JP2017194476A - Battery state estimation apparatus of secondary battery - Google Patents

Battery state estimation apparatus of secondary battery Download PDF

Info

Publication number
JP2017194476A
JP2017194476A JP2017104093A JP2017104093A JP2017194476A JP 2017194476 A JP2017194476 A JP 2017194476A JP 2017104093 A JP2017104093 A JP 2017104093A JP 2017104093 A JP2017104093 A JP 2017104093A JP 2017194476 A JP2017194476 A JP 2017194476A
Authority
JP
Japan
Prior art keywords
battery
internal resistance
secondary battery
unit
battery capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017104093A
Other languages
Japanese (ja)
Inventor
坂田 康治
Koji Sakata
康治 坂田
孝司 森本
Koji Morimoto
孝司 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012276294A priority Critical patent/JP6253137B2/en
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2017104093A priority patent/JP2017194476A/en
Publication of JP2017194476A publication Critical patent/JP2017194476A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery state estimation apparatus of a secondary battery by calculating internal resistance of the secondary battery with high accuracy, and by reliably estimating battery capacity even if the number of times of performing reset charge/discharge is reduced.SOLUTION: A control unit 6 is connected with an internal resistance calculation unit 9 for calculating internal resistance of a secondary battery. The internal resistance calculation unit 9 executes wavelet transformation from respective measured values by a voltage measuring unit 3 and a current measuring unit 4, acquires wavelet coefficients of the current and voltage for each frequency, and calculates the internal resistance of the secondary battery from ratio of the wavelet coefficients. When relation between the wavelet coefficients of the current and the voltage is linearly approximated, the internal resistance calculation unit 9 excludes the case in which correlation for the wavelet coefficients is lower than a predetermined reference, and calculates the internal resistance of the secondary battery.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、電流波形と電圧波形をウェーブレット変換により解析して二次電池の電池状態を推定する装置に関する。   Embodiments described herein relate generally to an apparatus that estimates a battery state of a secondary battery by analyzing a current waveform and a voltage waveform by wavelet transform.

二次電池は、充放電サイクルの増加や経年劣化に伴い、正負極の活物質や電解液などが変化して、内部抵抗が増加すると共に電池容量が減少する。二次電池の内部抵抗とは、セパレータ部分のイオン伝導抵抗や、正極、負極の電荷移動抵抗、正負極活物質粒子内部でのイオンの拡散遅れによる抵抗など、複数の抵抗要因が組み合わされたものであり、内部抵抗が増加することで電池状態の劣化を招く。また、二次電池の電池容量とは、充放電可能な残存容量のことであり、電池容量の低減は充放電性能の低下にほかならない。   In the secondary battery, with an increase in charge / discharge cycle and aging deterioration, the active material of the positive and negative electrodes, the electrolytic solution, and the like change, and the internal resistance increases and the battery capacity decreases. The internal resistance of the secondary battery is a combination of multiple resistance factors, such as the ion conduction resistance of the separator part, the charge transfer resistance of the positive and negative electrodes, and the resistance due to ion diffusion delay inside the positive and negative electrode active material particles. In addition, an increase in internal resistance causes deterioration of the battery state. Moreover, the battery capacity of a secondary battery is the remaining capacity which can be charged / discharged, and reduction of battery capacity is nothing but the fall of charging / discharging performance.

そこで従来から、二次電池の内部抵抗や電池容量は、二次電池の電池状態を把握するためのパラメータとして重視されており、これらを監視することが実施されている。特に、内部抵抗は、内部抵抗の値から電池セルの個体ばらつきを計測し、製造時の不良品検査などにも利用可能であるため、重要なパラメータとして高精度で内部抵抗を把握することが求められている。   Therefore, conventionally, the internal resistance and the battery capacity of the secondary battery have been regarded as important parameters for grasping the battery state of the secondary battery, and these are monitored. In particular, internal resistance can be used to measure individual variations of battery cells from the value of internal resistance and can be used for inspection of defective products at the time of manufacture. Therefore, it is necessary to grasp internal resistance with high accuracy as an important parameter. It has been.

(内部抵抗)
二次電池の内部抵抗を求める方法としては、大きく分けて直流インピーダンス法と交流インピーダンス法の二つがある。直流インピーダンス法は、充放電時の電圧変化分をその時の電流値の変化分で割ることにより内部抵抗を求める方法である。その代表的な方法の一つに直流パルス法がある。直流パルス法では、電池に定電流パルスを印加し、定電流パルス印加時の立ち上りの電圧変化や、印加中に緩やかに増加する電圧変化などから内部抵抗成分を求める。
(Internal resistance)
As a method for obtaining the internal resistance of the secondary battery, there are roughly two methods, a DC impedance method and an AC impedance method. The direct current impedance method is a method for obtaining an internal resistance by dividing a change in voltage during charging and discharging by a change in current value at that time. One of the typical methods is the DC pulse method. In the DC pulse method, a constant current pulse is applied to a battery, and an internal resistance component is obtained from a voltage change at the time of application of the constant current pulse or a voltage change that gradually increases during application.

一方、交流インピーダンス法は、電池をポテンショスタットに接続し、正弦波の電圧を入力することで電流出力の交流成分を解析し、内部抵抗を求める方法である。交流成分の解析には、ポテンショスタットの他に周波数解析装置が必要であるが、前記の直流パルス法と比べて内部抵抗成分をより詳しく解析できるという利点がある。   On the other hand, the AC impedance method is a method in which a battery is connected to a potentiostat and an AC component of a current output is analyzed by inputting a sine wave voltage to obtain an internal resistance. The analysis of the AC component requires a frequency analysis device in addition to the potentiostat, but has the advantage that the internal resistance component can be analyzed in more detail than the DC pulse method.

具体的な二次電池の内部抵抗の算出方法としては、例えば特許文献1〜3などが提案されている。特許文献1では、電流変化量と電圧変化量及びインピーダンス変化量に基づくパラメータとを直線近似し、近似した直線の傾きから電池のインピーダンスを算出する。この技術では、算出されたインピーダンスの初期値に対する増加割合に基づいて、電池の劣化状態を推定する。   As a specific method for calculating the internal resistance of the secondary battery, for example, Patent Documents 1 to 3 have been proposed. In Patent Document 1, the current change amount, the voltage change amount, and the parameter based on the impedance change amount are linearly approximated, and the battery impedance is calculated from the slope of the approximated straight line. In this technique, the deterioration state of the battery is estimated based on the increase rate of the calculated impedance with respect to the initial value.

特許文献2では、周波数フィルタを用いて、電流および電圧の変化を、高周波成分と低周波成分とに分離し、拡散抵抗に相当する低周波成分を除いた高周波成分を電池の内部抵抗として抽出する。特許文献2では、電流および電圧の変化のうちの高周波成分の方を、二次電池の内部抵抗と定義している。   In Patent Document 2, a change in current and voltage is separated into a high-frequency component and a low-frequency component using a frequency filter, and a high-frequency component excluding a low-frequency component corresponding to a diffused resistor is extracted as the internal resistance of the battery. . In Patent Document 2, the high frequency component of the current and voltage changes is defined as the internal resistance of the secondary battery.

特許文献3では、電流および電圧変化をそれぞれフーリエ変換し、周波数毎の信号強度を求め、それらの周波数成分の比から内部抵抗を算出する。この技術によれば、複数の異なる周波数成分から内部抵抗を算出し、二次電池を等価回路で表した場合の回路定数を推定する。   In Patent Document 3, the current and voltage changes are each Fourier transformed to determine the signal intensity for each frequency, and the internal resistance is calculated from the ratio of these frequency components. According to this technique, the internal resistance is calculated from a plurality of different frequency components, and the circuit constant is estimated when the secondary battery is represented by an equivalent circuit.

(電池容量)
二次電池の電池容量を測定する場合には、リセット充放電を定期的に行うことが一般的である。リセット充放電とは、二次電池を完放電から満充電、および、満充電から完放電まで、一定出力(または一定電流)で充放電を行い、充電容量や放電容量量を実計測する方法である。すなわち、図14に示すように、セル電圧を下限電圧から上限電圧まで充電することで充電容量を求め、セル電圧を上限電圧から下限電圧まで放電することで放電容量を求めている。
(Battery capacity)
When measuring the battery capacity of a secondary battery, reset charging / discharging is generally performed periodically. Reset charge / discharge is a method of charging and discharging a secondary battery at a constant output (or constant current) from full discharge to full charge and from full charge to full discharge, and actually measuring the charge capacity and discharge capacity. is there. That is, as shown in FIG. 14, the charge capacity is obtained by charging the cell voltage from the lower limit voltage to the upper limit voltage, and the discharge capacity is obtained by discharging the cell voltage from the upper limit voltage to the lower limit voltage.

特開2006−250905号公報JP 2006-250905 A 特開2005−106616号公報JP 2005-106616 A 特開2005−221487号公報JP 2005-221487 A

ところで近年、二次電池の需要は高まる傾向にあり、二次電池を自然エネルギーの変動抑制などに利用することが要望されている。この場合、上記の従来技術では、次のような課題がある。すなわち、直流パルス法を用いて二次電池の内部抵抗を求める技術では、充放電電流が常に変動するため、定電流パルスを印可することが難しかった。また、交流インピーダンス法を用いて二次電池の内部抵抗を求める技術では、測定に特殊な解析装置を接続する必要があり、二次電池の稼働中に内部抵抗を求めることが困難であった。二次電池を自然エネルギーの変動抑制などに利用する場合、これらの問題点を解消することが急務であり、高い精度で二次電池の内部抵抗を求める技術の確立が待たれていた。   Incidentally, in recent years, demand for secondary batteries has been increasing, and there is a demand for using secondary batteries to suppress fluctuations in natural energy. In this case, the above prior art has the following problems. That is, in the technique for obtaining the internal resistance of the secondary battery by using the direct current pulse method, it is difficult to apply a constant current pulse because the charge / discharge current constantly fluctuates. Moreover, in the technique for obtaining the internal resistance of the secondary battery using the AC impedance method, it is necessary to connect a special analyzer for measurement, and it is difficult to obtain the internal resistance during operation of the secondary battery. When a secondary battery is used for suppressing fluctuations in natural energy, it is an urgent need to solve these problems, and the establishment of a technique for obtaining the internal resistance of the secondary battery with high accuracy has been awaited.

電池容量の測定については、満充電や完放電まで充放電制御を行うリセット充放電を実施しているが、リセット充放電には、二次電池を制御する上位装置(EMS:Energy Management System)との制御タイミングに制約があるという問題がある。すなわち、二次電池の充放電制御は上位装置からの充放電指令によって行われるので、リセット充放電の実施は二次電池の非稼働中に限られることになる。   Regarding the measurement of battery capacity, reset charge / discharge is performed to perform charge / discharge control until full charge or complete discharge. For reset charge / discharge, a host device (EMS: Energy Management System) that controls the secondary battery is used. There is a problem that the control timing is limited. That is, since the charge / discharge control of the secondary battery is performed by the charge / discharge command from the host device, the implementation of the reset charge / discharge is limited to when the secondary battery is not in operation.

また、リセット充放電は、電池容量の測定に要する時間が数時間と長い点も課題である。例えば、時間1Cレート(完放電から満充電まで1時間で十分を行う充電レート)によるリセット充放電では、最低でも2時間以上かかる。このため、電池容量の測定に関しては、リセット充放電の実施回数を極力減らして、二次電池を高効率で運用することが望まれていた。   In addition, reset charging / discharging has a problem that the time required for measuring the battery capacity is as long as several hours. For example, reset charging / discharging at a time 1C rate (a charging rate at which one hour is sufficient from complete discharge to full charge) takes at least two hours. For this reason, regarding the measurement of the battery capacity, it has been desired to operate the secondary battery with high efficiency by reducing the number of times of reset charging / discharging as much as possible.

本発明の実施形態は、上記の課題を解決するためになされたものであり、高い精度で二次電池の内部抵抗を算出すると共に、リセット充放電の実施回数が低減しても確実に電池容量を推定することにより、二次電池の電池状態を推定する装置を提供することを目的としている。   Embodiments of the present invention have been made to solve the above-described problems, and calculate the internal resistance of a secondary battery with high accuracy and ensure battery capacity even when the number of reset charge / discharge operations is reduced. It is an object of the present invention to provide a device that estimates the battery state of a secondary battery by estimating.

上記目的を達成するために、本発明の実施形態は、次のような構成要素(a)〜(d)を有することを特徴とする。
(a)二次電池を構成する各電池セルの正極端子と負極端子間に接続され、端子間電圧を測定する電圧測定部。
(b)電流経路に挿入され、前記電池セルへの充放電電流を測定する電流測定部。
(c)前記電圧測定部及び前記電流測定部における測定を制御する制御部。
(d)当該制御部に接続され、前記電圧測定部及び前記電流測定部からの各測定値からウェーブレット変換を行い、周波数毎に電流及び電圧のウェーブレット係数を求め、これらの比率から二次電池の内部抵抗を算出する内部抵抗算出部。
(e)前記内部抵抗算出部は、前記電流及び電圧のウェーブレット係数の関係を直線近似したとき、予め設定された基準の場合よりも相関の低い場合を除外して、二次電池の内部抵抗を算出するように構成する。
In order to achieve the above object, an embodiment of the present invention is characterized by having the following components (a) to (d).
(A) A voltage measuring unit that is connected between the positive electrode terminal and the negative electrode terminal of each battery cell that constitutes the secondary battery and measures the voltage between the terminals.
(B) A current measurement unit that is inserted into a current path and measures a charge / discharge current to the battery cell.
(C) A control unit that controls measurement in the voltage measurement unit and the current measurement unit.
(D) Connected to the control unit, performs wavelet transform from each measurement value from the voltage measurement unit and the current measurement unit, obtains a wavelet coefficient of current and voltage for each frequency, and determines the secondary battery from these ratios An internal resistance calculation unit for calculating internal resistance.
(E) When the internal resistance calculation unit linearly approximates the relationship between the current and voltage wavelet coefficients, the internal resistance calculation unit excludes the case where the correlation is lower than that of a preset reference, and calculates the internal resistance of the secondary battery. Configure to calculate.

また、本発明の別の実施形態は、上記構成要素(a)〜(d)と、構成要素(f)、(g)を有することを特徴とする。
(f)予め特性評価試験により作成した、二次電池の内部抵抗と二次電池の電池容量との関係を示す電池特性テーブル。
(g)前記内部抵抗算出部によって算出された内部抵抗の最大値から前記電池特性テーブルに基づいて、二次抵抗の電池容量を推定する電池容量推定部。
Another embodiment of the present invention is characterized by comprising the above-described components (a) to (d) and the components (f) and (g).
(F) A battery characteristic table showing the relationship between the internal resistance of the secondary battery and the battery capacity of the secondary battery, created in advance by a characteristic evaluation test.
(G) A battery capacity estimation unit that estimates the battery capacity of the secondary resistance based on the battery characteristic table from the maximum value of the internal resistance calculated by the internal resistance calculation unit.

また、本発明の別の実施形態は、上記構成要素(a)〜(d)と、構成要素(h)〜(k)を有することを特徴とする。
(h)二次電池の電池容量を測定するリセット充放電制御部。
(i)前記内部抵抗および前記リセット充放電制御部が測定した電池容量を記録する記憶部。
(j)前記記憶部に記憶された内部抵抗と電池容量との相関を単回帰分析することによって関係式を導出する演算部。
(k)前記内部抵抗と前記演算部が導出した関係式とから二次電池の電池容量を推定する電池容量推定部。
Another embodiment of the present invention is characterized by having the above-described constituent elements (a) to (d) and the constituent elements (h) to (k).
(H) A reset charge / discharge control unit that measures the battery capacity of the secondary battery.
(I) A storage unit that records the internal resistance and the battery capacity measured by the reset charge / discharge control unit.
(J) An arithmetic unit that derives a relational expression by performing a single regression analysis on the correlation between the internal resistance stored in the storage unit and the battery capacity.
(K) A battery capacity estimation unit that estimates the battery capacity of the secondary battery from the internal resistance and the relational expression derived by the calculation unit.

第1の実施形態の構成を示すブロック図。The block diagram which shows the structure of 1st Embodiment. 第2の実施形態の構成を示すブロック図。The block diagram which shows the structure of 2nd Embodiment. 充放電サイクルと電池セルの内部抵抗、電池容量の関係を示すグラフ。The graph which shows the relationship between a charging / discharging cycle, the internal resistance of a battery cell, and battery capacity. 内部抵抗と電池容量の相関を示すグラフ。The graph which shows the correlation of internal resistance and battery capacity. 電池特性テーブルを示す図。The figure which shows a battery characteristic table. 第2の実施形態に係る電池容量の推定処理を示すフローチャート。The flowchart which shows the estimation process of the battery capacity which concerns on 2nd Embodiment. 第3の実施形態の構成を示すブロック図。The block diagram which shows the structure of 3rd Embodiment. 第3の実施形態に係る電池容量の推定処理を示すフローチャート。The flowchart which shows the estimation process of the battery capacity which concerns on 3rd Embodiment. 電池セルの内部抵抗と電池容量のデータベース定義を示す図。The figure which shows the database definition of the internal resistance of a battery cell, and a battery capacity. 電池セルの内部抵抗と電池容量の関係式(直線近似)を用いた推定方法を説明するためのグラフ。The graph for demonstrating the estimation method using the relational expression (linear approximation) of the internal resistance of a battery cell and a battery capacity. 電池セルの内部抵抗と電池容量の関係式(ルート関数)を用いた推定方法を説明するためのグラフ。The graph for demonstrating the estimation method using the relational expression (root function) of the internal resistance of a battery cell and battery capacity. 第4の実施形態の構成を示すブロック図。The block diagram which shows the structure of 4th Embodiment. 電池劣化予測に用いる電池セルの内部抵抗の推移を示すグラフ。The graph which shows transition of the internal resistance of the battery cell used for battery deterioration prediction. リセット充放電の概略を示す図。The figure which shows the outline of reset charging / discharging.

以下、本発明の実施形態について、図面を参照して説明する。
(1)第1の実施形態
[構成]
第1の実施形態の構成について、図1を用いて具体的に説明する。図1に示すように、第1の実施形態には、直列あるいは並列に接続された複数の電池セル1からなる組電池2が設けられている。各電池セル1の正極端子と負極端子間には端子間電圧を測定する電圧測定部3が接続されている。電流経路には電池セル1への充放電電流を測定する電流測定部4が挿入されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(1) First Embodiment [Configuration]
The configuration of the first embodiment will be specifically described with reference to FIG. As shown in FIG. 1, in the first embodiment, an assembled battery 2 including a plurality of battery cells 1 connected in series or in parallel is provided. A voltage measuring unit 3 for measuring a voltage between terminals is connected between the positive electrode terminal and the negative electrode terminal of each battery cell 1. A current measuring unit 4 for measuring a charging / discharging current to the battery cell 1 is inserted in the current path.

電池セル1の近傍には電池セル1の温度を測定する温度測定部5が配置されている。これら電圧測定部3、電流測定部4、温度測定部5には制御部6が接続されている。制御部6は、各測定部3〜5を制御して、各測定部3〜5が測定した測定値を処理する部分である。制御部6には各測定部3〜5の測定値を記憶する記憶部7と、外部との通信を行う通信インターフェイス8が接続されている。   A temperature measuring unit 5 that measures the temperature of the battery cell 1 is disposed in the vicinity of the battery cell 1. A controller 6 is connected to the voltage measuring unit 3, the current measuring unit 4, and the temperature measuring unit 5. The control part 6 is a part which controls each measurement part 3-5 and processes the measured value which each measurement part 3-5 measured. The control unit 6 is connected to a storage unit 7 that stores measurement values of the measurement units 3 to 5 and a communication interface 8 that performs communication with the outside.

制御部6には、二次電池の内部抵抗を算出する内部抵抗算出部9が接続されている。内部抵抗算出部9は、本実施形態の構成上の特徴であって、電圧測定部3及び電流測定部4からの各測定値からウェーブレット変換を行い、周波数毎に電流及び電圧のウェーブレット係数を求め、これらの比率から二次電池の内部抵抗を算出するようになっている。   An internal resistance calculation unit 9 that calculates the internal resistance of the secondary battery is connected to the control unit 6. The internal resistance calculation unit 9 is a structural feature of the present embodiment, and performs wavelet transform from each measurement value from the voltage measurement unit 3 and the current measurement unit 4 to obtain current and voltage wavelet coefficients for each frequency. The internal resistance of the secondary battery is calculated from these ratios.

内部抵抗算出部9では、ウェーブレット変換を用いて、次のようにして内部抵抗を算出している。まず、波形f(t)のウェーブレット変換WΨfは、式(1)により求めることができる。

Figure 2017194476
The internal resistance calculation unit 9 calculates the internal resistance using wavelet transform as follows. First, the wavelet transform W Ψ f of the waveform f (t) can be obtained by Expression (1).
Figure 2017194476

また、Ψa,b(t)はアナライジングウェーブレットと呼ばれ、ダイレーション(拡大縮小)のパラメータを実数a、t軸上でのシフトのパラメータを実数bとし、式(2)のように定義される。

Figure 2017194476
Also, Ψa, b (t) is called an analyzing wavelet, and the dilation (enlargement / reduction) parameter is a real number a, and the shift parameter on the t-axis is a real number b. The
Figure 2017194476

Ψ(t)としては、さまざまなものが提案されており、適宜選択可能である。式(3)に例としてガボールウェーブレットの定義を示す。

Figure 2017194476
Various Ψ (t) have been proposed and can be selected as appropriate. Formula (3) shows the definition of Gabor wavelet as an example.
Figure 2017194476

計測された電流波形をi(t)、電圧波形をv(t)とすると、それぞれのウェーブレット変換は式(4)、式(5)のようになり、この変換結果はウェーブレット係数と呼ばれる。

Figure 2017194476
Figure 2017194476
Assuming that the measured current waveform is i (t) and the voltage waveform is v (t), the respective wavelet transforms are as shown in Equations (4) and (5), and the transformation results are called wavelet coefficients.
Figure 2017194476
Figure 2017194476

すると、式(6)によって、同一のダイレーションa、シフトbの電流、電圧のウェーブレット係数の比から、内部抵抗を計算することができる。

Figure 2017194476
Then, the internal resistance can be calculated from the ratio of the current and voltage wavelet coefficients of the same dilation a, shift b, and voltage according to equation (6).
Figure 2017194476

このとき、ダイレーションaが周波数に相当し、ダイレーションaが定まれば内部抵抗はシフトbによらず一定であると考えられる。そこで、特定のダイレーションaに対してシフトbを変化させて、(WΨ )(a,b)と(WΨ )(a,b)の関係を、最小二乗法を用いて直線近似すると、その傾きから周波数毎の内部抵抗値R(a)が算出する。 At this time, the dilation a corresponds to the frequency, and if the dilation a is determined, the internal resistance is considered to be constant regardless of the shift b. Therefore, the shift b is changed with respect to a specific dilation a, and the relationship between (W Ψ i ) (a, b) and (W Ψ v ) (a, b) is linearly approximated using the least square method. Then, the internal resistance value R (a) for each frequency is calculated from the inclination.

ここで、直線近似の精度を表す決定係数Rを算出する。(WΨ )(a,b)と(WΨ )(a,b)の分散および共分散をそれぞれνwi、νwv、νwivとすると、νwi、νwv、νwivは、それぞれ式(7)〜(9)で求められる。 Here, to calculate the coefficient of determination R 2 representing the accuracy of the linear approximation. When the dispersion and covariance of (W Ψ i ) (a, b) and (W Ψ v ) (a, b) are νwi, νwv, and νwiv, respectively, νwi, νwv, and νwiv can be expressed by equations (7) to (7), 9).

Figure 2017194476
Figure 2017194476
Figure 2017194476
Figure 2017194476
Figure 2017194476
Figure 2017194476

これにより、(WΨ )(a,b)と(WΨ )(a,b)の関係を直線近似した時の決定係数Rは以下の式で求められる。

Figure 2017194476
以上のようにして内部抵抗算出部9では、制御部6で処理された各電池セル1の電流値および電圧値を、離散ウェーブレット変換し、それらのウェーブレット係数の比率から、二次電池の内部抵抗を算出する。 Thus, (W Ψ i) (a , b) and (W Ψ v) (a, b) determination coefficient R 2 when the linear approximation the relation can be determined by the following equation.
Figure 2017194476
As described above, the internal resistance calculation unit 9 performs discrete wavelet transform on the current value and voltage value of each battery cell 1 processed by the control unit 6, and calculates the internal resistance of the secondary battery from the ratio of the wavelet coefficients. Is calculated.

また、内部抵抗算出部9は、電流及び電圧のウェーブレット係数の関係を直線近似したとき、予め設定された基準の場合よりも相関の低い場合を除外して、二次電池の内部抵抗を算出するように構成されている。   Further, the internal resistance calculation unit 9 calculates the internal resistance of the secondary battery excluding the case where the correlation is lower than the case of the preset reference when linearly approximating the relationship between the current and voltage wavelet coefficients. It is configured as follows.

[作用効果]
一般に、充放電電流が小さいと、各種計測センサーの計測精度の影響により、計測される電流値や電圧値の計測誤差は相対的に大きくなる。そのため、離散ウェーブレット変換により算出される電流値および電圧値のウェーブレット係数(信号強度)においては、それらを単回帰分析した場合の相関(決定係数)が小さくなる傾向がある。
[Function and effect]
In general, when the charge / discharge current is small, the measurement error of the measured current value and voltage value becomes relatively large due to the influence of measurement accuracy of various measurement sensors. Therefore, in the wavelet coefficients (signal strength) of the current value and voltage value calculated by the discrete wavelet transform, the correlation (determination coefficient) when they are subjected to a single regression analysis tends to be small.

そこで、本実施形態における内部抵抗算出部9では、電流及び電圧のウェーブレット係数の関係を直線近似したとき、予め設定された基準の場合よりも相関の低い場合を除外して、二次電池の内部抵抗を算出するように構成した。これにより、電流値および電圧値のウェーブレット係数に関する相関が小さい区間では、充放電電流値が小さいものと見なして内部抵抗の算出から除外することで、内部抵抗の算出精度を向上することができる。   Therefore, in the internal resistance calculation unit 9 in the present embodiment, when the relationship between the current and voltage wavelet coefficients is linearly approximated, the internal resistance of the secondary battery is excluded except for the case where the correlation is lower than that of a preset reference. It was configured to calculate resistance. Thereby, in the section where the correlation regarding the wavelet coefficient between the current value and the voltage value is small, it is considered that the charge / discharge current value is small and is excluded from the calculation of the internal resistance, thereby improving the calculation accuracy of the internal resistance.

また、ウェーブレット変換の窓区間において充電電流の変化が少ない場合も、内部抵抗の誤差は大きくなる傾向にある。そのため、内部抵抗算出部9では、算出されたウェーブレット係数が、予め設定された一定値以上となるサンプリング数が少ない場合も除外して、二次電池の内部抵抗を算出する。これにより、ウェーブレット変換の窓区間において充電電流の変化が少ない場合を内部抵抗の算出から除外することができ、内部抵抗の算出精度を向上することができる。   Also, when the change in the charging current is small in the wavelet transform window section, the error of the internal resistance tends to increase. For this reason, the internal resistance calculation unit 9 calculates the internal resistance of the secondary battery, excluding the case where the calculated wavelet coefficient is less than a predetermined number of samplings. Thereby, the case where there is little change in the charging current in the window section of the wavelet transform can be excluded from the calculation of the internal resistance, and the calculation accuracy of the internal resistance can be improved.

上記のような第1の実施形態によれば、電流及び電圧のウェーブレット係数の関係を直線近似した場合において相関の低い場合を除外した上で、ウェーブレット変換を用いて内部抵抗を極めて高精度に算出することができる。したがって、充放電電流が常に変動しても二次電池の内部抵抗を求めることが可能となり、二次電池を自然エネルギーの変動抑制などに利用する場合にも好適である。   According to the first embodiment as described above, when the relation between the wavelet coefficients of current and voltage is linearly approximated, the case where the correlation is low is excluded, and the internal resistance is calculated with high accuracy using the wavelet transform. can do. Therefore, the internal resistance of the secondary battery can be obtained even when the charge / discharge current constantly fluctuates, which is also suitable when the secondary battery is used for suppressing fluctuations in natural energy.

(2)第2の実施形態
[構成]
図2に第2の実施形態の構成を示す。なお、第1の実施形態と同一部分については同一符号を付して説明を省略する。図2に示すように、第2の実施形態は、上記第1の実施形態の構成に加え、制御部6に、電池特性テーブル10が保持されると共に、電池容量推定部11が接続されたことを特徴としている。
(2) Second Embodiment [Configuration]
FIG. 2 shows the configuration of the second embodiment. Note that the same parts as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. As shown in FIG. 2, in the second embodiment, in addition to the configuration of the first embodiment, the battery characteristic table 10 is held in the control unit 6 and the battery capacity estimation unit 11 is connected. It is characterized by.

電池特性テーブル10は、予め実施される特性評価試験の結果から、例えば二次電池の充放電サイクル毎に計測した二次電池の内部抵抗と電池容量の計測結果から、作成するものである。電池容量推定部11は、内部抵抗算出部9によって算出された内部抵抗の最大値から、電池特性テーブル10に基づいて、二次抵抗の電池容量を推定する部分である。   The battery characteristic table 10 is created from the result of the characteristic evaluation test performed in advance, for example, from the measurement result of the internal resistance and the battery capacity of the secondary battery measured for each charge / discharge cycle of the secondary battery. The battery capacity estimation unit 11 is a part that estimates the battery capacity of the secondary resistance based on the battery characteristic table 10 from the maximum value of the internal resistance calculated by the internal resistance calculation unit 9.

図3は、二次電池の充放電サイクル毎に計測した内部抵抗と電池容量の関係を示したグラフである。このグラフから分かるように、二次電池に対する充放電サイクル数の増加と共に、電池セル1の内部抵抗は上昇し、二次電池の容量維持率は低下する。充放電サイクル数と内部抵抗と電池容量との間の相関は関数式で表すことができる。例えば、これらの関係が直線近似で表される場合の例を図4のグラフに示す。本実施形態では、電池の特性を関係式で表す方法に代わり、それらの関係を電池の劣化状態を示す電池特性テーブル(図5参照)として制御部6に直接保持しておく。   FIG. 3 is a graph showing the relationship between the internal resistance measured for each charge / discharge cycle of the secondary battery and the battery capacity. As can be seen from this graph, as the number of charge / discharge cycles for the secondary battery increases, the internal resistance of the battery cell 1 increases and the capacity retention rate of the secondary battery decreases. The correlation among the number of charge / discharge cycles, the internal resistance, and the battery capacity can be expressed by a functional expression. For example, the graph of FIG. 4 shows an example in which these relationships are expressed by linear approximation. In this embodiment, instead of the method of expressing the characteristics of the battery by a relational expression, the relationship is directly held in the control unit 6 as a battery characteristics table (see FIG. 5) indicating the deterioration state of the battery.

ところで、二次電池の中でもリチウムイオン二次電池では、二次電池の過充電または過放電を防止するため、電池セル1毎の電圧値を監視しながら充放電を行う。例えばリチウムイオン二次電池の充電時は、二次電池内の全電池セルの電圧を個別に監視し、それらの中で最も高い電圧値が上限電圧に到達した時点で充電を停止する。この時、上限電圧に到達した時点で一定出力による充電から定電圧充電に切り替える場合もある。そのため、二次電池の電池容量は、二次電池内で内部抵抗値が最も大きい電池セルの影響を受けることが分かる。   By the way, in a secondary battery, in a lithium ion secondary battery, in order to prevent the overcharge or overdischarge of a secondary battery, it charges / discharges, monitoring the voltage value for every battery cell 1. FIG. For example, when charging a lithium ion secondary battery, the voltages of all the battery cells in the secondary battery are individually monitored, and charging is stopped when the highest voltage value among them reaches the upper limit voltage. At this time, when the upper limit voltage is reached, there is a case where the charging with the constant output is switched to the constant voltage charging. Therefore, it can be seen that the battery capacity of the secondary battery is affected by the battery cell having the largest internal resistance value in the secondary battery.

また、二次電池は電池セル1を直列または並列に接続して、より高電圧かつ大容量の二次電池を構成する。電池セル1を並列に接続する場合、これらの電池セル1の電圧は常に一定を保つが、直列に接続する場合は個々の電池セル1のばらつきによってセル電圧に差が生じる。電池セルの劣化に伴って、セル電圧のばらつきは拡大すると考えられ、内部抵抗が大きい電池セル1の影響が増大すると考えられる。   Moreover, a secondary battery connects the battery cell 1 in series or in parallel, and comprises a secondary battery with a higher voltage and a large capacity. When the battery cells 1 are connected in parallel, the voltages of these battery cells 1 are always kept constant. However, when the battery cells 1 are connected in series, there is a difference in cell voltage due to variations in the individual battery cells 1. As the battery cell deteriorates, the cell voltage variation is considered to increase, and the influence of the battery cell 1 having a large internal resistance is considered to increase.

そこで、第2の実施形態では、図6のフローチャートに示すように、電流、セル電圧、電池温度を測定(S101)した後、電池セル1の内部抵抗を内部抵抗算出部9によって算出し(S102)、算出された各電池セルの内部抵抗の中で最も大きい値を算出する(S103)。続いて、内部抵抗算出部9によって算出された内部抵抗の最大値から、電池特性テーブル10に基づいて、電池容量推定部11が二次抵抗の電池容量を推定する(S104)。   Therefore, in the second embodiment, as shown in the flowchart of FIG. 6, after measuring the current, cell voltage, and battery temperature (S101), the internal resistance of the battery cell 1 is calculated by the internal resistance calculation unit 9 (S102). ), The largest value among the calculated internal resistances of the respective battery cells is calculated (S103). Subsequently, based on the battery characteristic table 10, the battery capacity estimation unit 11 estimates the battery capacity of the secondary resistance from the maximum value of the internal resistance calculated by the internal resistance calculation unit 9 (S104).

[作用効果]
以上のような第2の実施形態によれば、ウェーブレット変換を用いた第1の実施形態の作用効果に加えて、電池特性テーブル10を用いることのより、二次電池の電池容量を確実に推定することが可能となり、二次電池を高効率で運用することができる。特に、電池セル1毎の電圧値を監視しながら充放電を行うリチウムイオン二次電池では、二次電池の過充電または過放電を防止することが可能となり、リチウムイオン二次電池の電池容量を把握する場合に好適である。
[Function and effect]
According to the second embodiment as described above, the battery capacity of the secondary battery is reliably estimated by using the battery characteristic table 10 in addition to the operational effects of the first embodiment using the wavelet transform. And the secondary battery can be operated with high efficiency. In particular, in a lithium ion secondary battery that charges and discharges while monitoring the voltage value of each battery cell 1, it is possible to prevent overcharge or overdischarge of the secondary battery, and the battery capacity of the lithium ion secondary battery is reduced. It is suitable for grasping.

(3)第3の実施形態
[構成]
図7に、第3の実施形態の構成を示す。なお、第1の実施形態と同一部分については同一符号を付して説明を省略する。図7に示すように、第3の実施形態では、上記第1の実施形態の構成に加え、制御部6に、リセット充放電制御部12と、演算部13と、電池容量推定部14とが接続されたことを特徴としている。
(3) Third Embodiment [Configuration]
FIG. 7 shows the configuration of the third embodiment. Note that the same parts as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. As shown in FIG. 7, in the third embodiment, in addition to the configuration of the first embodiment, the control unit 6 includes a reset charge / discharge control unit 12, a calculation unit 13, and a battery capacity estimation unit 14. It is characterized by being connected.

リセット充放電制御部12は、二次電池の電池容量を実計測するリセット充放電を制御して、充放電可能容量を測定する部分である。また、記憶部7は、電池セル1の内部抵抗やリセット充放電制御部12の測定結果、さらには演算部13の求めた関係式のパラメータなどを記録するようになっている。   The reset charge / discharge control unit 12 controls reset charge / discharge, which actually measures the battery capacity of the secondary battery, and measures the chargeable / dischargeable capacity. The storage unit 7 records the internal resistance of the battery cell 1, the measurement result of the reset charge / discharge control unit 12, the parameters of the relational expression obtained by the calculation unit 13, and the like.

演算部13は、記憶部7に記憶された内部抵抗および電池容量の測定結果の相関を単回帰分析することによって関係式を導出する部分である。演算部13は、内部抵抗および電池容量の相関を単回帰分析するとき、電池劣化を表す近似式として想定される近似式の中から、最も相関の高い近似式を選択し、そのパラメータを同定するようになっている(この点については後段の段落0056にて詳しく述べる)。電池容量推定部14は、内部抵抗算出部9が算出した内部抵抗の値と演算部13が導出した関係式から二次電池の電池容量を推定する部分である。   The calculation unit 13 is a part that derives a relational expression by performing a single regression analysis on the correlation between the measurement results of the internal resistance and the battery capacity stored in the storage unit 7. When performing a single regression analysis of the correlation between the internal resistance and the battery capacity, the calculation unit 13 selects the approximate expression having the highest correlation from the approximate expressions assumed as approximate expressions representing the battery deterioration, and identifies the parameters. (This point will be described in detail later in paragraph 0056). The battery capacity estimation unit 14 is a part that estimates the battery capacity of the secondary battery from the value of the internal resistance calculated by the internal resistance calculation unit 9 and the relational expression derived by the calculation unit 13.

上記の第2の実施形態のように、電池特性テーブル10を用いて二次電池の電池容量を推定する場合、二次電池に対する充放電サイクル試験を行い、電池劣化に伴う内部抵抗値と電池容量の関係を明らかにし、事前に電池特性テーブル10を作成する必要がある。通常、この充放電サイクル試験は、多くの時間とコストがかかる。また、電池セル1の改良に伴う電池特性の変化が生じた場合には、再度、評価試験を実施し直さなくてはならず、面倒である。   When the battery capacity of the secondary battery is estimated using the battery characteristic table 10 as in the second embodiment, a charge / discharge cycle test is performed on the secondary battery, and the internal resistance value and the battery capacity associated with the battery deterioration. Therefore, it is necessary to create the battery characteristic table 10 in advance. Normally, this charge / discharge cycle test takes a lot of time and cost. Moreover, when the change of the battery characteristic accompanying improvement of the battery cell 1 arises, the evaluation test must be performed again, which is troublesome.

そこで、第3の実施形態では、二次電池の電池容量の推定に関して、従来から存在するリセット充放電を利用する。既に述べたように、リセット充放電は、二次電池の稼働中(上位監視装置により制御されている状態)では実施することができないが、リセット充放電を実施すれば、電池セル1を多直列/多並列に組み合わせた状態において、現在の充放電可能容量である電池容量を正確且つ確実に把握することが可能である。   Therefore, in the third embodiment, the conventional reset charge / discharge is used for the estimation of the battery capacity of the secondary battery. As described above, reset charging / discharging cannot be performed while the secondary battery is in operation (controlled by the host monitoring device). However, if reset charging / discharging is performed, battery cells 1 are connected in series. / It is possible to accurately and reliably grasp the battery capacity that is the current chargeable / dischargeable capacity in a state of being combined in parallel.

第3の実施形態に係るフローチャートを図8に示す。第3の実施形態では、まず第3の実施形態を適用した蓄電池システムの保守モードへ移行し(S201)、リセット充放電制御部12がリセット充放電を行って(S202)、充放電可能容量を測定する(S203)。   FIG. 8 shows a flowchart according to the third embodiment. In 3rd Embodiment, it transfers to the maintenance mode of the storage battery system to which 3rd Embodiment is applied first (S201), the reset charging / discharging control part 12 performs reset charging / discharging (S202), and chargeable / dischargeable capacity | capacitance is carried out. Measure (S203).

記憶部7は充放電可能容量を記録する(S204)。演算部13は単回帰分析により関係式を導出し(S205)、記憶部7は関係式のパラメータを記録する(S206)。二次電池の稼働初期に、電池セル1の内部抵抗の算出と電池容量の計測、記憶部7におけるデータベースへの蓄積、単回帰分析による関係式の導出を繰り返した後、通常モードに復帰する(S207)。   The storage unit 7 records the chargeable / dischargeable capacity (S204). The calculation unit 13 derives a relational expression by single regression analysis (S205), and the storage unit 7 records parameters of the relational expression (S206). In the initial operation of the secondary battery, calculation of the internal resistance of the battery cell 1 and measurement of the battery capacity, accumulation in the database in the storage unit 7, and derivation of the relational expression by single regression analysis are repeated, and then the normal mode is restored ( S207).

第3の実施形態においては、リセット充放電制御部12で実計測した二次電池の電池容量と、電池セル1の内部抵抗との相関を、記憶部7においてデータベース化し(図9に図示)、演算部13が、それらの相関を単回帰分析することによって関係式を導出する。   In the third embodiment, the storage unit 7 creates a database of the correlation between the battery capacity of the secondary battery actually measured by the reset charge / discharge control unit 12 and the internal resistance of the battery cell 1 (illustrated in FIG. 9). The calculation unit 13 derives a relational expression by performing a single regression analysis of the correlation.

そして、上位装置から電池容量の算出が要求されると(S208)、電池容量推定部14は、現在の電池セル1の内部抵抗から、演算部13が導出した関係式を用いて、電池容量を推定し(S209)、これを外部に通知する(S210)。この時、関係式から電池容量を推定するには、二次電池内の各電池セル1の中で、最も劣化が大きい、つまり内部抵抗が最も大きい電池セル1の値に基づいて実施する。なお、S206で関係式の記録を更新した後、第2の実施形態と同じく、内部抵抗算出部9で算出した内部抵抗の最大値から、電池特性テーブル10に基づいて、電池容量推定部11が二次抵抗の電池容量を推定して、上位装置へ常時通知する形態を取っても良い。   When the calculation of the battery capacity is requested from the host device (S208), the battery capacity estimation unit 14 calculates the battery capacity from the current internal resistance of the battery cell 1 using the relational expression derived by the calculation unit 13. This is estimated (S209), and this is notified to the outside (S210). At this time, in order to estimate the battery capacity from the relational expression, it is performed based on the value of the battery cell 1 having the largest deterioration, that is, the largest internal resistance among the battery cells 1 in the secondary battery. In addition, after updating the record of the relational expression in S206, the battery capacity estimation unit 11 uses the maximum value of the internal resistance calculated by the internal resistance calculation unit 9 based on the battery characteristic table 10 as in the second embodiment. The battery capacity of the secondary resistance may be estimated, and a form that is constantly notified to the host device may be taken.

ここで、図10のグラフを用いて、演算部13が単回帰分析により電池容量と内部抵抗との関係式を導出し、電池容量推定部14が、現在の電池セル1の内部抵抗と演算部13が導出した関係式を用いて、電池容量を推定可能であることについて説明する。なお、電池容量は、リセット充放電制御部12によるリセット充放電の結果から算出された値である。また、内部抵抗は、内部抵抗算出部9で算出された値であってもよいし、充放電サイクル数と電池セル1の内部抵抗の上昇とが相関することから、充放電データからの推定値でもよい。   Here, using the graph of FIG. 10, the calculation unit 13 derives a relational expression between the battery capacity and the internal resistance by single regression analysis, and the battery capacity estimation unit 14 calculates the internal resistance and the calculation unit of the current battery cell 1. It will be described that the battery capacity can be estimated using the relational expression derived by FIG. The battery capacity is a value calculated from the result of reset charge / discharge by the reset charge / discharge control unit 12. Further, the internal resistance may be a value calculated by the internal resistance calculation unit 9, and since the number of charge / discharge cycles correlates with an increase in the internal resistance of the battery cell 1, an estimated value from the charge / discharge data. But you can.

例えば、内部抵抗と電池容量の算出結果との関係が式(11)のように直線近似で表される場合、最小二乗法の考え方から残差Sが最小となるパラメータa0およびa1を決定する。

Figure 2017194476
For example, when the relationship between the internal resistance and the calculation result of the battery capacity is expressed by linear approximation as shown in Equation (11), parameters a 0 and a 1 that minimize the residual S are determined from the idea of the least square method. To do.
Figure 2017194476

ここで、内部抵抗推定と電池容量の算出結果に対する近似式(11)の残差Sは、以下の式(12)で表される。

Figure 2017194476
残差Sが最小となるようなパラメータa0およびa1を求めるには、式(12)をパラメータa0およびa1でそれぞれ偏微分して、その値が0となるようにする。
Figure 2017194476
Figure 2017194476
Here, the residual S of the approximate expression (11) for the internal resistance estimation and the battery capacity calculation result is expressed by the following expression (12).
Figure 2017194476
In order to obtain the parameters a 0 and a 1 that minimize the residual S, the equation (12) is partially differentiated with respect to the parameters a 0 and a 1 so that the value becomes zero.
Figure 2017194476
Figure 2017194476

上式(13)(14)の連立方程式を解くと、残差Sが最小となるパラメータa0およびa1は、以下の式で求めることができる。

Figure 2017194476
Figure 2017194476
When the simultaneous equations of the above equations (13) and (14) are solved, the parameters a 0 and a 1 that minimize the residual S can be obtained by the following equations.
Figure 2017194476
Figure 2017194476

これらのパラメータを用いて内部抵抗と電池容量の関係を表し、電池容量推定部14が電池容量の推定を行う。その他、内部抵抗と電池容量の算出結果との関係が式(17)のルート関数で表される場合(図11に図示)、残差Sは式(18)のようになる。

Figure 2017194476
Figure 2017194476
式(18)から残差Sが最小となるようなパラメータa0およびa1を求めるためには、式(18)をパラメータa0およびa1でそれぞれ偏微分して、その値が0となるようにすればよい。 The relationship between the internal resistance and the battery capacity is expressed using these parameters, and the battery capacity estimation unit 14 estimates the battery capacity. In addition, when the relationship between the internal resistance and the battery capacity calculation result is expressed by the root function of Expression (17) (shown in FIG. 11), the residual S is expressed by Expression (18).
Figure 2017194476
Figure 2017194476
In order to obtain the parameters a 0 and a 1 that minimize the residual S from the equation (18), the equation (18) is partially differentiated by the parameters a 0 and a 1 , and the value becomes zero. What should I do?

なお、二次電池の劣化モードには、通常、稼働日数に応じて劣化するカレンダー劣化や、充放電サイクルに応じて劣化するサイクル劣化などがあるが、カレンダー劣化は稼働日数のルートに、サイクル劣化はサイクル回数に対してリニアに従う式で近似できる場合がある。このように、二次電池の劣化は、使用状況に応じて劣化モードが異なる。そのため、第3の実施形態の演算部13では、上記直線近似や多項式、ルート関数などで最も相関の高い(残差の少ない)近似式で表すことにする。これにより、電池容量の推定精度をいっそう高めることができる。   Secondary battery deterioration modes usually include calendar deterioration that deteriorates depending on the number of working days and cycle deterioration that deteriorates depending on the charge / discharge cycle. May be approximated by a linear equation for the number of cycles. As described above, the deterioration mode of the secondary battery varies depending on the use situation. For this reason, the calculation unit 13 of the third embodiment represents the approximate expression having the highest correlation (small residual) in the above-described linear approximation, polynomial, root function, and the like. Thereby, the estimation precision of battery capacity can be raised further.

[作用効果]
以上のような第3の実施形態によれば、ウェーブレット変換を用いた第1の実施形態の作用効果に加えて、電池セル1の内部抵抗と電池容量の相関分析に基づいて、二次電池の電池容量を正確に確実に推定することができる。したがって、リセット充放電の実施回数を大幅に低減することが可能であり、二次電池を高効率で運用することができる。
[Function and effect]
According to the third embodiment as described above, based on the correlation analysis between the internal resistance of the battery cell 1 and the battery capacity, in addition to the function and effect of the first embodiment using the wavelet transform, The battery capacity can be estimated accurately and reliably. Therefore, the number of reset charging / discharging operations can be greatly reduced, and the secondary battery can be operated with high efficiency.

(4)第4の実施形態
[構成]
図12に、第4の実施形態の構成を示す。なお、第1の実施形態と同一部分については同一符号を付して説明を省略する。図12に示すように、第4の実施形態は、制御部6に、電池容量推定部15と、内部抵抗推定部16が接続されている。
(4) Fourth Embodiment [Configuration]
FIG. 12 shows the configuration of the fourth embodiment. Note that the same parts as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. As shown in FIG. 12, in the fourth embodiment, a battery capacity estimation unit 15 and an internal resistance estimation unit 16 are connected to the control unit 6.

電池容量推定部15は、推定した電池容量を時系列プロットすることによって電池容量の変化率を求め、求めた変化率から、将来の電池容量を推定するように構成されたものである。内部抵抗推定部16は、図13に示すように、電池セル1の内部抵抗を時系列プロットすることによって内部抵抗の上昇率を求め、将来の内部抵抗を推定するように構成されたものである。ここでいう将来に含まれる期間は、数年後といった長期間のスパンも包含される。   The battery capacity estimation unit 15 is configured to obtain a change rate of the battery capacity by plotting the estimated battery capacity in time series, and to estimate a future battery capacity from the obtained change rate. As shown in FIG. 13, the internal resistance estimation unit 16 is configured to obtain an increase rate of the internal resistance by time-series plotting the internal resistance of the battery cell 1 and estimate the future internal resistance. . The period included in the future here includes a long span such as several years later.

[作用効果]
以上のような第4の実施形態によれば、ウェーブレット変換を用いた第1の実施形態の作用効果に加えて、内部抵抗と電池容量の相関分析に基づいて二次電池の劣化を将来にわたって推定することができる。したがって、二次電池を高効率で運用することができる。
[Function and effect]
According to the fourth embodiment as described above, in addition to the function and effect of the first embodiment using the wavelet transform, the deterioration of the secondary battery is estimated in the future based on the correlation analysis between the internal resistance and the battery capacity. can do. Therefore, the secondary battery can be operated with high efficiency.

(5)他の実施形態
なお、上記の実施形態は、本明細書において一例として提示したものであって、発明の範囲を限定することを意図するものではない。すなわち、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことが可能である。これらの実施形態やその変形例は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
(5) Other Embodiments The above-described embodiment is presented as an example in the present specification, and is not intended to limit the scope of the invention. In other words, the present invention can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and the equivalents thereof as well as included in the scope and gist of the invention.

符号の名称Symbol name

1…電池セル
2…組電池
3…電圧測定部
4…電流測定部
5…温度測定部
6…制御部
7…記憶部
8…通信インターフェイス
9…内部抵抗算出部
10…電池特性テーブル
11、14、15…電池容量推定部
12…リセット充放電制御部
13…演算部
16…内部抵抗推定部

DESCRIPTION OF SYMBOLS 1 ... Battery cell 2 ... Assembly battery 3 ... Voltage measurement part 4 ... Current measurement part 5 ... Temperature measurement part 6 ... Control part 7 ... Memory | storage part 8 ... Communication interface 9 ... Internal resistance calculation part 10 ... Battery characteristic table 11,14, DESCRIPTION OF SYMBOLS 15 ... Battery capacity estimation part 12 ... Reset charge / discharge control part 13 ... Calculation part 16 ... Internal resistance estimation part

Claims (5)

二次電池を構成する各電池セルの正極端子と負極端子間に接続され、端子間電圧を測定する電圧測定部と、
電流経路に挿入され、前記電池セルへの充放電電流を測定する電流測定部と、
前記電圧測定部及び前記電流測定部における測定を制御する制御部と、
当該制御部に接続され、前記電圧測定部及び前記電流測定部からの各測定値からウェーブレット変換を行い、周波数毎に電流及び電圧のウェーブレット係数を求め、これらの比率から二次電池の内部抵抗を算出する内部抵抗算出部と、
前記内部抵抗算出部が算出した内部抵抗を時系列プロットすることによって内部抵抗の変化率を求め、求めた内部抵抗の変化率から、将来の内部抵抗を推定する内部抵抗推定部を有することを特徴とする二次電池の電池状態推定装置。
A voltage measuring unit that is connected between the positive electrode terminal and the negative electrode terminal of each battery cell constituting the secondary battery, and measures a voltage between the terminals;
A current measurement unit that is inserted into a current path and measures a charge / discharge current to the battery cell;
A control unit for controlling measurement in the voltage measurement unit and the current measurement unit;
Connected to the control unit, performs wavelet transform from each measurement value from the voltage measurement unit and the current measurement unit, obtains a wavelet coefficient of current and voltage for each frequency, and calculates the internal resistance of the secondary battery from these ratios An internal resistance calculation unit for calculating,
The internal resistance calculation unit has an internal resistance estimation unit that calculates a change rate of internal resistance by plotting the internal resistance calculated in time series, and estimates a future internal resistance from the calculated change rate of internal resistance. A battery state estimating device for a secondary battery.
予め特性評価試験により作成した、二次電池の内部抵抗と二次電池の電池容量との関係を示す電池特性テーブルと、
前記内部抵抗算出部によって算出された内部抵抗の最大値から前記電池特性テーブルに基づいて、二次抵抗の電池容量を推定する電池容量推定部、を有することを特徴とする
請求項1に記載の二次電池の電池状態推定装置。
A battery characteristic table that is created in advance by a characteristic evaluation test and shows the relationship between the internal resistance of the secondary battery and the battery capacity of the secondary battery;
2. The battery capacity estimation unit according to claim 1, further comprising: a battery capacity estimation unit configured to estimate a battery capacity of a secondary resistance based on the battery characteristic table from a maximum value of the internal resistance calculated by the internal resistance calculation unit. Battery state estimation device for secondary battery.
二次電池の電池容量を測定するリセット充放電制御部と、
前記内部抵抗および前記リセット充放電制御部が測定した電池容量を記録する記憶部と、
前記記憶部に記憶された内部抵抗と電池容量との相関を単回帰分析することによって関係式を導出する演算部と、
前記内部抵抗と前記演算部が導出した関係式とから二次電池の電池容量を推定する電池容量推定部、をさらに有することを特徴とする請求項1に記載の二次電池の電池状態推定装置。
A reset charge / discharge control unit for measuring the battery capacity of the secondary battery;
A storage unit for recording the internal resistance and the battery capacity measured by the reset charge / discharge control unit;
A calculation unit for deriving a relational expression by performing a single regression analysis on the correlation between the internal resistance and the battery capacity stored in the storage unit;
The battery state estimation device for a secondary battery according to claim 1, further comprising a battery capacity estimation unit that estimates a battery capacity of the secondary battery from the internal resistance and the relational expression derived by the calculation unit. .
前記演算部が内部抵抗および電池容量の相関を単回帰分析するとき、電池劣化を表す近似式として想定される近似式の中から、最も相関の高い近似式を選択し、そのパラメータを同定することを特徴とする請求項3に記載の二次電池の電池状態推定装置。   When the arithmetic unit performs a single regression analysis of the correlation between the internal resistance and the battery capacity, the approximate expression having the highest correlation is selected from the approximate expressions assumed as the approximate expression representing the battery deterioration, and the parameter is identified. The battery state estimation device for a secondary battery according to claim 3. 前記電池容量推定部は、推定した電池容量を時系列プロットすることによって電池容量の変化率を求め、求めた変化率から、将来の電池容量を推定するように構成したことを特徴とする請求項2〜4のいずれか1項に記載の二次電池の電池状態推定装置。

The battery capacity estimation unit is configured to obtain a battery capacity change rate by plotting the estimated battery capacity in time series, and to estimate a future battery capacity from the obtained change rate. The battery state estimation apparatus of the secondary battery of any one of 2-4.

JP2017104093A 2012-12-18 2017-05-26 Battery state estimation apparatus of secondary battery Pending JP2017194476A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012276294A JP6253137B2 (en) 2012-12-18 2012-12-18 Battery state estimation device for secondary battery
JP2017104093A JP2017194476A (en) 2012-12-18 2017-05-26 Battery state estimation apparatus of secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012276294A JP6253137B2 (en) 2012-12-18 2012-12-18 Battery state estimation device for secondary battery
JP2017104093A JP2017194476A (en) 2012-12-18 2017-05-26 Battery state estimation apparatus of secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012276294A Division JP6253137B2 (en) 2012-12-18 2012-12-18 Battery state estimation device for secondary battery

Publications (1)

Publication Number Publication Date
JP2017194476A true JP2017194476A (en) 2017-10-26

Family

ID=62027603

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012276294A Active JP6253137B2 (en) 2012-12-18 2012-12-18 Battery state estimation device for secondary battery
JP2017104093A Pending JP2017194476A (en) 2012-12-18 2017-05-26 Battery state estimation apparatus of secondary battery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012276294A Active JP6253137B2 (en) 2012-12-18 2012-12-18 Battery state estimation device for secondary battery

Country Status (1)

Country Link
JP (2) JP6253137B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110554327A (en) * 2019-08-12 2019-12-10 同济大学 Method for rapidly measuring impedance of storage battery during charging
JP2020034383A (en) * 2018-08-29 2020-03-05 トヨタ自動車株式会社 Secondary battery system
JP2022507235A (en) * 2018-11-30 2022-01-18 エルジー エナジー ソリューション リミテッド Battery cell resistance measuring device and method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167775B (en) * 2014-07-22 2016-09-28 北京航空航天大学 A kind of battery set charge/discharge balance method
JPWO2016059869A1 (en) * 2014-10-17 2017-04-27 株式会社東芝 Secondary battery charge state estimation apparatus and charge state estimation method thereof
JP6301935B2 (en) 2015-02-24 2018-03-28 株式会社東芝 Storage battery management apparatus, method and program
JP6125710B1 (en) 2015-09-08 2017-05-10 株式会社東芝 Storage battery device, storage battery system, method and program
KR102113054B1 (en) 2016-03-08 2020-05-20 가부시끼가이샤 도시바 Battery monitoring device and method
JP6862010B1 (en) * 2019-12-17 2021-04-21 東洋システム株式会社 State output system
KR102440442B1 (en) * 2020-07-23 2022-09-06 주식회사 휴네이트 Vehicle battery life prediction system using vehicle time series data and method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4330228B2 (en) * 1999-10-28 2009-09-16 三洋電機株式会社 Secondary battery capacity display method
JP2002156427A (en) * 2000-11-21 2002-05-31 Gs-Melcotec Co Ltd Method for evaluating capacity of secondary battery
JP4011303B2 (en) * 2001-05-07 2007-11-21 古河電池株式会社 Lead storage battery condition monitoring method
JP2010036718A (en) * 2008-08-05 2010-02-18 Mitsubishi Motors Corp Battery deterioration determination device
FR2947357B1 (en) * 2009-06-25 2016-01-22 Electricite De France FAULT DETECTION IN AN ELECTROCHEMICAL DEVICE
JP2012032267A (en) * 2010-07-30 2012-02-16 Renesas Electronics Corp Remaining capacitance detection apparatus and battery control ic
JP2012083142A (en) * 2010-10-07 2012-04-26 Toshiba Corp Calculation device for internal resistance of secondary battery
JP6026120B2 (en) * 2012-03-19 2016-11-16 株式会社東芝 Secondary battery internal resistance calculation device and internal resistance calculation method thereof, secondary battery abnormality detection device and abnormality detection method thereof, secondary battery degradation estimation device and degradation estimation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020034383A (en) * 2018-08-29 2020-03-05 トヨタ自動車株式会社 Secondary battery system
JP7070251B2 (en) 2018-08-29 2022-05-18 トヨタ自動車株式会社 Rechargeable battery system
JP2022507235A (en) * 2018-11-30 2022-01-18 エルジー エナジー ソリューション リミテッド Battery cell resistance measuring device and method
CN110554327A (en) * 2019-08-12 2019-12-10 同济大学 Method for rapidly measuring impedance of storage battery during charging

Also Published As

Publication number Publication date
JP2014119397A (en) 2014-06-30
JP6253137B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
JP6253137B2 (en) Battery state estimation device for secondary battery
JP2018072346A (en) Battery state estimation apparatus of secondary battery
US20220239122A1 (en) Server-side characterisation of rechargeable batteries
EP3018753B1 (en) Battery control method based on ageing-adaptive operation window
JP5936711B2 (en) Storage device life prediction apparatus and storage device life prediction method
US10386422B2 (en) Electrochemical impedance spectroscopy in battery management systems
US20170115355A1 (en) Maximum capacity estimator for battery state of health and state of charge determinations
JP5511951B2 (en) Charge state estimation device
JP6488105B2 (en) Storage battery evaluation apparatus and method
TWI384246B (en) Apparatus and method for estimating resistance characteristics of battery based on open circuit voltage estimated by battery voltage variation
JP6026120B2 (en) Secondary battery internal resistance calculation device and internal resistance calculation method thereof, secondary battery abnormality detection device and abnormality detection method thereof, secondary battery degradation estimation device and degradation estimation method thereof
KR102502106B1 (en) efficient battery tester
KR101615139B1 (en) Apparatus and method for real-time estimation of battery state-of-health
EP2827162A1 (en) Battery DC impedance measurement
CN108693475B (en) Method and apparatus for monitoring a DC power supply
EP3542173A1 (en) Determining a state of health of a battery and providing an alert
CN101535827A (en) Apparatus and method for determination of the state-of-charge of a battery when the battery is not in equilibrium
GB2532726A (en) Cell internal impedance diagnostic system
JPWO2013141100A1 (en) Battery state estimation device
US20160190827A1 (en) Charging device and method for the same, and discharging device and method for the same
KR20210143821A (en) Determination of multispectral impedance under dynamic load conditions
TWI802349B (en) Battery state estimation device, power system
JPWO2019003377A1 (en) Battery remaining amount estimating apparatus, battery remaining amount estimating method, and program
EP2827163A1 (en) Temperature-compensated state of charge estimation for rechargeable batteries
KR102551709B1 (en) System for estimating the state of health(soh) of battery, system and method for deriving parameters therefor