WO2022229477A1 - Depósito acumulador de agua caliente a presión de material plástico y calentador eléctrico - Google Patents

Depósito acumulador de agua caliente a presión de material plástico y calentador eléctrico Download PDF

Info

Publication number
WO2022229477A1
WO2022229477A1 PCT/ES2021/070290 ES2021070290W WO2022229477A1 WO 2022229477 A1 WO2022229477 A1 WO 2022229477A1 ES 2021070290 W ES2021070290 W ES 2021070290W WO 2022229477 A1 WO2022229477 A1 WO 2022229477A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric heater
plastic material
hot water
tank
water
Prior art date
Application number
PCT/ES2021/070290
Other languages
English (en)
French (fr)
Inventor
Angel ESPAULELLA
Salvador CALDERÓN
Juan LEBRÓN
Original Assignee
Inerox Industries Sl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inerox Industries Sl filed Critical Inerox Industries Sl
Priority to PCT/ES2021/070290 priority Critical patent/WO2022229477A1/es
Publication of WO2022229477A1 publication Critical patent/WO2022229477A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/185Water-storage heaters using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/181Construction of the tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/188Water-storage heaters with means for compensating water expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0082Multiple tanks arrangements, e.g. adjacent tanks, tank in tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention refers to a pressurized hot water storage tank made of plastic material and an electric heater with a pressurized hot water storage tank made of plastic material, either for domestic hot water or for heating, which has the advantage of being manufactured in plastic material, specifically in PERT material (polyethylene resistant to temperatures), preferably PERTII (Polyethylene RT Class II), consisting of a type of polyethylene in the form of a rigid cylinder with ease for welding by molecular bonding (also known as butt welding) , combined with a pressure control system and a temperature control system, considerably lengthening its useful life compared to deposits of other currently known materials.
  • PERT material polyethylene resistant to temperatures
  • PERTII Polyethylene RT Class II
  • the field of application of the present invention falls within the sector of the industry dedicated to the manufacture of water storage tanks, as well as to the manufacture of electric heaters and other devices with storage tanks for sanitary or inertial hot water.
  • the corrosion of metals is a natural phenomenon that causes their degradation, with loss of their properties and gradual destruction of their structure. Minerals represent the stable combined state of metals in nature, so these, due to corrosion phenomena, tend to return to the combined state.
  • the composition of the iron oxides that appear after a corrosion phenomenon is similar to that of the iron ore existing in the mines, corrosion having also been defined as the inverse phenomenon of metallurgy.
  • immersion resistors In order to heat the water, there are currently various types of elements inside the tanks, such as coils, a heat pump heating system, or immersion heaters. In the case of domestic tanks, immersion resistors are commonly used. These are usually made up of two types:
  • Shielded heating elements are immersed directly in the water and therefore transfer heat more quickly. However, this heat speeds up the cathode cell and makes it very vulnerable to lime scale, which means that it does not transfer heat or even stop working.
  • Sheathed resistances which are those in which the accumulator has inside and in contact with the water a steel sheath that protects the resistance from direct lime scale and in which the heating resistance is inserted inside this sheath, this in turn transfers the heat to the sheath and this transmits the energy to the water, so the heat transfer efficiency is lower and the heating time is longer.
  • PTFE polytetrafluoroethylene or teflon
  • PVDF polyvinylidene fluoride
  • PEEK 1000 polyether ether ketone
  • Polypropylene Polybutylene
  • CPVC chlorinated polyvinyl chloride
  • Polyethylene are discarded , because the following materials are not economical-efficient: PTFE, PVDF, PEEK 1000, CPVC.
  • Polybutylene is also ruled out, because in some countries it was banned due to the problems it generated. Due to increasing research and poor field performance, it is no longer allowed in many parts of the world, including new construction in North America. The product was found to react with low levels of chlorine in drinking water, resulting in reduced tensile strength and premature failure.
  • the final materials that allow working with conditions suitable for use in the application concerned here as a pressurized hot water tank are Polypropylene and Polyethylene.
  • the optimal plastic materials are the family of Polyethylenes (PE) PE100 or HDPE, which are strong and long-lasting materials, however constant working temperatures cannot exceed 40°C and it would only withstand temperatures of 80°C a maximum of LOOOh, so the objective of the present invention focuses on the development of an accumulator tank made of Polyethylene RT (Temperature Resistant) material, preferably Class II.
  • the present invention has as its first object a pressurized hot water tank made of plastic material according to claim 1.
  • the pressurized hot water accumulator tank made of plastic material whether for domestic hot water DHW or inertia for heating, object of the present invention, has the advantage of being made of plastic material, specifically PERT material (polyethylene resistant to high temperatures). ), preferably PERTII (Polyethylene RT Class II).
  • the hot water storage tank of the invention is preferably configured from a rigid SDR (Standard Dimension Ratio) cylinder, tube or pipe made of PERT material, preferably class II, with a diameter suitable for the capacity that suits each case, and with an upper and lower curved bottom, preferably spherical caps, also made of PERT material, preferably class II, which, obtained by molding, are welded to the respective ends of the tube by means of a system molecular bonding called a butt weld.
  • Butt welding of polyethylene pipes (PERT) is considered to be one of the most reliable and durable.
  • the preferred maximum working temperature is 70°C and the maximum working pressure is 4 BAR.
  • a second object of the present invention is an electric hot water heater that incorporates at least one tank as described above.
  • the storage tank also comprises at least one cold water inlet connection accessory, preferably with a diffuser, a hydraulic connection accessory for thermometer probes, etc., an outlet for consumption with internal piping depending on the model, and which can be free-standing, wall-mounted, or for horizontal placement, and a connection accessory for a heat source that may consist of a heat exchanger coil, a submerged or sheathed resistance, a system with heat pump etc.
  • the heat source input, output and flange connections are made using a SOCKET-type welding system.
  • the heater internally comprises a set of two interconnected pressurized hot water accumulator tanks, although as mentioned above it could also include a single one, being made of PERT material. class II.
  • the heater has two electrical resistors, one in each tank, to heat the water, as well as an expansion vessel to absorb overpressure due to temperature and two valves; a first pressure reducing valve and a second safety valve that, preferably, is activated when the maximum pressure allowed in the electric heater is exceeded.
  • the advantages of the hot water storage tank object of the invention to be used both for an electric heater and for other devices with storage tanks for domestic or inertial hot water.
  • SDR Standard Dimension Ratio
  • UNE-EN ISO 9227 NSS:2017 and UNE-EN ISO 6270-2CH:2019 tests are carried out with their respective fully satisfactory results.
  • the storage tank made of plastic material of the invention provides additional advantages compared to conventional steel storage tanks and compared to the metals commonly used for the manufacture of hot water storage tanks, such as low thermal conductivity, a total immunity to corrosion due to phenomena caused by hot water and significant savings in C02 due to the longevity of the material:
  • Thermal conductivity One of the great advantages offered by this family of polyethylenes over conventional steels is the thermal conductivity of the plastic material used, which is 0.35W/Mk.
  • Corrosion immunity As mentioned in the background section, the phenomena of corrosion in metals is one of the main problems of current storage tanks. However, polyethylene resistant to class II temperatures is immune to chlorides and calcium carbonate, the main causes of corrosion, and no type of internal treatment or coating is necessary. Get safe and reliable driving throughout its useful life. In addition, polyethylene pipes are currently used throughout the world for the channeling of water for sanitation, channeling in urban areas.
  • Figure number 1 shows a sectional view of a schematic representation of an embodiment of the pressurized hot water accumulator tank made of plastic material, showing the main parts it comprises.
  • Figure number 2 shows a sectional view of an embodiment of the electric heater with a pressurized hot water accumulator tank made of plastic material, according to the invention, showing the main internal elements that it comprises.
  • an accumulator tank (2) for pressurized hot water made of plastic material consisting of PERT, preferably Class II is observed.
  • the hermetic accumulator tank (2) is formed from a cylindrical body (2a), formed from a cylinder, tube or rigid SDR pipe made of PERT material, preferably class II, and two curved bottoms, preferably in the shape of a spherical cap, one upper (2b) and one lower (2c), obtained by molding which, in turn, are also made of PERT material, preferably class II, which are attached to the respective ends of the tube that makes up the body cylindrical (2a) by welding made with a molecular bonding system or butt welding.
  • Figure 1 shows an accumulator tank (2) for accumulating pressurized hot water that is made up of a container like the one described above in which the incorporation of at least one cold water inlet connection accessory (3 ) with diffuser, a hydraulic connection accessory (4) for probes, thermometer or other devices, a water outlet connection accessory (5) for consumption with an internal pipe of variable configuration, depending on whether it is a foot, wall, or for horizontal placement, and a connection accessory (6) for a heat source.
  • This heat source can be of a variable nature, and may consist, for example, of a heat exchanger coil, a submerged or sheathed resistance, or a heat pump system.
  • the union of the cold water inlet connections (3), water outlet connections (5) and for the heat source (6) to the storage tank (2) made of plastic material preferably consists of a welding carried out by means of SOCKET or TESTA type welding system.
  • two accumulator tanks (2) connected to each other form part of an electric heater (1) that comprises at least one outer casing (1 ) preferably made of polypropylene, ABS or lacquered steel, although it could be made of other materials inside which the two storage tanks (2) are incorporated.
  • Both water storage tanks (2) are made of PERT class II plastic material and comprise two electrical resistors (10) inside as a heat source to heat the water.
  • the electric heater (1) with the two accumulator tanks (2) made of PERT plastic material comprises: on the one hand, a pressure control system (8) that allows the internal pressure of the accumulator tanks (2) to be reduced by having capacity to absorb the increase in water pressure that originates in the circuit when the water is heated by controlling thermal expansion. In this way, it is possible to achieve pressure stabilization when convenient, preventing it from exceeding the pressures that the PERT material tolerates, and on the other hand, a temperature control device (12) that limits the maximum safety temperature.
  • the pressure control system that the electric heater (1) has includes, at least, the inclusion of a pressure reducing valve (7), a thermal expansion device (8) and an overpressure safety valve ( eleven).
  • each tank (2) has a water inlet and a water outlet, so that the cold water inlet of a first tank (2) coincides with the water inlet in the heater (1) and the water outlet of said first deposit (2) connects with the water inlet of the second tank (2) through a connection, the water outlet of said second tank (2) being the hot water outlet of the heater (1).
  • the connection arranged between both tanks (2) also allows both tanks to be connected to an expansion vessel (8) to absorb overpressure due to temperature that may be generated inside said tanks (2).
  • two valves are arranged, located at the water inlet of the heater (3) to control the pressure. Specifically, a first pressure reducing valve (7) and a second safety valve (11) are arranged in said water inlet outlet (3-é) which, preferably, is activated when the maximum pressure allowed in the electric heater is exceeded. , for example, the 4 BAR.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

Depósito acumulador de agua caliente a presión de material plástico y a calentador eléctrico con depósito acumulador de agua caliente a presión de material plástico, referido a un depósito de agua caliente a presión de material plástico y a un calentador eléctrico con depósito de acumulación de agua caliente a presión, ya sea para agua caliente sanitaria o para calefacción, que presenta la ventaja de estar fabricado en material plástico, concretamente en material PERT (polietileno resistente a temperaturas), preferentemente PERTII (Polietileno RT Clase II).

Description

DEPÓSITO ACUMULADOR DE AGUA CALIENTE A PRESIÓN DE MATERIAL PLÁSTICO Y CALENTADOR ELÉCTRICO
DESCRIPCIÓN
OBJETO DE LA INVENCION
La presente invención se refiere a un depósito acumulador de agua caliente a presión de material plástico y a un calentador eléctrico con depósito acumulador de agua caliente a presión de material plástico, ya sea para agua caliente sanitaria o para calefacción, que presenta la ventaja de estar fabricado en material plástico, concretamente en material PERT (polietileno resistente a temperaturas), preferentemente PERTII (Polietileno RT Clase II), consistente en un tipo de polietileno en forma de cilindro rígido con facilidad para la soldadura mediante unión molecular (también conocido como soldadura tope), combinado con un sistema de control de presión y un sistema de control de temperatura, permitiendo alargar considerablemente la vida útil del mismo frente a los depósitos de otros materiales actualmente conocidos.
El campo de aplicación de la presente invención se enmarca dentro del sector de la industria dedicada a la fabricación de depósitos acumuladores de agua, así como a la fabricación de calentadores eléctricos y otros aparatos con depósitos de acumulación de agua caliente sanitaria o inerciales.
ANTECEDENTES DE LA INVENCIÓN
En la actualidad los acumuladores de agua caliente sanitaria o inerciales (calefacción) se fabrican, en su mayoría, con depósitos de los siguientes materiales como base (el material final que estará en contacto con el agua):
Para inercia térmica (circuito cerrado):
- Acero S235JR sin tratar.
- Acero S235JR Galvanizado.
- Acero inoxidable AISI 304.
Para agua caliente sanitaria:
- Acero S235JR (Con tratamiento Vitrificado DIN 4753-3).
- Acero S235JR (Con tratamiento de resinas epoxídicas).
- Acero Inoxidable (De diversas calidades, AISI 444, 304L, 316L y Dúplex 2205). Cada uno de estos materiales no están exentos de fenómenos conocidos como la corrosión.
La corrosión de los metales es un fenómeno natural, que provoca una degradación de los mismos, con pérdidas de sus propiedades y destrucción gradual de su estructura. Los minerales representan el estado combinado estable de los metales en la naturaleza, por lo que estos, por los fenómenos de corrosión tienden a volver al estado combinado. La composición de los óxidos de hierro que aparecen tras un fenómeno de corrosión, es similar a la del mineral de hierro existente en las minas, habiéndose definido también la corrosión como el fenómeno inverso a la metalurgia.
Este fenómeno que al ser un proceso electroquímico que se establece entre el metal y el medio agresivo que le rodea, generalmente el agua, se intenta evitar o frenar al máximo con los diferentes tratamientos del metal (Resinas epoxídicas, galvanizado o vitrificado entre otras) que a su vez generan procesos industriales poco amables con el medio ambiente y que en el caso de que en una pequeña zona de los acumuladores se desprenda o dañe estos tipos de recubrimiento se produce una corrosión acelerada y en algunos casos de difícil solución, causando problemas en la disminución de la calidad del agua facilitar la proliferación de la bacteria de la legionella, y la alteración de la eficiencia en la producción y el transporte de la energía térmica, así como provocar desequilibrios hidráulicos.
Esta problemática se agrava si en el diseño de la instalación y en su fase de instalación no se ha previsto un sistema eficaz de protección catódica también según la zona geográfica donde esté dicha instalación y los niveles de dureza del agua, viéndose casos de sustituciones de acumuladores e instalaciones enteras a los pocos años, incluso habiendo soportado en ocasiones una problemática de calidad de agua o corrosión acelerada durante años, para así evitar los gastos derivados de la sustitución integral del sistema.
Actualmente en los depósitos de acumulación de agua caliente sanitaria existen elementos para ralentizar el proceso de corrosión que se define como natural mediante ánodos de magnesio o sacrificio, normalmente, como protección catódica. Su composición de magnesio provoca que la corrosión le ataque a él preferentemente, manteniendo por más tiempo inalterables el resto de materiales.
La falta de indicadores del estado del ánodo de magnesio obliga al usuario a realizar desmontajes para su supervisión para proceder o no a su cambio. Sin embargo, en una gran mayoría de casos el usuario final no acostumbra a realizar dichos mantenimientos.
Otra opción es la inclusión de ánodos permanentes por corriente impresa, este tipo de protección ofrece una varilla generalmente de titanio (no se desgasta) unida a un transformador que emite una corriente impresa para realizar y cerrar el circuito de pila catódica y así evitar la corrosión. Este sistema, que puede parecer definitivo tiene sus carencias en función de los valores de temperatura o dureza del agua, así como de la frecuencia e intensidad en que la corriente alcance todos y cada uno de los puntos del acumulador.
Otra gran desventaja en los acumuladores sanitarios domésticos (más conocidos como Termos Eléctricos) de hoy día, es la acumulación de cal sobre la resistencia eléctrica. La fuente de calor encargada de calentar el agua.
Con el fin de calentar el agua, actualmente existen diversos tipos de elementos dentro de los depósitos como los serpentines, sistema de calentamiento con bomba de calor, o resistencias de inmersión. En el caso de los depósitos domésticos se usan comúnmente las resistencias de inmersión. Éstas se componen habitualmente de dos tipos:
Las resistencias blindadas están sumergidas directamente en el agua y por lo tanto transfieren el calor con mayor rapidez. Sin embargo, este calor acelera la pila catódica y la hace muy vulnerable a las incrustaciones de cal por lo cual acaba por no transferir el calor o incluso dejar de funcionar.
Las resistencias envainadas, que son aquellas en las que el acumulador tiene en su interior y en contacto con el agua una vaina de acero que protege la resistencia de las incrustaciones directas de cal y en la que dentro de esta vaina se introduce la resistencia calefactora, ésta a su vez transfiere el calor a la vaina y esta transmite la energía al agua, por lo que la eficiencia de transferencia de calor es menor y el tiempo de calentamiento es mayor.
Estos problemas mencionados anteriormente, es decir, la corrosión en depósitos de almacenamiento de ACS o inercia y las incrustaciones de cal en los dispositivos de calentamiento, hacen que la media de vida de un tanque sea entre 5 y 10 años. Dependiendo de la calidad del agua y/o de los mantenimientos efectuados al depósito. Es por ello que se plantea como solución el desarrollo de un depósito exento de materiales metálicos, concretamente fabricado en material plástico, ya que los materiales plásticos gozan de inmunidad a la corrosión por derivados del agua caliente, y pueden ser lo suficientemente resistentes en cuanto a niveles mecánicos y térmicos. Sin embargo, no todos los materiales plásticos son aptos para ello.
En dicho sentido, conviene señalar que, si bien existen algunos documentos que divulgan depósitos, calentadores y otros dispositivos similares que no son metálicos o que directamente se indica que están fabricados en materiales plásticos, no parece evidente que ninguno resuelva de manera efectiva la problemática descrita, ya que ninguno de ellos describe la utilización de un material plástico concreto que, como en el caso de la presente invención, consiga superar los inconvenientes detectados en la mayoría de materiales plásticos, tal como se expone a continuación.
En concreto, de los principales grupos de materiales plásticos, es decir, PTFE (politetrafluoroetileno oteflón), PVDF (polifluoruro de vinilideno), PEEK 1000 (poliéteréter cetona), Polipropileno, Polibutileno, CPVC (policloruro de vinilo clorado) y Polietileno, se descartan, por no ser económico-eficientes los siguientes materiales: PTFE, PVDF, PEEK 1000, CPVC.
Se descarta asimismo el Polibutileno, debido a que en algunos países se llegó a prohibir por los problemas que generaba. Debido a la creciente investigación y al bajo rendimiento de campo, ya no está permitido en muchos lugares del mundo, incluyendo las nuevas construcciones en Norteamérica. Se encontró que el producto reaccionaba con bajos niveles de cloro en el agua potable, lo que daba como resultado una resistencia a la tracción reducida y falla prematura.
Así pues, los materiales finales que permiten trabajar con las condiciones aptas para su uso en la aplicación que aquí concierne como depósito de agua caliente a presión son el Polipropileno y el Polietileno.
Sin embargo, aunque en principio la familia del PP pueda parecer apta, por su resistencia mecánica y a altas temperaturas, presenta un grave inconveniente por su incompatibilidad con instalaciones mixtas con cobre y sus condiciones indispensables de bajos niveles de cloro, según estudios realizados, lo cual hace que no sirva como material idóneo.
En consecuencia, tras descartar cualquier familia de PP (Polipropileno), los materiales plásticos óptimos son la familia de los Polietilenos (PE) PE100 o HDPE que son materiales fuertes y longevos sin embargo las temperaturas constantes de trabajo no pueden superar los 40°C y únicamente soportaría temperaturas de 80°C un máximo de LOOOh, por lo que el objetivo de la presente invención se centra en el desarrollo de un depósito acumulador fabricado con material Polietileno RT (Resistente a las temperaturas) preferentemente Clase II.
Por otra parte, y como referencia al estado actual de la técnica, cabe señalar que, aunque como se ha señalado anteriormente, existen algunos documentos que divulgan algunos aparatos con depósitos fabricados en material plástico, al menos por parte del solicitante, se desconoce la existencia de ninguno que describa concretamente un depósito de agua caliente a presión para instalaciones de ACS o calefacción y que presente unas características técnicas y constitutivas a base de PERT como las que presenta el que aquí se reivindica.
EXPLICACIÓN DE LA INVENCIÓN
La presente invención tiene como primer objeto de la misma un depósito de agua caliente a presión de material plástico conforme a la reivindicación 1.
El depósito acumulador de agua caliente a presión de material plástico, ya sea para agua caliente sanitaria ACS o de inercia para calefacción, objeto de la presente invención, presenta la ventaja de estar fabricado en material plástico, concretamente en material PERT (polietileno resistente a temperaturas), preferentemente PERTII (Polietileno RT de Clase II).
Más específicamente, el depósito acumulador de agua caliente de la invención se configura, preferentemente, a partir de un cilindro, tubo o tubería rígido SDR (Standard Dimensión Ratio o relación de dimensión estándar) fabricada en material PERT, preferentemente de clase II, con diámetro adecuado a la capacidad que convenga en cada caso, y con un fondo curvo superior e inferior, preferiblemente casquetes esféricos, fabricados igualmente en material PERT, preferentemente de clase II, que, obtenidos por moldeo, están soldados a los respectivos extremos del tubo mediante sistema de unión molecular denominado soldadura tope. La soldadura tope de tubos de polietileno (PERT) pasa por ser una de las más fiables y duraderas. La temperatura máxima de trabajo preferida es 70°C y la presión máxima de trabajo es 4 BAR.
Un segundo objeto de la presente invención conforme a la reivindicación 5, es un calentador eléctrico de agua caliente que incorpora al menos un depósito como el anteriormente descrito. En esta realización, el depósito acumulador comprende, además, al menos, un accesorio de conexión de entrada de agua fría preferentemente con difusor, un accesorio de conexión hidráulica para sondas termómetro etc., una salida a consumo con tubería interior según modelo, y que puede ser de pie, mural, o para colocación horizontal, y un accesorio de conexión para una fuente de calor que puede consistir, en un serpentín intercambiador de calor, en una resistencia sumergida o envainada, en un sistema con bomba de calor etc.
Preferentemente, las conexiones de entrada, salida y brida de la fuente de calor se realizan mediante un sistema de soldadura tipo SOCKET.
Además, en una forma de realización preferida aplicable como calentador eléctrico, el calentador comprende internamente, un conjunto de dos depósitos acumuladores de agua caliente a presión conectados entre sí, aunque como se ha mencionado anteriormente también podría incluir uno solo, estando fabricados de material PERT clase II. El calentador presenta dos resistencias eléctricas, una en cada depósito, para calentar el agua, además de un vaso de expansión para absorber la sobrepresión por temperatura y dos válvulas; una primera válvula reductora de presión y una segunda válvula de seguridad que, preferentemente, se activa cuando se supera la presión máxima permitida en el calentador eléctrico.
Con todo ello, las ventajas del depósito acumulador de agua caliente objeto de la invención para servir tanto para un calentador eléctrico como para otros aparatos con depósitos de acumulación de agua caliente sanitaria o inerciales.
Así, dentro de la familia de los Polietilenos se trabaja concretamente en la última formulación del mercado de tubería rígida (no flexible) y con facilidad para la soldadura mediante unión molecular como el RT (Polietileno Resistente a Temperaturas), y se descartan los conocidos como PERT/AL o PERT/AL/PEX, debido a las capas que la tubería incluye en su interior como adhesivo y aluminio. Esto hace que no se puedan realizar soldaduras por uniones moleculares (soldaduras tipo tope o socket) que es lo que preferentemente se busca para la construcción de un depósito acumulador.
Además, la utilización de Polietileno Resistente a Temperaturas (PERT de cualquier clase) de última generación, frente a cualquier otro material plástico se debe a su idoneidad y por cumplir con todos los puntos necesarios para la creación de un depósito acumulador de agua caliente, principalmente por su resistencia mecánica, térmica y también inmune a los cloruros y el carbonato cálcico, principales causantes de la corrosión.
En concreto, según el ensayo de tracción y longevidad realizado, aunque en principio se utiliza como base la “SDR” (Standar Dimensión Ratio) que define la relación que existe entre el diámetro nominal y el espesor tubo o tubería en función de los requerimientos, se obtiene que, preferiblemente, la serie adecuada para la fabricación de un depósito acumulador de agua caliente garantizando una larga longevidad y resistencia a los factores clave como temperatura y presión será entre SDR 17 y SDR 13.6.
Cabe destacar que a cuanto menor es la serie SDR mayor será el peso del material por lo que se busca un equilibrio entre peso-seguridad.
Acorde con la resistencia, según las condiciones de trabajo de un acumulador tradicional de agua caliente, se realiza un ensayo de resistencia a presión hidrostática a largo plazo de 1000 horas a 80°C y una presión de 10 BAR. Los resultados obtenidos por el centro de ensayos CEIS determinan que para obtener una longevidad de 78 años bajo esas condiciones se debería trabajar con la Serie SDR 13.6 (según ISO 9080).
Se efectúan asimismo ensayos de inmunidad a la corrosión. Concretamente, se efectúan ensayos UNE-EN ISO 9227 NSS:2017, y UNE-EN ISO 6270-2CH:2019 con respectivos resultados plenamente satisfactorios.
Por otra parte, el depósito acumulador de material plástico de la invención proporciona ventajas adicionales frente a los depósitos acumuladores convencionales de acero y frente a los metales comúnmente usados para la fabricación de depósitos acumuladores de agua caliente, como son una baja conductividad térmica, una total inmunidad a la corrosión por fenómenos provocados por el agua caliente y un importante ahorro en C02 debido a la longevidad del material:
Conductividad térmica. Una de las grandes ventajas que ofrece esta familia de los polietilenos frente a los aceros convencionales es la conductividad térmica del material plástico usado, que es de 0,35W/Mk.
Inmunidad a la corrosión. Tal y como se menciona en el apartado de antecedentes, los fenómenos de la corrosión en los metales es uno de los principales problemas de los depósitos acumuladores actuales. Sin embargo, el polietileno resistente a las temperaturas clase II, es inmune a los cloruros y el carbonato cálcico, principales causantes de la corrosión, y no es necesario ningún tipo de tratamiento interno ni recubrimiento. Consigue conducciones seguras y fiables a lo largo de toda su vida útil. Además, actualmente las tuberías de polietileno, son utilizadas en todo el mundo para la canalización de aguas para saneamiento, canalización en zonas urbanas.
- Ahorro en C02. Debido a la longevidad que ofrece el material PERT (más de 50 años según estudios realizados) y con una vida útil de media en los aceros convencionales de 7 años, se determina que gracias a la longevidad ofrecida por el material PERT se conseguirá un ahorro en emisiones de C02 que puede llegar a ser del 85,6%
DESCRIPCIÓN DE LOS DIBUJOS
Para completar la descripción que se está realizando y con objeto de facilitar la comprensión de las características de la invención, se adjunta a la presente memoria descriptiva, como parte integrante de la misma, un juego de figuras con carácter ilustrativo y no limitativo.
La figura número 1 muestra una vista en sección de una representación esquemática de un ejemplo de realización del depósito acumulador de agua caliente a presión de material plástico, apreciándose las principales partes que comprende.
La figura número 2 muestra una vista en sección de un ejemplo de realización del calentador eléctrico con depósito acumulador de agua caliente a presión de material plástico, según la invención apreciándose los principales elementos internos que comprende.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
A la vista de las mencionadas figuras, y de acuerdo con la numeración adoptada, a continuación, se describen ejemplos de realización de la invención.
Así, en la figura 1 , se observa un depósito acumulador (2) de agua caliente a presión de material plástico consistente en PERT, preferentemente de Clase II. El depósito acumulador (2) hermético está conformado a partir de un cuerpo cilindrico (2a), conformado a partir de un cilindro, tubo o tubería rígida SDR fabricado en material PERT, preferentemente de clase II, y sendos fondos curvos, preferiblemente con forma de casquete esférico, uno superior (2b) y otro inferior (2c), obtenidos por moldeo que, a su vez, también están fabricados en material PERT, preferentemente de clase II, los cuales están unidos a los respectivos extremos del tubo que conforma el cuerpo cilindrico (2a) mediante una soldadura efectuada con sistema de unión molecular o soldadura tope.
La figura 1 muestra un depósito acumulador (2) de acumulación de agua caliente a presión que está conformado por un recipiente como el descrito anteriormente en el que se contempla la incorporación de, al menos, un accesorio de conexión de entrada de agua fría (3) con difusor, un accesorio de conexión hidráulica (4) para sondas, termómetro u otros dispositivos, un accesorio de conexión de salida de agua (5) a consumo con tubería interior de configuración variable, según se trate de un aparato de pie, mural, o para colocación horizontal, y un accesorio de conexión (6) para una fuente de calor. Esta fuente de calor puede ser de naturaleza variable, pudiendo consistir, por ejemplo, en un serpentín intercambiador de calor, en una resistencia sumergida o envainada, o en un sistema bomba de calor.
Por su parte, la unión de las conexiones de entrada de agua fría (3), de salida de agua (5) y para la fuente de calor (6) al depósito acumulador (2) de material plástico consiste preferentemente en una soldadura efectuada mediante sistema de soldadura tipo SOCKET o TESTA.
En otra realización preferente, y tal como se observa en la figura 2, dos depósitos acumuladores (2) conectados entre si, aunque podría ser uno, forman parte de un calentador eléctrico (1) que comprende, al menos, una carcasa exterior (1) de preferiblemente polipropileno, ABS o acero lacado, aunque podría ser de otros materiales en cuyo interior se incorporan los dos depósitos acumuladores (2). Ambos depósitos de acumulación de agua (2) son de material plástico PERT clase II y comprenden en su interior dos resistencias eléctricas (10) como fuente de calor para calentar el agua.
Además, el calentador eléctrico (1) con los dos depósitos acumuladores (2) de material plástico PERT comprende: por una parte, un sistema de control de presión (8) que permite reducir la presión interna de los depósitos acumuladores (2) al disponer de capacidad de absorber el aumento de presión del agua que se origina en el circuito cuando se calienta el agua mediante un control de la expansión térmica. Así se consigue lograr una estabilización de la presión cuando sea conveniente, evitando que superen las presiones que el material PERT tolera, y por otra parte, un dispositivo de control de temperatura (12) que limita la temperatura máxima de seguridad.
Preferentemente, el sistema de control de presión con que cuenta el calentador eléctrico (1) comprende, al menos, la inclusión de una válvula reductora de presión (7), un dispositivo de expansión térmica (8) y una válvula de seguridad por sobrepresión (11).
Atendiendo a la figura 2 se observa cómo los depósitos de acumulación de agua (2) conectados entre sí con una resistencia eléctrica cada uno reguladas por el dispositivo de control de la temperatura (12). Cada depósito (2) presenta una entrada de agua y una salida de agua, de manera que la entrada de agua fría de un primer depósito (2) coincide con la entrada de agua en el calentador (1) y la salida de agua de dicho primer depósito (2) conecta con la entrada de agua del segundo depósito (2) a través de una conexión, siendo la salida de agua de dicho segundo depósito (2) la salida de agua caliente del calentador (1). La conexión dispuesta entre ambos depósitos (2) permite conectar también ambos depósitos con un vaso de expansión (8) para absorber la sobrepresión por temperatura que se pueda generar en el interior de dichos depósitos (2). Asimismo, se disponen dos válvulas, situadas en la entrada de agua del calentador (3) para controlar la presión. En concreto se dispone en dicha salida entrada de agua ( 3-é ) una primera válvula reductora de presión (7) y una segunda válvula de seguridad (11) que, preferentemente, se activa cuando se supera la presión máxima permitida en el calentador eléctrico, por ejemplo, los 4 BAR.

Claims

REIVINDICACIONES
1. Depósito acumulador (2) de agua caliente a presión de material plástico caracterizado porque el material plástico es PERT.
2. Depósito, según la reivindicación 1 , caracterizado porque el material plástico es PERT de Clase II.
3. Depósito, según la reivindicación 1 ó 2, caracterizado porque comprende un cuerpo cilindrico (2a), conformado a partir de un tubo rígido SDR, y sendos fondos curvos, uno superior (2b) y otro inferior (2c).
4. Depósito, según la reivindicación 3, caracterizado porque los fondos curvos son casquetes esféricos en material PERT y están unidos a los respectivos extremos del tubo mediante una soldadura efectuada con sistema de unión molecular.
5. Calentador eléctrico (1), caracterizado porque comprende al menos un depósito acumulador (2), según cualquiera de las reivindicaciones 1 a 4, con, al menos, un accesorio de conexión de entrada de agua fría (3), un accesorio de conexión de salida de agua (5) a consumo, y un accesorio de conexión para una fuente de calor (6).
6. Calentador eléctrico, según reivindicación 5, caracterizado porque comprende un sistema de control de presión para absorber el aumento de presión (8) del agua que se origina cuando se calienta el agua y un sistema de control de temperatura (12) que limita la temperatura máxima de seguridad.
7. Calentador eléctrico, según la reivindicación 6, caracterizado porque el sistema de control de presión comprende un vaso de expansión térmica (8) que absorbe el aumento de presión del agua por temperatura en el interior del al menos un depósito acumulador (2).
8. Calentador eléctrico, según reivindicación 7, caracterizado porque comprende dos depósitos acumuladores (2) conectados entre sí.
9. Calentador eléctrico, según cualquiera de las reivindicaciones 7 a 8, caracterizado porque el sistema de control de presión comprende dos válvulas en la entrada de agua (3), una primera válvula reductora de presión (7) y una segunda válvula de seguridad (11).
10. Calentador eléctrico, según cualquiera de las reivindicaciones 5 a 9, caracterizado porque el al menos un depósito acumulador (2) comprende al menos uno o más accesorios de conexión hidráulica (4) para sondas, termómetro u otros dispositivos,
11. Calentador eléctrico, según las reivindicaciones 6 y 10, caracterizado porque la unión de las conexiones de entrada de agua fría (3), de salida de agua (5) y para la fuente de calor (6) es una soldadura efectuada mediante sistema de soldadura tipo SOCKET o TESTA.
PCT/ES2021/070290 2021-04-28 2021-04-28 Depósito acumulador de agua caliente a presión de material plástico y calentador eléctrico WO2022229477A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2021/070290 WO2022229477A1 (es) 2021-04-28 2021-04-28 Depósito acumulador de agua caliente a presión de material plástico y calentador eléctrico

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2021/070290 WO2022229477A1 (es) 2021-04-28 2021-04-28 Depósito acumulador de agua caliente a presión de material plástico y calentador eléctrico

Publications (1)

Publication Number Publication Date
WO2022229477A1 true WO2022229477A1 (es) 2022-11-03

Family

ID=76305941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070290 WO2022229477A1 (es) 2021-04-28 2021-04-28 Depósito acumulador de agua caliente a presión de material plástico y calentador eléctrico

Country Status (1)

Country Link
WO (1) WO2022229477A1 (es)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004873A1 (en) * 1996-07-26 1998-02-05 Merloni Termosanitari S.P.A. A water heater apparatus made of plastic, in particular a pressurized water heater tank
WO2011104592A1 (en) * 2010-01-29 2011-09-01 Ariston Thermo S.P.A. Flat water heater with reduced capacity storage tanks
DE102012100932A1 (de) * 2012-02-06 2013-08-08 Fsave Solartechnik Gmbh Modul für einen thermischen Speicherbehälter
WO2016110721A2 (en) * 2015-01-09 2016-07-14 Aqualogic Nt Limited Improved water apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004873A1 (en) * 1996-07-26 1998-02-05 Merloni Termosanitari S.P.A. A water heater apparatus made of plastic, in particular a pressurized water heater tank
WO2011104592A1 (en) * 2010-01-29 2011-09-01 Ariston Thermo S.P.A. Flat water heater with reduced capacity storage tanks
DE102012100932A1 (de) * 2012-02-06 2013-08-08 Fsave Solartechnik Gmbh Modul für einen thermischen Speicherbehälter
WO2016110721A2 (en) * 2015-01-09 2016-07-14 Aqualogic Nt Limited Improved water apparatus

Similar Documents

Publication Publication Date Title
ES2815567T3 (es) Tanque para calentar un líquido con canalización de intercambio de calor, y procedimiento para la fabricación de dicha canalización
ES2370331A1 (es) Tubería para redes de distribución de agua.
US11549693B2 (en) Hot water tank
WO2022229477A1 (es) Depósito acumulador de agua caliente a presión de material plástico y calentador eléctrico
CN202109025U (zh) 一种塑料嵌包金属的水龙头水道组件
ES2921648T3 (es) Intercambiador de calor con fluido caloportador con conjunto optimizado y un dispositivo de almacenamiento de energía térmica con material de cambio de fase que comprende dicho intercambiador
ES2681657T3 (es) Tanque para el almacenamiento de líquidos fríos y calientes
ES2690590T3 (es) Cuerpo tubular de acero austenítico así como receptor solar
CN204421367U (zh) 一种空气能热水器承压水箱内胆
CN102168887A (zh) 防腐防垢新型电热水器
CN112796373A (zh) 一种玻璃钢消防水箱
CN211502044U (zh) 一种保温无缝钢管
CN202118342U (zh) 一种塑料增强的单把水龙头水道组件
CN103255425A (zh) 一种换热器部装阴极保护方法及换热器部装
CN102197958A (zh) 一种可调温饮水机的内胆结构
CN207195862U (zh) 一种不锈钢管
CN207622105U (zh) 一种太阳能与燃气锅炉联合供热系统
CN206816972U (zh) 一种低压流体输送管道用钢管
CN206708613U (zh) 一种预制单双保温管转换装置
CN204421324U (zh) 分离式中低承压电热水器
CN202109026U (zh) 一种塑料包胶金属的水龙头水道组件
CN215334907U (zh) 一种污水处理用耐腐蚀管道
CN203949549U (zh) 一种冷凝换热器焊点保护结构
WO2011077352A2 (en) Ground heat exchanger
CN208871203U (zh) 一种连接固定的pe管材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21730635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21730635

Country of ref document: EP

Kind code of ref document: A1