WO2022230279A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2022230279A1
WO2022230279A1 PCT/JP2022/003861 JP2022003861W WO2022230279A1 WO 2022230279 A1 WO2022230279 A1 WO 2022230279A1 JP 2022003861 W JP2022003861 W JP 2022003861W WO 2022230279 A1 WO2022230279 A1 WO 2022230279A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
transistor
circuit
pixel
switch
Prior art date
Application number
PCT/JP2022/003861
Other languages
English (en)
French (fr)
Inventor
啓悟 中澤
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2022230279A1 publication Critical patent/WO2022230279A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present disclosure relates to an imaging device that captures an image of a subject.
  • Japanese Patent Laid-Open No. 2002-200002 discloses a technique for suppressing such blackening at high luminance by clipping the voltage of a vertical signal line in an imaging device in which a plurality of pixels are connected to the vertical signal line.
  • some imaging devices perform AD (Analog to Digital) conversion on each of a plurality of pixels. Also in such an imaging device, it is desired to suppress degradation of image quality by suppressing blackening at high brightness.
  • AD Analog to Digital
  • An imaging device includes a pixel circuit.
  • the pixel circuit has a first light receiving element, a first storage section, a first transfer switch, a voltage limiting circuit, and a comparing circuit.
  • the first light receiving element generates an electric charge according to the amount of light received.
  • the first accumulation section is configured to be capable of accumulating charges generated by the first light receiving element.
  • the first transfer switch is configured to be able to connect the first light receiving element and the first storage unit when turned on.
  • the voltage limiting circuit is configured to be capable of generating a pixel signal corresponding to the voltage accumulated in the first accumulation unit and limiting the voltage of the pixel signal so as not to exceed the limit voltage.
  • the comparison circuit is configured to be able to compare a reference signal having a ramp waveform and a pixel signal.
  • the first light receiving element generates an electric charge corresponding to the amount of light received, and the first transfer switch is turned on, whereby the electric charge generated by the first light receiving element is The charged charges are transferred to the first storage unit and stored in the first storage unit.
  • the voltage limiting circuit generates a pixel signal corresponding to the accumulated voltage in the first accumulation section. The voltage of this pixel signal is limited by this voltage limiting circuit so as not to exceed the limit voltage.
  • a comparison circuit then compares the reference signal having a ramp waveform with this pixel signal.
  • FIG. 1 is a block diagram showing a configuration example of an imaging device according to an embodiment of the present disclosure
  • FIG. FIG. 2 is a schematic diagram showing an implementation example of the imaging device shown in FIG. 1
  • FIG. 2 is an explanatory diagram showing one configuration example of a cluster shown in FIG. 1
  • 2 is a circuit diagram showing a configuration example of a pixel circuit corresponding to the pixel shown in FIG. 1
  • FIG. 5 is a circuit diagram showing a configuration example of a voltage limiting circuit shown in FIG. 4
  • FIG. 5 is a timing waveform diagram showing an operation example of the pixel circuit shown in FIG. 4
  • FIG. 5 is a timing waveform diagram showing another operation example of the pixel circuit shown in FIG. 4
  • FIG. 11 is a circuit diagram showing a configuration example of a light receiving circuit according to another modified example;
  • FIG. 11 is a circuit diagram showing a configuration example of a light receiving circuit according to another modified example;
  • FIG. 11 is a circuit diagram showing a configuration example of a voltage limiting circuit according to another modified example;
  • FIG. 11 is a circuit diagram showing a configuration example of a light receiving circuit according to another modified example;
  • FIG. 11 is a circuit diagram showing a configuration example of a pixel circuit according to another modified example; It is explanatory drawing showing the usage example of an imaging device.
  • 1 is a block diagram showing an example of a schematic configuration of a vehicle control system;
  • FIG. FIG. 4 is an explanatory diagram showing an example of an installation position of an imaging unit;
  • FIG. 1 shows a configuration example of an imaging device (imaging device 1) according to an embodiment.
  • the imaging device 1 includes a pixel array 11, a reference signal generator 12, a time code generator 13, a bias generator 14, a pixel driver 15, a signal processor 16, and a timing generator 17. there is The imaging device 1 is formed on two semiconductor substrates in this example.
  • FIG. 2 shows an implementation example of the imaging device 1.
  • FIG. The imaging device 1 is formed on two semiconductor substrates 101 and 102 in this example.
  • the semiconductor substrate 101 is arranged on the imaging surface S side of the imaging device 1
  • the semiconductor substrate 102 is arranged on the side opposite to the imaging surface S of the imaging device 1 .
  • Semiconductor substrates 101 and 102 are overlaid on each other.
  • the wiring of the semiconductor substrate 101 and the wiring of the semiconductor substrate 102 are connected by the wiring 103 .
  • metal bonding such as Cu--Cu can be used.
  • the pixel array 11 (Fig. 1) has a plurality of pixels P arranged in a matrix.
  • the pixel P has a photodiode PD, generates a pixel signal SIG1 corresponding to the amount of light received, and is configured to perform AD conversion based on this pixel signal SIG1.
  • a predetermined number of pixels P constitute one cluster CL.
  • each of the plurality of clusters CL in this example, four pixels P are arranged side by side in the horizontal direction and several tens of pixels P are arranged side by side in the vertical direction.
  • Such clusters CL are arranged vertically and horizontally in the pixel array 11 .
  • FIG. 3 shows a configuration example of the cluster CL.
  • the cluster CL has a plurality of pixel circuits 20 corresponding to a plurality of pixels P and repeaters 29 .
  • FIG. 4 shows a configuration example of the pixel circuit 20.
  • the pixel circuit 20 has a light receiving circuit 21 , a comparison circuit 22 and a latch 23 .
  • the light receiving circuit 21 is configured to generate a pixel signal SIG1 corresponding to the amount of light received.
  • the light receiving circuit 21 has a photodiode PD, transistors MN1 to MN4, a floating diffusion FD, and a voltage limiting circuit 30.
  • FIG. The transistors MN1 to MN4 are N-type MOS (Metal Oxide Semiconductor) transistors. As shown in FIG. 4, the photodiode PD, the transistors MN1 to MN4, and the floating diffusion FD are provided on the semiconductor substrate 101, and the voltage limiting circuit 30 is provided on the semiconductor substrate .
  • the photodiode PD is a photoelectric conversion element that generates an amount of charge corresponding to the amount of light received and accumulates it inside.
  • the photodiode PD has an anode grounded and a cathode connected to the sources of the transistors MN1 and MN2.
  • the gate of the transistor MN1 is supplied with the control signal OFG from the pixel driving section 15 (FIG. 1), the drain is supplied with the voltage VOFG, and the source is connected to the cathode of the photodiode PD and the source of the transistor MN2.
  • the gate of the transistor MN2 is supplied with a control signal TX from the pixel driving section 15 (FIG. 1), the source is connected to the cathode of the photodiode PD and the source of the transistor MN1, and the drain is connected to the floating diffusion FD and the source of the transistor MN3. and connected to the input terminal of the voltage limiting circuit 30 via the wiring 103 between the semiconductor substrates 101 and 102 .
  • the floating diffusion FD is configured to accumulate charges transferred from the photodiode PD.
  • the floating diffusion FD is configured using a diffusion layer formed on the surface of the semiconductor substrate 101, for example. In FIG. 4, the floating diffusion FD is shown using a capacitor symbol.
  • the gate of the transistor MN3 is supplied with the control signal RST from the pixel driving section 15 (FIG. 1), the drain is connected to the drain of the transistor MN11 (described later) of the comparison circuit 22, and the source is connected to the floating diffusion FD and the drain of the transistor MN2. In addition to being connected, it is connected to the input terminal of the voltage limiting circuit 30 via the wiring 103 between the semiconductor substrates 101 and 102 .
  • the light receiving circuit 21 the charge accumulated in the photodiode PD is discharged by turning on the transistor MN1 based on the control signal OFG. Then, when the transistor MN1 is turned off, an exposure period is started, and an amount of charge corresponding to the amount of light received is accumulated in the photodiode PD. After the exposure period ends, the light receiving circuit 21 supplies the pixel signal SIG including the reset voltage and the pixel voltage to the voltage limiting circuit 30 . Specifically, the light receiving circuit 21 resets the voltage of the floating diffusion FD by turning on the transistor MN3, as will be described later.
  • the light receiving circuit 21 supplies the voltage (reset voltage) of the floating diffusion FD at that time to the voltage limiting circuit 30 in the P-phase (Pre-charge phase) period TP after the voltage of the floating diffusion FD is reset. Also, the light receiving circuit 21 transfers the charge from the photodiode PD to the floating diffusion FD by turning on the transistor MN2. Then, the light receiving circuit 21 supplies the voltage (pixel voltage) of the floating diffusion FD at that time to the voltage limiting circuit 30 in the D phase (Data phase) period TD after the charge is transferred.
  • the voltage limiting circuit 30 is configured to generate a pixel signal SIG1 corresponding to the pixel signal SIG and limit the pixel signal SIG1 so as not to exceed the limit voltage.
  • the voltage limiting circuit 30 supplies the generated pixel signal SIG1 to the gate of the transistor MN11 (described later) of the comparator circuit 22 via the wiring 103 between the semiconductor substrates 101 and 102. FIG. This voltage limiting circuit 30 will be described later.
  • the gate of the transistor MN4 is supplied with the control signal RST from the pixel driving section 15 (FIG. 1), the drain is connected to the drain of the transistor MN11 (described later) of the comparison circuit 22, and the source is connected to the gate of the transistor MN11 of the comparison circuit 22. In addition to being connected, it is connected to the output terminal of the voltage limiting circuit 30 via the wiring 103 between the semiconductor substrates 101 and 102 .
  • the comparison circuit 22 (FIGS. 3 and 4) is configured to generate the signal CMP by comparing the voltage of the reference signal REF and the voltage of the pixel signal SIG1.
  • the comparison circuit 22 sets the signal CMP to high level when the voltage of the reference signal REF is higher than the voltage of the pixel signal SIG, and sets the signal CMP to low level when the voltage of the reference signal REF is lower than the voltage of the pixel signal SIG.
  • the comparison circuit 22 has transistors MN11 to MN13, MP14 and MP15, and an amplifier AMP.
  • the transistors MN11 to MN13 are N-type MOS transistors, and the transistors MP14 and MP15 are P-type MOS transistors. As shown in FIG. 4, the transistors MN11 to MN13 are provided on the semiconductor substrate 101, and the transistors MP14 and MP15 are provided on the semiconductor substrate .
  • the pixel signal SIG1 is supplied to the gate of the transistor MN11, the drain is connected to the drains of the transistors MN3 and MN4 in the light receiving circuit 21, and the drain of the transistor MP14 and the amplifier AMP are connected via the wiring 103 between the semiconductor substrates 101 and 102. and its source is connected to the source of transistor MN12 and the drain of transistor MN13.
  • the gate of the transistor MN12 is supplied with the reference signal REF from the reference signal generator 12 through the wiring 103 between the semiconductor substrates 101 and 102, and the drain of the transistor MN12 is supplied through the wiring 103 between the semiconductor substrates 101 and 102 to the drain of the transistor MP15. and the gates of transistors MP14 and MP15, and the source is connected to the source of transistor MN11 and the drain of transistor MN13.
  • the reference signal REF is a signal having a so-called ramp waveform in which the voltage level gradually changes over time in the P-phase period TP and the D-phase period TD.
  • a bias voltage Vb is supplied from the bias generator 14 (FIG.
  • Transistors MN11 and MN12 form a differential pair, and transistor MN13 forms a constant current source.
  • the gate of the transistor MP14 is connected to the gate and drain of the transistor MP15, and is also connected to the drain of the transistor MN12 through the wiring 103 between the semiconductor substrates 101 and 102.
  • the source is supplied with the power supply voltage VDD, and the drain is connected to the amplifier AMP. , and is connected to the drain of the transistor MN11 and the drains of the transistors MN3 and MN4 in the light receiving circuit 21 through the wiring 103 between the semiconductor substrates 101 and 102.
  • the gate of the transistor MP15 is connected to the gate of the transistor MP14 and the drain of the transistor MP15, and is also connected to the drain of the transistor MN12 via the wiring 103 between the semiconductor substrates 101 and 102. is connected to the gates of the transistors MP14 and MP15 and to the drain of the transistor MN12 through the wiring 103 between the semiconductor substrates 101 and 102.
  • Transistors MP14 and MP15 constitute active loads for transistors MN11 and MN12.
  • the comparison circuit 22 generates the signal CMP by comparing the voltage of the reference signal REF and the voltage of the pixel signal SIG1.
  • the latch 23 (FIGS. 3 and 4) is configured to latch the time code TC, which is supplied from the repeater 29 and changes with time, based on the signal CMP.
  • the time code TC is a multi-bit code, and can use, for example, a Gray code.
  • Latch 23 is connected to repeater 29 via a bus line having a bit width of multiple bits. As will be described later, the latch 23 latches the time code TC at the transition timing of the signal CMP during the P-phase period TP, thereby determining the time (code value CP) from the start of the P-phase period TP to the transition timing.
  • the latch 23 acquires the time (code value CD) from the start of the D-phase period TD to the transition timing by latching the time code TC at the transition timing of the signal CMP during the D-phase period TD. .
  • the latch 23 then supplies these two code values CP and CD to the repeater 29 .
  • Latch 23 is located on semiconductor substrate 102 as shown in FIG.
  • the repeater 29 (FIGS. 3 and 4) supplies the time code TC supplied from the time code generator 13 to the latches 23 of the plurality of pixels P belonging to the cluster CL in the P-phase period TP and the D-phase period TD. configured to Also, the repeater 29 supplies the code values CP and CD supplied from these latches 23 to the signal processing section 16 after the P-phase period TP and the D-phase period TD are completed.
  • a repeater 29 is connected to these latches 23 via a bus line having a bit width of multiple bits. Repeater 29 is disposed on semiconductor substrate 102 as shown in FIG.
  • the reference signal generation section 12 (FIG. 1) is configured to generate the reference signal REF based on the instruction from the timing generation section 17 .
  • the reference signal REF has a so-called ramp waveform in which the voltage level gradually changes over time in the P-phase period TP and the D-phase period TD.
  • the reference signal generator 12 then supplies the generated reference signal REF to the plurality of pixel circuits 20 in the pixel array 11 .
  • the reference signal generator 12 is arranged on the semiconductor substrate 102 as shown in FIG.
  • the time code generator 13 is configured to generate the time code TC based on the instruction from the timing generator 17 .
  • the time code TC is a multi-bit code that changes with the passage of time, and can use, for example, a Gray code.
  • the time code generator 13 then supplies the generated time code TC to the repeaters 29 in a plurality of clusters CL.
  • the time code generator 13 is arranged, for example, on the semiconductor substrate 102 (FIG. 2).
  • the bias generator 14 is configured to generate various bias voltages and bias currents used in the imaging device 1 . Specifically, the bias generation unit 14 generates, for example, a bias voltage Vb and voltages V1 to V3 (described later), and supplies these voltages to the plurality of pixel circuits 20, respectively.
  • the pixel driving section 15 is configured to control operations of the plurality of pixel circuits 20 in the pixel array 11 . Specifically, the pixel drive unit 15 generates control signals OFG, TX, RST, and control signals CTL1 to CTL3 (described later), and supplies these control signals to the pixel circuit 20, thereby causing the pixel circuit 20 to operate. It is designed to control the action.
  • the pixel driving section 15 is arranged, for example, on the semiconductor substrate 102 (FIG. 2).
  • the signal processing unit 16 is configured to generate the image signal Spic by performing predetermined image processing based on the code values CP and CD generated by each of the plurality of pixel circuits 20 .
  • the predetermined image processing includes, for example, a process of generating a pixel value using the principle of correlated double sampling (CDS) based on two code values CP and CD, and a process of generating a black level for correcting the black level. Including correction processing.
  • the signal processing unit 16 is arranged, for example, on a semiconductor substrate 102 (FIG. 2).
  • the timing generation unit 17 generates various timing signals and supplies the generated various timing signals to the reference signal generation unit 12, the time code generation unit 13, the pixel drive unit 15, and the signal processing unit 16. 1 is configured to control the operation of The timing generator 17 is arranged, for example, on the semiconductor substrate 102 (FIG. 2).
  • FIG. 5 shows a configuration example of the voltage limiting circuit 30. As shown in FIG. In FIG. 5, not only the voltage limiting circuit 30 but also circuits around the voltage limiting circuit 30 are drawn.
  • the voltage limiting circuit 30 has transistors MN21 and MN22, a constant current source CUR, a switch SW1, a capacitor C1, and switches SW2 and SW3.
  • the transistors MN21 and MN22 are N-type MOS transistors.
  • the transistor MN21 has a gate connected to the input terminal IN of the voltage limiting circuit 30, a drain supplied with the power supply voltage VDD, and a source connected to the node N1.
  • the transistor MN22 has a gate connected to the node N2, a drain supplied with the power supply voltage VDD, and a source connected to the node N1.
  • the size of transistor MN21 and the size of transistor MN22 are equal to each other.
  • the gate width of the transistor MN21 and the gate width of the transistor MN22 are equal to each other, and the gate length of the transistor MN21 and the gate length of the transistor MN22 are equal to each other.
  • Transistor MN21 and transistor MN22 are arranged close to each other.
  • Node N1 is connected to output terminal OUT of voltage limiting circuit 30 .
  • the switch SW1 is configured to connect the node N1 and the node N2 to each other based on the control signal CTL1 supplied from the pixel driving section 15 (FIG. 1).
  • the switch SW1 is configured using, for example, one or more MOS transistors.
  • a first terminal of the capacitor C1 is connected to the node N2, and a second terminal is connected to the switch SW2.
  • the switch SW2 supplies one of the voltage V1 and the voltage V2 generated by the bias generating section 14 to the second terminal of the capacitor C1 based on the control signal CTL2 supplied from the pixel driving section 15 (FIG. 1). configured to In this example, voltage V1 is a higher voltage than voltage V2.
  • Switch SW2, in this example, provides voltage V1 to the second terminal of capacitor C1 when control signal CTL1 is high, and voltage V2 to capacitor C1 when control signal CTL1 is low. It feeds the second terminal of C1.
  • the switch SW3 is configured to supply the voltage V3 generated by the bias generating section 14 to the node N2 based on the control signal CTL3 supplied from the pixel driving section 15 (FIG. 1).
  • the voltage limiting circuit 30 when normal light enters the imaging device 1, the transistor MN21 and the constant current source CUR operate as a so-called source follower circuit. As a result, the voltage limiting circuit 30 outputs from the output terminal OUT a pixel signal SIG1 corresponding to the pixel signal SIG input to the input terminal IN. Further, for example, when strong light such as sunlight enters the imaging device 1 and the voltage in the floating diffusion FD (the voltage of the pixel signal SIG) becomes extremely low, the gate voltage of the transistor MN21 becomes lower than the gate voltage of In this case, transistor MN22 and constant current source CUR operate as a so-called source follower circuit.
  • the voltage limiting circuit 30 outputs the pixel signal SIG1 having a voltage (limiting voltage) corresponding to the gate voltage of the transistor MN22 from the output terminal OUT. That is, the voltage limiting circuit 30 can limit the voltage of the pixel signal SIG1 so as not to fall below the limit voltage even when the voltage of the pixel signal SIG input to the input terminal IN becomes low. As a result, the imaging apparatus 1 can suppress blackening at high brightness.
  • the pixel circuit 20 corresponds to a specific example of "pixel circuit” in the present disclosure.
  • the photodiode PD corresponds to a specific example of "first light receiving element” and “second light receiving element” in the present disclosure.
  • the floating diffusion FD corresponds to a specific example of the "first storage section” and the “second storage section” in the present disclosure.
  • the transistor MN2 corresponds to a specific example of "first transfer switch” and “second transfer switch” in the present disclosure.
  • the pixel signal SIG1 corresponds to a specific example of "pixel signal” in the present disclosure.
  • the voltage limiting circuit 30 corresponds to a specific example of “voltage limiting circuit” in the present disclosure.
  • the reference signal REF corresponds to a specific example of "reference signal” in the present disclosure.
  • the comparison circuit 22 corresponds to a specific example of the "comparison circuit” in the present disclosure.
  • the transistor MN21 corresponds to a specific example of "first transistor” in the present disclosure.
  • the transistor MN22 corresponds to a specific example of “second transistor” in the present disclosure.
  • the constant current source CUR corresponds to a specific example of "first current source” in the present disclosure.
  • the switch SW1 corresponds to a specific example of "first switch” in the present disclosure.
  • Capacitor C1 corresponds to a specific example of “capacitor” in the present disclosure.
  • the switch SW2 corresponds to a specific example of the "voltage setting circuit” in the present disclosure.
  • Voltage V1 corresponds to a specific example of "first voltage” in the present disclosure.
  • Voltage V2 corresponds to a specific example of "second voltage” in the present disclosure.
  • the transistor MN11 corresponds to a specific example of "fourth transistor” in the present disclosure.
  • the transistor MN12 corresponds to a specific example of the "fifth transistor” in the present disclosure.
  • the transistor MN13 corresponds to a specific example of "third current source” in the present disclosure.
  • the transistor MN3 corresponds to a specific example of "third switch” in the present disclosure.
  • the transistor MN4 corresponds to a specific example of "fourth switch” in the present disclosure.
  • the pixel drive section 15 corresponds to a specific example of the "control section” in the present disclosure.
  • the switch SW3 corresponds to a specific example of the "fifth switch” in the present disclosure.
  • the semiconductor substrate 101 corresponds to a specific example of "first substrate” in the present disclosure.
  • the semiconductor substrate 102 corresponds to a specific example of “second substrate” in the present disclosure.
  • the time code generator 13 corresponds to a specific example of the "time code generation circuit” in the present disclosure.
  • the latch 23 corresponds to a specific example of "latch circuit” in the present disclosure.
  • the reference signal generator 12 generates a reference signal REF.
  • the time code generator 13 generates a time code TC.
  • the repeater 29 supplies the timecode TC to the latches 23 of the pixels P belonging to the cluster CL.
  • the pixel drive section 15 controls operations of the plurality of pixel circuits 20 in the pixel array 11 .
  • Each of the plurality of pixel circuits 20 in the pixel array 11 generates a pixel signal SIG including a reset voltage and a pixel voltage, and generates a pixel signal SIG1 based on this pixel signal SIG.
  • each of the plurality of pixel circuits 20 generates code values CP and CD by performing AD conversion based on this pixel signal SIG1.
  • the repeater 29 supplies the code values CP and CD to the signal processor 16 .
  • the signal processing unit 16 generates an image signal Spic by performing predetermined image processing based on the code values CP and CD generated by each of the plurality of pixel circuits 20 .
  • the timing generation unit 17 generates various timing signals and supplies the generated various timing signals to the reference signal generation unit 12, the time code generation unit 13, the pixel drive unit 15, and the signal processing unit 16. 1 operation.
  • the charge accumulated in the photodiode PD is discharged by turning on the transistor MN1 based on the control signal OFG. Then, when the transistor MN1 is turned off, an exposure period is started, and an amount of charge corresponding to the amount of light received is accumulated in the photodiode PD. After the exposure period ends, the pixel circuit 20 generates a pixel signal SIG including a reset voltage and a pixel voltage, and generates a pixel signal SIG1 based on this pixel signal SIG. Then, the pixel circuit 20 performs AD conversion based on this pixel signal SIG1. Focusing on a certain pixel circuit 20, AD conversion in this pixel circuit 20 will be described in detail below.
  • FIG. 6 shows an operation example of AD conversion in the pixel circuit 20 when normal light is incident on the image pickup device 1.
  • A shows the waveform of the control signal RST
  • B shows the control signal RST.
  • C shows the waveform of the control signal CTL1
  • D shows the waveform of the control signal CTL2
  • E shows the waveform of the control signal CTL3
  • F shows the waveform of the pixel signal SIG.
  • G shows the waveform of the voltage VN2 at the node N2 of the voltage limiting circuit 30
  • H shows the waveform of the reference signal REF
  • I shows the waveform of the pixel signal SIG1
  • J indicates the waveform of the signal CMP.
  • the waveforms of the pixel signal SIG and the voltage VN2 are shown on the same voltage axis.
  • the waveforms of the reference signal REF and the pixel signal SIG1 are shown on the same voltage axis.
  • the reference signal generator 12 changes the voltage of the reference signal REF to the voltage Vx ((H) in FIG. 6).
  • the pixel driving section 15 changes the control signal RST from low level to high level ((A) in FIG. 6).
  • the transistors MN3 and MN4 are turned on.
  • the voltage of the floating diffusion FD (the voltage of the pixel signal SIG) is set to the voltage Vx ((F) in FIG. 6).
  • the voltage of the pixel signal SIG1 is set to the voltage Vx by turning on the transistor MN4 ((I) in FIG. 6). In this manner, both the gate voltage (the voltage of the pixel signal SIG) and the source voltage (the voltage of the pixel signal SIG1) of the transistor MN21 are set to the voltage Vx, so the transistor MN21 is in an off state.
  • the pixel driving section 15 changes the control signal CTL1 from low level to high level ((C) in FIG. 6).
  • the switch SW1 is turned on, and the node N1 and the node N2 are connected to each other. Since the voltage of the node N1 (the voltage of the pixel signal SIG1) is the voltage Vx, the voltage VN2 of the node N2 is set to the voltage Vx ((G) in FIG. 6).
  • the pixel driving section 15 changes the control signal CTL2 from low level to high level ((D) in FIG. 6). Accordingly, in the pixel circuit 20, the switch SW2 supplies the voltage V1 to the second terminal of the capacitor C1. Since the voltage VN2 at the first terminal of the capacitor C1 is the voltage Vx, the capacitor C1 is charged and a voltage difference (Vx-V1) is established between the first and second terminals of the capacitor C1.
  • the reference signal generator 12 changes the voltage of the reference signal REF to the voltage VA (FIG. 6(H)).
  • the pixel driving section 15 changes the control signal RST from high level to low level ((A) in FIG. 6).
  • the transistors MN3 and MN4 are turned off.
  • the floating diffusion FD becomes electrically floating.
  • the voltage of the floating diffusion FD (the voltage of the pixel signal SIG) is maintained at the voltage Vx ((F) in FIG. 6).
  • the constant current source CUR causes the current to flow from the node N1 toward the ground due to the transistor MN4 being turned off, the voltage of the node N1 (the voltage of the pixel signal SIG1) decreases ((I) in FIG. 6). .
  • the voltage VN2 of the node N2 also drops (FIG. 6(G)).
  • the source voltage of the transistor MN21 (the voltage of the pixel signal SIG1) becomes lower than the gate voltage of the transistor MN21 (the voltage of the pixel signal SIG) by a voltage ⁇ V21 due to the drop in the voltage of the node N1, the transistor MN21, the node N1, A current flows through the path of the constant current source CUR.
  • the voltage ⁇ V21 is a drop in the gate-source voltage Vgs of the transistor MN21, and is the sum of the threshold voltage Vth of the transistor MN21 and the so-called overdrive voltage Vov for operating the transistor MN21 in the saturation region ( Vth+Vov).
  • the transistor MN21 and the constant current source CUR operate as a so-called source follower.
  • the voltage limiting circuit 30 generates the pixel signal SIG1, which is lower than the pixel signal SIG by the voltage ⁇ V21, based on the input pixel signal SIG ((F), (I) in FIG. 6).
  • the voltage of the pixel signal SIG1 becomes "Vx- ⁇ V21" ((F) in FIG. 6).
  • the voltage VN2 of the node N2 also becomes "Vx- ⁇ V21" (FIG. 6(G)).
  • the pixel driving section 15 changes the control signal CTL1 from high level to low level (FIG. 6(C)).
  • the switch SW1 is turned off, and the node N1 and the node N2 are disconnected from each other.
  • the pixel driving section 15 changes the control signal CTL2 from high level to low level ((D) in FIG. 6).
  • the voltage VN2 at the node N2 becomes "Vx- ⁇ V21- ⁇ V" (FIG. 6(G)).
  • the pixel circuit 20 performs AD conversion based on the voltage of the pixel signal SIG1 corresponding to the voltage (reset voltage) of the pixel signal SIG. Specifically, at timing t14, the reference signal generator 12 starts to lower the voltage of the reference signal REF from the voltage VA by a predetermined degree of change ((H) in FIG. 6). Also, the time code generator 13 starts the increment operation of the time code TC at this timing t14. Repeater 29 supplies this time code TC to latch 23 . As a result, the latch 23 is supplied with the time code TC that changes with the passage of time.
  • the comparison circuit 22 changes the signal CMP from high level to low level (FIG. 6(J)).
  • the latch 23 latches the time code TC based on the transition of this signal CMP.
  • the code value CP of the time code TC latched by the latch 23 is a code value corresponding to the length of time between timings t14 and t15.
  • the code value CP is a code value corresponding to the voltage of the pixel signal SIG1 during the P-phase period TP.
  • the time code generator 13 ends the increment operation of the time code TC as the P-phase period TP ends.
  • the reference signal generator 12 stops changing the voltage of the reference signal REF and changes the voltage of the reference signal REF to the voltage VA ((H) in FIG. 6).
  • the voltage of the reference signal REF becomes higher than the voltage of the pixel signal SIG1 ((H), (I) in FIG. 6), and the comparison circuit 22 changes the signal CMP from low level to high level (( J)).
  • the pixel driving section 15 changes the control signal CTL3 from low level to high level ((E) in FIG. 6).
  • the switch SW3 is turned on, and the voltage VN2 of the node N2 is set to the voltage V3 ((G) in FIG. 6).
  • the pixel driving section 15 changes the control signal TX from low level to high level ((B) in FIG. 6).
  • the transistor MN2 is turned on, the charge generated in the photodiode PD is transferred to the floating diffusion FD, and the voltage of the floating diffusion FD (the voltage of the pixel signal SIG) changes according to the amount of received light. It becomes the pixel voltage (FIG. 6(F)).
  • the voltage of this pixel signal SIG is higher than the voltage VN2 at the node N2 ((F), (G) in FIG. 6).
  • the voltage limiting circuit 30 generates the pixel signal SIG1 that is lower than the pixel signal SIG by voltage ⁇ V21 ((I) in FIG. 6).
  • the pixel driving section 15 changes the control signal TX from high level to low level ((B) in FIG. 6). This turns off the transistor MN2.
  • the pixel circuit 20 performs AD conversion based on the voltage of the pixel signal SIG1 corresponding to the voltage of the pixel signal SIG (pixel voltage). Specifically, at timing t19, the reference signal generation unit 12 starts lowering the voltage of the reference signal REF from the voltage VA at a predetermined degree of change ((H) in FIG. 6). Also, the time code generator 13 starts the increment operation of the time code TC at this timing t19. Repeater 29 supplies this time code TC to latch 23 . As a result, the latch 23 is supplied with the time code TC that changes with the passage of time.
  • the comparison circuit 22 changes the signal CMP from high level to low level (FIG. 6(J)).
  • the latch 23 latches the time code TC based on the transition of this signal CMP.
  • the code value CD of the time code TC latched by the latch 23 is a code value corresponding to the length of time from timing t19 to t20.
  • the code value CD is a code value corresponding to the voltage of the pixel signal SIG1 during the D-phase period TD.
  • the time code generator 13 ends the increment operation of the time code TC as the D-phase period TD ends.
  • the reference signal generator 12 stops changing the voltage of the reference signal REF and changes it to the voltage VA ((H) in FIG. 6).
  • the voltage of the reference signal REF becomes higher than the voltage of the pixel signal SIG1 ((H), (I) in FIG. 6), and the comparison circuit 22 changes the signal CMP from low level to high level (( J)).
  • the plurality of pixel circuits 20 in the cluster CL sequentially supply the code values CP and CD to the repeater 29, and the repeater 29 sends these code values CP and CD to the signal processing unit 16. Sequential supply.
  • the signal processing unit 16 performs predetermined image processing based on the code values CP and CD generated by each of the plurality of pixel circuits 20 . For example, the signal processing unit 16 generates pixel values using the principle of correlated double sampling based on the code values CP and CD. Specifically, the signal processing unit 16 generates a pixel value by, for example, subtracting the code value CP from the code value CD. The signal processing unit 16 also performs black level correction processing for correcting the black level. Thus, the signal processing unit 16 generates the image signal Spic.
  • FIG. 7 shows an operation example of AD conversion in the pixel circuit 20 when strong light such as sunlight is incident on the imaging device 1 .
  • the reference signal generator 12 changes the voltage of the reference signal REF to the voltage Vx ((H) in FIG. 7).
  • the pixel driving section 15 changes the control signal RST from low level to high level ((A) in FIG. 7).
  • the transistors MN3 and MN4 are turned on.
  • the voltage of the floating diffusion FD (the voltage of the pixel signal SIG) is set to the voltage Vx ((F) in FIG. 7).
  • the voltage of the pixel signal SIG1 is set to the voltage Vx by turning on the transistor MN4 ((I) in FIG. 7). In this manner, both the gate voltage (the voltage of the pixel signal SIG) and the source voltage (the voltage of the pixel signal SIG1) of the transistor MN21 are set to the voltage Vx, so the transistor MN21 is in an off state.
  • the pixel driving section 15 changes the control signal CTL1 from low level to high level (FIG. 7(C)).
  • the switch SW1 is turned on, and the node N1 and the node N2 are connected to each other. Since the voltage of the node N1 (the voltage of the pixel signal SIG1) is the voltage Vx, the voltage VN2 of the node N2 is set to the voltage Vx ((G) in FIG. 7).
  • the pixel driving section 15 changes the control signal CTL2 from low level to high level ((D) in FIG. 7). Accordingly, in the pixel circuit 20, the switch SW2 supplies the voltage V1 to the second terminal of the capacitor C1. Since the voltage VN2 at the first terminal of the capacitor C1 is the voltage Vx, the capacitor C1 is charged and a voltage difference (Vx-V1) is established between the first and second terminals of the capacitor C1.
  • the reference signal generator 12 changes the voltage of the reference signal REF to the voltage VA ((H) in FIG. 7).
  • the pixel driving section 15 changes the control signal RST from high level to low level ((A) in FIG. 7).
  • the transistors MN3 and MN4 are turned off.
  • the floating diffusion FD becomes electrically floating.
  • strong light such as sunlight is incident on the imaging device 1, from the photodiodes PD of the plurality of pixel circuits 20 including the pixel circuit 20 of interest to the floating diffusion FD of the pixel circuit 20 of interest. Electrons leak.
  • the voltage of the floating diffusion FD (the voltage of the pixel signal SIG) gradually decreases ((F) in FIG. 7).
  • the constant current source CUR causes the current to flow from the node N1 toward the ground by turning off the transistor MN4, the voltage of the node N1 (the voltage of the pixel signal SIG1) decreases ((I) in FIG. 7). . Since the nodes N1 and N2 are connected to each other via the switch SW1, the voltage VN2 of the node N2 also drops (FIG. 7(G)).
  • the voltage limiting circuit 30 When the source voltage of the transistor MN21 (the voltage of the pixel signal SIG1) becomes lower than the gate voltage of the transistor MN21 (the voltage of the pixel signal SIG) by a voltage ⁇ V21 due to the drop in the voltage of the node N1, the voltage limiting circuit 30: A current flows through the path of the transistor MN21, the node N1, and the constant current source CUR. Thereby, the transistor MN21 and the constant current source CUR operate as a so-called source follower. In this manner, the voltage limiting circuit 30 generates the pixel signal SIG1, which is lower than the pixel signal SIG by the voltage ⁇ V21, based on the input pixel signal SIG ((I) in FIG. 7).
  • the voltage of the pixel signal SIG gradually decreases and becomes "Vx- ⁇ Vz" immediately before the timing t33 ((F) in FIG. 7).
  • the voltage ⁇ Vz is the voltage drop caused by electron leakage to the floating diffusion FD. Therefore, since the voltage of the pixel signal SIG1 is lower than the voltage of the pixel signal SIG by the voltage ⁇ V21, it becomes “Vx ⁇ V21 ⁇ Vz” (FIG. 7(I)). Similarly, the voltage VN2 of the node N2 becomes "Vx- ⁇ V21- ⁇ Vz" (FIG. 7(G)).
  • the pixel driving section 15 changes the control signal CTL1 from high level to low level ((C) in FIG. 7).
  • the switch SW1 is turned off, and the node N1 and the node N2 are disconnected from each other.
  • the pixel driving section 15 changes the control signal CTL2 from high level to low level ((D) in FIG. 7).
  • the voltage at the first terminal also increases by the voltage ⁇ V, since the voltage between the first and second terminals of capacitor C1 is maintained. descend.
  • the voltage VN2 at the node N2 becomes "Vx- ⁇ V21- ⁇ Vz- ⁇ V" (FIG. 7(G)).
  • the pixel signal SIG continues to drop ((F) in FIG. 7). Accordingly, the pixel signal SIG1 also continues to drop (FIG. 7(I)).
  • the pixel signal SIG falls below the voltage VN2 ((F), (G) in FIG. 7).
  • the voltage limiting circuit 30 generates the pixel signal SIG1 that is lower than the voltage VN2 of the node N2 by the voltage ⁇ V22 ((I) in FIG. 7).
  • the voltage ⁇ V22 is a drop in the gate-source voltage Vgs of the transistor MN22, and is the sum of the threshold voltage Vth of the transistor MN22 and the so-called overdrive voltage Vov for operating the transistor MN22 in the saturation region ( Vth+Vov).
  • the voltage of the pixel signal SIG1 becomes "Vx- ⁇ V21- ⁇ Vz- ⁇ V- ⁇ V22". That is, the voltage of the pixel signal SIG1 does not become a low voltage corresponding to the pixel signal SIG, but is limited to "Vx- ⁇ V21- ⁇ Vz- ⁇ V- ⁇ V22" (limit voltage).
  • the pixel circuit 20 performs AD conversion based on the voltage of the pixel signal SIG1. Specifically, at timing t35, the reference signal generation unit 12 starts lowering the voltage of the reference signal REF from the voltage VA at a predetermined degree of change ((H) in FIG. 7). Also, the time code generator 13 starts the increment operation of the time code TC at this timing t35. Repeater 29 supplies this time code TC to latch 23 . As a result, the latch 23 is supplied with the time code TC that changes with the passage of time.
  • the comparison circuit 22 changes the signal CMP from high level to low level (FIG. 7(J)).
  • the latch 23 latches the time code TC based on the transition of this signal CMP.
  • the code value CP of the time code TC latched by the latch 23 is a code value corresponding to the length of time between timings t35 and t36.
  • the code value CP is a code value corresponding to the voltage of the pixel signal SIG1 during the P-phase period TP.
  • the time code generator 13 ends the increment operation of the time code TC as the P-phase period TP ends.
  • the reference signal generator 12 stops changing the voltage of the reference signal REF and changes the voltage of the reference signal REF to the voltage VA ((H) in FIG. 7).
  • the voltage of the reference signal REF becomes higher than the voltage of the pixel signal SIG1 ((H) and (I) in FIG. 7), so the comparison circuit 22 changes the signal CMP from low level to high level (( J)).
  • the pixel driving section 15 changes the control signal CTL3 from low level to high level (FIG. 7(E)).
  • the switch SW3 is turned on, and the voltage VN2 of the node N2 is set to the voltage V3 ((G) in FIG. 7).
  • the pixel driving section 15 changes the control signal TX from low level to high level ((B) in FIG. 7).
  • the transistor MN2 is turned on, and charges generated in the photodiode PD are transferred to the floating diffusion FD.
  • the charge corresponding to the amount of received light is transferred from the photodiode PD of the pixel circuit 20 of interest to the floating diffusion FD.
  • the voltage of the floating diffusion FD (the voltage of the pixel signal SIG) is lowered ((F) in FIG. 7).
  • the voltage of this pixel signal SIG is lower than the voltage VN2 at the node N2 (FIGS. 7(F) and (G)). Therefore, in voltage limiting circuit 30, current continues to flow through the path of transistor MN22, node N1, and constant current source CUR, so transistor MN22 and constant current source CUR continue to operate as a so-called source follower. As a result, the voltage limiting circuit 30 generates the pixel signal SIG1 that is lower than the voltage VN2 of the node N2 by the voltage ⁇ V22 ((I) in FIG. 7). Thus, the voltage of the pixel signal SIG1 becomes "V3- ⁇ V22". That is, the voltage of the pixel signal SIG1 does not become a low voltage corresponding to the pixel signal SIG, but is limited to "V3- ⁇ V22" (limit voltage).
  • the pixel driving section 15 changes the control signal TX from high level to low level ((B) in FIG. 7). This turns off the transistor MN2.
  • the pixel circuit 20 performs AD conversion based on the voltage of the pixel signal SIG1. Specifically, at timing t40, the reference signal generator 12 starts to lower the voltage of the reference signal REF from the voltage VA by a predetermined degree of change ((H) in FIG. 7). Also, the time code generator 13 starts the increment operation of the time code TC at this timing t40. Repeater 29 supplies this time code TC to latch 23 . As a result, the latch 23 is supplied with the time code TC that changes with the passage of time.
  • the voltage of the pixel signal SIG1 is lower than the voltage range of the reference signal REF during the D-phase period TD (FIGS. 7(H) and (I)). Therefore, the voltage of the reference signal REF does not fall below the voltage of the pixel signal SIG1. Therefore, the signal CMP remains high level without transition ((J) in FIG. 7).
  • the latch 23 latches the time code TC, for example, at timing t41, which is the end timing of the D-phase period TD.
  • the code value CD of the time code TC latched by the latch 23 is a code value corresponding to the length of time between timings t40 and t41, and is the maximum possible code value.
  • the time code generator 13 ends the increment operation of the time code TC with the end of the D-phase period TD. Then, the reference signal generator 12 stops changing the voltage of the reference signal REF and changes it to the voltage VA ((H) in FIG. 7).
  • the plurality of pixel circuits 20 in the cluster CL sequentially supply the code values CP and CD to the repeater 29, and the repeater 29 sends these code values CP and CD to the signal processing unit 16. Sequential supply.
  • the signal processing unit 16 performs predetermined image processing based on the code values CP and CD generated by each of the plurality of pixel circuits 20 .
  • the code value CD is the maximum value, so the signal processing unit 16 can, for example, generate no pixel value.
  • the pixel circuit 20 includes the photodiode PD, the floating diffusion FD capable of accumulating the charge generated by the photodiode PD, and the photodiode PD and the floating diffusion FD when turned on.
  • a voltage limiting circuit 30 capable of generating a pixel signal SIG1 corresponding to the voltage in the floating diffusion FD and limiting the voltage of the pixel signal SIG1 so that it does not exceed the limit voltage, a reference signal REF and the pixel signal SIG1 are provided.
  • the voltage limiting circuit 30 includes, for example, a transistor MN21 having a gate connected to the floating diffusion FD, a transistor MN22 having a gate to which a voltage VN2 corresponding to the limiting voltage can be supplied, It may have a constant current source CUR connected to the sources of transistors MN21, MN22. Accordingly, in the pixel circuit 20, the reference signal REF is compared with the pixel signal SIG1 that is limited so as not to exceed the limit voltage. can be reduced. As a result, the imaging device 1 can suppress degradation in image quality at high brightness.
  • the voltage limiting circuit 30 is turned on so that the source of the first transistor (transistor MN21), the source of the second transistor (transistor MN2), and the second transistor (transistor MN22) are connected.
  • a switch SW1 connectable to the gate of a second transistor (transistor MN22); a capacitor C1 having a first terminal and a second terminal connected to the gate of a second transistor (transistor MN22); and a voltage setting circuit (switch SW2) that can change the .
  • the node N1 and the node N2 are connected to each other by turning on the switch SW1 during the period from timing t31 to t33, and the switch SW1 is turned off at timing t33.
  • the imaging device 1 can operate based on the voltage variation. It is possible to suppress the black subsidence.
  • the voltage of the pixel signal SIG which is the voltage of the floating diffusion FD
  • the voltage of the pixel signal SIG1 and the voltage VN2 of the node N2 may vary.
  • the imaging device 1 operates with such a voltage variation as a reference.
  • the voltage VN2 at the node N2 changes by a voltage ⁇ V with reference to the varied voltage.
  • the voltage limiting circuit 30 generates the pixel signal SIG1 based on the voltage of the pixel signal SIG and this voltage VN2.
  • the comparison circuit 22 generates the signal CMP by comparing the voltage of the reference signal REF and the voltage of the pixel signal SIG1. As a result, it is less likely to be affected by variations in these voltages, so it is possible to effectively suppress deterioration in image quality at high brightness.
  • the voltage limiting circuit 30 has a switch SW3 that can supply the voltage V3 to the gate of the second transistor (transistor MN22) when turned on.
  • the imaging device 1 can limit the voltage of the pixel signal SIG1 in, for example, the D-phase period TD to prevent it from becoming too low, thereby suppressing deterioration in image quality. That is, when the pixel signal SIG1 becomes too low, the pixel signal SIG1 causes a change in the power supply voltage and the ground voltage, and as a result, the pixel values in the plurality of pixel circuits 20 may change. As a result, so-called streaking, which is a deterioration in image quality, can occur.
  • the imaging device 1 by applying the voltage V3 to the gate of the transistor MN22 in the D-phase period TD, the voltage of the pixel signal SIG1 can be limited and prevented from becoming too low. As a result, in the imaging device 1, the influence on the power supply voltage and the ground voltage can be suppressed, so that deterioration of image quality at high brightness can be suppressed.
  • the pixel circuit includes a photodiode, a floating diffusion capable of accumulating charges generated by the photodiode, and a floating diffusion capable of connecting the photodiode and floating diffusion when turned on.
  • a voltage limiting circuit that can generate a pixel signal according to the voltage in the transistor and the floating diffusion FD, and can limit the voltage of the pixel signal so that the voltage of the pixel signal does not exceed the limit voltage, and the reference signal REF and the pixel signal SIG1 can be compared. Since the comparator circuit is provided, it is possible to suppress the deterioration of the image quality at the time of high brightness.
  • a switch that can connect the source of the first transistor, the source of the second transistor, and the gate of the second transistor and the gate of the second transistor are connected. and a voltage setting circuit capable of changing the voltage of the second terminal of the capacitor. can be suppressed.
  • a switch that can supply a voltage to the gate of the second transistor when turned on is provided, so deterioration in image quality at high luminance can be suppressed.
  • the switch SW2 switches the voltage supplied to the capacitor C1 from the voltage V1 to the voltage V2, but it is not limited to this.
  • the switch SW2 may switch the voltage supplied to the capacitor C1 from the voltage of the reference signal REF to the voltage V2.
  • the imaging device according to this modified example has a light receiving circuit 21A.
  • the light receiving circuit 21A has a voltage limiting circuit 30A.
  • the switch SW2 of the voltage limiting circuit 30A supplies one of the reference signal REF and the voltage V2 to the second terminal of the capacitor C1 based on the control signal CTL2 supplied from the pixel driving section 15 (FIG. 1). configured to In the example of FIG.
  • the switch SW2 supplies the voltage of the reference signal REF to the capacitor C1 during the period from timing t11 to t13.
  • the period of timings t11 to t13 is a part of the periods other than the period of the ramp waveform in the reference signal REF (the period of timings t14 to t16 and the period of timings t19 to t21).
  • the voltage of the reference signal REF is the voltage Vx or the voltage VA. For example, by setting the voltage V2 to a voltage lower than the voltage VA, it is possible to operate in the same manner as in the above embodiment.
  • the voltage VN2 at the first terminal of the capacitor C1 is near the voltage Vx. That is, the voltage difference across the capacitor C1 is sufficiently low during the period from timing t11 to t13. Therefore, in this modification, the charging time of the capacitor C1 can be shortened.
  • the size of the transistor MN21 and the size of the transistor MN22 are equal to each other in the above embodiment, the size of the transistor MN21 and the size of the transistor MN22 are not limited to this. may differ from each other in size.
  • the imaging device according to this modified example has a light receiving circuit 21B.
  • the light receiving circuit 21B has a voltage limiting circuit 30B.
  • the size of the transistor MN22 is made larger than the size of the transistor MN21.
  • the gate width of the transistor MN22 can be made larger than the gate width of the transistor MN21.
  • the voltage limiter circuit 30B can shorten the time until the voltage of the pixel signal SIG1 is set to the limit voltage based on the voltage VN2 of the node N2.
  • the size of the transistor MN22 is larger than the size of the transistor MN21, but instead of this, for example, the size of the transistor MN21 may be larger than the size of the transistor MN22.
  • the imaging device has a light receiving circuit 21C.
  • the light receiving circuit 21C has a voltage limiting circuit 30C.
  • This voltage limiting circuit 30C has transistors MP23 and MP24.
  • the transistors MP23 and MP24 are P-type MOS transistors.
  • the transistor MP23 has a gate supplied with a bias voltage Vb2 from, for example, the bias generator 14 (FIG. 1), a source supplied with the power supply voltage VDD, and a drain connected to the drain of the transistor MN22 and the gate of the transistor MP24.
  • This transistor MP23 constitutes a constant current source.
  • the current value of the current supplied by the transistor MP23 is set to a value smaller than the current value of the current supplied by the constant current source CUR.
  • the transistor MP24 has a gate connected to the drains of the transistors MN22 and MP23, a source supplied with the power supply voltage VDD, and a drain connected to the node N1.
  • the transistor MP23 corresponds to a specific example of "second current source” in the present disclosure.
  • Transistor MP24 corresponds to a specific example of the "third transistor” in the present disclosure.
  • the voltage limiting circuit 30 is provided with the transistor MN21 to which the pixel signal SIG is supplied and the transistor MN22 to which the voltage VN2 of the node N2 is supplied. not something.
  • a plurality of transistors are provided, some of the plurality of transistors are used as transistors to which the pixel signal SIG is supplied, and the other one of the plurality of transistors is used as a transistor to which the pixel signal SIG is supplied. may be used as a transistor to which the voltage VN2 is supplied.
  • the imaging device according to this modification has a voltage limiting circuit 30D.
  • This voltage limiting circuit 30D has transistors MN31, MN32, MN33, and MN34 and a selection circuit 31.
  • the transistors MN31 to MN34 are N-type MOS transistors. In this example, the sizes of transistors MN31-MN34 are equal to each other.
  • the transistor MN31 has a gate supplied with the voltage VG1, a drain supplied with the power supply voltage VDD, and a source connected to the node N1.
  • the transistor MN32 has a gate supplied with the voltage VG2, a drain supplied with the power supply voltage VDD, and a source connected to the node N1.
  • the transistor MN33 has a gate supplied with the voltage VG3, a drain supplied with the power supply voltage VDD, and a source connected to the node N1.
  • the transistor MN34 has a gate supplied with the voltage VG4, a drain supplied with the power supply voltage VDD, and a source connected to the node N1.
  • the selection circuit 31 supplies the pixel signal SIG to the gates of one or more of the four transistors MN31 to MN34 based on, for example, the control signal SEL supplied from the pixel drive section 15 (FIG. 1), and the voltage VN2. to the gates of one or more of the four transistors MN31-MN34.
  • the transistors MN31 to MN34 correspond to a specific example of "a plurality of transistors” in the present disclosure.
  • the selection circuit 31 corresponds to a specific example of "first selection circuit” in the present disclosure.
  • the selection circuit 31 can supply the pixel signal SIG to the gates of the transistors MN31 and MN32 and the voltage VN2 to the gates of the transistors MN33 and MN34.
  • the transistors MN31 and MN32 correspond to the transistor MN21 according to the above embodiment
  • the transistors MN33 and MN34 correspond to the transistor MN22 according to the above embodiment. Therefore, the sizes of the transistors MN21 and MN22 are equal to each other.
  • the selection circuit 31 can supply the pixel signal SIG to the gate of the transistor MN31 and the voltage VN2 to the gates of the transistors MN32 to MN34.
  • the transistor MN31 corresponds to the transistor MN21 according to the above embodiment
  • the transistors MN32 to MN34 correspond to the transistor MN22 according to the above embodiment. Therefore, the size of the transistor MN22 is larger than the size of the transistor MN21.
  • the voltage limiting circuit 30D can shorten the time until the voltage of the pixel signal SIG1 is set to the limiting voltage based on the voltage VN2 of the node N2.
  • the selection circuit 31 can supply the pixel signal SIG to the gates of the transistors MN31 and MN32, and the voltage VN2 to the gate of the transistor MN34.
  • the transistors MN31 and MN32 correspond to the transistor MN21 according to the above embodiment
  • the transistor MN34 corresponds to the transistor MN22 according to the above embodiment.
  • transistor MN33 is not used.
  • the selection circuit 31 can supply "0 V" to the gate of this transistor MN33.
  • the imaging device can adjust the characteristics of the voltage limiting circuit 30D.
  • the light receiving circuit 21 has one photodiode PD, but it is not limited to this.
  • a plurality of photodiodes PD may be provided.
  • the imaging device according to this modification has a light receiving circuit 21E.
  • the light receiving circuit 21E has three circuits 32, three transistors MN3, a pixel selection circuit 33, a voltage limiting circuit 30, and a transistor MN4.
  • Each of the three circuits 32 has a photodiode PD, transistors MN1 and MN2, and a floating diffusion FD.
  • Three transistors MN3 are provided corresponding to these three circuits 32, respectively.
  • the pixel selection circuit 33 connects one of the three circuits 32 to the gate of the transistor MN21 of the voltage limiting circuit 30 based on, for example, the control signal SEL2 supplied from the pixel driving section 15 (FIG. 1). Configured.
  • the pixel selection circuit 33 corresponds to a specific example of the "second selection circuit" in the present disclosure.
  • the voltage limiting circuit 30, the comparing circuit 22, and the latch 23 are controlled by the three circuits 32 based on the three pixel signals SIG generated by the three circuits 32. can generate three pixel values corresponding respectively to .
  • this image pickup apparatus it is not necessary to provide three voltage limiting circuits 30, three comparison circuits 22, and three latches 23, so that the circuit configuration can be simplified.
  • the voltage limiting circuit 30 is provided on the semiconductor substrate 102, but the present invention is not limited to this.
  • the voltage limiting circuit 30 may be provided on a semiconductor substrate 113 different from the semiconductor substrates 101 and 102.
  • FIG. 13 the voltage limiting circuit 30 may be provided on a semiconductor substrate 113 different from the semiconductor substrates 101 and 102.
  • FIG. 14 shows a usage example of the imaging device 1 according to the above embodiment.
  • the imaging device 1 described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-rays as follows.
  • ⁇ Devices that capture images for viewing purposes, such as digital cameras and mobile devices with camera functions
  • Devices used for transportation such as in-vehicle sensors that capture images behind, around, and inside the vehicle, surveillance cameras that monitor running vehicles and roads, and ranging sensors that measure the distance between vehicles.
  • Devices used in home appliances such as televisions, refrigerators, air conditioners, etc., endoscopes, and devices that perform angiography by receiving infrared light to capture images and operate devices according to gestures.
  • Devices used for medical and health care such as equipment used for security purposes such as monitoring cameras for crime prevention and cameras used for personal authentication, skin measuring instruments for photographing the skin, scalp Equipment used for beauty, such as a microscope for photographing Equipment used for sports, such as action cameras and wearable cameras for sports, etc. Cameras for monitoring the condition of fields and crops, etc. of agricultural equipment
  • the technology (the present technology) according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure can be realized as a device mounted on any type of moving body such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, and robots. may
  • FIG. 15 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • a vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • vehicle control system 12000 includes drive system control unit 12010 , body system control unit 12020 , vehicle exterior information detection unit 12030 , vehicle interior information detection unit 12040 , and integrated control unit 12050 .
  • integrated control unit 12050 As the functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio/image output unit 12052, and an in-vehicle network I/F (interface) 12053 are illustrated.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the driving system control unit 12010 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices equipped on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps.
  • the body system control unit 12020 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • the body system control unit 12020 receives the input of these radio waves or signals and controls the door lock device, power window device, lamps, etc. of the vehicle.
  • the vehicle exterior information detection unit 12030 detects information outside the vehicle in which the vehicle control system 12000 is installed.
  • the vehicle exterior information detection unit 12030 is connected with an imaging section 12031 .
  • the vehicle exterior information detection unit 12030 causes the imaging unit 12031 to capture an image of the exterior of the vehicle, and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electrical signal according to the amount of received light.
  • the imaging unit 12031 can output the electric signal as an image, and can also output it as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or non-visible light such as infrared rays.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • the in-vehicle information detection unit 12040 is connected to, for example, a driver state detection section 12041 that detects the state of the driver.
  • the driver state detection unit 12041 includes, for example, a camera that captures an image of the driver, and the in-vehicle information detection unit 12040 detects the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing off.
  • the microcomputer 12051 calculates control target values for the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and controls the drive system control unit.
  • a control command can be output to 12010 .
  • the microcomputer 12051 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning. Cooperative control can be performed for the purpose of ADAS (Advanced Driver Assistance System) including collision avoidance or shock mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, etc. based on the information about the vehicle surroundings acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's Cooperative control can be performed for the purpose of autonomous driving, etc., in which vehicles autonomously travel without depending on operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the information detection unit 12030 outside the vehicle.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control aimed at anti-glare such as switching from high beam to low beam. It can be carried out.
  • the audio/image output unit 12052 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 16 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the vehicle 12100 has imaging units 12101, 12102, 12103, 12104, and 12105 as the imaging unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, and 12105 are provided at positions such as the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield in the vehicle interior, for example.
  • An image pickup unit 12101 provided in the front nose and an image pickup unit 12105 provided above the windshield in the passenger compartment mainly acquire images in front of the vehicle 12100 .
  • Imaging units 12102 and 12103 provided in the side mirrors mainly acquire side images of the vehicle 12100 .
  • An imaging unit 12104 provided in the rear bumper or back door mainly acquires an image behind the vehicle 12100 .
  • Forward images acquired by the imaging units 12101 and 12105 are mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 16 shows an example of the imaging range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided in the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided in the side mirrors, respectively
  • the imaging range 12114 The imaging range of an imaging unit 12104 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the imaging units 12101 to 12104 may be a stereo camera composed of a plurality of imaging elements, or may be an imaging element having pixels for phase difference detection.
  • the microcomputer 12051 determines the distance to each three-dimensional object within the imaging ranges 12111 to 12114 and changes in this distance over time (relative velocity with respect to the vehicle 12100). , it is possible to extract, as the preceding vehicle, the closest three-dimensional object on the course of the vehicle 12100, which runs at a predetermined speed (for example, 0 km/h or more) in substantially the same direction as the vehicle 12100. can. Furthermore, the microcomputer 12051 can set the inter-vehicle distance to be secured in advance in front of the preceding vehicle, and perform automatic brake control (including following stop control) and automatic acceleration control (including following start control). In this way, cooperative control can be performed for the purpose of automatic driving in which the vehicle runs autonomously without relying on the operation of the driver.
  • automatic brake control including following stop control
  • automatic acceleration control including following start control
  • the microcomputer 12051 converts three-dimensional object data related to three-dimensional objects to other three-dimensional objects such as motorcycles, ordinary vehicles, large vehicles, pedestrians, and utility poles. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into those that are visible to the driver of the vehicle 12100 and those that are difficult to see. Then, the microcomputer 12051 judges the collision risk indicating the degree of danger of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, an audio speaker 12061 and a display unit 12062 are displayed. By outputting an alarm to the driver via the drive system control unit 12010 and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be performed.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian exists in the captured images of the imaging units 12101 to 12104 .
  • recognition of a pedestrian is performed by, for example, a procedure for extracting feature points in images captured by the imaging units 12101 to 12104 as infrared cameras, and performing pattern matching processing on a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian.
  • the audio image output unit 12052 outputs a rectangular outline for emphasis to the recognized pedestrian. is superimposed on the display unit 12062 . Also, the audio/image output unit 12052 may control the display unit 12062 to display an icon or the like indicating a pedestrian at a desired position.
  • the technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above.
  • the image quality of the captured image obtained by the imaging unit 12031 can be improved when the luminance is high.
  • the vehicle control system 12000 realizes a vehicle collision avoidance or collision mitigation function, a follow-up driving function based on the distance between vehicles, a vehicle speed maintenance driving function, a vehicle collision warning function, a vehicle lane deviation warning function, etc. with high accuracy. can.
  • the imaging device 1 is provided on two semiconductor substrates 101 and 102, but it is not limited to this, and the imaging device 1 may be provided on one semiconductor substrate.
  • This technology can be configured as follows. According to the present technology having the following configuration, deterioration in image quality can be suppressed at high luminance.
  • a first light-receiving element that generates a charge corresponding to the amount of received light
  • a first storage unit that can store the charge generated by the first light-receiving element
  • a first transfer switch capable of connecting the element and the first storage section, and capable of generating a pixel signal corresponding to the voltage stored in the first storage section, wherein the voltage of the pixel signal does not exceed a limit voltage.
  • a comparison circuit capable of comparing a reference signal having a ramp waveform with the pixel signal.
  • the limit circuit is a first transistor having a gate connected to the first storage, a drain, and a source; a second transistor having a gate to which a voltage corresponding to the limiting voltage can be supplied, a drain and a source; and a first current source connected to the source of the first transistor and the source of the second transistor.
  • the first transistor and the second transistor are transistors of a first conductivity type;
  • the limit circuit is a second current source connected to the drain of the second transistor; a third transistor of a second conductivity type having a gate connected to the drain of the second transistor, a drain connected to the source of the second transistor, and a source;
  • the imaging device according to any one of (2) to (4).
  • the limit circuit is a plurality of transistors; A first selection circuit capable of using one or more transistors out of the plurality of transistors as the first transistor and using another one or more transistors out of the plurality of transistors as the second transistor and The imaging device according to (2) or (3) above.
  • the imaging device is a second light receiving element; a second accumulation unit capable of accumulating charges generated by the second light receiving element; a second transfer switch that can connect the second light receiving element and the second storage unit by turning on; any one of (2) to (7) above, further comprising: a second selection circuit that connects one of the first storage unit and the second storage unit to the gate of the first transistor; The imaging device described.
  • the limit circuit is a first switch that can connect the source of the first transistor, the source of the second transistor, and the gate of the second transistor by turning on; a capacitor having a first terminal connected to the gate of the second transistor and a second terminal;
  • the imaging device according to any one of (2) to (8), further comprising: a voltage setting circuit capable of changing the voltage of the second terminal of the capacitor.
  • the voltage setting circuit includes a second switch that selectively supplies one of a first DC voltage and a second DC voltage to the second terminal of the capacitor.
  • the voltage setting circuit includes a second switch that selectively supplies one of the reference signal and a second DC voltage to the second terminal of the capacitor;
  • the second switch selectively supplies the reference signal to the second terminal of the capacitor during a part of the period other than the period in which the reference signal exhibits a ramp waveform.
  • the comparison circuit is a fourth transistor having a gate to which the pixel signal can be supplied, a drain and a source; a fifth transistor having a gate to which the reference signal can be supplied, a drain and a source; a third current source connected to the source of the fourth transistor and the source of the fifth transistor;
  • the pixel circuit is a third switch that can connect the drain of the fourth transistor and the first storage unit by turning on; any one of (9) to (11) above, further comprising: a fourth switch capable of connecting the drain of the fourth transistor and the gate of the fourth transistor when turned on; imaging device.
  • the imaging device according to (12) above.
  • the imaging device according to any one of (9) to (13), wherein the limiting circuit further includes a fifth switch capable of supplying a predetermined voltage to the gate of the second transistor when turned on. .
  • the first light receiving element, the first storage unit, the first transfer switch, and the comparison circuit are provided on a first substrate, The imaging device according to any one of (1) to (14), wherein the limiting circuit is provided on a second substrate overlaid on the first substrate. (16) Further equipped with a time code generation circuit that generates a time code that changes with the passage of time, The imaging device according to any one of (1) to (15), wherein the pixel circuit further includes a latch circuit that latches the time code based on the comparison result of the comparison circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本開示の撮像装置は、受光量に応じた電荷を生成する第1の受光素子と、第1の受光素子により生成された電荷を蓄積可能な第1の蓄積部と、オン状態になることにより第1の受光素子と第1の蓄積部とを接続可能な第1の転送スイッチと、第1の蓄積部における蓄積電圧に応じた画素信号を生成可能であり画素信号の電圧が制限電圧を超えないように制限可能な電圧制限回路と、ランプ波形を有する参照信号と画素信号とを比較可能な比較回路とを有する画素回路を備える。

Description

撮像装置
 本開示は、被写体を撮像する撮像装置に関する。
 撮像装置では、太陽光のような強い光が入射した場合に、受光量に応じた画素値にならず、画素値が小さくなる、いわゆる黒沈みが生じる場合がある。例えば、特許文献1には、垂直信号線に複数の画素が接続された撮像装置において、垂直信号線の電圧をクリップすることにより、このような高輝度時の黒沈みを抑える技術が開示されている。
特開2009-194569号公報
 ところで、撮像装置では、複数の画素のそれぞれにおいて、AD(Analog to Digital)変換を行うものがある。このような撮像装置においても、高輝度時の黒沈みを抑えることにより、画質の低下を抑えることが望まれる。
 高輝度時に画質の低下を抑えることができる撮像装置を提供することが望ましい。
 本開示の一実施の形態における撮像装置は、画素回路を備えている。画素回路は、第1の受光素子と、第1の蓄積部と、第1の転送スイッチと、電圧制限回路と、比較回路とを有する。第1の受光素子は、受光量に応じた電荷を生成する。第1の蓄積部は、第1の受光素子により生成された電荷を蓄積可能に構成される。第1の転送スイッチは、オン状態になることにより第1の受光素子と第1の蓄積部とを接続可能に構成される。電圧制限回路は、第1の蓄積部における蓄積電圧に応じた画素信号を生成可能であり画素信号の電圧が制限電圧を超えないように制限可能に構成される。比較回路は、ランプ波形を有する参照信号と画素信号とを比較可能に構成される。
 本開示の一実施の形態における撮像装置では、第1の受光素子により、受光量に応じた電荷が生成され、第1の転送スイッチがオン状態になることにより、第1の受光素子により生成された電荷が第1の蓄積部に転送され、第1の蓄積部に蓄積される。そして、電圧制限回路により、第1の蓄積部における蓄積電圧に応じた画素信号が生成される。この画素信号の電圧は、この電圧制限回路により、制限電圧を超えないように制限される。そして、比較回路により、ランプ波形を有する参照信号およびこの画素信号が比較される。
本開示の一実施の形態に係る撮像装置の一構成例を表すブロック図である。 図1に示した撮像装置の一実装例を表す模式図である。 図1に示したクラスタの一構成例を表す説明図である。 図1に示した画素に対応する画素回路の一構成例を表す回路図である。 図4に示した電圧制限回路の一構成例を表す回路図である。 図4に示した画素回路の一動作例を表すタイミング波形図である。 図4に示した画素回路の他の一動作例を表すタイミング波形図である。 変形例に係る受光回路の一構成例を表す回路図である。 他の変形例に係る受光回路の一構成例を表す回路図である。 他の変形例に係る受光回路の一構成例を表す回路図である。 他の変形例に係る電圧制限回路の一構成例を表す回路図である。 他の変形例に係る受光回路の一構成例を表す回路図である。 他の変形例に係る画素回路の一構成例を表す回路図である。 撮像装置の使用例を表す説明図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 撮像部の設置位置の一例を示す説明図である。
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.実施の形態
2.撮像装置の使用例
3.移動体への応用例
<1.実施の形態>
[構成例]
 図1は、一実施の形態に係る撮像装置(撮像装置1)の一構成例を表すものである。撮像装置1は、画素アレイ11と、参照信号生成部12と、タイムコード生成部13と、バイアス生成部14と、画素駆動部15と、信号処理部16と、タイミング生成部17とを備えている。撮像装置1は、この例では2枚の半導体基板に形成される。
 図2は、撮像装置1の一実装例を表すものである。撮像装置1は、この例では、2枚の半導体基板101,102に形成される。半導体基板101は、撮像装置1における撮像面Sの側に配置され、半導体基板102は、撮像装置1の撮像面Sとは反対側に配置される。半導体基板101,102は互いに重ね合わされる。半導体基板101の配線と、半導体基板102の配線とは、配線103により接続される。配線103は、例えばCu-Cuなどの金属結合などを用いることができる。
 画素アレイ11(図1)は、マトリクス状に配置された複数の画素Pを有している。画素Pは、フォトダイオードPDを有し、受光量に応じた画素信号SIG1を生成し、この画素信号SIG1に基づいてAD変換を行うように構成される。画素アレイ11では、所定数の画素Pが1つのクラスタCLを構成する。複数のクラスタCLのそれぞれでは、この例では、横方向に4つの画素Pが並設され、縦方向に数十個の画素Pが並設される。画素アレイ11には、このようなクラスタCLが縦方向および横方向に並設される。
 図3は、クラスタCLの一構成例を表すものである。クラスタCLは、複数の画素Pにそれぞれ対応する複数の画素回路20と、リピータ29とを有している。図4は、画素回路20の一構成例を表すものである。画素回路20は、受光回路21と、比較回路22と、ラッチ23とを有している。
 受光回路21は、受光量に応じた画素信号SIG1を生成するように構成される。受光回路21は、フォトダイオードPDと、トランジスタMN1~MN4と、フローティングディフュージョンFDと、電圧制限回路30とを有している。トランジスタMN1~MN4は、N型のMOS(Metal Oxide Semiconductor)トランジスタである。図4に示したように、フォトダイオードPD、トランジスタMN1~MN4、フローティングディフュージョンFDは、半導体基板101に設けられ、電圧制限回路30は、半導体基板102に設けられる。
 フォトダイオードPDは、受光量に応じた量の電荷を生成して内部に蓄積する光電変換素子である。フォトダイオードPDのアノードは接地され、カソードはトランジスタMN1,MN2のソースに接続される。
 トランジスタMN1のゲートには画素駆動部15(図1)から制御信号OFGが供給され、ドレインには電圧VOFGが供給され、ソースはフォトダイオードPDのカソードおよびトランジスタMN2のソースに接続される。
 トランジスタMN2のゲートには画素駆動部15(図1)から制御信号TXが供給され、ソースはフォトダイオードPDのカソードおよびトランジスタMN1のソースに接続され、ドレインはフローティングディフュージョンFDおよびトランジスタMN3のソースに接続されるとともに、半導体基板101,102間の配線103を介して電圧制限回路30の入力端子に接続される。
 フローティングディフュージョンFDは、フォトダイオードPDから転送された電荷を蓄積するように構成される。フローティングディフュージョンFDは、例えば、半導体基板101の表面に形成された拡散層を用いて構成される。図4では、フローティングディフュージョンFDを、キャパシタのシンボルを用いて示している。
 トランジスタMN3のゲートには画素駆動部15(図1)から制御信号RSTが供給され、ドレインは比較回路22のトランジスタMN11(後述)のドレインに接続され、ソースはフローティングディフュージョンFDおよびトランジスタMN2のドレインに接続されるとともに、半導体基板101,102間の配線103を介して電圧制限回路30の入力端子に接続される。
 この構成により、受光回路21では、制御信号OFGに基づいて、トランジスタMN1がオン状態になることにより、フォトダイオードPDに蓄積された電荷が排出される。そして、トランジスタMN1がオフ状態になることにより、露光期間が開始され、フォトダイオードPDに、受光量に応じた量の電荷が蓄積される。そして、露光期間が終了した後に、受光回路21は、リセット電圧および画素電圧を含む画素信号SIGを電圧制限回路30に対して供給する。具体的には、受光回路21は、後述するように、トランジスタMN3をオン状態にすることによりフローティングディフュージョンFDの電圧をリセットする。そして、受光回路21は、フローティングディフュージョンFDの電圧がリセットされた後のP相(Pre-charge相)期間TPにおいて、その時のフローティングディフュージョンFDの電圧(リセット電圧)を電圧制限回路30に供給する。また、受光回路21は、トランジスタMN2をオン状態にすることによりフォトダイオードPDからフローティングディフュージョンFDへ電荷を転送する。そして、受光回路21は、電荷が転送された後のD相(Data相)期間TDにおいて、その時のフローティングディフュージョンFDの電圧(画素電圧)を電圧制限回路30に供給するようになっている。
 電圧制限回路30は、画素信号SIGに応じた画素信号SIG1を生成するとともに、この画素信号SIG1が制限電圧を超えないように制限するように構成される。そして、電圧制限回路30は、生成した画素信号SIG1を、半導体基板101,102間の配線103を介して、比較回路22のトランジスタMN11(後述)のゲートに供給するようになっている。この電圧制限回路30については、後述する。
 トランジスタMN4のゲートには画素駆動部15(図1)から制御信号RSTが供給され、ドレインは比較回路22のトランジスタMN11(後述)のドレインに接続され、ソースは比較回路22のトランジスタMN11のゲートに接続されるとともに、半導体基板101,102間の配線103を介して電圧制限回路30の出力端子に接続される。
 比較回路22(図3,4)は、参照信号REFの電圧と画素信号SIG1の電圧とを比較することにより信号CMPを生成するように構成される。比較回路22は、参照信号REFの電圧が画素信号SIGの電圧よりも高い場合に信号CMPを高レベルにし、参照信号REFの電圧が画素信号SIGの電圧よりも低い場合に信号CMPを低レベルにするようになっている。比較回路22は、トランジスタMN11~MN13,MP14,MP15と、アンプAMPとを有している。トランジスタMN11~MN13はN型のMOSトランジスタであり、トランジスタMP14,MP15はP型のMOSトランジスタである。図4に示したように、トランジスタMN11~MN13は半導体基板101に設けられ、トランジスタMP14,MP15は半導体基板102に設けられる。
 トランジスタMN11のゲートには画素信号SIG1が供給され、ドレインは受光回路21におけるトランジスタMN3,MN4のドレインに接続されるとともに、半導体基板101,102間の配線103を介してトランジスタMP14のドレインおよびアンプAMPの入力端子に接続され、ソースはトランジスタMN12のソースおよびトランジスタMN13のドレインに接続される。
 トランジスタMN12のゲートには、半導体基板101,102間の配線103を介して参照信号生成部12から参照信号REFが供給され、ドレインは半導体基板101,102間の配線103を介してトランジスタMP15のドレインおよびトランジスタMP14,MP15のゲートに接続され、ソースはトランジスタMN11のソースおよびトランジスタMN13のドレインに接続される。参照信号REFは、P相期間TPおよびD相期間TDにおいて時間の経過に応じて電圧レベルが徐々に変化する、いわゆるランプ波形を有する信号である。トランジスタMN13のゲートにはバイアス生成部14(図1)からバイアス電圧Vbが供給され、ドレインはトランジスタMN11,MN12のソースに接続され、ソースは接地される。トランジスタMN11,MN12は差動対を構成し、トランジスタMN13は定電流源を構成する。
 トランジスタMP14のゲートはトランジスタMP15のゲートおよびドレインに接続されるとともに半導体基板101,102間の配線103を介してトランジスタMN12のドレインに接続され、ソースには電源電圧VDDが供給され、ドレインはアンプAMPの入力端子に接続されるとともに半導体基板101,102間の配線103を介してトランジスタMN11のドレインおよび受光回路21におけるトランジスタMN3,MN4のドレインに接続される。トランジスタMP15のゲートはトランジスタMP14のゲートおよびトランジスタMP15のドレインに接続されるとともに半導体基板101,102間の配線103を介してトランジスタMN12のドレインに接続され、ソースには電源電圧VDDが供給され、ドレインはトランジスタMP14,MP15のゲートに接続されるとともに半導体基板101,102間の配線103を介してトランジスタMN12のドレインに接続される。トランジスタMP14,MP15は、トランジスタMN11,MN12の能動負荷を構成する。
 この構成により、比較回路22は、参照信号REFの電圧と画素信号SIG1の電圧とを比較することにより信号CMPを生成するようになっている。
 ラッチ23(図3,4)は、信号CMPに基づいて、リピータ29から供給された、時間の経過に応じて変化するタイムコードTCをラッチするように構成される。タイムコードTCは、複数ビットのコードであり、例えばグレイコードを用いることができる。ラッチ23は、複数ビットのビット幅を有するバス配線を介してリピータ29に接続される。ラッチ23は、後述するように、P相期間TPにおいて、信号CMPの遷移タイミングでタイムコードTCをラッチすることにより、P相期間TPが開始してからその遷移タイミングまでの時間(コード値CP)を取得する。また、ラッチ23は、D相期間TDにおいて、信号CMPの遷移タイミングでタイムコードTCをラッチすることにより、D相期間TDが開始してからその遷移タイミングまでの時間(コード値CD)を取得する。そして、ラッチ23は、これらの2つのコード値CP,CDをリピータ29に供給するようになっている。ラッチ23は、図4に示したように、半導体基板102に配置される。
 リピータ29(図3,4)は、P相期間TPおよびD相期間TDにおいて、タイムコード生成部13から供給されたタイムコードTCを、クラスタCLに属する複数の画素Pのラッチ23に供給するように構成される。また、リピータ29は、P相期間TPおよびD相期間TDが終了した後に、これらのラッチ23から供給されたコード値CP,CDを信号処理部16に供給するようになっている。リピータ29は、複数ビットのビット幅を有するバス配線を介してこれらのラッチ23に接続される。リピータ29は、図4に示したように、半導体基板102に配置される。
 参照信号生成部12(図1)は、タイミング生成部17からの指示に基づいて、参照信号REFを生成するように構成される。参照信号REFは、P相期間TPおよびD相期間TDにおいて、時間の経過に応じて電圧レベルが徐々に変化する、いわゆるランプ波形を有する。そして、参照信号生成部12は、生成した参照信号REFを、画素アレイ11における複数の画素回路20に供給するようになっている。参照信号生成部12は、図4に示したように、半導体基板102に配置される。
 タイムコード生成部13は、タイミング生成部17からの指示に基づいて、タイムコードTCを生成するように構成される。タイムコードTCは、時間の経過に応じて変化する複数ビットのコードであり、例えば、グレイコードを用いることができる。そして、タイムコード生成部13は、生成したタイムコードTCを、複数のクラスタCLにおけるリピータ29に供給するようになっている。タイムコード生成部13は、例えば半導体基板102(図2)に配置される。
 バイアス生成部14は、撮像装置1において使用される様々なバイアス電圧およびバイアス電流を生成するように構成される。具体的には、バイアス生成部14は、例えば、バイアス電圧Vb、および電圧V1~V3(後述)を生成し、これらの電圧を複数の画素回路20のそれぞれに供給するようになっている。
 画素駆動部15は、画素アレイ11における複数の画素回路20の動作を制御するように構成される。具体的には、画素駆動部15は、制御信号OFG,TX,RST、および制御信号CTL1~CTL3(後述)を生成し、画素回路20にこれらの制御信号を供給することにより、画素回路20の動作を制御するようになっている。画素駆動部15は、例えば半導体基板102(図2)に配置される。
 信号処理部16は、複数の画素回路20のそれぞれが生成したコード値CP,CDに基づいて所定の画像処理を行うことにより画像信号Spicを生成するように構成される。所定の画像処理は、例えば、2つのコード値CP,CDに基づいて相関2重サンプリング(CDS;Correlated Double Sampling)の原理を利用して画素値を生成する処理や、黒レベルを補正する黒レベル補正処理などを含む。信号処理部16は、例えば半導体基板102(図2)に配置される。
 タイミング生成部17は、各種タイミング信号を生成し、生成した各種タイミング信号を、参照信号生成部12、タイムコード生成部13、画素駆動部15、および信号処理部16に供給することにより、撮像装置1の動作を制御するように構成される。タイミング生成部17は、例えば半導体基板102(図2)に配置される。
(電圧制限回路30)
 図5は、電圧制限回路30の一構成例を表すものである。この図5には、電圧制限回路30だけでなく、電圧制限回路30の周辺の回路をも描いている。
 電圧制限回路30は、トランジスタMN21,MN22と、定電流源CURと、スイッチSW1と、キャパシタC1と、スイッチSW2,SW3とを有している。トランジスタMN21,MN22は、N型のMOSトランジスタである。
 トランジスタMN21のゲートは電圧制限回路30の入力端子INに接続され、ドレインには電源電圧VDDが供給され、ソースはノードN1に接続される。トランジスタMN22のゲートはノードN2に接続され、ドレインには電源電圧VDDが供給され、ソースはノードN1に接続される。この例では、トランジスタMN21のサイズおよびトランジスタMN22のサイズは、互いに等しい。具体的には、トランジスタMN21のゲート幅およびトランジスタMN22のゲート幅は互いに等しく、トランジスタMN21のゲート長およびトランジスタMN22のゲート長は互いに等しい。トランジスタMN21およびトランジスタMN22は、互いに近い位置に配置される。
 定電流源CURの一端はノードN1に接続され、他端は接地される。ノードN1は、電圧制限回路30の出力端子OUTに接続される。
 スイッチSW1は、画素駆動部15(図1)から供給された制御信号CTL1に基づいて、ノードN1およびノードN2を互いに接続するように構成される。スイッチSW1は、例えば1または複数のMOSトランジスタを用いて構成される。
 キャパシタC1の第1の端子はノードN2に接続され、第2の端子はスイッチSW2に接続される。
 スイッチSW2は、画素駆動部15(図1)から供給された制御信号CTL2に基づいて、バイアス生成部14により生成された電圧V1および電圧V2のうちの一方をキャパシタC1の第2の端子に供給するように構成される。この例では、電圧V1は、電圧V2よりも高い電圧である。スイッチSW2は、この例では、制御信号CTL1が高レベルである場合には、電圧V1をキャパシタC1の第2の端子に供給し、制御信号CTL1が低レベルである場合には、電圧V2をキャパシタC1の第2の端子に供給するようになっている。
 スイッチSW3は、画素駆動部15(図1)から供給された制御信号CTL3に基づいて、バイアス生成部14により生成された電圧V3をノードN2に供給するように構成される。
 この構成により、電圧制限回路30では、通常の光が撮像装置1に入射した場合には、トランジスタMN21および定電流源CURが、いわゆるソースフォロワ回路として動作する。これにより、電圧制限回路30は、入力端子INに入力された画素信号SIGに応じた画素信号SIG1を出力端子OUTから出力する。また、例えば、太陽光のような強い光が撮像装置1に入射し、フローティングディフュージョンFDにおける電圧(画素信号SIGの電圧)が非常に低くなった場合には、トランジスタMN21のゲート電圧が、トランジスタMN22のゲート電圧より低くなる。この場合には、トランジスタMN22および定電流源CURが、いわゆるソースフォロワ回路として動作する。これにより、電圧制限回路30は、トランジスタMN22のゲート電圧に応じた電圧(制限電圧)を有する画素信号SIG1を出力端子OUTから出力する。すなわち、電圧制限回路30は、入力端子INに入力された画素信号SIGの電圧が低くなった場合でも、画素信号SIG1の電圧が制限電圧より低くならないように制限することができる。これにより、撮像装置1では、高輝度時の黒沈みを抑えることができるようになっている。
 ここで、画素回路20は、本開示における「画素回路」の一具体例に対応する。フォトダイオードPDは、本開示における「第1の受光素子」および「第2の受光素子」の一具体例に対応する。フローティングディフュージョンFDは、本開示における「第1の蓄積部」および「第2の蓄積部」の一具体例に対応する。トランジスタMN2は、本開示における「第1の転送スイッチ」および「第2の転送スイッチ」の一具体例に対応する。画素信号SIG1は、本開示における「画素信号」の一具体例に対応する。電圧制限回路30は、本開示における「電圧制限回路」の一具体例に対応する。参照信号REFは、本開示における「参照信号」の一具体例に対応する。比較回路22は、本開示における「比較回路」の一具体例に対応する。トランジスタMN21は、本開示における「第1のトランジスタ」の一具体例に対応する。トランジスタMN22は、本開示における「第2のトランジスタ」の一具体例に対応する。定電流源CURは、本開示における「第1の電流源」の一具体例に対応する。スイッチSW1は、本開示における「第1のスイッチ」の一具体例に対応する。キャパシタC1は、本開示における「キャパシタ」の一具体例に対応する。スイッチSW2は、本開示における「電圧設定回路」の一具体例に対応する。電圧V1は、本開示における「第1の電圧」の一具体例に対応する。電圧V2は、本開示における「第2の電圧」の一具体例に対応する。トランジスタMN11は、本開示における「第4のトランジスタ」の一具体例に対応する。トランジスタMN12は、本開示における「第5のトランジスタ」の一具体例に対応する。トランジスタMN13は、本開示における「第3の電流源」の一具体例に対応する。トランジスタMN3は、本開示における「第3のスイッチ」の一具体例に対応する。トランジスタMN4は、本開示における「第4のスイッチ」の一具体例に対応する。画素駆動部15は、本開示における「制御部」の一具体例に対応する。スイッチSW3は、本開示における「第5のスイッチ」の一具体例に対応する。半導体基板101は、本開示における「第1の基板」の一具体例に対応する。半導体基板102は、本開示における「第2の基板」の一具体例に対応する。タイムコード生成部13は、本開示における「タイムコード生成回路」の一具体例に対応する。ラッチ23は、本開示における「ラッチ回路」の一具体例に対応する。
[動作および作用]
 続いて、本実施の形態の撮像装置1の動作および作用について説明する。
(全体動作概要)
 まず、図1,3,4を参照して、撮像装置1の全体動作概要を説明する。参照信号生成部12は、参照信号REFを生成する。タイムコード生成部13は、タイムコードTCを生成する。リピータ29は、タイムコードTCを、クラスタCLに属する複数の画素Pのラッチ23に供給する。画素駆動部15は、画素アレイ11における複数の画素回路20の動作を制御する。画素アレイ11における複数の画素回路20のそれぞれは、リセット電圧および画素電圧を含む画素信号SIGを生成し、この画素信号SIGに基づいて画素信号SIG1を生成する。そして、複数の画素回路20のそれぞれは、この画素信号SIG1に基づいてAD変換を行うことによりコード値CP,CDを生成する。リピータ29は、コード値CP,CDを信号処理部16に供給する。信号処理部16は、複数の画素回路20のそれぞれが生成したコード値CP,CDに基づいて所定の画像処理を行うことにより画像信号Spicを生成する。タイミング生成部17は、各種タイミング信号を生成し、生成した各種タイミング信号を、参照信号生成部12、タイムコード生成部13、画素駆動部15、および信号処理部16に供給することにより、撮像装置1の動作を制御する。
(詳細動作)
 画素アレイ11における複数の画素回路20のそれぞれでは、制御信号OFGに基づいて、トランジスタMN1がオン状態になることにより、フォトダイオードPDに蓄積された電荷が排出される。そして、トランジスタMN1がオフ状態になることにより、露光期間が開始され、フォトダイオードPDに、受光量に応じた量の電荷が蓄積される。露光期間が終了した後に、画素回路20は、リセット電圧および画素電圧を含む画素信号SIGを生成し、この画素信号SIGに基づいて画素信号SIG1を生成する。そして、画素回路20は、この画素信号SIG1に基づいてAD変換を行う。以下に、ある画素回路20に着目し、この着目した画素回路20におけるAD変換について詳細に説明する。
 まず、通常の光が撮像装置1に入射した場合について説明し、その後に、太陽光のような強い光が撮像装置1に入射した場合について説明する。
 図6は、通常の光が撮像装置1に入射した場合における、画素回路20におけるAD変換の一動作例を表すものであり、(A)は制御信号RSTの波形を示し、(B)は制御信号TXの波形を示し、(C)は制御信号CTL1の波形を示し、(D)は制御信号CTL2の波形を示し、(E)は制御信号CTL3の波形を示し、(F)は画素信号SIGの波形を示し、(G)は電圧制限回路30のノードN2における電圧VN2の波形を示し、(H)は参照信号REFの波形を示し、(I)は画素信号SIG1の波形を示し、(J)は信号CMPの波形を示す。図6(F),(G)では、画素信号SIGおよび電圧VN2の波形を、同じ電圧軸で示している。同様に、図6(H),(I)では、参照信号REFおよび画素信号SIG1の波形を、同じ電圧軸で示している。
 まず、タイミングt11において、参照信号生成部12は、参照信号REFの電圧を電圧Vxに変化させる(図6(H))。
 また、このタイミングt11において、画素駆動部15は、制御信号RSTを低レベルから高レベルに変化させる(図6(A))。これにより、画素回路20では、トランジスタMN3,MN4がオン状態になる。トランジスタMN3がオン状態になることにより、フローティングディフュージョンFDがリセットされ、フローティングディフュージョンFDの電圧(画素信号SIGの電圧)が電圧Vxに設定される(図6(F))。また、トランジスタMN4がオン状態になることにより、画素信号SIG1の電圧が電圧Vxに設定される(図6(I))。このようにして、トランジスタMN21のゲート電圧(画素信号SIGの電圧)およびソース電圧(画素信号SIG1の電圧)はともに電圧Vxに設定されるので、トランジスタMN21はオフ状態である。
 また、このタイミングt11において、画素駆動部15は、制御信号CTL1を低レベルから高レベルに変化させる(図6(C))。これにより、画素回路20では、スイッチSW1がオン状態になり、ノードN1およびノードN2が互いに接続される。ノードN1の電圧(画素信号SIG1の電圧)は電圧Vxであるので、ノードN2の電圧VN2は電圧Vxに設定される(図6(G))。
 また、このタイミングt11において、画素駆動部15は、制御信号CTL2を低レベルから高レベルに変化させる(図6(D))。これにより、画素回路20では、スイッチSW2が、電圧V1をキャパシタC1の第2の端子に供給する。キャパシタC1の第1の端子における電圧VN2は電圧Vxであるので、キャパシタC1はチャージされ、キャパシタC1の第1の端子および第2の端子の間に電圧差(Vx-V1)が設定される。
 次に、タイミングt12において、参照信号生成部12は、参照信号REFの電圧を電圧VAに変化させる(図6(H))。
 また、このタイミングt12において、画素駆動部15は、制御信号RSTを高レベルから低レベルに変化させる(図6(A))。これにより、画素回路20では、トランジスタMN3,MN4がオフ状態になる。トランジスタMN3がオフ状態になることにより、フローティングディフュージョンFDは電気的にフローティング状態になる。これにより、フローティングディフュージョンFDの電圧(画素信号SIGの電圧)は電圧Vxに維持される(図6(F))。また、トランジスタMN4がオフ状態になることにより、定電流源CURがノードN1から接地に向かって電流を流すので、ノードN1の電圧(画素信号SIG1の電圧)は低下する(図6(I))。ノードN1およびノードN2はスイッチSW1を介して互いに接続されているので、ノードN2の電圧VN2も同様に低下する(図6(G))。ノードN1の電圧の低下により、トランジスタMN21のソース電圧(画素信号SIG1の電圧)が、トランジスタMN21のゲート電圧(画素信号SIGの電圧)よりも電圧ΔV21だけ低い電圧になると、トランジスタMN21、ノードN1、定電流源CURの経路に電流が流れるようになる。ここで、電圧ΔV21は、トランジスタMN21のゲートソース間電圧Vgsの降下分であり、トランジスタMN21のしきい値電圧Vthと、トランジスタMN21が飽和領域で動作するためのいわゆるオーバードライブ電圧Vovとの和(Vth+Vov)で表すことができる。これにより、トランジスタMN21および定電流源CURは、いわゆるソースフォロワとして動作する。このようにして、電圧制限回路30は、入力された画素信号SIGに基づいて、画素信号SIGよりも電圧ΔV21だけ低い画素信号SIG1を生成する(図6(F),(I))。その結果、画素信号SIG1の電圧は“Vx-ΔV21”になる(図6(F))。ノードN2の電圧VN2も同様に“Vx-ΔV21”になる(図6(G))。
 次に、タイミングt13において、画素駆動部15は、制御信号CTL1を高レベルから低レベルに変化させる(図6(C))。これにより、画素回路20では、スイッチSW1がオフ状態になり、ノードN1およびノードN2は互いに切断される。
 そして、このタイミングt13において、画素駆動部15は、制御信号CTL2を高レベルから低レベルに変化させる(図6(D))。これにより、画素回路20では、スイッチSW2が、キャパシタC1の第2の端子の電圧を、電圧V1から、電圧V1より電圧ΔV(=V1―V2)だけ低い電圧V2に変化させる。キャパシタC1の第1の端子および第2の端子の間の電圧は維持されるので、キャパシタC1の第2の端子の電圧低下に応じて、第1の端子の電圧もまた電圧ΔVだけ低下する。このようにして、ノードN2における電圧VN2は“Vx-ΔV21-ΔV”になる(図6(G))。
 次に、タイミングt14~t16の期間(P相期間TP)において、画素回路20は、画素信号SIGの電圧(リセット電圧)に応じた画素信号SIG1の電圧に基づいてAD変換を行う。具体的には、タイミングt14において、参照信号生成部12は、参照信号REFの電圧を、電圧VAから所定の変化度合いで低下させ始める(図6(H))。また、タイムコード生成部13は、このタイミングt14において、タイムコードTCのインクリメント動作を開始する。リピータ29は、このタイムコードTCをラッチ23に供給する。これにより、ラッチ23には、時間の経過に応じて変化するタイムコードTCが供給される。
 そして、タイミングt15において、参照信号REFの電圧が画素信号SIG1の電圧を下回る(図6(H),(I))。これに応じて、比較回路22は、信号CMPを高レベルから低レベルに変化させる(図6(J))。ラッチ23は、この信号CMPの遷移に基づいて、タイムコードTCをラッチする。ラッチ23においてラッチされたタイムコードTCのコード値CPは、タイミングt14~t15の時間の長さに対応するコード値である。言い換えれば、このコード値CPは、P相期間TPにおける画素信号SIG1の電圧に対応するコード値である。
 そして、タイミングt16において、P相期間TPの終了に伴い、タイムコード生成部13は、タイムコードTCのインクリメント動作を終了する。そして、参照信号生成部12は、参照信号REFの電圧の変化を停止させ、参照信号REFの電圧を電圧VAに変化させる(図6(H))。これにより、参照信号REFの電圧は画素信号SIG1の電圧より高くなるので(図6(H),(I))、比較回路22は、信号CMPを低レベルから高レベルに変化させる(図6(J))。
 次に、タイミングt17において、画素駆動部15は、制御信号CTL3を低レベルから高レベルに変化させる(図6(E))。これにより、画素回路20では、スイッチSW3がオン状態になり、ノードN2の電圧VN2を電圧V3に設定する(図6(G))。
 また、このタイミングt17において、画素駆動部15は、制御信号TXを低レベルから高レベルに変化させる(図6(B))。これにより、画素回路20では、トランジスタMN2がオン状態になり、フォトダイオードPDで発生した電荷がフローティングディフュージョンFDに転送され、フローティングディフュージョンFDの電圧(画素信号SIGの電圧)が、受光量に応じた画素電圧になる(図6(F))。この画素信号SIGの電圧は、ノードN2における電圧VN2よりも高い(図6(F),(G))。よって、電圧制限回路30では、トランジスタMN21、ノードN1、定電流源CURの経路に電流が流れ続けるので、トランジスタMN21および定電流源CURは、いわゆるソースフォロワとして動作し続ける。その結果、電圧制限回路30は、入力された画素信号SIGに基づいて、画素信号SIGよりも電圧ΔV21だけ低い画素信号SIG1を生成する(図6(I))。
 そして、タイミングt18において、画素駆動部15は、制御信号TXを高レベルから低レベルに変化させる(図6(B))。これにより、トランジスタMN2はオフ状態になる。
 次に、タイミングt19~t21の期間(D相期間TD)において、画素回路20は、画素信号SIGの電圧(画素電圧)に応じた画素信号SIG1の電圧に基づいてAD変換を行う。具体的には、タイミングt19において、参照信号生成部12は、参照信号REFの電圧を、電圧VAから所定の変化度合いで低下させ始める(図6(H))。また、タイムコード生成部13は、このタイミングt19において、タイムコードTCのインクリメント動作を開始する。リピータ29は、このタイムコードTCをラッチ23に供給する。これにより、ラッチ23には、時間の経過に応じて変化するタイムコードTCが供給される。
 そして、タイミングt20において、参照信号REFの電圧が画素信号SIG1の電圧を下回る(図6(H),(I))。これに応じて、比較回路22は、信号CMPを高レベルから低レベルに変化させる(図6(J))。ラッチ23は、この信号CMPの遷移に基づいて、タイムコードTCをラッチする。ラッチ23においてラッチされたタイムコードTCのコード値CDは、タイミングt19~t20の時間の長さに対応するコード値である。言い換えれば、このコード値CDは、D相期間TDにおける画素信号SIG1の電圧に対応するコード値である。
 そして、タイミングt21において、D相期間TDの終了に伴い、タイムコード生成部13は、タイムコードTCのインクリメント動作を終了する。そして、参照信号生成部12は、参照信号REFの電圧の変化を停止させ、電圧VAに変化させる(図6(H))。これにより、参照信号REFの電圧は画素信号SIG1の電圧より高くなるので(図6(H),(I))、比較回路22は、信号CMPを低レベルから高レベルに変化させる(図6(J))。
 そして、タイミングt21~t22の期間において、クラスタCLにおける複数の画素回路20は、コード値CP,CDをリピータ29に順次供給し、リピータ29は、これらのコード値CP,CDを信号処理部16に順次供給する。
 信号処理部16は、複数の画素回路20のそれぞれが生成したコード値CP,CDに基づいて所定の画像処理を行う。例えば、信号処理部16は、コード値CPおよびコード値CDに基づいて、相関2重サンプリングの原理を利用して画素値を生成する。具体的には、信号処理部16は、例えば、コード値CDからコード値CPを減算することにより、画素値を生成する。また、信号処理部16は、黒レベルを補正する黒レベル補正処理などを行う。このようにして、信号処理部16は画像信号Spicを生成する。
 次に、太陽光のような強い光が撮像装置1に入射した場合について説明する。
 図7は、太陽光のような強い光が撮像装置1に入射した場合における、画素回路20におけるAD変換の一動作例を表すものである。
 まず、タイミングt31において、参照信号生成部12は、参照信号REFの電圧を電圧Vxに変化させる(図7(H))。
 また、このタイミングt31において、画素駆動部15は、制御信号RSTを低レベルから高レベルに変化させる(図7(A))。これにより、画素回路20では、トランジスタMN3,MN4がオン状態になる。トランジスタMN3がオン状態になることにより、フローティングディフュージョンFDがリセットされ、フローティングディフュージョンFDの電圧(画素信号SIGの電圧)が電圧Vxに設定される(図7(F))。また、トランジスタMN4がオン状態になることにより、画素信号SIG1の電圧が電圧Vxに設定される(図7(I))。このようにして、トランジスタMN21のゲート電圧(画素信号SIGの電圧)およびソース電圧(画素信号SIG1の電圧)はともに電圧Vxに設定されるので、トランジスタMN21はオフ状態である。
 また、このタイミングt31において、画素駆動部15は、制御信号CTL1を低レベルから高レベルに変化させる(図7(C))。これにより、画素回路20では、スイッチSW1がオン状態になり、ノードN1およびノードN2が互いに接続される。ノードN1の電圧(画素信号SIG1の電圧)は電圧Vxであるので、ノードN2の電圧VN2は電圧Vxに設定される(図7(G))。
 また、このタイミングt31において、画素駆動部15は、制御信号CTL2を低レベルから高レベルに変化させる(図7(D))。これにより、画素回路20では、スイッチSW2が、電圧V1をキャパシタC1の第2の端子に供給する。キャパシタC1の第1の端子における電圧VN2は電圧Vxであるので、キャパシタC1はチャージされ、キャパシタC1の第1の端子および第2の端子の間に電圧差(Vx-V1)が設定される。
 次に、タイミングt32において、参照信号生成部12は、参照信号REFの電圧を電圧VAに変化させる(図7(H))。
 また、このタイミングt32において、画素駆動部15は、制御信号RSTを高レベルから低レベルに変化させる(図7(A))。これにより、画素回路20では、トランジスタMN3,MN4がオフ状態になる。トランジスタMN3がオフ状態になることにより、フローティングディフュージョンFDは電気的にフローティング状態になる。この例では、太陽光のような強い光が撮像装置1に入射しているので、着目した画素回路20を含む複数の画素回路20のフォトダイオードPDから、着目した画素回路20のフローティングディフュージョンFDに電子が漏れてくる。これにより、フローティングディフュージョンFDの電圧(画素信号SIGの電圧)は徐々に低下する(図7(F))。また、トランジスタMN4がオフ状態になることにより、定電流源CURがノードN1から接地に向かって電流を流すので、ノードN1の電圧(画素信号SIG1の電圧)は低下する(図7(I))。ノードN1およびノードN2はスイッチSW1を介して互いに接続されているので、ノードN2の電圧VN2もまた低下する(図7(G))。ノードN1の電圧の低下により、トランジスタMN21のソース電圧(画素信号SIG1の電圧)が、トランジスタMN21のゲート電圧(画素信号SIGの電圧)よりも電圧ΔV21だけ低い電圧になると、電圧制限回路30では、トランジスタMN21、ノードN1、定電流源CURの経路に電流が流れるようになる。これにより、トランジスタMN21および定電流源CURは、いわゆるソースフォロワとして動作する。このようにして、電圧制限回路30は、入力された画素信号SIGに基づいて、画素信号SIGよりも電圧ΔV21だけ低い画素信号SIG1を生成する(図7(I)。
 このようにして、画素信号SIGの電圧は徐々に低下していき、タイミングt33の直前では、“Vx-ΔVz”になる(図7(F))。ここで、電圧ΔVzは、フローティングディフュージョンFDへの電子の漏れによる電圧降下分である。よって、画素信号SIG1の電圧は、画素信号SIGの電圧より電圧ΔV21だけ低いので、“Vx-ΔV21-ΔVz”になる(図7(I))。ノードN2の電圧VN2も同様に“Vx-ΔV21-ΔVz”になる(図7(G))。
 次に、タイミングt33において、画素駆動部15は、制御信号CTL1を高レベルから低レベルに変化させる(図7(C))。これにより、画素回路20では、スイッチSW1がオフ状態になり、ノードN1およびノードN2は互いに切断される。
 そして、このタイミングt33において、画素駆動部15は、制御信号CTL2を高レベルから低レベルに変化させる(図7(D))。これにより、画素回路20では、スイッチSW2が、キャパシタC1の第2の端子の電圧を、電圧V1から、電圧V1より電圧ΔV(=V1―V2)だけ低い電圧V2に変化させる。キャパシタC1の第1の端子および第2の端子の間の電圧は維持されるので、このようにキャパシタC1の第2の端子の電圧低下に応じて、第1の端子の電圧もまた電圧ΔVだけ低下する。このようにして、ノードN2における電圧VN2は“Vx-ΔV21-ΔVz-ΔV”になる(図7(G))。
 このタイミングt33以降において、画素信号SIGは、引き続き低下する(図7(F))。これに応じて、画素信号SIG1もまた、引き続き低下する(図7(I))。
 そして、この例では、タイミングt34において、画素信号SIGは、電圧VN2を下回る(図7(F),(G))。これにより、このタイミングt34以降において、電圧制限回路30では、トランジスタMN22、ノードN1、定電流源CURの経路に電流が流れるようになる。これにより、トランジスタMN22および定電流源CURは、いわゆるソースフォロワとして動作する。このようにして、電圧制限回路30は、ノードN2の電圧VN2よりも電圧ΔV22だけ低い画素信号SIG1を生成する(図7(I))。ここで、電圧ΔV22は、トランジスタMN22のゲートソース間電圧Vgsの降下分であり、トランジスタMN22のしきい値電圧Vthと、トランジスタMN22が飽和領域で動作するためのいわゆるオーバードライブ電圧Vovとの和(Vth+Vov)で表すことができる。このようにして、画素信号SIG1の電圧は、“Vx-ΔV21-ΔVz-ΔV-ΔV22”になる。すなわち、画素信号SIG1の電圧は、画素信号SIGに応じた低い電圧にならず、“Vx-ΔV21-ΔVz-ΔV-ΔV22”(制限電圧)に制限される。
 次に、タイミングt35~t37の期間(P相期間TP)において、画素回路20は、画素信号SIG1の電圧に基づいてAD変換を行う。具体的には、タイミングt35において、参照信号生成部12は、参照信号REFの電圧を、電圧VAから所定の変化度合いで低下させ始める(図7(H))。また、タイムコード生成部13は、このタイミングt35において、タイムコードTCのインクリメント動作を開始する。リピータ29は、このタイムコードTCをラッチ23に供給する。これにより、ラッチ23には、時間の経過に応じて変化するタイムコードTCが供給される。
 そして、タイミングt36において、参照信号REFの電圧が画素信号SIG1の電圧を下回る(図7(H),(I))。これに応じて、比較回路22は、信号CMPを高レベルから低レベルに変化させる(図7(J))。ラッチ23は、この信号CMPの遷移に基づいて、タイムコードTCをラッチする。ラッチ23においてラッチされたタイムコードTCのコード値CPは、タイミングt35~t36の時間の長さに対応するコード値である。言い換えれば、このコード値CPは、P相期間TPにおける画素信号SIG1の電圧に対応するコード値である。
 そして、タイミングt37において、P相期間TPの終了に伴い、タイムコード生成部13は、タイムコードTCのインクリメント動作を終了する。そして、参照信号生成部12は、参照信号REFの電圧の変化を停止させ、参照信号REFの電圧を電圧VAに変化させる(図7(H))。これにより、参照信号REFの電圧は画素信号SIG1の電圧より高くなるので(図7(H),(I))、比較回路22は、信号CMPを低レベルから高レベルに変化させる(図7(J))。
 次に、タイミングt38において、画素駆動部15は、制御信号CTL3を低レベルから高レベルに変化させる(図7(E))。これにより、画素回路20では、スイッチSW3がオン状態になり、ノードN2の電圧VN2を電圧V3に設定する(図7(G))。
 また、このタイミングt38において、画素駆動部15は、制御信号TXを低レベルから高レベルに変化させる(図7(B))。これにより、画素回路20では、トランジスタMN2がオン状態になり、フォトダイオードPDで発生した電荷がフローティングディフュージョンFDに転送される。この例では、太陽光のような強い光が撮像装置1に入射しているので、着目した画素回路20のフォトダイオードPDからその受光量に応じた電荷が、フローティングディフュージョンFDに転送される。これにより、フローティングディフュージョンFDの電圧(画素信号SIGの電圧)が低下する(図7(F))。この画素信号SIGの電圧は、ノードN2における電圧VN2よりも低い(図7(F),(G))。よって、電圧制限回路30では、トランジスタMN22、ノードN1、定電流源CURの経路に電流が流れ続けるので、トランジスタMN22および定電流源CURは、いわゆるソースフォロワとして動作し続ける。その結果、電圧制限回路30は、ノードN2の電圧VN2よりも電圧ΔV22だけ低い画素信号SIG1を生成する(図7(I))。このようにして、画素信号SIG1の電圧は、“V3-ΔV22”になる。すなわち、画素信号SIG1の電圧は、画素信号SIGに応じた低い電圧にならず、“V3-ΔV22”(制限電圧)に制限される。
 そして、タイミングt39において、画素駆動部15は、制御信号TXを高レベルから低レベルに変化させる(図7(B))。これにより、トランジスタMN2はオフ状態になる。
 次に、タイミングt40~t41の期間(D相期間TD)において、画素回路20は、画素信号SIG1の電圧に基づいてAD変換を行う。具体的には、タイミングt40において、参照信号生成部12は、参照信号REFの電圧を、電圧VAから所定の変化度合いで低下させ始める(図7(H))。また、タイムコード生成部13は、このタイミングt40において、タイムコードTCのインクリメント動作を開始する。リピータ29は、このタイムコードTCをラッチ23に供給する。これにより、ラッチ23には、時間の経過に応じて変化するタイムコードTCが供給される。
 この例では、画素信号SIG1の電圧は、D相期間TDにおける参照信号REFの電圧範囲よりも低い電圧である(図7(H),(I))。よって、参照信号REFの電圧は画素信号SIG1の電圧を下回らない。よって、信号CMPは遷移せずに高レベルを維持する(図7(J))。この場合には、ラッチ23は、例えば、D相期間TDの終了タイミングであるタイミングt41において、タイムコードTCをラッチする。この場合には、ラッチ23においてラッチされたタイムコードTCのコード値CDは、タイミングt40~t41の時間の長さに対応するコード値であり、とり得るコード値の最大値である。
 そして、タイミングt41において、D相期間TDの終了に伴い、タイムコード生成部13は、タイムコードTCのインクリメント動作を終了する。そして、参照信号生成部12は、参照信号REFの電圧の変化を停止させ、電圧VAに変化させる(図7(H))。
 そして、タイミングt41~t42の期間において、クラスタCLにおける複数の画素回路20は、コード値CP,CDをリピータ29に順次供給し、リピータ29は、これらのコード値CP,CDを信号処理部16に順次供給する。
 信号処理部16は、複数の画素回路20のそれぞれが生成したコード値CP,CDに基づいて所定の画像処理を行う。この例では、コード値CDは最大値であるので、信号処理部16は、例えば、画素値を生成しないようにすることができる。
 このように、撮像装置1では、画素回路20に、フォトダイオードPDと、フォトダイオードPDにより生成された電荷を蓄積可能なフローティングディフュージョンFDと、オン状態になることによりフォトダイオードPDとフローティングディフュージョンFDとを接続可能なトランジスタMN2と、フローティングディフュージョンFDにおける電圧に応じた画素信号SIG1を生成可能であり、画素信号SIG1の電圧が制限電圧を超えないように制限可能な電圧制限回路30と、参照信号REFと画素信号SIG1とを比較可能な比較回路22とを設けるようにした。具体的には、この電圧制限回路30は、例えば、フローティングディフュージョンFDに接続されたゲートを有するトランジスタMN21と、制限電圧に対応する電圧VN2が供給されることが可能なゲートを有するトランジスタMN22と、トランジスタMN21,MN22のソースに接続された定電流源CURを有することができる。これにより、画素回路20では、参照信号REFと、制限電圧を超えないように制限された画素信号SIG1とが比較されるので、例えば、太陽光のような強い光が入射した場合において、画素値が小さくなる、いわゆる黒沈みが生じる可能性を低減することができる。その結果、撮像装置1では、高輝度時における画質の低下を抑えることができる。
 また、撮像装置1では、電圧制限回路30は、オン状態になることにより、第1のトランジスタ(トランジスタMN21)のソースおよび第2のトランジスタ(トランジスタMN2)のソースと第2のトランジスタ(トランジスタMN22)のゲートとを接続可能なスイッチSW1と、第2のトランジスタ(トランジスタMN22)のゲートに接続された第1の端子、および第2の端子を有するキャパシタC1と、キャパシタC1の第2の端子の電圧を変更可能な電圧設定回路(スイッチSW2)とを有するようにした。これにより、例えば図7に示したように、タイミングt31~t33の期間において、スイッチSW1をオン状態にすることにより、ノードN1およびノードN2を互いに接続し、タイミングt33において、このスイッチSW1をオフ状態にするととともに、スイッチSW2を動作させることにより、ノードN2の電圧VN2を所定の電圧ΔV(=V1-V2)だけ変更することができる。これにより、撮像装置1では、例えば、タイミングt13,t33において、電圧がばらついている場合でも、そのばらついた電圧を基準として動作することができるので、電圧のばらつきの影響を受けにくいため、効果的に黒沈みを抑えることができる。すなわち、例えば、タイミングt13,t33では、例えばフローティングディフュージョンFDの電圧である画素信号SIGの電圧、画素信号SIG1の電圧、およびノードN2の電圧VN2が、ばらつく可能性がある。撮像装置1では、このようなばらついた電圧を基準として動作する。例えば、ノードN2の電圧VN2は、ばらついた電圧を基準に、電圧ΔVだけ変化する。そして、電圧制限回路30は、画素信号SIGの電圧およびこの電圧VN2に基づいて、画素信号SIG1を生成する。そして、比較回路22は、参照信号REFの電圧とこの画素信号SIG1の電圧とを比較することにより信号CMPを生成する。その結果、これらの電圧のばらつきの影響を受けにくいので、高輝度時における画質の低下を効果的に抑えることができる。
 また、撮像装置1では、電圧制限回路30は、オン状態になることにより第2のトランジスタ(トランジスタMN22)のゲートに電圧V3を供給可能なスイッチSW3を有するようにした。これにより、撮像装置1は、例えばD相期間TDにおいて、画素信号SIG1の電圧を制限し、低くなりすぎないようにすることができるので、画質の低下を抑えることができる。すなわち、画素信号SIG1が低くなりすぎる場合には、この画素信号SIG1に起因して、電源電圧や接地電圧に変化が生じ、その結果、複数の画素回路20における画素値が変化し得る。その結果、いわゆるストリーキングと呼ばれる、画質の低下が生じ得る。撮像装置1では、D相期間TDにおいて、トランジスタMN22のゲートに電圧V3を印加することにより、画素信号SIG1の電圧を制限し、低くなりすぎないようにすることができる。これにより、撮像装置1では、電源電圧や接地電圧への影響を抑えることができるので、高輝度時における画質の低下を抑えることができる。
[効果]
 以上のように本実施の形態では、画素回路に、フォトダイオードと、フォトダイオードにより生成された電荷を蓄積可能なフローティングディフュージョンと、オン状態になることによりフォトダイオードとフォローティングディフュージョンとを接続可能なトランジスタと、フローティングディフュージョンFDにおける電圧に応じた画素信号を生成可能であり、画素信号の電圧が制限電圧を超えないように制限可能な電圧制限回路と、参照信号REFと画素信号SIG1とを比較可能な比較回路とを設けるようにしたので、高輝度時における画質の低下を抑えることができる。
 本実施の形態では、オン状態になることにより、第1のトランジスタのソースおよび第2のトランジスタのソースと第2のトランジスタのゲートとを接続可能なスイッチと、第2のトランジスタのゲートに接続された第1の端子、および第2の端子を有するキャパシタと、キャパシタの第2の端子の電圧を変更可能な電圧設定回路とを有するようにしたので、高輝度時における画質の低下を効果的に抑えることができる。
 本実施の形態では、オン状態になることにより第2のトランジスタのゲートに電圧を供給可能なスイッチを有するようにしたので、高輝度時における画質の低下を抑えることができる。
[変形例1]
 上記実施の形態では、スイッチSW2は、キャパシタC1に供給する電圧を、電圧V1から電圧V2に切り替えるようにしたが、これに限定されるものではない。これに代えて、例えば、図8に示すように、スイッチSW2は、キャパシタC1に供給する電圧を、参照信号REFの電圧から電圧V2に切り替えるようにしてもよい。本変形例に係る撮像装置は、受光回路21Aを有している。受光回路21Aは、電圧制限回路30Aを有している。電圧制限回路30AのスイッチSW2は、画素駆動部15(図1)から供給された制御信号CTL2に基づいて、参照信号REFおよび電圧V2のうちの一方をキャパシタC1の第2の端子に供給するように構成される。スイッチSW2は、図6の例では、タイミングt11~t13の期間において、参照信号REFの電圧をキャパシタC1に供給する。このタイミングt11~t13の期間は、参照信号REFにおけるランプ波形を有する期間(タイミングt14~t16の期間、タイミングt19~t21の期間)以外の期間のうちの一部の期間である。このタイミングt11~t13の期間では、参照信号REFの電圧は、電圧Vxまたは電圧VAである。例えば、電圧V2を、電圧VAよりも低い電圧に設定することにより、上記実施の形態の場合と同様に動作することができる。また、このタイミングt11~t13の期間では、キャパシタC1の第1の端子の電圧VN2は、電圧Vx付近である。すなわち、このタイミングt11~t13の期間において、キャパシタC1の両端間の電圧差は十分に低い。よって、本変形例では、キャパシタC1のチャージ時間を短くすることができる。
[変形例2]
 上記実施の形態では、トランジスタMN21のサイズおよびトランジスタMN22のサイズを互いに等しくしたが、これに限定されるものではなく、これに代えて、例えば図9に示すように、トランジスタMN21のサイズおよびトランジスタMN22のサイズを互いに異ならせてもよい。本変形例に係る撮像装置は、受光回路21Bを有している。受光回路21Bは、電圧制限回路30Bを有している。この電圧制限回路30Bでは、トランジスタMN22のサイズを、トランジスタMN21のサイズよりも大きくしている。具体的には、トランジスタMN22のゲート幅をトランジスタMN21のゲート幅よりも大きくすることができる。この場合には、電圧制限回路30Bは、ノードN2の電圧VN2に基づいて画素信号SIG1の電圧を制限電圧に設定するまでの時間を短くすることができる。なお、この例では、トランジスタMN22のサイズをトランジスタMN21のサイズよりも大きくしたが、これに代えて、例えば、トランジスタMN21のサイズをトランジスタMN22のサイズよりも大きくしてもよい。
[変形例3]
 上記実施の形態では、図5に示したように、電圧制限回路30に2つのトランジスタMN21,MN22を設けたが、これに限定されるものではなく、これに代えて、例えば図10に示すように、さらに他のトランジスタを設けてもよい。本変形例に係る撮像装置は、受光回路21Cを有している。受光回路21Cは、電圧制限回路30Cを有している。この電圧制限回路30Cは、トランジスタMP23,MP24を有している。トランジスタMP23,MP24はP型のMOSトランジスタである。トランジスタMP23のゲートには、例えばバイアス生成部14(図1)からバイアス電圧Vb2が供給され、ソースには電源電圧VDDが供給され、ドレインはトランジスタMN22のドレインおよびトランジスタMP24のゲートに接続される。このトランジスタMP23は、定電流源を構成する。このトランジスタMP23が流す電流の電流値は、定電流源CURが流す電流の電流値よりも小さい値に設定される。トランジスタMP24のゲートはトランジスタMN22,MP23のドレインに接続され、ソースには電源電圧VDDが供給され、ドレインはノードN1に接続される。ここで、トランジスタMP23は、本開示における「第2の電流源」の一具体例に対応する。トランジスタMP24は、本開示における「第3のトランジスタ」の一具体例に対応する。この構成により、例えば、画素信号SIGがノードN2の電圧VN2よりも低くなり、トランジスタMN22に電流が流れ始めると、トランジスタMP24のゲート電圧が低下し、トランジスタMP24がオン状態になる。その結果、画素信号SIG1の電圧を制限電圧に設定するまでの時間を短くすることができる。
[変形例4]
 上記実施の形態では、図5に示したように、電圧制限回路30に、画素信号SIGが供給されるトランジスタMN21、およびノードN2の電圧VN2が供給されるトランジスタMN22を設けたがこれに限定されるものではない。これに代えて、例えば図11に示すように、複数のトランジスタを設け、その複数のトランジスタのうちの一部を、画素信号SIGが供給されるトランジスタとして用い、複数のトランジスタのうちの他の一部を電圧VN2が供給されるトランジスタとして用いてもよい。本変形例に係る撮像装置は、電圧制限回路30Dを有している。この電圧制限回路30Dは、トランジスタMN31,MN32,MN33,MN34と、選択回路31とを有している。
 トランジスタMN31~MN34は、N型のMOSトランジスタである。この例では、トランジスタMN31~MN34のサイズは、互いに等しい。トランジスタMN31のゲートには電圧VG1が供給され、ドレインには電源電圧VDDが供給され、ソースはノードN1に接続される。トランジスタMN32のゲートには電圧VG2が供給され、ドレインには電源電圧VDDが供給され、ソースはノードN1に接続される。トランジスタMN33のゲートには電圧VG3が供給され、ドレインには電源電圧VDDが供給され、ソースはノードN1に接続される。トランジスタMN34のゲートには電圧VG4が供給され、ドレインには電源電圧VDDが供給され、ソースはノードN1に接続される。
 選択回路31は、例えば画素駆動部15(図1)から供給された制御信号SELに基づいて、画素信号SIGを4つのトランジスタMN31~MN34のうちの1以上のトランジスタのゲートに供給し、電圧VN2を4つのトランジスタMN31~MN34のうちの1以上のトランジスタのゲートに供給するように構成される。
 ここで、トランジスタMN31~MN34は、本開示における「複数のトランジスタ」の一具体例に対応する。選択回路31は、本開示における「第1の選択回路」の一具体例に対応する。
 例えば、選択回路31は、画素信号SIGをトランジスタMN31,MN32のゲートに供給し、電圧VN2をトランジスタMN33,MN34のゲートに供給することができる。この場合には、トランジスタMN31,MN32は、上記実施の形態に係るトランジスタMN21に対応し、トランジスタMN33,MN34は、上記実施の形態に係るトランジスタMN22に対応する。よって、トランジスタMN21,MN22のサイズは互いに等しい。
 また、例えば、選択回路31は、画素信号SIGをトランジスタMN31のゲートに供給し、電圧VN2をトランジスタMN32~MN34のゲートに供給することができる。この場合には、トランジスタMN31は、上記実施の形態に係るトランジスタMN21に対応し、トランジスタMN32~MN34は、上記実施の形態に係るトランジスタMN22に対応する。よって、トランジスタMN22のサイズは、トランジスタMN21のサイズよりも大きい。この場合には、電圧制限回路30Dは、ノードN2の電圧VN2に基づいて画素信号SIG1の電圧を制限電圧に設定するまでの時間を短くすることができる。
 また、例えば、選択回路31は、画素信号SIGをトランジスタMN31,MN32のゲートに供給し、電圧VN2をトランジスタMN34のゲートに供給することができる。この場合には、トランジスタMN31,MN32は、上記実施の形態に係るトランジスタMN21に対応し、トランジスタMN34は、上記実施の形態に係るトランジスタMN22に対応する。この例では、トランジスタMN33は使用されていない。この場合には、選択回路31は、このトランジスタMN33のゲートに“0V”を供給することができる。
 このように構成することにより、本変形例に係る撮像装置では、電圧制限回路30Dの特性を調節することができる。
[変形例5]
 上記実施の形態では、図5に示したように、受光回路21は1つのフォトダイオードPDを有するようにしたが、これに限定されるものではない。これに代えて、例えば図12に示すように、複数のフォトダイオードPD(この例では3つのフォトダイオードPD)を有するようにしてもよい。本変形例に係る撮像装置は、受光回路21Eを有している。受光回路21Eは、3つの回路32と、3つのトランジスタMN3と、画素選択回路33と、電圧制限回路30と、トランジスタMN4とを有している。
 3つの回路32のそれぞれは、フォトダイオードPDと、トランジスタMN1,MN2と、フローティングディフュージョンFDとを有している。3つのトランジスタMN3は、これらの3つの回路32にそれぞれ対応して設けられる。
 画素選択回路33は、例えば画素駆動部15(図1)から供給された制御信号SEL2に基づいて、3つの回路32のうちの1つを電圧制限回路30のトランジスタMN21のゲートに接続するように構成される。ここで、画素選択回路33は、本開示における「第2の選択回路」の一具体例に対応する。
 この構成により、本変形例に係る撮像装置では、電圧制限回路30、比較回路22、およびラッチ23が、3つの回路32により生成される3つの画素信号SIGに基づいて、これらの3つの回路32にそれぞれ対応する3つの画素値を生成することができる。このように、この撮像装置では、3つの電圧制限回路30、3つの比較回路22、および3つのラッチ23を設ける必要がないので、回路構成をシンプルにすることができる。
[変形例6]
 上記実施の形態では、図2,4に示したように、電圧制限回路30を半導体基板102に設けるようにしたが、これに限定されるものではない。これに代えて、例えば、図13に示すように、電圧制限回路30を、半導体基板101,102とは異なる半導体基板113に設けてもよい。
[その他の変形例]
 また、これらの変形例のうちの2以上を組み合わせてもよい。
<2.撮像装置の使用例>
 図14は、上記実施の形態に係る撮像装置1の使用例を表すものである。上述した撮像装置1は、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングする様々なケースに使用することができる。
・ディジタルカメラや、カメラ機能付きの携帯機器等の、鑑賞の用に供される画像を撮影する装置
・自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置
・ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、テレビジョンや、冷蔵庫、エアーコンディショナ等の家電に供される装置
・内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置
・防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置
・肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置
・スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置
・畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置
<3.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図15は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図15に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図15の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図16は、撮像部12031の設置位置の例を示す図である。
 図16では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図16には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。これにより、車両制御システム12000では、高輝度時において、撮像部12031により得られた撮像画像の画質を高めることができる。その結果、車両制御システム12000では、車両の衝突回避あるいは衝突緩和機能、車間距離に基づく追従走行機能、車速維持走行機能、車両の衝突警告機能、車両のレーン逸脱警告機能等を、高い精度で実現できる。
 以上、実施の形態および変形例、ならびにそれらの具体的な応用例を挙げて本技術を説明したが、本技術はこれらの実施の形態等には限定されず、種々の変形が可能である。
 例えば、上記実施の形態では、撮像装置1を2枚の半導体基板101,102に設けたが、これに限定されるものではなく、撮像装置1を1枚の半導体基板に設けてもよい。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 なお、本技術は以下のような構成とすることができる。以下の構成の本技術によれば、高輝度時に画質の低下を抑えることができる。
(1)
 受光量に応じた電荷を生成する第1の受光素子と、前記第1の受光素子により生成された前記電荷を蓄積可能な第1の蓄積部と、オン状態になることにより前記第1の受光素子と前記第1の蓄積部とを接続可能な第1の転送スイッチと、前記第1の蓄積部における蓄積電圧に応じた画素信号を生成可能であり前記画素信号の電圧が制限電圧を超えないように制限可能な制限回路と、ランプ波形を有する参照信号と前記画素信号とを比較可能な比較回路とを有する画素回路を備えた
 撮像装置。
(2)
 前記制限回路は、
 前記第1の蓄積部に接続されたゲートと、ドレインと、ソースとを有する第1のトランジスタと、
 前記制限電圧に対応する電圧が供給されることが可能なゲートと、ドレインと、ソースとを有する第2のトランジスタと、
 前記第1のトランジスタの前記ソースおよび前記第2のトランジスタの前記ソースに接続された第1の電流源と
 を有する
 前記(1)に記載の撮像装置。
(3)
 前記第1のトランジスタのサイズおよび前記第2のトランジスタのサイズは、同じである
 前記(2)に記載の撮像装置。
(4)
 前記第2のトランジスタのゲート幅は、前記第1のトランジスタのゲート幅より大きい
 前記(2)に記載の撮像装置。
(5)
 前記第1のトランジスタおよび前記第2のトランジスタは、第1の導電型のトランジスタであり、
 前記制限回路は、
 前記第2のトランジスタの前記ドレインに接続された第2の電流源と、
 前記第2のトランジスタの前記ドレインに接続されたゲートと、前記第2のトランジスタの前記ソースに接続されたドレインと、ソースとを有する、第2の導電型の第3のトランジスタと
 をさらに有する
 前記(2)から(4)のいずれかに記載の撮像装置。
(6)
 前記制限回路は、
 複数のトランジスタと、
 前記複数のトランジスタのうちの1以上のトランジスタを前記第1のトランジスタとして用い、前記複数のトランジスタのうちの他の1以上のトランジスタを前記第2のトランジスタとして用いることが可能な第1の選択回路と
 を有する
 前記(2)または(3)に記載の撮像装置。
(7)
 前記複数のトランジスタのうちの、前記第2のトランジスタとして用いられるトランジスタの数は、前記第1のトランジスタとして用いられるトランジスタの数より多い
 前記(6)に記載の撮像装置。
(8)
 前記画素回路は、
 第2の受光素子と、
 前記第2の受光素子により生成された電荷を蓄積可能な第2の蓄積部と、
 オン状態になることにより前記第2の受光素子と前記第2の蓄積部とを接続可能な第2の転送スイッチと、
 前記第1の蓄積部および前記第2の蓄積部のうちの1つを前記第1のトランジスタのゲートに接続する第2の選択回路と
 をさらに有する
 前記(2)から(7)のいずれかに記載の撮像装置。
(9)
 前記制限回路は、
 オン状態になることにより、前記第1のトランジスタの前記ソースおよび前記第2のトランジスタの前記ソースと、前記第2のトランジスタの前記ゲートとを接続可能な第1のスイッチと、
 前記第2のトランジスタの前記ゲートに接続された第1の端子、および第2の端子を有するキャパシタと、
 前記キャパシタの前記第2の端子の電圧を変更可能な電圧設定回路と
 をさらに有する
 前記(2)から(8)のいずれかに記載の撮像装置。
(10)
 前記電圧設定回路は、第1の直流電圧および第2の直流電圧のうちの一方を前記キャパシタの前記第2の端子に選択的に供給する第2のスイッチを含む
 前記(9)に記載の撮像装置。
(11)
 前記電圧設定回路は、前記参照信号および第2の直流電圧のうちの一方を前記キャパシタの前記第2の端子に選択的に供給する第2のスイッチを含み、
 前記第2のスイッチは、前記参照信号がランプ波形を示す期間以外の期間のうちの一部の期間において、前記参照信号を前記キャパシタの前記第2の端子に選択的に供給する
 前記(9)に記載の撮像装置。
(12)
 前記比較回路は、
 前記画素信号が供給されることが可能なゲートと、ドレインと、ソースとを有する第4のトランジスタと、
 前記参照信号が供給されることが可能なゲートと、ドレインと、ソースとを有する第5のトランジスタと、
 前記第4のトランジスタの前記ソースおよび前記第5のトランジスタの前記ソースに接続された第3の電流源と
 を有し、
 前記画素回路は、
 オン状態になることにより、前記第4のトランジスタの前記ドレインと前記第1の蓄積部とを接続可能な第3のスイッチと、
 オン状態になることにより、前記第4のトランジスタの前記ドレインと前記第4のトランジスタの前記ゲートとを接続可能な第4のスイッチと
 をさらに有する
 前記(9)から(11)のいずれかに記載の撮像装置。
(13)
 前記画素回路の動作を制御する制御部をさらに備え、
 前記制御部は、
 第1の期間において、前記第1のスイッチ、前記第3のスイッチ、および前記第4のスイッチをオン状態にすることが可能であり、
 前記第1の期間の終了タイミングである第1のタイミングにおいて、前記第3のスイッチおよび前記第4のスイッチをオン状態からオフ状態に変更可能であり、
 前記第1のタイミングの後の第2のタイミングにおいて、前記第1のスイッチをオン状態からオフ状態に変更可能であり、前記電圧設定回路が前記キャパシタの前記第2の端子の電圧を変更するように制御可能である
 前記(12)に記載の撮像装置。
(14)
 前記制限回路は、オン状態になることにより前記第2のトランジスタの前記ゲートに所定の電圧を供給可能な第5のスイッチをさらに有する
 前記(9)から(13)のいずれかに記載の撮像装置。
(15)
 前記第1の受光素子、前記第1の蓄積部、前記第1の転送スイッチ、および前記比較回路は第1の基板に設けられ、
 前記制限回路は、前記第1の基板に重ね合わされた第2の基板に設けられた
 前記(1)から(14)のいずれかに記載の撮像装置。
(16)
 時間の経過に応じて変化するタイムコードを生成するタイムコード生成回路をさらに備え、
 前記画素回路は、前記比較回路における比較結果に基づいて前記タイムコードをラッチするラッチ回路をさらに有する
 前記(1)から(15)のいずれかに記載の撮像装置。
 本出願は、日本国特許庁において2021年4月26日に出願された日本特許出願番号2021-074358号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。
 

Claims (16)

  1.  受光量に応じた電荷を生成する第1の受光素子と、前記第1の受光素子により生成された前記電荷を蓄積可能な第1の蓄積部と、オン状態になることにより前記第1の受光素子と前記第1の蓄積部とを接続可能な第1の転送スイッチと、前記第1の蓄積部における蓄積電圧に応じた画素信号を生成可能であり前記画素信号の電圧が制限電圧を超えないように制限可能な電圧制限回路と、ランプ波形を有する参照信号と前記画素信号とを比較可能な比較回路とを有する画素回路を備えた
     撮像装置。
  2.  前記電圧制限回路は、
     前記第1の蓄積部に接続されたゲートと、ドレインと、ソースとを有する第1のトランジスタと、
     前記制限電圧に対応する電圧が供給されることが可能なゲートと、ドレインと、ソースとを有する第2のトランジスタと、
     前記第1のトランジスタの前記ソースおよび前記第2のトランジスタの前記ソースに接続された第1の電流源と
     を有する
     請求項1に記載の撮像装置。
  3.  前記第1のトランジスタのサイズおよび前記第2のトランジスタのサイズは、同じである
     請求項2に記載の撮像装置。
  4.  前記第2のトランジスタのゲート幅は、前記第1のトランジスタのゲート幅より大きい
     請求項2に記載の撮像装置。
  5.  前記第1のトランジスタおよび前記第2のトランジスタは、第1の導電型のトランジスタであり、
     前記電圧制限回路は、
     前記第2のトランジスタの前記ドレインに接続された第2の電流源と、
     前記第2のトランジスタの前記ドレインに接続されたゲートと、前記第2のトランジスタの前記ソースに接続されたドレインと、ソースとを有する、第2の導電型の第3のトランジスタと
     をさらに有する
     請求項2に記載の撮像装置。
  6.  前記電圧制限回路は、
     複数のトランジスタと、
     前記複数のトランジスタのうちの1以上のトランジスタを前記第1のトランジスタとして用い、前記複数のトランジスタのうちの他の1以上のトランジスタを前記第2のトランジスタとして用いることが可能な第1の選択回路と
     を有する
     請求項2に記載の撮像装置。
  7.  前記複数のトランジスタのうちの、前記第2のトランジスタとして用いられるトランジスタの数は、前記第1のトランジスタとして用いられるトランジスタの数より多い
     請求項6に記載の撮像装置。
  8.  前記画素回路は、
     第2の受光素子と、
     前記第2の受光素子により生成された電荷を蓄積可能な第2の蓄積部と、
     オン状態になることにより前記第2の受光素子と前記第2の蓄積部とを接続可能な第2の転送スイッチと、
     前記第1の蓄積部および前記第2の蓄積部のうちの1つを前記第1のトランジスタのゲートに接続する第2の選択回路と
     をさらに有する
     請求項2に記載の撮像装置。
  9.  前記電圧制限回路は、
     オン状態になることにより、前記第1のトランジスタの前記ソースおよび前記第2のトランジスタの前記ソースと、前記第2のトランジスタの前記ゲートとを接続可能な第1のスイッチと、
     前記第2のトランジスタの前記ゲートに接続された第1の端子、および第2の端子を有するキャパシタと、
     前記キャパシタの前記第2の端子の電圧を変更可能な電圧設定回路と
     をさらに有する
     請求項2に記載の撮像装置。
  10.  前記電圧設定回路は、第1の直流電圧および第2の直流電圧のうちの一方を前記キャパシタの前記第2の端子に選択的に供給する第2のスイッチを含む
     請求項9に記載の撮像装置。
  11.  前記電圧設定回路は、前記参照信号および第2の直流電圧のうちの一方を前記キャパシタの前記第2の端子に選択的に供給する第2のスイッチを含み、
     前記第2のスイッチは、前記参照信号がランプ波形を示す期間以外の期間のうちの一部の期間において、前記参照信号を前記キャパシタの前記第2の端子に選択的に供給する
     請求項9に記載の撮像装置。
  12.  前記比較回路は、
     前記画素信号が供給されることが可能なゲートと、ドレインと、ソースとを有する第4のトランジスタと、
     前記参照信号が供給されることが可能なゲートと、ドレインと、ソースとを有する第5のトランジスタと、
     前記第4のトランジスタの前記ソースおよび前記第5のトランジスタの前記ソースに接続された第3の電流源と
     を有し、
     前記画素回路は、
     オン状態になることにより、前記第4のトランジスタの前記ドレインと前記第1の蓄積部とを接続可能な第3のスイッチと、
     オン状態になることにより、前記第4のトランジスタの前記ドレインと前記第4のトランジスタの前記ゲートとを接続可能な第4のスイッチと
     をさらに有する
     請求項9に記載の撮像装置。
  13. (動作、図6,7)
     前記画素回路の動作を制御する制御部をさらに備え、
     前記制御部は、
     第1の期間において、前記第1のスイッチ、前記第3のスイッチ、および前記第4のスイッチをオン状態にすることが可能であり、
     前記第1の期間の終了タイミングである第1のタイミングにおいて、前記第3のスイッチおよび前記第4のスイッチをオン状態からオフ状態に変更可能であり、
     前記第1のタイミングの後の第2のタイミングにおいて、前記第1のスイッチをオン状態からオフ状態に変更可能であり、前記電圧設定回路が前記キャパシタの前記第2の端子の電圧を変更するように制御可能である
     請求項12に記載の撮像装置。
  14.  前記電圧制限回路は、オン状態になることにより前記第2のトランジスタの前記ゲートに所定の電圧を供給可能な第5のスイッチをさらに有する
     請求項9に記載の撮像装置。
  15.  前記第1の受光素子、前記第1の蓄積部、前記第1の転送スイッチ、および前記比較回路は第1の基板に設けられ、
     前記電圧制限回路は、前記第1の基板に重ね合わされた第2の基板に設けられた
     請求項1に記載の撮像装置。
  16.  時間の経過に応じて変化するタイムコードを生成するタイムコード生成回路をさらに備え、
     前記画素回路は、前記比較回路における比較結果に基づいて前記タイムコードをラッチするラッチ回路をさらに有する
     請求項1に記載の撮像装置。
PCT/JP2022/003861 2021-04-26 2022-02-01 撮像装置 WO2022230279A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-074358 2021-04-26
JP2021074358A JP2022168704A (ja) 2021-04-26 2021-04-26 撮像装置

Publications (1)

Publication Number Publication Date
WO2022230279A1 true WO2022230279A1 (ja) 2022-11-03

Family

ID=83848231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003861 WO2022230279A1 (ja) 2021-04-26 2022-02-01 撮像装置

Country Status (2)

Country Link
JP (1) JP2022168704A (ja)
WO (1) WO2022230279A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009194569A (ja) * 2008-02-13 2009-08-27 Canon Inc 光電変換装置及び撮像システム
WO2019239887A1 (ja) * 2018-06-12 2019-12-19 ソニーセミコンダクタソリューションズ株式会社 撮像素子、制御方法、および電子機器
WO2020179302A1 (ja) * 2019-03-07 2020-09-10 ソニーセミコンダクタソリューションズ株式会社 撮像装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009194569A (ja) * 2008-02-13 2009-08-27 Canon Inc 光電変換装置及び撮像システム
WO2019239887A1 (ja) * 2018-06-12 2019-12-19 ソニーセミコンダクタソリューションズ株式会社 撮像素子、制御方法、および電子機器
WO2020179302A1 (ja) * 2019-03-07 2020-09-10 ソニーセミコンダクタソリューションズ株式会社 撮像装置

Also Published As

Publication number Publication date
JP2022168704A (ja) 2022-11-08

Similar Documents

Publication Publication Date Title
CN112640428B (zh) 固态成像装置、信号处理芯片和电子设备
CN113396579B (zh) 事件信号检测传感器和控制方法
US20200228738A1 (en) Solid-state imaging apparatus and electronic equipment
US11937001B2 (en) Sensor and control method
US11889212B2 (en) Comparator and imaging device
US11381764B2 (en) Sensor element and electronic device
WO2019239887A1 (ja) 撮像素子、制御方法、および電子機器
US20240205557A1 (en) Imaging device, electronic apparatus, and imaging method
WO2022153746A1 (ja) 撮像装置
WO2022230279A1 (ja) 撮像装置
US20230217135A1 (en) Imaging device
US20230254604A1 (en) Photodetection device and electronic apparatus
US20230108619A1 (en) Imaging circuit and imaging device
US20230336894A1 (en) Imaging device and electronic apparatus
WO2022230272A1 (ja) 固体撮像装置およびその駆動方法、並びに電子機器
WO2022215334A1 (ja) 撮像装置およびアナログデジタル変換回路
CN111742546A (zh) 放大电路、摄像装置和放大电路的控制方法
US20230232128A1 (en) Photodetection device and electronic apparatus
WO2022014222A1 (ja) 撮像装置および撮像方法
US20240089637A1 (en) Imaging apparatus
CN118696546A (zh) 具有斜坡发生器电路的固态成像设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795202

Country of ref document: EP

Kind code of ref document: A1