WO2022230096A1 - Gas separation system - Google Patents

Gas separation system Download PDF

Info

Publication number
WO2022230096A1
WO2022230096A1 PCT/JP2021/016936 JP2021016936W WO2022230096A1 WO 2022230096 A1 WO2022230096 A1 WO 2022230096A1 JP 2021016936 W JP2021016936 W JP 2021016936W WO 2022230096 A1 WO2022230096 A1 WO 2022230096A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
separation membrane
separation
separation system
permeated
Prior art date
Application number
PCT/JP2021/016936
Other languages
French (fr)
Japanese (ja)
Inventor
直行 石田
明紀 田村
順一 三輪
秀宏 飯塚
祐子 可児
崇 佐々木
貴彰 水上
晋士 藤田
亜由美 渡部
良平 稲垣
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2021/016936 priority Critical patent/WO2022230096A1/en
Publication of WO2022230096A1 publication Critical patent/WO2022230096A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion

Definitions

  • the present disclosure relates to a gas separation system that allows specific gas users to separate and use the specific gas at the place of use, for example, when supplying a specific gas different from natural gas using an existing pipeline such as natural gas. .
  • a separation membrane that selectively permeates the gas.
  • a molecular sieve membrane that separates based on the difference in molecular diameter, represented by ceramic membranes and polymer membranes, and a metal membrane that adsorbs hydrogen, separates it into atoms and permeates them, and the like.
  • Molecular sieve membranes are capable of separating gases, but they also permeate a certain amount of gases other than the specific gases to be permeated. will be Separation is possible at room temperature, but there is a tendency for the amount of permeation to increase when the temperature is raised.
  • only hydrogen is allowed to pass through the metal film, so when hydrogen is used as the specific gas, high-purity hydrogen can be obtained, but the film is heated to 300 to 400.degree.
  • Patent Document 1 describes a method of using a separation membrane for a mixed gas of two components and heating the gas to improve the purity of the separated gas.
  • heated gas is supplied to the metal membrane.
  • the hot non-permeate gas it is preferable to cool the hot non-permeate gas as it returns to the pipeline so as not to thermally load the pipeline.
  • gases have lower density and thermal conductivity than liquids, and a large heat transfer area is preferred for heat exchange, which can result in large gas heaters and coolers in the gas separation system.
  • Patent Document 1 after pressurizing the mixed gas with a compressor, the permeated gas is recovered in the first separation stage, and the gas that did not permeate in the first separation stage (non-permeated gas) is heated to about 50 ° C.
  • Two separation stages separate the permeate gas from the non-permeate gas to improve the purity of the non-permeate gas.
  • the concentration of the permeating gas is lower than in the first separation stage, so the gas temperature is raised to increase the permeation amount. It is assumed that a polymer membrane will be used as the separation membrane, and the upper limit of the purity of the separated gas is about 98%.
  • the permeating gas side may be permeated with a separation membrane in several stages, which may increase the size of the device. Furthermore, since a differential pressure is provided across the membrane for gas permeation, a large pressure is applied in the first separation stage in the case of multiple stages, which may also lead to an increase in the size of the apparatus.
  • the purpose of the present disclosure is to significantly reduce the amount of gas heating required to separate a specific gas with high purity, and to downsize the heat exchangers for heating and cooling the gas or eliminate the cooler. to provide an efficient gas separation system.
  • a first separation membrane branched from a pipeline through which a mixed gas containing a specific gas flows, the pressure of the branched mixed gas is increased by a compressor, and the first separation membrane has selective permeability to the specific gas;
  • a first discharge pipe that returns the mixed gas that has not permeated the separation membrane to the pipeline, a heater that heats the permeated gas that has permeated the first separation membrane, and a heater for the specific gas contained in the heated permeated gas.
  • a second separation membrane having higher permselectivity than the first separation membrane.
  • the amount of heating of the mixed gas required for extracting the specific gas with high purity from the mixed gas can be significantly reduced, and the cooling equipment for the mixed gas that has not permeated can be greatly simplified. Significant cost reduction of the separation system is possible.
  • FIG. 1 is a schematic diagram of a first embodiment of a gas separation system of the present disclosure
  • FIG. 1 is a schematic diagram showing a gas separation system using a metal membrane for obtaining high-purity hydrogen gas
  • FIG. 2 is a schematic diagram illustrating a second embodiment of the gas separation system of the present disclosure
  • FIG. 3 is a schematic diagram illustrating a third embodiment of the gas separation system of the present disclosure
  • FIG. 4 is a schematic diagram of a fourth embodiment of the gas separation system of the present disclosure
  • FIG. 1 is a schematic diagram illustrating a gas separation system 100 (first embodiment) of the present disclosure.
  • FIG. 2 is a schematic diagram showing a gas separation system 200 using metal membranes for obtaining high-purity hydrogen gas.
  • the pipeline is a city gas pipe whose main component is methane, and hydrogen is used as the specific gas.
  • hydrogen is used as the specific gas.
  • the specific gas is not limited to hydrogen, for example.
  • the hydrogen purity required by hydrogen consumers is 99.99%, and it is preferable to increase the hydrogen purity to the required specification by separating the mixed gas from the hydrogen concentration of 20% in the pipeline.
  • a pipe branches off from a pipeline 1 through which a mixed gas containing hydrogen flows, and the mixed gas is pressurized by a first compressor 2 .
  • the temperature of the mixed gas is raised to about 350° C. by the heater 13 , and the mixed gas is supplied to the metal membrane, which is the first separation membrane 11 .
  • the metal membrane which is the first separation membrane 11 .
  • the metal film only hydrogen molecules are adsorbed on the metal surface and separated into atoms, the atoms diffuse through the metal film, and the atoms bond on the opposite surface to return to hydrogen molecules.
  • the mixed gas is heated in order to allow hydrogen to permeate through the metal film, which also heats 80% of the methane that does not permeate the mixed gas. If the heated methane is returned to the pipeline 1 through the first discharge pipe 21 as it is, the rise in gas temperature in the pipeline 1 may cause the flow to become unstable or cause structural problems due to expansion of the pipe. there is a possibility. Therefore, it is practical to attach the cooler 14 to the first discharge pipe 21 for the mixed gas. Note that the first discharge pipe 21 has a role of returning the mixed gas that has not permeated the first separation membrane 11 to the pipeline 1 .
  • the first separation membrane 11 is a separation membrane (membrane having selective permeability to hydrogen) selectively permeable to hydrogen at room temperature (for example, 10° C. to 40° C.), for example, a molecular sieve such as a polymer membrane or a ceramic membrane. It is a membrane that separates on the principle of a membrane.
  • the molecular sieve membrane allows molecules with a smaller molecular diameter than the size of the permeable pores in the membrane to pass through, but since there is a distribution in the size of the permeable pores, even a small amount of methane, which has a larger molecular diameter than the average permeable pores, There is, but it is permeable.
  • the permeation ratio of hydrogen and methane is 100:1
  • the hydrogen concentration of the permeated gas that has permeated the first separation membrane 11 is 96%, and almost all methane can be removed.
  • the mixed gas that has not permeated is returned to the pipeline 1 through the first discharge pipe 21 .
  • the permeated gas is heated to a high temperature (for example, 200° C. to 400° C., 350° C.
  • the second separation membrane 12 is a metal membrane and has a higher selective permeability than the first separation membrane 11 for hydrogen contained in the permeated gas heated by the heater 13 .
  • high-purity hydrogen gas high-purity specific gas
  • the mixed gas that has not permeated the second separation membrane 12 is returned to the pipeline 1 through the second discharge pipe 22 .
  • the amount of heat required for heating the mixed gas is compared.
  • the mixed gas is 20% hydrogen and 80% methane, and the hydrogen:methane permeation ratio at the first separation membrane 11 is 100:1.
  • the gas separation system 100 of FIG. 1 assuming that all the hydrogen in the mixed gas sent by the first compressor 2 permeates the first separation membrane 11, the mixed gas 100 flowing into the first separation membrane 11 permeates The amounts are 20 hydrogen and 0.8 methane. Therefore, the amount of heat required to heat the mixed gas after permeation is 20.8% of that in the gas separation system 200 of FIG. For this reason, the heater 13 can be greatly simplified, and the energy supply used for heating the mixed gas can be reduced to about 1/5.
  • the high-temperature methane returned to the pipeline 1 through the second discharge pipe 22 is 0.8% of the mixed gas sent from the first compressor 2. Therefore, the heat quantity of the mixed gas returned to the pipeline 1 can be suppressed to 1/100 compared with the configuration of FIG. For this reason, the cooler 14 installed in the second discharge pipe 22 returning the mixed gas to the pipeline 1 can be greatly simplified or removed as shown in FIG. can be done.
  • a cooler 14 (FIG. 2) is installed in the second discharge line 22 . Therefore, the installed cooler 14 can be greatly simplified, and the entire gas processing system can be downsized.
  • the mixed gas is supplied in an amount that does not significantly change the hydrogen concentration in the first separation membrane 11 in actual operation.
  • the heating amount of the mixed gas in the heater 13 is further increased, so the ratio of the heating energy that can be suppressed with the configuration of the present disclosure is further increased.
  • hydrogen is used as the specific gas
  • a molecular sieve membrane is used as the first separation membrane 11
  • a metal membrane is used as the second separation membrane 12.
  • Specific conditions are arbitrary. Thereby, the heating energy can be suppressed and the high-purity specific gas can be extracted from the mixed gas.
  • FIG. 3 is a schematic diagram illustrating a gas separation system 300 (second embodiment) of the present disclosure.
  • the difference of the second embodiment from the first embodiment is that the second compressor 3 is attached between the first separation membrane 11 and the heater 13 .
  • the second compressor 3 pressurizes the gas between the permeation side of the first separation membrane 11 and the inlet of the second separation membrane 12 .
  • the mixed gas permeates the first separation membrane 11 and the second separation membrane 12 due to the gas partial pressure difference before and after the first separation membrane 11 and the second separation membrane 12 . Therefore, in order to increase the permeation amount, the gas partial pressure before each of the first separation membrane 11 and the second separation membrane 12 should be increased, and the gas partial pressure after each of the first separation membrane 11 and the second separation membrane 12 should be increased. Lowering the gas partial pressure is effective.
  • the second compressor 3 the gas partial pressure after the first separation membrane 11 is reduced, and the gas partial pressure before the second separation membrane 12 is increased, so that the first separation membrane 11 and the second separation membrane It is possible to increase the permeation amount of 12 specific gases.
  • FIG. 4 is a schematic diagram illustrating a gas separation system 400 of the present disclosure.
  • the third embodiment differs from the first embodiment (FIG. 1) in that the second discharge pipe 22 that connects the pipeline 1 and the second separation membrane 12 is not provided, and the second separation membrane 12 is not permeated. It is provided with a third discharge pipe 24 for burning the mixed gas open to the atmosphere or in a part open to the atmosphere. Therefore, in the third embodiment, the mixed gas that has not permeated through the second separation membrane 12 is not returned to the pipeline 1, but is discharged to the atmosphere or burned to be treated. Since the heated gas is not returned to the pipeline 1, the pipeline 1 can be configured so as not to be thermally affected at all.
  • FIG. 5 is a schematic diagram illustrating a gas separation system 500 of the present disclosure.
  • the fourth embodiment differs from the third embodiment (FIG. 4) in that the third discharge pipe 24 is not provided, and the fourth discharge pipe 25 (connecting pipe) connecting the second separation membrane 12 and the combustor 31 is provided. , and a combustion gas transport pipe 32 .
  • the combustion gas transport pipe 32 supplies the heater 13 with high-temperature combustion gas generated by burning the mixed gas that has not permeated the second separation membrane 12 in the combustor 31 .
  • the mixed gas that has not permeated the second separation membrane 12 is not returned to the pipeline 1 and is burned by supplying oxygen to the combustor 31 .
  • the high-temperature combustion gas is used as a heating source for the mixed gas that has permeated the first separation membrane 11 .
  • the gas separation system 500 includes a combustor 31 that combusts the mixed gas that has not permeated through the second separation membrane 12 , and the combustion gas discharged from the combustor 31 serves as a heat source for the heater 13 .
  • the fourth embodiment it is possible to effectively use the mixed gas that was discarded or simply burned in the third embodiment, and to greatly reduce or eliminate the heat source from the outside of the heater 13 . Therefore, it is possible to further reduce the cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention allows for a significant reduction in the cost of a gas separation system by significantly reducing the heating amount of a mixture gas required for extracting a specific gas with high purity from the mixture gas, and significantly simplifying a cooling facility for the mixture gas that has not permeated. For this purpose, this gas separation system comprises: a first separation membrane branching from a pipeline through which a mixture gas including a specific gas flows, configured to raise with a compressor the pressure of the mixture gas that has branched, and having a permselectivity with respect to the specific gas; a first discharge pipe that returns to the pipeline the mixture gas that has not permeated the first separation membrane; a heater that heats the permeation gas that has permeated the first separation membrane; a second separation membrane having a higher permselectivity with respect to the specific gas included in the heated permeation gas than the first separation membrane; and a second discharge pipe that returns to the pipeline the mixture gas that has not permeated the second separation membrane.

Description

ガス分離システムgas separation system
 本開示は、例えば、既存の天然ガス等のパイプラインを用いて天然ガスとは異なる特定ガスを供給する場合に、特定ガス利用者が利用場所において特定ガスを分離して利用できるガス分離システムに関する。 The present disclosure relates to a gas separation system that allows specific gas users to separate and use the specific gas at the place of use, for example, when supplying a specific gas different from natural gas using an existing pipeline such as natural gas. .
 複数の混合ガスから特定のガスを分離する方法として、ガスを選択的に透過する分離膜を利用する方法がある。例えば、セラミック膜、高分子膜等に代表される分子径の差により分離する分子ふるい膜、水素を吸着、原子に分離させて透過させる金属膜等がある。分子ふるい膜はガス分離が可能であるが、透過させたい特定ガス以外も一定量透過するため、高純度の特定ガスを得るためには透過した特定ガスをさらに分離膜に通す等の工夫が行われる。なお、常温で分離が可能であるが、温度を上げると透過量が増える傾向がある。金属膜は、原理的に水素のみを通すので、特定ガスを水素とした場合に高純度の水素を得ることができるが、膜が300~400℃に加熱される。 As a method of separating a specific gas from multiple mixed gases, there is a method of using a separation membrane that selectively permeates the gas. For example, there are a molecular sieve membrane that separates based on the difference in molecular diameter, represented by ceramic membranes and polymer membranes, and a metal membrane that adsorbs hydrogen, separates it into atoms and permeates them, and the like. Molecular sieve membranes are capable of separating gases, but they also permeate a certain amount of gases other than the specific gases to be permeated. will be Separation is possible at room temperature, but there is a tendency for the amount of permeation to increase when the temperature is raised. In principle, only hydrogen is allowed to pass through the metal film, so when hydrogen is used as the specific gas, high-purity hydrogen can be obtained, but the film is heated to 300 to 400.degree.
 2成分の混合ガスを分離膜を用い、ガスを加熱して分離ガスの純度を向上させる方法が特許文献1に記載されている。 Patent Document 1 describes a method of using a separation membrane for a mixed gas of two components and heating the gas to improve the purity of the separated gas.
特表2019-520198号公報Japanese Patent Publication No. 2019-520198
 例えば水素を高純度で分離するためには、金属膜に加熱したガスが供給される。一方で、パイプラインから分離システムに供給するガスをすべて加熱すると、高温の非透過ガスをパイプラインに戻すときにパイプラインに熱的な負荷を与えないため冷却することが好ましい。一般的に、気体は液体に比べて密度、熱伝導率が低く、熱交換には大きな伝熱面積が好ましく、ガス分離ステムにおいてガス加熱器と冷却器が大型になる可能性がある。 For example, in order to separate hydrogen with high purity, heated gas is supplied to the metal membrane. On the other hand, if all the gas that feeds the separation system from the pipeline is heated, it is preferable to cool the hot non-permeate gas as it returns to the pipeline so as not to thermally load the pipeline. In general, gases have lower density and thermal conductivity than liquids, and a large heat transfer area is preferred for heat exchange, which can result in large gas heaters and coolers in the gas separation system.
 特許文献1では、混合ガスをコンプレッサで昇圧したのち、第一分離段階で透過ガスを回収し、第一分離段階で透過しなかったガス(非透過ガス)を50℃程度まで昇温して第二分離段階にて非透過ガスから透過ガスを分離して非透過ガスの純度を向上させている。第二分離段階では透過ガスの濃度が第一分離段階よりも低下しているため、ガス温度を上げて透過量を増やしている。分離膜として高分子膜を利用することを想定しており、分離したガスの純度の上限は98%程度である。 In Patent Document 1, after pressurizing the mixed gas with a compressor, the permeated gas is recovered in the first separation stage, and the gas that did not permeate in the first separation stage (non-permeated gas) is heated to about 50 ° C. Two separation stages separate the permeate gas from the non-permeate gas to improve the purity of the non-permeate gas. In the second separation stage, the concentration of the permeating gas is lower than in the first separation stage, so the gas temperature is raised to increase the permeation amount. It is assumed that a polymer membrane will be used as the separation membrane, and the upper limit of the purity of the separated gas is about 98%.
 例えば、透過ガスを純度99.99%以上で分離したい場合には、透過ガス側にさらに数段階で分離膜で透過させるため、装置が大型する可能性がある。更には、ガス透過には膜前後に差圧が設けられるため、多段にした場合は第一分離段階で大きな圧力が付与され、これも装置の大型化につながる可能性がある。 For example, if you want to separate the permeating gas with a purity of 99.99% or higher, the permeating gas side may be permeated with a separation membrane in several stages, which may increase the size of the device. Furthermore, since a differential pressure is provided across the membrane for gas permeation, a large pressure is applied in the first separation stage in the case of multiple stages, which may also lead to an increase in the size of the apparatus.
 本開示の目的は、特定ガスを高純度で分離するために必要なガス加熱量を大幅に抑制し、ガス加熱用と冷却用の熱交換器を小型化する又は冷却器を削除することが可能なガス分離システム提供することである。 The purpose of the present disclosure is to significantly reduce the amount of gas heating required to separate a specific gas with high purity, and to downsize the heat exchangers for heating and cooling the gas or eliminate the cooler. to provide an efficient gas separation system.
 上記課題を解決するため、特定ガスを含む混合ガスが流れるパイプラインから分岐され、分岐した前記混合ガスをコンプレッサで昇圧し、前記特定ガスに対する選択透過性を有する第一分離膜と、前記第一分離膜を透過しなかった混合ガスを前記パイプラインに戻す第一排出配管と、前記第一分離膜を透過した透過ガスを加熱する加熱器と、加熱した前記透過ガスに含まれる前記特定ガスに対する選択透過性が前記第一分離膜よりも高い第二分離膜と、を備えて構成されることを特徴とする。 In order to solve the above problems, a first separation membrane branched from a pipeline through which a mixed gas containing a specific gas flows, the pressure of the branched mixed gas is increased by a compressor, and the first separation membrane has selective permeability to the specific gas; A first discharge pipe that returns the mixed gas that has not permeated the separation membrane to the pipeline, a heater that heats the permeated gas that has permeated the first separation membrane, and a heater for the specific gas contained in the heated permeated gas. and a second separation membrane having higher permselectivity than the first separation membrane.
 本開示によれば、混合ガス中から特定ガスを高純度で取り出すために必要な混合ガスの加熱量を大幅に低減できるとともに、透過しなかった混合ガスの冷却設備も大幅に簡素化でき、ガス分離システムの大幅なコスト低減が可能となる。 According to the present disclosure, the amount of heating of the mixed gas required for extracting the specific gas with high purity from the mixed gas can be significantly reduced, and the cooling equipment for the mixed gas that has not permeated can be greatly simplified. Significant cost reduction of the separation system is possible.
本開示のガス分離システムの第1実施形態を示す概略図である。1 is a schematic diagram of a first embodiment of a gas separation system of the present disclosure; FIG. 高純度の水素ガスを得るための金属膜を用いたガス分離システムを示す概略図である。1 is a schematic diagram showing a gas separation system using a metal membrane for obtaining high-purity hydrogen gas; FIG. 本開示のガス分離システムの第2実施形態を示す概略図である。2 is a schematic diagram illustrating a second embodiment of the gas separation system of the present disclosure; FIG. 本開示のガス分離システムの第3実施形態を示す概略図である。3 is a schematic diagram illustrating a third embodiment of the gas separation system of the present disclosure; FIG. 本開示のガス分離システムの第4実施形態を示す概略図である。FIG. 4 is a schematic diagram of a fourth embodiment of the gas separation system of the present disclosure;
 以下、図面を参照しながら本開示を実施するための形態(実施形態と称する)を説明する。以下の一の実施形態の説明の中で、適宜、一の実施形態に適用可能な別の実施形態の説明も行う。本開示は以下の一の実施形態に限られず、異なる実施形態同士を組み合わせたり、本開示の効果を著しく損なわない範囲で任意に変形したりできる。また、同じ部材については同じ符号を付すものとし、重複する説明は省略する。更に、同じ機能を有するものは同じ名称を付すものとする。図示の内容は、あくまで模式的なものであり、図示の都合上、本開示の効果を著しく損なわない範囲で実際の構成から変更したり、図面間で一部の部材の図示を省略したり変形したりすることがある。 Hereinafter, a form (referred to as an embodiment) for carrying out the present disclosure will be described with reference to the drawings. In the following description of one embodiment, other embodiments applicable to the one embodiment will also be described as appropriate. The present disclosure is not limited to one embodiment below, and different embodiments can be combined or arbitrarily modified within a range that does not significantly impair the effects of the present disclosure. Also, the same members are denoted by the same reference numerals, and overlapping descriptions are omitted. Furthermore, those having the same function shall have the same name. The contents of the drawings are only schematic, and for the convenience of the drawings, the actual configuration may be changed within a range that does not significantly impair the effects of the present disclosure, or the illustration of some members may be omitted or modified between drawings. sometimes
[第1実施形態]
 本開示のガス分離システム100について図1と図2を用いて説明する。図1は、本開示のガス分離システム100(第1実施形態)を示す概略図である。図2は、高純度の水素ガスを得るための金属膜を用いたガス分離システム200を示す概略図である。
[First embodiment]
A gas separation system 100 of the present disclosure will be described with reference to FIGS. 1 and 2. FIG. FIG. 1 is a schematic diagram illustrating a gas separation system 100 (first embodiment) of the present disclosure. FIG. 2 is a schematic diagram showing a gas separation system 200 using metal membranes for obtaining high-purity hydrogen gas.
 第1実施形態では、パイプラインとしてメタンを主成分とする都市ガスの配管を想定し、特定ガスとして水素を用いる場合について説明するが、例えば特定ガスは水素に限定されない。 In the first embodiment, it is assumed that the pipeline is a city gas pipe whose main component is methane, and hydrogen is used as the specific gas. However, the specific gas is not limited to hydrogen, for example.
 既存の都市ガスのパイプラインでは、都市ガスの需要家も多く、混合ガス中の水素濃度の上限は20%までと見込まれる。ISO-TS14687-2によれば水素需要家が要求する水素純度は99.99%であり、パイプライン中の水素濃度20%から混合ガスを分離して水素純度を要求仕様まで高めることが好ましい。 In the existing city gas pipeline, there are many consumers of city gas, and the upper limit of the hydrogen concentration in the mixed gas is expected to be 20%. According to ISO-TS14687-2, the hydrogen purity required by hydrogen consumers is 99.99%, and it is preferable to increase the hydrogen purity to the required specification by separating the mixed gas from the hydrogen concentration of 20% in the pipeline.
 まず、水素を高純度で分離できる金属膜を用いたガス分離システム200について図2を用いて説明する。水素を含む混合ガスが流れるパイプライン1から配管が分岐し、混合ガスが第一コンプレッサ2で昇圧される。加熱器13により混合ガス温度が350℃程度まで昇温され、混合ガスが第一分離膜11である金属膜に供給される。金属膜では水素分子のみが金属表面に吸着し原子に分離して原子が金属膜中を拡散し、反対側の表面で原子が結合して水素分子に戻る。この原理から、水素分子以外は金属膜を透過しないため、高純度で水素を分離でき、高純度ガス輸送配管23を通して高純度の水素(高純度特定ガス)を得ることができる。一方、金属膜で水素を透過させるため混合ガスが加熱されるが、これにより、混合ガス中の80%を占める透過しないメタンも加熱される。加熱したメタンをそのまま第一排出配管21を通してパイプライン1に戻すと、パイプライン1中のガス温度の上昇により、流れが不安定になったり配管の膨張等による構造的な課題が発生したりする可能性がある。このため、混合ガスの第一排出配管21に冷却器14を取り付けるのが現実的である。なお、第一排出配管21は、第一分離膜11を透過しなかった混合ガスをパイプライン1に戻す役割を有する。 First, a gas separation system 200 using a metal membrane capable of separating hydrogen with high purity will be described with reference to FIG. A pipe branches off from a pipeline 1 through which a mixed gas containing hydrogen flows, and the mixed gas is pressurized by a first compressor 2 . The temperature of the mixed gas is raised to about 350° C. by the heater 13 , and the mixed gas is supplied to the metal membrane, which is the first separation membrane 11 . In the metal film, only hydrogen molecules are adsorbed on the metal surface and separated into atoms, the atoms diffuse through the metal film, and the atoms bond on the opposite surface to return to hydrogen molecules. Based on this principle, since only hydrogen molecules do not permeate the metal membrane, hydrogen can be separated with high purity, and high-purity hydrogen (high-purity specific gas) can be obtained through the high-purity gas transport pipe 23 . On the other hand, the mixed gas is heated in order to allow hydrogen to permeate through the metal film, which also heats 80% of the methane that does not permeate the mixed gas. If the heated methane is returned to the pipeline 1 through the first discharge pipe 21 as it is, the rise in gas temperature in the pipeline 1 may cause the flow to become unstable or cause structural problems due to expansion of the pipe. there is a possibility. Therefore, it is practical to attach the cooler 14 to the first discharge pipe 21 for the mixed gas. Note that the first discharge pipe 21 has a role of returning the mixed gas that has not permeated the first separation membrane 11 to the pipeline 1 .
 次に、本開示のガス分離システム100について図1を用いて説明する。パイプライン1から配管が分岐し、混合ガスが第一コンプレッサ2により昇圧され、第一分離膜11に送られる。第一分離膜11は常温(例えば10℃~40℃)で水素を選択的に透過可能な分離膜(水素に対する選択透過性を有する膜)であり、例えば高分子膜、セラミック膜等の分子ふるい膜の原理で分離する膜である。分子ふるい膜は膜中の透過孔の大きさに対して分子径の小さい分子を通すが、透過孔の大きさには分布があるため、平均透過孔よりも大きい分子径であるメタンも少量ではあるが透過させる。水素とメタンの透過比が100:1の場合、第一分離膜11を透過した透過ガスの水素濃度は96%で、ほぼメタンを取り除くことができる。透過しなかった混合ガスは第一排出配管21を通してパイプライン1に戻される。透過ガスは加熱器13で高温(例えば200℃~400℃であり、図示の例では350℃)まで加熱され、第二分離膜12に送られる。第二分離膜12は金属膜であり、加熱器13で加熱した透過ガスに含まれる水素に対する選択透過性が第一分離膜11よりも高い分離膜である。第一分離膜11を透過した混合ガスを分離することで、高純度ガス輸送配管23を通して高純度の水素ガス(高純度特定ガス)を得ることができる。第二分離膜12を透過しなかった混合ガスは第二排出配管22を通じてパイプライン1に戻される。 Next, the gas separation system 100 of the present disclosure will be described using FIG. A pipe branches off from the pipeline 1 , and the mixed gas is pressurized by the first compressor 2 and sent to the first separation membrane 11 . The first separation membrane 11 is a separation membrane (membrane having selective permeability to hydrogen) selectively permeable to hydrogen at room temperature (for example, 10° C. to 40° C.), for example, a molecular sieve such as a polymer membrane or a ceramic membrane. It is a membrane that separates on the principle of a membrane. The molecular sieve membrane allows molecules with a smaller molecular diameter than the size of the permeable pores in the membrane to pass through, but since there is a distribution in the size of the permeable pores, even a small amount of methane, which has a larger molecular diameter than the average permeable pores, There is, but it is permeable. When the permeation ratio of hydrogen and methane is 100:1, the hydrogen concentration of the permeated gas that has permeated the first separation membrane 11 is 96%, and almost all methane can be removed. The mixed gas that has not permeated is returned to the pipeline 1 through the first discharge pipe 21 . The permeated gas is heated to a high temperature (for example, 200° C. to 400° C., 350° C. in the illustrated example) by the heater 13 and sent to the second separation membrane 12 . The second separation membrane 12 is a metal membrane and has a higher selective permeability than the first separation membrane 11 for hydrogen contained in the permeated gas heated by the heater 13 . By separating the mixed gas that has permeated the first separation membrane 11 , high-purity hydrogen gas (high-purity specific gas) can be obtained through the high-purity gas transportation pipe 23 . The mixed gas that has not permeated the second separation membrane 12 is returned to the pipeline 1 through the second discharge pipe 22 .
 ガス分離システム100,200において、混合ガス加熱に必要な熱量を比較する。混合ガスが水素20%、メタン80%で、第一分離膜11での水素:メタン透過比が100:1の場合を考える。図1のガス分離システム100で、第一コンプレッサ2で送った混合ガス中の水素がすべて第一分離膜11を透過すると仮定すると、第一分離膜11に流入した混合ガス100に対して、透過量は水素20、メタン0.8である。このため、透過後の混合ガスの加熱に必要な熱量は図2のガス分離システム200の20.8%となる。このため、加熱器13を大幅に簡素化し、混合ガスの加熱に使用されるエネルギ供給を約1/5にすることができる。 In the gas separation systems 100 and 200, the amount of heat required for heating the mixed gas is compared. Consider a case where the mixed gas is 20% hydrogen and 80% methane, and the hydrogen:methane permeation ratio at the first separation membrane 11 is 100:1. In the gas separation system 100 of FIG. 1, assuming that all the hydrogen in the mixed gas sent by the first compressor 2 permeates the first separation membrane 11, the mixed gas 100 flowing into the first separation membrane 11 permeates The amounts are 20 hydrogen and 0.8 methane. Therefore, the amount of heat required to heat the mixed gas after permeation is 20.8% of that in the gas separation system 200 of FIG. For this reason, the heater 13 can be greatly simplified, and the energy supply used for heating the mixed gas can be reduced to about 1/5.
 第二分離膜12で水素がすべて透過すると、第二排出配管22でパイプライン1に戻される高温のメタンは第一コンプレッサ2で送り込まれた混合ガスの0.8%となる。したがって、図2の構成と比較してパイプライン1に戻される混合ガスの熱量を1/100に抑制することができる。このため、パイプライン1に混合ガスを戻す第二排出配管22に設置する冷却器14を大幅に簡素化又はパイプライン1に与える影響が許容範囲内であれば図1に示すように削除することができる。 When all the hydrogen permeates through the second separation membrane 12, the high-temperature methane returned to the pipeline 1 through the second discharge pipe 22 is 0.8% of the mixed gas sent from the first compressor 2. Therefore, the heat quantity of the mixed gas returned to the pipeline 1 can be suppressed to 1/100 compared with the configuration of FIG. For this reason, the cooler 14 installed in the second discharge pipe 22 returning the mixed gas to the pipeline 1 can be greatly simplified or removed as shown in FIG. can be done.
 特に少なくとも幾つかの実施形態では、第二排出配管22に冷却器14(図2)が設置される。このため、設置される冷却器14を大幅に簡素化できることで、ガス処理システム全体を小型化できる。 In at least some embodiments in particular, a cooler 14 (FIG. 2) is installed in the second discharge line 22 . Therefore, the installed cooler 14 can be greatly simplified, and the entire gas processing system can be downsized.
 水素は第一分離膜11及び第二分離膜12の前後の水素分圧差で透過する。このため、限られた第一分離膜11の透過面積で透過量を確保するため、実際の運用では第一分離膜11で水素濃度が大幅に変化しない量の混合ガスが供給される。この場合、図2の構成では加熱器13での混合ガスへの加熱量がさらに増加するので、本開示の構成で抑制できる加熱エネルギの割合がさらに大きくなる。 Hydrogen permeates due to the hydrogen partial pressure difference before and after the first separation membrane 11 and the second separation membrane 12 . Therefore, in order to ensure the amount of permeation with the limited permeation area of the first separation membrane 11, the mixed gas is supplied in an amount that does not significantly change the hydrogen concentration in the first separation membrane 11 in actual operation. In this case, in the configuration of FIG. 2, the heating amount of the mixed gas in the heater 13 is further increased, so the ratio of the heating energy that can be suppressed with the configuration of the present disclosure is further increased.
 第1実施形態では、特定ガスとして水素、第一分離膜11として分子ふるい膜、第二分離膜12として金属膜を用いた場合で説明した。しかし、これらに限定されず、分離したい特定ガスに対して常温で選択透過性を有する第一分離膜11と、高温で特定ガスに対する選択透過性がより高い第二分離膜12を使用すれば、具体的条件は任意である。これにより、加熱エネルギを抑制して混合ガスから高純度の特定ガスを取り出すことができる。 In the first embodiment, hydrogen is used as the specific gas, a molecular sieve membrane is used as the first separation membrane 11, and a metal membrane is used as the second separation membrane 12. However, without being limited to these, if the first separation membrane 11 having selective permeability to the specific gas to be separated at room temperature and the second separation membrane 12 having higher selective permeability to the specific gas at high temperature are used, Specific conditions are arbitrary. Thereby, the heating energy can be suppressed and the high-purity specific gas can be extracted from the mixed gas.
[第2実施形態]
 本開示のガス分離システム300について図3を用いて説明する。図3は本開示のガス分離システム300(第2実施形態)を示す概略図である。
[Second embodiment]
A gas separation system 300 of the present disclosure will be described using FIG. FIG. 3 is a schematic diagram illustrating a gas separation system 300 (second embodiment) of the present disclosure.
 第2実施形態が第1実施形態(図1)と異なるのは、第一分離膜11と加熱器13との間に第二コンプレッサ3を取り付けたことである。第二コンプレッサ3は、第一分離膜11の透過側と第二分離膜12の入口との間でガスを昇圧するものである。混合ガスは第一分離膜11及び第二分離膜12の前後のそれぞれのガス分圧差で第一分離膜11及び第二分離膜12を透過する。このため、透過量を増大させるには、第一分離膜11及び第二分離膜12の各前のガス分圧を上昇させること、及び第一分離膜11及び第二分離膜12の各後のガス分圧を低下させることが有効である。第二コンプレッサ3を用いることで、第一分離膜11後のガス分圧を低下させ、かつ、第二分離膜12前のガス分圧を上昇させることで第一分離膜11及び第二分離膜12の特定ガスの透過量を増加させることができる。 The difference of the second embodiment from the first embodiment (FIG. 1) is that the second compressor 3 is attached between the first separation membrane 11 and the heater 13 . The second compressor 3 pressurizes the gas between the permeation side of the first separation membrane 11 and the inlet of the second separation membrane 12 . The mixed gas permeates the first separation membrane 11 and the second separation membrane 12 due to the gas partial pressure difference before and after the first separation membrane 11 and the second separation membrane 12 . Therefore, in order to increase the permeation amount, the gas partial pressure before each of the first separation membrane 11 and the second separation membrane 12 should be increased, and the gas partial pressure after each of the first separation membrane 11 and the second separation membrane 12 should be increased. Lowering the gas partial pressure is effective. By using the second compressor 3, the gas partial pressure after the first separation membrane 11 is reduced, and the gas partial pressure before the second separation membrane 12 is increased, so that the first separation membrane 11 and the second separation membrane It is possible to increase the permeation amount of 12 specific gases.
[第3実施形態]
 本開示のガス分離システム400(第3実施形態)について図4を用いて説明する。図4は本開示のガス分離システム400を示す概略図である。
[Third embodiment]
A gas separation system 400 (third embodiment) of the present disclosure will be described with reference to FIG. FIG. 4 is a schematic diagram illustrating a gas separation system 400 of the present disclosure.
 第3実施形態が第1実施形態(図1)と異なるのは、パイプライン1と第二分離膜12とを接続する第二排出配管22を備えず、第二分離膜12を透過しなかった混合ガスを、大気開放又は大気開放部で燃焼させるための第三排出配管24を備えることである。従って、第3実施形態では、第二分離膜12で透過しなかった混合ガスはパイプライン1に戻されず、大気へ排出又は燃焼させて処理される。加熱したガスをパイプライン1に戻さないため、パイプライン1に熱的な影響を一切与えない構成とすることができる。 The third embodiment differs from the first embodiment (FIG. 1) in that the second discharge pipe 22 that connects the pipeline 1 and the second separation membrane 12 is not provided, and the second separation membrane 12 is not permeated. It is provided with a third discharge pipe 24 for burning the mixed gas open to the atmosphere or in a part open to the atmosphere. Therefore, in the third embodiment, the mixed gas that has not permeated through the second separation membrane 12 is not returned to the pipeline 1, but is discharged to the atmosphere or burned to be treated. Since the heated gas is not returned to the pipeline 1, the pipeline 1 can be configured so as not to be thermally affected at all.
[第4実施形態]
 本開示のガス分離システム500(第4実施形態)について図5を用いて説明する。図5は本開示のガス分離システム500を示す概略図である。
[Fourth embodiment]
A gas separation system 500 (fourth embodiment) of the present disclosure will be described with reference to FIG. FIG. 5 is a schematic diagram illustrating a gas separation system 500 of the present disclosure.
 第4実施形態が第3実施形態(図4)と異なるのは、第三排出配管24を備えず、第二分離膜12と燃焼器31とを接続する第四排出配管25(接続配管)と、燃焼ガス輸送配管32とを備えることである。燃焼ガス輸送配管32は、第二分離膜12を透過しなかった混合ガスを燃焼器31で燃焼させて発生した高温の燃焼ガスを加熱器13に供給するものである。これにより、第二分離膜12を透過しなかった混合ガスは、パイプライン1に戻されず、燃焼器31に酸素を供給して燃焼される。そして、高温の燃焼ガスが第一分離膜11を透過した混合ガスの加熱源として用いられる。従って、ガス分離システム500は、第二分離膜12で透過しなかった混合ガスを燃焼させる燃焼器31を備え、燃焼器31から排出される燃焼ガスが加熱器13での熱源とされる。第4実施形態によれば、第3実施形態で廃棄又は単に燃焼させていた混合ガスを有効利用するとともに、加熱器13の外部からの熱源を大幅に低減又は削除することができる。このため、コストをさらに低減することが可能である。 The fourth embodiment differs from the third embodiment (FIG. 4) in that the third discharge pipe 24 is not provided, and the fourth discharge pipe 25 (connecting pipe) connecting the second separation membrane 12 and the combustor 31 is provided. , and a combustion gas transport pipe 32 . The combustion gas transport pipe 32 supplies the heater 13 with high-temperature combustion gas generated by burning the mixed gas that has not permeated the second separation membrane 12 in the combustor 31 . As a result, the mixed gas that has not permeated the second separation membrane 12 is not returned to the pipeline 1 and is burned by supplying oxygen to the combustor 31 . The high-temperature combustion gas is used as a heating source for the mixed gas that has permeated the first separation membrane 11 . Therefore, the gas separation system 500 includes a combustor 31 that combusts the mixed gas that has not permeated through the second separation membrane 12 , and the combustion gas discharged from the combustor 31 serves as a heat source for the heater 13 . According to the fourth embodiment, it is possible to effectively use the mixed gas that was discarded or simply burned in the third embodiment, and to greatly reduce or eliminate the heat source from the outside of the heater 13 . Therefore, it is possible to further reduce the cost.
1…パイプライン、 2…第一コンプレッサ、 3…第二コンプレッサ、 11…第一分離膜、 12…第二分離膜、 13…加熱器、 14…冷却器、 21…第一排出配管、 22…第二排出配管、 23…高純度ガス輸送配管、 24…第三排出配管、 25…第四排出配管、 31…燃焼器、 32…燃焼ガス輸送配管 100,200,300,400,500 ガス分離システム 1... pipeline, 2... first compressor, 3... second compressor, 11... first separation membrane, 12... second separation membrane, 13... heater, 14... cooler, 21... first discharge pipe, 22... Second discharge pipe, 23... High-purity gas transport pipe, 24... Third discharge pipe, 25... Fourth discharge pipe, 31... Combustor, 32... Combustion gas transport pipe 100, 200, 300, 400, 500 Gas separation system

Claims (9)

  1.  特定ガスを含む混合ガスが流れるパイプラインから分岐され、分岐した前記混合ガスをコンプレッサで昇圧し、前記特定ガスに対する選択透過性を有する第一分離膜と、
     前記第一分離膜を透過しなかった混合ガスを前記パイプラインに戻す第一排出配管と、
     前記第一分離膜を透過した透過ガスを加熱する加熱器と、
     加熱した前記透過ガスに含まれる前記特定ガスに対する選択透過性が前記第一分離膜よりも高い第二分離膜と、
     を備えて構成されることを特徴とするガス分離システム。
    a first separation membrane branched from a pipeline through which a mixed gas containing a specific gas flows, pressurizing the branched mixed gas with a compressor, and having selective permeability to the specific gas;
    a first discharge pipe that returns the mixed gas that has not permeated the first separation membrane to the pipeline;
    a heater that heats the permeated gas that has permeated the first separation membrane;
    a second separation membrane having a higher selective permeability to the specific gas contained in the heated permeable gas than the first separation membrane;
    A gas separation system comprising:
  2.  請求項1に記載のガス分離システムにおいて、
     前記第二分離膜を透過しなかった混合ガスを前記パイプラインに戻す第二排出配管を備えることを特徴とするガス分離システム。
    The gas separation system of claim 1, wherein
    A gas separation system comprising a second discharge pipe for returning mixed gas that has not permeated through the second separation membrane to the pipeline.
  3.  請求項2に記載のガス分離システムにおいて、
     前記第二排出配管に冷却器を設置したことを特徴とするガス分離システム。
    The gas separation system of claim 2, wherein
    A gas separation system, wherein a cooler is installed in the second discharge pipe.
  4.  請求項1~3の何れか1項に記載のガス分離システムにおいて、
     前記第一分離膜が常温で分離可能な分離膜であることを特徴とするガス分離システム。
    In the gas separation system according to any one of claims 1 to 3,
    A gas separation system, wherein the first separation membrane is a separation membrane capable of separation at room temperature.
  5.  請求項1~3の何れか1項に記載のガス分離システムにおいて、
     前記特定ガスが水素であることを特徴とするガス分離システム。
    In the gas separation system according to any one of claims 1 to 3,
    A gas separation system, wherein the specific gas is hydrogen.
  6.  請求項5に記載のガス分離システムにおいて、
     前記第二分離膜が金属膜であることを特徴とするガス分離システム。
    In the gas separation system of claim 5,
    A gas separation system, wherein the second separation membrane is a metal membrane.
  7.  請求項1~3の何れか1項に記載のガス分離システムにおいて、
     前記第一分離膜の透過側と前記第二分離膜の入口との間でガスを昇圧する第二コンプレッサを取り付けたことを特徴とするガス分離システム。
    In the gas separation system according to any one of claims 1 to 3,
    A gas separation system comprising a second compressor for pressurizing gas between the permeation side of the first separation membrane and the inlet of the second separation membrane.
  8.  請求項1~3の何れか1項に記載のガス分離システムにおいて、
     前記第二分離膜で透過しなかった混合ガスを前記パイプラインに戻さず、大気へ排出又は燃焼させて処理することを特徴とするガス分離システム。
    In the gas separation system according to any one of claims 1 to 3,
    A gas separation system, wherein the mixed gas that has not permeated through the second separation membrane is not returned to the pipeline, but is discharged to the atmosphere or burned for treatment.
  9.  請求項1~3の何れか1項に記載のガス分離システムにおいて、
     前記第二分離膜で透過しなかった混合ガスを燃焼させる燃焼器を備え、
     前記燃焼器から排出される燃焼ガスを前記加熱器での熱源とすることを特徴とするガス分離システム。
    In the gas separation system according to any one of claims 1 to 3,
    A combustor that burns the mixed gas that has not permeated through the second separation membrane,
    A gas separation system, wherein combustion gas discharged from the combustor is used as a heat source for the heater.
PCT/JP2021/016936 2021-04-28 2021-04-28 Gas separation system WO2022230096A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/016936 WO2022230096A1 (en) 2021-04-28 2021-04-28 Gas separation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/016936 WO2022230096A1 (en) 2021-04-28 2021-04-28 Gas separation system

Publications (1)

Publication Number Publication Date
WO2022230096A1 true WO2022230096A1 (en) 2022-11-03

Family

ID=83848018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016936 WO2022230096A1 (en) 2021-04-28 2021-04-28 Gas separation system

Country Status (1)

Country Link
WO (1) WO2022230096A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029676A (en) * 2007-07-27 2009-02-12 Nippon Oil Corp Hydrogen production and carbon dioxide recovery method and apparatus
JP2009280426A (en) * 2008-05-21 2009-12-03 Nissan Motor Co Ltd Hydrogen generator
JP2013255898A (en) * 2012-06-13 2013-12-26 Mitsubishi Electric Corp Gas recovery apparatus and gas recovery method
JP2016055276A (en) * 2014-09-12 2016-04-21 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Gas manufacturing method and manufacturing apparatus
JP2019520198A (en) * 2016-05-31 2019-07-18 エボニック スペシャルティ ケミカルズ (シャンハイ) カンパニー リミテッドEvonik Specialty Chemicals (Shanghai) Co., Ltd. Process and equipment for gas separation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029676A (en) * 2007-07-27 2009-02-12 Nippon Oil Corp Hydrogen production and carbon dioxide recovery method and apparatus
JP2009280426A (en) * 2008-05-21 2009-12-03 Nissan Motor Co Ltd Hydrogen generator
JP2013255898A (en) * 2012-06-13 2013-12-26 Mitsubishi Electric Corp Gas recovery apparatus and gas recovery method
JP2016055276A (en) * 2014-09-12 2016-04-21 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Gas manufacturing method and manufacturing apparatus
JP2019520198A (en) * 2016-05-31 2019-07-18 エボニック スペシャルティ ケミカルズ (シャンハイ) カンパニー リミテッドEvonik Specialty Chemicals (Shanghai) Co., Ltd. Process and equipment for gas separation

Similar Documents

Publication Publication Date Title
RU2465955C2 (en) Device and method for reforming
JP5178173B2 (en) Method and system for using low BTU fuel gas in a gas turbine
Klinov et al. Experimental investigation and modeling through using the solution-diffusion concept of pervaporation dehydration of ethanol and isopropanol by ceramic membranes HybSi
JP2004516446A (en) Oxygen separation combustion apparatus and method
Belaissaoui et al. Novel dense skin hollow fiber membrane contactor based process for CO2 removal from raw biogas using water as absorbent
US10213731B2 (en) Method and apparatus for continuous removal of carbon dioxide vapors from gases
JP2001172013A (en) Method and apparatus for producing carbon dioxide
TW201200234A (en) Gas-to-liquid technology
JPH10328522A (en) Solid electrolyte system for producing fixed purity oxygen
JP2010142801A (en) Apparatus and method for supplying air at predetermined temperature to air separation module
WO2009019218A3 (en) Method for operating a combustion system and combustion system
WO2022230096A1 (en) Gas separation system
US10317135B2 (en) Separation at sub-ambient temperature of a gaseous mixture containing carbon dioxide and a lighter contaminant
JP2018171596A (en) Biogas concentration system and biogas concentration method
Koros et al. Elevated temperature application of polymer hollow-fiber membranes
JP2018145404A (en) Component adjusting device of multicomponent-based liquefied gas
Moriyama et al. Steam recovery from flue gas by organosilica membranes for simultaneous harvesting of water and energy
JP2010538236A (en) Method for producing a sterile cryogenic fluid
JP2017109914A (en) Membrane-type nitrogen producing facility, and nitrogen producing method
WO2017056134A1 (en) Nonhydrocarbon gas separation device and nonhydrocarbon gas separation method
US20220325188A1 (en) Crude oil stabilization
US20180200668A1 (en) Method and Apparatus for Continuous Removal of Water Vapors from Gases
WO2016024619A1 (en) Hydrogen and olefin purification system
JP7156070B2 (en) Fuel gas composition adjustment device
JP6415972B2 (en) Mixed gas purifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939257

Country of ref document: EP

Kind code of ref document: A1