WO2022230104A1 - Battery management device and battery management method - Google Patents

Battery management device and battery management method Download PDF

Info

Publication number
WO2022230104A1
WO2022230104A1 PCT/JP2021/016964 JP2021016964W WO2022230104A1 WO 2022230104 A1 WO2022230104 A1 WO 2022230104A1 JP 2021016964 W JP2021016964 W JP 2021016964W WO 2022230104 A1 WO2022230104 A1 WO 2022230104A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
difference
voltage
deterioration factor
management device
Prior art date
Application number
PCT/JP2021/016964
Other languages
French (fr)
Japanese (ja)
Inventor
エムハ バユ ミフタフラティフ
亨 河野
博也 藤本
穣 植田
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2021/016964 priority Critical patent/WO2022230104A1/en
Priority to JP2023516948A priority patent/JPWO2022230104A1/ja
Priority to TW111108945A priority patent/TWI802317B/en
Publication of WO2022230104A1 publication Critical patent/WO2022230104A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to technology for managing the state of batteries.
  • Impedance measurement is a common technique for measuring deterioration of storage batteries. By analyzing the frequency characteristics obtained by impedance measurement, the deterioration factor of the storage battery can be estimated. This is because the frequency characteristic fluctuates in response to deterioration factors.
  • the following non-patent document 1 describes a technique related to impedance measurement of a lithium ion battery.
  • Non-Patent Document 1 an equivalent circuit that models a storage battery is used. However, it is difficult to design an equivalent circuit that generally models various batteries because the characteristics of batteries vary depending on the model number of the battery, the characteristics of the electrodes, and the like.
  • the present invention has been made in view of the above-described problems, and can estimate deterioration factors associated with charging and discharging operations of a battery without using dedicated equipment for estimating battery deterioration factors.
  • the purpose is to provide technology.
  • the battery management device identifies an inflection point of voltage change on a logarithmic time axis in a rest period when the battery finishes charging or discharging, and uses the voltage difference in the section delimited by the inflection point. , to estimate deterioration factors of the battery.
  • the battery management device According to the battery management device according to the present invention, it is possible to estimate deterioration factors associated with battery charge/discharge operations without using dedicated equipment for estimating battery deterioration factors.
  • 4 is a graph illustrating temporal changes in output voltage before and after the storage battery completes discharging operation; It is a figure explaining the inflection point in the time-dependent change of the output voltage in a rest period. It is an example of relationship data describing the relationship between the output voltage slope on the logarithmic time axis and the degree of progress of deterioration factors. It is a figure which shows the modification of relational data. 4 is a flowchart for explaining a procedure for calculating the degree of progression of deterioration factors; FIG.
  • FIG. FIG. 11 is a schematic diagram illustrating an application of the battery management device according to Embodiment 3; FIG. 11 is a diagram showing a configuration example of a battery management device 100 according to Embodiment 3; 4 is a diagram showing another configuration example of the battery management device 100.
  • FIG. A configuration example in which the detection unit 130 is connected to the battery 200 is shown.
  • 4 is a flowchart for explaining a procedure for calculation of SOH by a calculation unit 120; 4 is a graph showing temporal changes in the current and voltage output by the battery 200 during a rest period after discharging. 4 is a graph showing temporal changes in current and voltage output by the battery 200 during a rest period after charging. 4 is a diagram showing the structure of a relationship table 141 and an example of data; FIG. It is an example of a user interface presented by the battery management device 100 .
  • FIG. 1 is a graph illustrating temporal changes in output voltage before and after a storage battery completes discharging operation.
  • the output voltage of the battery changes with time as shown in FIG.
  • the inventors have found that the output voltage changes with time during the pause period, and voltage changes corresponding to deterioration factors of the storage battery appear.
  • FIG. 2 is a diagram for explaining the inflection point in the change over time of the output voltage during the pause period.
  • the point of inflection here appears when the temporal change of the output voltage as shown in FIG. 1 is represented on the logarithmic time axis.
  • FIG. 2 there is a remarkable difference between the slope of the output voltage of a new battery and the slope of the output voltage of a degraded battery in the sections sandwiched by the inflection points on the logarithmic time axis.
  • the present inventor focused on the slope in each section and decided to estimate the deterioration factor of the battery.
  • Time on the logarithmic time axis can be divided into multiple sections by inflection points. These sections are considered to correspond to deterioration factors of the battery. For example, in the frequency characteristics of impedance measurement, values in specific frequency bands fluctuate in response to deterioration factors. In other words, it is considered that the variation in the impedance measurement result in a specific frequency band corresponds to the deterioration factor. On the other hand, it can be considered that what corresponds to the frequency component of the impedance measurement in FIG. 2 is the time range on the logarithmic time axis. For example, when the frequency component changes by one digit, the time on the logarithmic time axis changes by one scale. Therefore, in the present invention, the logarithmic time axis is divided into one or more sections, and it is assumed that the slope of each section correlates with the deterioration factor.
  • the section on the logarithmic time axis can be determined by performing impedance measurement in advance and identifying the section where the characteristics of the deterioration factors are well represented.
  • the characteristic of the deterioration factor is well expressed in the slope of the output voltage on the logarithmic time axis, in actual processing, for example, the point where the output voltage on the logarithmic time axis is differentiated three times and becomes 0 is the inflection point. , and it can be considered that the deterioration factor corresponds to each section divided by the inflection point. Therefore, in the following description, it is assumed that sections on the logarithmic time axis are divided by inflection points.
  • the degree of progression of the deterioration factor is estimated by obtaining this slope and referring to relational data described later using the slope.
  • the slope of section 1 is m_1
  • the slope of section 2 is m_2, and so on.
  • FIG. 3 is an example of relationship data describing the relationship between the output voltage slope on the logarithmic time axis and the degree of progression of deterioration factors. Relational data is defined for each section on the logarithmic time axis. For example, the data in the upper part of FIG. 3 describes the relationship between the slope m_1 of the output voltage in section 1 and the progress of deterioration factor 1 corresponding to section 1 . The data in the lower part of FIG. 3 describe the interval 2 and the deterioration factor 2 in the same way. Further, similar data may be prepared for each type of battery (for example, type distinguished by battery model number, electrode material, etc.), and relational data corresponding to the battery type may be used. Each deterioration factor is a factor that can be quantified, such as the degree of deterioration of the positive electrode material.
  • the slope m_1 can be calculated by the difference in output voltage between the start and end of interval 1.
  • a function representing the relationship between m_1 and the progress of deterioration factor 1 may be defined in advance on the relationship data. By applying m_1 to the function, the progress of deterioration factor 1 can be calculated.
  • the deterioration factor 2 can also be similarly calculated from the slope m_2.
  • a function representing the relationship between the slope and the deterioration factor can be defined for each combination of the deterioration factor and the section (that is, the functions do not have to be the same).
  • FIG. 4 is a diagram showing a modified example of relational data.
  • the function representing the relationship between the voltage slope and the deterioration factor may change depending on at least one of the battery temperature T, the battery discharge current I, and the battery discharge end voltage V.
  • function parameters are defined in advance for each value of T, each value of I, and each value of V, and the degree of progression of the deterioration factor is calculated using the function parameters corresponding to these actually measured values.
  • the function f representing the relationship between the voltage gradient and the degree of progression of deterioration factors in this case is defined as follows.
  • deterioration factor n f( m_n, c_Rn_T_1, c_Rn_T_2, ..., c_Rn_I_1, c_Rn_I_2, ..., c_Rn_V_1, c_Rn_V_2, ... )
  • the deterioration factor n is a function of the slope m_n of the output voltage in section n.
  • the function f further includes one or more parameters c_Rn_T that vary according to the temperature T.
  • one or more parameters c_Rn_I that change according to the current I and c_Rn_V that change according to the voltage V are included.
  • FIG. 5 is a flowchart explaining the procedure for calculating the degree of progression of deterioration factors. Each step in FIG. 5 will be described below.
  • Fig. 5 Step S501: Supplement
  • function parameters are defined for each value of T, each value of I, and each value of V, as described with reference to FIG. 4, these values may be acquired in this step (or a step to be described later). These values can be obtained, for example, from a management unit arranged for each battery cell.
  • Fig. 5 Step S502 Acquire the change over time of the output voltage in the pause period. Furthermore, an inflection point is specified when the acquired change over time is expressed on a logarithmic time axis.
  • the slope of the output voltage (the voltage difference from the start point to the end point of the section) is calculated for each section divided by the inflection points. Let these be slopes m_1 to m_n.
  • ⁇ Embodiment 1 Summary> According to the first embodiment, by specifying an inflection point on the logarithmic time axis of the output voltage in the rest period of the battery and referring to the relational data using the slope of the section divided by the inflection point, the Estimate the degree of progress of the deterioration factor corresponding to the section. By estimating the deterioration factor using the temporal change of the output voltage during the rest period, it is not necessary to separately prepare equipment for impedance measurement or the like, so the deterioration factor can be easily estimated. Further, by specifying an inflection point on the logarithmic time axis, it is possible to specify a section in which the characteristic of the deterioration factor is well expressed, and accurately estimate the deterioration factor according to the characteristic of the section.
  • a typical deterioration factor of batteries is the deterioration of the materials (eg, cathode materials) forming the components of the battery.
  • the degree of deterioration of a component varies depending on the material forming the component, and which material is used depends on the progress of technological development of the battery. That is, it is conceivable that the generation of the battery (or information such as the model number representing the generation) of the battery can be estimated by obtaining the voltage gradient representing the characteristics of the material forming the part.
  • Embodiment 2 of the present invention describes the procedure.
  • FIG. 6 is a diagram explaining the procedure for estimating the generation of the battery using the deterioration factor of the battery.
  • sections on the logarithmic time axis correspond to battery deterioration factors.
  • these deterioration factors those from which the generation of the battery can be estimated are specified.
  • the slope m_x of the section x corresponding to the degree of deterioration of the positive electrode material can be used as information for estimating the generation of the battery.
  • the generation of the battery can be estimated by calculating the variation range of the slope m_x in the section x and preparing data representing the relationship between the variation range and the generation of the battery in advance.
  • One example is shown in FIG.
  • FIG. 7 is a flowchart for explaining the procedure for calculating the degree of progression of battery deterioration factors in the second embodiment.
  • S601 is performed between S502 and S503 in FIG. Others are the same as in FIG.
  • the relationship data is referenced using the deterioration factor representing the generation of the battery and the slope m_x of the corresponding section x.
  • the relationship data describes the relationship between the value range of the slope m_x (or the progress of the deterioration factor calculated by the value range) and the generation of the battery. This makes it possible to estimate the generation of the battery.
  • Embodiment 3 of the present invention will explain a configuration example of a battery management apparatus in which the method of estimating the battery deterioration factor explained in Embodiments 1 and 2 is implemented.
  • FIG. 8 is a schematic diagram illustrating an application of the battery management device according to the third embodiment.
  • the battery management device estimates the deterioration factor of the battery according to the procedure of each flowchart described in the first and second embodiments.
  • Batteries eg, battery cells, battery modules, battery packs, etc.
  • the battery is either in charging/discharging/resting state when connected to these devices.
  • the degradation factor can be calculated, for example, on the device described above, or on a computer connected via a network, such as on a cloud server. .
  • the advantage of computing on the device to which the battery is connected is that the battery status (voltage output by the battery, current output by the battery, temperature of the battery, etc.) can be obtained frequently.
  • the deterioration factor calculated on the cloud system can also be sent to the computer owned by the user.
  • the user computer can provide this data for specific uses, such as inventory management.
  • the deterioration factor calculated on the cloud system can be stored in the cloud platform provider's database and used for other purposes. For example, optimization of replacement routes for electric vehicles, energy management, and so on.
  • FIG. 9 is a diagram showing a configuration example of the battery management device 100 according to the third embodiment.
  • a battery management device 100 is a device that is connected to a battery 200 and receives power from the battery 200, and corresponds to the tester or the like in FIG.
  • the battery management device 100 includes a communication section 110 , a calculation section 120 , a detection section 130 and a storage section 140 .
  • the detection unit 130 acquires the detected value V of the voltage output by the battery 200 and the detected value I of the current output by the battery 200 . Furthermore, as an option, the detected value T of the temperature of the battery 200 may be obtained. These detection values may be detected by battery 200 itself and notified to detection unit 130 , or may be detected by detection unit 130 . Details of the detection unit 130 will be described later.
  • the calculation unit 120 estimates the deterioration factor of the battery 200 using the detection value acquired by the detection unit 130 .
  • the estimation procedure is the one described in the first and second embodiments.
  • the communication unit 110 transmits the deterioration factor estimated by the calculation unit 120 to the outside of the battery management device 100 . For example, they can be transmitted to a memory provided by the cloud system.
  • the storage unit 140 stores the relationship data described in the first and second embodiments.
  • the arithmetic unit 120 can be configured by hardware such as a circuit device that implements the function, or by executing software that implements the function by an arithmetic unit such as a CPU (Central Processing Unit). can.
  • hardware such as a circuit device that implements the function
  • software that implements the function by an arithmetic unit such as a CPU (Central Processing Unit). can.
  • CPU Central Processing Unit
  • FIG. 10 is a diagram showing another configuration example of the battery management device 100.
  • the battery management device 100 does not necessarily have to be directly connected to the battery 200 to receive power supply, and shows a configuration in which the communication unit 110 and the detection unit 130 shown in FIG. 9 are not included.
  • battery management device 100 acquires voltage V, current I, and temperature T of battery 200 from communication unit 110 .
  • the detection unit 150 included in the battery management apparatus 100 receives these detection values via, for example, a network, and the calculation unit 120 uses these detection values to calculate deterioration factors.
  • FIG. 11 shows a configuration example when the detection unit 130 is connected to the battery 200.
  • the detection unit 130 may be configured as part of the battery management device 100 or may be configured as a module separate from the battery management device 100 .
  • the detection unit 130 includes a voltage sensor 131, a temperature sensor 132, and a current sensor 133 in order to obtain the voltage V, temperature T, and current I when the battery 200 is charged and discharged.
  • the voltage sensor 131 measures the voltage across the battery 200 (the voltage output by the battery 200).
  • the temperature sensor 132 is connected to, for example, a thermocouple included in the battery 200 and measures the temperature of the battery 200 via this.
  • Current sensor 133 is connected to one end of battery 200 and measures the current output by battery 200 .
  • Temperature sensor 132 is optional and need not be provided.
  • the SOH of battery 200 may be estimated by calculation unit 120 .
  • the configuration of each device is the same as that of the third embodiment.
  • FIG. 12 is a flow chart explaining the procedure for calculating the SOH by the calculation unit 120.
  • the calculation unit 120 starts this flowchart at an appropriate timing such as, for example, when the battery management device 100 is activated, when instructed to start this flowchart, or at predetermined intervals. Each step in FIG. 12 will be described below.
  • Arithmetic unit 120 determines whether it is a rest period after charging or a rest period after discharging. If the current period is not the rest period, the flow chart ends. If it is the pause period, the process proceeds to S1202.
  • a rest period after discharging means that the current output by the battery 200 changes from a negative value (I ⁇ 0) toward zero, and (b) changes from a negative value to a value near zero and stabilizes. (
  • ⁇ Va is the amount of change in the output voltage of the battery 200 from the first calculation time after the end of the rest period to the first time when the first period ta has passed.
  • ⁇ Vb is the amount of change in the output voltage of battery 200 from the second time point after the first time point to the second time point after the second period tb has passed.
  • f Ri defines Ri as a function of ⁇ Va.
  • f Ri has a parameter (c_Ri_T) that varies with the temperature of the battery 200 and a parameter (c_Ri_I) that varies with the output current of the battery 200 .
  • f SOH defines SOH as a function of ⁇ Vb.
  • f SOH has a parameter (c_SOH_T) that varies with the temperature of the battery 200 and a parameter (c_SOH_I) that varies with the output current of the battery 200 .
  • These parameters are defined by the relationship table 141 stored in the storage unit 140. FIG. A specific example of each function and a specific example of the relationship table 141 will be described later.
  • fRi and fSOH are formulas formed based on, for example, experimental data for each lot.
  • FIG. 13 is a graph showing temporal changes in the current and voltage output by the battery 200 during the rest period after discharging.
  • ⁇ Va in S1202 is the amount of change in the output voltage of battery 200 from the time when discharging is completed or after the first calculation time to the first time when the first period ta has passed.
  • the inventors have found that the output voltage immediately after the end of discharging clearly shows the voltage fluctuation due to the internal resistance of the battery 200 . That is, it can be said that the fluctuation ( ⁇ Va) of the output voltage during this period has a strong correlation with Ri. In the present embodiment, this fact is used to estimate Ri by ⁇ Va.
  • the optimum values for the start time and the time length of ta can be obtained based on the section from the end of discharge to the maximum point of the slope change rate in the voltage change curve over time.
  • the start time of ta does not necessarily have to be the same as the discharge end time, but it is desirable that it be close to the discharge end time.
  • the start time of tb does not necessarily have to be the same as the end time of ta.
  • ta and tb have a relationship of ta ⁇ tb.
  • ⁇ Va may be larger, and ⁇ Vb may be larger.
  • FIG. 14 is a graph showing temporal changes in the current and voltage output by the battery 200 during the rest period after charging.
  • ⁇ Va in S1202 may be the change in the output voltage of the battery 200 from the time when the charging is finished or after the first calculation time to the first time when the first period ta has passed, instead of the discharge.
  • ⁇ Vb in S1202 is the change in the output voltage of the battery 200 from the time when the period ta has passed or the second starting time after that until the second time when the second period tb has passed.
  • the present inventors have found that ⁇ Va has a correlation with Ri and ⁇ Vb has a correlation with SOH even in the rest period after charging. Therefore, in this embodiment, ⁇ Va and ⁇ Vb in S1202 may be obtained after either charging or discharging.
  • FIG. 15 is a diagram showing the structure of the relationship table 141 and an example of data.
  • the relationship table 141 is a data table that defines each parameter in Equations 1 and 2. Since c_Ri_I and c_SOH_I vary depending on the output current of the battery 200, they are defined for each output current value. Since c_Ri_T and c_SOH_T vary depending on the temperature of the battery 200, they are defined for each temperature. Since these parameters may have different characteristics between the rest period after discharging and the rest period after charging, the relationship table 141 defines each parameter for each of these periods.
  • the relationship table 141 may be configured as part of the relationship table described in the first and second embodiments, or may be configured as separate data.
  • Ri can be expressed, for example, by Equation 3 below. This is because the slope of Ri is affected by temperature and the intercept is affected by current. In this case, c_Ri_T and c_Ri_I are each one.
  • Equation 4 When f SOH is a linear function of ⁇ Vb, SOH can be expressed by Equation 4 below, for example. This is because the slope of SOH is affected by temperature and the intercept is affected by current. In this case, c_SOH_T and c_SOH_I are each one.
  • FIG. 16 is an example of a user interface presented by the battery management device 100.
  • FIG. A user interface can be presented on a display device, such as a display device.
  • the user interface presents the calculation result by the calculation unit 120 .
  • FIG. 16 along with presenting the change over time of the output voltage on the logarithmic time axis, the three deterioration factors of positive electrode material contact resistance/negative electrode resistance/positive charge transfer resistance are exemplified. Furthermore, the result of estimating the state of deterioration of the battery can also be presented.
  • the present invention is not limited to the embodiments described above, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • the identification of the inflection point on the logarithmic time axis has been described, but in order to identify this inflection point, the time axis does not necessarily have to be converted to logarithm. In other words, it is sufficient if the point of inflection that appears when it is assumed that the change over time of the output voltage is plotted on the logarithmic time axis can be specified by some procedure.
  • the deterioration factor is estimated in the idle period after the discharge operation of the storage battery.
  • a deterioration factor can be estimated in the same manner as in the above embodiments. Whether the deterioration factor appears during the rest period after the discharge operation, the rest period after the charge operation, or both of them depends on the characteristics of the battery. Therefore, the deterioration factor may be estimated in any one of these according to the characteristics of the battery.
  • Battery management device 110 Communication unit 120: Calculation unit 130: Detection unit 140: Storage unit 200: Battery

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The purpose of the present invention is to provide a technology with which a degradation factor of a battery can be inferred in accordance with the charging/discharging behavior of the battery, without using specialized equipment for inferring degradation factors. A battery management device according to the present invention specifies an inflection point in voltage variation along a logarithmic time axis during a resting period in which charging or discharging of a battery is complete, and uses the voltage difference between intervals that are demarcated by the inflection point to infer (see fig. 2) a degradation factor of the battery.

Description

電池管理装置、電池管理方法Battery management device, battery management method
 本発明は、電池の状態を管理する技術に関する。 The present invention relates to technology for managing the state of batteries.
 蓄電池の劣化要因は、様々なものが存在する。蓄電池の劣化を測定する手法として一般的なのは、インピーダンス測定である。インピーダンス測定によって得られる周波数特性を解析することにより、蓄電池の劣化要因を推定することができる。周波数特性は、劣化要因に対応して変動するからである。下記非特許文献1は、リチウムイオンバッテリのインピーダンス測定に関する技術を記載している。 There are various factors that cause deterioration of storage batteries. Impedance measurement is a common technique for measuring deterioration of storage batteries. By analyzing the frequency characteristics obtained by impedance measurement, the deterioration factor of the storage battery can be estimated. This is because the frequency characteristic fluctuates in response to deterioration factors. The following non-patent document 1 describes a technique related to impedance measurement of a lithium ion battery.
 インピーダンス測定を実施するためには、対象物に対して交流波を印加しなければならない。したがってそのための設備が必要となるので、蓄電池を単に充放電する過程においてインピーダンス測定を実施するのは困難である。蓄電池の充放電は直流プロセスだからである。蓄電池の充放電過程においてその蓄電池の劣化要因を推定することができれば、インピーダンス測定のための設備を準備する必要がなくなるので、有用である。  In order to perform impedance measurement, an AC wave must be applied to the object. Therefore, it is difficult to measure the impedance in the process of simply charging and discharging the storage battery because equipment for that purpose is required. This is because the charging and discharging of a storage battery is a DC process. If the deterioration factor of the storage battery can be estimated in the charging/discharging process of the storage battery, it is useful because it eliminates the need to prepare equipment for impedance measurement.
 また非特許文献1においては、蓄電池をモデル化した等価回路を用いている。しかし電池の型番や電極の特性などによって電池の特性は様々に異なるので、様々な電池を一般的にモデル化した等価回路を設計することは困難である。 Also, in Non-Patent Document 1, an equivalent circuit that models a storage battery is used. However, it is difficult to design an equivalent circuit that generally models various batteries because the characteristics of batteries vary depending on the model number of the battery, the characteristics of the electrodes, and the like.
 本発明は、上記のような課題に鑑みてなされたものであり、電池の劣化要因を推定するための専用設備を用いることなく、電池の充放電動作にともなって劣化要因を推定することができる技術を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and can estimate deterioration factors associated with charging and discharging operations of a battery without using dedicated equipment for estimating battery deterioration factors. The purpose is to provide technology.
 本発明に係る電池管理装置は、電池が充電または放電を終了した休止期間において、対数時間軸上の電圧変化の変曲点を特定し、前記変曲点によって区切られる区間における電圧差分を用いて、前記電池の劣化要因を推定する。 The battery management device according to the present invention identifies an inflection point of voltage change on a logarithmic time axis in a rest period when the battery finishes charging or discharging, and uses the voltage difference in the section delimited by the inflection point. , to estimate deterioration factors of the battery.
 本発明に係る電池管理装置によれば、電池の劣化要因を推定するための専用設備を用いることなく、電池の充放電動作にともなって劣化要因を推定することができる。 According to the battery management device according to the present invention, it is possible to estimate deterioration factors associated with battery charge/discharge operations without using dedicated equipment for estimating battery deterioration factors.
蓄電池が放電動作を完了する前後における出力電圧の経時変化を例示するグラフである。4 is a graph illustrating temporal changes in output voltage before and after the storage battery completes discharging operation; 休止期間における出力電圧の経時変化における変曲点について説明する図である。It is a figure explaining the inflection point in the time-dependent change of the output voltage in a rest period. 対数時間軸上の出力電圧傾きと劣化要因の進行度との間の関係を記述した関係データの例である。It is an example of relationship data describing the relationship between the output voltage slope on the logarithmic time axis and the degree of progress of deterioration factors. 関係データの変形例を示す図である。It is a figure which shows the modification of relational data. 劣化要因の進行度を計算する手順を説明するフローチャートである。4 is a flowchart for explaining a procedure for calculating the degree of progression of deterioration factors; 電池の劣化要因を用いて電池の世代を推定する手順を説明する図である。FIG. 4 is a diagram for explaining a procedure for estimating the generation of a battery using deterioration factors of the battery; 実施形態2において電池の劣化要因の進行度を計算する手順を説明するフローチャートである。10 is a flowchart for explaining the procedure for calculating the degree of progression of deterioration factors of a battery in Embodiment 2. FIG. 実施形態3に係る電池管理装置の用途を例示する模式図である。FIG. 11 is a schematic diagram illustrating an application of the battery management device according to Embodiment 3; 実施形態3に係る電池管理装置100の構成例を示す図である。FIG. 11 is a diagram showing a configuration example of a battery management device 100 according to Embodiment 3; 電池管理装置100の別構成例を示す図である。4 is a diagram showing another configuration example of the battery management device 100. FIG. 検知部130が電池200と接続されている場合における構成例を示す。A configuration example in which the detection unit 130 is connected to the battery 200 is shown. 演算部120がSOHを計算する手順を説明するフローチャートである。4 is a flowchart for explaining a procedure for calculation of SOH by a calculation unit 120; 放電後の休止期間において電池200が出力する電流と電圧の経時変化を示すグラフである。4 is a graph showing temporal changes in the current and voltage output by the battery 200 during a rest period after discharging. 充電後の休止期間において電池200が出力する電流と電圧の経時変化を示すグラフである。4 is a graph showing temporal changes in current and voltage output by the battery 200 during a rest period after charging. 関係テーブル141の構成とデータ例を示す図である。4 is a diagram showing the structure of a relationship table 141 and an example of data; FIG. 電池管理装置100が提示するユーザインターフェースの例である。It is an example of a user interface presented by the battery management device 100 .
<実施の形態1>
 図1は、蓄電池が放電動作を完了する前後における出力電圧の経時変化を例示するグラフである。放電動作を完了した後の休止期間においては、電池の出力電圧は図1のような経時変化をする。本発明者は、この休止期間における出力電圧の経時変化において、蓄電池の劣化要因に対応する電圧変化が現れることを見出した。
<Embodiment 1>
FIG. 1 is a graph illustrating temporal changes in output voltage before and after a storage battery completes discharging operation. In the idle period after the discharge operation is completed, the output voltage of the battery changes with time as shown in FIG. The inventors have found that the output voltage changes with time during the pause period, and voltage changes corresponding to deterioration factors of the storage battery appear.
 図2は、休止期間における出力電圧の経時変化における変曲点について説明する図である。ここでいう変曲点は、図1のような出力電圧の経時変化を対数時間軸上で表したとき現れるものである。図2に示すように、対数時間軸上の変曲点によって挟まれる区間においては、新品の電池の出力電圧の傾きと劣化した電池の出力電圧の傾きは、顕著な違いが見られる。本発明者はこの各区間における傾きに着目し、電池の劣化要因を推定することとした。 FIG. 2 is a diagram for explaining the inflection point in the change over time of the output voltage during the pause period. The point of inflection here appears when the temporal change of the output voltage as shown in FIG. 1 is represented on the logarithmic time axis. As shown in FIG. 2, there is a remarkable difference between the slope of the output voltage of a new battery and the slope of the output voltage of a degraded battery in the sections sandwiched by the inflection points on the logarithmic time axis. The present inventor focused on the slope in each section and decided to estimate the deterioration factor of the battery.
 対数時間軸上の時間は、変曲点によって複数の区間に区切ることができる。これらの区間は、電池の劣化要因と対応していると考えられる。例えばインピーダンス測定の周波数特性においては、劣化要因に対応して、特定の周波数帯域の値が変動する。すなわち、ある特定の周波数帯域におけるインピーダンス測定結果の変動は、劣化要因と対応していると考えられる。一方で、図2においてインピーダンス測定の周波数成分と対応しているのは、対数時間軸上における時間範囲であると考えることができる。例えば、周波数成分が1桁変化すると対数時間軸上の時間は1目盛変化することに鑑みると、両者の間にそのような対応関係があると考えられるからである。そこで本発明においては、対数時間軸を1以上の区間に区分し、その区間ごとの傾きが劣化要因と相関していると仮定することにした。 Time on the logarithmic time axis can be divided into multiple sections by inflection points. These sections are considered to correspond to deterioration factors of the battery. For example, in the frequency characteristics of impedance measurement, values in specific frequency bands fluctuate in response to deterioration factors. In other words, it is considered that the variation in the impedance measurement result in a specific frequency band corresponds to the deterioration factor. On the other hand, it can be considered that what corresponds to the frequency component of the impedance measurement in FIG. 2 is the time range on the logarithmic time axis. For example, when the frequency component changes by one digit, the time on the logarithmic time axis changes by one scale. Therefore, in the present invention, the logarithmic time axis is divided into one or more sections, and it is assumed that the slope of each section correlates with the deterioration factor.
 対数時間軸上の区間は、あらかじめインピーダンス測定を実施し、劣化要因の特徴がよく表れる区間を特定することにより、定めることができる。ただし劣化要因の特徴は対数時間軸上における出力電圧の傾きにおいてよく表れているので、実際の処理上においては例えば対数時間軸上の出力電圧を3回微分して0となる点を変曲点とみなし、その変曲点によって区分される区間ごとに劣化要因が対応しているとみなすことができる。したがって以下の説明においては、変曲点によって対数時間軸上の区間を区分することを前提とする。  The section on the logarithmic time axis can be determined by performing impedance measurement in advance and identifying the section where the characteristics of the deterioration factors are well represented. However, since the characteristic of the deterioration factor is well expressed in the slope of the output voltage on the logarithmic time axis, in actual processing, for example, the point where the output voltage on the logarithmic time axis is differentiated three times and becomes 0 is the inflection point. , and it can be considered that the deterioration factor corresponds to each section divided by the inflection point. Therefore, in the following description, it is assumed that sections on the logarithmic time axis are divided by inflection points.
 図2の区間1の拡大図が示すように、変曲点によって区分される区間においては、新品の電池の出力電圧傾きと劣化した電池の出力電圧傾きは、顕著な差がある。そこでこの傾きを取得し、その傾きを用いて後述する関係データを参照することにより、劣化要因の進行度を推定することとした。以下の説明においては、区間1の傾きをm_1とし、区間2の傾きをm_2とし、以下同様である。 As shown in the enlarged view of section 1 in FIG. 2, there is a significant difference between the output voltage slope of a new battery and the output voltage slope of a deteriorated battery in the sections divided by the inflection points. Therefore, the degree of progression of the deterioration factor is estimated by obtaining this slope and referring to relational data described later using the slope. In the following description, the slope of section 1 is m_1, the slope of section 2 is m_2, and so on.
 図3は、対数時間軸上の出力電圧傾きと劣化要因の進行度との間の関係を記述した関係データの例である。関係データは、対数時間軸上の区間ごとに定義されている。例えば図3上段のデータは、区間1における出力電圧の傾きm_1と、区間1に対応する劣化要因1の進行度との間の関係を記述している。図3下段のデータは区間2と劣化要因2について同様に記述している。さらに電池の種別(例えば電池の型番、電極材料、などによって区別される種別)ごとに同様のデータを準備しておき、電池種別に対応する関係データを用いてもよい。各劣化要因は、例えば正極材料の劣化度、などのように数値化できる要因である。 FIG. 3 is an example of relationship data describing the relationship between the output voltage slope on the logarithmic time axis and the degree of progression of deterioration factors. Relational data is defined for each section on the logarithmic time axis. For example, the data in the upper part of FIG. 3 describes the relationship between the slope m_1 of the output voltage in section 1 and the progress of deterioration factor 1 corresponding to section 1 . The data in the lower part of FIG. 3 describe the interval 2 and the deterioration factor 2 in the same way. Further, similar data may be prepared for each type of battery (for example, type distinguished by battery model number, electrode material, etc.), and relational data corresponding to the battery type may be used. Each deterioration factor is a factor that can be quantified, such as the degree of deterioration of the positive electrode material.
 傾きm_1は、区間1の開始時点と終了時点との間の出力電圧の差分によって計算することができる。m_1と劣化要因1の進行度との間の関係を表す関数は、関係データ上であらかじめ定義しておけばよい。その関数に対してm_1を当てはめることにより、劣化要因1の進行度を計算することができる。劣化要因2についても同様に傾きm_2から計算することができる。傾きと劣化要因との間の関係を表す関数は、劣化要因と区間の組み合わせ毎に定義することができる(すなわち同じ関数でなくともよい)。 The slope m_1 can be calculated by the difference in output voltage between the start and end of interval 1. A function representing the relationship between m_1 and the progress of deterioration factor 1 may be defined in advance on the relationship data. By applying m_1 to the function, the progress of deterioration factor 1 can be calculated. The deterioration factor 2 can also be similarly calculated from the slope m_2. A function representing the relationship between the slope and the deterioration factor can be defined for each combination of the deterioration factor and the section (that is, the functions do not have to be the same).
 図4は、関係データの変形例を示す図である。電圧傾きと劣化要因との間の関係を表す関数は、電池の温度T、電池の放電電流I、電池の放電終了電圧Vのうち少なくともいずれかに応じて変化する場合がある。その場合は、Tの値毎、Iの値毎、Vの値毎にそれぞれ関数パラメータをあらかじめ定義しておき、これらの実測値に対応する関数パラメータを用いて、劣化要因の進行度を計算すればよい。したがってこの場合における電圧傾きと劣化要因進行度との間の関係を表す関数fは、以下のように定義される。 FIG. 4 is a diagram showing a modified example of relational data. The function representing the relationship between the voltage slope and the deterioration factor may change depending on at least one of the battery temperature T, the battery discharge current I, and the battery discharge end voltage V. In that case, function parameters are defined in advance for each value of T, each value of I, and each value of V, and the degree of progression of the deterioration factor is calculated using the function parameters corresponding to these actually measured values. Just do it. Therefore, the function f representing the relationship between the voltage gradient and the degree of progression of deterioration factors in this case is defined as follows.
 劣化要因n=f(
 m_n,
 c_Rn_T_1,c_Rn_T_2,・・・,
 c_Rn_I_1,c_Rn_I_2,・・・,
 c_Rn_V_1,c_Rn_V_2,・・・
 )
deterioration factor n=f(
m_n,
c_Rn_T_1, c_Rn_T_2, ...,
c_Rn_I_1, c_Rn_I_2, ...,
c_Rn_V_1, c_Rn_V_2, ...
)
 劣化要因nは区間nにおける出力電圧の傾きm_nの関数である。関数fにはさらに、温度Tに応じて変化するパラメータc_Rn_Tが1以上含まれる。電流Iに応じて変化するパラメータc_Rn_I、電圧Vに応じて変化するパラメータc_Rn_Vについても同様に1以上含まれる。 The deterioration factor n is a function of the slope m_n of the output voltage in section n. The function f further includes one or more parameters c_Rn_T that vary according to the temperature T. Similarly, one or more parameters c_Rn_I that change according to the current I and c_Rn_V that change according to the voltage V are included.
 図5は、劣化要因の進行度を計算する手順を説明するフローチャートである。以下図5の各ステップについて説明する。 FIG. 5 is a flowchart explaining the procedure for calculating the degree of progression of deterioration factors. Each step in FIG. 5 will be described below.
(図5:ステップS501)
 充電後の休止期間または放電後の休止期間であるか否かを判定する。現在が休止期間ではない場合は本フローチャートを終了する。休止期間である場合はS502へ進む。例えば放電後の休止期間であることは、電池が出力する電流が負値(I<0)からゼロへ向かって変化している、(b)負値からゼロ近傍の値へ変化して安定している(|I|<閾値)、などによって判定することができる。
(Fig. 5: Step S501)
It is determined whether it is a rest period after charging or a rest period after discharging. If the current period is not the rest period, the flow chart ends. If it is the pause period, the process proceeds to S502. For example, in the rest period after discharge, the current output by the battery changes from a negative value (I<0) toward zero, and (b) changes from a negative value to a value near zero and stabilizes. (|I|<threshold).
(図5:ステップS501:補足)
 図4で説明した、Tの値毎、Iの値毎、Vの値毎にそれぞれ関数パラメータを定義する場合は、これらの値を本ステップ(または後述するステップ)において取得してもよい。これらの値は例えば、電池セルごとに配置されている管理ユニットから取得することができる。
(Fig. 5: Step S501: Supplement)
When function parameters are defined for each value of T, each value of I, and each value of V, as described with reference to FIG. 4, these values may be acquired in this step (or a step to be described later). These values can be obtained, for example, from a management unit arranged for each battery cell.
(図5:ステップS502)
 休止期間における出力電圧の経時変化を取得する。さらに、取得した経時変化を対数時間軸上に表したときの変曲点を特定する。変曲点によって区分される区間ごとに、出力電圧の傾き(区間の開始時点から終了時点までの電圧差分)を計算する。これらを傾きm_1~m_nとする。
(Fig. 5: Step S502)
Acquire the change over time of the output voltage in the pause period. Furthermore, an inflection point is specified when the acquired change over time is expressed on a logarithmic time axis. The slope of the output voltage (the voltage difference from the start point to the end point of the section) is calculated for each section divided by the inflection points. Let these be slopes m_1 to m_n.
(図5:ステップS503)
 各区間に対応する関係データをそれぞれ取得する。関係データが記述している関数に対して、各区間における傾きを当てはめることにより、その区間に対応する劣化要因の進行度を計算する。各区間について同様に劣化要因の進行度を求める。
(Fig. 5: Step S503)
Relational data corresponding to each section is obtained. By applying the gradient in each section to the function described by the relational data, the degree of progression of the deterioration factor corresponding to that section is calculated. Similarly, the degree of progression of deterioration factors is obtained for each section.
<実施の形態1:まとめ>
 本実施形態1によれば、電池の休止期間における出力電圧の対数時間軸上の変曲点を特定し、変曲点によって区分される区間の傾きを用いて関係データを参照することにより、その区間に対応する劣化要因の進行度を推定する。休止期間における出力電圧の経時変化を用いて劣化要因を推定することにより、インピーダンス測定などのための設備を個別に準備する必要がなくなるので、簡便に劣化要因を推定できる。また対数時間軸上の変曲点を特定することにより、劣化要因の特徴がよく表れている区間を特定し、その区間の特徴にしたがって劣化要因を精度よく推定できる。
<Embodiment 1: Summary>
According to the first embodiment, by specifying an inflection point on the logarithmic time axis of the output voltage in the rest period of the battery and referring to the relational data using the slope of the section divided by the inflection point, the Estimate the degree of progress of the deterioration factor corresponding to the section. By estimating the deterioration factor using the temporal change of the output voltage during the rest period, it is not necessary to separately prepare equipment for impedance measurement or the like, so the deterioration factor can be easily estimated. Further, by specifying an inflection point on the logarithmic time axis, it is possible to specify a section in which the characteristic of the deterioration factor is well expressed, and accurately estimate the deterioration factor according to the characteristic of the section.
<実施の形態2>
 電池の典型的な劣化要因として、電池の部品を形成する材料(例:正極材料)の劣化が挙げられる。部品の劣化度はその部品を形成する材料によって異なり、さらにどの材料を採用するかは電池の技術開発の進行によって異なる。すなわち、部品を形成する材料の特性を表す電圧傾きを取得することにより、電池の世代(または世代を表す型番などの情報)を推定することができると考えられる。本発明の実施形態2では、その手順について説明する。
<Embodiment 2>
A typical deterioration factor of batteries is the deterioration of the materials (eg, cathode materials) forming the components of the battery. The degree of deterioration of a component varies depending on the material forming the component, and which material is used depends on the progress of technological development of the battery. That is, it is conceivable that the generation of the battery (or information such as the model number representing the generation) of the battery can be estimated by obtaining the voltage gradient representing the characteristics of the material forming the part. Embodiment 2 of the present invention describes the procedure.
 図6は、電池の劣化要因を用いて電池の世代を推定する手順を説明する図である。実施形態1で説明したように、対数時間軸上における区間は電池の劣化要因と対応している。この劣化要因のうち、電池の世代を推定することができるものを特定する。例えば正極材料は電池の世代と対応しているので、正極材料の劣化度と対応する区間xの傾きm_xはその電池の世代を推定するための情報として用いることができる。 FIG. 6 is a diagram explaining the procedure for estimating the generation of the battery using the deterioration factor of the battery. As described in the first embodiment, sections on the logarithmic time axis correspond to battery deterioration factors. Among these deterioration factors, those from which the generation of the battery can be estimated are specified. For example, since the positive electrode material corresponds to the generation of the battery, the slope m_x of the section x corresponding to the degree of deterioration of the positive electrode material can be used as information for estimating the generation of the battery.
 例えば区間xにおける傾きm_xの変動範囲を計算するとともに、その変動範囲と電池の世代との間の関係を表すデータをあらかじめ準備しておくことにより、電池の世代を推定することができる。図6においてその1例を示した。 For example, the generation of the battery can be estimated by calculating the variation range of the slope m_x in the section x and preparing data representing the relationship between the variation range and the generation of the battery in advance. One example is shown in FIG.
 図7は、本実施形態2において電池の劣化要因の進行度を計算する手順を説明するフローチャートである。図5のS502とS503の間においてS601を実施する。その他は図5と同様である。 FIG. 7 is a flowchart for explaining the procedure for calculating the degree of progression of battery deterioration factors in the second embodiment. S601 is performed between S502 and S503 in FIG. Others are the same as in FIG.
 S601において、電池の世代を表す劣化要因と対応する区間xの傾きm_xを用いて関係データを参照する。関係データは、傾きm_xの値範囲(またはその値範囲によって計算される劣化要因の進行度)と電池の世代との間の関係を記述している。これにより電池の世代を推定することができる。 In S601, the relationship data is referenced using the deterioration factor representing the generation of the battery and the slope m_x of the corresponding section x. The relationship data describes the relationship between the value range of the slope m_x (or the progress of the deterioration factor calculated by the value range) and the generation of the battery. This makes it possible to estimate the generation of the battery.
<実施の形態3>
 本発明の実施形態3では、実施形態1~2で説明した電池の劣化要因を推定する方法を実装した電池管理装置の構成例について説明する。
<Embodiment 3>
Embodiment 3 of the present invention will explain a configuration example of a battery management apparatus in which the method of estimating the battery deterioration factor explained in Embodiments 1 and 2 is implemented.
 図8は、本実施形態3に係る電池管理装置の用途を例示する模式図である。電池管理装置は、実施形態1~2で説明した各フローチャートの手順にしたがって、電池の劣化要因を推定する。充放電する必要がある電池(例えば電池セル、電池モジュール、電池パック、など)は、様々な装置へ接続される。例えばテスタ、BMS(電池管理システム)、充電器、などである。電池はこれら装置へ接続されているとき、充電動作/放電動作/休止状態のいずれかとなる。劣化要因を計算するアルゴリズムをどこで実施するかに応じて、劣化要因は例えば上記装置上で計算することもできるし、クラウドサーバ上などのネットワークを介して接続されたコンピュータ上で計算することもできる。電池が接続された装置上で計算する利点は、電池状態(電池が出力する電圧、電池が出力する電流、電池の温度、など)を高頻度で取得できることである。 FIG. 8 is a schematic diagram illustrating an application of the battery management device according to the third embodiment. The battery management device estimates the deterioration factor of the battery according to the procedure of each flowchart described in the first and second embodiments. Batteries (eg, battery cells, battery modules, battery packs, etc.) that need to be charged and discharged are connected to various devices. For example, a tester, a BMS (Battery Management System), a charger, and the like. The battery is either in charging/discharging/resting state when connected to these devices. Depending on where the algorithm for calculating the degradation factor is implemented, the degradation factor can be calculated, for example, on the device described above, or on a computer connected via a network, such as on a cloud server. . The advantage of computing on the device to which the battery is connected is that the battery status (voltage output by the battery, current output by the battery, temperature of the battery, etc.) can be obtained frequently.
 クラウドシステム上で計算した劣化要因は、ユーザが所持するコンピュータへ送信することもできる。ユーザコンピュータはこのデータを、例えばインベントリ管理などの特定用途へ供することができる。クラウドシステム上で計算した劣化要因は、クラウドプラットフォーム事業者のデータベースへ格納し、別用途のために用いることができる。例えば電気自動車の交換経路の最適化、エネルギー管理、などである。 The deterioration factor calculated on the cloud system can also be sent to the computer owned by the user. The user computer can provide this data for specific uses, such as inventory management. The deterioration factor calculated on the cloud system can be stored in the cloud platform provider's database and used for other purposes. For example, optimization of replacement routes for electric vehicles, energy management, and so on.
 図9は、本実施形態3に係る電池管理装置100の構成例を示す図である。図9において、電池管理装置100は、電池200と接続され、電池200から電力供給を受ける装置であり、図8におけるテスタなどに相当する。電池管理装置100は、通信部110、演算部120、検知部130、記憶部140を備える。 FIG. 9 is a diagram showing a configuration example of the battery management device 100 according to the third embodiment. In FIG. 9, a battery management device 100 is a device that is connected to a battery 200 and receives power from the battery 200, and corresponds to the tester or the like in FIG. The battery management device 100 includes a communication section 110 , a calculation section 120 , a detection section 130 and a storage section 140 .
 検知部130は、電池200が出力する電圧の検出値V、電池200が出力する電流の検出値Iを取得する。さらにオプションとして、電池200の温度の検出値Tを取得してもよい。これらの検出値は、電池200自身が検出して検知部130へ通知してもよいし検知部130が検出してもよい。検知部130の詳細は後述する。 The detection unit 130 acquires the detected value V of the voltage output by the battery 200 and the detected value I of the current output by the battery 200 . Furthermore, as an option, the detected value T of the temperature of the battery 200 may be obtained. These detection values may be detected by battery 200 itself and notified to detection unit 130 , or may be detected by detection unit 130 . Details of the detection unit 130 will be described later.
 演算部120は、検知部130が取得した検出値を用いて、電池200の劣化要因を推定する。推定手順は実施形態1~2で説明したものである。通信部110は、演算部120が推定した劣化要因を、電池管理装置100の外部へ送信する。例えばクラウドシステムが備えるメモリに対してこれらを送信することができる。記憶部140は、実施形態1~2で説明した関係データを格納する。 The calculation unit 120 estimates the deterioration factor of the battery 200 using the detection value acquired by the detection unit 130 . The estimation procedure is the one described in the first and second embodiments. The communication unit 110 transmits the deterioration factor estimated by the calculation unit 120 to the outside of the battery management device 100 . For example, they can be transmitted to a memory provided by the cloud system. The storage unit 140 stores the relationship data described in the first and second embodiments.
 演算部120は、その機能を実装した回路デバイスなどのハードウェアによって構成することもできるし、その機能を実装したソフトウェアをCPU(Central Processing Unit)などの演算装置が実行することによって構成することもできる。 The arithmetic unit 120 can be configured by hardware such as a circuit device that implements the function, or by executing software that implements the function by an arithmetic unit such as a CPU (Central Processing Unit). can.
 図10は、電池管理装置100の別構成例を示す図である。電池管理装置100は、必ずしも電池200と直接的に接続して電力供給を受ける装置でなくともよく、図9に記載された通信部110および検知部130が含まれていない形態を示すものである。図10において電池管理装置100は、電池200の電圧V、電流I、温度Tを通信部110から取得する。具体的には、電池管理装置100が備える検知部150はこれらの検出値を例えばネットワーク経由で受け取り、演算部120はこれらの検出値を用いて劣化要因を計算する。 FIG. 10 is a diagram showing another configuration example of the battery management device 100. As shown in FIG. The battery management device 100 does not necessarily have to be directly connected to the battery 200 to receive power supply, and shows a configuration in which the communication unit 110 and the detection unit 130 shown in FIG. 9 are not included. . In FIG. 10 , battery management device 100 acquires voltage V, current I, and temperature T of battery 200 from communication unit 110 . Specifically, the detection unit 150 included in the battery management apparatus 100 receives these detection values via, for example, a network, and the calculation unit 120 uses these detection values to calculate deterioration factors.
 図11は、検知部130が電池200と接続されている場合における構成例を示す。検知部130は、電池管理装置100の一部として構成してもよいし、電池管理装置100とは別のモジュールとして構成してもよい。検知部130は、電池200の充放電動作時における電圧V、温度T、電流Iを取得するために、電圧センサ131、温度センサ132、電流センサ133を備える。 FIG. 11 shows a configuration example when the detection unit 130 is connected to the battery 200. FIG. The detection unit 130 may be configured as part of the battery management device 100 or may be configured as a module separate from the battery management device 100 . The detection unit 130 includes a voltage sensor 131, a temperature sensor 132, and a current sensor 133 in order to obtain the voltage V, temperature T, and current I when the battery 200 is charged and discharged.
 電圧センサ131は、電池200の両端電圧(電池200が出力する電圧)を測定する。温度センサ132は、例えば電池200が備える熱電対と接続され、これを介して電池200の温度を測定する。電流センサ133は、電池200の一端と接続され、電池200が出力する電流を測定する。温度センサ132はオプションであり、必ずしも備えていなくともよい。 The voltage sensor 131 measures the voltage across the battery 200 (the voltage output by the battery 200). The temperature sensor 132 is connected to, for example, a thermocouple included in the battery 200 and measures the temperature of the battery 200 via this. Current sensor 133 is connected to one end of battery 200 and measures the current output by battery 200 . Temperature sensor 132 is optional and need not be provided.
<実施の形態4>
 以上の実施形態において、電池200のSOHは、演算部120によって推定してもよい。ただしSOHを推定するためには、計測値が安定するまでに長時間を要する場合がある。そこで本発明の実施形態4では、SOHを短時間で簡易な手段によって測定する構成例について説明する。各装置の構成は実施形態3と同様である。
<Embodiment 4>
In the above embodiment, the SOH of battery 200 may be estimated by calculation unit 120 . However, in order to estimate the SOH, it may take a long time for the measured value to stabilize. Therefore, in Embodiment 4 of the present invention, a configuration example for measuring SOH in a short time by a simple means will be described. The configuration of each device is the same as that of the third embodiment.
 図12は、演算部120がSOHを計算する手順を説明するフローチャートである。演算部120は、例えば電池管理装置100が起動したとき、本フローチャートを開始するように指示されたとき、所定周期毎、などの適当なタイミングで、本フローチャートを開始する。以下図12の各ステップを説明する。 FIG. 12 is a flow chart explaining the procedure for calculating the SOH by the calculation unit 120. FIG. The calculation unit 120 starts this flowchart at an appropriate timing such as, for example, when the battery management device 100 is activated, when instructed to start this flowchart, or at predetermined intervals. Each step in FIG. 12 will be described below.
(図12:ステップS1201)
 演算部120は、充電後の休止期間または放電後の休止期間であるか否かを判定する。現在が休止期間ではない場合は本フローチャートを終了する。休止期間である場合はS1202へ進む。例えば放電後の休止期間であることは、電池200が出力する電流が負値(I<0)からゼロへ向かって変化している、(b)負値からゼロ近傍の値へ変化して安定している(|I|<閾値)、などによって判定することができる。
(Fig. 12: Step S1201)
Arithmetic unit 120 determines whether it is a rest period after charging or a rest period after discharging. If the current period is not the rest period, the flow chart ends. If it is the pause period, the process proceeds to S1202. For example, a rest period after discharging means that the current output by the battery 200 changes from a negative value (I<0) toward zero, and (b) changes from a negative value to a value near zero and stabilizes. (|I|<threshold), or the like.
(図12:ステップS1202)
 演算部120は、ΔVaとΔVbを計算する。ΔVaは、休止期間が終了した以後の第1起算時点から第1期間taが経過した第1時刻までにおける、電池200の出力電圧の変動分である。ΔVbは、第1時刻以後の第2起算時点から第2期間tbが経過した第2時刻までにおける、電池200の出力電圧の変動分である。これらの計算手順については後述する。
(Fig. 12: Step S1202)
The calculator 120 calculates ΔVa and ΔVb. ΔVa is the amount of change in the output voltage of the battery 200 from the first calculation time after the end of the rest period to the first time when the first period ta has passed. ΔVb is the amount of change in the output voltage of battery 200 from the second time point after the first time point to the second time point after the second period tb has passed. These calculation procedures will be described later.
(図12:ステップS1203)
 演算部120は、下記式1と式2にしたがって、電池200の内部抵抗RiとSOHを計算する。fRiは、RiをΔVaの関数として定義する。fRiは、電池200の温度によって変動するパラメータ(c_Ri_T)と、電池200の出力電流によって変動するパラメータ(c_Ri_I)を有する。fSOHは、SOHをΔVbの関数として定義する。fSOHは、電池200の温度によって変動するパラメータ(c_SOH_T)と、電池200の出力電流によって変動するパラメータ(c_SOH_I)を有する。これらのパラメータは、記憶部140が格納する関係テーブル141によって定義されている。各関数の具体例と関係テーブル141の具体例については後述する。fRi及びfSOHは例えばロットごとの実験データを元に形成される式となる。
(Fig. 12: Step S1203)
The calculator 120 calculates the internal resistance Ri and SOH of the battery 200 according to Equations 1 and 2 below. f Ri defines Ri as a function of ΔVa. f Ri has a parameter (c_Ri_T) that varies with the temperature of the battery 200 and a parameter (c_Ri_I) that varies with the output current of the battery 200 . f SOH defines SOH as a function of ΔVb. f SOH has a parameter (c_SOH_T) that varies with the temperature of the battery 200 and a parameter (c_SOH_I) that varies with the output current of the battery 200 . These parameters are defined by the relationship table 141 stored in the storage unit 140. FIG. A specific example of each function and a specific example of the relationship table 141 will be described later. fRi and fSOH are formulas formed based on, for example, experimental data for each lot.
(図12:ステップS1203:計算式)
 Ri=fRi(ΔVa,c_Ri_T_1,c_Ri_T_2,・・・,c_Ri_I_1,c_Ri_I_2,・・・) (1)
 SOH=fSOH(ΔVb,c_SOH_T_1,c_SOH_T_2,・・・,c_SOH_I_1,c_SOH_I_2,・・・) (2)
(Fig. 12: Step S1203: Formula)
Ri =fRi (ΔVa, c_Ri_T_1, c_Ri_T_2, ..., c_Ri_I_1, c_Ri_I_2, ...) (1)
SOH = f SOH (ΔVb, c_SOH_T_1, c_SOH_T_2, ..., c_SOH_I_1, c_SOH_I_2, ...) (2)
 図13は、放電後の休止期間において電池200が出力する電流と電圧の経時変化を示すグラフである。S1202におけるΔVaは、放電が終了した時点またはそれよりも後の第1起算時点から第1期間taが経過した第1時刻までにおける、電池200の出力電圧の変動分である。本発明者は、放電が終了した直後における出力電圧において、電池200の内部抵抗による電圧変動がよく表れていることを見出した。すなわちこの期間における出力電圧の変動(ΔVa)は、Riとの間の相関が強いといえる。本実施形態においてはこのことを利用して、ΔVaによってRiを推定することとした。taの開始時刻と時間長それぞれの最適値は、放電の終了時点以後から電圧の経時変化曲線における傾き変化率の最大点までの区間に基づき取得することができる。なお前記区間の特定に際しては、電池の種類、装置、精度等によって、前記区間の両端付近、あるいは両端を含めた領域とするなど、適宜好ましい運用とすればよい。 FIG. 13 is a graph showing temporal changes in the current and voltage output by the battery 200 during the rest period after discharging. ΔVa in S1202 is the amount of change in the output voltage of battery 200 from the time when discharging is completed or after the first calculation time to the first time when the first period ta has passed. The inventors have found that the output voltage immediately after the end of discharging clearly shows the voltage fluctuation due to the internal resistance of the battery 200 . That is, it can be said that the fluctuation (ΔVa) of the output voltage during this period has a strong correlation with Ri. In the present embodiment, this fact is used to estimate Ri by ΔVa. The optimum values for the start time and the time length of ta can be obtained based on the section from the end of discharge to the maximum point of the slope change rate in the voltage change curve over time. When specifying the above-mentioned section, depending on the type of battery, the device, the accuracy, etc., it is possible to select a region in the vicinity of both ends of the above-mentioned section, or an area including both ends.
 taの開始時刻は、必ずしも放電終了時刻と同じでなくともよいが、放電終了時刻と近接していることが望ましい。tbの開始時刻は、必ずしもtaの終了時刻と同じでなくともよい。いずれの場合であっても、taとtbは、ta<tbという関係がある。ΔVaの大きさとΔVbの大きさについては、ΔVaのほうが大きい場合もあり得るし、ΔVbのほうが大きい場合もあり得る。なお、ここではta<tbとしたが、電池の種類、装置、精度等によって、ta>tb、あるいはta=tbの場合もあり得るため、適宜好ましい関係とすればよい。 The start time of ta does not necessarily have to be the same as the discharge end time, but it is desirable that it be close to the discharge end time. The start time of tb does not necessarily have to be the same as the end time of ta. In either case, ta and tb have a relationship of ta<tb. Regarding the magnitude of ΔVa and the magnitude of ΔVb, ΔVa may be larger, and ΔVb may be larger. Although ta<tb is set here, there may be a case where ta>tb or ta=tb depending on the type of battery, the device, the accuracy, etc. Therefore, a preferable relationship may be set as appropriate.
 taとtbの合計が例えば数秒程度であっても、RiとSOHを精度よく推定できることが、本発明者による実験結果から分かった。したがって本実施形態によれば、休止期間において速やかにRiとSOHをともに推定することができる。 Experimental results by the inventors have shown that Ri and SOH can be accurately estimated even if the sum of ta and tb is, for example, several seconds. Therefore, according to the present embodiment, both Ri and SOH can be quickly estimated during the idle period.
 図14は、充電後の休止期間において電池200が出力する電流と電圧の経時変化を示すグラフである。S1202におけるΔVaは、放電に代えて、充電が終了した時点またはそれよりも後の第1起算時点から第1期間taが経過した第1時刻までにおける、電池200の出力電圧の変動分でもよい。この場合、S1202におけるΔVbは、期間taが経過した時点またはそれ以降の第2起算時点から第2期間tbが経過した第2時刻までにおける、電池200の出力電圧の変動分となる。充電後の休止期間においても、ΔVaはRiとの間で相関を有し、ΔVbはSOHとの間で相関を有していることを、本発明者は見出した。したがって本実施形態において、S1202におけるΔVaとΔVbは、充放電いずれの後において取得してもよい。 FIG. 14 is a graph showing temporal changes in the current and voltage output by the battery 200 during the rest period after charging. ΔVa in S1202 may be the change in the output voltage of the battery 200 from the time when the charging is finished or after the first calculation time to the first time when the first period ta has passed, instead of the discharge. In this case, ΔVb in S1202 is the change in the output voltage of the battery 200 from the time when the period ta has passed or the second starting time after that until the second time when the second period tb has passed. The present inventors have found that ΔVa has a correlation with Ri and ΔVb has a correlation with SOH even in the rest period after charging. Therefore, in this embodiment, ΔVa and ΔVb in S1202 may be obtained after either charging or discharging.
 図15は、関係テーブル141の構成とデータ例を示す図である。関係テーブル141は、式1と式2における各パラメータを定義するデータテーブルである。c_Ri_Iとc_SOH_Iは電池200の出力電流によって変動するので、出力電流値ごとに定義されている。c_Ri_Tとc_SOH_Tは電池200の温度によって変動するので、温度ごとに定義されている。これらのパラメータは、放電後の休止期間と充電後の休止期間との間で異なる特性を有する場合があるので、関係テーブル141はこれらの期間ごとに各パラメータを定義している。関係テーブル141は、実施形態1~2で説明した関係テーブルの一部として構成してもよいし、別データとして構成してもよい。 FIG. 15 is a diagram showing the structure of the relationship table 141 and an example of data. The relationship table 141 is a data table that defines each parameter in Equations 1 and 2. Since c_Ri_I and c_SOH_I vary depending on the output current of the battery 200, they are defined for each output current value. Since c_Ri_T and c_SOH_T vary depending on the temperature of the battery 200, they are defined for each temperature. Since these parameters may have different characteristics between the rest period after discharging and the rest period after charging, the relationship table 141 defines each parameter for each of these periods. The relationship table 141 may be configured as part of the relationship table described in the first and second embodiments, or may be configured as separate data.
 fRiがΔVaの1次関数である場合、Riは例えば下記式3によって表すことができる。Riの傾きは温度によって影響され、切片は電流によって影響されるからである。この場合、c_Ri_Tとc_Ri_Iはそれぞれ1つである。 When fRi is a linear function of ΔVa, Ri can be expressed, for example, by Equation 3 below. This is because the slope of Ri is affected by temperature and the intercept is affected by current. In this case, c_Ri_T and c_Ri_I are each one.
 Ri=c_Ri_T_1×ΔVa+c_Ri_I_1 (3)  Ri=c_Ri_T_1×ΔVa+c_Ri_I_1 (3)
 fSOHがΔVbの1次関数である場合、SOHは例えば下記式4によって表すことができる。SOHの傾きは温度によって影響され、切片は電流によって影響されるからである。この場合、c_SOH_Tとc_SOH_Iはそれぞれ1つである。 When f SOH is a linear function of ΔVb, SOH can be expressed by Equation 4 below, for example. This is because the slope of SOH is affected by temperature and the intercept is affected by current. In this case, c_SOH_T and c_SOH_I are each one.
 SOH=c_SOH_T_1×ΔVb+c_SOH_I_1 (4)  SOH=c_SOH_T_1×ΔVb+c_SOH_I_1 (4)
 図16は、電池管理装置100が提示するユーザインターフェースの例である。ユーザインターフェースは例えばディスプレイデバイスなどの表示装置上で提示することができる。ユーザインターフェースは、演算部120による計算結果を提示する。図16においては対数時間軸上における出力電圧の経時変化を提示するとともに、劣化要因として正極材接触抵抗/負極抵抗/正極電荷移動抵抗の3つを例示した。さらに電池の劣化状態を推定した結果を提示することもできる。 16 is an example of a user interface presented by the battery management device 100. FIG. A user interface can be presented on a display device, such as a display device. The user interface presents the calculation result by the calculation unit 120 . In FIG. 16, along with presenting the change over time of the output voltage on the logarithmic time axis, the three deterioration factors of positive electrode material contact resistance/negative electrode resistance/positive charge transfer resistance are exemplified. Furthermore, the result of estimating the state of deterioration of the battery can also be presented.
<本発明の変形例について>
 本発明は、前述した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
<Regarding Modifications of the Present Invention>
The present invention is not limited to the embodiments described above, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is possible to add, delete, or replace part of the configuration of each embodiment with another configuration.
 以上の実施形態において、対数時間軸上の変曲点を特定することを説明したが、この変曲点を特定するために、必ずしも時間軸を対数へ変換しなくともよい。すなわち、出力電圧の経時変化を対数時間軸上にプロットしたと仮定したとき現れる変曲点を何らかの手順によって特定することができれば足りる。 In the above embodiment, the identification of the inflection point on the logarithmic time axis has been described, but in order to identify this inflection point, the time axis does not necessarily have to be converted to logarithm. In other words, it is sufficient if the point of inflection that appears when it is assumed that the change over time of the output voltage is plotted on the logarithmic time axis can be specified by some procedure.
 以上の実施形態においては、蓄電池の放電動作後の休止期間において劣化要因を推定することを説明したが、充電動作後の休止期間において劣化要因と対応する出力電圧の経時変化が現れるのであれば、以上の実施形態と同様に劣化要因を推定することができる。放電動作後の休止期間、充電動作後の休止期間、またはこれら双方、いずれにおいて劣化要因が現れるのかは、電池の特性に応じて異なる。したがって電池の特性に応じて、これらのいずれかにおいて劣化要因を推定すればよい。 In the above embodiment, it was explained that the deterioration factor is estimated in the idle period after the discharge operation of the storage battery. A deterioration factor can be estimated in the same manner as in the above embodiments. Whether the deterioration factor appears during the rest period after the discharge operation, the rest period after the charge operation, or both of them depends on the characteristics of the battery. Therefore, the deterioration factor may be estimated in any one of these according to the characteristics of the battery.
100:電池管理装置
110:通信部
120:演算部
130:検知部
140:記憶部
200:電池
100: Battery management device 110: Communication unit 120: Calculation unit 130: Detection unit 140: Storage unit 200: Battery

Claims (9)

  1.  電池の状態を管理する電池管理装置であって、
     前記電池が出力する電圧の検出値を取得する検知部、
     前記電池の状態を推定する演算部、
     を備え、
     前記演算部は、前記電池が充電または放電を終了した後の休止期間において、前記電圧の経時変化を対数時間軸上で表したときの変曲点を特定し、
     前記演算部は、前記変曲点によって区切られる前記休止期間内の区間における前記電圧の差分を計算し、
     前記演算部は、前記差分と前記電池の劣化要因との間の関係を記述した関係データを取得し、
     前記演算部は、前記差分を用いて前記関係データを参照することにより、前記電池の劣化要因を推定する
     ことを特徴とする電池管理装置。
    A battery management device that manages the state of a battery,
    a detection unit that acquires a detected value of the voltage output by the battery;
    a computing unit that estimates the state of the battery;
    with
    The computing unit specifies an inflection point when the change over time of the voltage is expressed on a logarithmic time axis in a rest period after the battery finishes charging or discharging,
    The calculation unit calculates the difference in the voltage in the interval within the rest period separated by the inflection point,
    The computing unit acquires relational data describing the relationship between the difference and the deterioration factor of the battery,
    The battery management device, wherein the calculation unit estimates the deterioration factor of the battery by referring to the relational data using the difference.
  2.  前記演算部は、前記休止期間を前記変曲点によって区切ることにより、1以上の前記区間を特定し、
     前記関係データは、前記区間と前記劣化要因の種別との組み合わせごとに、前記差分と前記劣化要因の進行度との間の関係を記述しており、
     前記演算部は、前記特定した区間における前記差分を用いて前記関係データを参照することにより、前記区間に対応する前記劣化要因の種別を特定するとともに、前記差分に対応する前記劣化要因の進行度を特定する
     ことを特徴とする請求項1記載の電池管理装置。
    The computing unit specifies one or more of the sections by dividing the pause period by the inflection point,
    The relationship data describes the relationship between the difference and the degree of progress of the deterioration factor for each combination of the section and the type of the deterioration factor,
    The computing unit identifies the type of the deterioration factor corresponding to the section by referring to the relationship data using the difference in the identified section, and the degree of progress of the deterioration factor corresponding to the difference. 2. The battery management device according to claim 1, characterized by specifying:
  3.  前記関係データは、前記差分と前記劣化要因の進行度との間の関係を表す関数のパラメータを、前記電池の温度、前記電池の出力電流、または前記電池の出力電圧のうち少なくともいずれかごとに記述しており、
     前記演算部は、前記電池の温度、前記電池の出力電流、または前記電池の出力電圧のうち少なくともいずれかを用いて前記関係データを参照することにより、前記パラメータを取得し、
     前記演算部は、前記取得したパラメータと前記差分を用いて前記関数の値を計算することにより、前記劣化要因の進行度を計算する
     ことを特徴とする請求項1記載の電池管理装置。
    The relational data includes parameters of a function representing a relation between the difference and the progress of the deterioration factor for each of at least one of the temperature of the battery, the output current of the battery, and the output voltage of the battery. describes,
    The computing unit obtains the parameter by referring to the relational data using at least one of the temperature of the battery, the output current of the battery, or the output voltage of the battery;
    The battery management device according to claim 1, wherein the calculation unit calculates the degree of progression of the deterioration factor by calculating the value of the function using the acquired parameter and the difference.
  4.  前記関係データは、前記劣化要因として、前記電池を形成する部材の材料を記述しており、
     前記演算部は、前記差分を用いて前記関係データを参照することにより、前記材料を推定する
     ことを特徴とする請求項1記載の電池管理装置。
    The relationship data describes materials of members forming the battery as the deterioration factor,
    The battery management device according to claim 1, wherein the calculation unit estimates the material by referring to the relationship data using the difference.
  5.  前記関係データは、前記電池の世代または型番ごとに、前記材料を特定する情報を記述しており、
     前記演算部は、前記材料を推定することにより、前記電池の世代または型番を推定する
     ことを特徴とする請求項4記載の電池管理装置。
    The relationship data describes information specifying the material for each generation or model number of the battery,
    5. The battery management device according to claim 4, wherein the calculation unit estimates the generation or model number of the battery by estimating the material.
  6.  前記演算部は、前記電池が充電または放電を終了した終了時点以後の第1起算時点における前記電圧と、前記第1起算時点から第1期間が経過した第1時点における前記電圧との間の第1差分を取得し、
     前記演算部は、前記第1時点以後の第2起算時点における前記電圧と、前記第2起算時点から第2期間が経過した第2時点における前記電圧との間の第2差分を取得し、
     前記演算部は、前記第1差分と前記電池の内部抵抗との間の関係を記述するとともに前記第2差分と前記電池の劣化状態との間の関係を記述した第2関係データを取得し、
     前記演算部は、前記第1差分を用いて前記第2関係データを参照することにより前記内部抵抗を推定し、
     前記演算部は、前記第2差分を用いて前記第2関係データを参照することにより前記劣化状態を推定する
     ことを特徴とする請求項1記載の電池管理装置。
    The calculation unit calculates a value between the voltage at a first time point after the end point of charging or discharging of the battery and the voltage at a first time point after a first period has elapsed from the first time point. get 1 diff,
    The computing unit obtains a second difference between the voltage at a second time point after the first time point and the voltage at a second time point after a second period has elapsed from the second time point, and
    The computing unit obtains second relational data describing a relationship between the first difference and the internal resistance of the battery and describing a relationship between the second difference and the state of deterioration of the battery,
    The computing unit estimates the internal resistance by referring to the second relational data using the first difference,
    The battery management device according to claim 1, wherein the calculation unit estimates the deterioration state by referring to the second relationship data using the second difference.
  7.  前記電池管理装置はさらに、前記演算部が推定した前記劣化要因を提示するユーザインターフェースを備える
     ことを特徴とする請求項1記載の電池管理装置。
    The battery management device according to claim 1, further comprising a user interface for presenting the deterioration factor estimated by the calculation unit.
  8.  前記演算部は、前記差分として、前記対数時間軸上における前記電圧の対数時間に対する傾きを計算する
     ことを特徴とする請求項1記載の電池管理装置。
    The battery management device according to claim 1, wherein the calculation unit calculates, as the difference, a slope of the voltage on the logarithmic time axis with respect to logarithmic time.
  9.  電池の状態を管理する電池管理方法であって、
     前記電池が出力する電圧の検出値を取得するステップ、
     前記電池の状態を推定するステップ、
     を備え、
     前記推定するステップにおいては、前記電池が充電または放電を終了した後の休止期間において、前記電圧の経時変化を対数時間軸上で表したときの変曲点を特定し、
     前記推定するステップにおいては、前記変曲点によって区切られる前記休止期間内の区間における前記電圧の差分を計算し、
     前記推定するステップにおいては、前記差分と前記電池の劣化要因との間の関係を記述した関係データを取得し、
     前記推定するステップにおいては、前記差分を用いて前記関係データを参照することにより、前記電池の劣化要因を推定する
     ことを特徴とする電池管理方法。
    A battery management method for managing the state of a battery, comprising:
    obtaining a detected value of the voltage output by the battery;
    estimating the state of the battery;
    with
    In the estimating step, in a rest period after the battery finishes charging or discharging, an inflection point is specified when the change over time of the voltage is expressed on a logarithmic time axis,
    In the estimating step, calculating the difference in the voltage in the interval within the rest period separated by the inflection point;
    In the estimating step, obtaining relationship data describing the relationship between the difference and the deterioration factor of the battery,
    The battery management method, wherein in the estimating step, the deterioration factor of the battery is estimated by referring to the relational data using the difference.
PCT/JP2021/016964 2021-04-28 2021-04-28 Battery management device and battery management method WO2022230104A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/016964 WO2022230104A1 (en) 2021-04-28 2021-04-28 Battery management device and battery management method
JP2023516948A JPWO2022230104A1 (en) 2021-04-28 2021-04-28
TW111108945A TWI802317B (en) 2021-04-28 2022-03-11 Battery management device, battery management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/016964 WO2022230104A1 (en) 2021-04-28 2021-04-28 Battery management device and battery management method

Publications (1)

Publication Number Publication Date
WO2022230104A1 true WO2022230104A1 (en) 2022-11-03

Family

ID=83848041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016964 WO2022230104A1 (en) 2021-04-28 2021-04-28 Battery management device and battery management method

Country Status (3)

Country Link
JP (1) JPWO2022230104A1 (en)
TW (1) TWI802317B (en)
WO (1) WO2022230104A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059251A (en) * 2012-09-19 2014-04-03 Gs Yuasa Corp Internal resistance estimation device and internal resistance estimation method
JP2014077785A (en) * 2012-09-20 2014-05-01 Sekisui Chem Co Ltd Storage battery management apparatus, storage battery managing method, and program
JP2014167450A (en) * 2013-02-28 2014-09-11 Asahi Kasei Corp Battery state estimation device for secondary battery, manufacturing method of battery pack, and cell balance confirmation method
JP2014224706A (en) * 2013-05-15 2014-12-04 旭化成株式会社 Secondary battery diagnosis device and secondary battery diagnosis method
JP2019100933A (en) * 2017-12-06 2019-06-24 トヨタ自動車株式会社 Secondary battery degradation state estimation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5944291B2 (en) * 2012-10-05 2016-07-05 カルソニックカンセイ株式会社 Battery parameter estimation apparatus and method
US11215675B2 (en) * 2017-04-17 2022-01-04 The Regents Of The University Of Michigan Method to estimate battery health for mobile devices based on relaxing voltages
US11226374B2 (en) * 2017-10-17 2022-01-18 The Board Of Trustees Of The Leland Stanford Junior University Data-driven model for lithium-ion battery capacity fade and lifetime prediction
CN112198433A (en) * 2020-09-28 2021-01-08 珠海迈巨微电子有限责任公司 Battery capacity calibration method, calibration device and battery management system
CN112698230A (en) * 2020-12-02 2021-04-23 国网上海市电力公司 Method for rapidly measuring dynamic impedance of health state of lithium ion battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059251A (en) * 2012-09-19 2014-04-03 Gs Yuasa Corp Internal resistance estimation device and internal resistance estimation method
JP2014077785A (en) * 2012-09-20 2014-05-01 Sekisui Chem Co Ltd Storage battery management apparatus, storage battery managing method, and program
JP2014167450A (en) * 2013-02-28 2014-09-11 Asahi Kasei Corp Battery state estimation device for secondary battery, manufacturing method of battery pack, and cell balance confirmation method
JP2014224706A (en) * 2013-05-15 2014-12-04 旭化成株式会社 Secondary battery diagnosis device and secondary battery diagnosis method
JP2019100933A (en) * 2017-12-06 2019-06-24 トヨタ自動車株式会社 Secondary battery degradation state estimation method

Also Published As

Publication number Publication date
JPWO2022230104A1 (en) 2022-11-03
TWI802317B (en) 2023-05-11
TW202242438A (en) 2022-11-01

Similar Documents

Publication Publication Date Title
TWI591358B (en) Cell state calculation apparatus and cell state calculation method
JP7255020B2 (en) battery simulation
JP5058814B2 (en) Battery state and parameter estimation system and method
JP7155138B2 (en) Battery health status determination and alarm generation
JP6488105B2 (en) Storage battery evaluation apparatus and method
JP7390490B2 (en) Battery management device, battery management method
US20170263984A1 (en) Storage battery evaluation device, storage battery, storage battery evaluation method and non-transitory computer readable medium
KR101615139B1 (en) Apparatus and method for real-time estimation of battery state-of-health
US20200309857A1 (en) Methods, systems, and devices for estimating and predicting battery properties
WO2022230335A1 (en) Battery state estimation device and power system
US20140005965A1 (en) Method of Evaluating Remaining Power of a Battery for Portable
JP2017194476A (en) Battery state estimation apparatus of secondary battery
JP2020109367A (en) Internal state estimation device and method, and battery control device
US20240125860A1 (en) Battery Management Device, and Electric Power System
KR20240032778A (en) Apparatus and method for managing battery
JP2018072346A (en) Battery state estimation apparatus of secondary battery
JP7414697B2 (en) Battery deterioration determination device, battery management system, battery equipped equipment, battery deterioration determination method, and battery deterioration determination program
JP2012083142A (en) Calculation device for internal resistance of secondary battery
WO2022230104A1 (en) Battery management device and battery management method
JP2023030559A (en) Processing method, processing device and processing program associated with discharging and charging of storage battery
JP2023136212A (en) Battery state estimation device, battery system, and battery state estimation method
CA3232032A1 (en) Deterioration-state prediction method, deterioration-state prediction apparatus, and deterioration-state prediction program
CN115298560A (en) Method for real-time determination of the lifetime of electrochemical elements of a battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939265

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023516948

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939265

Country of ref document: EP

Kind code of ref document: A1