WO2022230532A1 - 診断システム - Google Patents

診断システム Download PDF

Info

Publication number
WO2022230532A1
WO2022230532A1 PCT/JP2022/014953 JP2022014953W WO2022230532A1 WO 2022230532 A1 WO2022230532 A1 WO 2022230532A1 JP 2022014953 W JP2022014953 W JP 2022014953W WO 2022230532 A1 WO2022230532 A1 WO 2022230532A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
detection result
deterioration
unit
sensor device
Prior art date
Application number
PCT/JP2022/014953
Other languages
English (en)
French (fr)
Inventor
貴志 和田
清 安藤
卓也 白田
Original Assignee
ナブテスコ株式会社
旭光電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコ株式会社, 旭光電機株式会社 filed Critical ナブテスコ株式会社
Priority to CN202280031031.6A priority Critical patent/CN117597220A/zh
Priority to JP2023517183A priority patent/JP7537715B2/ja
Priority to EP22795449.2A priority patent/EP4331785A1/en
Publication of WO2022230532A1 publication Critical patent/WO2022230532A1/ja
Priority to US18/494,969 priority patent/US20240051140A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1671Programme controls characterised by programming, planning systems for manipulators characterised by simulation, either to verify existing program or to create and verify new program, CAD/CAM oriented, graphic oriented programming systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39412Diagnostic of robot, estimation of parameters

Definitions

  • This invention relates to data processing technology, and particularly to diagnostic systems.
  • an estimating unit estimates the direction and magnitude of the force detected by the first force detecting unit based on the detection result of the second force detecting unit, and an abnormality determination unit uses the estimating unit to
  • a work device determines whether or not at least one of a first force detection section and a second force detection section is abnormal by comparing an estimation result with a detection result by a first force detection section.
  • Patent Document 1 estimates the detection result of the second sensor from the detection result of the first sensor, and improvement in the estimation accuracy is required.
  • the present invention has been made based on the inventor's recognition of the above problem, and one of its purposes is to improve the accuracy of estimating the detection result of a sensor installed in a device having a movable part that is driven by receiving a driving force. It is to provide technology.
  • a diagnostic system includes an operating condition information acquisition unit that acquires operating condition information capable of identifying an operating condition of a device having a movable part that receives and drives a driving force; A detection result acquisition unit that acquires detection results from a plurality of sensors installed in a device, operating condition information acquired at a first time point, and detection results from a plurality of sensors acquired at the first time point in a simulation model.
  • a detection result estimation unit for estimating a detection result of a specific sensor among a plurality of sensors at a second time point, the estimated detection result of the specific sensor at the second time point, and a sensor state estimating unit that estimates the state of the specific sensor by comparing the detection result of the specific sensor among the plurality of sensors.
  • the present invention it is possible to improve the accuracy of estimating the detection result of the sensor installed in the equipment having a movable part that is driven by receiving a driving force.
  • FIG. 2 is a block diagram showing functional blocks of the sensor device of the first embodiment;
  • FIG. It is a block diagram which shows the functional block of the diagnostic apparatus of 1st Example. It is a flow chart which shows the operation of the diagnostic system of the first embodiment.
  • the outline of the embodiment will be explained.
  • the installation of sensors on equipment such as machine tools is progressing so that the status of equipment such as machine tools can be diagnosed remotely.
  • it is necessary to accurately determine whether the sensor is in a reliable state.
  • the technology of estimating the detection result of the sensor considering the operating conditions of the device. Suggest. This improves the estimation accuracy of the detection result of the sensor and improves the estimation result of the state of the sensor.
  • FIG. 1 shows the configuration of a diagnostic system 10 of the first embodiment.
  • the diagnostic system 10 diagnoses the state of a sensor installed in a device (the robot arm 12 in the first embodiment) having a movable part that receives and drives a driving force.
  • the robot arm 12 includes a first movable portion 14a, a second movable portion 14b, and a third movable portion 14c (collectively referred to as "movable portion 14").
  • Each of the plurality of movable parts 14 includes a mechanical element driven by receiving driving force such as hydraulic pressure or electric power, and is, for example, a joint member.
  • the robot arm 12 of the embodiment has three movable parts 14 and performs three-axis motions, but as a modification, the robot arm 12 has six movable parts 14 and performs six-axis motions. may
  • the robot arm 12 further includes a first link 16a, a second link 16b, and a third link 16c (collectively referred to as "links 16").
  • the first link 16a is a link member that connects the first movable portion 14a and the second movable portion 14b.
  • the second link 16b is a link member that connects the second movable portion 14b and the third movable portion 14c.
  • the third link 16c is a link member ahead of the third movable portion 14c.
  • the robot arm control device 18 transmits a first control signal for controlling the motion of the first movable portion 14a to the first movable portion 14a based on the posture, motion, etc. that the robot arm 12 should take. Further, the robot arm control device 18 transmits a second control signal for controlling the operation of the second movable section 14b to the second movable section 14b. Further, the robot arm control device 18 transmits a third control signal for controlling the operation of the third movable section 14c to the third movable section 14c.
  • Each of the first control signal, the second control signal, and the third control signal includes operating condition information that defines the operating conditions of each movable portion 14 .
  • the operating conditions include, for example, data specifying or defining the mode of operation of the movable section 14 (eg, speed, angle, angular velocity, acceleration, operating time, etc.).
  • the diagnostic system 10 is a collateral system constructed independently of the main system related to the operation of the robot arm 12, and can be added later to the existing main system.
  • the diagnostic system 10 comprises a first sensor device 20 a , a second sensor device 20 b , a third sensor device 20 c and a diagnostic device 22 .
  • the first sensor device 20a, the second sensor device 20b, and the third sensor device 20c are collectively referred to as the "sensor device 20".
  • FIG. 2 is a block diagram showing functional blocks of the sensor device 20 of the first embodiment.
  • Each block shown in the block diagrams of this specification can be implemented by computer processors, CPUs, memory and other elements, electronic circuits, and mechanical devices in terms of hardware, and can be implemented by computer programs and the like in terms of software.
  • the functional blocks realized by their cooperation are drawn. Therefore, those skilled in the art will understand that these functional blocks can be realized in various ways by combining hardware and software.
  • the sensor device 20 is attached as a nameplate to the surface of an article having a predetermined physical structure (hereinafter also referred to as "object"). Objects may be various types of electronic, electrical, mechanical devices, parts or finished products.
  • the plurality of sensor devices 20 are installed on the link 16 of the robot arm 12, but as a modification, at least some of the plurality of sensor devices 20 are installed on the movable portion 14 of the robot arm 12. may be placed in
  • the sensor device 20 includes a detection unit 30 , a processing unit 32 , an energy harvesting unit 34 , a power storage unit 36 and an antenna 38 .
  • the sensor device 20 displays various information about the object on the outer surface (printed surface in FIG. 2) as a nameplate. Further, in the sensor device 20, the members corresponding to the respective functional blocks shown in FIG. 2 are integrally provided in the form of a sheet.
  • the sheet shape means that the length in the thickness direction of the sensor device 20 is shorter than the length in the vertical direction and the length in the horizontal direction of the sensor device 20 . For example, when the longitudinal length and the lateral length of the sensor device 20 are several centimeters, the thickness direction length of the sensor device 20 is 5 millimeters or less. Moreover, the length of the sensor device 20 in the thickness direction is preferably 1 millimeter or less.
  • the detection unit 30 is provided so as to come into contact with or be close to the object, and measures the state (which can also be said to be a physical quantity) of the object.
  • the detection unit 30 of the first sensor device 20a is the installation position of the first sensor device 20a on the robot arm 12, and measures the state of the first link 16a on the robot arm 12 in the first embodiment.
  • the detection unit 30 of the second sensor device 20b is the installation position of the second sensor device 20b on the robot arm 12, and measures the state of the second link 16b on the robot arm 12 in the first embodiment.
  • the detection unit 30 of the third sensor device 20c is the installation position of the third sensor device 20c on the robot arm 12, and measures the state of the third link 16c on the robot arm 12 in the first embodiment.
  • the state of the object measured by the detection unit 30 includes the state of the object itself (the state of either one or both of the interior and surface of the object) and the state of the surroundings of the object (in other words, the environment surrounding the object). Either one or both may be used.
  • the state of the object may be one type of physical state or physical quantity, or may be a combination of a plurality of types of physical states or physical quantities.
  • the condition for the object may be vibration (eg, 3-axis acceleration) and/or temperature.
  • the state related to the object may be the velocity and/or pressure of the fluid flowing through the power transmission path provided in the object, and these are measured based on the reflected intensity of ultrasonic waves or radio waves. good too.
  • the detection unit 30 measures vibration at the sensor installation position (which can also be called the sensor installation position).
  • the detection unit 30 outputs a signal (also referred to as a “detection signal”) based on the measurement result (detection result) to the processing unit 32 .
  • the processing unit 32 generates information (hereinafter also referred to as “sensor data”) output from the antenna 38 based on the measurement result of the detection unit 30 and the detection signal output from the detection unit 30 in the embodiment. .
  • the processing unit 32 executes predetermined calculations (for example, various filtering processes, abnormality diagnosis processing by artificial intelligence functions, etc.) based on the detection signal output from the detection unit 30, and generates sensor data including the calculation results. You may
  • the antenna 38 as an output unit, outputs data based on the measurement results of the detection unit 30, and outputs sensor data generated by the processing unit 32 in the embodiment.
  • the antenna 38 may transmit sensor data to an external device using Wi-Fi (registered trademark), BLE (Bluetooth Low Energy (registered trademark)), NFC (Near Field Communication), or the like as a communication unit.
  • sensor data transmitted from antenna 38 of sensor device 20 is transmitted to diagnostic device 22 via wireless and wired communication networks.
  • the energy harvesting unit 34 converts energy existing in the environment around the sensor device 20 into electric power (so-called energy harvesting), and supplies the generated power as power for operating each functional block of the sensor device 20 .
  • the energy harvesting unit 34 controls temperature, humidity, radio waves such as Wi-Fi, electromagnetic waves from around the sensor device 20 (including radiation and cosmic rays, including electromagnetic noise emitted from electric motors and the like), vibration, sound ( (including ultrasonic waves), light (including visible light, infrared light, and ultraviolet light), and fluid or powder flow (wind, waves, etc.).
  • the antenna 38 may include the function of the energy harvesting unit 34, and in this case, the antenna 38 may perform data communication and energy harvesting in a time division manner.
  • the power storage unit 36 accumulates the electricity generated by the environmental power generation unit 34 and supplies the accumulated electric power as electric power for operating each functional block of the sensor device 20 .
  • the detection unit 30, the processing unit 32, and the antenna 38 of the sensor device 20 can operate based on power supplied from the energy harvesting unit 34, and can also operate based on power supplied from the power storage unit 36.
  • the power storage unit 36 may be a capacitor (including an electric double layer capacitor) or a secondary battery (eg, lithium ion battery, solid lithium ion battery, air battery).
  • the diagnostic device 22 connects the first sensor device 20a, the second sensor device 20b, the third sensor device 20a, the second sensor device 20b, and the third sensor device 20a via a wireless communication network and a wired communication network configured by access points, switches, routers, and the like (not shown). It is an information processing device connected to the device 20c.
  • the diagnostic device 22 performs data processing for diagnosing the state of a specific sensor device 20 among the first sensor device 20a, the second sensor device 20b, and the third sensor device 20c.
  • a specific sensor device 20 whose state is to be diagnosed is hereinafter referred to as a "diagnosis target sensor".
  • the diagnosis target sensor in the first embodiment is the third sensor device 20c.
  • FIG. 3 is a block diagram showing functional blocks of the diagnostic device 22 of the first embodiment.
  • the diagnostic device 22 includes a control section 40 , a storage section 42 and a communication section 44 .
  • the control unit 40 executes various data processing.
  • the storage unit 42 stores data referenced or updated by the control unit 40 .
  • the communication unit 44 communicates with an external device according to a predetermined communication protocol.
  • the control unit 40 transmits/receives data to/from the robot arm control device 18, the first sensor device 20a, the second sensor device 20b, and the third sensor device 20c via the communication unit 44.
  • FIG. 1 is a block diagram showing functional blocks of the diagnostic device 22 of the first embodiment.
  • the diagnostic device 22 includes a control section 40 , a storage section 42 and a communication section 44 .
  • the control unit 40 executes various data processing.
  • the storage unit 42 stores data referenced or updated by the control unit 40 .
  • the communication unit 44 communicates with an external device according to a predetermined communication protocol.
  • the storage unit 42 includes a model storage unit 46 and a diagnostic information storage unit 48.
  • the model storage unit 46 stores simulation model data for estimating the detection result of the diagnosis target sensor. Details of the simulation model will be described later.
  • the diagnostic information storage unit 48 stores diagnostic information indicating an estimation result regarding the state of the diagnosis target sensor.
  • the diagnostic information may include information indicating the state (for example, normal or abnormal) of the diagnosis target sensor as a diagnosis result, and information indicating the date and time when the state of the diagnosis target sensor was diagnosed.
  • the control unit 40 includes an operating condition information acquiring unit 50, a detection result acquiring unit 52, a detection result estimating unit 54, a sensor state estimating unit 56, and a diagnostic information providing unit 58.
  • a computer program in which the functions of these functional blocks are implemented may be stored in a predetermined recording medium, and may be installed in the storage of diagnostic device 22 via the recording medium. Also, the computer program may be downloaded via a communication network and installed in the storage of the diagnostic device 22 .
  • the CPU of the diagnostic device 22 may display the function of each functional block by reading the computer program into the main memory and executing it.
  • the operating condition information acquisition unit 50 receives a plurality of pieces of operating condition information (in the first embodiment, first control signals, second control signal, third control signal) from the robot arm controller 18 .
  • the operating condition information acquisition unit 50 may acquire from the robot arm 12 the plurality of pieces of operating condition information transmitted from the robot arm control device 18, and the communication between the robot arm control device 18 and the robot arm 12 may be performed. It may be obtained from a relay device (not shown) that relays.
  • the detection result acquisition unit 52 acquires the detection results of the multiple sensor devices 20 installed on the robot arm 12 . Specifically, the detection result acquisition unit 52 acquires first sensor data indicating the detection result of the first sensor device 20a, which is transmitted from the first sensor device 20a, and the second sensor data, which is transmitted from the second sensor device 20b. The second sensor data indicating the detection result of the device 20b and the third sensor data indicating the detection result of the third sensor device 20c transmitted from the third sensor device 20c are acquired. Each of the first sensor data, the second sensor data, and the third sensor data of the first embodiment includes information (for example, amplitude and frequency) regarding vibration at the sensor installation position.
  • the simulation model inputs operating condition information acquired at a first point in time and detection results (vibration information in the first embodiment) of a plurality of sensor devices 20 indicated by a plurality of sensor data acquired at the first point in time. , and estimates the detection result at the second point in time of a predetermined diagnosis target sensor among the plurality of sensor devices 20 .
  • a mathematical model can be called a calculation formula or a function.
  • the simulation model may be a so-called digital twin model that simulates the motion of the movable part 14 of the robot arm 12 and the detection result of the sensor device 20 .
  • the second point in time in the first embodiment is the same point in time as the first point in time, but as a modification, the second point in time may be after the first point in time.
  • the simulation model of the first embodiment is a mathematical model to which operating conditions of multiple movable parts 14 are input. Further, the simulation model of the first embodiment is a mathematical model to which the detection results of the sensor devices 20 other than the diagnosis target sensor among the plurality of sensor devices 20 are input.
  • the simulation model includes the operating condition indicated by the first control signal, the operating condition indicated by the second control signal, the operating condition indicated by the third control signal, the detection result of the first sensor device 20a indicated by the first sensor data, the second A regression equation may be used in which the detection result of the second sensor device 20b indicated by the sensor data is used as an explanatory variable, and the detection result of the third sensor device 20c, which is a sensor to be diagnosed, is used as an objective variable.
  • the operating condition indicated by the first control signal, the operating condition indicated by the second control signal, the operating condition indicated by the third control signal, and the first sensor device 20a indicated by the first sensor data Regarding the detection result, the detection result of the second sensor device 20b indicated by the second sensor data, and the detection result of the third sensor device 20c indicated by the third sensor data, even if a set of these actual values are collected as sample data. good. Then, by performing multiple regression analysis based on a plurality of sample data, the coefficient of each explanatory variable may be determined, and simulation model data may be generated.
  • the detection result estimation unit 54 reads the data of the simulation model stored in the model storage unit 46, and combines the operating condition information acquired at the first time point and the detection results of the plurality of sensor devices 20 acquired at the first time point. is input into the simulation model to estimate the detection result of the sensor to be diagnosed at the second point in time.
  • the detection result estimating unit 54 inputs operating conditions of the plurality of movable units 14 to the simulation model. Further, the detection result estimating unit 54 inputs the detection results of the sensors other than the diagnosis target sensor among the plurality of sensor devices 20 to the simulation model.
  • the detection result estimation unit 54 inputs the operating condition indicated by the first control signal, the operating condition indicated by the second control signal, and the operating condition indicated by the third control signal acquired at the first time point into the simulation model. do. Further, the detection result estimation unit 54 inputs the detection result of the first sensor device 20a indicated by the first sensor data acquired at the first time point and the detection result of the second sensor device 20b indicated by the second sensor data into the simulation model. do. Then, the detection result estimating unit 54 acquires the detection result (estimated value regarding vibration in the first embodiment) at the second point in time of the third sensor device 20c, which is the sensor to be diagnosed, output from the simulation model.
  • the sensor state estimation unit 56 compares the detection result of the diagnosis target sensor at the second time point estimated by the detection result estimation unit 54 with the detection result of the diagnosis target sensor acquired at the second time point, and determines the diagnosis target sensor. Estimate the state of the sensor.
  • the sensor state estimating unit 56 uses the estimated value of the detection result of the third sensor device 20c at the second time point and the diagnosis obtained at the second time point as the detection result of the diagnostic target sensor at the second time point. As the detection result of the target sensor, the actual detection result (measurement value) of the third sensor device 20c indicated by the third sensor data acquired at the second time point is compared. If the difference between the estimated value of the detection result of the third sensor device 20c and the actual detection result (measured value) of the third sensor device 20c is outside a predetermined allowable range, the sensor state estimation unit 56 It is estimated that the state of the 3-sensor device 20c is abnormal. This allowable range is appropriate based on knowledge of the developer of the diagnostic system 10 and experiments using the diagnostic system 10 (for example, experiments using the normal third sensor device 20c and the abnormal third sensor device 20c). value may be determined.
  • the sensor state estimating unit 56 stores diagnostic information including the result of estimating the state of the diagnostic target sensor and the estimated date and time in the diagnostic information storage unit 48 .
  • the diagnostic information providing unit 58 transmits the diagnostic information stored in the diagnostic information storage unit 48 to an external device (eg, a maintenance person's terminal, etc.) (not shown) in response to an external request or periodically.
  • an external device eg, a maintenance person's terminal, etc.
  • FIG. 4 is a flow chart showing the operation of the diagnostic system 10 of the first embodiment. Here, it is assumed that the first time point and the second time point are the same time point.
  • the detection unit 30 of the first sensor device 20a periodically detects the vibration of the sensor installation position on the robot arm 12.
  • the antenna 38 of the first sensor device 20 a transmits first sensor data indicating the detection result of the detection unit 30 to the diagnostic device 22 .
  • the second sensor device 20b also detects vibration at the sensor installation position and transmits second sensor data indicating the detection result to the diagnostic device 22 .
  • the third sensor device 20 c also detects vibration at the sensor installation position and transmits third sensor data indicating the detection result to the diagnostic device 22 .
  • the detection result acquisition unit 52 of the diagnostic device 22 acquires first sensor data, second sensor data, and third sensor data periodically transmitted from the first sensor device 20a, the second sensor device 20b, and the third sensor device 20c. (S10).
  • the operating condition information acquisition unit 50 of the diagnostic device 22 acquires the first control signal, the second control signal, and the third control signal that the robot arm control device 18 has transmitted to the robot arm 12 at a certain time (first time). It is acquired from the control device 18 (S12).
  • the detection result estimating unit 54 of the diagnostic device 22 determines the operating condition of the first movable unit 14a indicated by the first control signal acquired by the operating condition information acquiring unit 50 at the first time point, the operating condition of the second movable unit 14b indicated by the second control signal, and , the operating condition of the third movable part 14c indicated by the third control signal, the detection result indicated by the first sensor data obtained by the detection result obtaining unit 52 at the first time point, and the detection result indicated by the second sensor data. Enter the model.
  • the detection result estimation unit 54 acquires the detection result (estimated value) of the diagnosis target sensor (third sensor device 20c) at the second point in time (here, the same point in time as the first point in time) estimated by the simulation model (S14 ).
  • the sensor state estimating unit 56 of the diagnostic device 22 obtains the detection result (estimated value) of the third sensor device 20c obtained from the simulation model, and the third sensor data obtained by the detection result obtaining unit 52 at the first time point.
  • the state of the third sensor device 20c which is the sensor to be diagnosed, is estimated by comparing the detection result (actual measurement value) (S16).
  • the sensor state estimator 56 stores diagnostic information indicating the result of estimating the state of the third sensor device 20c in the diagnostic information storage unit 48 .
  • the diagnostic information providing unit 58 of the diagnostic device 22 provides the diagnostic information regarding the third sensor device 20c stored in the diagnostic information storage unit 48 to the external device (S18).
  • the diagnostic system 10 of the first embodiment by using parameters including the operating conditions of the movable part 14 of the robot arm 12 to estimate the detection result of the sensor device 20 to be diagnosed installed on the robot arm 12, The estimation accuracy can be improved. That is, according to the diagnostic system 10, it is possible to obtain an estimated value that approximates the detection result when the sensor device 20 to be diagnosed is normal. In addition, this can improve the accuracy of estimating the state of the sensor device 20 to be diagnosed.
  • the configuration of the diagnostic system 10 of the second embodiment is the same as the configuration of the diagnostic system 10 of the first embodiment shown in FIG.
  • the diagnostic system 10 of the second embodiment also diagnoses the state of the sensor device 20 installed on the robot arm 12 in the same manner as the diagnostic system 10 of the first embodiment.
  • FIG. 5 is a block diagram showing functional blocks of the diagnostic device 22 of the second embodiment.
  • the diagnostic device 22 of the second embodiment further includes a deterioration estimator 60 and an updater 62 in addition to the functional blocks of the diagnostic device 22 of the first embodiment.
  • the model storage unit 46 further stores data of a deterioration estimation model for estimating the degree of deterioration of the robot arm 12 in addition to the data of the simulation model described in the first embodiment.
  • the deterioration estimation model accepts as input a plurality of sensor data (first sensor data, second sensor data, third sensor data) indicating the detection results of the plurality of sensor devices 20, and is a mathematical model for estimating the degree of deterioration of the robot arm 12. is a model.
  • the first sensor data, the second sensor data, and the third sensor data of the second embodiment may be information related to vibration at the sensor installation position, as in the first embodiment.
  • the deterioration estimation model includes the detection result of the first sensor device 20a indicated by the first sensor data, the detection result of the second sensor device 20b indicated by the second sensor data, and the detection result of the third sensor device 20c indicated by the third sensor data.
  • a regression equation may be used in which the result is used as an explanatory variable and the deterioration index value indicating the degree of deterioration of the robot arm 12 is used as an objective variable.
  • a set of actual values for the detection result of the first sensor device 20a, the detection result of the second sensor device 20b, the detection result of the third sensor device 20c, and the degree of deterioration of the robot arm 12 is obtained. It may be collected as sample data. Then, by performing multiple regression analysis based on a plurality of sample data, the coefficient of each explanatory variable may be determined, and the deterioration estimation model data may be generated.
  • the model storage unit 46 stores data of a plurality of simulation models corresponding to the degree of deterioration of the robot arm 12.
  • a plurality of simulation models may be generated based on sample data (described in the first embodiment) collected from robot arms 12 with different degrees of deterioration.
  • the model storage unit 46 may store a simulation model that matches the degree of deterioration indicated by each deterioration index value in association with a plurality of deterioration index values.
  • the deterioration estimation unit 60 estimates the degree of deterioration of the robot arm 12 based on the detection results of the multiple sensor devices 20 . Specifically, the deterioration estimation unit 60 reads the deterioration estimation model data stored in the model storage unit 46, and uses the detection results of the plurality of sensor devices 20, which are transmitted from the plurality of sensor devices 20, as the deterioration estimation model. By inputting, the degree of deterioration of the robot arm 12 is estimated.
  • the updating unit 62 updates the simulation model used by the detection result estimating unit 54 based on the degree of deterioration of the robot arm 12 estimated by the deterioration estimating unit 60 .
  • data of a simulation model that matches the degree of deterioration of the robot arm 12 estimated by the deterioration estimating unit 60 is read from among the plurality of simulation models stored in the model storage unit 46, and the read simulation model is read out. data to the detection result estimation unit 54 .
  • the detection result estimating unit 54 is a simulation model updated by the updating unit 62.
  • the simulation model passed from the updating unit 62 and suitable for the degree of deterioration of the robot arm 12 is used to determine the diagnosis target. Estimate the detection result of the sensor.
  • the sensor state estimation unit 56 estimates the state of the diagnostic target sensor when the degree of deterioration of the robot arm 12 is equal to or greater than a predetermined threshold. On the condition that the degree of deterioration of the robot arm 12 is equal to or greater than a predetermined threshold value, the detection result estimating unit 54 estimates the detection result of the diagnosis target sensor. Estimate the state of the sensor. An appropriate value for this threshold value may be determined based on the knowledge of the developer of the diagnostic system 10, experiments using the diagnostic system 10, sensor failure probability for each degree of deterioration of the robot arm 12, and the like.
  • FIG. 6 is a flow chart showing the operation of the diagnostic system 10 of the second embodiment.
  • the detection result acquisition unit 52 of the diagnostic device 22 receives the first sensor data, the second Sensor data and third sensor data are acquired (S20).
  • the deterioration estimation unit 60 of the diagnostic device 22 obtains the detection result of the first sensor device 20a indicated by the first sensor data, the detection result of the second sensor device 20b indicated by the second sensor data, and the third sensor device indicated by the third sensor data.
  • the detection result of 20c is input to the deterioration estimation model.
  • the deterioration estimation unit 60 acquires a deterioration index value indicating the degree of deterioration of the robot arm 12 derived using the deterioration estimation model (S22).
  • the operating condition information acquisition unit 50 of the diagnostic device 22 acquires the first control signal, the second control signal, and the third control signal that the robot arm control device 18 has transmitted to the robot arm 12 at a certain time (first time). It is acquired from the control device 18 (S24). If the degree of deterioration of the robot arm 12 is equal to or greater than the predetermined threshold value (Y of S26), the update unit 62 updates the simulation model data corresponding to the degree of deterioration of the robot arm 12, in other words, the deterioration index acquired in S22. Data of the simulation model associated with the value is read out from the model storage unit 46 and transferred to the detection result estimation unit 54 (S28).
  • the subsequent processing of S30 to S34 is the same as the processing of S14 to S18 of the diagnostic system 10 of the first embodiment shown in FIG. 4, so description thereof will be omitted. If the degree of deterioration of the robot arm 12 is less than the threshold value (N of S26), the processes after S28 are skipped.
  • the diagnostic system 10 of the second embodiment by using a simulation model corresponding to the degree of deterioration of the robot arm 12, it is possible to improve the estimation accuracy of the detection result of the diagnosis target sensor. Further, according to the diagnostic system 10, by estimating the state of the sensor to be diagnosed when the deterioration of the robot arm 12 has progressed to a certain extent, the abnormality of the sensor can be efficiently detected.
  • a plurality of sensor devices 20 installed on the robot arm 12 detect vibrations at respective sensor installation positions, as in the first embodiment.
  • the deterioration estimation unit 60 of the diagnostic device 22 compares the vibration convergence time at the sensor installation position calculated based on the detection results of the plurality of sensor devices 20 with the vibration convergence time estimated based on the operating condition information. Then, the degree of deterioration of the robot arm 12 is estimated.
  • the deterioration estimation model stored in the model storage unit 46 receives the input of the detection result of each of the plurality of sensor devices 20, and derives the vibration convergence time (measurement value) of the installation position of each sensor device 20.
  • the vibration convergence time can also be said to be the time during which vibration continues, and may be derived based on a known standard.
  • the vibration convergence time may be the time from when vibration having a magnitude equal to or greater than a predetermined first threshold is detected until vibration equal to or greater than a second threshold equal to or less than the first threshold becomes undetected. .
  • the deterioration estimation model receives input of operating condition information indicated by each of the first control signal, the second control signal, and the third control signal, and determines the installation position of each sensor device 20 based on a predetermined evaluation function. You may calculate the vibration convergence time (estimated value) of The evaluation function may output the vibration convergence time of the sensor installation position, which is associated in advance with each operating condition indicated by the operating condition information.
  • the deterioration estimation model compares the vibration convergence time (measured value) and the vibration convergence time (estimated value) at each sensor installation position for each of the first sensor device 20a, the second sensor device 20b, and the third sensor device 20c. , the degree of deterioration of the robot arm 12 may be estimated based on the comparison result. For example, if the vibration convergence time (measured value)>vibration convergence time (estimated value) at the sensor installation position of 0 or 1, it may be estimated that the degree of deterioration is low. Further, when vibration convergence time (measured value)>vibration convergence time (estimated value) at two sensor installation positions, the degree of deterioration may be estimated to be moderate. Further, when vibration convergence time (measured value)>vibration convergence time (estimated value) at three sensor installation positions, it may be estimated that the degree of deterioration is high.
  • the deterioration estimation unit 60 of the diagnostic device 22 inputs the vibration information of the sensor installation position indicated by each of the plurality of sensor data transmitted from the plurality of sensor devices 20 into the deterioration estimation model.
  • the deterioration estimator 60 also inputs the operating conditions indicated by the first control signal, the second control signal, and the third control signal transmitted from the robot arm control device 18 to the deterioration estimation model. Then, the deterioration estimation unit 60 acquires an index value indicating the degree of deterioration of the robot arm 12 estimated by the deterioration estimation model. Since subsequent processing is the same as that of the second embodiment, description thereof is omitted. According to the configuration of this modification, it is possible to accurately estimate the degree of deterioration of the robot arm 12 based on the vibration convergence time at each sensor installation position.
  • the sensor device 20 is installed between the plurality of movable parts 14 (link 16) provided on the robot arm 12. 20 may be installed.
  • the sensor to be diagnosed is the third sensor device 20c.
  • the sensor device 20 may be used as a diagnosis target sensor.
  • the model storage unit 46 of the diagnostic device 22 may store a different simulation model for each diagnostic sensor for estimating the state of each diagnostic sensor.
  • the detection result estimating unit 54 and the sensor state estimating unit 56 may estimate the state of each diagnostic target sensor using a simulation model corresponding to one or more diagnostic target sensors.
  • the sensor device 20 of the above embodiment is a sensor device as a nameplate, but as a modification, the sensor device 20 may be a sheet-type or coin-type sensor that can be easily attached to an object without being a nameplate. It may be a device.
  • those in which a plurality of functions are provided in a distributed manner may be provided by consolidating some or all of the plurality of functions. What is provided as a single function may be provided so that part or all of the plurality of functions are distributed. Regardless of whether the functions are centralized or distributed, it is sufficient that they are configured so as to achieve the objects of the invention.
  • an operating condition information acquiring unit that acquires operating condition information capable of identifying operating conditions of a device having a movable part that receives and drives a driving force
  • a detection result acquisition unit that acquires detection results of a plurality of sensors installed in the device; By inputting the operating condition information acquired at a first time point and the detection results of the plurality of sensors acquired at the first time point into a simulation model, a second detection of a specific sensor among the plurality of sensors is performed.
  • a detection result estimation unit that estimates the detection result at the point in time;
  • the state of the specific sensor is determined by comparing the estimated detection result of the specific sensor at the second time point with the detection result of the specific sensor among the plurality of sensors acquired at the second time point.
  • a sensor state estimation unit that estimates the diagnostic system.
  • the second time point may be the same time point as the first time point, or may be a different time point.
  • the sensor state estimator can also be said to be a sensor abnormality detector that detects when the state of the sensor is abnormal. According to this diagnostic system, by estimating the detection result of a specific sensor in consideration of the operating conditions of the device, it is possible to improve the estimation accuracy of the detection result of the sensor and improve the estimation accuracy of the state of the sensor. can.
  • the device has a plurality of movable parts, 2.
  • the detection result estimation unit estimates the detection result of the specific sensor at a second time point by inputting the detection result of a sensor other than the specific sensor among the plurality of sensors to the simulation model, or 3.
  • this diagnostic system by excluding the detection result of a specific sensor that may be an abnormal value, when the state of the sensor is abnormal, it can be estimated with high accuracy.
  • a deterioration estimation unit that estimates the degree of deterioration of the device based on the detection results of the plurality of sensors; 4.
  • this diagnostic system by using a simulation model corresponding to the degree of deterioration of the equipment, it is possible to improve the accuracy of estimating the detection result of a specific sensor.
  • the diagnostic system wherein the sensor state estimation unit estimates the state of the specific sensor when the degree of deterioration of the device estimated by the deterioration estimation unit is equal to or greater than a predetermined threshold.
  • a predetermined threshold According to this diagnostic system, by estimating the state of a specific sensor when the deterioration of the device progresses, an abnormality of the sensor can be efficiently detected.
  • the plurality of sensors detect vibration at each installation position, The deterioration estimating unit compares the vibration convergence time at the sensor installation position calculated based on the detection results of the plurality of sensors and the vibration convergence time estimated based on the operating condition information, 6.
  • the diagnostic system according to item 4 or 5 which estimates the degree of deterioration of. According to this diagnostic system, it is possible to accurately estimate the degree of deterioration of the device based on the vibration convergence time at the sensor installation position.
  • the technology of the present disclosure can be applied to diagnostic systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

診断システム10は、ロボットアーム12の動作条件を識別可能な動作条件情報を取得する。診断システム10は、ロボットアーム12に設置された複数のセンサ装置20の検知結果を取得する。診断システム10は、第1時点において取得された上記動作条件情報と、第1時点において取得された複数のセンサ装置20の検知結果とをシミュレーションモデルに入力することにより、複数のセンサ装置20のうち特定のセンサ装置20の第2時点における検知結果を推定する。診断システム10は、推定した第2時点における特定のセンサ装置20の検知結果と、第2時点において取得された特定のセンサ装置20の検知結果とを比較して、特定のセンサ装置20の状態を推定する。

Description

診断システム
 この発明は、データ処理技術に関し、特に診断システムに関する。
 以下の特許文献1には、推定部が、第2力検出部による検出結果に基づいて、第1力検出部が検出する力の向きおよび大きさを推定し、異常判断部が、推定部による推定結果と、第1力検出部による検出結果とを比較することにより、第1力検出部と第2力検出部の少なくとも一方が異常であるか否かを判断する作業装置が開示されている。
特開2020-39397号公報
 上記特許文献1に開示された技術は、第1センサの検知結果から第2センサの検知結果を推定するものであり、その推定精度の向上が求められる。
 本発明は本発明者の上記課題認識に基づいてなされたものであり、1つの目的は、駆動力を受けて駆動する可動部を有する機器に設置されたセンサの検知結果を推定する精度を高める技術を提供することにある。
 上記課題を解決するために、本発明のある態様の診断システムは、駆動力を受けて駆動する可動部を有する機器の動作条件を識別可能な動作条件情報を取得する動作条件情報取得部と、機器に設置された複数のセンサの検知結果を取得する検知結果取得部と、第1時点において取得された動作条件情報と、第1時点において取得された複数のセンサの検知結果とをシミュレーションモデルに入力することにより、複数のセンサのうち特定のセンサの第2時点における検知結果を推定する検知結果推定部と、推定された第2時点における特定のセンサの検知結果と、第2時点において取得された複数のセンサのうち特定のセンサの検知結果とを比較して、特定のセンサの状態を推定するセンサ状態推定部と、を備える。
 なお、以上の構成要素の任意の組合せ、本発明の表現を、装置、方法、コンピュータプログラム、コンピュータプログラムを格納した記録媒体などの間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、駆動力を受けて駆動する可動部を有する機器に設置されたセンサの検知結果を推定する精度を高めることができる。
第1実施例の診断システムの構成を示す図である。 第1実施例のセンサ装置の機能ブロックを示すブロック図である。 第1実施例の診断装置の機能ブロックを示すブロック図である。 第1実施例の診断システムの動作を示すフローチャートである。 第2実施例の診断装置の機能ブロックを示すブロック図である。 第2実施例の診断システムの動作を示すフローチャートである。
 実施例の概要を説明する。工作機械等の機器の状態を遠隔から診断可能なように、機器へのセンサ設置が進んでいる。しかしながら、センサに対する適切な診断を行うためには、センサが信頼できる状態であるか否かを高精度に判断する必要がある。実施例では、機器に設置されたセンサの検知結果を推定し、その推定結果を用いて当該センサの状態を推定する診断システムにおいて、機器の動作条件を加味してセンサの検知結果を推定する技術を提案する。これにより、センサの検知結果の推定精度を向上させ、当該センサの状態の推定結果を向上させる。
<第1実施例>
 図1は、第1実施例の診断システム10の構成を示す。診断システム10は、駆動力を受け付けて駆動する可動部を有する機器(第1実施例ではロボットアーム12)に設置されたセンサの状態を診断する。ロボットアーム12は、第1可動部14a、第2可動部14b、第3可動部14c(総称する場合、「可動部14」と呼ぶ。)を備える。複数の可動部14のそれぞれは、油圧や電力等の駆動力を受けて駆動する機械要素を含み、例えば関節部材である。実施例のロボットアーム12は、3つの可動部14を備え、3軸の動作を行うが、変形例として、ロボットアーム12は、6つの可動部14を備え、6軸の動作を行うものであってもよい。
 ロボットアーム12は、第1リンク16a、第2リンク16b、第3リンク16c(総称する場合、「リンク16」と呼ぶ。)をさらに備える。第1リンク16aは、第1可動部14aと第2可動部14bを連結するリンク部材である。第2リンク16bは、第2可動部14bと第3可動部14cを連結するリンク部材である。第3リンク16cは、第3可動部14cより先のリンク部材である。
 ロボットアーム制御装置18は、ロボットアーム12にとらせるべき姿勢や動作等に基づいて、第1可動部14aの動作を制御する第1制御信号を第1可動部14aへ送信する。また、ロボットアーム制御装置18は、第2可動部14bの動作を制御する第2制御信号を第2可動部14bへ送信する。また、ロボットアーム制御装置18は、第3可動部14cの動作を制御する第3制御信号を第3可動部14cへ送信する。第1制御信号、第2制御信号、第3制御信号のそれぞれは、各可動部14の動作条件を定めた動作条件情報を含む。動作条件は、例えば、可動部14の動作の態様(例えば速度、角度、角速度、加速度、動作時間等)を指定または規定するデータを含む。
 診断システム10は、ロボットアーム12の動作に関する主系システムとは独立して構築された傍系システムであり、既存の主系システムに対して後から付加することができる。診断システム10は、第1センサ装置20a、第2センサ装置20b、第3センサ装置20c、診断装置22を備える。第1センサ装置20a、第2センサ装置20b、第3センサ装置20cを総称する場合、「センサ装置20」と呼ぶ。
 図2は、第1実施例のセンサ装置20の機能ブロックを示すブロック図である。本明細書のブロック図で示す各ブロックは、ハードウェア的には、コンピュータのプロセッサ、CPU、メモリをはじめとする素子や電子回路、機械装置で実現でき、ソフトウェア的にはコンピュータプログラム等によって実現されるが、ここでは、それらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックはハードウェア、ソフトウェアの組合せによっていろいろなかたちで実現できることは、当業者には理解されるところである。
 センサ装置20は、銘板として、所定の物理構造を有する物品(以下「対象物」とも呼ぶ。)の表面に取り付けられる。対象物は、様々な種類の電子機器、電気機器、機械装置、部品または完成品であってもよい。第1実施例では、複数のセンサ装置20は、ロボットアーム12のリンク16に設置されることとするが、変形例として、複数のセンサ装置20の少なくとも一部は、ロボットアーム12の可動部14に設置されてもよい。センサ装置20は、検知部30、処理部32、環境発電部34、蓄電部36、アンテナ38を備える。
 センサ装置20は、銘板として、外側の面(図2の印字面)に対象物に関する様々な情報を表示する。また、センサ装置20において、図2に示す各機能ブロックに対応する部材はシート状に一体に設けられる。シート状とは、センサ装置20の厚み方向の長さが、センサ装置20の縦方向の長さと横方向の長さのいずれよりも短いことを意味する。例えばセンサ装置20の縦方向の長さと横方向の長さが数センチメートルであるときに、センサ装置20の厚み方向の長さが5ミリメートル以下である。また望ましくはセンサ装置20の厚み方向の長さが1ミリメートル以下である。
 検知部30は、対象物に接触または近接するよう設けられ、対象物に関する状態(物理量とも言える)を計測する。第1センサ装置20aの検知部30は、ロボットアーム12における第1センサ装置20a設置位置であり、第1実施例ではロボットアーム12における第1リンク16aに関する状態を計測する。第2センサ装置20bの検知部30は、ロボットアーム12における第2センサ装置20b設置位置であり、第1実施例ではロボットアーム12における第2リンク16bに関する状態を計測する。第3センサ装置20cの検知部30は、ロボットアーム12における第3センサ装置20c設置位置であり、第1実施例ではロボットアーム12における第3リンク16cに関する状態を計測する。
 検知部30により計測される対象物に関する状態は、対象物そのものの状態(対象物の内部または表面のいずれか一方または両方の状態)と対象物の周囲(言い換えれば対象物を取り巻く環境)の状態のいずれか一方、または両方であってもよい。また、対象物に関する状態は、1つの種類の物理的状態または物理量であってもよく、複数の種類の物理的状態または物理量の組合せであってもよい。例えば、対象物に関する状態は、振動(例えば3軸加速度)および/または温度であってもよい。また、対象物に関する状態は、対象物に設けられた動力伝達経路内を流れる流体の速度および/または圧力であってもよく、これらは、超音波または電波の反射強度をもとに計測されてもよい。
 第1実施例では、検知部30は、センサ設置位置(センサ設置箇所とも言える)の振動を計測する。検知部30は、計測結果(検知結果)に基づく信号(「検知信号」とも呼ぶ。)を処理部32へ出力する。
 処理部32は、検知部30の計測結果であり、実施例では検知部30から出力された検知信号をもとにアンテナ38から出力される情報(以下「センサデータ」とも呼ぶ。)を生成する。処理部32は、検知部30から出力された検知信号をもとに所定の演算(例えば各種フィルタ処理や、人工知能機能による異常診断処理等)を実行し、その演算結果を含むセンサデータを生成してもよい。
 アンテナ38は、出力部として、検知部30の計測結果に基づくデータであり、実施例では処理部32が生成したセンサデータを外部へ出力する。アンテナ38は、通信部として、Wi-Fi(登録商標)、BLE(Bluetooth Low Energy(登録商標))またはNFC(Near Field Communication)等を利用して、センサデータを外部装置へ送信してもよい。実施例では、センサ装置20のアンテナ38から送信されたセンサデータは、無線通信網および有線通信網を介して診断装置22へ伝送される。
 環境発電部34は、センサ装置20の周囲の環境に存在するエネルギーを電力に変換(いわゆる環境発電)し、発電した電力を、センサ装置20の各機能ブロックを動作させるための電力として供給する。環境発電部34は、温度、湿度、Wi-Fi等の電波、センサ装置20の周囲からの電磁波(放射線や宇宙線を含み、電動モータ等から発せされる電磁ノイズも含む)、振動、音(超音波含む)、光(可視光、赤外光、紫外線を含む)、流体や粉体の流れ(風や波など)のうち少なくとも1つのエネルギーをもとに公知の環境発電を行ってもよい。なお、アンテナ38は、環境発電部34の機能を含んでもよく、この場合、アンテナ38は、データ通信と環境発電を時分割で実行してもよい。
 蓄電部36は、環境発電部34により発電された電気を蓄積し、蓄積した電力を、センサ装置20の各機能ブロックを動作させるための電力として供給する。実施例では、センサ装置20の検知部30、処理部32、アンテナ38は、環境発電部34から供給された電力をもとに動作可能であり、蓄電部36から供給された電力によっても動作可能である。蓄電部36は、キャパシタ(電気二重層コンデンサを含む)であってもよく、二次電池(例えばリチウムイオン電池、固体リチウムイオン電池、空気電池)であってもよい。
 図1に戻り、診断装置22は、不図示のアクセスポイントやスイッチ、ルータ等により構成される無線通信網および有線通信網を介して、第1センサ装置20a、第2センサ装置20b、第3センサ装置20cと接続される情報処理装置である。診断装置22は、第1センサ装置20a、第2センサ装置20b、第3センサ装置20cの中の特定のセンサ装置20の状態を診断するためのデータ処理を実行する。以下、状態を診断する対象となる特定のセンサ装置20を「診断対象センサ」と呼ぶ。第1実施例での診断対象センサは、第3センサ装置20cである。
 図3は、第1実施例の診断装置22の機能ブロックを示すブロック図である。診断装置22は、制御部40、記憶部42、通信部44を備える。制御部40は、各種データ処理を実行する。記憶部42は、制御部40により参照または更新されるデータを記憶する。通信部44は、所定の通信プロトコルにしたがって外部装置と通信する。第1実施例では、制御部40は、通信部44を介して、ロボットアーム制御装置18、第1センサ装置20a、第2センサ装置20b、第3センサ装置20cとデータを送受信する。
 記憶部42は、モデル記憶部46と診断情報記憶部48を含む。モデル記憶部46は、診断対象センサの検知結果を推定するシミュレーションモデルのデータを記憶する。シミュレーションモデルの詳細は後述する。診断情報記憶部48は、診断対象センサの状態に関する推定結果を示す診断情報を記憶する。診断情報は、診断結果としての診断対象センサの状態(例えば正常または異常)を示す情報と、診断対象センサの状態が診断された日時を示す情報を含んでもよい。
 制御部40は、動作条件情報取得部50、検知結果取得部52、検知結果推定部54、センサ状態推定部56、診断情報提供部58を含む。これら複数の機能ブロックの機能が実装されたコンピュータプログラムは、所定の記録媒体に格納されてもよく、その記録媒体を介して診断装置22のストレージにインストールされてもよい。また、上記コンピュータプログラムは、通信網を介してダウンロードされ、診断装置22のストレージにインストールされてもよい。診断装置22のCPUは、上記コンピュータプログラムをメインメモリに読み出して実行することにより、各機能ブロックの機能を発揮してもよい。
 動作条件情報取得部50は、ロボットアーム制御装置18からロボットアーム12へ送信された、複数の可動部14の動作条件を識別可能な複数の動作条件情報(第1実施例では第1制御信号、第2制御信号、第3制御信号)をロボットアーム制御装置18から取得する。変形例として、動作条件情報取得部50は、ロボットアーム制御装置18から送信された上記複数の動作条件情報をロボットアーム12から取得してもよく、ロボットアーム制御装置18とロボットアーム12の通信を中継する中継装置(不図示)から取得してもよい。
 検知結果取得部52は、ロボットアーム12に設置された複数のセンサ装置20の検知結果を取得する。具体的には、検知結果取得部52は、第1センサ装置20aから送信された、第1センサ装置20aの検知結果を示す第1センサデータ、第2センサ装置20bから送信された、第2センサ装置20bの検知結果を示す第2センサデータ、第3センサ装置20cから送信された、第3センサ装置20cの検知結果を示す第3センサデータを取得する。第1実施例の第1センサデータ、第2センサデータ、第3センサデータはいずれも、センサ設置位置の振動に関する情報(例えば振幅と周波数)を含む。
 ここで第1実施例のシミュレーションモデルを説明する。シミュレーションモデルは、第1時点において取得された動作条件情報と、その第1時点において取得された複数のセンサデータが示す複数のセンサ装置20の検知結果(第1実施例では振動情報)とを入力として受け付け、複数のセンサ装置20の中で予め定められた診断対象センサの第2時点における検知結果を推定する数理モデルである。数理モデルは、計算式とも言え、関数とも言える。また、シミュレーションモデルは、ロボットアーム12の可動部14の動作と、センサ装置20の検知結果を模擬するいわゆるデジタルツインのモデルであってもよい。第1実施例における第2時点は、第1時点と同じ時点とするが、変形例として、第2時点は、第1時点より後の時点であってもよい。
 第1実施例のシミュレーションモデルは、複数の可動部14の動作条件が入力される数理モデルである。また、第1実施例のシミュレーションモデルは、複数のセンサ装置20のうち診断対象センサ以外のセンサ装置20の検知結果が入力される数理モデルである。例えば、シミュレーションモデルは、第1制御信号が示す動作条件、第2制御信号が示す動作条件、第3制御信号が示す動作条件、第1センサデータが示す第1センサ装置20aの検知結果、第2センサデータが示す第2センサ装置20bの検知結果を説明変数とし、診断対象センサである第3センサ装置20cの検知結果を目的変数とする回帰式であってもよい。
 第1実施例のシミュレーションモデルの構築時、第1制御信号が示す動作条件、第2制御信号が示す動作条件、第3制御信号が示す動作条件、第1センサデータが示す第1センサ装置20aの検知結果、第2センサデータが示す第2センサ装置20bの検知結果、第3センサデータが示す第3センサ装置20cの検知結果について、これらの実際の値の組が、サンプルデータとして収集されてもよい。そして、複数のサンプルデータをもとに重回帰分析を行うことで、各説明変数の係数が決定され、シミュレーションモデルのデータが生成されてもよい。
 検知結果推定部54は、モデル記憶部46に記憶されたシミュレーションモデルのデータを読み出し、第1時点において取得された動作条件情報と、第1時点において取得された複数のセンサ装置20の検知結果とをシミュレーションモデルに入力することにより、診断対象センサの第2時点における検知結果を推定する。第1実施例では、検知結果推定部54は、複数の可動部14の動作条件をシミュレーションモデルに入力する。また、検知結果推定部54は、複数のセンサ装置20のうち診断対象センサ以外のセンサの検知結果をシミュレーションモデルに入力する。
 具体的には、検知結果推定部54は、第1時点において取得された第1制御信号が示す動作条件、第2制御信号が示す動作条件、第3制御信号が示す動作条件をシミュレーションモデルに入力する。また、検知結果推定部54は、第1時点において取得された第1センサデータが示す第1センサ装置20aの検知結果、第2センサデータが示す第2センサ装置20bの検知結果をシミュレーションモデルに入力する。そして、検知結果推定部54は、シミュレーションモデルから出力された、診断対象センサである第3センサ装置20cの第2時点における検知結果(第1実施例では振動に関する推定値)を取得する。
 センサ状態推定部56は、検知結果推定部54により推定された第2時点における診断対象センサの検知結果と、その第2時点において取得された診断対象センサの検知結果とを比較して、診断対象センサの状態を推定する。
 第1実施例では、センサ状態推定部56は、第2時点における診断対象センサの検知結果として、第2時点における第3センサ装置20cの検知結果の推定値と、第2時点において取得された診断対象センサの検知結果として、第2時点において取得された第3センサデータが示す第3センサ装置20cの実際の検知結果(計測値)とを比較する。センサ状態推定部56は、第3センサ装置20cの検知結果の推定値と、第3センサ装置20cの実際の検知結果(計測値)との差が所定の許容範囲を逸脱している場合、第3センサ装置20cの状態が異常であると推定する。この許容範囲は、診断システム10の開発者の知見や、診断システム10を用いた実験(例えば、正常な第3センサ装置20cと異常な第3センサ装置20cのそれぞれを用いた実験等)により適切な値が決定されてよい。
 センサ状態推定部56は、診断対象センサの状態の推定結果と、推定日時とを含む診断情報を診断情報記憶部48に格納する。診断情報提供部58は、外部からの要求に対する応答として、または定期的に、診断情報記憶部48に記憶された診断情報を不図示の外部装置(例えば保守者の端末等)へ送信する。
 以上の構成による第1実施例の診断システム10の動作を説明する。
 図4は、第1実施例の診断システム10の動作を示すフローチャートである。ここでは、第1時点と第2時点は同じ時点であるとして説明する。
 第1センサ装置20aの検知部30は、定期的に、ロボットアーム12における当該センサ設置位置の振動を検知する。第1センサ装置20aのアンテナ38は、検知部30による検知結果を示す第1センサデータを診断装置22へ送信する。これと並行して、第2センサ装置20bも、センサ設置位置の振動を検知し、その検知結果を示す第2センサデータを診断装置22へ送信する。同様に、第3センサ装置20cも、センサ設置位置の振動を検知し、その検知結果を示す第3センサデータを診断装置22へ送信する。診断装置22の検知結果取得部52は、第1センサ装置20a、第2センサ装置20b、第3センサ装置20cから定期的に送信された第1センサデータ、第2センサデータ、第3センサデータを取得する(S10)。
 診断装置22の動作条件情報取得部50は、或る時点(第1時点)においてロボットアーム制御装置18がロボットアーム12へ送信した第1制御信号、第2制御信号、第3制御信号をロボットアーム制御装置18から取得する(S12)。
 診断装置22の検知結果推定部54は、第1時点において動作条件情報取得部50が取得した第1制御信号が示す第1可動部14aの動作条件、第2制御信号が示す第2可動部14bの動作条件、第3制御信号が示す第3可動部14cの動作条件、第1時点において検知結果取得部52が取得した第1センサデータが示す検知結果、第2センサデータが示す検知結果をシミュレーションモデルに入力する。検知結果推定部54は、シミュレーションモデルにより推定された、第2時点(ここでは第1時点と同じ時点)の診断対象センサ(第3センサ装置20c)の検知結果(推定値)を取得する(S14)。
 診断装置22のセンサ状態推定部56は、シミュレーションモデルから得られた、第3センサ装置20cの検知結果(推定値)と、第1時点において検知結果取得部52が取得した第3センサデータが示す検知結果(実際の計測値)とを比較して、診断対象センサである第3センサ装置20cの状態を推定する(S16)。センサ状態推定部56は、第3センサ装置20cの状態の推定結果を示す診断情報を診断情報記憶部48に格納する。診断装置22の診断情報提供部58は、診断情報記憶部48に記憶された第3センサ装置20cに関する診断情報を外部装置へ提供する(S18)。
 第1実施例の診断システム10によると、ロボットアーム12の可動部14の動作条件を含むパラメータを用いて、ロボットアーム12に設置された診断対象のセンサ装置20による検知結果を推定することにより、その推定精度を高めることができる。すなわち、診断システム10によると、診断対象のセンサ装置20が正常である場合の検知結果に近似する推定値を得ることができる。また、これにより、診断対象のセンサ装置20の状態の推定精度を高めることができる。
<第2実施例>
 本発明の第2実施例について、上記の実施例と相違する点を中心に説明し、共通する点の説明を適宜省略する。第2実施例の特徴は、上記の実施例および変形例の特徴と任意の組合せが可能であることはもちろんである。第2実施例の構成要素のうち上記の実施例の構成要素と同一または対応する構成要素には適宜、同一の符号を付して説明する。
 第2実施例の診断システム10の構成は、図1に示した第1実施例の診断システム10の構成と同じである。第2実施例の診断システム10も、第1実施例の診断システム10と同様に、ロボットアーム12に設置されたセンサ装置20の状態を診断する。図5は、第2実施例の診断装置22の機能ブロックを示すブロック図である。第2実施例の診断装置22は、第1実施例の診断装置22の機能ブロックに加えて、劣化推定部60と更新部62をさらに備える。
 モデル記憶部46は、第1実施例で説明したシミュレーションモデルのデータに加えて、ロボットアーム12の劣化度合いを推定する劣化推定モデルのデータをさらに記憶する。劣化推定モデルは、複数のセンサ装置20の検知結果を示す複数のセンサデータ(第1センサデータ、第2センサデータ、第3センサデータ)を入力として受け付け、ロボットアーム12の劣化度合いを推定する数理モデルである。第2実施例の第1センサデータ、第2センサデータ、第3センサデータは、第1実施例と同様に、センサ設置位置の振動に関する情報であってもよい。
 例えば、劣化推定モデルは、第1センサデータが示す第1センサ装置20aの検知結果、第2センサデータが示す第2センサ装置20bの検知結果、第3センサデータが示す第3センサ装置20cの検知結果を説明変数とし、ロボットアーム12の劣化度合いを示す劣化指標値を目的変数とする回帰式であってもよい。劣化推定モデルの構築時、第1センサ装置20aの検知結果、第2センサ装置20bの検知結果、第3センサ装置20cの検知結果、ロボットアーム12の劣化度合いについて、これらの実際の値の組がサンプルデータとして収集されてもよい。そして、複数のサンプルデータをもとに重回帰分析を行うことで、各説明変数の係数が決定され、劣化推定モデルのデータが生成されてもよい。
 また、モデル記憶部46は、ロボットアーム12の劣化度合いに応じた複数のシミュレーションモデルのデータを記憶する。複数のシミュレーションモデルは、互いに劣化度合いが異なるロボットアーム12から収集されたサンプルデータ(第1実施例に記載)に基づいて生成されてもよい。モデル記憶部46は、複数の劣化指標値に対応付けて、それぞれの劣化指標値が示す劣化度合いに適合するシミュレーションモデルを記憶してもよい。
 劣化推定部60は、複数のセンサ装置20の検知結果に基づいて、ロボットアーム12の劣化度合いを推定する。具体的には、劣化推定部60は、モデル記憶部46に記憶された劣化推定モデルのデータを読み出し、複数のセンサ装置20から送信された、複数のセンサ装置20の検知結果を劣化推定モデルに入力することにより、ロボットアーム12の劣化度合いを推定する。
 更新部62は、劣化推定部60により推定されたロボットアーム12の劣化度合いに基づいて、検知結果推定部54により使用されるシミュレーションモデルを更新する。第2実施例では、モデル記憶部46に記憶された複数のシミュレーションモデルの中から、劣化推定部60により推定されたロボットアーム12の劣化度合いに適合するシミュレーションモデルのデータを読み出し、読み出したシミュレーションモデルのデータを検知結果推定部54に渡す。
 検知結果推定部54は、更新部62により更新されたシミュレーションモデルであり、第2実施例では、更新部62から渡された、ロボットアーム12の劣化度合いに適合するシミュレーションモデルを用いて、診断対象センサの検知結果を推定する。
 センサ状態推定部56は、ロボットアーム12の劣化度合いが所定の閾値以上である場合に診断対象センサの状態を推定する。なお、ロボットアーム12の劣化度合いが所定の閾値以上であることを条件として、検知結果推定部54が診断対象センサの検知結果を推定することにより、結果的に、センサ状態推定部56が診断対象センサの状態を推定することになる。この閾値は、診断システム10の開発者の知見や、診断システム10を用いた実験、また、ロボットアーム12の劣化度合いごとのセンサ故障確率等に基づいて適切な値が決定されてもよい。
 以上の構成による第2実施例の診断システム10の動作を説明する。
 図6は、第2実施例の診断システム10の動作を示すフローチャートである。第1実施例と同様に、診断装置22の検知結果取得部52は、第1センサ装置20a、第2センサ装置20b、第3センサ装置20cから定期的に送信された第1センサデータ、第2センサデータ、第3センサデータを取得する(S20)。診断装置22の劣化推定部60は、第1センサデータが示す第1センサ装置20aの検知結果、第2センサデータが示す第2センサ装置20bの検知結果、第3センサデータが示す第3センサ装置20cの検知結果を劣化推定モデルに入力する。劣化推定部60は、劣化推定モデルを用いて導出された、ロボットアーム12の劣化度合いを示す劣化指標値を取得する(S22)。
 診断装置22の動作条件情報取得部50は、或る時点(第1時点)においてロボットアーム制御装置18がロボットアーム12へ送信した第1制御信号、第2制御信号、第3制御信号をロボットアーム制御装置18から取得する(S24)。ロボットアーム12の劣化度合いが所定の閾値以上の場合(S26のY)、更新部62は、ロボットアーム12の劣化度合いに応じたシミュレーションモデルのデータであり、言い換えれば、S22で取得された劣化指標値に対応付けられたシミュレーションモデルのデータをモデル記憶部46から読み出して、検知結果推定部54に渡す(S28)。
 以降のS30~S34の処理は、図4に示した第1実施例の診断システム10のS14~18の処理と同じであるため説明を省略する。ロボットアーム12の劣化度合いが上記閾値未満であれば(S26のN)、S28以降の処理をスキップする。第2実施例の診断システム10によると、ロボットアーム12の劣化度合いに応じたシミュレーションモデルを使用することで、診断対象センサの検知結果の推定精度を向上することができる。また、診断システム10によると、ロボットアーム12の劣化が一定程度進行した場合に診断対象センサの状態を推定することで、当該センサの異常を効率的に検出できる。
 以上、本発明を第1実施例、第2実施例をもとに説明した。各実施例は例示であり、各実施例に記載の構成要素や処理プロセスの組合せにはいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 第1変形例として、第2実施例に関する変形例を説明する。
 ロボットアーム12に設置された複数のセンサ装置20は、第1実施例と同様に、それぞれのセンサ設置位置の振動を検知するものである。診断装置22の劣化推定部60は、複数のセンサ装置20の検知結果に基づいて算出されるセンサ設置位置での振動収束時間と、動作条件情報とに基づいて推定した振動収束時間とを比較して、ロボットアーム12の劣化度合いを推定する。
 具体的には、モデル記憶部46に記憶される劣化推定モデルは、複数のセンサ装置20それぞれの検知結果の入力を受け付け、各センサ装置20の設置位置の振動収束時間(計測値)を導出してもよい。振動収束時間は、振動が継続する時間とも言え、公知の基準をもとに導出されてもよい。例えば、振動収束時間は、予め定められた第1閾値以上の大きさの振動が検知されてから、第1閾値以下の第2閾値以上の振動が未検知となるまでの時間であってもよい。また、劣化推定モデルは、第1制御信号、第2制御信号、第3制御信号のそれぞれが示す動作条件情報の入力を受け付け、予め定められた評価関数に基づいて、各センサ装置20の設置位置の振動収束時間(推定値)を算出してもよい。評価関数は、動作条件情報が示す動作条件ごとに、各動作条件に予め対応付けられた、センサ設置位置の振動収束時間を出力するものであってもよい。
 劣化推定モデルは、第1センサ装置20a、第2センサ装置20b、第3センサ装置20cのそれぞれについて、各センサ設置位置の振動収束時間(計測値)と振動収束時間(推定値)とを比較し、比較結果に基づいて、ロボットアーム12の劣化度合いを推定してもよい。例えば、0または1のセンサ設置位置において振動収束時間(計測値)>振動収束時間(推定値)となる場合、劣化度合いが低いと推定してもよい。また、2つのセンサ設置位置において振動収束時間(計測値)>振動収束時間(推定値)となる場合、劣化度合いが中程度と推定してもよい。また、3つのセンサ設置位置において振動収束時間(計測値)>振動収束時間(推定値)となる場合、劣化度合いが高いと推定してもよい。
 診断装置22の劣化推定部60は、複数のセンサ装置20から送信された複数のセンサデータのそれぞれが示すセンサ設置位置の振動情報を劣化推定モデルに入力する。また、劣化推定部60は、ロボットアーム制御装置18から送信された第1制御信号、第2制御信号、第3制御信号のそれぞれが示す動作条件を劣化推定モデルに入力する。そして、劣化推定部60は、劣化推定モデルにより推定されたロボットアーム12の劣化度合いを示す指標値を取得する。以降の処理は、第2実施例と同じであるため説明を省略する。この変形例の構成によると、各センサ設置位置の振動収束時間に基づいて、ロボットアーム12の劣化度合いを精度よく推定することができる。
 第2変形例として、第1実施例と第2実施例の両方に関する変形例を説明する。
 第1実施例と第2実施例では、ロボットアーム12に設けられた複数の可動部14の間(リンク16)にセンサ装置20を設置したが、変形例として、複数の可動部14にセンサ装置20を設置してもよい。
 第3変形例として、第1実施例と第2実施例の両方に関する別の変形例を説明する。
 第1実施例と第2実施例では、診断対象センサを第3センサ装置20cとしたが、第1センサ装置20a、第2センサ装置20b、第3センサ装置20cのうち任意の1つまたは複数のセンサ装置20を診断対象センサとしてもよい。この場合、診断装置22のモデル記憶部46は、各診断対象センサの状態を推定するための、診断対象センサごとに異なるシミュレーションモデルを記憶してもよい。検知結果推定部54およびセンサ状態推定部56は、1つ以上の診断対象センサのそれぞれに対応するシミュレーションモデルを用いて、各診断対象センサの状態を推定してもよい。
 上記実施例のセンサ装置20は、銘板としてのセンサ装置としたが、変形例として、センサ装置20は、銘板でなくてもよく、対象物に容易に貼り付け可能なシート型またはコイン型のセンサ装置であってもよい。
 本明細書で開示した実施例のうち、複数の機能が分散して設けられているものは、当該複数の機能の一部又は全部を集約して設けても良く、逆に複数の機能が集約して設けられているものを、当該複数の機能の一部又は全部が分散するように設けることができる。機能が集約されているか分散されているかにかかわらず、発明の目的を達成できるように構成されていればよい。
 上述した実施例および変形例の任意の組み合わせもまた本発明の実施の形態として有用である。組み合わせによって生じる新たな実施の形態は、組み合わされる実施例および変形例それぞれの効果をあわせもつ。また、請求項に記載の各構成要件が果たすべき機能は、実施例および変形例において示された各構成要素の単体もしくはそれらの連携によって実現されることも当業者には理解されるところである。
 なお、実施例および変形例に記載の技術は、以下の態様によって特定されてもよい。
[項目1]
 駆動力を受けて駆動する可動部を有する機器の動作条件を識別可能な動作条件情報を取得する動作条件情報取得部と、
 前記機器に設置された複数のセンサの検知結果を取得する検知結果取得部と、
 第1時点において取得された前記動作条件情報と、前記第1時点において取得された前記複数のセンサの検知結果とをシミュレーションモデルに入力することにより、前記複数のセンサのうち特定のセンサの第2時点における検知結果を推定する検知結果推定部と、
 推定された前記第2時点における前記特定のセンサの検知結果と、前記第2時点において取得された前記複数のセンサのうち前記特定のセンサの検知結果とを比較して、前記特定のセンサの状態を推定するセンサ状態推定部と、
 を備える診断システム。
 前記第2時点は、前記第1時点と同じ時点であってもよく、異なる時点であってもよい。前記センサ状態推定部は、センサの状態が異常である場合にそのことを検出するセンサ異常検出部とも言える。
 この診断システムによると、機器の動作条件を加味して特定のセンサの検知結果を推定することにより、当該センサの検知結果の推定精度を向上させ、当該センサの状態の推定精度を向上させることができる。
[項目2]
 前記機器は、複数の可動部を有し、
 前記検知結果推定部は、前記複数の可動部の動作条件を前記シミュレーションモデルに入力することにより、前記特定のセンサの第2時点における検知結果を推定する
項目1に記載の診断システム。
 この診断システムによると、機器が複数の可動部を有する場合に、それら複数の可動部の動作条件に基づいて、特定のセンサの検知結果を推定することにより、当該センサの検知結果の推定精度を一層高めることができる。
[項目3]
 前記検知結果推定部は、前記複数のセンサのうち前記特定のセンサ以外のセンサの検知結果を前記シミュレーションモデルに入力することにより、前記特定のセンサの第2時点における検知結果を推定する
項目1または2に記載の診断システム。
 この診断システムによると、異常値の可能性がある特定のセンサの検知結果を除外することにより、当該センサの状態が異常である場合に、そのことを精度よく推定することができる。
[項目4]
 前記複数のセンサの検知結果に基づいて、前記機器の劣化度合いを推定する劣化推定部と、
 前記劣化推定部により推定された前記機器の劣化度合いに基づいて、前記シミュレーションモデルを更新する更新部と、をさらに備える
項目1から3のいずれか1項に記載の診断システム。
 この診断システムによると、機器の劣化度合いに応じたシミュレーションモデルを使用することで、特定のセンサの検知結果の推定精度を向上することができる。
[項目5]
 前記センサ状態推定部は、前記劣化推定部により推定された前記機器の劣化度合いが所定の閾値以上である場合に、前記特定のセンサの状態を推定する
項目4に記載の診断システム。
 この診断システムによると、機器の劣化が進行した場合に、特定のセンサの状態を推定することで、当該センサの異常を効率的に検出できる。
[項目6]
 前記複数のセンサは、それぞれの設置位置の振動を検知するものであり、
 前記劣化推定部は、前記複数のセンサの検知結果に基づいて算出されるセンサ設置位置での振動収束時間と、前記動作条件情報とに基づいて推定した振動収束時間とを比較して、前記機器の劣化度合を推定する
項目4または5に記載の診断システム。
 この診断システムによると、センサ設置位置の振動収束時間に基づいて、機器の劣化度合いを精度よく推定することができる。
 本開示の技術は、診断システムに適用することができる。
 10 診断システム、 12 ロボットアーム、 14 可動部、 20 センサ装置、 22 診断装置、 50 動作条件情報取得部、 52 検知結果取得部、 54 検知結果推定部、 56 センサ状態推定部、 60 劣化推定部、 62 更新部。

Claims (6)

  1.  駆動力を受けて駆動する可動部を有する機器の動作条件を識別可能な動作条件情報を取得する動作条件情報取得部と、
     前記機器に設置された複数のセンサの検知結果を取得する検知結果取得部と、
     第1時点において取得された前記動作条件情報と、前記第1時点において取得された前記複数のセンサの検知結果とをシミュレーションモデルに入力することにより、前記複数のセンサのうち特定のセンサの第2時点における検知結果を推定する検知結果推定部と、
     推定された前記第2時点における前記特定のセンサの検知結果と、前記第2時点において取得された前記複数のセンサのうち前記特定のセンサの検知結果とを比較して、前記特定のセンサの状態を推定するセンサ状態推定部と、
     を備える診断システム。
  2.  前記機器は、複数の可動部を有し、
     前記検知結果推定部は、前記複数の可動部の動作条件を前記シミュレーションモデルに入力することにより、前記特定のセンサの第2時点における検知結果を推定する
    請求項1に記載の診断システム。
  3.  前記検知結果推定部は、前記複数のセンサのうち前記特定のセンサ以外のセンサの検知結果を前記シミュレーションモデルに入力することにより、前記特定のセンサの第2時点における検知結果を推定する
    請求項1または2に記載の診断システム。
  4.  前記複数のセンサの検知結果に基づいて、前記機器の劣化度合いを推定する劣化推定部と、
     前記劣化推定部により推定された前記機器の劣化度合いに基づいて、前記シミュレーションモデルを更新する更新部と、をさらに備える
    請求項1から3のいずれか1項に記載の診断システム。
  5.  前記センサ状態推定部は、前記劣化推定部により推定された前記機器の劣化度合いが所定の閾値以上である場合に、前記特定のセンサの状態を推定する
    請求項4に記載の診断システム。
  6.  前記複数のセンサは、それぞれの設置位置の振動を検知するものであり、
     前記劣化推定部は、前記複数のセンサの検知結果に基づいて算出されるセンサ設置位置での振動収束時間と、前記動作条件情報とに基づいて推定した振動収束時間とを比較して、前記機器の劣化度合を推定する
    請求項4または5に記載の診断システム。
PCT/JP2022/014953 2021-04-26 2022-03-28 診断システム WO2022230532A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280031031.6A CN117597220A (zh) 2021-04-26 2022-03-28 诊断系统
JP2023517183A JP7537715B2 (ja) 2021-04-26 2022-03-28 診断システム
EP22795449.2A EP4331785A1 (en) 2021-04-26 2022-03-28 Diagnosis system
US18/494,969 US20240051140A1 (en) 2021-04-26 2023-10-26 Diagnostic system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-073847 2021-04-26
JP2021073847 2021-04-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/494,969 Continuation US20240051140A1 (en) 2021-04-26 2023-10-26 Diagnostic system

Publications (1)

Publication Number Publication Date
WO2022230532A1 true WO2022230532A1 (ja) 2022-11-03

Family

ID=83848027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014953 WO2022230532A1 (ja) 2021-04-26 2022-03-28 診断システム

Country Status (5)

Country Link
US (1) US20240051140A1 (ja)
EP (1) EP4331785A1 (ja)
JP (1) JP7537715B2 (ja)
CN (1) CN117597220A (ja)
WO (1) WO2022230532A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024176487A1 (ja) * 2023-02-21 2024-08-29 国立研究開発法人海洋研究開発機構 異常検出システム及び異常検出方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003205484A (ja) * 2001-12-28 2003-07-22 Honda Motor Co Ltd 脚式移動ロボットおよびその床反力検出装置
US20140088766A1 (en) * 2012-09-21 2014-03-27 United Technologies Corporation Health management having system level diagnostic feedback and information fusion
JP2017177255A (ja) * 2016-03-29 2017-10-05 ソニー株式会社 制御装置及び制御方法
WO2018073955A1 (ja) * 2016-10-21 2018-04-26 日本電気株式会社 システム分析方法、システム分析装置、および、プログラム
JP2020021292A (ja) * 2018-08-01 2020-02-06 ルネサスエレクトロニクス株式会社 情報処理装置、情報処理システム、及びプログラム
JP2020039397A (ja) 2018-09-06 2020-03-19 株式会社デンソー 作業装置
JP2021047183A (ja) * 2019-09-19 2021-03-25 株式会社日立製作所 ロボット装置の異常を検出する方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003205484A (ja) * 2001-12-28 2003-07-22 Honda Motor Co Ltd 脚式移動ロボットおよびその床反力検出装置
US20140088766A1 (en) * 2012-09-21 2014-03-27 United Technologies Corporation Health management having system level diagnostic feedback and information fusion
JP2017177255A (ja) * 2016-03-29 2017-10-05 ソニー株式会社 制御装置及び制御方法
WO2018073955A1 (ja) * 2016-10-21 2018-04-26 日本電気株式会社 システム分析方法、システム分析装置、および、プログラム
JP2020021292A (ja) * 2018-08-01 2020-02-06 ルネサスエレクトロニクス株式会社 情報処理装置、情報処理システム、及びプログラム
JP2020039397A (ja) 2018-09-06 2020-03-19 株式会社デンソー 作業装置
JP2021047183A (ja) * 2019-09-19 2021-03-25 株式会社日立製作所 ロボット装置の異常を検出する方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024176487A1 (ja) * 2023-02-21 2024-08-29 国立研究開発法人海洋研究開発機構 異常検出システム及び異常検出方法
JP7541675B1 (ja) 2023-02-21 2024-08-29 国立研究開発法人海洋研究開発機構 異常検出システム及び異常検出方法

Also Published As

Publication number Publication date
US20240051140A1 (en) 2024-02-15
CN117597220A (zh) 2024-02-23
EP4331785A1 (en) 2024-03-06
JP7537715B2 (ja) 2024-08-21
JPWO2022230532A1 (ja) 2022-11-03

Similar Documents

Publication Publication Date Title
JP6996794B2 (ja) 回転機器の自動故障診断・予後診断システムおよび方法
CN110515351B (zh) 异常检测器
US10335962B1 (en) Comprehensive fault detection and diagnosis of robots
CN109940622B (zh) 一种基于电机电流的机器人机械臂无传感碰撞检测方法
US10502253B2 (en) Machine learning device for learning assembly operation and component assembly system
CN113227926B (zh) 用于监测电机的状况监测装置和方法
CN110187694B (zh) 故障预测装置以及机器学习装置
US10571890B2 (en) Diagnostic data acquisition system, diagnostic system, and computer readable medium
US10444731B2 (en) Controller and machine learning device
JP2022046691A (ja) 内蔵物体の状態確認装置、動作確認装置および内蔵物体の状態確認方法
JP2017117180A (ja) ノイズの発生原因を検出する学習機能を有する制御装置
US20240051140A1 (en) Diagnostic system
CN112677147B (zh) 事件估计系统和事件估计方法
Er et al. Approach towards sensor placement, selection and fusion for real-time condition monitoring of precision machines
KR101487624B1 (ko) 로봇 머니퓰레이터 제어 방법
JP2021060313A (ja) 診断装置及び機械学習装置
CN110167720A (zh) 监测装置、监控系统和用于对其进行编程的方法
WO2020195537A1 (ja) 構造物の状態判別モデル作成方法及びその作成システム
Flacco et al. Robust estimation of variable stiffness in flexible joints
WO2022230531A1 (ja) 診断システム
CN113711138A (zh) 伺服控制装置
Khalil et al. Sensor measurements only with transmissibility operators for fault detection in flexible beams
JP2020166819A (ja) 構造物の状態判別モデル作成方法及びその作成システム
US20190195712A1 (en) System and method for predicting strain power spectral densities of light machine structure
US20230236237A1 (en) Method for automatically creating installation-specific measuring profiles for an insulation monitoring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023517183

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280031031.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022795449

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022795449

Country of ref document: EP

Effective date: 20231127