WO2022230157A1 - Bulk feeder and parts supply control system - Google Patents

Bulk feeder and parts supply control system Download PDF

Info

Publication number
WO2022230157A1
WO2022230157A1 PCT/JP2021/017125 JP2021017125W WO2022230157A1 WO 2022230157 A1 WO2022230157 A1 WO 2022230157A1 JP 2021017125 W JP2021017125 W JP 2021017125W WO 2022230157 A1 WO2022230157 A1 WO 2022230157A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport
parts
supply
vibration
state
Prior art date
Application number
PCT/JP2021/017125
Other languages
French (fr)
Japanese (ja)
Inventor
邦雄 石橋
透 高浜
祐輔 山▲崎▼
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2021/017125 priority Critical patent/WO2022230157A1/en
Priority to CN202180097329.2A priority patent/CN117223406A/en
Priority to JP2023516985A priority patent/JPWO2022230157A1/ja
Priority to TW111113668A priority patent/TW202241785A/en
Publication of WO2022230157A1 publication Critical patent/WO2022230157A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/02Feeding of components

Definitions

  • the present invention relates to bulk feeders and parts supply control systems.
  • the parts supply control system controls parts supply using bulk feeders.
  • a bulk feeder is installed in a component mounting machine that mounts components on a substrate, and supplies bulk components.
  • Patent Literature 1 discloses a configuration for conveying a plurality of components by imparting vibration to a conveying path. With such a transport operation, the bulk feeder supplies components in a supply area that opens upward so that the suction nozzle can pick up the components.
  • Such a bulk feeder is requested to supply components, for example, by the control device of a component mounting machine, and executes a prescribed transport operation.
  • the parts are in a bulk state in the supply area, variations may occur in the number of parts that can be picked up even if the prescribed transport operation is performed.
  • Bulk feeders and systems that control parts supply using bulk feeders are required to maintain good parts supply conditions and improve productivity.
  • the purpose of this specification is to provide a bulk feeder capable of improving the supply state of components and a component supply control system capable of improving the productivity of a component mounting machine equipped with the bulk feeder.
  • the present specification includes a feeder main body, a track member which is vibrated with respect to the feeder main body and which is formed with a conveying path for conveying a plurality of parts and a supply area for supplying the parts so as to be picked up, and a plurality of cavities for accommodating the parts in a supply area; a vibrating device for applying vibration to the track member so that the plurality of parts are conveyed between the conveying path and the supply area; a feeding operation of controlling the operation of the device to carry out a conveying operation of accommodating the plurality of components in the plurality of cavities, and advancing the plurality of components from the conveying path toward the supply area in the conveying operation; Alternatively, a vibration control unit that controls so that a plurality of types of vibrations are applied to the track member by the vibrating device during the execution period of the return operation for retreating the plurality of parts from the supply area to the side of the conveying path. and a bulk feeder.
  • the present specification includes a state recognition unit that determines the supply state of the parts in the supply area based on image data obtained by imaging the supply area of the bulk feeder, and a bulk feeder that determines the supply state of the parts based on the supply state. and a conveying control unit that controls the conveying operation in the feeder.
  • the transport operation of the bulk feeder capable of imparting multiple types of vibration during the execution period of the feed operation or return operation is controlled based on the supply state of the components in the supply area.
  • the transport operation of the bulk feeder capable of imparting multiple types of vibration during the execution period of the feed operation or return operation is controlled based on the supply state of the components in the supply area.
  • FIG. 4 is a plan view schematically showing a component mounting machine equipped with a bulk feeder; It is a perspective view which shows the external appearance of a bulk feeder. It is a side view which shows the principal part of a bulk feeder typically.
  • FIG. 3 is a plan view seen from the IV direction of FIG. 2; 1 is a block diagram showing a component mounting machine to which a component supply control system is applied; FIG. It is a figure which shows the image data which imaged the supply area
  • FIG. 7 is a diagram showing a result of supply state recognition processing for the image data of FIG.
  • 5 is a time chart of the transport operation when the transport pattern is normal transport
  • 5 is a time chart of the transport operation when the transport pattern is replenishment transport
  • 4 is a time chart of the transport operation when the transport pattern is removal transport
  • a component supply control system 80 that controls component supply using the bulk feeder 30 will be described with reference to the drawings.
  • the bulk feeder 30 is installed in, for example, a component mounting machine 10 that mounts components 92 on a substrate 91, and supplies the components 92 in a bulk state (discrete state in which each posture is irregular).
  • the component mounting machine 10 constitutes a production line for producing board products together with a plurality of types of board-facing work machines including other component mounting machines 10, for example.
  • a printing machine, an inspection device, a reflow furnace, etc. can be included in the work machine for the board that constitutes the above production line.
  • Board Transfer Apparatus The component mounting machine 10 includes a board transfer apparatus 11 as shown in FIG.
  • the substrate conveying device 11 sequentially conveys the substrates 91 in the conveying direction and positions the substrates 91 at predetermined positions within the apparatus.
  • the component mounting machine 10 includes a component supply device 12 .
  • the component supply device 12 supplies components to be mounted on the board 91 .
  • the component supply device 12 is equipped with feeders 122 in a plurality of slots 121, respectively.
  • feeders 122 for example, a tape feeder that feeds and moves a carrier tape containing a large number of components and supplies the components so as to be picked up is applied.
  • the feeder 122 is applied with a bulk feeder 30 that supplies components stored in a bulk state in a collectable manner. Details of the bulk feeder 30 will be described later.
  • the component mounting machine 10 includes a component transfer device 13 .
  • the component transfer device 13 transfers the component supplied by the component supply device 12 to a predetermined mounting position on the board 91 .
  • the component transfer device 13 includes a head driving device 131 , a moving table 132 , a mounting head 133 and a suction nozzle 134 .
  • the head driving device 131 moves the moving table 132 in the horizontal direction (X direction and Y direction) by a linear motion mechanism.
  • the mounting head 133 is detachably fixed to the moving table 132 by a clamp member (not shown), and is horizontally movable in the apparatus.
  • the mounting head 133 supports a plurality of suction nozzles 134 rotatably and vertically.
  • the suction nozzle 134 is a holding member that picks up and holds the component 92 supplied by the feeder 122 .
  • the suction nozzle 134 sucks the component supplied by the feeder 122 with the supplied negative pressure air.
  • a chuck or the like that holds the component by gripping it can be adopted.
  • Component camera 14, board camera 15 The component mounting machine 10 has a component camera 14 and a substrate camera 15 .
  • the component camera 14 and the substrate camera 15 are digital imaging devices having imaging elements such as CMOS.
  • the component camera 14 and the board camera 15 perform imaging based on the control signal, and send out image data acquired by the imaging.
  • the component camera 14 is configured to be able to image the component held by the suction nozzle 134 from below.
  • the substrate camera 15 is provided on the moving table 132 so as to be horizontally movable integrally with the mounting head 133 .
  • the board camera 15 is configured to be able to image the board 91 from above.
  • the substrate camera 15 can image various devices within the movable range of the moving table 132 .
  • the substrate camera 15 of the present embodiment is configured such that the supply area As where the bulk feeder 30 supplies the components 92 and the reference mark 344 provided on the upper portion of the bulk feeder 30 are included in the field of view of the camera. It can be imaged.
  • the substrate camera 15 can be used for imaging different imaging targets in order to acquire image data used for various image processing.
  • controller 16 The component mounting machine 10 includes a control device 16 as shown in FIG.
  • the control device 16 is mainly composed of a CPU, various memories, a control circuit, and a storage device.
  • the control device 16 stores various data such as a control program used for controlling the mounting process.
  • the control program indicates the mounting position, mounting angle, and mounting order of the components to be mounted on the board 91 in the mounting process.
  • the control device 16 executes recognition processing of the holding state of the component held by each of the plurality of holding members (suction nozzles 134). Specifically, the control device 16 performs image processing on the image data acquired by the component camera 14 and recognizes the position and angle of each component with respect to the reference position of the mounting head 133 . In addition to the component camera 14 , the control device 16 performs image processing on image data obtained by imaging the component from the side, below, or above, such as a head camera unit integrally provided with the mounting head 133 . You may make it
  • the control device 16 executes the mounting process by controlling the component mounting operation by the mounting head 133 based on the control program.
  • the mounting process includes a process of repeating a PP cycle (pick-and-place cycle) including a collection operation and a mounting operation a plurality of times.
  • the above-mentioned “collection operation” is an operation of collecting the component supplied by the component supply device 12 by the suction nozzle 134 .
  • control device 16 controls the operation of the component supply device 12 including the bulk feeder 30 when executing the above collection operation.
  • the control for the operation of the bulk feeder 30 includes, for example, the operation of supplying the parts 92 by the bulk feeder 30 and the control of the opening/closing operation of the shutter 37, which will be described later.
  • the control device 16 has a state recognition section 81 .
  • the state recognition unit 81 recognizes the supply state of the plurality of components 92 in the supply area As of the bulk feeder 30 based on the image data acquired by the camera (the substrate camera 15 in this embodiment).
  • the supply state recognition processing includes a process of recognizing whether or not there is a part 92 that can be picked up in the supply area As, and recognizing the position and angle of the part 92 if there is a part 92 that can be picked up. .
  • the control device 16 controls the operation of the mounting head 133 in the collection operation based on the result of the supply state recognition processing.
  • the above-mentioned “mounting operation” is an operation of mounting the collected component at a predetermined mounting position on the substrate 91 at a predetermined mounting angle.
  • the control device 16 controls the operation of the mounting head 133 based on information output from various sensors, results of image processing, control programs, and the like. Thereby, the positions and angles of the plurality of suction nozzles 134 supported by the mounting head 133 are controlled.
  • the bulk feeder 30 is installed in the component mounting machine 10 and functions as a part of the component supply device 12 .
  • Bulk feeder 30 feeds components 92 stored in bulk and not aligned, such as carrier tape. Therefore, unlike the tape feeder, the bulk feeder 30 does not use a carrier tape, and therefore has the advantage of omitting the loading of the carrier tape and the recovery of the used tape.
  • the bulk feeder 30 includes, for example, a type that supplies parts 92 in an irregular posture to a planar supply area As. However, if the parts 92 are so close to each other that they are in contact with each other in the supply area As, or if the parts 92 are piled up (overlapping in the vertical direction), or if the parts 92 are in a sideways posture such that the width direction of the parts 92 is the vertical direction. , the component mounting machine 10 cannot pick up these components 92 . Therefore, in order to increase the ratio of the parts 92 that can be collected, the bulk feeder 30 has a type that supplies the parts 92 in a state of being aligned in the supply area As. In this embodiment, the bulk feeder 30 of the type that aligns the parts 92 will be described as an example.
  • the bulk feeder 30 includes a feeder body 31 formed in a flat box shape, as shown in FIG.
  • a connector 311 and two pins 312 are provided at the front of the feeder body 31 .
  • the two pins 312 are inserted into guide holes provided in the slot 121 and used for positioning when the feeder body 31 is set in the slot 121 .
  • a component case 70 that accommodates a plurality of components 92 in a bulk state is detachably attached to the feeder body 31 via the receiving member 32 .
  • a component case 70 is an external device of the bulk feeder 30 .
  • One of various types of component cases 70 suitable for the mounting process is selected and attached to the feeder body 31 .
  • a discharge port 71 for discharging the component 92 to the outside is formed in the front portion of the component case 70 .
  • the receiving member 32 is vibrated with respect to the feeder body 31 and supports the attached component case 70 .
  • the receiving member 32 is formed with a receiving area Ar for receiving the component 92 ejected from the component case 70 .
  • the receiving member 32 has an inclined portion 321 that is inclined forward with respect to the horizontal plane in the receiving area Ar.
  • the inclined portion 321 is positioned below the discharge port 71 of the component case 70 and has a planar shape.
  • the receiving member 32 is formed with a channel for the component 92 extending above the receiving area Ar, and is formed with a delivery portion 322 opening upward from the channel.
  • Bulk feeder 30 includes bracket 33 and track member 34 .
  • the bracket 33 is provided so as to vibrate with respect to the feeder body 31 .
  • the bracket 33 is formed in a block shape extending in the front-rear direction of the feeder body 31, and has a track member 34 attached to its upper surface.
  • the bracket 33 is supported by a support member 41 of a vibrating device 40 which will be described later.
  • the track member 34 is formed with a transport path R along which a plurality of parts 92 are transported, and a supply area As that communicates with the transport path R and opens upward so that a plurality of parts 92 can be picked up.
  • the bulk feeder 30 is provided with a lock unit 35.
  • the lock unit 35 locks the track member 34 while the track member 34 is attached to the bracket 33 .
  • the track member 34 vibrates integrally with the bracket 33 with respect to the feeder body 31 .
  • the track member 34 becomes removable from the bracket 33 by unlocking the lock unit 35 .
  • track member 34 is formed so as to extend in the front-rear direction of the feeder body 31 (left-right direction in FIG. 4).
  • a pair of side walls 341 projecting upward are formed on both edges of the track member 34 in the width direction (the vertical direction in FIG. 4).
  • the pair of side walls 341 surrounds the periphery of the transport path R together with the tip portion 342 of the track member 34 to prevent the component 92 transported on the transport path R from leaking out.
  • a pair of left and right circular reference marks 344 indicating the reference position of the supply area As are provided on the upper surface of the tip portion 342 .
  • the alignment member 50 is replaceably attached to the track member 34 .
  • Alignment member 50 has a plurality of cavities 51 that individually accommodate a plurality of components 92 .
  • the plurality of cavities 51 are arranged in a zigzag pattern in which rows adjacent to each other in the conveying direction are staggered in the supply area As.
  • the alignment member 50 has a total of 64 cavities 51, 8 of which are regularly arranged in the conveying direction and 8 of which are arranged in the width direction of the conveying path R, respectively.
  • Each of the plurality of cavities 51 opens upward and accommodates the component 92 in a posture in which the thickness direction of the component 92 is the vertical direction.
  • the plurality of cavities 51 may be arranged in a matrix.
  • the opening of the cavity 51 is set to a dimension that is slightly larger than the external shape of the component 92 when viewed from above.
  • the depth of the cavity 51 is set according to the type (shape, mass, etc.) of the component 92 .
  • the track member 34 is attached with one selected from various types of track members 34 based on the type of parts 92, the required number of cavities 51, and functionality.
  • the "supply area As" of the track member 34 is an area in which the parts 92 are supplied in bulk and in which the parts 92 can be picked up by the suction nozzle 134 supported by the mounting head 133.
  • the “conveyance path R” of the track member 34 is a path along which the components 92 circulated from the receiving area Ar to the track member 34 are conveyed to the supply area As.
  • the bulk feeder 30 includes a cover 36.
  • the cover 36 is fixed to the track member 34 and covers the transport path R from above.
  • the cover 36 has a plurality of exhaust ports 361 formed on its upper surface.
  • the exhaust port 361 is covered with a mesh whose joints are smaller than the external dimensions of the part 92 .
  • the cover 36 is configured to prevent the component 92 from jumping out of the transport path R and to discharge air to the outside from the exhaust port 361 .
  • the bulk feeder 30 has a shutter 37 provided on the upper part of the track member 34 and capable of closing the opening of the supply area As. By opening and closing the shutter 37, the bulk feeder 30 can prevent the component 92 from jumping out and foreign matter from entering the supply area As.
  • the shutter 37 can be switched between an open state, a closed state, and an intermediate state by opening and closing operations.
  • the closed state of the shutter 37 is a state in which the shutter 37 contacts the track member 34 and the opening of the supply area As is completely closed. At this time, the shutter 37 is positioned on the rear side of the feeder body 31 relative to the pair of reference marks 344 of the track member 34, as indicated by the dashed lines in FIG. and
  • the open state of the shutter 37 is a state in which the opening of the supply area As is not closed and the main range of the supply area As (the range in which the plurality of cavities 51 are provided in this embodiment) is exposed. be. At this time, the suction nozzle 134 can pick up the component 92 from any cavity 51 .
  • the intermediate state of the shutter 37 is a state between the closed state and the open state, in which the shutter 37 is separated from the track member 34 by at least the amplitude of the track member 34 vibrated by the vibration of the vibrating device 40 and supplied. This is a state in which projection of the component 92 from the opening of the region As is restricted.
  • the shutter 37 is opened and closed by a driving device (not shown), and is brought into a closed state, an open state, and an intermediate state according to the driving state of the driving device.
  • the track member 34 is formed with a flow path for the component 92 extending downward at the rear portion, and has an introduction portion 343 in which this flow path opens downward.
  • the introduction portion 343 vertically faces the delivery portion 322 of the receiving member 32 .
  • the bulk feeder 30 includes a connecting member 38 having a tubular shape.
  • the connecting member 38 connects the delivery portion 322 of the receiving member 32 and the introduction portion 343 of the track member 34 .
  • the connecting member 38 is a tight coil spring and has flexibility as a whole.
  • the connecting member 38 connects the plurality of components 92 between the receiving area Ar and the transport path R so as to be able to flow.
  • the connecting member 38 absorbs vibration by deforming in accordance with the vibration of the receiving member 32 and the track member 34 with respect to the feeder body 31 .
  • the connecting member 38 reduces or blocks vibrations transmitted between the independently vibrating receiving member 32 and track member 34 .
  • Air supply device 39 The bulk feeder 30 has an air supply device 39 .
  • the air supply device 39 supplies positive pressure air from below the receiving area Ar to circulate the plurality of components 92 from the receiving member 32 to the track member 34 via the connecting member 38 .
  • the air supply device 39 supplies or cuts off the positive pressure air supplied from the outside from below the receiving area Ar based on a command from the feeder control device 60, which will be described later.
  • the air supply device 39 supplies positive pressure air
  • the plurality of parts 92 staying in the receiving area Ar are blown upward by the positive pressure air.
  • the positive pressure air and the plurality of parts 92 flow through the sending portion 322 of the receiving member 32 , the connecting member 38 and the introducing portion 343 in this order, and reach the transport path R of the track member 34 .
  • the positive pressure air is exhausted to the outside from the exhaust port 361 of the cover 36 .
  • the plurality of components 92 drop onto the transport path R of the track member 34 due to their own weight.
  • the bulk feeder 30 includes a vibrating device 40 provided on the feeder body 31 .
  • the vibrating device 40 applies vibration to the track member 34 so that the plurality of components 92 are transported along the transport path R.
  • the vibrating device 40 has a plurality of support members 41 , a plurality of piezoelectric elements 42 , a vibration sensor 43 and a power feeding device 44 .
  • a plurality of support members 41 support the bracket 33 by directly or indirectly connecting the feeder body 31 and the bracket 33 .
  • the plurality of support members 41 include an advance support member 41A used for front-side transportation of the component 92 and a retreat support member 41B used for rear-side transportation.
  • the forward support member 41A and the backward support member 41B are different from each other in the direction of inclination with respect to the vertical direction.
  • the plurality of piezoelectric elements 42 are vibrators that vibrate at a frequency corresponding to power supplied from the power supply device 44 .
  • a plurality of piezoelectric elements 42 are attached to each of the plurality of support members 41 .
  • the vibration sensor 43 detects a vibration value indicating the vibration state of the track member 34 vibrated by the vibration of the vibrating device 40 . Amplitude, frequency, damping time, vibration trajectory, etc. can be applied as the vibration value indicating the vibration state. In this embodiment, the vibration sensor 43 detects the actual vibration frequency or amplitude of the track member 34 when the piezoelectric element 42 vibrates due to power supply.
  • the vibration sensor 43 is provided on each of the plurality of support members 41 that support the bracket 33 that vibrates integrally with the track member 34 . More specifically, the piezoelectric element 42 and the vibration sensor 43 are provided on each of the forward support member 41A and the backward support member 41B. A vibration sensor 43 provided on the support member 41A for advancement is supplied with power to the piezoelectric element 42 provided on the support member 41A for advancement, and vibration is applied to the track member 34 via the bracket 33. Detect the actual frequency or amplitude as a value.
  • the track member 34 makes an elliptical motion when viewed from the side.
  • the plurality of components 92 on the transport path R are subjected to a forward and upward external force or a rearward and upward external force depending on the rotational direction of the elliptical motion of the track member 34 .
  • the plurality of parts 92 are transported to the front side or the rear side of the track member 34 .
  • the power supply device 44 varies the frequency of power supplied to the piezoelectric element 42 and the applied voltage based on commands from the feeder control device 60, which will be described later. As a result, the frequency and amplitude of vibration applied to the track member 34 are adjusted, and the rotational direction of the elliptical motion of the track member 34 is determined.
  • the frequency and amplitude of the vibration of the track member 34 and the rotational direction of the elliptical motion due to the vibration fluctuate, the conveying speed of the parts 92 to be conveyed, the degree of dispersion of the parts 92, the conveying direction, and the like change.
  • the vibrating device 40 is preset with power supply (frequency, applied voltage) corresponding to vibration characteristics (including natural frequency) that have individual differences.
  • the bulk feeder 30 is in a state in which a track member 34 used for a scheduled supply operation (in this embodiment, a transport operation for accommodating a plurality of parts 92 into a plurality of cavities 51) is attached, that is, a bracket 33 With the track member 34 locked by the lock unit 35, the calibration process is executed.
  • Feeder controller 60 Bulk feeder 30 includes a feeder controller 60 .
  • the feeder control device 60 is mainly composed of a CPU, various memories, and a control circuit. With the bulk feeder 30 set in the slot 121 , the feeder control device 60 is supplied with power through the connector 311 and is ready to communicate with the control device 16 of the component mounting machine 10 .
  • the feeder control device 60 has a storage section 61 as shown in FIG.
  • the storage unit 61 is configured by a flash memory or the like.
  • the storage unit 61 stores various data such as programs used for controlling the component supply process and transfer parameters.
  • the above-mentioned "conveyance parameter" is a parameter for controlling the operation of the vibrating device 40 so that the vibration applied to the track member 34 is appropriate when the component 92 is conveyed in the component supply process. It is set in advance in association with each of the 92 types.
  • the feeder control device 60 has a vibration control section 62 .
  • the vibration control section 62 controls the operation of the vibration excitation device 40 to carry out the operation of conveying the component 92 .
  • the vibration control unit 62 sends a command to the power supply device 44 of the vibration excitation device 40 when carrying out the transport operation.
  • the power supply device 44 supplies predetermined power to the piezoelectric element 42 , thereby imparting vibration to the track member 34 via the bracket 33 .
  • the component 92 on the transport path R is transported by receiving an external force so as to move in the transport direction.
  • the feeder control device 60 configured as described above feeds the components 92 during the period from the end of the current picking operation to the start of the next picking operation while the component mounter 10 is executing the PP cycle. Upon receipt of the command, it executes the operation of supplying the component 92 .
  • the operation of supplying the components 92 is an operation of conveying the components 92 so as to accommodate the components 92 in the plurality of cavities 51 .
  • the conveying operation includes a feeding operation such that the part 92 positioned at the front end of the conveying path R advances to the front end of the supply area As, and then the part 92 retreats to the front end of the conveying path R again. It includes some back movement.
  • the feeding operation and the The return action may be performed repeatedly.
  • the plurality of components 92 are transported back and forth in the supply area As as described above, some of the components 92 are accommodated in the cavity 51 .
  • the return operation is continued in order to retract, for example, surplus components not stored in the cavity 51 to the transport path R, the component 92 stored in the cavity 51 may jump out.
  • the bulk feeder 30 of the present embodiment employs a configuration in which the component 92 is accommodated in the cavity 51 and the conveying operation is controlled so as to prevent the accommodated component 92 from jumping out.
  • the vibration control section 62 controls so that multiple types of vibrations are applied to the track member 34 by the vibration excitation device 40 during the execution period Te of the feed operation or the return operation.
  • the control as described above is executed in at least one of the feed operation and the return operation, and multiple types of vibration are used in one operation.
  • a control mode is illustrated in which a plurality of types of vibrations are applied to the track member 34 by the vibrating device 40. and explain.
  • multiple types of vibrations include those that differ only in amplitude, differ only in frequency, and differ in both amplitude and frequency.
  • two types of vibration are used, namely, a first vibration that serves as a reference and a second vibration that has a smaller amplitude than the first vibration and has the same frequency.
  • the vibration control unit 62 performs control so that the second vibration is applied to the track member 34 after the first vibration is applied to the track member 34 by the vibrating device 40 in the return operation execution period TeR.
  • the amplitude gradually changes when the first vibration shifts to the second vibration. ) is set.
  • the amplitude of the second vibration is set to 0.4 to 0.8 times the amplitude of the first vibration.
  • a favorable amplitude may vary depending on the frequency of the second vibration, the mass of the part 92, and the like.
  • the amplitude of the second vibration is set to 0.6 times the amplitude of the first vibration.
  • the period TeR1 for applying the first vibration and the period TeR2 for applying the second vibration may also vary depending on the execution time allowed for the transport operation.
  • the vibration control unit 62 controls the amplitudes or frequencies of the plurality of types of vibrations at each time during which the plurality of types of vibrations are applied to the track member 34 by the vibrating device 40 , the mass of the part 92 , the part 92 , and the horizontal dimensional difference of the cavity 51 with respect to the component 92 .
  • the ease with which the component 92 is accommodated in the cavity 51 and the ease with which the accommodated component 92 pops out may vary depending on the mass of the component 92 and the dimensional relationship with the cavity 51 .
  • the vibration control unit 62 may further consider the execution time allowed for the transport operation and switch the transport parameters to be adopted. As a result, vibrations with different amplitudes and frequencies are applied to the track member 34, and the magnitude and direction of the external force applied from the track member 34 to the part 92 can be changed. As a result, the transport operation of the component 92 can be made suitable for each configuration.
  • the component supply control system 80 controls component supply using the bulk feeder 30 described above.
  • the component supply control system 80 is incorporated in the control device 16 and is configured to communicate with the bulk feeder 30 installed in the slot 121, as shown in FIG.
  • the parts supply control system 80 controls parts supply so as to maintain a good supply state of the parts 92 in the bulk feeder 30 .
  • the component supply control system 80 includes a state recognition section 81 as shown in FIG. As described above, the state recognition unit 81 recognizes the supply state of the plurality of components 92 in the supply area As of the bulk feeder 30 based on the image data D1 (see FIG. 6) acquired by the board camera 15. . More specifically, the state recognition unit 81 first detects the supply area As based on the image data D1 obtained by imaging the supply area As in a state where the bulk feeder 30 conveys the plurality of parts 92 to the supply area As by vibration. Perform state recognition processing.
  • FIG. 6 is an example of the image data D1. In this way, there are a large number of bulk parts 92 in the supply area As. , a side-standing posture, and the like can exist.
  • the state recognition unit 81 first determines the state of each of the plurality of cavities 51 .
  • the plurality of cavities 51 are divided into accommodation cavities ("OK” in FIG. 7) that accommodate the parts 92 so that they can be picked up, and NG cavities ("NG” in FIG. 7) that cannot be picked although the parts 92 are present around them. , empty cavities (“EMP” in FIG. 7) with no parts 92 around them.
  • FIG. 7 shows accommodation cavities hatched, NG cavities with Xs connecting diagonal lines, and empty cavities only with dashed outlines.
  • the state recognition unit 81 calculates the number (V1, V2, V3) of states (OK, NG, EMP) of the plurality of cavities 51, as shown in FIG.
  • the state recognition unit 81 recognizes the current supply state based on the above numbers (V1, V2, V3).
  • This supply state includes a state in which the number V1 of accommodation cavities is equal to or greater than the first threshold value H1 (V1 ⁇ H1), a state in which the number V1 of accommodation cavities is less than the first threshold value H1, and a component 92 exists among the plurality of cavities 51.
  • the number V3 of empty cavities that do not exist is greater than or equal to the second threshold H2 (V1 ⁇ H1, V3 ⁇ H2), the number V1 of accommodating cavities is less than the first threshold H1 and the number V3 of empty cavities is less than the second threshold H2 (V1 ⁇ H1, V3 ⁇ H2).
  • the state recognition unit 81 may determine the supply state based on the ratio or maximum value of the above numbers (V1, V2, V3).
  • a parts group U in which a plurality of parts 92 are densely packed is generated in the supply area
  • the state recognition unit 81 further determines the position and size of the parts group U as the parts group state based on the image data D1. Specifically, the state recognition unit 81 may recognize the state of contact and stacking of the parts 92 to determine the state of the parts group.
  • the state recognition unit 81 may determine the parts group state by assuming that the region including the plurality of cavities 51 corresponds to the parts group U. . In this manner, the state recognition unit 81 determines the position Cu and size of the parts group U as the parts group state, as indicated by the dashed line in FIG.
  • the component supply control system 80 includes a transport control section 85, as shown in FIG.
  • the transport control unit 85 controls the transport operation of the parts 92 in the bulk feeder 30 based on the supply state determined by the state recognition unit 81 .
  • the conveying operation of the parts 92 in the bulk feeder 30 includes a feeding operation and a returning operation.
  • the above-mentioned "feeding operation” is an operation for conveying the parts 92 from the rear side to the front side of the track member 34, and advances the plurality of parts 92 toward the supply area As from the conveyance path R communicating with the supply area As. It is action.
  • the "returning operation” is an operation of conveying the parts 92 from the front side to the rear side of the track member 34, and is an operation of retreating the plurality of parts 92 from the supply area As to the conveying path R side.
  • the transport control unit 85 controls the number of executions of the above-described feeding operation and returning operation, the execution time, etc., based on the supply state of the parts 92 in the supply area As.
  • the transport control unit 85 switches between a plurality of transport patterns in controlling the transport operation based on the supply state.
  • Various modes can be adopted for the above-described switching of the transport pattern.
  • the transport control unit 85 may simply adopt a transport pattern according to the state of the maximum number of cavities 51 .
  • the plurality of transport patterns include normal transport, replenishment transport, and removal transport.
  • the above-mentioned "normal transport” is a transport pattern in which a plurality of types of preset vibrations are applied to the track member 34 during the execution period of the feed operation or the return operation.
  • the first vibration and the second vibration are applied to the track member 34 for equal periods in descending order of amplitude.
  • the parts 92 advanced to the supply area As by the previous feeding operation are sequentially accommodated in the cavity 51 while retreating during the period TeR1 of applying the first vibration, and are accommodated in the cavity 51 during the period TeR2 of applying the second vibration. Surplus parts are removed while suppressing protrusion of the parts 92 that have been removed.
  • the above-mentioned "replenishment transport” is a transport pattern in which multiple types of vibrations are applied to the track member 34, adjusted so that the number of parts 92 remaining in the supply area As is greater than in normal transport.
  • the execution period TeF of the feed operation is set to be longer than the execution period TeR of the return operation (TeF>TeR), and is longer than the first vibration application period TeR1.
  • the application period TeR2 of the second vibration is set long (TeR1 ⁇ TeR2).
  • the above-mentioned "removal transport” is a transport pattern in which multiple types of vibrations are applied to the track member 34, adjusted so that the number of parts 92 removed from the supply area As is greater than in normal transport.
  • the execution period TeR of the return operation is set to be longer than the execution period TeF of the feed operation (TeF ⁇ TeR), and the period TeR1 of the first vibration is set to be longer.
  • the period TeR2 of applying the second vibration is set to be short (TeR1>TeR2).
  • the transport control unit 85 determines that the transport operation is good and sets "normal transport" to the transport pattern when the state recognition result shows that the number of storage cavities V1 is large in the supply state. In addition, in the case of a supply state in which the number V2 of NG cavities is large as a result of the state recognition, the transport control unit 85 determines that there are excessive parts 92 in the supply area As, and sets "removal transport” as the transport pattern. . Further, when the state recognition result shows that the number of empty cavities V3 is large in the supply state, the transport control unit 85 determines that there is a shortage of parts 92 in the supply area As, and sets "replenishment transport" to the transport pattern. do.
  • the transport control unit 85 may control the transport operation based on the parts group state indicating the position and size of the parts group U, in addition to the supply state in the supply area As.
  • the above-mentioned "parts group state" includes the presence or absence of the parts group U and the number thereof.
  • the transport control unit 85 acquires the component group state from the result of recognition processing by the state recognition unit 81 . Then, as shown in FIG. 6, when the parts group U is positioned on the tip portion 342 side of the track member 34 in the supply area As, for example, the transport control unit 85 causes the parts group U to move to the rear side of the supply area As. Execute the return motion to move.
  • the transport control unit 85 performs a feeding operation and a return operation so as to reciprocate the parts group U in the front-rear direction in the supply area As. Repeat the action. This allows an attempt to accommodate the component 92 in the empty cavity.
  • the transport control unit 85 applies a plurality of types of vibrations adjusted according to the component group state to the track member during the execution period Te of the feed operation or the return operation. 34. With such a supply operation, it is possible to increase the number of parts 92 that can be picked up in the supply area As.
  • the component supply control system 80 performs feeder control according to the supply state of the bulk feeder 30 while the component mounting machine 10 is performing the mounting process.
  • the feeder control described above includes control of the conveying operation and control of the opening/closing operation of the shutter 37 .
  • the controller 16 of the component mounting machine 10 executes calibration processing and recognizes the position of the supply area As inside the machine.
  • control device 16 first instructs the feeder control device 60 to close the shutter 37 .
  • a plurality of reference marks 344 can be imaged from above.
  • the control device 16 moves the substrate camera 15 above the plurality of reference marks 344 of the bulk feeder 30 and acquires image data by imaging with the substrate camera 15 .
  • the controller 16 determines the position of the bulk feeder 30 in the machine, that is, the supply area As, based on the positions of the plurality of reference marks 344 included in the image data and the position of the board camera 15 when the image was taken by image processing. Recognize your location.
  • the transport control unit 85 instructs the bulk feeder 30 to transport the component 92 before picking up the component 92 from the bulk feeder 30 in the mounting process.
  • the bulk feeder 30 discharges the parts 92 from the parts case 70 and circulates the parts 92 to the track member 34 as necessary.
  • the bulk feeder 30 maintains the shutter 37 in the intermediate state and performs the operation of conveying the parts 92 .
  • the components 92 are accommodated in the plurality of cavities 51, and the excess components 92 are retracted from the supply area As to the transport path R side.
  • FIG. 8 The state recognizing section 81 instructs the bulk feeder 30 to open the shutter 37 in the process of recognizing the supply state.
  • the state recognition unit 81 moves the board camera 15 above the supply area As and obtains image data by imaging the board camera 15 . Then, as shown in FIG. 8, the state recognition unit 81 determines the supply state of the supply area As by performing image processing on the image data D1 (S11).
  • the state recognition unit 81 calculates the required number (Vn) of the parts 92 to be collected from the supply area As by a series of collection operations in one PP cycle, and the number of possible collections (V1 ) is less than the reference value (Vs) (S12).
  • the above reference value (Vs) is set to a number of 0 or more. If the number of samples that can be collected is greater than the required number and the difference is equal to or greater than the reference value (S12: No, V1-Vn ⁇ Vs), the state recognition unit 81 permits the execution of the collection operation in the PP cycle (S13 ).
  • the controller 16 executes the picking operation in the PP cycle, followed by the loading operation.
  • the state recognition unit 81 executes update processing of the supply state recognized in S11 (S13).
  • the cavity 51 corresponding to the part 92 picked up by the picking operation is set as an empty cavity.
  • the state recognition unit 81 determines the number of parts 92 scheduled to be collected in the collection operation of the next PP cycle (next necessary number) and the remaining number of parts 92 that can be collected in the supply area As.
  • the determination process of S12 is executed again to determine whether or not the difference from the number of parts 92 (current number that can be collected) is equal to or greater than the reference value (Vs).
  • the state recognition unit 81 determines that the number of possible samples is insufficient, the difference (V1-Vn) is less than the reference value (Vs) (S12: Yes, V1-Vn ⁇ Vs), If the PP cycle remains (S14: Yes), execution of the picking operation in the PP cycle is not permitted, and the transport operation by the bulk feeder 30 is executed before the picking operation.
  • the transport control unit 85 updates the transport pattern based on the current supply state. is set (S15).
  • the state recognition unit 81 omits the setting of the transport pattern (S15) and the like, and permits the execution of the collection operation.
  • the transport control unit 85 sets a plurality of transport patterns in controlling the transport operation based on the current supply state (S15). Thereby, the transport pattern (for example, normal transport, replenishment transport, removal transport) is switched. Then, the transport control unit 85 instructs the bulk feeder 30 to transport the component 92 according to the set transport pattern (S16). When the bulk feeder 30 is instructed to convey the parts 92, the bulk feeder 30 performs a conveying operation according to the set conveying pattern.
  • the transport pattern for example, normal transport, replenishment transport, removal transport
  • this transport operation is executed during the period from the end of the current collection operation by the mounting head 133 (ON ⁇ OFF) to the start of the next collection operation (OFF ⁇ ON). Specifically, first, the shutter 37 is changed from the open state to the intermediate state, and the feeding operation is performed. Thereby, the plurality of components 92 are conveyed toward the front end side of the supply area As. After the forward operation is performed for the execution period TeF, the return operation is performed.
  • the first vibration is applied to the track member 34 for the application period TeR1.
  • the component 92 conveyed toward the rear end side of the supply area As is accommodated in the cavity 51 .
  • the second vibration is applied to the track member 34 for the application period TeR2.
  • surplus parts that have not been accommodated in the cavity 51 are removed from the supply area As by retreating to the transport path R side.
  • the amplitude of the second vibration is set smaller than the amplitude of the first vibration, thereby suppressing the part 92 housed in the cavity 51 from popping out.
  • the bulk feeder 30 performs a transport operation according to the supply state of the supply area As.
  • the components 92 are properly supplied according to the initial settings, normal transport is executed, and if the number of collectable components 92 is relatively small immediately after the transport operation, replenishment transport is executed (Fig. 10).
  • a process of discharging the parts 92 from the parts case 70 and distributing the plurality of parts 92 to the transportation path R may be executed according to the instruction of the transportation control section 85 .
  • the state recognition unit 81 again executes the processing (S11) for determining the supply state. As a result, the current supply state of the supply area As after the transport operation is recognized.
  • the component supply control system terminates the above control process when all the PP cycles scheduled to be executed are finished and the supply of the component 92 becomes unnecessary (S14: No).
  • the bulk feeder 30 is configured to apply two types of vibrations to the track member 34 during the execution period TeR of the returning operation.
  • the bulk feeder 30 may apply three or more types of vibrations.
  • the control of applying a plurality of types of vibrations step by step as described above may be executed during the execution period TeF of the feed operation.
  • the state recognition unit 81 and the transport control unit 85 of the component supply control system 80 have been described by exemplifying the configuration incorporated in the control device 16 of the component mounting machine 10 .
  • one or both of the state recognition section 81 and the transport control section 85 may be configured to be incorporated in an external device of the control device 16 .
  • the state recognition unit 81 may be provided movably integrally with the moving table 132 and incorporated in an imaging unit that controls the imaging operation of the board camera 15 .
  • the transport control unit 85 may be incorporated in the component supply device 12 that mediates communication between the feeders 122 installed in the plurality of slots 121 and the control device 16 .
  • the state recognition unit 81 and the transport control unit 85 may be incorporated in the feeder control device 60 of the bulk feeder 30 as self-control functions of the bulk feeder 30 .
  • the state recognition unit 81 and the transport control unit 85 may be incorporated in a host computer or dedicated equipment that is communicably connected to the component mounting machine 10 . In any aspect, the same effect as the embodiment can be obtained.
  • the bulk feeder 30 supplies components 92 to be mounted on the board 91 by the component mounter 10 .
  • a chip component having a rectangular shape when viewed from the thickness direction is exemplified as the above component 92 .
  • the component 92 is used in a board-to-board work machine that performs a predetermined work on the board 91, such as the component mounting machine 10, and can be supplied in the bulk feeder 30 while being accommodated in the cavity 51.
  • the bulk feeder 30 may supply spherically shaped solder balls.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Feeding Of Articles To Conveyors (AREA)
  • Jigging Conveyors (AREA)

Abstract

The present invention is a bulk feeder provided with an excitation control unit that performs a conveying operation for accommodating a plurality of parts in a plurality of cavities by controlling the operation of an excitation device and that performs control such that a plurality of types of vibrations are imparted to a track member by means of the excitation device while a feeding operation or a return operation of the conveying operation is being performed, said feeding operation moving forward with a plurality of parts from a conveying path towards a supply region side and said return operation receding a plurality of parts from the supply region towards the conveying path side.

Description

バルクフィーダおよび部品供給制御システムBulk feeder and parts supply control system
 本発明は、バルクフィーダおよび部品供給制御システムに関するものである。 The present invention relates to bulk feeders and parts supply control systems.
 部品供給制御システムは、バルクフィーダを用いた部品供給を制御する。バルクフィーダは、基板に部品を装着する部品装着機に装備され、バルク状態の部品を供給する。特許文献1には、搬送路に振動を付与して複数の部品を搬送する構成が開示されている。このような搬送動作によって、バルクフィーダは、吸着ノズルが部品を採取できるように上方に開口した供給領域において部品を供給する。 The parts supply control system controls parts supply using bulk feeders. A bulk feeder is installed in a component mounting machine that mounts components on a substrate, and supplies bulk components. Patent Literature 1 discloses a configuration for conveying a plurality of components by imparting vibration to a conveying path. With such a transport operation, the bulk feeder supplies components in a supply area that opens upward so that the suction nozzle can pick up the components.
特開2011-114084号公報JP 2011-114084 A
 このようなバルクフィーダは、例えば部品装着機の制御装置から部品供給を要求され、規定の搬送動作を実行する。しかしながら、供給領域において部品がバルク状態であることから、規定の搬送動作を実行しても採取可能な部品の数にばらつきが生じ得る。バルクフィーダ、およびバルクフィーダを用いた部品供給を制御するシステムには、良好な部品の供給状態を維持し、生産性向上の要請がある。 Such a bulk feeder is requested to supply components, for example, by the control device of a component mounting machine, and executes a prescribed transport operation. However, since the parts are in a bulk state in the supply area, variations may occur in the number of parts that can be picked up even if the prescribed transport operation is performed. Bulk feeders and systems that control parts supply using bulk feeders are required to maintain good parts supply conditions and improve productivity.
 本明細書は、部品の供給状態を良好にできるバルクフィーダ、およびバルクフィーダを装備された部品装着機の生産性向上を図ることができる部品供給制御システムを提供することを目的とする。 The purpose of this specification is to provide a bulk feeder capable of improving the supply state of components and a component supply control system capable of improving the productivity of a component mounting machine equipped with the bulk feeder.
 本明細書は、フィーダ本体と、前記フィーダ本体に対して振動可能に設けられ、複数の部品が搬送される搬送路および前記部品を採取可能に供給する供給領域を形成された軌道部材と、前記供給領域において前記部品を収容する複数のキャビティと、複数の前記部品が前記搬送路と前記供給領域との間で搬送されるように前記軌道部材に振動を付与する加振装置と、前記加振装置の動作を制御して複数の前記部品を複数の前記キャビティに収容させる搬送動作を実行し、前記搬送動作のうち前記搬送路から複数の前記部品を前記供給領域の側に前進させる送り動作、または前記供給領域から複数の前記部品を前記搬送路の側に後退させる戻し動作の実行期間において、前記加振装置により複数種類の振動が前記軌道部材に付与されるように制御する加振制御部と、を備えるバルクフィーダを開示する。 The present specification includes a feeder main body, a track member which is vibrated with respect to the feeder main body and which is formed with a conveying path for conveying a plurality of parts and a supply area for supplying the parts so as to be picked up, and a plurality of cavities for accommodating the parts in a supply area; a vibrating device for applying vibration to the track member so that the plurality of parts are conveyed between the conveying path and the supply area; a feeding operation of controlling the operation of the device to carry out a conveying operation of accommodating the plurality of components in the plurality of cavities, and advancing the plurality of components from the conveying path toward the supply area in the conveying operation; Alternatively, a vibration control unit that controls so that a plurality of types of vibrations are applied to the track member by the vibrating device during the execution period of the return operation for retreating the plurality of parts from the supply area to the side of the conveying path. and a bulk feeder.
 本明細書は、前記バルクフィーダの前記供給領域を撮像して取得された画像データに基づいて、前記供給領域における前記部品の供給状態を割り出す状態認識部と、前記供給状態に基づいて、前記バルクフィーダにおける前記搬送動作を制御する搬送制御部と、を備える部品供給制御システムを開示する。 The present specification includes a state recognition unit that determines the supply state of the parts in the supply area based on image data obtained by imaging the supply area of the bulk feeder, and a bulk feeder that determines the supply state of the parts based on the supply state. and a conveying control unit that controls the conveying operation in the feeder.
 このようなバルクフィーダの構成によると、送り動作または戻し動作の実行期間において、複数種類の振動が軌道部材に付与される。これにより、搬送特性の異なる複数種類の振動を組み合わせて、部品の搬送することができる。例えば、キャビティへの部品の収容、キャビティからの部品の飛び出しの抑制、または部品全体の搬送などを適宜優先させる振動特性を有する振動を組み合わせることができる。そうすると、キャビティへの収容を行った後に、余剰部品を供給領域から除去するするような搬送制御を一連で行うことができる。結果として、部品の供給状態を良好にできる。 According to such a bulk feeder configuration, multiple types of vibrations are applied to the track member during the execution period of the feeding operation or the returning operation. As a result, it is possible to transport parts by combining a plurality of types of vibrations having different transport characteristics. For example, it is possible to combine vibrations having vibration characteristics that appropriately give priority to accommodation of parts in cavities, suppression of protrusions of parts from cavities, or transportation of parts as a whole. By doing so, it is possible to perform a series of transport control such as removing surplus components from the supply area after the components are accommodated in the cavities. As a result, the parts supply condition can be improved.
 このような部品供給制御システムの構成によると、送り動作または戻し動作の実行期間に複数種類の振動を付与可能なバルクフィーダの搬送動作は、供給領域における部品の供給状態に基づいて制御される。これにより、現在の供給状態に応じた搬送動作が可能となり、供給領域において採取可能な部品を増加させることができる。このように、バルクフィーダにおける部品の供給状態を良好にすることで、部品装着機の生産性向上を図ることができる。 According to the configuration of such a component supply control system, the transport operation of the bulk feeder capable of imparting multiple types of vibration during the execution period of the feed operation or return operation is controlled based on the supply state of the components in the supply area. As a result, it is possible to carry out a transport operation according to the current supply state, and to increase the number of parts that can be collected in the supply area. In this way, by improving the supply state of the components in the bulk feeder, it is possible to improve the productivity of the component mounting machine.
バルクフィーダを装備された部品装着機を模式的に示す平面図である。FIG. 4 is a plan view schematically showing a component mounting machine equipped with a bulk feeder; バルクフィーダの外観を示す斜視図である。It is a perspective view which shows the external appearance of a bulk feeder. バルクフィーダの要部を模式的に示す側面図である。It is a side view which shows the principal part of a bulk feeder typically. 図2のIV方向から見た平面図である。FIG. 3 is a plan view seen from the IV direction of FIG. 2; 部品供給制御システムを適用された部品装着機を示すブロック図である。1 is a block diagram showing a component mounting machine to which a component supply control system is applied; FIG. 供給領域を撮像した画像データを示す図である。It is a figure which shows the image data which imaged the supply area|region. 図6の画像データを対象とした供給状態の認識処理の結果を示す図である。FIG. 7 is a diagram showing a result of supply state recognition processing for the image data of FIG. 6 ; 部品供給制御処理を示すフローチャートである。7 is a flowchart showing component supply control processing; 搬送パターンが通常搬送である場合の搬送動作のタイムチャートである。5 is a time chart of the transport operation when the transport pattern is normal transport; 搬送パターンが補給搬送である場合の搬送動作のタイムチャートである。5 is a time chart of the transport operation when the transport pattern is replenishment transport; 搬送パターンが除去搬送である場合の搬送動作のタイムチャートである。4 is a time chart of the transport operation when the transport pattern is removal transport;
 バルクフィーダ30を用いた部品供給を制御する部品供給制御システム80について、図面を参照して説明する。バルクフィーダ30は、例えば基板91に部品92を装着する部品装着機10に装備され、バルク状態(それぞれの姿勢が不規則なばら状態)の部品92を供給する。 A component supply control system 80 that controls component supply using the bulk feeder 30 will be described with reference to the drawings. The bulk feeder 30 is installed in, for example, a component mounting machine 10 that mounts components 92 on a substrate 91, and supplies the components 92 in a bulk state (discrete state in which each posture is irregular).
 1.部品装着機10の構成
 部品装着機10は、例えば他の部品装着機10を含む複数種類の対基板作業機とともに、基板製品を生産する生産ラインを構成する。上記の生産ラインを構成する対基板作業機には、印刷機や検査装置、リフロー炉などが含まれ得る。
 1-1.基板搬送装置
 部品装着機10は、図1に示すように、基板搬送装置11を備える。基板搬送装置11は、基板91を搬送方向へと順次搬送するとともに、基板91を機内の所定位置に位置決めする。
1. Configuration of Component Mounting Machine 10 The component mounting machine 10 constitutes a production line for producing board products together with a plurality of types of board-facing work machines including other component mounting machines 10, for example. A printing machine, an inspection device, a reflow furnace, etc. can be included in the work machine for the board that constitutes the above production line.
1-1. Board Transfer Apparatus The component mounting machine 10 includes a board transfer apparatus 11 as shown in FIG. The substrate conveying device 11 sequentially conveys the substrates 91 in the conveying direction and positions the substrates 91 at predetermined positions within the apparatus.
 1-2.部品供給装置12
 部品装着機10は、部品供給装置12を備える。部品供給装置12は、基板91に装着される部品を供給する。部品供給装置12は、複数のスロット121にフィーダ122をそれぞれ装備される。フィーダ122には、例えば多数の部品が収納されたキャリアテープを送り移動させて、部品を採取可能に供給するテープフィーダが適用される。また、フィーダ122には、バルク状態で収容された部品を採取可能に供給するバルクフィーダ30が適用される。バルクフィーダ30の詳細については後述する。
1-2. Component supply device 12
The component mounting machine 10 includes a component supply device 12 . The component supply device 12 supplies components to be mounted on the board 91 . The component supply device 12 is equipped with feeders 122 in a plurality of slots 121, respectively. For the feeder 122, for example, a tape feeder that feeds and moves a carrier tape containing a large number of components and supplies the components so as to be picked up is applied. Also, the feeder 122 is applied with a bulk feeder 30 that supplies components stored in a bulk state in a collectable manner. Details of the bulk feeder 30 will be described later.
 1-3.部品移載装置13
 部品装着機10は、部品移載装置13を備える。部品移載装置13は、部品供給装置12により供給された部品を基板91上の所定の装着位置に移載する。部品移載装置13は、ヘッド駆動装置131、移動台132、装着ヘッド133、および吸着ノズル134を備える。ヘッド駆動装置131は、直動機構により移動台132を水平方向(X方向およびY方向)に移動させる。装着ヘッド133は、図示しないクランプ部材により移動台132に着脱可能に固定され、機内において水平方向に移動可能に設けられる。
1-3. Component transfer device 13
The component mounting machine 10 includes a component transfer device 13 . The component transfer device 13 transfers the component supplied by the component supply device 12 to a predetermined mounting position on the board 91 . The component transfer device 13 includes a head driving device 131 , a moving table 132 , a mounting head 133 and a suction nozzle 134 . The head driving device 131 moves the moving table 132 in the horizontal direction (X direction and Y direction) by a linear motion mechanism. The mounting head 133 is detachably fixed to the moving table 132 by a clamp member (not shown), and is horizontally movable in the apparatus.
 装着ヘッド133は、回転可能に且つ昇降可能に複数の吸着ノズル134を支持する。吸着ノズル134は、フィーダ122により供給される部品92を採取して保持する保持部材である。吸着ノズル134は、供給される負圧エアにより、フィーダ122により供給される部品を吸着する。装着ヘッド133に取り付けられる保持部材としては、部品を把持することにより保持するチャックなどが採用され得る。 The mounting head 133 supports a plurality of suction nozzles 134 rotatably and vertically. The suction nozzle 134 is a holding member that picks up and holds the component 92 supplied by the feeder 122 . The suction nozzle 134 sucks the component supplied by the feeder 122 with the supplied negative pressure air. As the holding member attached to the mounting head 133, a chuck or the like that holds the component by gripping it can be adopted.
 1-4.部品カメラ14、基板カメラ15
 部品装着機10は、部品カメラ14、および基板カメラ15を備える。部品カメラ14、および基板カメラ15は、CMOSなどの撮像素子を有するデジタル式の撮像装置である。部品カメラ14、および基板カメラ15は、制御信号に基づいて撮像を行い、当該撮像により取得した画像データを送出する。部品カメラ14は、吸着ノズル134に保持された部品を下方から撮像可能に構成される。基板カメラ15は、装着ヘッド133と一体的に水平方向に移動可能に移動台132に設けられる。基板カメラ15は、基板91を上方から撮像可能に構成される。
1-4. Component camera 14, board camera 15
The component mounting machine 10 has a component camera 14 and a substrate camera 15 . The component camera 14 and the substrate camera 15 are digital imaging devices having imaging elements such as CMOS. The component camera 14 and the board camera 15 perform imaging based on the control signal, and send out image data acquired by the imaging. The component camera 14 is configured to be able to image the component held by the suction nozzle 134 from below. The substrate camera 15 is provided on the moving table 132 so as to be horizontally movable integrally with the mounting head 133 . The board camera 15 is configured to be able to image the board 91 from above.
 また、基板カメラ15は、基板91の表面を撮像対象とする他に、移動台132の可動範囲であれば種々の機器などを撮像対象にできる。例えば、基板カメラ15は、本実施形態において、図4に示すように、バルクフィーダ30が部品92を供給する供給領域Asやバルクフィーダ30の上部に設けられた基準マーク344をカメラ視野に収めて撮像することができる。このように、基板カメラ15は、種々の画像処理に用いられる画像データを取得するために、異なる撮像対象の撮像に兼用され得る。 In addition to imaging the surface of the substrate 91 , the substrate camera 15 can image various devices within the movable range of the moving table 132 . For example, as shown in FIG. 4, the substrate camera 15 of the present embodiment is configured such that the supply area As where the bulk feeder 30 supplies the components 92 and the reference mark 344 provided on the upper portion of the bulk feeder 30 are included in the field of view of the camera. It can be imaged. Thus, the substrate camera 15 can be used for imaging different imaging targets in order to acquire image data used for various image processing.
 1-5.制御装置16
 部品装着機10は、図1に示すように、制御装置16を備える。制御装置16は、主として、CPUや各種メモリ、制御回路、および記憶装置により構成される。制御装置16は、制御装置16には、装着処理の制御に用いられる制御プログラムなどの各種データが記憶される。制御プログラムは、装着処理において基板91に装着される部品の装着位置、装着角度、および装着順序を示す。
1-5. controller 16
The component mounting machine 10 includes a control device 16 as shown in FIG. The control device 16 is mainly composed of a CPU, various memories, a control circuit, and a storage device. The control device 16 stores various data such as a control program used for controlling the mounting process. The control program indicates the mounting position, mounting angle, and mounting order of the components to be mounted on the board 91 in the mounting process.
 制御装置16は、複数の保持部材(吸着ノズル134)のそれぞれに保持された部品の保持状態の認識処理を実行する。具体的には、制御装置16は、部品カメラ14の撮像により取得された画像データを画像処理し、装着ヘッド133の基準位置に対する各部品の位置および角度を認識する。なお、制御装置16は、部品カメラ14の他に、例えば装着ヘッド133に一体的に設けられるヘッドカメラユニットなどが部品を側方、下方、または上方から撮像して取得された画像データを画像処理するようにしてもよい。 The control device 16 executes recognition processing of the holding state of the component held by each of the plurality of holding members (suction nozzles 134). Specifically, the control device 16 performs image processing on the image data acquired by the component camera 14 and recognizes the position and angle of each component with respect to the reference position of the mounting head 133 . In addition to the component camera 14 , the control device 16 performs image processing on image data obtained by imaging the component from the side, below, or above, such as a head camera unit integrally provided with the mounting head 133 . You may make it
 制御装置16は、制御プログラムに基づいて、装着ヘッド133による部品の装着動作を制御して装着処理を実行する。ここで、装着処理には、採取動作と装着動作とが含まれるPPサイクル(ピックアンドプレースサイクル)を複数回に亘って繰り返す処理が含まれる。上記の「採取動作」とは、部品供給装置12により供給された部品を吸着ノズル134により採取する動作である。 The control device 16 executes the mounting process by controlling the component mounting operation by the mounting head 133 based on the control program. Here, the mounting process includes a process of repeating a PP cycle (pick-and-place cycle) including a collection operation and a mounting operation a plurality of times. The above-mentioned “collection operation” is an operation of collecting the component supplied by the component supply device 12 by the suction nozzle 134 .
 本実施形態において、制御装置16は、上記の採取動作の実行に際して、バルクフィーダ30を含む部品供給装置12の動作を制御する。バルクフィーダ30の動作を対象とした制御には、例えばバルクフィーダ30による部品92の供給動作、および後述するシャッタ37の開閉動作の制御が含まれる。 In this embodiment, the control device 16 controls the operation of the component supply device 12 including the bulk feeder 30 when executing the above collection operation. The control for the operation of the bulk feeder 30 includes, for example, the operation of supplying the parts 92 by the bulk feeder 30 and the control of the opening/closing operation of the shutter 37, which will be described later.
 制御装置16は、状態認識部81を備える。状態認識部81は、カメラ(本実施形態において、基板カメラ15)の撮像により取得した画像データに基づいて、バルクフィーダ30の供給領域Asにおける複数の部品92の供給状態を認識する。供給状態の認識処理には、供給領域Asに採取可能な部品92があるか否かを認識し、採取可能な部品92がある場合にはその部品92の位置および角度を認識する処理が含まれる。そして、制御装置16は、供給状態の認識処理の結果に基づいて、採取動作における装着ヘッド133の動作を制御する。 The control device 16 has a state recognition section 81 . The state recognition unit 81 recognizes the supply state of the plurality of components 92 in the supply area As of the bulk feeder 30 based on the image data acquired by the camera (the substrate camera 15 in this embodiment). The supply state recognition processing includes a process of recognizing whether or not there is a part 92 that can be picked up in the supply area As, and recognizing the position and angle of the part 92 if there is a part 92 that can be picked up. . Then, the control device 16 controls the operation of the mounting head 133 in the collection operation based on the result of the supply state recognition processing.
 また、上記の「装着動作」とは、採取した部品を基板91における所定の装着位置に、所定の装着角度で装着する動作である。制御装置16は、装着処理において、各種センサから出力される情報や画像処理の結果、制御プログラムなどに基づき、装着ヘッド133の動作を制御する。これにより、装着ヘッド133に支持された複数の吸着ノズル134の位置および角度が制御される。 Also, the above-mentioned "mounting operation" is an operation of mounting the collected component at a predetermined mounting position on the substrate 91 at a predetermined mounting angle. In the mounting process, the control device 16 controls the operation of the mounting head 133 based on information output from various sensors, results of image processing, control programs, and the like. Thereby, the positions and angles of the plurality of suction nozzles 134 supported by the mounting head 133 are controlled.
 2.バルクフィーダ30の構成
 バルクフィーダ30は、部品装着機10に装備されて部品供給装置12の一部として機能する。バルクフィーダ30は、キャリアテープのように整列されていないバルク状態で収容された部品92を供給する。そのため、バルクフィーダ30は、テープフィーダと異なりキャリアテープを用いないため、キャリアテープの装填や使用済みテープの回収などを省略できる点でメリットがある。
2. Configuration of Bulk Feeder 30 The bulk feeder 30 is installed in the component mounting machine 10 and functions as a part of the component supply device 12 . Bulk feeder 30 feeds components 92 stored in bulk and not aligned, such as carrier tape. Therefore, unlike the tape feeder, the bulk feeder 30 does not use a carrier tape, and therefore has the advantage of omitting the loading of the carrier tape and the recovery of the used tape.
 バルクフィーダ30には、例えば平面状の供給領域Asに不規則な姿勢で部品92を供給するタイプがある。しかしながら、供給領域Asにおいて部品92同士が接触するほど接近していたり堆積(上下方向に重なり合っている状態)していたり、部品92の幅方向が上下方向となるような横立ち姿勢であったりすると、部品装着機10は、これらの部品92を採取対象にすることができない。そこで、採取可能な部品92の割合を増加すべく、バルクフィーダ30には、供給領域Asにおいて部品92を整列させた状態で供給するタイプがある。本実施形態では、部品92を整列させるタイプのバルクフィーダ30を例示して説明する。 The bulk feeder 30 includes, for example, a type that supplies parts 92 in an irregular posture to a planar supply area As. However, if the parts 92 are so close to each other that they are in contact with each other in the supply area As, or if the parts 92 are piled up (overlapping in the vertical direction), or if the parts 92 are in a sideways posture such that the width direction of the parts 92 is the vertical direction. , the component mounting machine 10 cannot pick up these components 92 . Therefore, in order to increase the ratio of the parts 92 that can be collected, the bulk feeder 30 has a type that supplies the parts 92 in a state of being aligned in the supply area As. In this embodiment, the bulk feeder 30 of the type that aligns the parts 92 will be described as an example.
 2-1.フィーダ本体31
 バルクフィーダ30は、図2に示すように、扁平な箱状に形成されたフィーダ本体31を備える。フィーダ本体31の前部には、コネクタ311および2つのピン312が設けられる。フィーダ本体31は、部品供給装置12のスロット121にセットされると、コネクタ311を介して給電されるとともに、制御装置16と通信可能な状態となる。2つのピン312は、スロット121に設けられたガイド穴に挿入され、フィーダ本体31がスロット121にセットされる際の位置決めに用いられる。
2-1. feeder body 31
The bulk feeder 30 includes a feeder body 31 formed in a flat box shape, as shown in FIG. A connector 311 and two pins 312 are provided at the front of the feeder body 31 . When the feeder main body 31 is set in the slot 121 of the component supply device 12 , power is supplied through the connector 311 and communication with the control device 16 is possible. The two pins 312 are inserted into guide holes provided in the slot 121 and used for positioning when the feeder body 31 is set in the slot 121 .
 2-2.受容部材32
 フィーダ本体31には、複数の部品92をバルク状態で収容する部品ケース70が受容部材32を介して着脱可能に取り付けられる。部品ケース70は、バルクフィーダ30の外部機器である。フィーダ本体31には、種々のタイプの部品ケース70から装着処理に適合する1つが選択されて取り付けられる。部品ケース70の前部には、外部へ部品92を排出する排出口71が形成される。
2-2. receiving member 32
A component case 70 that accommodates a plurality of components 92 in a bulk state is detachably attached to the feeder body 31 via the receiving member 32 . A component case 70 is an external device of the bulk feeder 30 . One of various types of component cases 70 suitable for the mounting process is selected and attached to the feeder body 31 . A discharge port 71 for discharging the component 92 to the outside is formed in the front portion of the component case 70 .
 受容部材32は、フィーダ本体31に対して振動可能に設けられ、取り付けられた部品ケース70を支持する。受容部材32は、部品ケース70から排出された部品92を受容する受容領域Arを形成される。本実施形態において、受容部材32は、受容領域Arにおいて水平面に対して前側に傾斜した傾斜部321を有する。この傾斜部321は、部品ケース70の排出口71の下方に位置し、且つ平面状をなす。受容部材32は、受容領域Arの上方に延伸する部品92の流路を形成され、この流路が上方に開口する送出部322を形成される。 The receiving member 32 is vibrated with respect to the feeder body 31 and supports the attached component case 70 . The receiving member 32 is formed with a receiving area Ar for receiving the component 92 ejected from the component case 70 . In this embodiment, the receiving member 32 has an inclined portion 321 that is inclined forward with respect to the horizontal plane in the receiving area Ar. The inclined portion 321 is positioned below the discharge port 71 of the component case 70 and has a planar shape. The receiving member 32 is formed with a channel for the component 92 extending above the receiving area Ar, and is formed with a delivery portion 322 opening upward from the channel.
 2-3.ブラケット33、軌道部材34、ロックユニット35
 バルクフィーダ30は、ブラケット33および軌道部材34を備える。ブラケット33は、フィーダ本体31に対して振動可能に設けられる。ブラケット33は、フィーダ本体31の前後方向に延伸するブロック状に形成され、上面に軌道部材34を取り付けられる。ブラケット33は、後述する加振装置40の支持部材41により支持される。軌道部材34は、複数の部品92が搬送される搬送路R、および搬送路Rに連通して複数の部品92を採取可能に上方に開口する供給領域Asを形成される。
2-3. Bracket 33, track member 34, lock unit 35
Bulk feeder 30 includes bracket 33 and track member 34 . The bracket 33 is provided so as to vibrate with respect to the feeder body 31 . The bracket 33 is formed in a block shape extending in the front-rear direction of the feeder body 31, and has a track member 34 attached to its upper surface. The bracket 33 is supported by a support member 41 of a vibrating device 40 which will be described later. The track member 34 is formed with a transport path R along which a plurality of parts 92 are transported, and a supply area As that communicates with the transport path R and opens upward so that a plurality of parts 92 can be picked up.
 バルクフィーダ30は、ロックユニット35を備える。ロックユニット35は、軌道部材34がブラケット33に取り付けられた状態で、軌道部材34をロックする。軌道部材34は、ロックユニット35によりロックされると、フィーダ本体31に対してブラケット33と一体的に振動する状態となる。軌道部材34は、ロックユニット35のアンロックによりブラケット33から取り外し可能な状態となる。 The bulk feeder 30 is provided with a lock unit 35. The lock unit 35 locks the track member 34 while the track member 34 is attached to the bracket 33 . When locked by the lock unit 35 , the track member 34 vibrates integrally with the bracket 33 with respect to the feeder body 31 . The track member 34 becomes removable from the bracket 33 by unlocking the lock unit 35 .
 2-4.軌道部材34の詳細構成、カバー36、シャッタ37、連結部材38
 軌道部材34は、フィーダ本体31の前後方向(図4の左右方向)に延伸するように形成される。軌道部材34の幅方向(図4の上下方向)の両縁には、上方に突出する一対の側壁341が形成される。一対の側壁341は、軌道部材34の先端部342とともに搬送路Rの周縁を囲い、搬送路Rを搬送される部品92の漏出を防止する。先端部342の上面には、供給領域Asの基準位置を示す円形の基準マーク344が左右一対で付される。
2-4. Detailed configuration of track member 34, cover 36, shutter 37, connecting member 38
The track member 34 is formed so as to extend in the front-rear direction of the feeder body 31 (left-right direction in FIG. 4). A pair of side walls 341 projecting upward are formed on both edges of the track member 34 in the width direction (the vertical direction in FIG. 4). The pair of side walls 341 surrounds the periphery of the transport path R together with the tip portion 342 of the track member 34 to prevent the component 92 transported on the transport path R from leaking out. A pair of left and right circular reference marks 344 indicating the reference position of the supply area As are provided on the upper surface of the tip portion 342 .
 本実施形態において、軌道部材34には、整列部材50が交換可能に取り付けられる。整列部材50は、複数の部品92を個々に収容する複数のキャビティ51を有する。詳細には、複数のキャビティ51は、供給領域Asにおいて搬送方向に隣り合う列が互い違いになるジグザグ状に配置される。例えば、整列部材50は、規則的に搬送方向に8個、搬送路Rの幅方向に8個それぞれ配列された計64個のキャビティ51を有する。複数のキャビティ51のそれぞれは、上方に開口し、部品92の厚み方向が上下方向となる姿勢で部品92を収容する。なお、複数のキャビティ51は、その他に、マトリックス状に配列されてもよい。 In this embodiment, the alignment member 50 is replaceably attached to the track member 34 . Alignment member 50 has a plurality of cavities 51 that individually accommodate a plurality of components 92 . Specifically, the plurality of cavities 51 are arranged in a zigzag pattern in which rows adjacent to each other in the conveying direction are staggered in the supply area As. For example, the alignment member 50 has a total of 64 cavities 51, 8 of which are regularly arranged in the conveying direction and 8 of which are arranged in the width direction of the conveying path R, respectively. Each of the plurality of cavities 51 opens upward and accommodates the component 92 in a posture in which the thickness direction of the component 92 is the vertical direction. Alternatively, the plurality of cavities 51 may be arranged in a matrix.
 キャビティ51の開口は、上方視における部品92の外形状よりも僅かに大きくなる寸法に設定される。キャビティ51の深さは、部品92の種類(形状、質量など)に応じて設定される。軌道部材34には、種々のタイプの軌道部材34から、部品92の種類や、キャビティ51の必要数、機能性に基づいて選択された1つが取り付けられる。 The opening of the cavity 51 is set to a dimension that is slightly larger than the external shape of the component 92 when viewed from above. The depth of the cavity 51 is set according to the type (shape, mass, etc.) of the component 92 . The track member 34 is attached with one selected from various types of track members 34 based on the type of parts 92, the required number of cavities 51, and functionality.
 ここで、軌道部材34の「供給領域As」とは、部品92をバルク状態で供給する領域であって、装着ヘッド133に支持された吸着ノズル134により部品92を採取可能な領域である。また、軌道部材34の「搬送路R」とは、受容領域Arから軌道部材34へと流通した部品92が供給領域Asへと搬送される部品92の通り道である。 Here, the "supply area As" of the track member 34 is an area in which the parts 92 are supplied in bulk and in which the parts 92 can be picked up by the suction nozzle 134 supported by the mounting head 133. Further, the “conveyance path R” of the track member 34 is a path along which the components 92 circulated from the receiving area Ar to the track member 34 are conveyed to the supply area As.
 バルクフィーダ30は、カバー36を備える。カバー36は、軌道部材34に固定され、搬送路Rの上方を覆う。カバー36は、上面に複数の排気口361が形成されている。排気口361には、目地が部品92の外形寸法より小さいメッシュが張られている。このような構成により、カバー36は、搬送路Rからの部品92の飛び出しを防止しつつ、排気口361からエアを外部に排出することができるように構成されている。 The bulk feeder 30 includes a cover 36. The cover 36 is fixed to the track member 34 and covers the transport path R from above. The cover 36 has a plurality of exhaust ports 361 formed on its upper surface. The exhaust port 361 is covered with a mesh whose joints are smaller than the external dimensions of the part 92 . With such a configuration, the cover 36 is configured to prevent the component 92 from jumping out of the transport path R and to discharge air to the outside from the exhaust port 361 .
 バルクフィーダ30は、軌道部材34の上部に設けられ、供給領域Asの開口を閉塞可能なシャッタ37を備える。バルクフィーダ30は、シャッタ37を開閉することによって部品92の飛び出しや供給領域Asへの異物混入を防止することができる。本実施形態において、シャッタ37は、開閉動作により開状態、閉状態、および中間状態を切り換えられる。シャッタ37の閉状態とは、シャッタ37が軌道部材34に接触し、供給領域Asの開口が完全に閉塞された状態である。このとき、シャッタ37は、図4の破線で示すように、軌道部材34の一対の基準マーク344よりもフィーダ本体31の後側に位置し、上方視において一対の基準マーク344を視認および撮像可能とする。 The bulk feeder 30 has a shutter 37 provided on the upper part of the track member 34 and capable of closing the opening of the supply area As. By opening and closing the shutter 37, the bulk feeder 30 can prevent the component 92 from jumping out and foreign matter from entering the supply area As. In this embodiment, the shutter 37 can be switched between an open state, a closed state, and an intermediate state by opening and closing operations. The closed state of the shutter 37 is a state in which the shutter 37 contacts the track member 34 and the opening of the supply area As is completely closed. At this time, the shutter 37 is positioned on the rear side of the feeder body 31 relative to the pair of reference marks 344 of the track member 34, as indicated by the dashed lines in FIG. and
 また、シャッタ37の開状態とは、供給領域Asの開口が閉塞されておらず、且つ供給領域Asの主要範囲(本実施形態において複数のキャビティ51が設けられた範囲)を露出させた状態である。このとき、吸着ノズル134は、何れのキャビティ51に対して部品92の採取動作を実行することができる。シャッタ37の中間状態とは、閉状態と開状態の間の状態であって、シャッタ37が軌道部材34から少なくとも加振装置40の加振により振動する軌道部材34の振幅よりも離間し且つ供給領域Asの開口から部品92の飛び出しを規制する状態である。シャッタ37は、図略の駆動装置により開閉動作を行い、駆動装置の駆動状態に応じて閉状態、開状態、および中間状態とされる。 The open state of the shutter 37 is a state in which the opening of the supply area As is not closed and the main range of the supply area As (the range in which the plurality of cavities 51 are provided in this embodiment) is exposed. be. At this time, the suction nozzle 134 can pick up the component 92 from any cavity 51 . The intermediate state of the shutter 37 is a state between the closed state and the open state, in which the shutter 37 is separated from the track member 34 by at least the amplitude of the track member 34 vibrated by the vibration of the vibrating device 40 and supplied. This is a state in which projection of the component 92 from the opening of the region As is restricted. The shutter 37 is opened and closed by a driving device (not shown), and is brought into a closed state, an open state, and an intermediate state according to the driving state of the driving device.
 軌道部材34は、後部において下方に延伸する部品92の流路を形成され、この流路が下方に開口する導入部343を有する。導入部343は、受容部材32の送出部322と上下方向に対向する。バルクフィーダ30は、管状をなす連結部材38を備える。連結部材38は、受容部材32の送出部322および軌道部材34の導入部343を連結する。本実施形態において、連結部材38は、密着コイルばねであり、全体として可撓性を有する。 The track member 34 is formed with a flow path for the component 92 extending downward at the rear portion, and has an introduction portion 343 in which this flow path opens downward. The introduction portion 343 vertically faces the delivery portion 322 of the receiving member 32 . The bulk feeder 30 includes a connecting member 38 having a tubular shape. The connecting member 38 connects the delivery portion 322 of the receiving member 32 and the introduction portion 343 of the track member 34 . In this embodiment, the connecting member 38 is a tight coil spring and has flexibility as a whole.
 上記のような構成により、連結部材38は、受容領域Arと搬送路Rとの間を複数の部品92を流通可能に連結する。また、連結部材38は、フィーダ本体31に対する受容部材32の振動および軌道部材34の振動に応じて変形することにより振動を吸収する。連結部材38は、互いに独立して振動する受容部材32および軌道部材34の間で伝達される振動を軽減または遮断する。 With the configuration as described above, the connecting member 38 connects the plurality of components 92 between the receiving area Ar and the transport path R so as to be able to flow. In addition, the connecting member 38 absorbs vibration by deforming in accordance with the vibration of the receiving member 32 and the track member 34 with respect to the feeder body 31 . The connecting member 38 reduces or blocks vibrations transmitted between the independently vibrating receiving member 32 and track member 34 .
 2-5.エア供給装置39
 バルクフィーダ30は、エア供給装置39を備える。エア供給装置39は、受容領域Arの下方から正圧エアを供給して、受容部材32から連結部材38を介して軌道部材34まで複数の部品92を流通させる。本実施形態において、エア供給装置39は、外部から供給される正圧エアを、後述するフィーダ制御装置60の指令に基づいて受容領域Arの下方から供給または遮断する。
2-5. Air supply device 39
The bulk feeder 30 has an air supply device 39 . The air supply device 39 supplies positive pressure air from below the receiving area Ar to circulate the plurality of components 92 from the receiving member 32 to the track member 34 via the connecting member 38 . In this embodiment, the air supply device 39 supplies or cuts off the positive pressure air supplied from the outside from below the receiving area Ar based on a command from the feeder control device 60, which will be described later.
 エア供給装置39が正圧エアを供給すると、受容領域Arに滞留していた複数の部品92は、正圧エアにより上方に吹き上げられる。正圧エアおよび複数の部品92は、受容部材32の送出部322、連結部材38、および導入部343の順に流通し、軌道部材34の搬送路Rに到達する。ここで、正圧エアは、カバー36の排気口361から外部に排気される。また、複数の部品92は、自重により軌道部材34の搬送路Rに落下する。 When the air supply device 39 supplies positive pressure air, the plurality of parts 92 staying in the receiving area Ar are blown upward by the positive pressure air. The positive pressure air and the plurality of parts 92 flow through the sending portion 322 of the receiving member 32 , the connecting member 38 and the introducing portion 343 in this order, and reach the transport path R of the track member 34 . Here, the positive pressure air is exhausted to the outside from the exhaust port 361 of the cover 36 . Also, the plurality of components 92 drop onto the transport path R of the track member 34 due to their own weight.
 2-6.加振装置40
 バルクフィーダ30は、フィーダ本体31に設けられる加振装置40を備える。加振装置40は、複数の部品92が搬送路Rに沿って搬送されるように軌道部材34に振動を付与する。具体的には、加振装置40は、複数の支持部材41、複数の圧電素子42、振動センサ43、および給電装置44を有する。複数の支持部材41は、フィーダ本体31とブラケット33を直接的または間接的に連結して、ブラケット33を支持する。
2-6. Vibrating device 40
The bulk feeder 30 includes a vibrating device 40 provided on the feeder body 31 . The vibrating device 40 applies vibration to the track member 34 so that the plurality of components 92 are transported along the transport path R. As shown in FIG. Specifically, the vibrating device 40 has a plurality of support members 41 , a plurality of piezoelectric elements 42 , a vibration sensor 43 and a power feeding device 44 . A plurality of support members 41 support the bracket 33 by directly or indirectly connecting the feeder body 31 and the bracket 33 .
 本実施形態において、複数の支持部材41には、部品92の前側搬送に用いられる前進用支持部材41Aと、後側搬送に用いられる後退用支持部材41Bとがある。前進用支持部材41Aおよび後退用支持部材41Bは、それぞれ鉛直方向に対する傾斜方向が互いに相違する。複数の圧電素子42は、給電装置44から給電される電力に応じた周波数で振動する振動子である。複数の圧電素子42は、複数の支持部材41のそれぞれに貼付されている。 In this embodiment, the plurality of support members 41 include an advance support member 41A used for front-side transportation of the component 92 and a retreat support member 41B used for rear-side transportation. The forward support member 41A and the backward support member 41B are different from each other in the direction of inclination with respect to the vertical direction. The plurality of piezoelectric elements 42 are vibrators that vibrate at a frequency corresponding to power supplied from the power supply device 44 . A plurality of piezoelectric elements 42 are attached to each of the plurality of support members 41 .
 複数の圧電素子42の少なくとも一部が振動すると、ブラケット33を介して軌道部材34に振動が付与される。また、圧電素子42に印加する電圧に応じて、軌道部材34の振幅が変動する。振動センサ43は、加振装置40の加振により振動する軌道部材34の振動状態を示す振動値を検出する。上記の振動状態を示す振動値としては、振幅や周波数、減衰時間、振動軌跡などを適用することができる。本実施形態において、振動センサ43は、圧電素子42が給電されて振動したときに、軌道部材34の実際の振動の周波数または振幅を検出する。 When at least some of the plurality of piezoelectric elements 42 vibrate, vibration is imparted to the track member 34 via the bracket 33 . Also, the amplitude of the track member 34 varies according to the voltage applied to the piezoelectric element 42 . The vibration sensor 43 detects a vibration value indicating the vibration state of the track member 34 vibrated by the vibration of the vibrating device 40 . Amplitude, frequency, damping time, vibration trajectory, etc. can be applied as the vibration value indicating the vibration state. In this embodiment, the vibration sensor 43 detects the actual vibration frequency or amplitude of the track member 34 when the piezoelectric element 42 vibrates due to power supply.
 本実施形態において、振動センサ43は、軌道部材34と一体的に振動するブラケット33を支持する複数の支持部材41にそれぞれ設けられている。より詳細には、圧電素子42および振動センサ43は、前進用支持部材41Aおよび後退用支持部材41Bのそれぞれに設けられている。前進用支持部材41Aに設けられた振動センサ43は、この前進用支持部材41Aに設けられた圧電素子42が給電され、ブラケット33を介して軌道部材34に振動を付与している際に、振動値として実際の周波数または振幅を検出する。 In this embodiment, the vibration sensor 43 is provided on each of the plurality of support members 41 that support the bracket 33 that vibrates integrally with the track member 34 . More specifically, the piezoelectric element 42 and the vibration sensor 43 are provided on each of the forward support member 41A and the backward support member 41B. A vibration sensor 43 provided on the support member 41A for advancement is supplied with power to the piezoelectric element 42 provided on the support member 41A for advancement, and vibration is applied to the track member 34 via the bracket 33. Detect the actual frequency or amplitude as a value.
 ここで、加振装置40が軌道部材34に振動を付与すると、軌道部材34は、側方視において楕円運動する。これにより、搬送路Rにある複数の部品92は、軌道部材34の楕円運動の回転方向に応じて前方且つ上方の外力、または後方且つ上方の外力を加えられる。これにより、複数の部品92は、軌道部材34の前側に搬送されたり、後側に搬送されたりすることになる。 Here, when the vibrating device 40 imparts vibration to the track member 34, the track member 34 makes an elliptical motion when viewed from the side. As a result, the plurality of components 92 on the transport path R are subjected to a forward and upward external force or a rearward and upward external force depending on the rotational direction of the elliptical motion of the track member 34 . As a result, the plurality of parts 92 are transported to the front side or the rear side of the track member 34 .
 給電装置44は、後述するフィーダ制御装置60の指令に基づいて、圧電素子42に供給する電力の周波数、および印加電圧を変動させる。これにより、軌道部材34に付与される振動の周波数および振幅が調整され、軌道部材34の楕円運動の回転方向が定まる。軌道部材34の振動の周波数や振幅、振動による楕円運動の回転方向が変動すると、搬送される部品92の搬送速度、部品92の分散度合い、および搬送方向などが変動する。 The power supply device 44 varies the frequency of power supplied to the piezoelectric element 42 and the applied voltage based on commands from the feeder control device 60, which will be described later. As a result, the frequency and amplitude of vibration applied to the track member 34 are adjusted, and the rotational direction of the elliptical motion of the track member 34 is determined. When the frequency and amplitude of the vibration of the track member 34 and the rotational direction of the elliptical motion due to the vibration fluctuate, the conveying speed of the parts 92 to be conveyed, the degree of dispersion of the parts 92, the conveying direction, and the like change.
 そこで、加振装置40は、搬送効率を向上させるために、個体差のある振動特性(固有振動数を含む)に対応した電力供給(周波数、印加電圧)を予め設定される。例えば、バルクフィーダ30は、実行予定の供給動作(本実施形態において、複数の部品92を複数のキャビティ51に収容するための搬送動作)に用いられる軌道部材34が取り付けられた状態、即ちブラケット33に対して軌道部材34がロックユニット35によりロックされた状態において、校正処理を実行される。 Therefore, in order to improve the transport efficiency, the vibrating device 40 is preset with power supply (frequency, applied voltage) corresponding to vibration characteristics (including natural frequency) that have individual differences. For example, the bulk feeder 30 is in a state in which a track member 34 used for a scheduled supply operation (in this embodiment, a transport operation for accommodating a plurality of parts 92 into a plurality of cavities 51) is attached, that is, a bracket 33 With the track member 34 locked by the lock unit 35, the calibration process is executed.
 2-7.フィーダ制御装置60
 バルクフィーダ30は、フィーダ制御装置60を備える。フィーダ制御装置60は、主として、CPUや各種メモリ、制御回路により構成される。フィーダ制御装置60は、バルクフィーダ30がスロット121にセットされた状態において、コネクタ311を介して給電され、また部品装着機10の制御装置16と通信可能な状態となる。
2-7. Feeder controller 60
Bulk feeder 30 includes a feeder controller 60 . The feeder control device 60 is mainly composed of a CPU, various memories, and a control circuit. With the bulk feeder 30 set in the slot 121 , the feeder control device 60 is supplied with power through the connector 311 and is ready to communicate with the control device 16 of the component mounting machine 10 .
 フィーダ制御装置60は、図5に示すように、記憶部61を有する。記憶部61は、フラッシュメモリなどにより構成される。記憶部61には、部品供給処理の制御に用いられるプログラムや搬送パラメータなどの各種データが記憶される。上記の「搬送パラメータ」は、部品供給処理において部品92を搬送する際に、軌道部材34に付与する振動が適正となるように加振装置40の動作を制御するためのパラメータであり、例えば部品92の種類ごとに関連付けて予め設定される。 The feeder control device 60 has a storage section 61 as shown in FIG. The storage unit 61 is configured by a flash memory or the like. The storage unit 61 stores various data such as programs used for controlling the component supply process and transfer parameters. The above-mentioned "conveyance parameter" is a parameter for controlling the operation of the vibrating device 40 so that the vibration applied to the track member 34 is appropriate when the component 92 is conveyed in the component supply process. It is set in advance in association with each of the 92 types.
 フィーダ制御装置60は、加振制御部62を有する。加振制御部62は、加振装置40の動作を制御して、部品92の搬送動作を実行する。詳細には、加振制御部62は、搬送動作を実行する場合に、加振装置40の給電装置44に対して指令を送出する。これにより、給電装置44が圧電素子42に所定の電力を供給することにより、ブラケット33を介して軌道部材34に振動が付与される。そして、搬送路R上の部品92が搬送方向に移動するように外力を受けて搬送される。 The feeder control device 60 has a vibration control section 62 . The vibration control section 62 controls the operation of the vibration excitation device 40 to carry out the operation of conveying the component 92 . Specifically, the vibration control unit 62 sends a command to the power supply device 44 of the vibration excitation device 40 when carrying out the transport operation. As a result, the power supply device 44 supplies predetermined power to the piezoelectric element 42 , thereby imparting vibration to the track member 34 via the bracket 33 . Then, the component 92 on the transport path R is transported by receiving an external force so as to move in the transport direction.
 上記のような構成からなるフィーダ制御装置60は、部品装着機10によるPPサイクルの実行中において、今回の採取動作の終了から次回の採取動作の開始までの期間に、部品92を供給するように指令を受けて、部品92の供給動作を実行する。部品92の供給動作は、複数のキャビティ51に部品92を収容させるように部品92を搬送する動作である。具体的には、搬送動作には、搬送路Rの前端部に位置する部品92が供給領域Asの前端まで前進する程度の送り動作、その後にその部品92が再び搬送路Rの前端部まで後退する程度の戻し動作が含まれる。 The feeder control device 60 configured as described above feeds the components 92 during the period from the end of the current picking operation to the start of the next picking operation while the component mounter 10 is executing the PP cycle. Upon receipt of the command, it executes the operation of supplying the component 92 . The operation of supplying the components 92 is an operation of conveying the components 92 so as to accommodate the components 92 in the plurality of cavities 51 . Specifically, the conveying operation includes a feeding operation such that the part 92 positioned at the front end of the conveying path R advances to the front end of the supply area As, and then the part 92 retreats to the front end of the conveying path R again. It includes some back movement.
 なお、次回の採取動作の開始までに十分な時間的余裕がある場合には、搬送動作において、複数の部品92を供給領域Asにて前後方向に複数回に亘り往復させるように、送り動作および戻し動作を繰り返し実行することがある。ここで、上記のように複数の部品92を供給領域Asにおいて前後方向に往復させるように搬送すると、幾つかの部品92がキャビティ51に収容された状態となる。しかしながら、例えばキャビティ51に収容されていない余剰部品を搬送路Rまで退避させるために戻し動作を継続すると、キャビティ51に収容されていた部品92が飛び出すことがある。 If there is sufficient time before the start of the next picking operation, the feeding operation and the The return action may be performed repeatedly. Here, when the plurality of components 92 are transported back and forth in the supply area As as described above, some of the components 92 are accommodated in the cavity 51 . However, if the return operation is continued in order to retract, for example, surplus components not stored in the cavity 51 to the transport path R, the component 92 stored in the cavity 51 may jump out.
 このような観点から搬送動作において軌道部材34に付与される振動の振幅および周波数が予め調整され、搬送パラメータとして記憶されるが、バルクフィーダには、部品92の供給状態をより良好にすることの要請がある。そこで、本実施形態のバルクフィーダ30は、キャビティ51に部品92を収容させるとともに、収容された部品92の飛び出しを抑制するように搬送動作を制御する構成を採用する。 From this point of view, the amplitude and frequency of the vibration applied to the track member 34 during the transport operation are adjusted in advance and stored as transport parameters. I have a request. Therefore, the bulk feeder 30 of the present embodiment employs a configuration in which the component 92 is accommodated in the cavity 51 and the conveying operation is controlled so as to prevent the accommodated component 92 from jumping out.
 具体的には、加振制御部62は、送り動作または戻し動作の実行期間Teにおいて、加振装置40により複数種類の振動が軌道部材34に付与されるように制御する。上記のような制御は、送り動作および戻し動作の少なくとも一方において実行され、一の動作内において複数種類の振動が用いられる。ここでは、説明を簡略にするために、図9に示すように、戻し動作の実行期間TeRにおいて、加振装置40により複数種類の振動が軌道部材34に付与されるように制御する態様を例示して説明する。 Specifically, the vibration control section 62 controls so that multiple types of vibrations are applied to the track member 34 by the vibration excitation device 40 during the execution period Te of the feed operation or the return operation. The control as described above is executed in at least one of the feed operation and the return operation, and multiple types of vibration are used in one operation. Here, in order to simplify the explanation, as shown in FIG. 9, in the execution period TeR of the return operation, a control mode is illustrated in which a plurality of types of vibrations are applied to the track member 34 by the vibrating device 40. and explain.
 また、「複数種類の振動」には、振幅のみが相違、周波数のみが相違、および振幅および周波数の両方が相違するものが含まれる。図9にて示す態様では、2種類の振動であって、基準となる第一振動と、第一振動よりも振幅が小さく且つ周波数が同一である第二振動が用いられる。加振制御部62は、戻し動作の実行期間TeRにおいて、加振装置40により第一振動が軌道部材34に付与された後に、第二振動が軌道部材34に付与されるように制御する。なお、実際には、第一振動から第二振動への移行時に振幅が除変することになるが、加振制御部62は、それぞれの振動が軌道部材34に付与される期間(TeR1,TeR2)を設定している。 In addition, "multiple types of vibrations" include those that differ only in amplitude, differ only in frequency, and differ in both amplitude and frequency. In the embodiment shown in FIG. 9, two types of vibration are used, namely, a first vibration that serves as a reference and a second vibration that has a smaller amplitude than the first vibration and has the same frequency. The vibration control unit 62 performs control so that the second vibration is applied to the track member 34 after the first vibration is applied to the track member 34 by the vibrating device 40 in the return operation execution period TeR. In practice, the amplitude gradually changes when the first vibration shifts to the second vibration. ) is set.
 ここで、第二振動の振幅は、第一振動の振幅の0.4から0.8倍に設定される。第二振動の周波数や部品92の質量等によって良好な振幅は変動し得る。本実施形態において、第二振動の振幅は、第一振動の振幅の0.6倍に設定される。また、第一振動の付与期間TeR1と第二振動の付与期間TeR2は、搬送動作に許容される実行時間によっても変動し得る。本実施形態において、加振制御部62は、加振装置40により複数種類の振動が軌道部材34に付与されるそれぞれの時間が等しくなるように制御する(TeR1=TeR2)。 Here, the amplitude of the second vibration is set to 0.4 to 0.8 times the amplitude of the first vibration. A favorable amplitude may vary depending on the frequency of the second vibration, the mass of the part 92, and the like. In this embodiment, the amplitude of the second vibration is set to 0.6 times the amplitude of the first vibration. Further, the period TeR1 for applying the first vibration and the period TeR2 for applying the second vibration may also vary depending on the execution time allowed for the transport operation. In the present embodiment, the vibration control unit 62 performs control such that the times during which multiple types of vibrations are applied to the track member 34 by the vibrator 40 are equal (TeR1=TeR2).
 これに対して、加振制御部62は、加振装置40により複数種類の振動が軌道部材34に付与されるそれぞれの時間、複数種類の振動の振幅または周波数を、部品92の質量、部品92に対するキャビティ51の上下方向の寸法差、および部品92に対するキャビティ51の水平方向の寸法差の少なくとも一つに応じて切り換えてもよい。ここで、部品92の質量やキャビティ51との寸法関係によって、キャビティ51への収容されやすさや、収容された部品92の飛び出しやすさが変動し得る。 On the other hand, the vibration control unit 62 controls the amplitudes or frequencies of the plurality of types of vibrations at each time during which the plurality of types of vibrations are applied to the track member 34 by the vibrating device 40 , the mass of the part 92 , the part 92 , and the horizontal dimensional difference of the cavity 51 with respect to the component 92 . Here, the ease with which the component 92 is accommodated in the cavity 51 and the ease with which the accommodated component 92 pops out may vary depending on the mass of the component 92 and the dimensional relationship with the cavity 51 .
 そこで、加振制御部62は、さらに搬送動作に許容される実行時間を加味して、採用する搬送パラメータを切り換えるようにしてもよい。これにより、振幅や周波数の異なる振動が軌道部材34に付与され、部品92に軌道部材34から加えられる外力の大きさや方向を変化させることができる。結果として、部品92の搬送動作を各構成に適した状態にすることができる。 Therefore, the vibration control unit 62 may further consider the execution time allowed for the transport operation and switch the transport parameters to be adopted. As a result, vibrations with different amplitudes and frequencies are applied to the track member 34, and the magnitude and direction of the external force applied from the track member 34 to the part 92 can be changed. As a result, the transport operation of the component 92 can be made suitable for each configuration.
 3.部品供給制御システム80の構成
 部品供給制御システム80は、上記のバルクフィーダ30を用いた部品供給を制御する。本実施形態において、部品供給制御システム80は、図5に示すように、制御装置16に組み込まれ、スロット121に装備されたバルクフィーダ30と通信可能に構成される。部品供給制御システム80は、バルクフィーダ30における良好な部品92の供給状態の維持を図るべく、部品供給を制御する。
3. Configuration of Component Supply Control System 80 The component supply control system 80 controls component supply using the bulk feeder 30 described above. In this embodiment, the component supply control system 80 is incorporated in the control device 16 and is configured to communicate with the bulk feeder 30 installed in the slot 121, as shown in FIG. The parts supply control system 80 controls parts supply so as to maintain a good supply state of the parts 92 in the bulk feeder 30 .
 3-1.状態認識部81
 部品供給制御システム80は、図5に示すように、状態認識部81を備える。状態認識部81は、上記のように、基板カメラ15の撮像により取得した画像データD1(図6を参照)に基づいて、バルクフィーダ30の供給領域Asにおける複数の部品92の供給状態を認識する。より詳細には、状態認識部81は、先ず、バルクフィーダ30が複数の部品92を振動により供給領域Asまで搬送した状態において供給領域Asを撮像して取得された画像データD1に基づいて、供給状態の認識処理を行う。
3-1. State recognition unit 81
The component supply control system 80 includes a state recognition section 81 as shown in FIG. As described above, the state recognition unit 81 recognizes the supply state of the plurality of components 92 in the supply area As of the bulk feeder 30 based on the image data D1 (see FIG. 6) acquired by the board camera 15. . More specifically, the state recognition unit 81 first detects the supply area As based on the image data D1 obtained by imaging the supply area As in a state where the bulk feeder 30 conveys the plurality of parts 92 to the supply area As by vibration. Perform state recognition processing.
 図6は、画像データD1の一例である。このように、供給領域Asには、バルク状態の部品92が多数存在し、例えばキャビティ51に正常な姿勢で収容されるもの、キャビティ51の外部にあるもの、互いに接触したり堆積したりするもの、横立ち姿勢であるものなどが存在し得る。本実施形態において、状態認識部81は、まず複数のキャビティ51ごとに状態を割り出す。 FIG. 6 is an example of the image data D1. In this way, there are a large number of bulk parts 92 in the supply area As. , a side-standing posture, and the like can exist. In this embodiment, the state recognition unit 81 first determines the state of each of the plurality of cavities 51 .
 これにより、複数のキャビティ51は、部品92を採取可能に収容する収容キャビティ(図7の「OK」)、周囲に部品92が存在するものの採取不可であるNGキャビティ(図7の「NG」)、周囲に部品92が存在しない空キャビティ(図7の「EMP」)に分類される。図7は、収容キャビティに斜線を付して示し、NGキャビティに対角線を結ぶXマークを付して示し、空キャビティを破線の外形のみで示す。状態認識部81は、図7に示すように、複数のキャビティ51の状態(OK、NG、EMP)の数(V1、V2、V3)を算出する。 As a result, the plurality of cavities 51 are divided into accommodation cavities ("OK" in FIG. 7) that accommodate the parts 92 so that they can be picked up, and NG cavities ("NG" in FIG. 7) that cannot be picked although the parts 92 are present around them. , empty cavities (“EMP” in FIG. 7) with no parts 92 around them. FIG. 7 shows accommodation cavities hatched, NG cavities with Xs connecting diagonal lines, and empty cavities only with dashed outlines. The state recognition unit 81 calculates the number (V1, V2, V3) of states (OK, NG, EMP) of the plurality of cavities 51, as shown in FIG.
 そして、状態認識部81は、上記の数(V1,V2,V3)に基づいて、現在の供給状態を認識する。この供給状態には、収容キャビティの数V1が第一閾値H1以上である状態(V1≧H1)、収容キャビティの数V1が第一閾値H1未満であり且つ複数のキャビティ51のうち部品92が存在しない空キャビティの数V3が第二閾値H2以上である状態(V1<H1、V3≧H2)、収容キャビティの数V1が第一閾値H1未満であり且つ空キャビティの数V3が第二閾値H2未満である状態(V1<H1、V3<H2)が含まれる。また、状態認識部81は、上記の数(V1,V2,V3)の割合や最大値に基づいて、供給状態を割り出してもよい。 Then, the state recognition unit 81 recognizes the current supply state based on the above numbers (V1, V2, V3). This supply state includes a state in which the number V1 of accommodation cavities is equal to or greater than the first threshold value H1 (V1≧H1), a state in which the number V1 of accommodation cavities is less than the first threshold value H1, and a component 92 exists among the plurality of cavities 51. The number V3 of empty cavities that do not exist is greater than or equal to the second threshold H2 (V1<H1, V3≧H2), the number V1 of accommodating cavities is less than the first threshold H1 and the number V3 of empty cavities is less than the second threshold H2 (V1<H1, V3<H2). Also, the state recognition unit 81 may determine the supply state based on the ratio or maximum value of the above numbers (V1, V2, V3).
 ここで、供給領域Asには、例えばキャビティ51の数に対して過剰に部品92が搬送されることなどに起因して、図6に示すように、複数の部品92が密集した部品群Uが形成されることがある。本実施形態において、状態認識部81は、画像データD1に基づいて、部品群Uの位置および大きさを部品群状態としてさらに割り出す。具体的には、状態認識部81は、部品92の接触、堆積の状態を認識して、部品群状態を割り出してもよい。 Here, as shown in FIG. 6, a parts group U in which a plurality of parts 92 are densely packed is generated in the supply area As, for example, due to the excessive number of parts 92 being conveyed with respect to the number of cavities 51. may be formed. In this embodiment, the state recognition unit 81 further determines the position and size of the parts group U as the parts group state based on the image data D1. Specifically, the state recognition unit 81 may recognize the state of contact and stacking of the parts 92 to determine the state of the parts group.
 また、状態認識部81は、供給状態「NG」が規定数以上に亘り連続する場合に、その複数のキャビティ51を包含する領域が部品群Uに相当するとして、部品群状態を割り出してもよい。このように、状態認識部81は、図7の一点鎖線で示すように、部品群状態として、部品群Uの位置Cuおよび大きさを割り出す。 In addition, when the supply state “NG” continues for a specified number or more, the state recognition unit 81 may determine the parts group state by assuming that the region including the plurality of cavities 51 corresponds to the parts group U. . In this manner, the state recognition unit 81 determines the position Cu and size of the parts group U as the parts group state, as indicated by the dashed line in FIG.
 3-2.搬送制御部85
 部品供給制御システム80は、図5に示すように、搬送制御部85を備える。搬送制御部85は、状態認識部81により割り出された供給状態に基づいて、バルクフィーダ30における部品92の搬送動作を制御する。ここで、バルクフィーダ30における部品92の搬送動作には、送り動作および戻し動作が含まれる。上記の「送り動作」は、軌道部材34の後側から前側に部品92を搬送する動作であって、供給領域Asに連通する搬送路Rから複数の部品92を供給領域Asの側に前進させる動作である。また、「戻し動作」は、軌道部材34の前側から後側に部品92を搬送する動作であって、供給領域Asから複数の部品92を搬送路Rの側に後退させる動作である。
3-2. Conveyance control unit 85
The component supply control system 80 includes a transport control section 85, as shown in FIG. The transport control unit 85 controls the transport operation of the parts 92 in the bulk feeder 30 based on the supply state determined by the state recognition unit 81 . Here, the conveying operation of the parts 92 in the bulk feeder 30 includes a feeding operation and a returning operation. The above-mentioned "feeding operation" is an operation for conveying the parts 92 from the rear side to the front side of the track member 34, and advances the plurality of parts 92 toward the supply area As from the conveyance path R communicating with the supply area As. It is action. The "returning operation" is an operation of conveying the parts 92 from the front side to the rear side of the track member 34, and is an operation of retreating the plurality of parts 92 from the supply area As to the conveying path R side.
 搬送制御部85は、供給領域Asにおける部品92の供給状態に基づいて、上記の送り動作および戻し動作の実行回数、実行時間などを制御する。本実施形態において、搬送制御部85は、供給状態に基づいて、搬送動作の制御において複数の搬送パターンを切り換える。上記の搬送パターンの切り換えについては、種々の態様を採用し得る。例えば、搬送制御部85は、単に最大数であるキャビティ51の状態に応じた搬送パターンを採用してもよい。 The transport control unit 85 controls the number of executions of the above-described feeding operation and returning operation, the execution time, etc., based on the supply state of the parts 92 in the supply area As. In this embodiment, the transport control unit 85 switches between a plurality of transport patterns in controlling the transport operation based on the supply state. Various modes can be adopted for the above-described switching of the transport pattern. For example, the transport control unit 85 may simply adopt a transport pattern according to the state of the maximum number of cavities 51 .
 ここで、上記の複数の搬送パターンには、通常搬送と、補給搬送と、除去搬送とが含まれる。上記の「通常搬送」とは、送り動作または戻し動作の実行期間において、予め設定された複数種類の振動が軌道部材34に付与される搬送パターンである。通常搬送の一例として、図9に示すように、第一振動および第二振動が振幅の大きい方から順に等しい期間だけ軌道部材34に付与される。これにより、先の送り動作によって供給領域Asまで前進していた部品92は、第一振動の付与期間TeR1において後退しながらキャビティ51に順次収容され、第二振動の付与期間TeR2においてキャビティ51に収容された部品92の飛び出しが抑制されつつ余剰部品の除去がなされる。 Here, the plurality of transport patterns include normal transport, replenishment transport, and removal transport. The above-mentioned "normal transport" is a transport pattern in which a plurality of types of preset vibrations are applied to the track member 34 during the execution period of the feed operation or the return operation. As an example of normal transportation, as shown in FIG. 9, the first vibration and the second vibration are applied to the track member 34 for equal periods in descending order of amplitude. As a result, the parts 92 advanced to the supply area As by the previous feeding operation are sequentially accommodated in the cavity 51 while retreating during the period TeR1 of applying the first vibration, and are accommodated in the cavity 51 during the period TeR2 of applying the second vibration. Surplus parts are removed while suppressing protrusion of the parts 92 that have been removed.
 上記の「補給搬送」とは、通常搬送より供給領域Asに残留する部品92の数量が多くなるように調整された複数種類の振動が軌道部材34に付与される搬送パターンである。補給搬送の一例として、図10に示すように、送り動作の実行期間TeFが戻し動作の実行期間TeRよりも長くなるように設定され(TeF>TeR)、且つ第一振動の付与期間TeR1よりも第二振動の付与期間TeR2が長く設定される(TeR1<TeR2)。これにより、先の送り動作によって供給領域Asまで比較的多くの部品92が搬送され、さらにその後の戻し動作において供給領域Asに部品92が残留しやすくなり、空キャビティに部品92が収容されやすい状態にできる。 The above-mentioned "replenishment transport" is a transport pattern in which multiple types of vibrations are applied to the track member 34, adjusted so that the number of parts 92 remaining in the supply area As is greater than in normal transport. As an example of replenishment transportation, as shown in FIG. 10, the execution period TeF of the feed operation is set to be longer than the execution period TeR of the return operation (TeF>TeR), and is longer than the first vibration application period TeR1. The application period TeR2 of the second vibration is set long (TeR1<TeR2). As a result, a relatively large number of components 92 are conveyed to the supply area As by the previous feeding operation, and the components 92 tend to remain in the supply area As in the subsequent return operation, so that the components 92 are easily accommodated in the empty cavity. can be done.
 また、上記の「除去搬送」とは、通常搬送より供給領域Asから除去される部品92の数量が多くなるように調整された複数種類の振動が軌道部材34に付与される搬送パターンである。除去搬送の一例として、図11に示すように、送り動作の実行期間TeFよりも戻し動作の実行期間TeRが長くなるように設定され(TeF<TeR)、且つ第一振動の付与期間TeR1よりも第二振動の付与期間TeR2が短くなるように設定される(TeR1>TeR2)。これにより、先の送り動作によって供給領域Asまで搬送される部品92の量が抑制され、さらにその後の戻し動作において供給領域Asから部品92が除去されやすくなり、接触や堆積していた部品92が搬送路Rの側に退避されやすい状態にできる。 Also, the above-mentioned "removal transport" is a transport pattern in which multiple types of vibrations are applied to the track member 34, adjusted so that the number of parts 92 removed from the supply area As is greater than in normal transport. As an example of the removal conveyance, as shown in FIG. 11, the execution period TeR of the return operation is set to be longer than the execution period TeF of the feed operation (TeF<TeR), and the period TeR1 of the first vibration is set to be longer. The period TeR2 of applying the second vibration is set to be short (TeR1>TeR2). As a result, the amount of the parts 92 conveyed to the supply area As by the previous feeding operation is suppressed, and the parts 92 are easily removed from the supply area As in the subsequent return operation, and the parts 92 that have been in contact or accumulated are removed. A state in which it is easy to retreat to the side of the transport path R can be achieved.
 一例として、搬送制御部85は、状態認識の結果において収容キャビティの数V1が多い供給状態の場合には、搬送動作が良好であるとして、搬送パターンに「通常搬送」を設定する。また、搬送制御部85は、状態認識の結果においてNGキャビティの数V2が多い供給状態の場合には、供給領域Asに部品92が過剰に存在するとして、搬送パターンに「除去搬送」を設定する。さらに、搬送制御部85は、状態認識の結果において、空キャビティの数V3が多い供給状態の場合には、供給領域Asにおける部品92が不足しているとして、搬送パターンに「補給搬送」を設定する。 As an example, the transport control unit 85 determines that the transport operation is good and sets "normal transport" to the transport pattern when the state recognition result shows that the number of storage cavities V1 is large in the supply state. In addition, in the case of a supply state in which the number V2 of NG cavities is large as a result of the state recognition, the transport control unit 85 determines that there are excessive parts 92 in the supply area As, and sets "removal transport" as the transport pattern. . Further, when the state recognition result shows that the number of empty cavities V3 is large in the supply state, the transport control unit 85 determines that there is a shortage of parts 92 in the supply area As, and sets "replenishment transport" to the transport pattern. do.
 ここで、搬送制御部85は、供給領域Asにおける供給状態に加えて、部品群Uの位置および大きさを示す部品群状態に基づいて、搬送動作を制御してもよい。上記の「部品群状態」には、部品群Uの有無および数が含まれる。搬送制御部85は、状態認識部81による認識処理の結果から部品群状態を取得する。そして、搬送制御部85は、図6に示すように、例えば部品群Uが供給領域Asのうち軌道部材34の先端部342側に位置する場合に、部品群Uが供給領域Asより後側に移動するように戻し動作を実行させる。 Here, the transport control unit 85 may control the transport operation based on the parts group state indicating the position and size of the parts group U, in addition to the supply state in the supply area As. The above-mentioned "parts group state" includes the presence or absence of the parts group U and the number thereof. The transport control unit 85 acquires the component group state from the result of recognition processing by the state recognition unit 81 . Then, as shown in FIG. 6, when the parts group U is positioned on the tip portion 342 side of the track member 34 in the supply area As, for example, the transport control unit 85 causes the parts group U to move to the rear side of the supply area As. Execute the return motion to move.
 また、搬送制御部85は、部品群Uが存在し、且つ空キャビティの数V3が所定数以上である場合に、供給領域Asにおいて部品群Uを前後方向に往復移動させるように送り動作と戻し動作を繰り返し実行させる。これにより、空キャビティへの部品92の収容を試行することができる。そして、搬送制御部85は、上記のような部品群状態に基づいて制御する搬送動作において、送り動作または戻し動作の実行期間Teに部品群状態に応じて調整された複数種類の振動を軌道部材34に付与する。このような供給動作によって、供給領域Asにおいて採取可能な部品92を増加させることができる。 Further, when the parts group U exists and the number V3 of empty cavities is equal to or greater than a predetermined number, the transport control unit 85 performs a feeding operation and a return operation so as to reciprocate the parts group U in the front-rear direction in the supply area As. Repeat the action. This allows an attempt to accommodate the component 92 in the empty cavity. In the transport operation controlled based on the component group state as described above, the transport control unit 85 applies a plurality of types of vibrations adjusted according to the component group state to the track member during the execution period Te of the feed operation or the return operation. 34. With such a supply operation, it is possible to increase the number of parts 92 that can be picked up in the supply area As.
 4.部品供給制御システム80によるフィーダ制御
 部品供給制御システム80は、部品装着機10による装着処理の実行中に、バルクフィーダ30による供給状態に応じたフィーダ制御を行う。上記のフィーダ制御には、搬送動作の制御、およびシャッタ37の開閉動作の制御が含まれる。ここで、部品装着機10の制御装置16は、バルクフィーダ30がスロット121にセットされた後に、キャリブレーション処理を実行し、機内における供給領域Asの位置を認識する。
4. Feeder Control by Component Supply Control System 80 The component supply control system 80 performs feeder control according to the supply state of the bulk feeder 30 while the component mounting machine 10 is performing the mounting process. The feeder control described above includes control of the conveying operation and control of the opening/closing operation of the shutter 37 . Here, after the bulk feeder 30 is set in the slot 121, the controller 16 of the component mounting machine 10 executes calibration processing and recognizes the position of the supply area As inside the machine.
 詳細には、制御装置16は、先ずフィーダ制御装置60に対してシャッタ37を閉状態とするように指令する。これにより、複数の基準マーク344が上方から撮像可能な状態となる。制御装置16は、基板カメラ15をバルクフィーダ30の複数の基準マーク344の上方に移動させて、基板カメラ15の撮像により画像データを取得する。そして、制御装置16は、画像処理により画像データに含まれる複数の基準マーク344の位置、および撮像した際の基板カメラ15の位置に基づいて、機内におけるバルクフィーダ30の位置、即ち供給領域Asの位置を認識する。 Specifically, the control device 16 first instructs the feeder control device 60 to close the shutter 37 . As a result, a plurality of reference marks 344 can be imaged from above. The control device 16 moves the substrate camera 15 above the plurality of reference marks 344 of the bulk feeder 30 and acquires image data by imaging with the substrate camera 15 . Then, the controller 16 determines the position of the bulk feeder 30 in the machine, that is, the supply area As, based on the positions of the plurality of reference marks 344 included in the image data and the position of the board camera 15 when the image was taken by image processing. Recognize your location.
 続いて、搬送制御部85は、装着処理においてバルクフィーダ30から部品92を採取する前に、バルクフィーダ30に部品92の搬送を指令する。これにより、バルクフィーダ30は、必要に応じて部品ケース70から部品92を排出させるとともに軌道部材34まで部品92を流通させる。その後に、バルクフィーダ30は、シャッタ37を中間状態に維持し、部品92の搬送動作を行う。これにより、複数のキャビティ51に部品92が収容され、余分な部品92が供給領域Asから搬送路R側へと退避される。 Subsequently, the transport control unit 85 instructs the bulk feeder 30 to transport the component 92 before picking up the component 92 from the bulk feeder 30 in the mounting process. Thereby, the bulk feeder 30 discharges the parts 92 from the parts case 70 and circulates the parts 92 to the track member 34 as necessary. After that, the bulk feeder 30 maintains the shutter 37 in the intermediate state and performs the operation of conveying the parts 92 . Thereby, the components 92 are accommodated in the plurality of cavities 51, and the excess components 92 are retracted from the supply area As to the transport path R side.
 上記のような部品供給制御処理の詳細について、図8および図9を参照して説明する。状態認識部81は、供給状態の認識処理に際して、バルクフィーダ30にシャッタ37を開状態にするように指令する。状態認識部81は、基板カメラ15を供給領域Asの上方に移動させて、基板カメラ15の撮像により画像データを取得する。そして、状態認識部81は、図8に示すように、画像データD1を対象とした画像処理により、供給領域Asの供給状態を割り出す(S11)。 Details of the component supply control process as described above will be described with reference to FIGS. 8 and 9. FIG. The state recognizing section 81 instructs the bulk feeder 30 to open the shutter 37 in the process of recognizing the supply state. The state recognition unit 81 moves the board camera 15 above the supply area As and obtains image data by imaging the board camera 15 . Then, as shown in FIG. 8, the state recognition unit 81 determines the supply state of the supply area As by performing image processing on the image data D1 (S11).
 状態認識部81は、1回のPPサイクルにおける一連の採取動作により供給領域Asから採取する部品92の必要数(Vn)と、供給領域Asの供給状態に基づいて算出される採取可能数(V1)との差分(V1-Vn)が基準値(Vs)未満であるか否かを判定する(S12)。上記の基準値(Vs)は、0以上の数に設定される。必要数より採取可能数が多く、上記の差分が基準値以上である場合に(S12:No、V1-Vn≧Vs)、状態認識部81は、PPサイクルにおける採取動作の実行を許容する(S13)。制御装置16は、PPサイクルにおける採取動作を実行し、その後に装着動作を実行する。 The state recognition unit 81 calculates the required number (Vn) of the parts 92 to be collected from the supply area As by a series of collection operations in one PP cycle, and the number of possible collections (V1 ) is less than the reference value (Vs) (S12). The above reference value (Vs) is set to a number of 0 or more. If the number of samples that can be collected is greater than the required number and the difference is equal to or greater than the reference value (S12: No, V1-Vn≧Vs), the state recognition unit 81 permits the execution of the collection operation in the PP cycle (S13 ). The controller 16 executes the picking operation in the PP cycle, followed by the loading operation.
 また、状態認識部81は、S11にて認識された供給状態の更新処理を実行する(S13)。供給状態の更新処理では、採取動作によって採取された部品92に対応するキャビティ51を空キャビティとする。また、供給状態の更新処理では、採取可能数(V1)から採取数(上記の必要数Vn)を減算し、現在の採取可能数とする(V1’=V1-Vn)。さらに、供給状態の更新処理では、空のキャビティ51の数(V3)に採取数(上記の必要数Vn)を加算し、現在の空キャビティの数とする(V3’=V3+Vn)。 Also, the state recognition unit 81 executes update processing of the supply state recognized in S11 (S13). In the supply state update process, the cavity 51 corresponding to the part 92 picked up by the picking operation is set as an empty cavity. In addition, in the supply state updating process, the number of samples (the required number Vn described above) is subtracted from the number of samples that can be sampled (V1) to obtain the current number of samples that can be sampled (V1'=V1-Vn). Further, in the supply state updating process, the number of empty cavities 51 (V3) is added to the number of samples (the required number Vn described above) to obtain the current number of empty cavities (V3'=V3+Vn).
 状態認識部81は、供給状態の更新処理(S13)の実行後に、次回のPPサイクルの採取動作で採取する予定の部品92の数(次回の必要数)と、供給領域Asにおいて採取可能な残りの部品92の数(現在の採取可能数)との差分が基準値(Vs)以上であるか否かを判定すべく、S12の判定処理を再度実行する。状態認識部81は、S12において、採取可能数が不足しており、上記の差分(V1-Vn)が基準値(Vs)未満であり(S12:Yes、V1-Vn<Vs)、実行予定のPPサイクルが残存している場合に(S14:Yes)、PPサイクルにおける採取動作の実行を許容せず、採取動作の実行前にバルクフィーダ30による搬送動作を実行させる。 After executing the supply state update process (S13), the state recognition unit 81 determines the number of parts 92 scheduled to be collected in the collection operation of the next PP cycle (next necessary number) and the remaining number of parts 92 that can be collected in the supply area As. The determination process of S12 is executed again to determine whether or not the difference from the number of parts 92 (current number that can be collected) is equal to or greater than the reference value (Vs). In S12, the state recognition unit 81 determines that the number of possible samples is insufficient, the difference (V1-Vn) is less than the reference value (Vs) (S12: Yes, V1-Vn<Vs), If the PP cycle remains (S14: Yes), execution of the picking operation in the PP cycle is not permitted, and the transport operation by the bulk feeder 30 is executed before the picking operation.
 なお、S12の判定処理では、採取可能数と必要数の差分と基準値を比較したが、必要数に対する採取可能数の割合と基準値を比較してもよい。上記のように、供給状態の更新処理(S13)の実行後に、または採取可能数が不足している場合(S12:Yes)に、搬送制御部85は、現在の供給状態に基づいて、搬送パターンの設定を行う(S15)。なお、2回目のPPサイクルの採取動作で採取する予定の部品92の数(必要数)と、供給領域Asにおいて採取可能な残りの部品92の数(採取可能数)との差分が基準値(Vs)以上であれば、状態認識部81は、搬送パターンの設定(S15)などを省略し、採取動作の実行を許容する。 In addition, in the determination process of S12, the difference between the number of available samples and the number of required samples is compared with the reference value, but the ratio of the number of available samples to the required number may be compared with the standard value. As described above, after the supply state update process (S13) is executed, or when the number of possible samples is insufficient (S12: Yes), the transport control unit 85 updates the transport pattern based on the current supply state. is set (S15). Note that the difference between the number of parts 92 scheduled to be picked up in the second PP cycle picking operation (required number) and the number of remaining parts 92 pickable in the supply area As (collectable number) is the reference value ( Vs) or more, the state recognition unit 81 omits the setting of the transport pattern (S15) and the like, and permits the execution of the collection operation.
 搬送制御部85は、現在の供給状態に基づいて、搬送動作の制御において複数の搬送パターンを設定する(S15)。これにより、搬送パターン(例えば、通常搬送、補給搬送、除去搬送)が切り換えられる。そして、搬送制御部85は、バルクフィーダ30に対して、設定した搬送パターンにて部品92の搬送を指令する(S16)。バルクフィーダ30は、部品92の搬送を指令された場合には、設定された搬送パターンの搬送動作を行う。 The transport control unit 85 sets a plurality of transport patterns in controlling the transport operation based on the current supply state (S15). Thereby, the transport pattern (for example, normal transport, replenishment transport, removal transport) is switched. Then, the transport control unit 85 instructs the bulk feeder 30 to transport the component 92 according to the set transport pattern (S16). When the bulk feeder 30 is instructed to convey the parts 92, the bulk feeder 30 performs a conveying operation according to the set conveying pattern.
 この搬送動作は、図9に示すように、装着ヘッド133による今回の採取動作が終了し(ON→OFF)、次回の採取動作が開始する(OFF→ON)までの期間に実行される。具体的には、先ずシャッタ37が開状態から中間状態にされるとともに、送り動作が実行される。これにより、複数の部品92が供給領域Asの前端側に向かって搬送される。送り動作が実行期間TeFだけ実行されると、戻し動作が実行される。 As shown in FIG. 9, this transport operation is executed during the period from the end of the current collection operation by the mounting head 133 (ON→OFF) to the start of the next collection operation (OFF→ON). Specifically, first, the shutter 37 is changed from the open state to the intermediate state, and the feeding operation is performed. Thereby, the plurality of components 92 are conveyed toward the front end side of the supply area As. After the forward operation is performed for the execution period TeF, the return operation is performed.
 戻し動作の実行期間TeRにおいて、第一振動が付与期間TeR1だけ軌道部材34に付与される。これにより、供給領域Asの後端側に向かって搬送される部品92がキャビティ51に収容される。その後に第二振動が付与期間TeR2だけ軌道部材34に付与される。これにより、キャビティ51に収容されなかった余剰部品が搬送路Rの側に後退することによって供給領域Asから除去される。このとき、第二振動の振幅が第一振動の振幅より小さく設定され、これによりキャビティ51に収容された部品92の飛び出しが抑制される。 In the return operation execution period TeR, the first vibration is applied to the track member 34 for the application period TeR1. Thereby, the component 92 conveyed toward the rear end side of the supply area As is accommodated in the cavity 51 . After that, the second vibration is applied to the track member 34 for the application period TeR2. As a result, surplus parts that have not been accommodated in the cavity 51 are removed from the supply area As by retreating to the transport path R side. At this time, the amplitude of the second vibration is set smaller than the amplitude of the first vibration, thereby suppressing the part 92 housed in the cavity 51 from popping out.
 このように、バルクフィーダ30は、供給領域Asの供給状態に応じた搬送動作を行うことになる。これにより、初期設定により良好に部品92が供給された状態であれば通常搬送が実行され、また搬送動作の直後において採取可能な部品92が比較的少ない場合には補給搬送が実行される(図10を参照)。なお、この補給搬送では、併せて部品ケース70から部品92を排出し、搬送路Rまで複数の部品92を流通させる処理が搬送制御部85の指令に応じて実行されることがある。 In this way, the bulk feeder 30 performs a transport operation according to the supply state of the supply area As. As a result, if the components 92 are properly supplied according to the initial settings, normal transport is executed, and if the number of collectable components 92 is relatively small immediately after the transport operation, replenishment transport is executed (Fig. 10). In addition, in this replenishment transportation, a process of discharging the parts 92 from the parts case 70 and distributing the plurality of parts 92 to the transportation path R may be executed according to the instruction of the transportation control section 85 .
 さらに、現在の供給状態が部品92の過剰補給を示している場合、または部品群Uが存在している場合には、除去搬送が実行される(図11を参照)。これにより、供給領域Asにおける部品92の数量が適宜調整される。このような搬送動作は、部品92がキャビティ51に適正な姿勢で収容されることを促進し、供給領域Asにおいて採取可能な部品92を増加させることができる。このように、バルクフィーダ30における部品92の供給状態を良好にすることで、部品装着機10の生産性向上を図ることができる。 Furthermore, if the current supply state indicates an oversupply of parts 92, or if parts group U exists, removal transport is performed (see FIG. 11). As a result, the quantity of the parts 92 in the supply area As is appropriately adjusted. Such a transport operation promotes that the components 92 are accommodated in the cavities 51 in a proper posture, and can increase the number of components 92 that can be picked up in the supply area As. By improving the supply state of the components 92 in the bulk feeder 30 in this manner, the productivity of the component mounting machine 10 can be improved.
 状態認識部81は、バルクフィーダ30による部品92の搬送動作が終了した後に、供給状態を割り出す処理(S11)を再度実行する。これにより、搬送動作後における供給領域Asの現在の供給状態が認識される。部品供給制御システムは、実行予定のPPサイクルが全て終了して部品92の供給が不要となった場合に(S14:No)、上記の制御処理を終了する。 After the bulk feeder 30 finishes conveying the parts 92, the state recognition unit 81 again executes the processing (S11) for determining the supply state. As a result, the current supply state of the supply area As after the transport operation is recognized. The component supply control system terminates the above control process when all the PP cycles scheduled to be executed are finished and the supply of the component 92 becomes unnecessary (S14: No).
 5.実施形態の変形態様
 5-1.搬送動作について
 実施形態において、バルクフィーダ30は、戻し動作の実行期間TeRにおいて、2種類の振動をそれぞれ軌道部材34に付与する構成とした。これに対して、バルクフィーダ30は、3種類以上の振動を付与するようにしてもよい。また、上記のような段階的に複数種類の振動を付与する制御を、送り動作の実行期間TeFにおいて実行してもよい。
5. Modification of Embodiment 5-1. Conveying Operation In the embodiment, the bulk feeder 30 is configured to apply two types of vibrations to the track member 34 during the execution period TeR of the returning operation. On the other hand, the bulk feeder 30 may apply three or more types of vibrations. Further, the control of applying a plurality of types of vibrations step by step as described above may be executed during the execution period TeF of the feed operation.
 5-2.部品供給制御システム80について
 実施形態において、部品供給制御システム80の状態認識部81および搬送制御部85は、部品装着機10の制御装置16に組み込まれる構成を例示して説明した。これに対して、状態認識部81および搬送制御部85の一方または両方は、制御装置16の外部装置に組み込まれる構成としてもよい。例えば、状態認識部81は、移動台132に一体的に移動可能に設けられ、基板カメラ15の撮像動作を制御する撮像ユニットに組み込まれる構成としてもよい。
5-2. Concerning Component Supply Control System 80 In the embodiments, the state recognition unit 81 and the transport control unit 85 of the component supply control system 80 have been described by exemplifying the configuration incorporated in the control device 16 of the component mounting machine 10 . On the other hand, one or both of the state recognition section 81 and the transport control section 85 may be configured to be incorporated in an external device of the control device 16 . For example, the state recognition unit 81 may be provided movably integrally with the moving table 132 and incorporated in an imaging unit that controls the imaging operation of the board camera 15 .
 また、搬送制御部85は、複数のスロット121に装備されたフィーダ122と、制御装置16との通信を仲介する部品供給装置12に組み込まれてもよい。その他に、状態認識部81および搬送制御部85は、バルクフィーダ30の自己制御機能として、バルクフィーダ30のフィーダ制御装置60に組み込まれてもよい。さらに、状態認識部81および搬送制御部85は、部品装着機10と通信可能に接続されるホストコンピュータや専用機器などに組み込まれてもよい。何れの態様においても実施形態と同様の効果を奏する。 Further, the transport control unit 85 may be incorporated in the component supply device 12 that mediates communication between the feeders 122 installed in the plurality of slots 121 and the control device 16 . Alternatively, the state recognition unit 81 and the transport control unit 85 may be incorporated in the feeder control device 60 of the bulk feeder 30 as self-control functions of the bulk feeder 30 . Furthermore, the state recognition unit 81 and the transport control unit 85 may be incorporated in a host computer or dedicated equipment that is communicably connected to the component mounting machine 10 . In any aspect, the same effect as the embodiment can be obtained.
 5-3.その他
 実施形態において、バルクフィーダ30は、部品装着機10により基板91に装着される部品92を供給する。実施形態において、上記の部品92として、厚み方向から視たときに矩形をなすチップ部品を例示した。これに対して、部品92は、部品装着機10のように基板91に所定の作業を実行する対基板作業機において用いられるものであり、バルクフィーダ30においてキャビティ51に収容した状態で供給可能な物品であれば種々のものを適用できる。例えば、バルクフィーダ30は、球状に形成されたはんだボールを供給してもよい。
5-3. Others In the embodiment, the bulk feeder 30 supplies components 92 to be mounted on the board 91 by the component mounter 10 . In the embodiment, a chip component having a rectangular shape when viewed from the thickness direction is exemplified as the above component 92 . On the other hand, the component 92 is used in a board-to-board work machine that performs a predetermined work on the board 91, such as the component mounting machine 10, and can be supplied in the bulk feeder 30 while being accommodated in the cavity 51. Various things can be applied if it is an article. For example, the bulk feeder 30 may supply spherically shaped solder balls.
 10:部品装着機、 12:部品供給装置、 13:部品移載装置、 15:基板カメラ、 16:制御装置、 30:バルクフィーダ、 31:フィーダ本体、 34:軌道部材、 40:加振装置、 41:支持部材、 41A:前進用支持部材、 41B:後退用支持部材、 42:圧電素子、 43:振動センサ、 44:給電装置、 50:整列部材、 51:キャビティ、 60:フィーダ制御装置、 80:部品供給制御システム、 81:状態認識部、 85:搬送制御部、 91:基板、 92:部品、As:供給領域、 R:搬送路、 U:部品群、 D1:画像データ 10: component mounting machine, 12: component supply device, 13: component transfer device, 15: substrate camera, 16: control device, 30: bulk feeder, 31: feeder main body, 34: track member, 40: vibrating device, 41: Support member 41A: Advance support member 41B: Retreat support member 42: Piezoelectric element 43: Vibration sensor 44: Power supply device 50: Alignment member 51: Cavity 60: Feeder control device 80 : Parts supply control system, 81: State recognition unit, 85: Transfer control unit, 91: Board, 92: Parts, As: Supply area, R: Transfer path, U: Parts group, D1: Image data

Claims (11)

  1.  フィーダ本体と、
     前記フィーダ本体に対して振動可能に設けられ、複数の部品が搬送される搬送路および前記部品を採取可能に供給する供給領域を形成された軌道部材と、
     前記供給領域において前記部品を収容する複数のキャビティと、
     複数の前記部品が前記搬送路と前記供給領域との間で搬送されるように前記軌道部材に振動を付与する加振装置と、
     前記加振装置の動作を制御して複数の前記部品を複数の前記キャビティに収容させる搬送動作を実行し、前記搬送動作のうち前記搬送路から複数の前記部品を前記供給領域の側に前進させる送り動作、または前記供給領域から複数の前記部品を前記搬送路の側に後退させる戻し動作の実行期間において、前記加振装置により複数種類の振動が前記軌道部材に付与されるように制御する加振制御部と、
     を備えるバルクフィーダ。
    a feeder body;
    a track member which is vibrated with respect to the feeder body and which is formed with a transport path for transporting a plurality of parts and a supply area for supplying the parts in a pickable manner;
    a plurality of cavities containing the components in the feed area;
    a vibrating device that applies vibration to the track member so that the plurality of components are transported between the transport path and the supply area;
    A conveying operation is performed to accommodate the plurality of components in the plurality of cavities by controlling the operation of the vibration excitation device, and the plurality of components are advanced from the conveying path toward the supply area in the conveying operation. During execution of a feeding operation or a return operation for retracting the plurality of parts from the supply area to the conveying path side, the vibration excitation device is controlled to apply a plurality of types of vibrations to the track member. a vibration control unit;
    Bulk feeder with
  2.  前記加振制御部は、前記送り動作または前記戻し動作の前記実行期間において、前記加振装置により第一振動が前記軌道部材に付与された後に、前記第一振動よりも振幅が小さい第二振動が前記軌道部材に付与されるように制御する、請求項1に記載のバルクフィーダ。 The vibration excitation control section controls, in the execution period of the feed operation or the return operation, a second vibration having a smaller amplitude than the first vibration after the first vibration is applied to the track member by the vibrating device. 2. The bulk feeder according to claim 1, wherein is controlled to be applied to said track member.
  3.  前記第二振動の振幅は、前記第一振動の振幅の0.4から0.8倍に設定される、請求項2に記載のバルクフィーダ。 The bulk feeder according to claim 2, wherein the amplitude of said second vibration is set to 0.4 to 0.8 times the amplitude of said first vibration.
  4.  前記加振制御部は、前記送り動作または前記戻し動作の前記実行期間において、前記加振装置により複数種類の前記振動が前記軌道部材に付与されるそれぞれの時間が等しくなるように制御する、請求項1-3の何れか一項に記載のバルクフィーダ。 wherein the vibration control unit performs control such that the times during which the plurality of types of vibrations are imparted to the track member by the vibration excitation device are equal during the execution period of the feed operation or the return operation. Bulk feeder according to any one of items 1-3.
  5.  前記加振制御部は、前記送り動作または前記戻し動作の前記実行期間において、前記加振装置により複数種類の前記振動が前記軌道部材に付与されるそれぞれの時間、複数種類の前記振動の振幅または周波数を、前記部品の質量、前記部品に対する前記キャビティの上下方向の寸法差、および前記部品に対する前記キャビティの水平方向の寸法差の少なくとも一つに応じて切り換える、請求項1-3の何れか一項に記載のバルクフィーダ。 The vibration control unit controls, in the execution period of the feed operation or the return operation, each time during which the plurality of types of vibrations are applied to the track member by the vibration excitation device, the amplitudes of the plurality of types of vibrations, or 4. The frequency is switched according to at least one of the mass of the part, the vertical dimension difference of the cavity with respect to the part, and the horizontal dimension difference of the cavity with respect to the part. Bulk feeder as described above.
  6.  前記加振制御部は、前記搬送動作のうち少なくとも前記戻し動作の前記実行期間において、前記加振装置により複数種類の前記振動が前記軌道部材に付与されるように制御する、請求項1-5の何れか一項に記載のバルクフィーダ。 1-5, wherein the vibration control unit performs control such that the plurality of types of vibrations are applied to the track member by the vibration excitation device during the execution period of at least the return operation of the transport operation. Bulk feeder according to any one of .
  7.  請求項1-6の何れか一項に記載の前記バルクフィーダの前記供給領域を撮像して取得された画像データに基づいて、前記供給領域における前記部品の供給状態を割り出す状態認識部と、
     前記供給状態に基づいて、前記バルクフィーダにおける前記搬送動作を制御する搬送制御部と、
     を備える部品供給制御システム。
    A state recognition unit that determines the supply state of the parts in the supply area based on image data acquired by imaging the supply area of the bulk feeder according to any one of claims 1 to 6;
    a transport control unit that controls the transport operation in the bulk feeder based on the supply state;
    parts supply control system.
  8.  前記供給状態には、複数の前記キャビティのうち前記部品を採取可能に収容する収容キャビティの数が第一閾値以上である状態、前記収容キャビティの数が前記第一閾値未満であり且つ複数の前記キャビティのうち前記部品が存在しない空キャビティの数が第二閾値以上である状態、前記収容キャビティの数が前記第一閾値未満であり且つ前記空キャビティの数が前記第二閾値未満である状態が含まれる、請求項7に記載の部品供給制御システム。 The supply state includes a state in which the number of storage cavities that accommodate the component so as to be able to be picked out of the plurality of cavities is equal to or greater than the first threshold value, and a state in which the number of the storage cavities is less than the first threshold value and a plurality of the storage cavities A state in which the number of empty cavities in which the component does not exist among the cavities is equal to or greater than the second threshold, and a state in which the number of the accommodating cavities is less than the first threshold and the number of the empty cavities is less than the second threshold. 8. The parts supply control system of claim 7, comprising:
  9.  前記搬送制御部は、前記状態認識部により割り出された前記供給状態に基づいて、前記搬送動作の制御において複数の搬送パターンを切り換える、請求項7または8に記載の部品供給制御システム。 9. The component supply control system according to claim 7, wherein the transport control unit switches between a plurality of transport patterns in controlling the transport operation based on the supply state determined by the state recognition unit.
  10.  複数の前記搬送パターンには、前記加振制御部による前記搬送動作の前記送り動作または前記戻し動作の前記実行期間において、予め設定された複数種類の前記振動が前記軌道部材に付与される通常搬送と、前記通常搬送より前記供給領域に残留する前記部品の数量が多くなるように調整された複数種類の前記振動が前記軌道部材に付与される補給搬送と、前記通常搬送より前記供給領域から除去される前記部品の数量が多くなるように調整された複数種類の前記振動が前記軌道部材に付与される除去搬送とが含まれる、請求項9に記載の部品供給制御システム。 In the plurality of transport patterns, a normal transport in which a plurality of types of preset vibrations are applied to the track member during the execution period of the feed operation or the return operation of the transport operation by the vibration excitation control unit. replenishment transport in which a plurality of types of vibrations adjusted to increase the number of parts remaining in the supply area than in the normal transport are imparted to the track member; and removal from the supply area in the normal transport. 10. The parts supply control system according to claim 9, further comprising a removal transport in which a plurality of types of said vibrations adjusted to increase the quantity of said parts to be conveyed are imparted to said track member.
  11.  前記状態認識部は、前記画像データに基づいて、前記供給領域において複数の前記部品が密集した部品群の位置および大きさを部品群状態としてさらに割り出し、
     前記搬送制御部は、前記供給状態および前記部品群状態に基づいて、前記バルクフィーダにおける前記搬送動作を制御する、請求項7-10の何れか一項に記載の部品供給制御システム。
    The state recognition unit further determines the position and size of the parts group in which the plurality of parts are densely packed in the supply area as a parts group state based on the image data,
    11. The component supply control system according to claim 7, wherein said transport control unit controls said transport operation in said bulk feeder based on said supply state and said component group state.
PCT/JP2021/017125 2021-04-29 2021-04-29 Bulk feeder and parts supply control system WO2022230157A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/017125 WO2022230157A1 (en) 2021-04-29 2021-04-29 Bulk feeder and parts supply control system
CN202180097329.2A CN117223406A (en) 2021-04-29 2021-04-29 Bulk feeder and component supply control system
JP2023516985A JPWO2022230157A1 (en) 2021-04-29 2021-04-29
TW111113668A TW202241785A (en) 2021-04-29 2022-04-11 Bulk feeder and parts supply control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/017125 WO2022230157A1 (en) 2021-04-29 2021-04-29 Bulk feeder and parts supply control system

Publications (1)

Publication Number Publication Date
WO2022230157A1 true WO2022230157A1 (en) 2022-11-03

Family

ID=83848140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017125 WO2022230157A1 (en) 2021-04-29 2021-04-29 Bulk feeder and parts supply control system

Country Status (4)

Country Link
JP (1) JPWO2022230157A1 (en)
CN (1) CN117223406A (en)
TW (1) TW202241785A (en)
WO (1) WO2022230157A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743488B2 (en) * 1978-01-06 1982-09-14
JPH1126988A (en) * 1997-07-01 1999-01-29 Alps Electric Co Ltd Chip component mounting equipment
JPH11171325A (en) * 1997-12-12 1999-06-29 Ikeda Jido Kiki Kk Elevating recovery pallet in part transfer machine
WO2018105591A1 (en) * 2016-12-07 2018-06-14 株式会社村田製作所 Vibratory feeding method and device for electronic components

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743488B2 (en) * 1978-01-06 1982-09-14
JPH1126988A (en) * 1997-07-01 1999-01-29 Alps Electric Co Ltd Chip component mounting equipment
JPH11171325A (en) * 1997-12-12 1999-06-29 Ikeda Jido Kiki Kk Elevating recovery pallet in part transfer machine
WO2018105591A1 (en) * 2016-12-07 2018-06-14 株式会社村田製作所 Vibratory feeding method and device for electronic components

Also Published As

Publication number Publication date
CN117223406A (en) 2023-12-12
TW202241785A (en) 2022-11-01
JPWO2022230157A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
WO2022249405A1 (en) Bulk feeder
JP7426400B2 (en) Bulk feeder and parts placement machine
CN109315086B (en) Component supply device
WO2017208323A1 (en) Component supply device
WO2022230157A1 (en) Bulk feeder and parts supply control system
CN108136595B (en) Component supply system and pick-up device for distributed components
WO2022162918A1 (en) Component supply control system
JP7303898B2 (en) bulk feeder
JP2017103342A (en) Bulk component supply apparatus and component mounting apparatus
JP7340032B2 (en) Parts mounting machine
WO2022162914A1 (en) Bulk feeder and parts supply control system
WO2022162915A1 (en) Bulk feeder and component mounting machine
WO2023181342A1 (en) Component mounting machine and component mounting method
WO2023238407A1 (en) Bulk feeder and bulk feeder alignment member
JP2019197929A (en) Component holding device, and suction nozzle determination method
WO2024121970A1 (en) Quality evaluation device and quality evaluation method
JP2018170513A (en) Bulk component supply device, component mounting device, and bulk component supply method
JP6854372B2 (en) Loose parts picking device, loose parts picking method
JP2018170512A (en) Bulk component supply device, component mounting device, and bulk component supply method
JP6866522B2 (en) Pitching device for loose parts, picking method for loose parts
JP7110318B2 (en) COMPONENT MOUNTING SYSTEM AND COMPONENT HOLDING METHOD
WO2022190201A1 (en) Maintenance device
WO2022201355A1 (en) Solder ball supply device and solder ball supply method
WO2022162919A1 (en) Feeder management system
JP2020080354A (en) Working machine and mounting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939316

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023516985

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180097329.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939316

Country of ref document: EP

Kind code of ref document: A1