylcarbonyl group having 7 to 20 carbon atoms;
- A hydrogen atom, a deuterium atom, a fluorine atom, a cyano group, or -SF 5 .
 以上の置換基群Sの基は一つ以上の水素原子がフッ素原子で置き換えられているか、若しくは1つ以上の水素原子が重水素原子で置き換えらえられていてもよい。
 特に断りのない限り、アリールは芳香族炭化水素環であり、ヘテロアリールは芳香族複素環である。
One or more hydrogen atoms in the above substituent group S may be replaced with fluorine atoms, or one or more hydrogen atoms may be replaced with deuterium atoms.
Unless otherwise specified, aryl is an aromatic hydrocarbon ring and heteroaryl is a heteroaromatic ring.
 上記置換基群Sのうち、好ましくは、アルキル基、アルコキシ基、アリールオキシ基、アリールアミノ基、アラルキル基、アルケニル基、アリール基、ヘテロアリール基、アルキルシリル基、アリールシリル基、及びこれらの基の一つ以上の水素原子がフッ素原子で置き換えられている基、フッ素原子、シアノ基、又は-SFであり、
 さらに好ましくは、アルキル基、アルコキシ基、アリールオキシ基、アリールアミノ基、アラルキル基、アルケニル基、アリール基、ヘテロアリール基、アルキルシリル基、アリールシリル基及びこれらの基の一つ以上の水素原子がフッ素原子で置き換えられている基、フッ素原子、シアノ基、又は-SFであり、であり、
 より好ましくは、アルキル基、アリールアミノ基、アラルキル基、アルケニル基、アリール基、ヘテロアリール基であり、及びこれらの基の一つ以上の水素原子がフッ素原子で置き換えられている基、フッ素原子、シアノ基、又は-SFであり、
 特に好ましくはアルキル基、アリールアミノ基、アラルキル基、アルケニル基、アリール基、ヘテロアリール基であり、
 最も好ましくはアルキル基、アリールアミノ基、アラルキル基、アリール基、ヘテロアリール基である。
Of the substituent group S, preferably an alkyl group, an alkoxy group, an aryloxy group, an arylamino group, an aralkyl group, an alkenyl group, an aryl group, a heteroaryl group, an alkylsilyl group, an arylsilyl group, and groups thereof a group in which one or more hydrogen atoms of is replaced with a fluorine atom, a fluorine atom, a cyano group, or -SF5 ,
More preferably, an alkyl group, an alkoxy group, an aryloxy group, an arylamino group, an aralkyl group, an alkenyl group, an aryl group, a heteroaryl group, an alkylsilyl group, an arylsilyl group, and one or more hydrogen atoms of these groups are a group substituted with a fluorine atom, a fluorine atom, a cyano group, or —SF5 , and
More preferably, an alkyl group, an arylamino group, an aralkyl group, an alkenyl group, an aryl group, a heteroaryl group, and a group in which one or more hydrogen atoms of these groups are replaced with a fluorine atom, a fluorine atom, a cyano group, or —SF5 ,
Particularly preferred are alkyl groups, arylamino groups, aralkyl groups, alkenyl groups, aryl groups and heteroaryl groups,
Most preferred are alkyl groups, arylamino groups, aralkyl groups, aryl groups and heteroaryl groups.
 これら置換基群Sにはさらに置換基群Sから選ばれる置換基を置換基として有していてもよい。有していてもよい置換基の好ましい基、より好ましい基、さらに好ましい基、特に好ましい基、最も好ましい基は置換基群Sの中の好ましい基と同様である。 These substituent groups S may further have a substituent selected from the substituent group S as a substituent. Preferred groups, more preferred groups, further preferred groups, particularly preferred groups, and most preferred groups of the substituents which may be present are the same as the preferred groups in the substituent group S.
(環A1)
 環A1は置換基を有していてもよい芳香族炭化水素環構造又は置換基を有していてもよい芳香族複素環構造を表す。
(Ring A1)
Ring A1 represents an optionally substituted aromatic hydrocarbon ring structure or an optionally substituted aromatic heterocyclic ring structure.
 芳香族炭化水素環としては、好ましくは炭素数6~30の芳香族炭化水素環である。具体的には、ベンゼン環、ナフタレン環、アントラセン環、トリフェニリル環、アセナフテン環、フルオランテン環、フルオレン環が好ましい。 The aromatic hydrocarbon ring is preferably an aromatic hydrocarbon ring having 6 to 30 carbon atoms. Specifically, benzene ring, naphthalene ring, anthracene ring, triphenylyl ring, acenaphthene ring, fluoranthene ring, and fluorene ring are preferred.
 芳香族複素環としては、ヘテロ原子として窒素原子、酸素原子、又は硫黄原子のいずれかを含む、炭素数3~30の芳香族複素環が好ましい。さらに好ましくは、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環である。
 環A1としてより好ましくは、ベンゼン環、ナフタレン環、フルオレン環であり、特に好ましくはベンゼン環又はフルオレン環であり、最も好ましくはベンゼン環である。
As the aromatic heterocyclic ring, an aromatic heterocyclic ring having 3 to 30 carbon atoms containing any one of a nitrogen atom, an oxygen atom, or a sulfur atom as a heteroatom is preferable. Further preferred are furan ring, benzofuran ring, thiophene ring and benzothiophene ring.
Ring A1 is more preferably a benzene ring, a naphthalene ring or a fluorene ring, particularly preferably a benzene ring or a fluorene ring, most preferably a benzene ring.
(環A2)
 環A2は置換基を有していてもよい芳香族複素環構造を表す。
 芳香族複素環としては、好ましくはヘテロ原子として窒素原子、酸素原子、又は硫黄原子のいずれかを含む、炭素数3~30の芳香族複素環である。
 具体的には、ピリジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、オキサゾール環、チアゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、ベンゾイミダゾール環、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環、ナフチリジン環、フェナントリジン環が挙げられ、好ましくは、ピリジン環、ピラジン環、ピリミジン環、イミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環であり、より好ましくは、ピリジン環、イミダゾール環、ベンゾチアゾール環、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環であり、最も好ましくは、ピリジン環、イミダゾール環、ベンゾチアゾール環、キノリン環、キノキサリン環、キナゾリン環である。
(Ring A2)
Ring A2 represents an aromatic heterocyclic structure optionally having a substituent.
The aromatic heterocyclic ring is preferably an aromatic heterocyclic ring having 3 to 30 carbon atoms containing a nitrogen atom, an oxygen atom or a sulfur atom as a heteroatom.
Specifically, pyridine ring, pyrimidine ring, pyrazine ring, triazine ring, imidazole ring, oxazole ring, thiazole ring, benzothiazole ring, benzoxazole ring, benzimidazole ring, quinoline ring, isoquinoline ring, quinoxaline ring, quinazoline ring, naphthyridine ring and phenanthridine ring, preferably pyridine ring, pyrazine ring, pyrimidine ring, imidazole ring, benzothiazole ring, benzoxazole ring, quinoline ring, isoquinoline ring, quinoxaline ring and quinazoline ring, more preferably is pyridine ring, imidazole ring, benzothiazole ring, quinoline ring, isoquinoline ring, quinoxaline ring, quinazoline ring, most preferably pyridine ring, imidazole ring, benzothiazole ring, quinoline ring, quinoxaline ring, quinazoline ring .
(環A1と環A2との組み合わせ)
 環A1と環A2の好ましい組み合せとしては、(環A1-環A2)と表記すると、(ベンゼン環-ピリジン環)、(ベンゼン環-キノリン環)、(ベンゼン環-キノキサリン環)、(ベンゼン環-キナゾリン環)、(ベンゼン環-ベンゾチアゾール環)、(ベンゼン環-イミダゾール環)、(ベンゼン環-ピロール環)、(ベンゼン環-ジアゾール環)、及び(ベンゼン環-チオフェン環)である。
(Combination of Ring A1 and Ring A2)
Preferred combinations of ring A1 and ring A2 are represented by (ring A1-ring A2), (benzene ring-pyridine ring), (benzene ring-quinoline ring), (benzene ring-quinoxaline ring), (benzene ring- quinazoline ring), (benzene ring-benzothiazole ring), (benzene ring-imidazole ring), (benzene ring-pyrrole ring), (benzene ring-diazole ring), and (benzene ring-thiophene ring).
(環A1、環A2の置換基)
 環A1、環A2が有していてもよい置換基は任意に選択できるが、好ましくは前記置換基群Sから選ばれる1種又は複数種の置換基である。
(Ring A1, substituent of ring A2)
The substituents that the ring A1 and the ring A2 may have may be optionally selected, but one or more substituents selected from the substituent group S are preferable.
(Ar201、Ar202、Ar203
 Ar201、Ar203は、各々独立に、置換基を有していてもよい芳香族炭化水素環構造、又は置換基を有していてもよい芳香族複素環構造を表す。
 Ar202は、置換基を有していてもよい芳香族炭化水素環構造、置換基を有していてもよい芳香族複素環構造、又は置換基を有していてもよい脂肪族炭化水素構造を表す。
( Ar201 , Ar202 , Ar203 )
Ar 201 and Ar 203 each independently represent an optionally substituted aromatic hydrocarbon ring structure or an optionally substituted aromatic heterocyclic ring structure.
Ar 202 is an optionally substituted aromatic hydrocarbon ring structure, an optionally substituted aromatic heterocyclic ring structure, or an optionally substituted aliphatic hydrocarbon structure represents
 Ar201、Ar202、Ar203のいずれかが置換基を有していてもよい芳香族炭化水素環構造である場合、該芳香族炭化水素環構造としては、好ましくは炭素数6~30の芳香族炭化水素環である。具体的には、ベンゼン環、ナフタレン環、アントラセン環、トリフェニリル環、アセナフテン環、フルオランテン環、フルオレン環が好ましく、より好ましくはベンゼン環、ナフタレン環、フルオレン環が好ましく、最も好ましくはベンゼン環である。 When any of Ar 201 , Ar 202 and Ar 203 is an optionally substituted aromatic hydrocarbon ring structure, the aromatic hydrocarbon ring structure is preferably an aromatic ring structure having 6 to 30 carbon atoms. is a group hydrocarbon ring. Specifically, benzene ring, naphthalene ring, anthracene ring, triphenylyl ring, acenaphthene ring, fluoranthene ring and fluorene ring are preferred, benzene ring, naphthalene ring and fluorene ring are more preferred, and benzene ring is most preferred.
 Ar201、Ar202のいずれかが置換基を有していてもよいベンゼン環である場合、少なくとも一つのベンゼン環がオルト位又はメタ位で隣接する構造と結合していることが好ましく、少なくとも一つのベンゼン環がメタ位で隣接する構造と結合していることがより好ましい。 When either Ar 201 or Ar 202 is an optionally substituted benzene ring, at least one benzene ring is preferably bonded to the adjacent structure at the ortho- or meta-position, and at least one More preferably, one benzene ring is attached to the adjacent structure at the meta position.
 Ar201、Ar202、Ar203のいずれかが置換基を有していてもよいフルオレン環である場合、フルオレン環の9位及び9’位は、置換基を有するか又は隣接する構造と結合していることが好ましい。 When any of Ar 201 , Ar 202 and Ar 203 is a fluorene ring optionally having a substituent, the 9- and 9′-positions of the fluorene ring have a substituent or are bonded to the adjacent structure. preferably.
 Ar201、Ar202、Ar203のいずれかが置換基を有していてもよい芳香族複素環構造である場合、芳香族複素環構造としては、好ましくはヘテロ原子として窒素原子、酸素原子、又は硫黄原子のいずれかを含む、炭素数3~30の芳香族複素環であり、具体的には、ピリジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、オキサゾール環、チアゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、ベンゾイミダゾール環、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環、ナフチリジン環、フェナントリジン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環が挙げられ、好ましくは、ピリジン環、ピリミジン環、トリアジン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環である。 When any one of Ar 201 , Ar 202 and Ar 203 is an aromatic heterocyclic structure which may have a substituent, the aromatic heterocyclic structure preferably contains a nitrogen atom, an oxygen atom, or An aromatic heterocyclic ring having 3 to 30 carbon atoms containing any of a sulfur atom, specifically, a pyridine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, an imidazole ring, an oxazole ring, a thiazole ring, and a benzothiazole ring. , benzoxazole ring, benzimidazole ring, quinoline ring, isoquinoline ring, quinoxaline ring, quinazoline ring, naphthyridine ring, phenanthridine ring, carbazole ring, dibenzofuran ring, and dibenzothiophene ring, preferably pyridine ring and pyrimidine ring. , triazine ring, carbazole ring, dibenzofuran ring, and dibenzothiophene ring.
 Ar201、Ar202、Ar203のいずれかが置換基を有していてもよいカルバゾール環である場合、カルバゾール環のN位は、置換基を有するか又は隣接する構造と結合していることが好ましい。 When any of Ar 201 , Ar 202 and Ar 203 is a carbazole ring optionally having a substituent, the N-position of the carbazole ring may have a substituent or be bonded to an adjacent structure. preferable.
 Ar202が置換基を有していてもよい脂肪族炭化水素構造である場合、直鎖、分岐鎖、又は環状構造を有する脂肪族炭化水素構造であり、好ましくは炭素数が1以上24以下であり、さらに好ましくは炭素数が1以上12以下であり、より好ましくは炭素数が1以上8以下である。 When Ar 202 is an optionally substituted aliphatic hydrocarbon structure, it is an aliphatic hydrocarbon structure having a linear, branched or cyclic structure, preferably having 1 to 24 carbon atoms. more preferably 1 or more and 12 or less carbon atoms, more preferably 1 or more and 8 or less carbon atoms.
(i1、i2、i3、i4、k1、k2)
 i1、i2はそれぞれ独立に、0~12の整数を表し、好ましくは1~12の整数、さらに好ましくは1~8の整数、より好ましくは1~6の整数である。この範囲であることにより、溶解性向上や電荷輸送性向上が見込まれる。
 i3は好ましくは0~5の整数を表し、さらに好ましくは0~2の整数、より好ましくは0又は1である。
 i4は好ましくは0~2の整数を表し、さらに好ましくは0又は1である。
 k1、k2はそれぞれ独立に、好ましくは0~3の整数を表し、さらに好ましくは1~3の整数であり、より好ましくは1又は2であり、特に好ましくは1である。
(i1, i2, i3, i4, k1, k2)
i1 and i2 each independently represent an integer of 0-12, preferably an integer of 1-12, more preferably an integer of 1-8, more preferably an integer of 1-6. Within this range, an improvement in solubility and an improvement in charge transport properties can be expected.
i3 preferably represents an integer of 0-5, more preferably an integer of 0-2, more preferably 0 or 1.
i4 preferably represents an integer of 0 to 2, more preferably 0 or 1.
Each of k1 and k2 independently represents an integer of preferably 0 to 3, more preferably an integer of 1 to 3, more preferably 1 or 2, and particularly preferably 1.
(Ar201、Ar202、Ar203の好ましい置換基)
 Ar201、Ar202、Ar203が有していてもよい置換基は任意に選択できるが、好ましくは上記置換基群Sから選ばれる1種又は複数種の置換基であり、好ましい基も前記置換基群Sの通りであるが、より好ましくは無置換(水素原子)、アルキル基、アリール基であり、特に好ましくは無置換(水素原子)、アルキル基であり、最も好ましくは無置換(水素原子)またはターシャリーブチル基である。ターシャリーブチル基はAr203が存在する場合はAr203に、Ar203が存在しない場合はAr202に、Ar202とAr203が存在しない場合はAr201に置換していることが好ましい。
(Preferred substituents of Ar 201 , Ar 202 and Ar 203 )
The substituents that Ar 201 , Ar 202 , and Ar 203 may have can be arbitrarily selected, but are preferably one or more substituents selected from the above substituent group S, and preferred groups are also the above-mentioned substituents. As in group S, more preferably unsubstituted (hydrogen atom), alkyl group or aryl group, particularly preferably unsubstituted (hydrogen atom) or alkyl group, most preferably unsubstituted (hydrogen atom ) or a tertiary butyl group. The tertiary butyl group preferably substitutes for Ar 203 when Ar 203 exists, for Ar 202 when Ar 203 does not exist, and for Ar 201 when Ar 202 and Ar 203 do not exist.
(式(201)で表される化合物の好ましい態様)
 上記式(201)で表される化合物は、下記(I)~(IV)のうちのいずれか1以上を満たす化合物であることが好ましい。
(I)フェニレン連結式
 式(202)で表される構造はベンゼン環が連結した基を有する構造、すなわち、ベンゼン環構造、i1が1~6の整数で、少なくとも一つの前記ベンゼン環がオルト位又はメタ位で隣接する構造と結合していることが好ましい。
 このような構造であることによって、溶解性が向上し、かつ電荷輸送性が向上することが期待される。
(Preferred Embodiment of Compound Represented by Formula (201))
The compound represented by the above formula (201) is preferably a compound satisfying any one or more of the following (I) to (IV).
(I) Phenylene linking formula The structure represented by formula (202) is a structure having a group to which benzene rings are linked, that is, a benzene ring structure, i1 is an integer of 1 to 6, and at least one of the benzene rings is in the ortho position. Alternatively, it is preferably bound to the adjacent structure at the meta position.
Such a structure is expected to improve the solubility and the charge transport property.
(II)(フェニレン)-アラルキル(アルキル)
 環A1又は環A2に、アルキル基若しくはアラルキル基が結合した芳香族炭化水素基若しくは芳香族複素環基を有する構造、すなわち、Ar201が芳香族炭化水素構造又は芳香族複素環構造、i1が1~6の整数、Ar202が脂肪族炭化水素構造、i2が1~12の整数、好ましくは3~8の整数、Ar203がベンゼン環構造、i3が0又は1である構造、好ましくは、Ar201は前記芳香族炭化水素構造であり、さらに好ましくはベンゼン環が1~5連結した構造であり、より好ましくはベンゼン環1つである。
 このような構造であることによって、溶解性が向上し、かつ電荷輸送性が向上することが期待される。
(II) (phenylene)-aralkyl (alkyl)
A structure having an aromatic hydrocarbon group or aromatic heterocyclic group to which an alkyl group or an aralkyl group is bonded to ring A1 or ring A2, that is, Ar 201 is an aromatic hydrocarbon structure or an aromatic heterocyclic structure, i1 is 1 An integer of ~6, Ar 202 is an aliphatic hydrocarbon structure, i2 is an integer of 1 to 12, preferably an integer of 3 to 8, Ar 203 is a benzene ring structure, i3 is 0 or 1, preferably Ar 201 is the above aromatic hydrocarbon structure, more preferably a structure in which 1 to 5 benzene rings are linked, more preferably one benzene ring.
Such a structure is expected to improve the solubility and the charge transport property.
(III)デンドロン
 環A1又は環A2に、デンドロンが結合した構造、例えば、Ar201、Ar202がベンゼン環構造、Ar203がビフェニル又はターフェニル構造、i1、i2が1~6の整数、i3が2、jが2である。
 このような構造であることによって、溶解性が向上し、かつ電荷輸送性が向上することが期待される。
(III) Dendron A structure in which a dendron is bound to ring A1 or ring A2, for example, Ar 201 and Ar 202 are benzene ring structures, Ar 203 is a biphenyl or terphenyl structure, i1 and i2 are integers of 1 to 6, and i3 is 2, j is 2.
Such a structure is expected to improve the solubility and the charge transport property.
(IV)B201-L200-B202
 B201-L200-B202で表される構造は下記式(203)又は下記式(204)で表される構造であることが好ましい。
(IV) B 201 -L 200 -B 202
The structure represented by B 201 -L 200 -B 202 is preferably a structure represented by the following formula (203) or the following formula (204).
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 式(203)中、R211、R212、R213はそれぞれ独立に置換基を表す。
 式(204)中、環B3は、置換基を有していてもよい、窒素原子を含む芳香族複素環構造を表す。環B3は好ましくはピリジン環である。
In formula (203), R 211 , R 212 and R 213 each independently represent a substituent.
In formula (204), ring B3 represents an aromatic heterocyclic structure containing a nitrogen atom, which may have a substituent. Ring B3 is preferably a pyridine ring.
(好ましい燐光発光材料)
 上記式(201)で表される燐光発光材料としては特に限定はされないが、好ましいものとして以下のものが挙げられる。
(Preferred phosphorescent material)
The phosphorescent material represented by the above formula (201) is not particularly limited, but the following are preferred.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 また、下記式(205)で表される燐光発光材料も好ましい。 A phosphorescent material represented by the following formula (205) is also preferable.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
(式(205)中、Mは金属を表し、Tは炭素原子又は窒素原子を表す。R92~R95は、それぞれ独立に置換基を表す。但し、Tが窒素原子の場合は、R94及びR95は無い。) (In formula (205), M 2 represents a metal, T represents a carbon atom or a nitrogen atom. R 92 to R 95 each independently represent a substituent. However, when T is a nitrogen atom, R 94 and R95 are not available.)
 式(205)中、Mの具体例としては、周期表第7~11族から選ばれる金属が挙げられる。中でも好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金又は金が挙げられ、特に好ましくは、白金、パラジウム等の2価の金属が挙げられる。 Specific examples of M 2 in formula (205) include metals selected from Groups 7 to 11 of the periodic table. Among them, ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold are preferred, and divalent metals such as platinum and palladium are particularly preferred.
 また、式(205)において、R92及びR93は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、アラルキル基、アルケニル基、シアノ基、アミノ基、アシル基、アルコキシカルボニル基、カルボキシル基、アルコキシ基、アルキルアミノ基、アラルキルアミノ基、ハロアルキル基、水酸基、アリールオキシ基、芳香族炭化水素基又は芳香族複素環基を表す。 In formula (205), R 92 and R 93 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, a cyano group, an amino group, an acyl group, an alkoxycarbonyl group, a carboxyl group, represents an alkoxy group, an alkylamino group, an aralkylamino group, a haloalkyl group, a hydroxyl group, an aryloxy group, an aromatic hydrocarbon group or an aromatic heterocyclic group;
 更に、Tが炭素原子の場合、R94及びR95は、それぞれ独立に、R92及びR93と同様の例示物で表される置換基を表す。また、Tが窒素原子の場合は該Tに直接結合するR94又はR95は存在しない。また、R92~R95は、更に置換基を有していてもよい。置換基としては、前記の置換基とすることができる。更に、R92~R95のうち任意の2つ以上の基が互いに連結して環を形成してもよい。 Furthermore, when T is a carbon atom, R94 and R95 each independently represent a substituent represented by the same examples as R92 and R93 . Also, when T is a nitrogen atom, there is no R94 or R95 directly bonded to said T. In addition, R 92 to R 95 may further have a substituent. The substituents may be the substituents described above. Furthermore, any two or more groups selected from R 92 to R 95 may be linked together to form a ring.
(分子量)
 燐光発光材料の分子量は、好ましくは5000以下、更に好ましくは4000以下、特に好ましくは3000以下である。また、燐光発光材料の分子量は、好ましくは800以上、より好ましくは1000以上、更に好ましくは1200以上である。この分子量範囲であることによって、燐光発光材料同士が凝集せず電荷輸送材料と均一に混合し、発光効率の高い発光層を得ることができると考えられる。
(molecular weight)
The molecular weight of the phosphorescent material is preferably 5,000 or less, more preferably 4,000 or less, and particularly preferably 3,000 or less. Also, the molecular weight of the phosphorescent material is preferably 800 or more, more preferably 1000 or more, and even more preferably 1200 or more. It is believed that within this molecular weight range, the phosphorescent light-emitting material is not agglomerated and uniformly mixed with the charge-transporting material, making it possible to obtain a light-emitting layer with high light-emitting efficiency.
 燐光発光材料の分子量は、Tgや融点、分解温度等が高く、燐光発光材料及び形成された発光層の耐熱性に優れる点、及び、ガス発生、再結晶化及び分子のマイグレーション等に起因する膜質の低下や材料の熱分解に伴う不純物濃度の上昇等が起こり難い点では大きいことが好ましい。一方、燐光発光材料の分子量は、有機化合物の精製が容易である点では小さいことが好ましい。 The molecular weight of the phosphorescent light-emitting material has a high Tg, melting point, decomposition temperature, etc., and the phosphorescent light-emitting material and the formed light-emitting layer have excellent heat resistance, and the film quality due to gas generation, recrystallization, molecular migration, etc. A large value is preferable from the viewpoint that it is difficult to cause a decrease in the concentration of impurities and an increase in the concentration of impurities due to thermal decomposition of the material. On the other hand, the molecular weight of the phosphorescent light-emitting material is preferably small in terms of facilitating purification of the organic compound.
<電荷輸送材料>
 発光層に用いる電荷輸送材料は、電荷輸送性に優れる骨格を有する材料であり、電子輸送性材料、正孔輸送性材料及び電子と正孔の両方を輸送可能な両極性材料から選ばれることが好ましい。
<Charge transport material>
The charge-transporting material used in the light-emitting layer is a material having a skeleton with excellent charge-transporting properties, and may be selected from electron-transporting materials, hole-transporting materials, and bipolar materials capable of transporting both electrons and holes. preferable.
 電荷輸送性に優れる骨格としては、具体的には、芳香族構造、芳香族アミン構造、トリアリールアミン構造、ジベンゾフラン構造、ナフタレン構造、フェナントレン構造、フタロシアニン構造、ポルフィリン構造、チオフェン構造、ベンジルフェニル構造、フルオレン構造、キナクリドン構造、トリフェニレン構造、カルバゾール構造、ピレン構造、アントラセン構造、フェナントロリン構造、キノリン構造、ピリジン構造、ピリミジン構造、トリアジン構造、オキサジアゾール構造又はイミダゾール構造等が挙げられる。 Specific examples of skeletons with excellent charge transport properties include aromatic structures, aromatic amine structures, triarylamine structures, dibenzofuran structures, naphthalene structures, phenanthrene structures, phthalocyanine structures, porphyrin structures, thiophene structures, benzylphenyl structures, fluorene structure, quinacridone structure, triphenylene structure, carbazole structure, pyrene structure, anthracene structure, phenanthroline structure, quinoline structure, pyridine structure, pyrimidine structure, triazine structure, oxadiazole structure, imidazole structure, and the like.
 電子輸送性材料としては、電子輸送性に優れ構造が比較的安定な材料である観点から、ピリジン構造、ピリミジン構造、トリアジン構造を有する化合物がより好ましく、ピリミジン構造、トリアジン構造を有する化合物であることがさらに好ましい。 As the electron-transporting material, a compound having a pyridine structure, a pyrimidine structure, or a triazine structure is more preferable, and a compound having a pyrimidine structure or a triazine structure, from the viewpoint of being a material having excellent electron-transporting properties and having a relatively stable structure. is more preferred.
 正孔輸送性材料は、正孔輸送性に優れた構造を有する化合物であり、上記電荷輸送性に優れた中心骨格の中でも、カルバゾール構造、ジベンゾフラン構造、トリアリールアミン構造、ナフタレン構造、フェナントレン構造又はピレン構造が正孔輸送性に優れた構造として好ましく、カルバゾール構造、ジベンゾフラン構造又はトリアリールアミン構造がさらに好ましい。 A hole-transporting material is a compound having a structure having excellent hole-transporting properties. A pyrene structure is preferable as a structure having excellent hole transport properties, and a carbazole structure, a dibenzofuran structure, or a triarylamine structure is more preferable.
 発光層に用いる電荷輸送材料は、3環以上の縮合環構造を有することが好ましく、3環以上の縮合環構造を2以上有する化合物又は5環以上の縮合環を少なくとも1つ有する化合物であることがさらに好ましい。これらの化合物であることで、分子の剛直性が増し、熱に応答する分子運動の程度を抑制する効果が得られ易くなる。さらに、3環以上の縮合環及び5環以上の縮合環は、芳香族炭化水素環又は芳香族複素環を有することが電荷輸送性及び材料の耐久性の点で好ましい。 The charge-transporting material used in the light-emitting layer preferably has a condensed ring structure of three or more rings, and is a compound having two or more condensed ring structures of three or more rings or a compound having at least one condensed ring of five or more rings. is more preferred. These compounds increase the rigidity of the molecules, making it easier to obtain the effect of suppressing the degree of molecular motion in response to heat. Further, the 3 or more condensed rings and the 5 or more condensed rings preferably have an aromatic hydrocarbon ring or an aromatic heterocyclic ring from the viewpoint of charge transportability and material durability.
 3環以上の縮合環構造としては、具体的には、アントラセン構造、フェナントレン構造、ピレン構造、クリセン構造、ナフタセン構造、トリフェニレン構造、フルオレン構造、ベンゾフルオレン構造、インデノフルオレン構造、インドロフルオレン構造、カルバゾール構造、インデノカルバゾール構造、インドロカルバゾール構造、ジベンゾフラン構造、ジベンゾチオフェン構造等が挙げられる。電荷輸送性ならびに溶解性の観点から、フェナントレン構造、フルオレン構造、インデノフルオレン構造、カルバゾール構造、インデノカルバゾール構造、インドロカルバゾール構造、ジベンゾフラン構造及びジベンゾチオフェン構造からなる群より選択される少なくとも1つが好ましく、電荷に対する耐久性の観点からカルバゾール構造又はインドロカルバゾール構造がさらに好ましい。 Specific examples of condensed ring structures having three or more rings include anthracene structure, phenanthrene structure, pyrene structure, chrysene structure, naphthacene structure, triphenylene structure, fluorene structure, benzofluorene structure, indenofluorene structure, indolofluorene structure, Carbazole structure, indenocarbazole structure, indolocarbazole structure, dibenzofuran structure, dibenzothiophene structure and the like. At least one selected from the group consisting of a phenanthrene structure, a fluorene structure, an indenofluorene structure, a carbazole structure, an indenocarbazole structure, an indolocarbazole structure, a dibenzofuran structure, and a dibenzothiophene structure, from the viewpoints of charge transportability and solubility. A carbazole structure or an indolocarbazole structure is more preferred from the viewpoint of durability against electric charges.
 本実施形態においては、有機電界発光素子の電荷に対する耐久性の観点から、発光層の電荷輸送材料の内、少なくとも一つはピリミジン骨格又はトリアジン骨格を有する材料であることが好ましい。 In the present embodiment, at least one of the charge-transporting materials in the light-emitting layer is preferably a material having a pyrimidine skeleton or a triazine skeleton, from the viewpoint of the durability of the organic electroluminescent device against charges.
 発光層の電荷輸送材料は、可撓性に優れる観点では高分子材料であることが好ましい。可撓性に優れる材料を用いて形成された発光層は、フレキシブル基板上に形成された有機電界発光素子の発光層として好ましい。
 発光層に含まれる電荷輸送材料が高分子材料である場合、重量平均分子量は、好ましくは5,000以上、より好ましくは10,000以上であり、好ましくは1,000,000以下、より好ましくは500,000以下、さらに好ましくは100,000以下である。
The charge-transporting material of the light-emitting layer is preferably a polymeric material from the viewpoint of excellent flexibility. A light-emitting layer formed using a material having excellent flexibility is preferable as a light-emitting layer of an organic electroluminescent device formed on a flexible substrate.
When the charge-transporting material contained in the light-emitting layer is a polymeric material, the weight-average molecular weight is preferably 5,000 or more, more preferably 10,000 or more, and preferably 1,000,000 or less, more preferably 500,000 or less, more preferably 100,000 or less.
 また、発光層の電荷輸送材料は、合成及び精製のしやすさ、電子輸送性能及び正孔輸送性能の設計のしやすさ、溶媒に溶解した時の粘度調整のしやすさの観点からは、低分子であることが好ましい。
 発光層に含まれる電荷輸送材料が低分子材料である場合、分子量は、5,000以下が好ましく、さらに好ましくは4,000以下であり、特に好ましくは3,000以下であり、最も好ましくは2,000以下であり、好ましくは300以上、より好ましくは350以上、さらに好ましくは400以上である。
From the viewpoints of ease of synthesis and purification, ease of designing electron-transporting performance and hole-transporting performance, and ease of viscosity adjustment when dissolved in a solvent, the charge-transporting material for the light-emitting layer is A low molecular weight is preferred.
When the charge-transporting material contained in the light-emitting layer is a low-molecular-weight material, the molecular weight is preferably 5,000 or less, more preferably 4,000 or less, particularly preferably 3,000 or less, and most preferably 2 ,000 or less, preferably 300 or more, more preferably 350 or more, and still more preferably 400 or more.
<蛍光発光材料>
 蛍光発光材料としては特に限定されないが、下記式(211)で表される化合物が好ましい。
<Fluorescent material>
The fluorescent light-emitting material is not particularly limited, but a compound represented by the following formula (211) is preferable.
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 上記式(211)において、Ar241は置換基を有していてもよい芳香族炭化水素縮合環構造を表し、Ar242、Ar243は各々独立に置換基を有していてもよいアルキル基、芳香族炭化水素基、芳香族複素環基又はこれらが結合した基を表す。n41は1~4の整数である。 In the above formula (211), Ar 241 represents an optionally substituted aromatic hydrocarbon condensed ring structure, Ar 242 and Ar 243 are each independently an optionally substituted alkyl group, It represents an aromatic hydrocarbon group, an aromatic heterocyclic group, or a group in which these are bonded. n41 is an integer of 1-4.
 Ar241は好ましくは炭素数10~30の芳香族炭化水素縮合環構造を表し、具体的な環構造としては、ナフタレン、アセナフテン、フルオレン、アントラセン、フェナトレン、フルオランテン、ピレン、テトラセン、クリセン、ペリレン等が挙げられる。
 Ar241はより好ましくは炭素数12~20の芳香族炭化水素縮合環構造であり、具体的な環構造としては、アセナフテン、フルオレン、アントラセン、フェナトレン、フルオランテン、ピレン、テトラセン、クリセン、ペリレンが挙げられる。
 Ar241はさらに好ましくは炭素数16~18の芳香族炭化水素縮合環構造であり、具体的な環構造としては、フルオランテン、ピレン、クリセンが挙げられる。
Ar 241 preferably represents an aromatic hydrocarbon condensed ring structure having 10 to 30 carbon atoms, and specific ring structures include naphthalene, acenaphthene, fluorene, anthracene, phenathrene, fluoranthene, pyrene, tetracene, chrysene, perylene and the like. mentioned.
Ar 241 is more preferably an aromatic hydrocarbon condensed ring structure having 12 to 20 carbon atoms, and specific ring structures include acenaphthene, fluorene, anthracene, phenathrene, fluoranthene, pyrene, tetracene, chrysene, and perylene. .
Ar 241 is more preferably an aromatic hydrocarbon condensed ring structure having 16 to 18 carbon atoms, and specific ring structures include fluoranthene, pyrene and chrysene.
 n41は1~4の整数であり、好ましくは1~3の整数、さらに好ましくは1又は2、最も好ましくは2である。 n41 is an integer of 1-4, preferably an integer of 1-3, more preferably 1 or 2, most preferably 2.
 Ar242、Ar243のアルキル基としては、炭素数1~12のアルキル基が好ましく、より好ましくは炭素数1~6のアルキル基である。
 Ar242、Ar243の芳香族炭化水素基としては、炭素数6~30の芳香族炭化水素基が好ましく、より好ましくは炭素数6~24の芳香族炭化水素基であり、最も好ましくはフェニル基、ナフチル基である。
 Ar242、Ar243の芳香族複素環基としては、炭素数3~30の芳香族複素環基が好ましく、より好ましくは炭素数5~24の芳香族複素環基であり、具体的にはカルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基が好ましく、ジベンゾフラニル基がより好ましい。
The alkyl group for Ar 242 and Ar 243 is preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms.
The aromatic hydrocarbon group for Ar 242 and Ar 243 is preferably an aromatic hydrocarbon group having 6 to 30 carbon atoms, more preferably an aromatic hydrocarbon group having 6 to 24 carbon atoms, most preferably a phenyl group. , is a naphthyl group.
The aromatic heterocyclic group for Ar 242 and Ar 243 is preferably an aromatic heterocyclic group having 3 to 30 carbon atoms, more preferably an aromatic heterocyclic group having 5 to 24 carbon atoms, specifically carbazolyl. group, dibenzofuranyl group and dibenzothiophenyl group are preferred, and dibenzofuranyl group is more preferred.
 Ar241、Ar242、Ar243が有していてもよい置換基は、上記置換基群Sから選ばれる基が好ましく、より好ましくは置換基群Sに含まれる、炭化水素基であり、さらに好ましくは置換基群Sとして好ましい基の中の炭化水素基である。 The substituent that Ar 241 , Ar 242 , and Ar 243 may have is preferably a group selected from the above substituent group S, more preferably a hydrocarbon group contained in the substituent group S, and still more preferably is a hydrocarbon group among preferred groups for the group S of substituents.
 上記蛍光発光材料と共に用いる電荷輸送材料としては特に限定されないが、下記式(212)で表されるものが好ましい。 The charge-transporting material used together with the fluorescent light-emitting material is not particularly limited, but is preferably represented by the following formula (212).
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 上記式(212)において、R251、R252はそれぞれ独立に、下記式(213)で表される構造であり、R253は置換基を表し、R253が複数ある場合、それらは同一であっても異なっていてもよく、n43は0~8の整数である。 In the above formula (212), R 251 and R 252 are each independently a structure represented by the following formula (213), R 253 represents a substituent, and when there are multiple R 253 , they are the same. n43 is an integer of 0-8.
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 上記式(213)において、*は式(212)のアントラセン環との結合手を表し、Ar254、Ar255はそれぞれ独立に、置換基を有していてもよい芳香族炭化水素構造、又は置換基を有していてもよい複素芳香環構造を表し、Ar254、Ar255はそれぞれ複数存在する場合、それらは同一であっても異なっていてもよく、n44は1~5の整数、n45は0~5の整数である。 In the above formula (213), * represents a bond to the anthracene ring of formula (212), Ar 254 and Ar 255 are each independently an aromatic hydrocarbon structure optionally having a substituent, or a substituted represents a heteroaromatic ring structure optionally having a group, Ar 254 and Ar 255 may be the same or different when there are a plurality of each, n44 is an integer of 1 to 5, n45 is An integer from 0 to 5.
 Ar254は好ましくは、置換基を有していてもよい、炭素数6~30の単環又は縮合環である芳香族炭化水素構造であり、より好ましくは、置換基を有していてもよい、炭素数6~12の単環又は縮合環である芳香族炭化水素構造である。 Ar 254 is preferably an optionally substituted monocyclic or condensed ring aromatic hydrocarbon structure having 6 to 30 carbon atoms, more preferably optionally substituted , is a monocyclic or condensed ring aromatic hydrocarbon structure having 6 to 12 carbon atoms.
 Ar255は好ましくは、置換基を有していてもよい、炭素数6~30の単環もしくは縮合環である芳香族炭化水素構造、又は置換基を有していてもよい炭素数6~30の縮合環である芳香族複素環構造である。Ar255はより好ましくは、置換基を有していてもよい、炭素数6~12の単環もしくは縮合環である芳香族炭化水素構造、又は置換基を有していてもよい炭素数6~12の縮合環である芳香族複素環構造である。 Ar 255 is preferably an optionally substituted monocyclic or condensed ring aromatic hydrocarbon structure having 6 to 30 carbon atoms, or an optionally substituted carbon number of 6 to 30 is an aromatic heterocyclic ring structure that is a condensed ring of Ar 255 is more preferably an optionally substituted monocyclic or condensed ring aromatic hydrocarbon structure having 6 to 12 carbon atoms, or an optionally substituted carbon number of 6 to It is an aromatic heterocyclic ring structure with 12 condensed rings.
 n44は好ましくは1~3の整数であり、より好ましくは1又は2である。
 n45は好ましくは0~3の整数であり、より好ましくは0~2の整数である。
n44 is preferably an integer of 1-3, more preferably 1 or 2.
n45 is preferably an integer of 0-3, more preferably an integer of 0-2.
 置換基であるR253、Ar254及びAr255が有していてもよい置換基は、上記置換基群Sから選ばれる基が好ましい。より好ましくは置換基群Sに含まれる炭化水素基であり、さらに好ましくは置換基群Sとして好ましい基の中の炭化水素基である。 The substituent that the substituents R 253 , Ar 254 and Ar 255 may have is preferably a group selected from the above substituent group S. More preferably, it is a hydrocarbon group contained in the substituent group S, and more preferably a hydrocarbon group among groups preferable as the substituent group S.
 蛍光発光材料及び電荷輸送材料の重量分子量は5,000以下が好ましく、さらに好ましくは4,000以下であり、特に好ましくは3,000以下であり、最も好ましくは2,000以下である。また、好ましくは300以上であり、より好ましくは350以上、さらに好ましくは400以上である。 The weight molecular weight of the fluorescence emitting material and the charge transport material is preferably 5,000 or less, more preferably 4,000 or less, particularly preferably 3,000 or less, and most preferably 2,000 or less. Also, it is preferably 300 or more, more preferably 350 or more, and still more preferably 400 or more.
[正孔阻止層]
 発光層5と後述の電子注入層8との間に、正孔阻止層6を設けてもよい。正孔阻止層6は、電子輸送層のうち、更に陽極2から移動してくる正孔を陰極9に到達するのを阻止する役割をも担う層である。正孔阻止層6は、発光層5の上に、発光層5の陰極9側の界面に接するように積層される層である。
[Hole blocking layer]
A hole blocking layer 6 may be provided between the light emitting layer 5 and an electron injection layer 8 which will be described later. The hole-blocking layer 6 is a layer of the electron-transporting layer that also plays a role of blocking holes moving from the anode 2 from reaching the cathode 9 . The hole blocking layer 6 is a layer laminated on the light emitting layer 5 so as to be in contact with the interface of the light emitting layer 5 on the cathode 9 side.
 正孔阻止層6は、陽極2から移動してくる正孔を陰極9に到達するのを阻止する役割と、陰極9から注入された電子を効率よく発光層5の方向に輸送する役割とを有する。 The hole-blocking layer 6 has a role of blocking holes moving from the anode 2 from reaching the cathode 9 and a role of efficiently transporting electrons injected from the cathode 9 toward the light-emitting layer 5. have.
 正孔阻止層6を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項エネルギー準位(T1)が高いことなどが挙げられる。
 このような条件を満たす正孔阻止層6の材料としては、例えばビス(2-メチル-8-キノリノラト)(フェノラト)アルミニウム、ビス(2-メチル-8-キノリノラト)(トリフェニルシラノラト)アルミニウム等の混合配位子錯体、ビス(2-メチル-8-キノラト)アルミニウム-μ-オキソ-ビス-(2-メチル-8-キノリノラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフェニル誘導体等のスチリル化合物(日本国特開平11-242996号公報)、3-(4-ビフェニルイル)-4-フェニル-5(4-tert-ブチルフェニル)-1,2,4-トリアゾール等のトリアゾール誘導体(日本国特開平7-41759号公報)、バソクプロイン等のフェナントロリン誘導体(日本国特開平10-79297号公報)などが挙げられる。更に、国際公開第2005/022962号に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止層6の材料として好ましい。
Physical properties required for the material constituting the hole blocking layer 6 include high electron mobility and low hole mobility, a large energy gap (difference between HOMO and LUMO), and an excited triplet energy level (T1 ) is high.
Examples of materials for the hole blocking layer 6 satisfying these conditions include bis(2-methyl-8-quinolinolato)(phenolato)aluminum, bis(2-methyl-8-quinolinolato)(triphenylsilanolate)aluminum, and the like. mixed ligand complexes, bis (2-methyl-8-quinolato) aluminum-μ-oxo-bis- (2-methyl-8-quinolinolato) aluminum binuclear metal complexes such as metal complexes, distyrylbiphenyl derivatives and the like Styryl compounds (Japanese Patent Laid-Open No. 11-242996), triazole derivatives such as 3-(4-biphenylyl)-4-phenyl-5(4-tert-butylphenyl)-1,2,4-triazole (Japan JP-A-7-41759), phenanthroline derivatives such as bathocuproine (JP-A-10-79297), and the like. Further, the compound having at least one pyridine ring substituted at the 2,4,6 positions described in International Publication No. 2005/022962 is also preferable as the material for the hole blocking layer 6 .
 正孔阻止層6の形成方法に制限はない。正孔阻止層6は、湿式成膜法、蒸着法や、その他の方法で形成できる。
 正孔阻止層6の膜厚は、本発明の効果を著しく損なわない限り任意である。正孔阻止層6の膜厚は、通常0.3nm以上、好ましくは0.5nm以上で、通常100nm以下、好ましくは50nm以下である。
The method for forming the hole blocking layer 6 is not limited. The hole blocking layer 6 can be formed by a wet film forming method, a vapor deposition method, or other methods.
The film thickness of the hole blocking layer 6 is arbitrary as long as it does not significantly impair the effects of the present invention. The thickness of the hole blocking layer 6 is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less.
[電子輸送層]
 電子輸送層7は、発光層5と陰極9の間に設けられた電子を輸送するための層である。
[Electron transport layer]
The electron transport layer 7 is a layer for transporting electrons provided between the light emitting layer 5 and the cathode 9 .
 電子輸送層7の電子輸送材料としては、通常、陰極9又は陰極9側の隣接層からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物を用いる。
 このような条件を満たす化合物としては、例えば8-ヒドロキシキノリンのアルミニウム錯体やリチウム錯体などの金属錯体(日本国特開昭59-194393号公報)、10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-ヒドロキシフラボン金属錯体、5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(日本国特開平6-207169号公報)、フェナントロリン誘導体(日本国特開平5-331459号公報)、2-t-ブチル-9,10-N,N’-ジシアノアントラキノンジイミン、トリアジン化合物誘導体、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。
As the electron transport material for the electron transport layer 7, the electron injection efficiency from the cathode 9 or the adjacent layer on the cathode 9 side is usually high, and the injected electrons having high electron mobility can be efficiently transported. Use a compound that can
Compounds satisfying these conditions include, for example, metal complexes such as aluminum complexes and lithium complexes of 8-hydroxyquinoline (JP-A-59-194393), metal complexes of 10-hydroxybenzo[h]quinoline, Oxadiazole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzene (US Pat. No. 5,645,948) , a quinoxaline compound (JP-A-6-207169), a phenanthroline derivative (JP-A-5-331459), 2-t-butyl-9,10-N,N'-dicyanoanthraquinone diimine, triazine compound derivatives, n-type hydrogenated amorphous silicon carbide, n-type zinc sulfide, n-type zinc selenide and the like.
 電子輸送層7に用いられる電子輸送材料としては、バソフェナントロリン等の含窒素複素環化合物や8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される電子輸送性有機化合物に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープさせることにより(日本国特開平10-270171号公報、日本国特開2002-100478号公報、日本国特開2002-100482号公報などに記載)、電子注入輸送性と優れた膜質を両立させることが可能となるため好ましい。また、上述の電子輸送性有機化合物にフッ化リチウムや炭酸セシウムなどのような無機塩をドープすることも有効である。 Electron transporting materials used in the electron transporting layer 7 include electron transporting organic compounds typified by nitrogen-containing heterocyclic compounds such as bathophenanthroline and metal complexes such as aluminum complexes of 8-hydroxyquinoline, sodium, potassium, and cesium. , Lithium, by doping an alkali metal such as rubidium (described in JP-A-10-270171, JP-A-2002-100478, JP-A-2002-100482, etc.), electron injection It is preferable because it makes it possible to achieve both transportability and excellent film quality. It is also effective to dope the electron-transporting organic compound with an inorganic salt such as lithium fluoride or cesium carbonate.
 電子輸送層7の形成方法に制限はない。電子輸送層7は、湿式成膜法、蒸着法や、その他の方法で形成することができる。 The method for forming the electron transport layer 7 is not limited. The electron transport layer 7 can be formed by a wet film-forming method, a vapor deposition method, or other methods.
 電子輸送層7の膜厚は、本発明の効果を著しく損なわない限り任意である。電子輸送層7の膜厚は通常1nm以上、好ましくは5nm以上で、通常300nm以下、好ましくは100nm以下である。 The film thickness of the electron transport layer 7 is arbitrary as long as it does not significantly impair the effects of the present invention. The thickness of the electron transport layer 7 is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
[電子注入層]
 陰極9から注入された電子を効率良く発光層5に注入するために、電子輸送層7と後述の陰極9との間に電子注入層8を設けてもよい。電子注入層8は、無機塩などからなる。
[Electron injection layer]
In order to efficiently inject electrons injected from the cathode 9 into the light-emitting layer 5, an electron injection layer 8 may be provided between the electron transport layer 7 and the cathode 9, which will be described later. The electron injection layer 8 is made of an inorganic salt or the like.
 電子注入層8の材料としては、例えばフッ化リチウム(LiF)、フッ化マグネシウム(MgF)、酸化リチウム(LiO)、炭酸セシウム(II)(CsCO)等が挙げられる(Applied Physics Letters,1997年,Vol.70、pp.152;日本国特開平10-74586号公報;IEEE Transactions on Electron Devices,1997年,Vol.44,pp.1245;SID 04 Digest,pp.154等参照)。 Examples of materials for the electron injection layer 8 include lithium fluoride (LiF), magnesium fluoride (MgF 2 ), lithium oxide (Li 2 O), cesium (II) carbonate (CsCO 3 ), and the like (Applied Physics Letters). , 1997, Vol.70, pp.152; Japanese Patent Laid-Open No. 10-74586; IEEE Transactions on Electron Devices, 1997, Vol.44, pp.1245; SID 04 Digest, pp.154, etc.).
 電子注入層8は、電荷輸送性を伴わない場合が多いため、電子注入を効率よく行うには、極薄膜として用いることが好ましく、その膜厚は、通常0.1nm以上、好ましくは5nm以下である。 Since the electron injection layer 8 often does not have a charge transport property, it is preferably used as an extremely thin film in order to efficiently perform electron injection, and the film thickness is usually 0.1 nm or more, preferably 5 nm or less. be.
[陰極]
 陰極9は、発光層5側の層に電子を注入する役割を果たす電極である。
[cathode]
The cathode 9 is an electrode that plays a role of injecting electrons into the layer on the light emitting layer 5 side.
 陰極9の材料としては、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、インジウム及び/又はスズの酸化物等の金属酸化物、ヨウ化銅等のハロゲン化金属、カーボンブラック、或いは、ポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等が挙げられる。これらのうち、効率よく電子注入を行うには、仕事関数の低い金属が好ましく、例えばスズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の適当な金属又はそれらの合金などが用いられる。具体例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金等の低仕事関数の合金電極などが挙げられる。 Materials for the cathode 9 generally include metals such as aluminum, gold, silver, nickel, palladium and platinum, metal oxides such as indium and/or tin oxides, metal halides such as copper iodide, carbon black, Alternatively, conductive polymers such as poly(3-methylthiophene), polypyrrole, polyaniline, and the like can be used. Among these, metals having a low work function are preferred for efficient electron injection, and suitable metals such as tin, magnesium, indium, calcium, aluminum and silver, or alloys thereof are used. Specific examples include low work function alloy electrodes such as magnesium-silver alloys, magnesium-indium alloys, and aluminum-lithium alloys.
 陰極9の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 Only one material may be used for the cathode 9, or two or more materials may be used in any combination and ratio.
 陰極9の膜厚は、必要とする透明性により異なる。透明性が必要とされる場合は、可視光の透過率を、通常60%以上、好ましくは80%以上とすることが好ましい。この場合、陰極9の厚みは通常5nm以上、好ましくは10nm以上で、通常1000nm以下、好ましくは500nm以下程度である。不透明でよい場合は陰極9の厚みは任意であり、陰極は基板と同一でもよい。 The film thickness of the cathode 9 varies depending on the required transparency. When transparency is required, the visible light transmittance is usually 60% or more, preferably 80% or more. In this case, the thickness of the cathode 9 is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less. The thickness of the cathode 9 can be arbitrary as long as it can be opaque, and the cathode can be the same as the substrate.
 陰極9の上に異なる導電材料を積層することも可能である。
 例えばナトリウムやセシウム等のアルカリ金属、バリウムやカルシウム等のアルカリ土類金属等からなる低仕事関数の金属からなる陰極を保護する目的で、この上に更に、仕事関数が高く大気に対して安定な金属層を積層すると、素子の安定性が増すので好ましい。この目的のために、例えばアルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が使われる。これらの材料は、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
It is also possible to laminate different conductive materials over the cathode 9 .
For example, for the purpose of protecting the cathode made of a low work function metal such as an alkali metal such as sodium or cesium, or an alkaline earth metal such as barium or calcium, a metal having a high work function and being stable to the atmosphere is used. Lamination of metal layers is preferable because it increases the stability of the device. Metals such as aluminum, silver, copper, nickel, chromium, gold, platinum, etc. are used for this purpose. These materials may be used alone, or two or more of them may be used in any combination and ratio.
[その他の層]
 本実施形態における有機電界発光素子は、その趣旨を逸脱しない範囲において、別の構成を有していてもよい。例えばその性能を損なわない限り、陽極2と陰極9との間に、上記説明にある層の他に任意の層を有していてもよく、また、上記説明にある層のうち必須でない層が省略されていてもよい。
[Other layers]
The organic electroluminescence element in this embodiment may have another configuration without departing from the spirit thereof. For example, as long as the performance is not impaired, any layer may be provided between the anode 2 and the cathode 9 in addition to the layers described above. It may be omitted.
 以上説明した層構成において、基板以外の構成要素を逆の順に積層することも可能である。例えば図1の層構成であれば、基板1上に他の構成要素を陰極9、電子注入層8、電子輸送層7、正孔阻止層6、発光層5、正孔輸送層4、正孔注入層3、陽極2の順に設けてもよい。 In the layer structure described above, it is also possible to stack components other than the substrate in the reverse order. For example, in the layer structure of FIG. The injection layer 3 and the anode 2 may be provided in this order.
 本実施形態における有機電界発光素子は、単一の有機電界発光素子として構成してもよく、複数の有機電界発光素子がアレイ状に配置された構成に適用してもよく、陽極と陰極がX-Yマトリックス状に配置された構成に適用してもよい。 The organic electroluminescent element in the present embodiment may be configured as a single organic electroluminescent element, or may be applied to a configuration in which a plurality of organic electroluminescent elements are arranged in an array. It may be applied to a configuration arranged in a -Y matrix.
 上述した各層には、本発明の効果を著しく損なわない限り、材料として説明した以外の成分が含まれていてもよい。 Each layer described above may contain components other than those described as materials as long as the effects of the present invention are not significantly impaired.
<有機電界発光デバイス>
 互いに異なる色に発光する有機電界発光素子を2つ以上設けて有機EL表示装置や有機EL照明などの有機電界発光デバイスとすることができる。この有機電界発光デバイスにおいて、少なくとも一つ、好ましくはすべての有機電界発光素子を本実施形態における有機電界発光素子とすることで、高品質の有機電界発光デバイスを提供できる。
<Organic electroluminescent device>
An organic electroluminescence device such as an organic EL display device or an organic EL lighting can be formed by providing two or more organic electroluminescence elements that emit light in different colors. In this organic electroluminescence device, by using at least one, preferably all organic electroluminescence elements as the organic electroluminescence elements of the present embodiment, a high-quality organic electroluminescence device can be provided.
<有機EL表示装置>
 本実施形態における有機電界発光素子を用いた有機EL表示装置の型式や構造については特に制限はなく、本実施形態における有機電界発光素子を用いて常法に従って組み立てることができる。
 例えば「有機ELディスプレイ」(オーム社、平成16年8月20日発行、時任静士、安達千波矢、村田英幸著)に記載されているような方法で、有機EL表示装置を形成することができる。
<Organic EL display device>
There are no particular restrictions on the type and structure of the organic EL display device using the organic electroluminescence device of the present embodiment, and the organic electroluminescence device of the present embodiment can be assembled according to a conventional method.
For example, an organic EL display device can be formed by a method as described in "Organic EL Display" (Ohmsha, August 20, 2004, written by Shizuo Tokito, Chihaya Adachi, and Hideyuki Murata). can.
<アリールアミンポリマー1の合成> <Synthesis of arylamine polymer 1>
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 上記式で表されるアリールアミンポリマー1を従来公知の方法により合成した。重量平均分子量は29140、重量平均分子量/数平均分子量で表される分子量分布は1.25、ガラス転移点は229℃であった。 Arylamine polymer 1 represented by the above formula was synthesized by a conventionally known method. The weight average molecular weight was 29140, the molecular weight distribution represented by weight average molecular weight/number average molecular weight was 1.25, and the glass transition point was 229°C.
<第一の機能性膜の形成>
 板厚0.7mm、25×37mmのガラス基板をUV/オゾン洗浄した。
 上記で製造したアリールアミンポリマー1を第一の機能性材料とし、溶媒であるアニソールに溶解させた第一の組成物を調製し、スピンコート法によりガラス基板上の全面に成膜した。第一の組成物におけるアリールアミンポリマーの含有量は3.2質量%である。これをN雰囲気下で220℃30分加熱し、膜厚100nmの不溶化された第一の機能性膜を得た。
<Formation of first functional film>
A glass substrate having a thickness of 0.7 mm and a size of 25×37 mm was washed with UV/ozone.
A first composition was prepared by dissolving the arylamine polymer 1 produced above as a first functional material in anisole as a solvent, and a film was formed on the entire surface of a glass substrate by spin coating. The content of the arylamine polymer in the first composition is 3.2 wt%. This was heated at 220° C. for 30 minutes in an N 2 atmosphere to obtain an insolubilized first functional film with a thickness of 100 nm.
<第一の機能性膜の浸漬>
 第二の組成物である表1に記載の溶媒成分を130μL採取し、第一の機能性膜上に滴下した。23℃大気環境下で表1に記載の時間(5~15分間)保持したのち、スピンコーターによりガラス基板を3000rpmで2分間回転して溶媒を除去した。次に、30℃に加熱した真空乾燥機内で3分以上乾燥した。到達真空度は10Pa以下である。続いて、100℃1分、230℃10分加熱し、溶媒を完全に除去した。
 なお、保持した時間(浸漬時間)、溶媒成分の23℃における粘度、及び溶媒成分のハンセン溶解度パラメーターδPは、表1に記載のとおりであり、各溶媒成分の構造式も併せて示す。
 また、上記での第二の組成物は溶媒成分のみを含む。そのため、第二の組成物の23℃における粘度は、溶媒成分が1種の場合、すなわち実施例1~8及び比較例1~4の場合には、溶媒成分の粘度と第二の組成物の粘度は同じである。ここで、実施例8の粘度は15mPa・s超であるため、実際に有機半導体素子を得る際には、低粘度溶媒の添加、第二の組成物中における固形分濃度の減少、粘度が上がりにくい低分子量である固形分の使用等により、第二の組成物の粘度を15mPa・s以下とすることが好ましい。
 溶媒成分が2種の場合、すなわち実施例9及び10の場合には、2種の溶媒成分の粘度とその含有量比によって第二の組成物の粘度が決定される。
<Immersion of first functional film>
130 μL of the solvent component shown in Table 1, which is the second composition, was sampled and dropped onto the first functional film. After being kept in an atmospheric environment at 23° C. for the time shown in Table 1 (5 to 15 minutes), the glass substrate was rotated at 3000 rpm for 2 minutes using a spin coater to remove the solvent. Next, it was dried for 3 minutes or longer in a vacuum dryer heated to 30°C. The ultimate vacuum is 10 Pa or less. Subsequently, the solvent was completely removed by heating at 100° C. for 1 minute and 230° C. for 10 minutes.
The holding time (immersion time), the viscosity of the solvent component at 23° C., and the Hansen solubility parameter δP of the solvent component are as shown in Table 1, and the structural formula of each solvent component is also shown.
Also, the second composition above contains only the solvent component. Therefore, the viscosity of the second composition at 23 ° C. is the same as the viscosity of the solvent component and the viscosity of the second composition when there is only one solvent component, that is, in the cases of Examples 1 to 8 and Comparative Examples 1 to 4. Viscosity is the same. Here, since the viscosity of Example 8 is more than 15 mPa s, when actually obtaining an organic semiconductor device, the addition of a low-viscosity solvent, the decrease in the solid content concentration in the second composition, and the increase in viscosity It is preferable to set the viscosity of the second composition to 15 mPa·s or less by using a low-molecular-weight solid content that is difficult to dissolve.
When there are two solvent components, that is, in Examples 9 and 10, the viscosity of the second composition is determined by the viscosity of the two solvent components and their content ratio.
<第一の機能性膜の膜厚の測定>
 反射分光膜厚計OPTMにより、第一の機能性膜の膜厚を決定した。
 第一の機能性膜の面内8か所の反射スペクトルを測定するが、測定場所は基板間で統一し、上記<第一の機能性膜の浸漬>の前後における反射スペクトルを測定した。
 なお、事前に、第一の組成物中のアリールアミンポリマーの濃度とスピンコート回転数を変化させることで、第一の機能性膜の膜厚が異なる9種の薄膜を作製し、KOSAKAサーフコーダーによって測定された段差膜厚と反射スペクトルの相関により、検量された光学モデルを生成した。測定された反射スペクトルから、光学モデルを用いて8か所の光学膜厚を算出した。
<Measurement of film thickness of first functional film>
The film thickness of the first functional film was determined by a reflection spectroscopic film thickness meter OPTM.
Reflection spectra were measured at eight in-plane locations of the first functional film, and the measurement locations were the same among the substrates, and the reflection spectra were measured before and after <immersion of the first functional film>.
In addition, by changing the concentration of the arylamine polymer in the first composition and the number of spin-coating rotations in advance, nine types of thin films having different thicknesses of the first functional film were prepared, and the KOSAKA Surfcoder was used. A calibrated optical model was generated by correlating the step thickness and reflectance spectra measured by . From the measured reflection spectrum, an optical model was used to calculate the optical film thickness at eight locations.
<残膜率の算定>
 各水準、面内8か所それぞれについて、<第一の機能性膜の浸漬>前後における第一の機能性膜の膜厚変化を除算したのち、8点の残膜率平均を水準の残膜率とした。結果を表1に示す。
 なお、ここでは、第二の組成物として第一の溶媒成分及び第二の溶媒成分の少なくとも一方のみからなるものを用いたが、さらに第二の機能性材料を含有した第二の機能性膜を設けた場合の残膜率も同様の傾向となる。
<Calculation of residual film ratio>
After dividing the film thickness change of the first functional film before and after <immersion of the first functional film> for each level and each of the 8 points in the plane, the average residual film rate of 8 points is the remaining film. rate. Table 1 shows the results.
Here, as the second composition, a composition consisting of at least one of the first solvent component and the second solvent component was used, but the second functional film further containing the second functional material The same tendency is observed in the residual film ratio when the is provided.
<溶媒判定式>
 溶媒成分単体の適正判断の参考として、実施例1~8及び比較例1~4で用いた各溶媒成分について、下記関係式(A)の左辺で表される値を算出した。結果を表1の判定式(A)の項目に示す。
  32×粘度-4.3×理論表面積+5.4×体積-沸点>150・・・(A)
 上記関係式(A)における理論表面積及び体積はA・クラムト(A.Klamt)、「COSMO-RS:From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design」、Elsevier Science、1st edition(September 29,2005)に記載の方法で算出した。
 上記関係式(A)を満たせば、すなわち、左辺として算出される値が150超であれば、かかる溶媒成分は第一の溶媒成分として適正であると判断できる。また、表1中「-」とは未算出であることを示す。
<Solvent determination formula>
As a reference for judging the suitability of a single solvent component, the value represented by the left side of the following relational expression (A) was calculated for each solvent component used in Examples 1 to 8 and Comparative Examples 1 to 4. The results are shown in Table 1 for the determination formula (A).
32 x viscosity - 4.3 x theoretical surface area + 5.4 x volume - boiling point > 150 (A)
The theoretical surface area and volume in the above relational expression (A) are described in A. Klamt, "COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design", Elsevier Science, 1st edition (September 50, 29). Calculated by the method described.
If the above relational expression (A) is satisfied, that is, if the value calculated as the left side exceeds 150, it can be determined that the solvent component is suitable as the first solvent component. In addition, "-" in Table 1 indicates that it has not been calculated.
<流動活性化エネルギー>
 流動活性化エネルギーとは、下記式(I)におけるEである。流動活性化エネルギーは、溶媒の粘度を温度を変えて測定し、温度の逆数に対する粘度の対数をプロットし、その傾きから求める。 
 η=Aexp(E/RT)   (I) 
   η:粘度(cP) 
   A:定数 
   E:流動活性化エネルギー(kJ/mol) 
   R:気体定数(8.314J/K/mol) 
   T:温度(K)
 なお、本発明において、溶媒の粘度はE型粘度計RE85L(東機産業製)を用いて、23℃環境下にて、コーンプレート回転数20rpm~100rpmにより測定した値を用いる。
<Flow activation energy>
Flow activation energy is E in the following formula (I). Flow activation energy is determined from the slope of the logarithm of viscosity plotted against the reciprocal of temperature by measuring the viscosity of the solvent at different temperatures.
η=Aexp(E/RT) (I)
η: Viscosity (cP)
A: Constant
E: flow activation energy (kJ/mol)
R: gas constant (8.314 J/K/mol)
T: temperature (K)
In the present invention, the viscosity of the solvent is measured using an E-type viscometer RE85L (manufactured by Toki Sangyo Co., Ltd.) under an environment of 23° C. at a cone plate rotation speed of 20 rpm to 100 rpm.
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
 表1の結果より、23℃における粘度が3mPa・s以上及び/又は流動活性化エネルギーが17kJ/mol以上を満たす第一の溶媒成分を用いた場合には、浸漬時間が15分であっても第一の機能性膜の溶出を抑えることができた。
 これは、関係式(A)の左辺で表される値とも相関が見られ、第一の機能性材料の溶出を抑える溶媒成分を選定可能であることが示された。なお、残膜率が100%超となるのは、光学特性の変化により光学膜厚のフィッティングに利用した光学モデルから若干のずれが生じるためである。
 また、実施例5の第一の溶媒成分と、比較例5の第二の溶媒成分とを含む実施例9及び実施例10においても残膜率は高く、第一の溶媒として適正な溶媒を含むことで、第二の溶媒が存在していても、第一の機能性材料の溶出を抑制できることが分かった。
From the results in Table 1, when the first solvent component satisfying the viscosity at 23° C. of 3 mPa s or more and/or the flow activation energy of 17 kJ/mol or more is used, even if the immersion time is 15 minutes, Elution of the first functional membrane could be suppressed.
This is also correlated with the value represented by the left side of the relational expression (A), indicating that it is possible to select a solvent component that suppresses the elution of the first functional material. The reason why the residual film ratio exceeds 100% is that the optical model used for fitting the optical film thickness slightly deviates due to changes in optical characteristics.
In addition, in Example 9 and Example 10, which contain the first solvent component of Example 5 and the second solvent component of Comparative Example 5, the residual film rate is high, and the appropriate solvent is included as the first solvent. Thus, it was found that the elution of the first functional material can be suppressed even in the presence of the second solvent.
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Various embodiments have been described above with reference to the drawings, but it goes without saying that the present invention is not limited to such examples. It is obvious that a person skilled in the art can conceive of various modifications or modifications within the scope described in the claims, and these also belong to the technical scope of the present invention. Understood. Moreover, each component in the above embodiments may be combined arbitrarily without departing from the gist of the invention.
 なお、本出願は、2021年4月28日出願の日本特許出願(特願2021-076580号)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-076580) filed on April 28, 2021, the content of which is incorporated herein by reference.
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 正孔阻止層
 7 電子輸送層
 8 電子注入層
 9 陰極
 10 有機電界発光素子
REFERENCE SIGNS LIST 1 substrate 2 anode 3 hole injection layer 4 hole transport layer 5 light emitting layer 6 hole blocking layer 7 electron transport layer 8 electron injection layer 9 cathode 10 organic electroluminescent element

Claims (17)

  1.  第一の組成物を塗布及び加熱して第一の機能性膜を設ける工程と、
     前記第一の機能性膜の上に第二の組成物を塗布して第二の機能性膜を設ける工程と、を有し、
     前記第一の組成物は第一の機能性材料を含み、
     前記第一の機能性材料は、架橋基、重合基及び脱離性可溶化基のいずれも有さない、重量平均分子量が15000以上50000のアリールアミンポリマーを含み、
     前記第二の組成物は溶媒を含み、かつ23℃における粘度が15mPa・s以下であり、
     前記溶媒が、23℃における粘度が3mPa・s以上である第一の溶媒成分を少なくとも一種含む、有機半導体素子の製造方法。
    applying and heating the first composition to provide a first functional film;
    and providing a second functional film by applying a second composition on the first functional film,
    the first composition comprises a first functional material;
    The first functional material comprises an arylamine polymer having a weight average molecular weight of 15,000 to 50,000 and having neither a crosslinkable group, a polymerizable group, nor a detachable solubilizing group,
    The second composition contains a solvent and has a viscosity of 15 mPa s or less at 23 ° C.,
    A method for producing an organic semiconductor device, wherein the solvent contains at least one first solvent component having a viscosity of 3 mPa·s or more at 23°C.
  2.  前記溶媒が、23℃における粘度が3mPa・s未満である第二の溶媒成分をさらに含み、
     前記第一の溶媒成分の流動活性化エネルギーが17kJ/mol以上である、請求項1に有機半導体素子の製造方法。
    The solvent further comprises a second solvent component having a viscosity of less than 3 mPa s at 23°C,
    2. The method of manufacturing an organic semiconductor device according to claim 1, wherein said first solvent component has a flow activation energy of 17 kJ/mol or more.
  3.  第一の組成物を塗布及び加熱して第一の機能性膜を設ける工程と、
     前記第一の機能性膜の上に第二の組成物を塗布して第二の機能性膜を設ける工程と、を有し、
     前記第一の組成物は第一の機能性材料を含み、
     前記第一の機能性材料は、架橋基、重合基及び脱離性可溶化基のいずれも有さないアリールアミンポリマーを含み、
     前記第二の組成物は溶媒を含み、かつ23℃における粘度が15mPa・s以下であり、
     前記溶媒が、流動活性化エネルギーが17kJ/mol以上である第一の溶媒成分を少なくとも一種含み、
     前記溶媒が、23℃における粘度が3mPa・s未満である第二の溶媒成分をさらに含む、有機半導体素子の製造方法。
    applying and heating the first composition to provide a first functional film;
    and providing a second functional film by applying a second composition on the first functional film,
    the first composition comprises a first functional material;
    the first functional material comprises an arylamine polymer having neither a cross-linking group, a polymerizing group, nor a leaving solubilizing group;
    The second composition contains a solvent and has a viscosity of 15 mPa s or less at 23 ° C.,
    The solvent contains at least one first solvent component having a flow activation energy of 17 kJ/mol or more,
    A method for producing an organic semiconductor device, wherein the solvent further contains a second solvent component having a viscosity of less than 3 mPa·s at 23°C.
  4.  前記アリールアミンポリマーの重量平均分子量が15000以上50000以下である請求項3に記載の有機半導体素子の製造方法。 The method for producing an organic semiconductor device according to claim 3, wherein the weight average molecular weight of the arylamine polymer is 15,000 or more and 50,000 or less.
  5.  第一の組成物を塗布及び加熱して第一の機能性膜を設ける工程と、
     前記第一の機能性膜の上に第二の組成物を塗布して第二の機能性膜を設ける工程と、を有し、
     前記第一の組成物は第一の機能性材料を含み、
     前記第一の機能性材料は、架橋基、重合基及び脱離性可溶化基のいずれも有さないアリールアミンポリマーを含み、
     前記第二の組成物は溶媒を含み、かつ23℃における粘度が15mPa・s以下であり、
     前記溶媒が、23℃における粘度が3mPa・s以上である第一の溶媒成分を少なくとも一種含み、
     前記溶媒が、23℃における粘度が3mPa・s未満である第二の溶媒成分をさらに含み、
     前記第一の溶媒成分の流動活性化エネルギーが17kJ/mol以上である、有機半導体素子の製造方法。
    applying and heating the first composition to provide a first functional film;
    and providing a second functional film by applying a second composition on the first functional film,
    the first composition comprises a first functional material;
    the first functional material comprises an arylamine polymer having neither a cross-linking group, a polymerizing group, nor a leaving solubilizing group;
    The second composition contains a solvent and has a viscosity of 15 mPa s or less at 23 ° C.,
    The solvent contains at least one first solvent component having a viscosity of 3 mPa s or more at 23° C.,
    The solvent further comprises a second solvent component having a viscosity of less than 3 mPa s at 23°C,
    A method for producing an organic semiconductor device, wherein the flow activation energy of the first solvent component is 17 kJ/mol or more.
  6.  前記アリールアミンポリマーは、下記式(50)で表される繰り返し単位を有する、請求項1~5のいずれか1項に記載の有機半導体素子の製造方法。
    Figure JPOXMLDOC01-appb-C000001

    (式(50)中、
     Ar51は、置換基を有していてもよい芳香族炭化水素基及び置換基を有していてもよい芳香族複素環基の少なくとも一方から選択される、1つの基又は複数の基が連結した基を表し、前記置換基はいずれも架橋基、重合基又は脱離性可溶化基以外の基である。
     Ar52は、置換基を有していてもよい2価の芳香族炭化水素基及び置換基を有していてもよい2価の芳香族複素環基の少なくとも一方から選択される1つの基又は複数の基が連結した2価の基を表し、前記連結は直接又は連結基を介してなされており、前記置換基はいずれも架橋基、重合基又は脱離性可溶化基以外の基である。
     Ar51とAr52は直接又は連結基を介して結合して環を形成していてもよい。
     ただし、Ar51、Ar52は架橋基、重合基及び脱離性可溶化基のいずれも有さない。)
    6. The method for producing an organic semiconductor device according to claim 1, wherein the arylamine polymer has a repeating unit represented by the following formula (50).
    Figure JPOXMLDOC01-appb-C000001

    (In formula (50),
    Ar 51 is selected from at least one of an optionally substituted aromatic hydrocarbon group and an optionally substituted aromatic heterocyclic group, wherein one group or a plurality of groups are linked Each of the substituents is a group other than a cross-linking group, a polymerizing group, or a detachable solubilizing group.
    Ar 52 is one group selected from at least one of an optionally substituted divalent aromatic hydrocarbon group and an optionally substituted divalent aromatic heterocyclic group, or Represents a divalent group in which a plurality of groups are linked, the linkage is made directly or via a linking group, and the substituents are all groups other than a cross-linking group, a polymerizing group, or a detachable solubilizing group. .
    Ar 51 and Ar 52 may combine directly or via a linking group to form a ring.
    However, Ar 51 and Ar 52 have neither a cross-linking group, a polymerizing group nor a leaving solubilizing group. )
  7.  前記アリールアミンポリマーが、主鎖に複数のベンゼン環構造がパラ位で連結した構造を含み、前記複数のベンゼン環構造のうち少なくとも1つが、隣り合うベンゼン環構造と結合する炭素原子の隣に位置する2つの炭素原子のうち少なくとも一つが置換基を有する、請求項6に記載の有機半導体素子の製造方法。 The arylamine polymer includes a structure in which a plurality of benzene ring structures are linked at the para position in the main chain, and at least one of the plurality of benzene ring structures is positioned next to the carbon atom that bonds to the adjacent benzene ring structure. 7. The method for producing an organic semiconductor device according to claim 6, wherein at least one of the two carbon atoms having a substituent has a substituent.
  8.  前記式(50)で表される繰り返し単位が下記式(54)で表される、請求項6又は7に記載の有機半導体素子の製造方法。
    Figure JPOXMLDOC01-appb-C000002

    (式(54)中、
     Ar51は前記式(50)におけるAr51と同様であり、
     Xは、-C(R)(R)-、-N(R)-又は-C(R11)(R12)-C(R13)(R14)-であり、
     R及びRは、それぞれ独立して、置換基を有していてもよいアルキル基であり、前記置換基は架橋基、重合基又は脱離性可溶化基以外の基であり、
     R~R及びR11~R14は、それぞれ独立して、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、又は置換基を有していてもよい芳香族炭化水素基であり、前記置換基はいずれも架橋基、重合基又は脱離性可溶化基以外の基であり、
     a及びbは、それぞれ独立して、0~4の整数であり、
     cは、1~3の整数であり、
     dは、0~4の整数であり、
     Rが複数ある場合は、複数のRは同一であっても異なっていてもよく、
     Rが複数ある場合は、複数のRは同一であっても異なっていてもよい。)
    8. The method for producing an organic semiconductor device according to claim 6, wherein the repeating unit represented by formula (50) is represented by formula (54) below.
    Figure JPOXMLDOC01-appb-C000002

    (In formula (54),
    Ar 51 is the same as Ar 51 in the formula (50),
    X is -C(R 7 )(R 8 )-, -N(R 9 )- or -C(R 11 )(R 12 )-C(R 13 )(R 14 )-;
    R 1 and R 2 are each independently an optionally substituted alkyl group, and the substituent is a group other than a cross-linking group, a polymerizing group or a detachable solubilizing group;
    R 7 to R 9 and R 11 to R 14 are each independently a hydrogen atom, an optionally substituted alkyl group, an optionally substituted aralkyl group, or a substituted an aromatic hydrocarbon group that may be
    a and b are each independently an integer of 0 to 4;
    c is an integer from 1 to 3,
    d is an integer from 0 to 4,
    When there are multiple R 1s , the multiple R 1s may be the same or different,
    When there are multiple R 2 s, the multiple R 2s may be the same or different. )
  9.  前記式(54)においてa+bで表される値が1以上である、請求項8に記載の有機半導体素子の製造方法。 The method for manufacturing an organic semiconductor element according to claim 8, wherein the value represented by a+b in the formula (54) is 1 or more.
  10.  前記第一の溶媒成分のハンセン溶解度パラメーターδPがδP<7の関係を満たす、請求項1~9のいずれか1項に記載の有機半導体素子の製造方法。 The method for producing an organic semiconductor device according to any one of claims 1 to 9, wherein the Hansen solubility parameter δP of the first solvent component satisfies the relationship δP<7.
  11.  前記第二の組成物が前記第一の機能性膜の上に塗布されてから、前記溶媒が蒸発するまでに、2分以上を要する、請求項1~10のいずれか1項に記載の有機半導体素子の製造方法。 The organic solvent according to any one of claims 1 to 10, wherein it takes 2 minutes or more for the solvent to evaporate after the second composition is applied on the first functional film. A method for manufacturing a semiconductor device.
  12.  前記第二の組成物は、前記第一の機能性材料とは異なる第二の機能性材料を含み、
     前記第二の機能性材料は、分子量が2000未満である低分子芳香族化合物を含む、請求項1~11のいずれか1項に記載の有機半導体素子の製造方法。
    the second composition comprises a second functional material different from the first functional material;
    12. The method of manufacturing an organic semiconductor device according to claim 1, wherein said second functional material contains a low-molecular-weight aromatic compound having a molecular weight of less than 2,000.
  13.  前記第一の機能性膜が正孔輸送層であり、前記第二の機能性膜が発光層である、請求項1~12のいずれか1項に記載の有機半導体素子の製造方法。 The method for producing an organic semiconductor device according to any one of claims 1 to 12, wherein the first functional film is a hole transport layer and the second functional film is a light emitting layer.
  14.  前記第一の機能性膜を設ける工程における加熱が、前記アリールアミンポリマーのガラス転移点より低い温度で行われる、請求項1~13のいずれか1項に記載の有機半導体素子の製造方法。 The method for producing an organic semiconductor element according to any one of claims 1 to 13, wherein the heating in the step of providing the first functional film is performed at a temperature lower than the glass transition point of the arylamine polymer.
  15.  前記第一の溶媒成分の、COSMO-RS溶媒和モデルで計算された理論表面積(Å)、体積(Å)及び沸点(℃)、並びに、23℃における粘度(mPa・s)が下記関係式(A)を満たす、請求項1~14のいずれか1項に記載の有機半導体素子の製造方法。
      32×粘度-4.3×理論表面積+5.4×体積-沸点>150・・・(A)
    The theoretical surface area (Å 2 ), volume (Å 3 ) and boiling point (° C.) of the first solvent component calculated by the COSMO-RS solvation model, and the viscosity (mPa s) at 23° C. are in the following relationship: The method for producing an organic semiconductor device according to any one of claims 1 to 14, which satisfies the formula (A).
    32 x viscosity - 4.3 x theoretical surface area + 5.4 x volume - boiling point > 150 (A)
  16.  前記第二の組成物における前記第一の溶媒成分の合計の含有量が15質量%以上である、請求項1~15のいずれか1項に記載の有機半導体素子の製造方法。 The method for producing an organic semiconductor element according to any one of claims 1 to 15, wherein the total content of the first solvent component in the second composition is 15% by mass or more.
  17.  前記第一の溶媒成分が芳香族炭化水素構造を含む、請求項1~16のいずれか1項に記載の有機半導体素子の製造方法。 The method for producing an organic semiconductor device according to any one of claims 1 to 16, wherein the first solvent component contains an aromatic hydrocarbon structure.
PCT/JP2022/018762 2021-04-28 2022-04-25 Method for manufacturing organic semiconductor element WO2022230821A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237036806A KR20240004364A (en) 2021-04-28 2022-04-25 Manufacturing method of organic semiconductor device
CN202280031351.1A CN117296451A (en) 2021-04-28 2022-04-25 Method for manufacturing organic semiconductor element
JP2023517515A JPWO2022230821A1 (en) 2021-04-28 2022-04-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021076580 2021-04-28
JP2021-076580 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022230821A1 true WO2022230821A1 (en) 2022-11-03

Family

ID=83847249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018762 WO2022230821A1 (en) 2021-04-28 2022-04-25 Method for manufacturing organic semiconductor element

Country Status (5)

Country Link
JP (1) JPWO2022230821A1 (en)
KR (1) KR20240004364A (en)
CN (1) CN117296451A (en)
TW (1) TW202302711A (en)
WO (1) WO2022230821A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190759A (en) * 2005-01-05 2006-07-20 Idemitsu Kosan Co Ltd Organic electroluminescent element
JP2008198365A (en) * 2007-02-08 2008-08-28 Mitsubishi Chemicals Corp Manufacturing method of organic electroluminescent element
JP2009010343A (en) * 2007-05-30 2009-01-15 Sumitomo Chemical Co Ltd Organic electroluminescent device and display using the device
JP2010059417A (en) * 2008-08-07 2010-03-18 Mitsubishi Chemicals Corp Polymer, material for luminescent layer, material for organic electroluminescent element, composition for organic electroluminescent element, and organic electroluminescent element, organic solar cell element, organic el display device, and organic el lighting utilizing the same
JP2010239125A (en) * 2009-03-10 2010-10-21 Mitsubishi Chemicals Corp Organic electroluminescent element, organic el display, and organic el illumination
JP2019505986A (en) * 2015-12-10 2019-02-28 メルク パテント ゲーエムベーハー Formulations containing ketones containing non-aromatic rings
WO2020171190A1 (en) * 2019-02-20 2020-08-27 三菱ケミカル株式会社 Polymer, organic electroluminescent element, organic el display device, and organic el lighting
WO2022059725A1 (en) * 2020-09-18 2022-03-24 三菱ケミカル株式会社 Polymer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1537612B1 (en) 2002-09-03 2010-05-19 Cambridge Display Technology Limited Method of forming an optical device
GB0329364D0 (en) 2003-12-19 2004-01-21 Cambridge Display Tech Ltd Optical device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190759A (en) * 2005-01-05 2006-07-20 Idemitsu Kosan Co Ltd Organic electroluminescent element
JP2008198365A (en) * 2007-02-08 2008-08-28 Mitsubishi Chemicals Corp Manufacturing method of organic electroluminescent element
JP2009010343A (en) * 2007-05-30 2009-01-15 Sumitomo Chemical Co Ltd Organic electroluminescent device and display using the device
JP2010059417A (en) * 2008-08-07 2010-03-18 Mitsubishi Chemicals Corp Polymer, material for luminescent layer, material for organic electroluminescent element, composition for organic electroluminescent element, and organic electroluminescent element, organic solar cell element, organic el display device, and organic el lighting utilizing the same
JP2010239125A (en) * 2009-03-10 2010-10-21 Mitsubishi Chemicals Corp Organic electroluminescent element, organic el display, and organic el illumination
JP2019505986A (en) * 2015-12-10 2019-02-28 メルク パテント ゲーエムベーハー Formulations containing ketones containing non-aromatic rings
WO2020171190A1 (en) * 2019-02-20 2020-08-27 三菱ケミカル株式会社 Polymer, organic electroluminescent element, organic el display device, and organic el lighting
WO2022059725A1 (en) * 2020-09-18 2022-03-24 三菱ケミカル株式会社 Polymer

Also Published As

Publication number Publication date
JPWO2022230821A1 (en) 2022-11-03
CN117296451A (en) 2023-12-26
TW202302711A (en) 2023-01-16
KR20240004364A (en) 2024-01-11

Similar Documents

Publication Publication Date Title
JP5182441B1 (en) Organic electroluminescent device, organic electroluminescent lighting device and organic electroluminescent display device
JP5672858B2 (en) Charge transport material, composition for charge transport film, organic electroluminescence device, organic EL display and organic EL lighting
JP7415917B2 (en) Composition and method for producing organic electroluminescent device
JP5707704B2 (en) Organometallic complex, organometallic complex-containing composition, luminescent material, organic electroluminescent element material, organic electroluminescent element, organic EL display and organic EL lighting
JP5668330B2 (en) Organic electroluminescence device, organic EL lighting, and organic EL display device
JP7306345B2 (en) aromatic compounds
WO2022071542A1 (en) Solvent compound for organic electroluminescent device, composition using same, and method for producing organic electroluminescent device
JP2011051936A (en) Organic compound, charge transport material, composition for organic electroluminescent element, organic electroluminescent element, organic el display and organic el illumination
JP2011105676A (en) Organometallic complex, luminescent material, material of organic electroluminescent element, composition for organic electroluminescent element, organic electroluminescent element, organic el display and organic el illumination
JP2023025007A (en) Polymer, composition for organic electroluminescent element, organic electroluminescent element, organic el display device, organic el lighting, and manufacturing method for organic electroluminescent element
WO2013108787A1 (en) Organic electroluminescent element, organic el lighting and organic el display device
JP5621482B2 (en) Organometallic complex, organometallic complex-containing composition, light emitting material, organic electroluminescent element material, organic electroluminescent element, organic electroluminescent display device, and organic electroluminescent lighting device
JP2010206191A (en) Organic electroluminescent element material, composition for organic electroluminescent element for wet film formation, and organic electroluminescent element
JP5617202B2 (en) Organic compound, charge transport material, composition for organic electroluminescence device, organic electroluminescence device, organic EL display and organic EL lighting
JP5332690B2 (en) Organometallic complex composition, organometallic complex-containing composition, organic electroluminescence device, organic EL display and organic EL lighting
JP5699684B2 (en) Polymer, organic electroluminescent element material, composition for organic electroluminescent element, organic electroluminescent element, organic EL display device, and organic EL lighting
WO2021125011A1 (en) Polymer, composition for organic electroluminescent element, composition for forming hole transport layer or hole injection layer, organic electroluminescent element, organic el display device, and organic el illuminator
JP7276059B2 (en) Composition for organic electroluminescent device, organic electroluminescent device, display device and lighting device
WO2022230821A1 (en) Method for manufacturing organic semiconductor element
JP5304301B2 (en) Organic electroluminescence device, organic EL display and organic EL lighting
WO2023085170A1 (en) Composition, and method for manufacturing organic electroluminescent element
JP2023051507A (en) Composition for organic electroluminescent element and method for manufacturing organic electroluminescent element
JP2022136017A (en) Aromatic compound
JP2023067190A (en) Composition and manufacturing method of organic electroluminescence element
TW202313930A (en) Aromatic compound, organic electroluminescent element, composition, and method for producing organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795734

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023517515

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE