WO2022228518A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2022228518A1
WO2022228518A1 PCT/CN2022/089916 CN2022089916W WO2022228518A1 WO 2022228518 A1 WO2022228518 A1 WO 2022228518A1 CN 2022089916 W CN2022089916 W CN 2022089916W WO 2022228518 A1 WO2022228518 A1 WO 2022228518A1
Authority
WO
WIPO (PCT)
Prior art keywords
access node
configuration information
terminal device
communication
entity
Prior art date
Application number
PCT/CN2022/089916
Other languages
English (en)
French (fr)
Inventor
王君
吕永霞
王婷
张立清
马江镭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022228518A1 publication Critical patent/WO2022228518A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a communication method and apparatus.
  • a long term evolution (long term evolution, LTE) system a new radio (new radio, NR) system
  • NR new radio
  • Operators need to deploy two or more formats at the same time to meet market demands.
  • the NR standard supports multi-standard dual-link (multi radio-dual connectivity, MR-DC) communication in order to split the LTE system and the NR system.
  • MR-DC multi radio-dual connectivity
  • MR-DC does not support aggregation between multiple carriers, dynamic/real-time scheduling negotiation between different carriers, and carrier aggregation features such as cross-carrier scheduling and joint uplink control information feedback, so the communication performance is poor.
  • the present application provides a communication method and apparatus, which are used to support aggregation of carriers of different standards, realize the characteristics of carrier aggregation, and improve communication performance.
  • a communication method is provided.
  • a first access node determines first configuration information, where the first configuration information is used to configure a first communication mode, and the first communication mode supports aggregation of carriers of different standards; the first access node The node sends the first configuration information to the terminal device.
  • the first communication mode supports aggregation of carriers of different standards, and by configuring the terminal device, the interconnection between the terminal device and the access nodes of different standards can be realized, so that the carrier aggregation feature can be realized and the communication performance can be improved.
  • the interconnection and intercommunication between access nodes of different standards can also be realized, and the interconnection and intercommunication between access nodes of different manufacturers can also be realized.
  • the first configuration information when the first configuration information is used to configure the first communication mode, the first configuration information may be used to indicate that the first communication mode is used for communication, and the first configuration information may further Including configuration information of the first protocol stack.
  • the first communication mode can reuse the configuration information of the first protocol stack, so as to change as little as possible on the basis of the currently supported first protocol stack, and support carrier aggregation of different standards.
  • the first configuration information when the first configuration information is used to configure the first communication mode, the first configuration information may be configuration information of the second protocol stack.
  • the first communication manner may not completely reuse the configuration information of the first protocol stack to support carrier aggregation of different standards.
  • the configuration information of the second protocol stack includes the association relationship between the medium access control MAC entity of the first access node and the MAC entity of the second access node. There may be an interface between the MAC entity of the first access node and the MAC entity of the second access node in the second protocol stack, and the MAC entity of the first access node and the MAC entity of the second access node may communicate.
  • the configuration information of the second protocol stack may include the MAC configuration information of the first access node, the MAC configuration information of the first access node includes the MAC entity identifier of the second access node, and/or the configuration information of the second protocol stack
  • the MAC configuration information of the second access node may be included, and the MAC configuration information of the second access node includes the MAC entity identifier of the first access node.
  • the configuration information of the second protocol stack includes an association relationship between a MAC entity (eg, the MAC entity of the first access node) and the physical layer PHY entity of the first access node and the PHY entity of the second access node, respectively.
  • the MAC entity is connected to the PHY entity of the first access node and the PHY entity of the second access node, respectively.
  • the configuration information of the second protocol stack may include configuration information of the MAC entity, and the configuration information of the MAC entity includes the PHY entity identifier of the first access node and/or the PHY entity identifier of the second access node.
  • the configuration information of the second protocol stack includes the PHY configuration information of the first access node and/or the PHY configuration information of the second access node, the PHY configuration information of the first access node includes the MAC entity identifier, the second access node The PHY configuration information of the node includes the MAC entity identity. In another example, the configuration information of the second protocol stack includes the MAC entity identifier, the PHY entity identifier of the first access node and the PHY entity identifier of the second access node.
  • the first access node may also receive a first message, where the first message is used to indicate that the terminal device supports the first communication mode.
  • the terminal device can report to the first access node whether it supports the capability of the first communication mode, and the first access node can deliver configuration information to the terminal device supporting the first communication mode, so as to realize the connection between the terminal device and the access nodes of different standards. The interconnection between them improves the communication performance.
  • the first access node communicates with the second access node, and the standard of the first access node and the standard of the second access node can be different.
  • the MAC entity of the first access node and the MAC entity of the second access node may communicate.
  • the MAC entity of the first access node may communicate with the PHY entity of the first access node and the PHY entity of the second access node respectively.
  • the first access node may also send second configuration information to the terminal device, where the second configuration information is used to instruct the terminal device to activate the second access node, or to deactivate the terminal device. the second access node.
  • the first access by instructing the terminal device to activate access to other access nodes, the interconnection between the terminal device and the access nodes of different standards can be realized, and the communication performance can be improved.
  • the second configuration information when used by the terminal device to activate the second access node, the second configuration information may be used to instruct the terminal device to access the node through random access. into the second access node, and communicate with the second access node using the first communication method.
  • the first access node may instruct the terminal device to activate access to the second access node in a random access manner to implement communication with the second access node.
  • the second configuration information when the second configuration information is used by the terminal device to activate the second access node, the second configuration information may be used to instruct the terminal device to use a non-random access method accessing the second access node and communicating with the second access node using the first communication method.
  • the first access node may instruct the terminal device to activate access to the second access node in a non-random access manner to implement communication with the second access node. If the first access node instructs the terminal device to directly use the second access node for communication, the activation time can be further reduced, the second access node can be quickly accessed, and the communication efficiency can be improved.
  • the second configuration information is used to instruct the terminal device to activate the second access node, or when the terminal device deactivates the second access node, the second The configuration information may also be used to instruct the terminal device to activate the second access node under the first cell group, or the terminal device to deactivate the second access node under the first cell group.
  • the first access node may instruct the terminal device to activate access to the second access node under the first cell group through random access, so as to implement communication with the second access node. If the second configuration information is the PDCCH order, the activation of the second access node can also be quickly triggered, which further reduces the activation time and improves communication efficiency.
  • the first access node sends third configuration information to the terminal device, where the third configuration information is used to configure the shared information of the second cell group and the third cell group; and/ Or the shared information used to configure the MAC entity of the first access node and the MAC entity of the second access node.
  • the third configuration information is used to configure the shared information of the second cell group and the third cell group
  • the shared information used to configure the MAC entity of the first access node and the MAC entity of the second access node.
  • the shared information includes configuration information and/or parameter information and the like.
  • the shared information includes but is not limited to at least one of the following: configuration information of discontinuous reception DRX, configuration information of timing advance TA, configuration information of scheduling request SR, counter information, timer information, cell radio network temporary identifier C-RNTI configuration information, etc.
  • the first access node may also send fourth configuration information to the terminal device.
  • the fourth configuration information is used to configure the terminal device to report the buffer status report BSR once.
  • the fourth configuration information is used to configure the terminal device to report the BSR to the first access node or to report the BSR to the second access node.
  • the fourth configuration information is used to configure the terminal device to report the BSR to the access node that first allocates the transmission resource. In this way, the terminal equipment can be prevented from repeatedly reporting the BSR for many times, and the signaling overhead of the terminal equipment can be reduced.
  • the terminal device can report the BSR once by default.
  • the terminal device may report the BSR to the first access node or report the BSR to the second access node by default.
  • the terminal device may report the BSR to the access node that preferentially allocates transmission resources by default.
  • the first access node may perform additional configuration without sending the fourth configuration information, thereby further reducing signaling overhead.
  • the MAC1 entity of the first access node is connected to the MAC2 entity of the second access node; or the MAC1 entity of the first access node is respectively connected to the first access node
  • the PHY1 entity of the node is connected with the PHY2 entity of the second access node.
  • different protocol stack models can also be provided to support carrier aggregation of different standards to further improve communication performance.
  • the MAC entity of the first access node when the MAC entity of the first access node is connected to the MAC entity of the second access node, it further includes: the RLC1 entity of the first node is connected to the MAC1 entity; or the first node The RLC1 entity of the first node is connected to the MAC1 entity and the MAC2 entity respectively; or the RLC1 entity of the first node is connected to the MAC1 entity, and the RLC2 entity of the second node is connected to the MAC2 entity.
  • a communication method is provided.
  • a terminal device receives first configuration information, where the first configuration information is used to configure a first communication mode, and the first communication mode supports aggregation of carriers of different standards; the terminal device according to the first communication mode The configuration information is communicated using the first communication method.
  • the first configuration information when the first configuration information is used to configure the first communication mode, the first configuration information may be used to indicate that the first communication mode is used for communication, and the first configuration information may further Including configuration information of the first protocol stack.
  • the first configuration information when the first configuration information is used to configure the first communication mode, may be configuration information of the second protocol stack.
  • the configuration information of the second protocol stack includes the association relationship between the MAC entity of the first access node and the MAC entity of the second access node.
  • the configuration information of the second protocol stack includes an association relationship between a MAC entity (eg, the MAC entity of the first access node) and the physical layer PHY entity of the first access node and the PHY entity of the second access node, respectively.
  • the terminal device may also send a first message to the first access node, where the first message is used to indicate that the terminal device supports the first communication mode.
  • the first access node in the first communication manner, communicates with the second access node, and the standard of the first access node and the standard of the second access node different.
  • the terminal device may also receive second configuration information, where the second configuration information is used to instruct the terminal device to activate the second access node, or the terminal device to deactivate the second access node.
  • the second configuration information when the second configuration information is used by the terminal device to activate the second access node, the second configuration information may be used to instruct the terminal device to access the node through random access. into the second access node, and communicate with the second access node using the first communication method. According to the second configuration information, the terminal device can activate the access to the second access node through the random access mode, and use the first communication mode to communicate with the second access node.
  • the second configuration information when the second configuration information is used by the terminal device to activate the second access node, the second configuration information may be used to instruct the terminal device to use a non-random access method accessing the second access node and communicating with the second access node using the first communication method.
  • the terminal device can access the second access node in a non-random access manner, and communicate with the second access node by using the first communication manner. For example, the terminal device may communicate with the second access node directly using the first communication method.
  • the second configuration information is used to instruct the terminal device to activate the second access node, or when the terminal device deactivates the second access node, the second The configuration information may be used to instruct the terminal device to activate the second access node under the first cell group, or the terminal device to deactivate the second access node under the first cell group.
  • the terminal device may further receive third configuration information, where the third configuration information is used to configure the shared information of the second cell group and the third cell group; and/or used to configure the first cell group Shared information of the MAC entity of the access node and the MAC entity of the second access node.
  • the shared information includes at least one of the following: configuration information of discontinuous reception DRX, configuration information of timing advance TA, configuration information of scheduling request SR, counter information, timer information, cell wireless network temporary identifier C- RNTI configuration information.
  • the terminal device may also receive and send fourth configuration information.
  • the fourth configuration information is used to configure the terminal device to report the buffer status report BSR once.
  • the fourth configuration information is used to configure the terminal device to report the BSR to the first access node or to report the BSR to the second access node.
  • the fourth configuration information is used to configure the terminal device to report the BSR to the access node that first allocates the transmission resource.
  • the terminal device can report the BSR once by default.
  • the terminal device may report the BSR to the first access node or report the BSR to the second access node by default.
  • the terminal device may report the BSR to the access node that preferentially allocates transmission resources by default.
  • the MAC1 entity of the first access node is connected to the MAC2 entity of the second access node; or the MAC1 entity of the first access node is respectively connected to the first access node
  • the PHY1 entity of the node is connected with the PHY2 entity of the second access node.
  • the MAC entity of the first access node when the MAC entity of the first access node is connected to the MAC entity of the second access node, it further includes: the RLC1 entity of the first node is connected to the MAC1 entity; or the first node The RLC1 entity of the first node is connected to the MAC1 entity and the MAC2 entity respectively; or the RLC1 entity of the first node is connected to the MAC1 entity, and the RLC2 entity of the second node is connected to the MAC2 entity.
  • a protocol stack is provided.
  • the MAC1 entity of the first access node is connected to the MAC2 entity of the second access node; or the MAC1 entity of the first access node is connected to the PHY1 entity of the first access node and the The PHY2 entity of the second access node is connected.
  • the MAC1 entity of the first access node when the MAC1 entity of the first access node is connected to the MAC1 entity of the second access node, it further includes: the RLC1 entity of the first node is connected to the MAC1 entity; or The RLC1 entity of the first node is connected to the MAC1 entity and the MAC2 entity respectively; or the RLC1 entity of the first node is connected to the MAC1 entity, and the RLC2 entity of the second node is connected to the MAC2 entity .
  • a communication device for implementing the above-mentioned various methods.
  • the communication device may be the first access node in the first aspect, or a device including the first access node, or a device included in the first access node, such as a chip; or, the communication device may be The terminal device in the above second aspect, or a device including the above terminal device, or a device included in the above terminal device.
  • the communication device includes corresponding modules, units, or means (means) for implementing the above method, and the modules, units, or means may be implemented by hardware, software, or by executing corresponding software in hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • a communication device comprising: a processor and an interface circuit, the interface circuit is used for communicating with modules other than the communication device; the processor is used for running a computer program or instructions to execute any one of the above-mentioned aspects.
  • the communication device may be the first access node in the first aspect, or a device including the first access node, or a device included in the first access node, such as a chip; or, the communication device may be The terminal device in the above second aspect, or a device including the above terminal device, or a device included in the above terminal device.
  • the interface circuit may be a code/data read/write interface circuit for receiving computer-executed instructions (the computer-executed instructions are stored in memory, may be directly read from memory, or may pass through other devices) and transmit them to the A processor to cause the processor to execute computer-executable instructions to perform the method described in any of the above aspects.
  • the communication device may be a chip or a system of chips.
  • a communication device comprising: a processor; the processor is configured to be coupled to a memory, and after reading an instruction in the memory, execute the method according to any one of the preceding aspects according to the instruction.
  • the communication device may be the first access node in the first aspect, or a device including the first access node, or a device included in the first access node, such as a chip; or, the communication device may be The terminal device in the above second aspect, or a device including the above terminal device, or a device included in the above terminal device.
  • a computer-readable storage medium having instructions stored therein, when executed on a communication device, enables the communication device to perform the method described in any of the above aspects.
  • the communication device may be the first access node in the first aspect, or a device including the first access node, or a device included in the first access node, such as a chip; or, the communication device may be The terminal device in the above second aspect, or a device including the above terminal device, or a device included in the above terminal device.
  • a computer program product comprising instructions which, when executed on a communication device, enable the communication device to perform the method of any of the preceding aspects.
  • the communication device may be the first access node in the first aspect, or a device including the first access node, or a device included in the first access node, such as a chip; or, the communication device may be The terminal device in the above second aspect, or a device including the above terminal device, or a device included in the above terminal device.
  • a ninth aspect provides a communication apparatus (for example, the communication apparatus may be a chip or a chip system), the communication apparatus includes a processor for implementing the functions involved in any one of the above aspects.
  • the communication device further includes a memory for storing necessary program instructions and data.
  • the communication device is a chip system, it may be constituted by a chip, or may include a chip and other discrete devices.
  • a communication system includes the first access node of the foregoing aspect and the terminal device described in the foregoing aspect.
  • the communication system further includes a second access node.
  • FIG. 1 is a schematic diagram of a scheduling scenario
  • FIG. 2 is a schematic diagram of a sounding reference signal switching
  • FIG. 3 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another communication system provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a possible protocol layer provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a multi-standard dual-link deployment scenario
  • FIG. 7 is a schematic diagram of an interface in a protocol stack
  • FIG. 8 is a schematic diagram of a multi-standard dual-link protocol stack
  • FIG. 9 is a schematic diagram of a communication process provided by an embodiment of the present application.
  • 10 is a schematic diagram of sharing information between cell groups
  • FIG. 11 is a schematic diagram of a protocol stack provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a protocol stack provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a protocol stack provided by an embodiment of the present application.
  • 15 is a schematic diagram of a scheduling and data encapsulation process provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of still another communication apparatus provided by an embodiment of the present application.
  • the word "exemplary” is used to mean serving as an example, illustration or illustration. Any embodiment or design described in this application as "exemplary” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of the word example is intended to present a concept in a concrete way.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • Terminal equipment also known as user equipment (UE) is a device with wireless transceiver functions that access device) communicates with one or more core network (core network, CN) devices (or may also be referred to as core devices).
  • core network CN
  • core devices or may also be referred to as core devices.
  • User equipment may also be referred to as an access terminal, terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, user agent, user device, or the like.
  • User equipment can be deployed on land, including indoor or outdoor, handheld or vehicle; can also be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the user equipment may be a cellular phone (cellular phone), a cordless phone, a session initiation protocol (SIP) phone, a smart phone (smart phone), a mobile phone (mobile phone), a wireless local loop (WLL) station, personal digital assistant (PDA), etc.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the user equipment may also be a handheld device with a wireless communication function, a computing device or other device connected to a wireless modem, an in-vehicle device, a wearable device, a drone device, or a terminal in the Internet of Things, the Internet of Vehicles, the fifth generation Mobile communication (5th-generation, 5G) network and any form of terminal in future network, relay user equipment or terminal in future evolved PLMN, etc.
  • the relay user equipment may be, for example, a 5G home gateway (residential gateway, RG).
  • the user equipment can be a virtual reality (VR) terminal, an augmented reality (AR) terminal, a wireless terminal in industrial control, a wireless terminal in self driving, telemedicine Wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home wireless terminals, etc.
  • VR virtual reality
  • AR augmented reality
  • This embodiment of the present application does not limit the type or type of the terminal device.
  • Network equipment which refers to equipment that can provide wireless access functions for terminals.
  • the network device may support at least one wireless communication technology, such as LTE, NR, and the like.
  • Network devices are also called network nodes or nodes.
  • network devices may include access network devices (also referred to as access nodes or nodes).
  • network devices include, but are not limited to: next-generation node B (generation node B, gNB), evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC) in the 5G network, node B (node B, NB), home base station (for example, home evolved node B, or home node B, HNB), baseband unit (BBU), transmitting and receiving point (TRP), transmitting point (transmitting point) point, TP), mobile switching center, small station, micro station, etc.
  • next-generation node B generation node B
  • eNB evolved node B
  • RNC radio network controller
  • the network device may also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (CRAN) scenario, or the network device may It is a relay station, an access point, a vehicle-mounted device, a terminal, a wearable device, and a network device in future mobile communications or a network device in a future evolved public land mobile network (PLMN).
  • An access network device is also called an access node.
  • the network device may include a core network (CN) device, and the core network device includes, for example, an access and mobility management function (access and mobility management function, AMF) and the like.
  • CN core network
  • AMF access and mobility management function
  • the area covered by an access network device or a part of the access network device is called a cell.
  • CA Carrier aggregation
  • Carriers corresponding to different cells participating in carrier aggregation may be referred to as component carriers (CC).
  • the CA may include a primary component carrier (PCC) and a secondary component carrier (SCC).
  • the CA may include a primary cell (primary cell, Pcell) and a secondary cell (secondary cell, Scell).
  • PCC or SCC can be one or more. There may be one or more Pcells or Scells.
  • a CA includes, but is not limited to, at least one of the following characteristics:
  • multiple input multiple output (MIMO) layers of multiple carriers can be dynamically shared, and resource allocation can be jointly optimized.
  • CA currently supports cross-carrier scheduling of the same standard.
  • Cross-carrier scheduling is relative to self-scheduling.
  • the uplink data scheduling information and/or downlink data scheduling information of CC1 may be sent in CC1.
  • the uplink data scheduling information and/or the downlink data scheduling information of CC1 may be sent on CC2.
  • the downlink control information (DCI) of CC1 is sent in CC1
  • the DCI of CC2 is sent in CC2.
  • the DCI of CC1 can be sent in CC2, and the DCI of CC2 can be sent in CC2.
  • the PDCCH of CC1 is cross-carrier scheduling, and the PDCCH of CC2 is self-scheduling.
  • the DCI is used to indicate the related scheduling information of the physical downlink shared channel (PDSCH).
  • the DCI of CC1 and the DCI of CC2 may be sent in one DCI.
  • DCI may be carried through a physical downlink control channel (PDCCH).
  • the access node can configure cross-carrier scheduling configuration information for the terminal device through radio resource control (radio resource control, RRC) signaling.
  • the cross-carrier scheduling configuration information is used to indicate self-scheduling (own) or cross-carrier scheduling (other). If cross-carrier scheduling is indicated, the cross-carrier scheduling configuration information also indicates the scheduling cell identifier (schedulingCellId) and the scheduled carrier indicator field (CIF), the CIF can be indicated by the field cif-InSchedulingCell, and cif-InSchedulingCell can occupy 3 bits.
  • the cross-carrier scheduling configuration information may be downlink control information (downlink control information, DCI), and the DCI is carried by the PDCCH.
  • Cross-carrier scheduling can balance loads, flexibly coordinate resources, and improve spectrum efficiency.
  • CA supports sounding reference signal (SRS) switching.
  • SRS can be used for uplink channel estimation and downlink beamforming.
  • TDD time division duplex
  • SRS needs to be scheduled on the SCC.
  • the SCC is a carrier without a physical uplink shared channel (PUSCH). Due to limited capabilities, terminal equipment can only send uplink signals in one cell. The terminal equipment can send uplink signals in multiple CCs through the function of SRS-CarrierSwitching. For terminal equipment with limited uplink capability, SRS fast switching between multiple uplink carriers is supported, thereby improving downlink transmission performance.
  • PUSCH physical uplink shared channel
  • the terminal device sends PUSCH on CC1 when the system frame number (system frame number, SFN) symbol number 0-10, when the switching time (Switching time) arrives, the terminal device is in the SFN number.
  • the switching time On the symbol of 13, switch to CC2 for SRS transmission, and after the switching time ends, the terminal device switches back to CC1 on the symbol of number 2 of (SFN+1) to continue to send the PUSCH.
  • the switching time in FIG. 2 lasts from symbol number 10 of SFN to symbol number 1 of (SFN+1).
  • CA supports joint uplink control information (UCI) feedback.
  • the terminal device may jointly encode the PDSCH acknowledgement/non-acknowledgement (ACK/NACK) information of multiple CCs and/or the channel state information (CSI) of multiple CCs on one CC for feedback.
  • Joint UCI feedback can reduce the overhead of uplink feedback resources, improve spectral efficiency, and improve uplink transmission performance.
  • CA uplink power control.
  • Symbol-level dynamic power sharing can be implemented among different CCs of CA.
  • the terminal device can determine the transmit power on each symbol according to the priority.
  • the transmission of the high-priority channel on the CC that satisfies the high-priority is prioritized on each symbol.
  • the priority of the CC may be that the priority of the PCC is greater than the priority of the SCC. The smaller the index (index) of the cell, the higher the priority.
  • the priority of the channel can be: physical random access channel (PRACH) of Pcell > physical uplink control channel (PUCCH) with high priority identifier / PUSCH > same priority identifier Case (PUCCH with hybrid automatic repeat request (HARQ)-ACK>PUCCH with CSI)>SRS (aperiodic SRS>semi-static SRS>periodic SRS) or PRACH on non-Pcell.
  • PRACH physical random access channel
  • Pcell physical uplink control channel
  • PUCCH physical uplink control channel
  • HARQ hybrid automatic repeat request
  • SRS aperiodic SRS>semi-static SRS>periodic SRS
  • the technical solutions of the embodiments of the present application can be applied to a mobile communication system, and can also be applied to a satellite communication system, wherein the satellite communication system can be integrated with a traditional mobile communication system.
  • the mobile communication system may be a fourth-generation (4th-generation, 4G) communication system (eg, LTE system), a 5G communication system (eg, NR system), and future mobile communication systems, or other communication systems, etc. .
  • 4G fourth-generation
  • LTE system Long Term Evolution
  • 5G communication system eg, NR system
  • future mobile communication systems or other communication systems, etc.
  • the embodiments of the present application can also be applied to scenarios of homogeneous networks and heterogeneous networks.
  • the transmission point is not limited, for example, it can be multi-point coordinated transmission between macro base station and macro base station, micro base station and micro base station, and macro base station and micro base station.
  • the embodiments of the present application may also be applied to a frequency division duplex (frequency division duplex, FDD) system/TDD system.
  • the embodiments of the present application may also be applicable to a CU/DU separation architecture.
  • the embodiments of the present application may also be applicable to a control plane/user plane (Control Plane/User Plane, CP/UP) separation architecture.
  • the embodiments of the present application can also be applied to low frequency (such as sub 6G) scenarios, high frequency (such as above 6G) scenarios, terahertz communication scenarios, optical communication scenarios, and the like.
  • low frequency such as sub 6G
  • high frequency such as above 6G
  • terahertz communication scenarios such as above 6G
  • optical communication scenarios and the like.
  • a communication system capable of implementing signal transmission it is not limited in this embodiment of the present application.
  • the communication system includes network equipment and terminal equipment. There may be one or more network devices, and one or more terminal devices.
  • the network equipment can send signals to the terminal equipment, and the terminal equipment can also send signals to the network equipment.
  • the communication system includes terminal equipment, an access network (including access network equipment) and a core network (including core network equipment).
  • the communication system may further include a data network (DN).
  • DN data network
  • Data networks can often be deployed outside operator networks, such as third-party networks.
  • the operator network may access multiple data networks, and multiple services may be deployed on the data networks, so as to provide services such as data and/or voice for terminal devices.
  • the core network is mainly responsible for the mobility management, session management and data transmission of end users.
  • the network elements in the access network include base stations.
  • the base station is responsible for the functions related to the air interface, such as the wireless link maintenance function, maintaining the wireless link with the terminal equipment, and also responsible for the protocol conversion between the wireless link data and the internet protocol (IP) data;
  • radio resource management functions including the establishment and release of radio links, scheduling and allocation of radio resources, etc.
  • mobility management functions including configuring terminals for measurement, evaluating terminal radio link quality, and deciding terminal handovers between cells Wait.
  • a base station may include user plane protocols and control plane protocols.
  • Terminal equipment may include user plane protocols and control plane protocols.
  • the terminal device can interact with the base station through the air interface.
  • each protocol layer of the terminal device can be interconnected with each protocol layer of the base station to transmit information.
  • Protocol layers include physical layer (PHY), medium access control (MAC), radio link control (RLC), packet data convergence protocol (PDCP) ), radio resource control layer (radio resource control, RRC), service data adaptation protocol (service data adaptation protocol, SDAP).
  • PHY physical layer
  • MAC medium access control
  • RLC radio link control
  • PDCP packet data convergence protocol
  • RRC radio resource control layer
  • service data adaptation protocol service data adaptation protocol
  • SDAP belongs to the user plane protocol layer
  • RRC belongs to the control plane protocol layer.
  • MR-DC X-radio access technology (RAT) dual connectivity
  • RAT X-radio access technology
  • DC dual connectivity
  • MR-DC includes a primary node (master node, MN) and a secondary node (secondary node, SN).
  • MN master node
  • SN secondary node
  • NR version (release, R) 15 proposes multiple options (option, opt) for MR-DC for different deployment scenarios and DC evolution routes.
  • User plane connections are shown with solid lines and control plane connections are shown with dashed lines.
  • the opt2 series is also called NR DC.
  • Both the primary node and the secondary node are NR base stations (gNB).
  • the gNB connects to the 5G CN, such as AMF and user plane function (UPF).
  • AMF user plane function
  • Evolved Universal Terrestrial Radio Access Network NR Evolved Universal Terrestrial Radio Access Network NR, EUTRAN NR, EN
  • the master node is an LTE base station (e-eNB)
  • the secondary node is an NR base station (gNB)
  • the primary node and secondary node are connected to 4G CN, such as mobility management entity (mobility management entity, MME) and serving gateway (serving gateway, SGW).
  • 4G CN such as mobility management entity (mobility management entity, MME) and serving gateway (serving gateway, SGW).
  • mobility management entity mobility management entity
  • serving gateway serving gateway
  • opt4 series also known as New Radio Evolved Universal Terrestrial Radio Access Network (NR EUTRAN, NE)-DC
  • the primary node is gNB
  • the secondary node is e-eNB
  • the primary node and secondary node are connected to 5G CN, such as AMF and UPF .
  • opt7 series also known as New Radio Evolution (NR EUTRAN NR, NGEN)-DC
  • the primary node is e-eNB
  • the secondary node is gNB
  • the primary node and secondary node are connected to 5G CN, such as AMF and UPF.
  • NR R15 provides protocol stack 1 and protocol stack 2.
  • the protocol stack 1 is called MR-DC with EPC, where EPC stands for evolved packet core, or it can be the above EN-DC architecture.
  • Protocol stack 2 is called MR-DC with 5GC, where 5GC represents the 5G core network (5G core), which can include the above-mentioned NE-DC, NGEN-DC and NR-DC architectures.
  • the interface of the protocol stack 1 ((a) in FIG. 7 ) and the interface of the protocol stack 2 ((b) in FIG. 7 ) are shown in FIG. 7 .
  • Protocol stack 1 adopts S1 and X2 interfaces
  • protocol stack 2 adopts Ng and Xn interfaces.
  • the protocol stack on the UE side is shown in FIG. 8 .
  • MN and SN have their own RRC layers, RRC1 and RRC2 respectively, and the control plane protocol stack is a complete RRC/PDCP/RLC/MAC/PHY.
  • the standard of MN is LTE
  • the standard of SN is NR.
  • the user plane protocol stack is SDAP/PDCP/RLC/MAC/PHY, and one PDCP entity is connected to the RLC/MAC/PHY of MN and SN at the same time.
  • Improve the instantaneous rate of terminal equipment such as data packets 1/3/5/... go MN, data packets 2/4/6/... go to SN
  • PDCP can also perform packet replication to improve reliability (such as data packets 1/2 /3/...go to MN, data packets 1/2/3/...go to SN at the same time).
  • MR-DC is supported in the standard, and subsequent NR versions are also evolved based on MR-DC.
  • X-RAT CA ie MR-CA
  • LTE base stations and NR base stations generally only optical fibers can meet this requirement
  • optical fiber deployment in most countries or regions is extremely scarce, so X-RAT CA's
  • the actual deployment probability is low, so MR-CA is not supported in the NR standard for the time being.
  • MR-DC currently does not support aggregation between multiple carriers, dynamic/real-time scheduling negotiation between different carriers, and CA features such as cross-carrier scheduling and joint UCI feedback, so the communication performance is poor.
  • an embodiment of the present application provides a communication method.
  • a scenario where this communication method can be applied is ideal backhaul between nodes (for example, an optical fiber is deployed between nodes, or a low-latency cable is deployed when nodes are co-located), and the nodes The transmission time between them is short (eg, less than 1 millisecond (ms)).
  • the communication method can support aggregation of carriers of different standards, such as supporting multi-standard carrier aggregation (multi radio-carrier aggregation, MR-CA), so as to realize the CA characteristic and improve the communication performance.
  • multi-standard carrier aggregation multi radio-carrier aggregation, MR-CA
  • FIG. 9 provides a possible communication method according to an embodiment of the present application, and the communication method can realize the configuration of MR-CA, including the following steps:
  • the first access node determines first configuration information.
  • the first configuration information is used to configure the first communication mode.
  • the first communication mode supports aggregation of carriers of different standards, for example, the first communication mode supports MR-CA.
  • the “standard” involved in the embodiments of this application may be 3G/wideband code division multiple access (WCDMA)/universal mobile telecommunications system (UMTS)/code division multiple access (code division multiple access). division multiple access, CDMA)/time division-synchronous code division multiple access (TD-SCDMA), 4G/LTE, 5G/NR, 6G, 7G and other systems and systems.
  • WCDMA wideband code division multiple access
  • UMTS universal mobile telecommunications system
  • code division multiple access code division multiple access
  • division multiple access CDMA
  • TD-SCDMA time division-synchronous code division multiple access
  • multiple access nodes can communicate, and at least two of the multiple access nodes have different standards.
  • the multiple access nodes may include the first access node, or may not include the first access node (eg, the first access node configures the terminal device with the first communication mode, and may not participate in the communication).
  • the first access node and the second access node can communicate, and the standard of the first access node and the standard of the second access node are different.
  • the access node may be PCC or MN or Pcell, or the access node may be SCC or SN or Scell.
  • the first access node is PCC, MN or Pcell
  • the second access node is SCC, SN or Scell as an example for description.
  • the first configuration information may reuse the configuration information of the first protocol stack, and the first protocol stack may be an existing protocol stack, such as an MR-DC protocol stack.
  • the first configuration information may be used to indicate that the first communication mode is used for communication, and the first configuration information may further include configuration information of the first protocol stack.
  • the first configuration information may use explicit information to indicate whether to use the first communication mode for communication, for example, use 1-bit information to indicate, when 1 bit is 1, it indicates that the first communication mode is used for communication, and when 1 bit is 0, it is indicated.
  • a communication mode other than the first communication mode (eg, the second communication mode) is used for communication, and the communication mode other than the first communication mode may be the MR-DC communication mode.
  • the terminal device receives the configuration information of the MR-DC protocol stack and determines to use the MR-CA communication mode according to the 1-bit information, it determines to use the MR-CA protocol stack/communication mode for communication, and can reuse the MR-DC
  • the configuration information of the protocol stack configures MR-CA.
  • the terminal device receives the configuration information of the MR-DC protocol stack and determines to use the MR-DC communication mode according to the 1-bit information, it determines to use the MR-DC protocol stack/communication mode for communication.
  • the configuration information of the first protocol stack may not be completely reused.
  • the first configuration information may be configuration information of the second protocol stack.
  • the configuration information of the second protocol stack may include an association relationship between the MAC entity of the first access node and the MAC entity of the second access node.
  • the MAC entity of the first access node and the MAC entity of the second access node are connected (or have an interface), and can communicate.
  • the first configuration information may include MAC configuration information of the first access node and/or MAC configuration information of the second access node.
  • the MAC configuration information of the first access node may include an index or identifier of the MAC entity of the second access node, and/or the MAC configuration information of the second access node may include the MAC entity of the first access node and/or a set of configurations includes the index or identity of the MAC entity of the first access node and the index or identity of the MAC entity of the second access node.
  • the configuration information of the second protocol stack may include the MAC entity of an access node (for example, the MAC entity of the first access node or the MAC entity of the second access node) and the physical layer of the first access node respectively.
  • the MAC entity is connected to the PHY entity of the first access node and the PHY entity of the second access node, respectively.
  • the configuration information of the second protocol stack may include the configuration information of the MAC entity, and the configuration information of the MAC entity includes the index or identification of the PHY entity of the first access node, and/or the index or identification of the PHY entity of the second access node .
  • the configuration information of the second protocol stack includes the PHY configuration information of the first access node and/or the PHY configuration information of the second access node
  • the PHY configuration information of the first access node includes the index or identifier of the MAC entity
  • the The PHY configuration information of the second access node includes the index or identification of the MAC entity.
  • the configuration information of the second protocol stack includes the index or identifier of the MAC entity, the index or identifier of the PHY entity of the first access node, and the index or identifier of the PHY entity of the second access node.
  • the terminal device When receiving the configuration information of the MR-CA protocol stack, the terminal device determines to use the MR-CA protocol stack/communication method for communication.
  • the terminal device may send the first message to the first access node, and the first access node receives the first message.
  • the first message may indicate capability information reported by the terminal device.
  • the first message may be used to indicate that the terminal device supports the first communication mode, or the first message may be used to indicate that the terminal device does not support the first communication mode.
  • the first message may be used to indicate that the terminal device supports MR-CA.
  • the first message may also indicate that the terminal device has capabilities such as "cross-RAT scheduling", “cross-RAT feedback”, or "cross-RAT SRS handover".
  • cross-RAT scheduling means that the DCI of one standard (referring to the access node of this standard) can schedule data of another standard
  • cross-RAT feedback means that the feedback information of the two standard can be fed back on one standard.
  • Cross-RAT SRS handover means that if a terminal device has only one transmission channel, the terminal device can transmit SRS signals of different formats on different formats through time division.
  • the first access node sends first configuration information to the terminal device, and the terminal device receives the first configuration information.
  • the first access node may confirm that the first communication mode is used for communication.
  • the first access node may also determine to use a non-first communication manner to communicate.
  • S903 The terminal device communicates using the first communication mode according to the first configuration information.
  • the terminal device may use the first communication mode to communicate with the first access node according to the first configuration information.
  • the terminal device may also use the first communication manner to communicate with other access nodes.
  • the first access node can configure activation or deactivation of other access nodes, and the terminal device can communicate with the activated access node.
  • the terminal device can send SRS on the CC of the access node, report information such as channel quality indicator (CQI), and detect DCI for the node and transmission on the node And so on, and then realize the carrier aggregation and communication process on different standards.
  • the first access node may configure the terminal device to access other access nodes, and communicate with other access nodes through the first communication manner.
  • the first access node may also send second configuration information to the terminal device, and the terminal device receives the second configuration information.
  • the second configuration information may be used to instruct the terminal device to activate the second access node, or the second configuration information may be used to instruct the terminal device to deactivate the second access node. If the second configuration information is used to instruct the terminal device to activate the second access node, the terminal device can determine to activate the second access node after receiving the second configuration information, and the terminal device can also access the second node and pass the second configuration information.
  • a communication method communicates with the second access node.
  • the second configuration information may further indicate a cell group (cell group, CG) where the second access node is located.
  • the second configuration information may include a cell group identifier (Cell Group id) and an identifier (Cell id) of the second access node.
  • Cell Group id a cell group identifier
  • Cell id an identifier of the second access node.
  • the second configuration information may be used to instruct the terminal device to activate the second access node under the first cell group, or the second configuration information may be used to instruct the terminal device to deactivate the second access node under the first cell group.
  • the second configuration information may further instruct the terminal device to access the second access node and communicate with the second access node through the first communication manner.
  • the terminal device may determine to activate the second access node, access the second access node, and communicate with the second access node through the first communication manner.
  • the second configuration information when used by the terminal device to activate the second access node, it can be used to instruct the terminal device to use a random access method (such as a random access channel (RACH) method) Access the second access node and activate the second access node.
  • a random access method such as a random access channel (RACH) method
  • the second configuration information is used to instruct the terminal device to access the second configuration through the RACH mode. access node, and communicate with the second access node using the first communication method.
  • the terminal device receives the second configuration information, it can access the second access node through the RACH mode, and communicate with the second access node using the first communication mode.
  • the second configuration information when used by the terminal device to activate the second access node, it may be used to instruct the terminal device to access the second access node in a non-random access manner, and activate the second access node. into the node.
  • the second configuration information when the second configuration information is information indicated by RACH-less, for example, the second configuration information is RRC signaling (or RRC signaling carried by non-RACH) that includes RACH-less indication, and the second configuration information is used to indicate
  • the terminal device may directly communicate with the second access node without accessing the second access node in the RACH manner.
  • the terminal device receives the second configuration information, it can communicate with the second access node by directly using the first communication manner.
  • Timing advance is related to the distance between the terminal device and the access node.
  • the terminal When the first access node supporting the first communication mode and the second access node are co-located (that is, belong to the same network device), the terminal The distance between the device and the first access node is the same as the distance between the terminal device and the second access node, so the timing advance (TA) value of the first access node and the second access node Similarly, when adding a second access node, the configuration information of the TA maintained by the first access node can be directly shared with the second access node, and the terminal device can obtain the TA value of the second access node. Therefore, the terminal device can directly access and activate the second access node, the RACH process can be omitted, the second access node can be activated quickly, and the activation time can be reduced.
  • the second configuration information may include the Cell id of the second access node, and may also include a cell group id (Cell Group id) where the second access node is located.
  • the second configuration information may be a MAC control element (control element, CE), and the MAC CE signaling includes information such as Cell Group id and Cell id. If the Cell Group id is the identifier of the first cell group, and the Cell id is the identifier of the second access node, the MAC CE signaling can be used to instruct the terminal device to activate the second access node under the first cell group, or used for The terminal equipment is instructed to deactivate the second access node under the first cell group. When the terminal device receives the second configuration information, it can activate to access the second access node under the first cell group, and communicate with the second access node using the first communication mode.
  • CE control element
  • the second configuration information may be a PDCCH order (order), and the PDCCH order includes information such as Cell Group id and Cell id. If the Cell Group id is the identifier of the first cell group, and the Cell id is the identifier of the second access node, the PDCCH order can be used to instruct the terminal device to activate the second access node under the first cell group, or to instruct the terminal to activate the second access node in the first cell group. The device deactivates the second access node under the first cell group. When the terminal device receives the second configuration information, it can access the second access node under the first cell group through the RACH mode, and communicate with the second access node using the first communication mode. The activation and deactivation of the second access node can be quickly triggered through the DCI triggering method of the PDCCH order.
  • the first access node when used in combination, first configures the information of the second access node for the terminal device through RRC signaling, and then activates the second access node as the terminal device through MAC control element (control element, CE) signaling.
  • Secondary carrier of MR-CA When the first access node determines that the terminal device accesses the second node through the RACH mode, it sends a PDCCH order to the terminal device, triggering the terminal device to quickly access the second access node through the RACH mode, and sends the second access node ( or the cell of the second access node) is used as the secondary carrier of MR-CA.
  • the Scell can share the configuration information and parameter information maintained by the Pcell, thereby saving resources and signaling overhead.
  • the MCG supports the CA feature, has one Pcell and multiple Scells, and the configuration information and parameter information of the Pcell are referenced by the multiple Scells.
  • MCGs only support sharing within one CG, that is, sharing within the same standard.
  • the terminal device supports the MR-DC protocol stack, it also supports the reference in the secondary cell group (SCG).
  • the SCG has a primary secondary cell (PScell) and multiple Scells, and the configuration information and parameter information of the PScell are referenced by the multiple Scells.
  • the SCG only supports sharing within one CG, that is, sharing within the same standard.
  • CA technology and MR-DC protocol stack cannot realize the sharing of configuration information and parameter information across cell groups, and cell-radio network temporary identifier (C-RNTI) can be used to determine the start of blind detection. location, each cell group is configured with its own independent C-RNTI, which will also lead to too many blind detection times of the terminal equipment, which is not conducive to energy saving.
  • C-RNTI cell-radio network temporary identifier
  • the first access node may also send third configuration information to the terminal device, where the third configuration information may be used to configure the shared information of the second cell group and the third cell group; and/or used to configure the first access node
  • the shared information of the MAC entity of the second access node and the MAC entity of the second access node may co-site (belong to the same network device) or not co-site (belong to different network devices).
  • the standard of the second cell group and the standard of the third cell group may be the same or different.
  • the MAC entity of the first access node and the MAC entity of the second access node may or may not be co-located, and the standard of the first access node and the standard of the second access node may be the same or different.
  • the shared information includes configuration information and/or parameter information and the like.
  • the shared information includes at least one of the following: configuration information of discontinuous reception (DRX), configuration information of TA, configuration information of scheduling request (SR), configuration information of C-RNTI, etc., and PHY entity and /or configuration information of the MAC entity and/or the RLC entity and/or the PDCP entity and/or the SDAP entity and/or the RRC entity, and the timers, counters, state variables, etc. maintained by each entity.
  • the referenced cell group identifier (Cell Group id) may be added to the shared information, that is, the cell group identifier information may be added to the related configuration information.
  • the configuration information of the DRX may include the identification of the cell group where the DRX is located (DRX group id), and may also include information such as the referenced cell group identification (Cell Group id).
  • the MCG identifier is added to the configuration information of the DRX of the PScell in the SCG and the Scell-1, and the PScell in the SCG can share the configuration information of the DRX1 in the Pcell in the MCG.
  • Scell-1 can share the configuration information of DRX2 in Pcell in MCG.
  • the configuration information of the TA may include a timing advance group ID (TA group id) (for example, the ID of the cell group where the TA is located), and may also include the referenced cell group ID (Cell Group ID). id) and other information.
  • TA group id timing advance group ID
  • Cell Group ID Cell Group ID
  • the MCG identifier is added to the configuration information of the DRX of the PScell in the SCG and the Scell-1, and the PScell in the SCG can share the configuration information of the TAG1 in the Pcell in the MCG.
  • Scell-1 can share the configuration information of TAG2 in Pcell in MCG.
  • the configuration information of the SR may include an identifier of the SR (SR id), and may also include information such as a referenced cell group identifier (Cell Group id).
  • the shared information includes the configuration information of the C-RNTI
  • the configuration information of the C-RNTI may include the value of the C-RNTI, and may also include information such as the referenced cell group identifier (Cell Group id).
  • Cell Group id the referenced cell group identifier
  • the related configuration information in the shared information is not changed, and each access node and terminal device reference the configuration information and parameter information in one cell group (eg, the primary cell group MCG) by default.
  • each access node and terminal device reference the configuration information and parameter information in one cell group (eg, the primary cell group MCG) by default.
  • the terminal device when the terminal device reports the buffer status report (BSR), if the data volume of the BSR does not exceed the threshold, the terminal device reports the BSR to the MN. If the data volume of the BSR exceeds the threshold, the terminal device The BSR is reported to the MN and the SN at the same time, that is, at least two BSRs are reported, resulting in repeated BSR reporting and excessive signaling overhead.
  • BSR buffer status report
  • the optional first access node may also send fourth configuration information to the terminal device.
  • the fourth configuration information can be used to configure the terminal device to report a BSR, or the fourth configuration information can be used by the terminal device to report the BSR to the first access node or the BSR to the second access node, or the fourth configuration information can be used
  • the terminal equipment is configured to report the BSR to the access node that first allocates transmission resources. In this way, the terminal device can report a BSR, thereby reducing the signaling overhead of the terminal device.
  • the access node that first allocates transmission resources may be the first access node, or may be the second access node.
  • the transmission resources allocated by the access node may be uplink transmission resources.
  • the terminal device may report the BSR once by default.
  • the terminal device may report the BSR to the first access node or report the BSR to the second access node by default.
  • the terminal device may report the BSR to the access node that preferentially allocates transmission resources by default.
  • the first access node may perform additional configuration without sending the fourth configuration information, thereby further reducing signaling overhead.
  • the terminal device can know the relationship between the logical channel (logical channel, LCH) and the PHY, as well as the quality of service (quality of service, QoS) flow requirements of the LCH. Determine through which PHY entity of the access node the BSR is reported.
  • LCH logical channel
  • QoS quality of service
  • the communication method provided by the embodiment of the present application on the basis of the currently supported protocol stack, as little modification as possible can be made to support aggregation of carriers of different standards.
  • the terminal device By configuring the terminal device, the interconnection between the terminal device and the access nodes of different standards can be realized, so that the CA feature can be realized and the communication performance can be improved.
  • the interconnection and intercommunication between access nodes of different standards can also be realized, and the interconnection and intercommunication between access nodes of different manufacturers can also be realized.
  • the embodiment of the present application further provides a second protocol stack.
  • the second protocol stack is applicable to the network side and the terminal device side.
  • the first access node and the second access node, and the second protocol stack is MR-CA is used as an example for description.
  • the standard of the first access node and the standard of the second access node may be the same or different.
  • one MAC entity can be connected to multiple PHY entities of different standards.
  • the SDAP entity/PDCP entity/RLC entity corresponding to the DRB and/or the LCH share the same MAC entity.
  • the RRC entity/PDCP entity/RLC entity corresponding to the control plane share the same MAC entity.
  • the user plane protocol stack model on the network side is shown in (a) of Figure 11.
  • the PHY1 entity of the first access node and the PHY2 entity of the second access node are respectively connected to the MAC entity/RLC entity/PDCP entity/SDAP entity .
  • the standard of the first access node is RAT1
  • the standard of the second access node is RAT2
  • RAT1 and RAT2 may be the same or different.
  • the PHY1 entity/MAC entity/RLC entity/PDCP entity/SDAP entity may belong to the first access node, and the PHY2 entity belongs to the second access node.
  • the PHY1 entity belongs to the first access node, and the PHY2 entity/MAC entity/RLC entity/PDCP entity/SDAP entity may all belong to the second access node.
  • the PHY2 entity and the MAC entity exchange information through the inter-station interface between the first access node and the second access node, and the PHY2 entity
  • the interface between the entity and the MAC entity can be a private interface (such as PHY2 entity/PHY1 entity/MAC entity/RLC entity/PDCP entity/SDAP entity, etc. belong to the same manufacturer), or can be a standardized interface (such as PHY2 entity/ PHY1 entity/MAC entity/RLC entity/PDCP entity/SDAP entity, etc. belong to different manufacturers).
  • control plane protocol stack model on the network side is shown in (b) of Figure 11.
  • the difference between the control plane protocol stack model and the user plane protocol stack model is that the control plane protocol stack model includes the RRC entity, and the user plane protocol stack model includes the RRC entity. Including SDAP entities, the similarities will not be repeated.
  • the user plane protocol stack model and control plane protocol stack model on the terminal device side are similar to the user plane protocol stack model and control plane protocol stack model on the network side.
  • the difference is that the PHY2 entity/PHY1 entity/MAC entity/RLC entity/PDCP entity/SDAP entity in the terminal device belong to the same manufacturer, so the interface between the PHY2 entity/PHY1 entity/MAC entity can be implemented by a private interface, or can also be standardized interface implementation.
  • one MAC entity is associated with multiple PHY entities, and can be associated with one or more DRB/LCH configurations at the same time.
  • One of the DRBs is associated with one PDCP entity, and each LCH is associated with one RLC entity.
  • the first DRB may be associated with at least one LCH, that is, the first PDCP entity may be associated with multiple RLC entities.
  • PHY entities of different RATs are connected to their corresponding MAC entities.
  • the DRB and/or the LCH are connected to one MAC entity, and different MAC entities are connected to each other through an interface.
  • the SDAP entity/PDCP entity/RLC entity corresponding to the user plane share one MAC entity.
  • the control plane RRC entity/PDCP entity/RLC entity share the same MAC entity.
  • the standard of the first access node is RAT1
  • the standard of the second access node is RAT2
  • RAT1 and RAT2 may be the same or different.
  • the user plane protocol stack on the network side is shown in (a) of Figure 12.
  • the PHY1 entity of the first access node is connected to the MAC1 entity of the first access node
  • the PHY2 entity of the second access node is connected to the second access node.
  • the MAC2 entities of the nodes are connected, and the MAC1 entities and the MAC2 entities can exchange information through the inter-station interface between the first access node and the second access node.
  • the RLC entity/PDCP entity/SDAP entity connects the MAC1 entity or the MAC2 entity.
  • the PHY1 entity/MAC1 entity/RLC entity/PDCP entity/SDAP entity may belong to the first access node, and the PHY2 entity/MAC2 entity belong to the second access node.
  • the information of the PHY entity and the information of the MAC entity may be exchanged between the first access node and the second access node.
  • the interface between the MAC1 entity and the MAC2 entity may be a private interface, or may be a standardized interface.
  • control plane protocol stack model on the network side is shown in (b) of Figure 12.
  • the difference between the control plane protocol stack model and the user plane protocol stack model is that the control plane protocol stack model includes the RRC entity, and the user plane protocol stack model includes the RRC entity. Including SDAP entities, the similarities will not be repeated.
  • the user plane protocol stack model and control plane protocol stack model on the terminal device side are similar to the user plane protocol stack model and control plane protocol stack model on the network side.
  • the difference is that the PHY2 entity/PHY1 entity/MAC entity/RLC entity/PDCP entity/SDAP entity in the terminal device belong to the same manufacturer, so the interface between the MAC1 entity/MAC2 entity can be implemented by a private interface, or can also be implemented by a standardized interface.
  • each MAC entity is associated with a PHY entity.
  • One MAC entity among the multiple MAC entities is associated with the configuration of one or more DRB/LCHs.
  • the network side may explicitly/implicitly configure an interface between two MAC entities to the terminal device. For this process, refer to the configuration process of the first configuration information in FIG. 14 , which will not be repeated here.
  • PHY entities of different RATs are connected to their corresponding MAC entities.
  • the DRB and/or the LCH are connected to different MAC entities, and the different MAC entities are connected to each other through an interface.
  • the SDAP entity/PDCP entity/RLC entity corresponding to the user plane shares multiple MAC entities.
  • the control plane RRC entity/PDCP entity/RLC entity share multiple MAC entities.
  • the standard of the first access node is RAT1
  • the standard of the second access node is RAT2
  • RAT1 and RAT2 may be the same or different.
  • the user plane protocol stack on the network side is shown in (a) of Figure 13.
  • the PHY1 entity of the first access node is connected to the MAC1 entity of the first access node
  • the PHY2 entity of the second access node is connected to the second access node.
  • the MAC2 entities of the nodes are connected, and the MAC1 entities and the MAC2 entities can exchange information through the inter-station interface between the first access node and the second access node.
  • the RLC entity/PDCP entity/SDAP entity connects the MAC1 entity and the MAC2 entity respectively.
  • the PHY1 entity/MAC1 entity/RLC entity/PDCP entity/SDAP entity may belong to the first access node, and the PHY2 entity/MAC2 entity belong to the second access node.
  • the information of the PHY entity, the information of the MAC entity and the information of the RLC entity may be exchanged between the first access node and the second access node.
  • the interface between the MAC1 entity and the MAC2 entity may be a private interface, or may be a standardized interface.
  • the interface between the RLC entity and the MAC2 entity may be a private interface, or may be a standardized interface.
  • control plane protocol stack model on the network side is shown in (b) of Figure 13.
  • the difference between the control plane protocol stack model and the user plane protocol stack model is that the control plane protocol stack model includes the RRC entity, while the user plane protocol stack model includes the RRC entity. Including SDAP entities, the similarities will not be repeated.
  • the user plane protocol stack model and control plane protocol stack model on the terminal device side are similar to the user plane protocol stack model and control plane protocol stack model on the network side.
  • the difference is that the PHY2 entity/PHY1 entity/MAC entity/RLC entity/PDCP entity/SDAP entity in the terminal device belong to the same manufacturer, so the interface between the MAC1 entity/MAC2 entity/RLC entity can be implemented by a private interface, or can also be standardized interface implementation.
  • each MAC entity is associated with a PHY entity.
  • Each MAC entity of the plurality of MAC entities is associated with the configuration of one or more DRB/LCHs.
  • the network side may explicitly/implicitly configure an interface between two MAC entities to the terminal device. For this process, refer to the configuration process of the first configuration information in FIG. 14 , which will not be repeated here.
  • PHY entities of different RATs are connected to their corresponding MAC entities/RLC entities.
  • the DRB and/or the LCH are connected to different MAC entities, and the different MAC entities are connected to each other through an interface.
  • the SDAP entity/PDCP entity corresponding to the user plane shares multiple MAC entities.
  • the control plane RRC entity/PDCP entity shares multiple MAC entities.
  • the standard of the first access node is RAT1, the standard of the second access node is RAT2, and RAT1 and RAT2 may be the same or different.
  • the user plane protocol stack on the network side is shown in (a) of Figure 14.
  • the PHY1 entity of the first access node is connected to the MAC1 entity of the first access node, and the MAC1 entity is connected to the RLC1 entity of the first access node.
  • the PHY2 entity of the second access node is connected to the MAC2 entity of the second access node, and the MAC2 entity is connected to the RLC2 entity of the second access node.
  • the MAC1 entity and the MAC2 entity may exchange information through the inter-station interface between the first access node and the second access node.
  • the PDCP entity/SDAP entity connects the RLC1 entity and the RLC2 entity respectively.
  • the PHY1 entity/MAC1 entity/RLC1 entity/PDCP entity/SDAP entity may belong to the first access node, and the PHY2 entity/MAC2 entity/RLC2 entity belong to the second access node.
  • the information of the PHY entity and the MAC entity may be exchanged between the first access node and the second access node.
  • the interface between the MAC1 entity and the MAC2 entity may be a private interface, or may be a standardized interface.
  • the interface between the RLC1 entity/RLC2 entity/PDCP entity may be a private interface, or may be a standardized interface.
  • control plane protocol stack model on the network side is shown in (b) of Figure 14.
  • the difference between the control plane protocol stack model and the user plane protocol stack model is that the control plane protocol stack model includes the RRC entity, and the user plane protocol stack model includes the RRC entity. Including SDAP entities, the similarities will not be repeated.
  • the user plane protocol stack model and control plane protocol stack model on the terminal device side are similar to the user plane protocol stack model and control plane protocol stack model on the network side.
  • the difference is that the PHY2 entity/PHY1 entity/MAC entity/RLC entity/PDCP entity/SDAP entity in the terminal device belong to the same manufacturer, so the interface between the MAC1 entity/MAC2 entity/RLC1 entity/RLC2 entity/PDCP entity can be implemented by a private interface , or can also be implemented using a standardized interface.
  • the network side can explicitly/implicitly configure the terminal device whether there is an interface between two MAC entities, so as to indicate whether the protocol stack model on the network side is MR-DC or MR-CA.
  • the configuration process of the first configuration information in FIG. 14 will not be repeated here.
  • the difference between the MR-CA protocol stack model shown in (a) in FIG. 14 and (b) in FIG. 14 and the MR-DC protocol stack model is whether there is an interface between the MAC entities.
  • the MR-CA protocol stack model there are interfaces between MAC entities, which can exchange information
  • RLCs which can exchange information
  • the embodiments of the present application also provide scheduling and data encapsulation processes between access nodes. Scheduling and data encapsulation procedures between access nodes may be adapted to the second protocol stack.
  • FIG. 15 it is a schematic diagram of a possible distributed scheduling and distributed data encapsulation.
  • Scheduling constraint information is exchanged between the first access node and the second access node (the first access node may send the scheduling constraint information to the second access node, or the second access node may send the scheduling constraint to the first access node information).
  • the MAC1 entity of the first access node performs data self-scheduling according to the scheduling constraint information, generates first scheduling information, performs data encapsulation according to the first scheduling information, and sends the encapsulated data through the PHY1 entity.
  • the MAC2 entity of the second access node performs data self-scheduling according to the scheduling constraint information, generates second scheduling information, performs data encapsulation according to the second scheduling information, and sends the encapsulated data through the PHY2 entity.
  • the MAC1 entity of the first access node performs data self-scheduling according to the scheduling constraint information, generates first scheduling information for the first access node, and performs data cross-scheduling to generate second scheduling information for the second access node.
  • the MAC1 entity of the first access node performs data encapsulation according to the first scheduling information, and sends the encapsulated data through the PHY1 entity.
  • the first access node sends the second schedule to the second access node, the second access node encapsulates the data according to the second schedule information, and sends the encapsulated data through the PHY2 entity.
  • the second access node may also generate scheduling information for the first access node, which is not limited here.
  • Scheduling constraint information may be used to indicate used transmission resources and/or remaining available transmission resources. For example, it includes but is not limited to at least one of the following: DRX configuration information, uplink power (UL power), MIMO layers (layer), single-transmission time division multiplexing (time division multiplexing, TDM) pattern (pattern), scheduling resource information, etc.
  • the scheduling resource information may include, but is not limited to, at least one of the following: the size of uplink and/or downlink time-frequency domain resources, the location of uplink and/or downlink time-frequency domain resources, and the power of uplink and/or downlink time-frequency domain resources.
  • Scheduling information refers to scheduling results, including but not limited to at least one of the following: scheduling resource information, modulation and coding scheme (MCS), uplink power control (transmit power control, TPC), triggered (triggered) CSI/SRS, Redundancy version (RV), HARQ id, network device interface (NDI), antenna port, etc.
  • MCS modulation and coding scheme
  • TPC transmit power control
  • triggered CSI/SRS
  • RV Redundancy version
  • NDI network device interface
  • antenna port etc.
  • DCI may also be transmitted between the first access node and the second access node, and the DCI may include, but is not limited to, at least one of the following information: DCI format indication information (used to indicate uplink or downlink), carrier indication field ( carrier indicator), bandwidth part indicator (bandwidth part indicator), frequency domain resource allocation, time domain resource allocation, frequency domain frequency hopping indication, virtual resource block (virtual resource block, VRB) to physical resource block (physical resource block, PRB) mapping (VRB-to-PRB mapping), physical resource block bundling size indicator (PRB bundling size indicator), MCS, new data indicator (New data indicator), redundancy version (Redundancy version), HARQ process number (HARQ process number) ), HARQ timing, transmission power control command (TPC command for scheduled PUSCH), uplink or supplementary uplink indicator (UL/SUL indicator), precoding information and number of layers (Precoding information and number of layers), antenna ports (Antenna ports) , SRS resource indicator (SRS resource indicator), SRS request
  • the methods and/or steps implemented by the access node may also be implemented by components (such as chips or circuits) that can be used for the access node, and the methods and/or steps implemented by the terminal device.
  • the steps can also be implemented by components available for the terminal device.
  • the embodiments of the present application further provide a communication device, which can be used to implement the methods described in the above-mentioned method embodiments. method.
  • the communication device 1600 includes a processing unit 1601 and a transceiver unit 1602, and the device 1600 can be used to implement the methods described in the above method embodiments.
  • the apparatus 1600 is applied to a first access node.
  • the first access node may be a base station or a cell or the like.
  • the processing unit 1601 is configured to determine first configuration information, where the first configuration information is used to configure a first communication mode, and the first communication mode supports aggregation of carriers of different modes;
  • the transceiver unit 1602 is configured to send the first configuration information to the terminal device.
  • the first configuration information is used to configure the first communication mode, including: the first configuration information is used to indicate that the first communication mode is used for communication, and the first configuration information further includes the first protocol stack. configuration information.
  • the first configuration information is used to configure the first communication mode, including: the first configuration information is configuration information of a second protocol stack, and the configuration information of the second protocol stack includes the first connection
  • the association relationship between the media access control MAC entity of the ingress node and the MAC entity of the second access node, or the configuration information of the second protocol stack includes the MAC entity of the first access node and the physical layer PHY of the first access node respectively.
  • the transceiver unit 1602 is further configured to receive a first message, where the first message is used to indicate that the terminal device supports the first communication manner.
  • the first access node communicates with the second access node, and the standard of the first access node and the standard of the second access node are different.
  • the transceiver unit 1602 is further configured to send second configuration information to the terminal device, where the second configuration information is used to instruct the terminal device to activate the second access node, or the terminal device to deactivate The second access node is activated.
  • the second configuration information is used by the terminal device to activate the second access node, including: the second configuration information is used to instruct the terminal device to access all access nodes in a random access manner. the second access node, and communicate with the second access node using the first communication mode; or the second configuration information is used to instruct the terminal device to access the first access node through a non-random access mode two access nodes, and communicate with the second access node using the first communication method.
  • the second configuration information is used to instruct the terminal device to activate the second access node, or the terminal device to deactivate the second access node, including: the second configuration The information is used to instruct the terminal device to activate the second access node under the first cell group, or the terminal device to deactivate the second access node under the first cell group.
  • the transceiver unit 1602 is further configured to send third configuration information to the terminal device, where the third configuration information is used to configure the shared information of the second cell group and the third cell group; and/or use It is used to configure the shared information of the MAC entity of the first access node and the MAC entity of the second access node.
  • the shared information includes at least one of the following: configuration information of discontinuous reception DRX, configuration information of timing advance TA, configuration information of scheduling request SR, counter information, timer information, and cell wireless network temporary identity Configuration information of the C-RNTI.
  • the MAC entity of the first access node is connected to the MAC entity of the second access node; or the MAC entity of the first access node is respectively connected to the MAC entity of the first access node.
  • the physical layer PHY entity is connected with the PHY entity of the second access node.
  • the apparatus 1600 is applied to a terminal device.
  • the transceiver unit 1602 is configured to receive first configuration information, where the first configuration information is used to configure a first communication mode, and the first communication mode supports aggregation of carriers of different standards.
  • the processing unit 1601 is configured to determine, according to the first configuration information, to use the first communication mode for communication.
  • the transceiver unit 1602 is further configured to communicate using the first communication mode.
  • the first configuration information is used to configure the first communication mode, including: the first configuration information is used to indicate that the first communication mode is used for communication, and the first configuration information further includes the first communication mode.
  • Configuration information of a protocol stack including: the first configuration information is used to indicate that the first communication mode is used for communication, and the first configuration information further includes the first communication mode.
  • the first configuration information is used to configure the first communication mode, including: the first configuration information is configuration information of a second protocol stack, and the configuration information of the second protocol stack includes the first configuration information.
  • the association relationship between the MAC entity of an access node and the MAC entity of the second access node, or the configuration information of the second protocol stack includes the MAC entity of the first access node and the physical properties of the first access node respectively.
  • the transceiver unit 1602 is further configured to send a first message to the first access node, where the first message is used to instruct the terminal device to support the first communication manner.
  • the first access node communicates with the second access node, and the standard of the first access node and the standard of the second access node are different.
  • the transceiver unit 1602 is further configured to receive second configuration information, where the second configuration information is used to instruct the terminal device to activate the second access node, or the terminal device to deactivate the the second access node.
  • the second configuration information is used by the terminal device to activate the second access node, including:
  • the second configuration information is used to instruct the terminal device to access the second access node in a random access manner, and communicate with the second access node by using the first communication manner; or the first The second configuration information is used to instruct the terminal device to access the second access node through a non-random access mode, and to communicate with the second access node using the first communication mode.
  • the second configuration information is used to instruct the terminal device to activate the second access node, or the terminal device to deactivate the second access node, including: the second configuration The information is used to instruct the terminal device to activate the second access node under the first cell group, or the terminal device to deactivate the second access node under the first cell group.
  • the transceiver unit 1602 is further configured to receive third configuration information, where the third configuration information is used to configure the shared information of the second cell group and the third cell group; and/or used to configure the first connection Shared information of the MAC entity of the ingress node and the MAC entity of the second access node.
  • the shared information includes at least one of the following: configuration information of discontinuous reception DRX, configuration information of timing advance TA, configuration information of scheduling request SR, counter information, timer information, and cell wireless network temporary identity Configuration information of the C-RNTI.
  • the MAC entity of the first access node is connected to the MAC entity of the second access node; or the MAC entity of the first access node is respectively connected to the MAC entity of the first access node.
  • the physical layer PHY entity is connected with the PHY entity of the second access node.
  • each functional unit in each embodiment of the present application It can be integrated in one processing unit, or it can exist physically alone, or two or more units can be integrated in one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a stand-alone product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • FIG. 17 Another possible expression form of the communication device is shown in FIG. 17 , and the device 1700 can be used to implement the methods described in the above method embodiments.
  • the apparatus 1700 includes one or more processors 1701 .
  • the processor 1701 may be a general-purpose processor or a special-purpose processor or the like.
  • it may be a baseband processor, or a central processing unit.
  • the baseband processor may be used to process communication protocols and communication data
  • the central processing unit may be used to control communication devices (eg, base stations, terminals, or chips, etc.), execute software programs, and process data of software programs.
  • the communication device may include a transceiving unit for implementing signal input (reception) and output (transmission).
  • the transceiver unit may be a transceiver, a radio frequency chip, or the like.
  • the apparatus 1700 includes one or more of the processors 1701, and the one or more processors 1701 can implement the methods described in the above-illustrated embodiments.
  • processor 1701 may also implement other functions in addition to implementing the methods in the above-described embodiments.
  • the processor 1701 may execute an instruction, so that the apparatus 1700 executes the method described in the foregoing method embodiments.
  • the instructions may be stored in whole or in part within the processor, such as instruction 1703, or may be stored in whole or in part in a memory 1702 coupled to the processor, such as instruction 1704, or may be jointly caused by instructions 1703 and 1704.
  • the apparatus 1700 executes the methods described in the above method embodiments.
  • the communication apparatus 1700 may also include a logic circuit, and the logic circuit may implement the methods described in the foregoing method embodiments.
  • the apparatus 1700 may include one or more memories 1702 having stored thereon instructions 1704 that may be executed on the processor to cause the apparatus 1700 to perform the above-described method methods described in the examples.
  • data may also be stored in the memory.
  • Instructions and/or data may also be stored in the optional processor.
  • the one or more memories 1702 may store the correspondences described in the foregoing embodiments, or related parameters or tables involved in the foregoing embodiments, and the like.
  • the processor and the memory can be provided separately or integrated together.
  • the apparatus 1700 may further include a transceiver 1705 and an antenna 1706 .
  • the processor 1701 may be referred to as a processing unit, and controls the device (terminal or base station).
  • the transceiver 1705 may be referred to as a transceiver, a transceiver circuit, an input/output interface circuit, or a transceiver unit, etc., and is used to implement the transceiver function of the device through the antenna 1706 .
  • the antenna 1706 may be integrated into the transceiver 1705.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application further provide a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, implements the methods described in the foregoing method embodiments.
  • Embodiments of the present application further provide a computer program product, which implements the methods described in the foregoing method embodiments when the computer program product is executed by a computer.
  • the embodiments of the present application further provide a computer program, which implements the methods described in the foregoing method embodiments when the computer program is executed on a computer.
  • An embodiment of the present application further provides a communication system, where the communication system includes a first access node and a terminal device.
  • the first access node may implement the methods described in the foregoing method embodiments
  • the terminal device may implement the methods described in the foregoing method embodiments.
  • the communication system may further include a second access node.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, optical fiber, Digital Subscriber Line, DSL) or wireless (eg infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, Digital Video Disc (DVD)), or semiconductor media (eg, Solid State Drive, SSD)) etc.
  • An embodiment of the present application further provides a processing device, including a processor and an interface; the processor is configured to execute the method described in the above method embodiments; the interface is used to communicate with modules other than the communication device, and the interface may For communication interface, input and output interface, etc.
  • the interface may be a code/data read and write interface for receiving execution instructions (stored in memory, possibly read directly from memory, or possibly via other devices) and transmitted to the processor to enable The processor runs the execution instructions to execute the methods described in the above method embodiments.
  • the above-mentioned processing device may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software
  • the processor can be a general-purpose processor, which is realized by reading the software codes stored in the memory, and the memory can be integrated in the processor, and can be located outside the processor and exist independently.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • Units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solutions of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium can be any available medium that a computer can access.
  • computer readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or be capable of carrying or storing instructions or data structures in the form of desired program code and any other medium that can be accessed by a computer. also.
  • any connection can be appropriately made into a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fusing of the pertinent medium.
  • Disk and disc includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk, and blu-ray disc, where disks generally reproduce data magnetically, and discs Lasers are used to optically copy data. Combinations of the above should also be included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法及装置,用以支持不同制式的载波进行聚合,提高通信性能。该通信方法包括:第一接入节点确定第一配置信息,所述第一配置信息用于配置第一通信方式,所述第一通信方式支持不同制式的载波进行聚合;所述第一接入节点向终端设备发送所述第一配置信息。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2021年04月30日提交中国国家知识产权局、申请号为202110480166.8、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种通信方法及装置。
背景技术
随着无线技术的演进,出现了不同制式的通信系统,例如长期演进(long term evolution,LTE)系统,新无线(new radio,NR)系统等。运营商需要同时部署两种或多种制式,以满足市场需求。针对运行商的部署需求,NR标准中为了LTE系统和NR系统的分流,支持多制式双链接(multi radio-dual connectivity,MR-DC)通信方式,后续NR版本也是基于MR-DC进行演进。
但是MR-DC不支持多载波间的聚合,无法支持不同载波间的动态/实时的调度协商、以及跨载波调度、联合上行控制信息反馈等载波聚合特性,因此通信性能较差。
发明内容
本申请提供一种通信方法及装置,用以支持不同制式的载波进行聚合,实现载波聚合的特性,提高通信性能。
第一方面,提供一种通信方法。在该方法中,第一接入节点确定第一配置信息,所述第一配置信息用于配置第一通信方式,所述第一通信方式支持不同制式的载波进行聚合;所述第一接入节点向终端设备发送所述第一配置信息。
在该方法中,第一通信方式支持不同制式的载波进行聚合,通过向终端设备配置可以实现终端设备与不同制式的接入节点之间的互联互通,从而可以实现载波聚合特性,提升通信性能。并且还可以实现不同制式的接入节点之间的互联互通,也可以实现不同厂商的接入节点之间的互联互通。
在一种可能的设计中,所述第一配置信息用于配置第一通信方式时,所述第一配置信息可以用于指示采用所述第一通信方式进行通信,所述第一配置信息还包括第一协议栈的配置信息。第一通信方式可以重用第一协议栈的配置信息,从而在目前已支持的第一协议栈的基础上尽可能小的改动,支持不同制式的载波聚合。
在一种可能的设计中,所述第一配置信息用于配置第一通信方式时,所述第一配置信息可以为第二协议栈的配置信息。第一通信方式也可以不完全重用第一协议栈的配置信息来支持不同制式的载波聚合。
所述第二协议栈的配置信息包括所述第一接入节点的媒体接入控制MAC实体和第二接入节点的MAC实体的关联关系。第二协议栈中第一接入节点的MAC实体和第二接入 节点的MAC实体之间可以有接口,第一接入节点的MAC实体和第二接入节点的MAC实体之间可以通信。例如第二协议栈的配置信息可以包括第一接入节点的MAC配置信息,第一接入节点的MAC配置信息包括第二接入节点的MAC实体标识,和/或第二协议栈的配置信息可以包括第二接入节点的MAC配置信息,第二接入节点的MAC配置信息包括第一接入节点的MAC实体标识。
或者第二协议栈的配置信息包括一个MAC实体(如第一接入节点的MAC实体)分别与第一接入节点的物理层PHY实体与第二接入节点的PHY实体的关联关系。MAC实体分别与第一接入节点的PHY实体和第二接入节点的PHY实体连接。例如第二协议栈的配置信息可以包括MAC实体的配置信息,MAC实体的配置信息包括第一接入节点的PHY实体标识和/或第二接入节点的PHY实体标识。又如第二协议栈的配置信息包括第一接入节点的PHY配置信息和/或第二接入节点的PHY配置信息,第一接入节点的PHY配置信息包括MAC实体标识,第二接入节点的PHY配置信息包括MAC实体标识。又如第二协议栈的配置信息包括MAC实体标识,第一接入节点的PHY实体标识和第二接入节点的PHY实体标识。
在一种可能的设计中,所述第一接入节点还可以接收第一消息,所述第一消息用于指示所述终端设备支持所述第一通信方式。终端设备可以向第一接入节点上报是否支持第一通信方式的能力,第一接入节点可以向支持第一通信方式的终端设备下发配置信息,从而实现终端设备与不同制式的接入节点之间的互联互通,提升通信性能。
在一种可能的设计中,在所述第一通信方式中所述第一接入节点和第二接入节点通信,所述第一接入节点的制式和所述第二接入节点的制式可以不同。可选的,在第一通信方式中,第一接入节点的MAC实体和第二接入节点的MAC实体之间可以通信。或者在第一通信方式中,第一接入节点的MAC实体可以分别与第一接入节点的PHY实体,以及与第二接入节点的PHY实体进行通信。
所述第一接入节点还可以向所述终端设备发送第二配置信息,所述第二配置信息用于指示所述终端设备激活所述第二接入节点,或者所述终端设备去激活所述第二接入节点。第一接入可以通过指示终端设备激活接入其它接入节点,实现终端设备与不同制式的接入节点之间的互联互通,提升通信性能。
在一种可能的设计中,所述第二配置信息用于所述终端设备激活所述第二接入节点时,所述第二配置信息可以用于指示所述终端设备通过随机接入方式接入所述第二接入节点,并使用所述第一通信方式与所述第二接入节点通信。第一接入节点可以指示终端设备通过随机接入方式激活接入第二接入节点,实现和第二接入节点之间的通信。
在一种可能的设计中,所述第二配置信息用于所述终端设备激活所述第二接入节点时,所述第二配置信息可以用于指示所述终端设备通过非随机接入方式接入所述第二接入节点,并使用所述第一通信方式与所述第二接入节点通信。第一接入节点可以指示终端设备通过非随机接入方式激活接入第二接入节点,实现和第二接入节点之间的通信。如果第一接入节点指示终端设备直接使用第二接入节点进行通信,还可以进一步减少激活时间,快速接入第二接入节点,提高通信效率。
在一种可能的设计中,所述第二配置信息用于指示所述终端设备激活所述第二接入节点,或者所述终端设备去激活所述第二接入节点时,所述第二配置信息还可以用于指示所述终端设备激活第一小区组下的所述第二接入节点,或者所述终端设备去激活第一小区组 下的所述第二接入节点。第一接入节点可以指示终端设备通过随机接入方式激活接入第一小区组下的第二接入节点,实现和第二接入节点之间的通信。如果第二配置信息为PDCCH order,还可以快速触发第二接入节点的激活,进一步减少激活时间,提高通信效率。
在一种可能的设计中,所述第一接入节点向所述终端设备发送第三配置信息,所述第三配置信息用于配置第二小区组和第三小区组的共享信息;和/或用于配置第一接入节点的MAC实体和第二接入节点的MAC实体的共享信息。这样,可以实现跨小区组的共享,可以降低多小区组单独配置带来的空口信令开销,更利于终端设备的节能。
可选的,共享信息包括配置信息和/或参数信息等。
所述共享信息包括但不限于以下至少一个:非连续接收DRX的配置信息,定时提前量TA的配置信息,调度请求SR的配置信息,计数器信息,计时器信息,小区无线网络临时标识C-RNTI的配置信息等。
在一种可能的设计中,第一接入节点还可以向终端设备发送第四配置信息。第四配置信息用于配置终端设备上报一次缓冲状态报告BSR。或者第四配置信息用于配置终端设备向第一接入节点上报BSR或向第二接入节点上报BSR。或者第四配置信息用于配置终端设备向最先分配传输资源的接入节点上报BSR。这样可以避免终端设备多次重复上报BSR,降低终端设备的信令开销。
可选的,终端设备可以默认上报一次BSR。或者终端设备可以默认向第一接入节点上报BSR或向第二接入节点上报BSR。或者终端设备可以默认向优先分配传输资源的接入节点上报BSR。第一接入节点可以不发送第四配置信息进行额外的配置,进一步降低信令开销。
在一种可能的设计中,所述第一接入节点的MAC1实体与所述第二接入节点的MAC2实体连接;或者所述第一接入节点的MAC1实体分别与所述第一接入节点的PHY1实体和所述第二接入节点的PHY2实体连接。这里还可以提供不同的协议栈模型来支持不同制式的载波聚合,进一步提升通信性能。
可选的,第一接入节点的MAC实体与所述第二接入节点的MAC实体连接时,还包括:所述第一节点的RLC1实体与所述MAC1实体连接;或者所述第一节点的RLC1实体分别与所述MAC1实体和所述MAC2实体连接;或者所述第一节点的RLC1实体与所述MAC1实体连接,所述第二节点的RLC2实体与所述MAC2实体连接。
第二方面,提供一种通信方法。在该方法中,终端设备接收第一配置信息,所述第一配置信息用于配置第一通信方式,所述第一通信方式支持不同制式的载波进行聚合;所述终端设备根据所述第一配置信息,使用所述第一通信方式通信。
在一种可能的设计中,所述第一配置信息用于配置第一通信方式时,所述第一配置信息可以用于指示采用所述第一通信方式进行通信,所述第一配置信息还包括第一协议栈的配置信息。
在一种可能的设计中,所述第一配置信息用于配置第一通信方式时,所述第一配置信息可以为第二协议栈的配置信息。所述第二协议栈的配置信息包括所述第一接入节点的MAC实体和第二接入节点的MAC实体的关联关系。或者第二协议栈的配置信息包括一个MAC实体(如第一接入节点的MAC实体)分别与第一接入节点的物理层PHY实体与第二接入节点的PHY实体的关联关系。
在一种可能的设计中,所述终端设备还可以向所述第一接入节点发送第一消息,所述 第一消息用于指示所述终端设备支持所述第一通信方式。
在一种可能的设计中,在所述第一通信方式中所述第一接入节点和第二接入节点通信,所述第一接入节点的制式和所述第二接入节点的制式不同。
所述终端设备还可以接收第二配置信息,所述第二配置信息用于指示所述终端设备激活所述第二接入节点,或者所述终端设备去激活所述第二接入节点。
在一种可能的设计中,所述第二配置信息用于所述终端设备激活所述第二接入节点时,所述第二配置信息可以用于指示所述终端设备通过随机接入方式接入所述第二接入节点,并使用所述第一通信方式与所述第二接入节点通信。终端设备根据该第二配置信息,可以通过随机接入方式激活接入第二接入节点,并使用第一通信方式与第二接入节点通信。
在一种可能的设计中,所述第二配置信息用于所述终端设备激活所述第二接入节点时,所述第二配置信息可以用于指示所述终端设备通过非随机接入方式接入所述第二接入节点,并使用所述第一通信方式与所述第二接入节点通信。终端设备根据该第二配置信息,可以通过非随机接入方式接入第二接入节点,并使用第一通信方式与第二接入节点通信。例如终端设备可以直接使用第一通信方式与第二接入节点通信。
在一种可能的设计中,所述第二配置信息用于指示所述终端设备激活所述第二接入节点,或者所述终端设备去激活所述第二接入节点时,所述第二配置信息可以用于指示所述终端设备激活第一小区组下的所述第二接入节点,或者所述终端设备去激活第一小区组下的所述第二接入节点。
在一种可能的设计中,所述终端设备还可以接收第三配置信息,所述第三配置信息用于配置第二小区组和第三小区组的共享信息;和/或用于配置第一接入节点的MAC实体和第二接入节点的MAC实体的共享信息。
可选的,所述共享信息包括以下至少一个:非连续接收DRX的配置信息,定时提前量TA的配置信息,调度请求SR的配置信息,计数器信息,计时器信息,小区无线网络临时标识C-RNTI的配置信息。
在一种可能的设计中,终端设备还可以接收发送第四配置信息。第四配置信息用于配置终端设备上报一次缓冲状态报告BSR。或者第四配置信息用于配置终端设备向第一接入节点上报BSR或向第二接入节点上报BSR。或者第四配置信息用于配置终端设备向最先分配传输资源的接入节点上报BSR。
可选的,终端设备可以默认上报一次BSR。或者终端设备可以默认向第一接入节点上报BSR或向第二接入节点上报BSR。或者终端设备可以默认向优先分配传输资源的接入节点上报BSR。
在一种可能的设计中,所述第一接入节点的MAC1实体与所述第二接入节点的MAC2实体连接;或者所述第一接入节点的MAC1实体分别与所述第一接入节点的PHY1实体和所述第二接入节点的PHY2实体连接。
可选的,第一接入节点的MAC实体与所述第二接入节点的MAC实体连接时,还包括:所述第一节点的RLC1实体与所述MAC1实体连接;或者所述第一节点的RLC1实体分别与所述MAC1实体和所述MAC2实体连接;或者所述第一节点的RLC1实体与所述MAC1实体连接,所述第二节点的RLC2实体与所述MAC2实体连接。
第三方面,提供一种协议栈。在协议栈中,第一接入节点的MAC1实体与第二接入节点的MAC2实体连接;或者所述第一接入节点的MAC1实体分别与所述第一接入节点的 PHY1实体和所述第二接入节点的PHY2实体连接。
在一种可能的设计中,第一接入节点的MAC1实体与所述第二接入节点的MAC1实体连接时,还包括:所述第一节点的RLC1实体与所述MAC1实体连接;或者所述第一节点的RLC1实体分别与所述MAC1实体和所述MAC2实体连接;或者所述第一节点的RLC1实体与所述MAC1实体连接,所述第二节点的RLC2实体与所述MAC2实体连接。
第四方面,提供一种通信装置,用于实现上述各种方法。该通信装置可以为上述第一方面中的第一接入节点,或者包含上述第一接入节点的装置,或者上述第一接入节点中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第五方面,提供一种通信装置,包括:处理器和接口电路,该接口电路用于与该通信装置之外的模块通信;该处理器用于运行计算机程序或指令以执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的第一接入节点,或者包含上述第一接入节点的装置,或者上述第一接入节点中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置。
或者,该接口电路可以为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器,以使该处理器运行计算机执行指令以执行上述任一方面所述的方法。
在一些可能的设计中,该通信装置可以为芯片或芯片系统。
第六方面,提供一种通信装置,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述任一方面所述的方法。该通信装置可以为上述第一方面中的第一接入节点,或者包含上述第一接入节点的装置,或者上述第一接入节点中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置。
第七方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在通信装置上运行时,使得通信装置可以执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的第一接入节点,或者包含上述第一接入节点的装置,或者上述第一接入节点中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置。
第八方面,提供一种包含指令的计算机程序产品,当其在通信装置上运行时,使得通信装置可以执行上述任一方面所述的方法。该通信装置可以为上述第一方面中的第一接入节点,或者包含上述第一接入节点的装置,或者上述第一接入节点中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置。
第九方面,提供一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方面中所涉及的功能。在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。该通信装置是芯片系统 时,可以由芯片构成,也可以包含芯片和其他分立器件。
第十方面,提供一种通信系统,该通信系统包括上述方面的第一接入节点和上述方面所述的终端设备。
可选的,通信系统还包括第二接入节点。
其中,第三方面至第十方面中任一种设计方式所带来的技术效果可参见上述第一方面或第二方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为一种调度场景的示意图;
图2为一种探测参考信号切换的示意图;
图3为本申请实施例提供的一种通信系统的示意图;
图4为本申请实施例提供的另一种通信系统的示意图;
图5为本申请实施例提供的一种可能的协议层示意图;
图6为一种多制式双链接的部署场景示意图;
图7为一种协议栈中的接口示意图;
图8为一种多制式双链接协议栈的示意图;
图9为本申请实施例提供的一种通信过程示意图;
图10为一种小区组间共享信息的示意图;
图11为本申请实施例提供的一种协议栈的示意图;
图12为本申请实施例提供的一种协议栈的示意图;
图13为本申请实施例提供的一种协议栈的示意图;
图14为本申请实施例提供的一种协议栈的示意图;
图15为本申请实施例提供的一种调度和数据封装过程示意图;
图16为本申请实施例提供的一种通信装置的结构示意图;
图17为本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
以下对本申请实施例的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,也称用户设备(user equipment,UE),是一种具有无线收发功能的设备,可以经无线接入网(radio access network,RAN)中的接入网设备(或者也可以称为接入设备)与一个或多个核心网(core network,CN)设备(或者也可以称为核心设备)进行通信。
用户设备也可称为接入终端、终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、用户代理或用户装置等。用户设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。用户设备可以是蜂窝电话(cellular phone)、无绳电话、会话启动协议(session initiation protocol,SIP)电话、智能电话(smart phone)、手机(mobile phone)、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)等。或者,用户设备还可以是具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它设备、车载设备、可穿戴设备、无人机设备或物联网、车联网中的终端、第五代移动通信(5th-generation,5G)网络以及未来网络中的任意形态的终端、中继用户设备或者未来演进的PLMN中的终端等。其中,中继用户设备例如可以是5G家庭网关(residential gateway,RG)。例如用户设备可以是虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请实施例对终端设备的类型或种类等并不限定。
2)网络设备,指可以为终端提供无线接入功能的设备。其中,网络设备可以支持至少一种无线通信技术,例如LTE、NR等。网络设备也称网络节点或节点。
例如网络设备可以包括接入网设备(也称接入节点或节点)。示例的,网络设备包括但不限于:5G网络中的下一代节点B(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、家庭基站(例如,home evolved node B、或home node B,HNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心、小站、微型站等。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)、和/或分布单元(distributed unit,DU),或者网络设备可以为中继站、接入点、车载设备、终端、可穿戴设备以及未来移动通信中的网络设备或者未来演进的公共移动陆地网络(public land mobile network,PLMN)中的网络设备等。接入网设备也称接入节点。
又如,网络设备可以包括核心网(CN)设备,核心网设备例如包括接入和移动管理功能(access and mobility management function,AMF)等。
其中,一个接入网设备或接入网设备的一部分所覆盖的区域称为小区。
3)载波聚合(carrier aggregation,CA),目前仅支持相同制式的载波进行聚合。例如当终端设备接入5G网络时,网络设备为终端设备配置的载波都是5G载波。当终端设备接入LTE网络时,网络设备为终端设备配置的载波都是LTE载波。
参与载波聚合的不同小区所对应的载波可以称为分量载波(component carrier,CC)。CA中可以包括主载波(primary component carrier,PCC)和辅载波(secondary component  carrier,SCC)。或者CA中可以包括主小区(primary cell,Pcell)和辅小区(secondary cell,Scell)。PCC或SCC可以为一个或多个。Pcell或Scell可以为一个或多个。
CA包括但不限于以下至少一个特性:
一个可能的特性,CA下可以实现多种载波的多进多出(multiple input multiple output,MIMO)层数的动态共享,并且可以联合优化资源配置。
一个可能的特性,CA目前支持相同制式的跨载波调度。跨载波调度是相对于自调度而言的。自调度场景下,CC1的上行数据调度信息和/或下行数据调度信息可以在CC1中发送。跨载波调度场景下,CC1的上行数据调度信息和/或下行数据调度信息可以在CC2上发送。例如图1所示,自调度场景下,CC1的下行控制信息(downlink control information,DCI)在CC1中发送,CC2的DCI在CC2中发送。跨载波调度场景下,CC1的DCI可以在CC2中发送,CC2的DCI可以在CC2中发送,此时CC1的PDCCH为跨载波调度,CC2的PDCCH为自调度。DCI用于指示物理下行共享信道(physical downlink shared channel,PDSCH)的相关调度信息。可选的,CC1的DCI和CC2的DCI可以在一个DCI中发送。DCI可以通过物理下行控制信道(physical downlink control channel,PDCCH)承载。
接入节点可以通过无线资源控制(radio resource control,RRC)信令为终端设备配置跨载波调度配置信息。跨载波调度配置信息用于指示自调度(own)或者跨载波调度(other)。如果指示跨载波调度,跨载波调度配置信息还指示调度小区标识(schedulingCellId)和调度的载波指示域信息(carrier indicator field,CIF),该CIF可以通过字段cif-InSchedulingCell指示,cif-InSchedulingCell可以占用3比特(bits)。跨载波调度配置信息可以为下行控制信息(downlink control information,DCI),DCI由PDCCH承载。
跨载波调度可以均衡负载,灵活协调资源,提高频谱效率。
一个可能的特性,CA支持探测参考信号(sounding reference signal,SRS)切换(switching)。SRS可以用于上行信道估计和下行波束赋形。
针对时分双工(time division duplex,TDD)非对称CA的场景,例如下行载波多于上行载波,为了优化下行的调度,需要在SCC上调度SRS。其中该SCC为没有物理上行共享信道(physical uplink shared channel,PUSCH)的载波。由于能力受限,终端设备只能在一个cell发送上行信号。而终端设备通过SRS-CarrierSwitching的功能,可以在多个CC发送上行信号。针对上行能力受限的终端设备,支持多个上行载波间SRS快速切换,进而提升下行传输性能。
例如图2所示,终端设备在系统帧号(system frame number,SFN)的编号0-10的符号时,在CC1上发送PUSCH,在到达切换时间(Switching time)时,终端设备在SFN的编号13的符号上,切换到CC2上进行SRS传输,在切换时间结束后,终端设备在(SFN+1)的编号2的符号上切换回CC1上继续发送PUSCH。图2中切换时间从SFN的编号10的符号持续至(SFN+1)的编号1的符号。
一个可能的特性,CA支持联合(joint)上行控制信息(uplink control information,UCI)反馈(feedback)。终端设备可以将多个CC的PDSCH的确认/非确认(ACK/NACK)信息,和/或多个CC的信道状态信息(channel state information,CSI)联合编码在一个CC上反馈。Joint UCI feedback可以降低上行反馈资源的开销,提升频谱效率,提高上行传输性能。
一个可能的特性,CA的上行功率控制。CA的不同CC之间可以实现符号级的动态功率共享。终端设备可以根据优先级确定每个符号上的发送功率。每个符号上优先满足高优 先级的CC上的高优先级的信道的传输。CC的优先级可以为PCC的优先级大于SCC的优先级。小区的索引(index)越小可以优先级越高。信道的优先级可以为:Pcell的物理随机接入信道(physiacal random access channel,PRACH)>带有高优先级标识的物理上行控制信道(physical uplink control channel,PUCCH)/PUSCH>优先级标识相同的情况下(PUCCH with混合自动重传请求(hybrid automatic repeat request,HARQ)-ACK>PUCCH with CSI)>SRS(非周期SRS>半静态SRS>周期SRS)或非Pcell上的PRACH。
本申请中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中所涉及的多个,是指两个或两个以上。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例的技术方案可以应用于移动通信系统,也可以应用于卫星通信系统,其中,卫星通信系统可以与传统的移动通信系统相融合。例如:移动通信系统可以为第四代移动通信(4th-generation,4G)通信系统(例如,LTE系统),5G通信系统(例如,NR系统),及未来的移动通信系统,或者其它通信系统等。本申请实施例也可以适用于同构网络,异构网络的场景中。在同构网络和异构网络的场景中,对于传输点不做限制,例如可以是宏基站与宏基站、微基站与微基站和宏基站与微基站间的多点协同传输。本申请实施例也可以应用于频分双工(frequency division duplex,FDD)系统/TDD系统。本申请实施例也可以适用于CU/DU分离架构。本申请实施例也可以适用于控制面/用户面(Control Plane/User Plane,CP/UP)分离架构。本申请实施例也可以适用于低频(如sub 6G)场景,高频(如6G以上)场景,太赫兹通信场景,光通信场景等。只要能够实现信号传输的通信系统均可以,在本申请实施例中不做限制。
如图3所示,为一种可能的通信系统的示意图,通信系统中包括网络设备和终端设备。网络设备可以为一个或多个,终端设备可以为一个或多个。网络设备可以向终端设备发送信号,终端设备也可以向网络设备发送信号。
如图4所示,为又一种可能的通信系统的示意图,通信系统中包括终端设备,接入网(包括接入网设备)和核心网(包括核心网设备)。可选的,通信系统中还可以包括数据网络(data network,DN)。
数据网络通常可以部署在运营商网络之外,例如第三方网络。示例的,运营商网络可以接入多个数据网络,数据网络上可部署多种业务,从而为终端设备提供数据和/或语音等服务。
核心网主要负责终端用户的移动管理,会话管理以及数据传输等。
接入网中的网元包括基站。基站负责空中接口相关的功能,例如无线链路维护功能,保持与终端设备间的无线链路,同时负责无线链路数据和网络互连协议(internet protocol,IP)数据之间的协议转换;又如无线资源管理功能,包括无线链路的建立和释放、无线资源的调度和分配等;又如移动性管理功能,包括配置终端进行测量、评估终端无线链路质量、决策终端在小区间的切换等。基站可以包括用户面(user plane)协议和控制面(control plane)协议。
终端设备可以包括用户面协议和控制面协议。终端设备可以与基站通过空口进行交互。如图5所示,终端设备的各协议层可以与基站的各协议层相互连接,进行信息的传递。协议层包括物理层(physical layer,PHY),媒体接入控制层(medium access control,MAC),无线链路控制层(radio link control,RLC),分组数据汇聚协议层(packet data convergence protocol,PDCP),无线资源控制层(radio resource control,RRC),业务数据适配协议(service data adapation protocol,SDAP)。其中SDAP属于用户面协议层,RRC属于控制面协议层。
为了理解本申请实施例,下面对相关技术进行说明。
NR标准支持X-无线接入技术(radio access technology,RAT)双链接(dual connectivity,DC),也即MR-DC。MR-DC包括主节点(master node,MN)和辅节点(secondary node,SN)。如图6所示,NR版本(release,R)15中针对不同的部署场景和DC演进路线,提出了MR-DC的多种选项(option,opt)。用户面连接用实线示出,控制面连接用虚线示出。opt2系列也称为NR DC,主节点和辅节点都为NR基站(gNB),gNB与5G CN连接5G CN,如AMF和用户面功能(user plane function,UPF)。opt3系列,也称演进的通用陆面无线接入网络新无线(Evolved Universal Terrestrial Radio Access Network NR,EUTRAN NR,EN)-DC,主节点为LTE基站(e-eNB),辅节点为NR基站(gNB),主节点和辅节点连接4G CN,如移动管理实体(mobility management entity,MME)和服务网关(serving gateway,SGW)。opt4系列,也称新无线演进的通用陆面无线接入网络(NR EUTRAN,NE)-DC,主节点为gNB,辅节点为e-eNB,主节点和辅节点连接5G CN,如AMF和UPF。opt7系列,也称新无线演进的通用陆面无线接入网络新无线(NR EUTRAN NR,NGEN)-DC,主节点为e-eNB,辅节点为gNB,主节点和辅节点连接5G CN,如AMF和UPF。
以及NR R15提供了协议栈1和协议栈2。协议栈1称为MR-DC with EPC,其中EPC表示演进型分组核心网(evolved packet core),或者可以为上述EN-DC架构。协议栈2称为MR-DC with 5GC,其中5GC表示5G核心网(5G core),可以包括上述NE-DC、NGEN-DC和NR-DC架构。图7中示出了协议栈1的接口(图7中的(a))和协议栈2的接口(图7中的(b))。协议栈1采用S1和X2接口,协议栈2采用Ng和Xn接口。
以MR-DC协议栈中的EN-DC架构为例,UE侧的协议栈如图8所示。MN和SN有各自的RRC层,分别为RRC1和RRC2,控制面协议栈为完整的RRC/PDCP/RLC/MAC/PHY。MN的制式为LTE,SN的制式为NR。针对MR-DC的分离承载(split bearer),用户面协议栈为SDAP/PDCP/RLC/MAC/PHY,其中一个PDCP实体同时连接MN和SN的RLC/MAC/PHY,该PDCP可以进行数据分流来提升终端设备的瞬时速率(如数据包1/3/5/…走MN,数据包2/4/6/…走SN)、PDCP也可以进行包复制来提升可靠性(如数据包1/2/3/…走MN、数据包1/2/3/…同时走SN)。
标准中支持MR-DC,并且后续NR版本也是基于MR-DC进行演进。
而X-RAT CA(也即MR-CA)需要LTE基站和NR基站之间是理想backhaul(一般只有光纤才能满足该需求),大部分国家或地区的光纤部署极其稀缺,因此X-RAT CA的实际部署概率低,因此NR标准中暂不支持MR-CA。
综上可知,目前MR-DC不支持多载波间的聚合,无法支持不同载波间的动态/实时的调度协商、以及跨载波调度、联合UCI反馈等CA特性,因此通信性能较差。
鉴于此,本申请实施例提供的一种通信方法。该通信方法可以应用的场景(例如在MR-DC场景中)为节点之间是理想backhaul(例如节点之间通过光纤部署,或者节点之间共站时部署有低时延线缆),且节点之间的传输时间短(例如小于1毫秒(ms))。该通信方法可以支持不同制式的载波进行聚合,如支持多制式载波聚合(multi radio-carrier aggregation,MR-CA),从而实现CA特性,提升通信性能。
本申请实施例提供的通信方法可以应用于上述图3和图4所示的通信系统中。图9为本申请实施例提供的一种可能的通信方法,该通信方法可以实现MR-CA的配置,包括以下步骤:
S901:第一接入节点确定第一配置信息。
第一配置信息用于配置第一通信方式。第一通信方式支持不同制式的载波进行聚合,例如第一通信方式支持MR-CA。
本申请实施例中所涉及的“制式”,可以是3G/宽带码分多址(wideband code division multiple access,WCDMA)/通用移动通信系统(universal mobile telecommunications system,UMTS)/码分多址(code division multiple access,CDMA)/时分同步码分多址(time division-synchronous code division multiple access,TD-SCDMA)、4G/LTE、5G/NR、6G、7G等任意制式及系统。
在第一通信方式中多个接入节点之间可以通信,并且多个接入节点中至少两个接入节点的制式不同。该多个接入节点中可以包括第一接入节点,或者可以不包括第一接入节点(例如第一接入节点向终端设备配置第一通信方式,而可以不参与通信)。例如在第一通信方式中,第一接入节点和第二接入节点可以通信,第一接入节点的制式和第二接入节点的制式不同。接入节点可以为PCC或MN或Pcell,或者接入节点可以为SCC或者SN或者Scell。在本申请实施例中,以第一接入节点为PCC或MN或Pcell,第二接入节点为SCC或者SN或者Scell为例进行说明。
一种可能的方式中,第一配置信息可以重用第一协议栈的配置信息,第一协议栈可以为已有的协议栈,例如MR-DC的协议栈。第一配置信息用于配置第一通信方式时,第一配置信息可以用于指示采用该第一通信方式进行通信,第一配置信息还可以包括第一协议栈的配置信息。可选的,第一配置信息可以采用显式信息指示是否采用第一通信方式进行通信,例如采用1bit信息进行指示,当1bit为1时,指示采用第一通信方式进行通信,1bit为0时,指示采用非第一通信方式的通信方式(如第二通信方式)进行通信,非第一通信方式的通信方式可以为MR-DC的通信方式。举例来说,终端设备在收到MR-DC协议栈的配置信息,以及根据1bit信息确定采用MR-CA通信方式时,确定使用MR-CA协议栈/通信方式进行通信,且可以重用MR-DC协议栈的配置信息配置MR-CA。终端设备在收到MR-DC协议栈的配置信息,以及根据1bit信息确定采用MR-DC通信方式时,确定使用MR-DC协议栈/通信方式进行通信。
另一种可能的方式中,可以不完全重用第一协议栈的配置信息。第一配置信息用于配置第一通信方式时,第一配置信息可以为第二协议栈的配置信息。
可选的,第二协议栈的配置信息可以包括第一接入节点的MAC实体和第二接入节点的MAC实体的关联关系。可选的,第一接入节点的MAC实体和第二接入节点的MAC实体之间连接(或者有接口),可以进行通信。例如第一配置信息可以包括第一接入节点的MAC配置信息和/或第二接入节点的MAC配置信息。在第一接入节点的MAC配置信息中 可以包括第二接入节点的MAC实体的索引或标识,和/或在第二接入节点的MAC配置信息中可以包括第一接入节点的MAC实体的索引或标识,和/或一组配置中包括第一接入节点的MAC实体的索引或标识、以及第二接入节点的MAC实体的索引或标识。
可选的,第二协议栈的配置信息可以包括一个接入节点的MAC实体(例如第一接入节点的MAC实体或第二接入节点的MAC实体)分别与第一接入节点的物理层PHY实体与第二接入节点的PHY实体的关联关系。MAC实体分别与第一接入节点的PHY实体和第二接入节点的PHY实体连接。例如第二协议栈的配置信息可以包括MAC实体的配置信息,MAC实体的配置信息包括第一接入节点的PHY实体的索引或标识,和/或第二接入节点的PHY实体的索引或标识。又如第二协议栈的配置信息包括第一接入节点的PHY配置信息和/或第二接入节点的PHY配置信息,第一接入节点的PHY配置信息包括MAC实体的索引或标识,第二接入节点的PHY配置信息包括MAC实体的索引或标识。又如第二协议栈的配置信息包括MAC实体的索引或标识,第一接入节点的PHY实体的索引或标识,和第二接入节点的PHY实体的索引或标识。
终端设备在接收到MR-CA协议栈的配置信息时,确定使用MR-CA协议栈/通信方式进行通信。
可选的,在该S901之前,终端设备可以向第一接入节点发送第一消息,第一接入节点接收该第一消息。第一消息可以指示终端设备上报的能力信息。例如第一消息可以用于指示终端设备支持第一通信方式,或者第一消息可以用于指示终端设备不支持第一通信方式。以第一通信方式为MR-CA进行说明,第一消息可以用于指示终端设备支持MR-CA。可选的,第一消息还可以指示终端设备具有“跨RAT调度”,“跨RAT反馈”,或“跨RAT SRS切换”等能力。其中“跨RAT调度”指一个制式(指为该制式的接入节点)的DCI可以调度另一个制式的数据,“跨RAT反馈”指两个制式的反馈信息可以集中在一个制式上进行反馈,“跨RAT SRS切换”指如果终端设备只有一个发送通道,该终端设备可以在不同制式上通过时分的方式发送不同制式的SRS信号。
S902:第一接入节点向终端设备发送第一配置信息,终端设备接收该第一配置信息。
第一接入节点接收到该第一配置信息后,可以确认使用第一通信方式进行通信。可选的,第一接入节点还可以确定使用非第一通信方式进行通信。
S903:终端设备根据第一配置信息,使用第一通信方式通信。
在该S903中,终端设备可以根据第一配置信息,使用第一通信方式与第一接入节点进行通信。可选的,终端设备还可以使用第一通信方式,与其它接入节点进行通信。第一接入节点可以配置其它接入节点的激活或去激活,终端设备可以与激活的接入节点进行通信。当接入节点被激活时,终端设备可以在该接入节点的CC上发送SRS,上报信道质量指示(channel quality indicator,CQI)等信息,以及检测用于该节点和在该节点上传输的DCI等,进而实现在不同制式上的载波聚合以及通信过程。或者第一接入节点可以配置终端设备接入其它接入节点,并通过第一通信方式与其它接入节点进行通信。
下面以第一接入节点配置第二接入节点的激活和去激活为例进行说明。
第一接入节点还可以向终端设备发送第二配置信息,终端设备接收该第二配置信息。第二配置信息可以用于指示该终端设备激活第二接入节点,或者第二配置信息可以用于指示该终端设备去激活第二接入节点。若第二配置信息用于指示终端设备激活第二接入节点,终端设备收到该第二配置信息,可以确定激活第二接入节点,以及终端设备还可以接入第 二节点,并通过第一通信方式与第二接入节点通信。可选的,第二配置信息还可以指示第二接入节点所在的小区组(cell group,CG)。第二配置信息中可以包括小区组标识(Cell Group id)和第二接入节点的标识(Cell id)。例如第二配置信息可以用于指示终端设备激活第一小区组下的第二接入节点,或者第二配置信息可以用于指示终端设备去激活第一小区组下的第二接入节点。
可选的,第二配置信息还可以指示终端设备接入第二接入节点,并通过第一通信方式与第二接入节点进行通信。终端设备收到该第二配置信息后,可以确定激活第二接入节点,以及接入第二接入节点,并通过第一通信方式与第二接入节点进行通信。
一种可能的方式中,第二配置信息用于终端设备激活第二接入节点时,可以用于指示终端设备通过随机接入方式(如随机接入信道(random access channel,RACH)的方式)接入第二接入节点,并激活该第二接入节点。可选的,第二配置信息为RACH指示的信息时,例如第二配置信息为RACH指示(如RACH承载的RRC信令)时,第二配置信息用于指示终端设备通过RACH方式接入第二接入节点,并使用第一通信方式与第二接入节点通信。终端设备接收到该第二配置信息时,可以通过RACH方式接入第二接入节点,并使用第一通信方式与第二接入节点通信。
另一种可能的方式中,第二配置信息用于终端设备激活第二接入节点时,可以用于指示终端设备通过非随机接入方式接入第二接入节点,并激活该第二接入节点。可选的,第二配置信息为RACH-less指示的信息时,例如第二配置信息为包含RACH-less指示的RRC信令(或非RACH承载的RRC信令),第二配置信息用于指示终端设备可以不通过RACH方式接入第二接入节点,直接与第二接入节点通信。终端设备接收到该第二配置信息时,可以通过直接使用第一通信方式与第二接入节点通信。定时提前量(timing advance,TA)与终端设备距离接入节点的远近有关,当支持第一通信方式的第一接入节点和第二接入节点共站(即属于同一网络设备)时,终端设备与第一接入节点之间的距离,和终端设备与第二接入节点之间的距离相同,因此第一接入节点和第二接入节点的定时提前量(timing advance,TA)值相同,在添加第二接入节点时可以直接将第一接入节点维护的TA的配置信息共享给第二接入节点,终端设备不通过RACH方式接入第二接入节点,就可以获取到第二接入节点的TA值。因此终端设备可以直接接入激活第二接入节点,可以省略RACH流程,快速激活第二接入节点,减少激活时间。
又一种可能的方式中,第二配置信息可以包括第二接入节点Cell id,还可以包括第二接入节点所在的小区组标识(Cell Group id)。可选的,第二配置信息可以为MAC控制单元(control element,CE),MAC CE信令包括例如Cell Group id和Cell id等信息。若Cell Group id为第一小区组的标识,Cell id为第二接入节点的标识,该MAC CE信令可以用于指示终端设备激活第一小区组下的第二接入节点,或者用于指示终端设备去激活第一小区组下的第二接入节点。终端设备接收到该第二配置信息时,可以激活接入第一小区组下的第二接入节点,并使用第一通信方式与第二接入节点通信。
又一种可能的方式中,第二配置信息可以为PDCCH顺序(order),PDCCH order包括例如Cell Group id和Cell id等信息。若Cell Group id为第一小区组的标识,Cell id为第二接入节点的标识,该PDCCH order可以用于指示终端设备激活第一小区组下的第二接入节点,或者用于指示终端设备去激活第一小区组下的第二接入节点。终端设备接收到该第二配置信息时,可以通过RACH方式接入第一小区组下的第二接入节点,并使用第一通信 方式与第二接入节点通信。通过PDCCH order的DCI触发方式,可以快速触发第二接入节点的激活和去激活。
上述几种可能的方式可以单独使用或者结合使用。例如在结合使用时,第一接入节点首先通过RRC信令为终端设备配置第二接入节点的信息,然后再通过MAC控制元素(control element,CE)信令激活该第二接入节点作为MR-CA的辅载波。第一接入节点确定终端设备通过RACH方式接入第二节点时,向终端设备发送PDCCH order,触发终端设备通过RACH方式快速接入该第二接入节点,并将该第二接入节点(或该第二接入节点的cell)作为MR-CA的辅载波使用。
目前CA技术中,Scell可以共享Pcell所维护的配置信息和参数信息,从而节省资源和信令开销。如图10中的(a)所示,MCG支持CA特性,有一个Pcell和多个Scell,Pcell的配置信息和参数信息被该多个Scell引用。但是MCG都仅支持一个CG内的共享,即同制式内的共享。终端设备支持MR-DC协议栈时,还支持辅小区组(secondary cell group,SCG)内的引用。如图10中的(a)中,SCG有一个主辅小区(primary secondary cell,PScell)和多个Scell,PScell的配置信息和参数信息被该多个Scell引用。可见,SCG内也仅支持一个CG内的共享,即同制式内的共享。目前CA技术和MR-DC协议栈无法实现跨小区组的配置信息和参数信息的共享,并且小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI)可以用于确定盲检的起始位置,每个小区组配置有各自独立的C-RNTI,还会导致终端设备的盲检次数过多,不利于节能。
因此,第一接入节点还可以向终端设备发送第三配置信息,第三配置信息可以用于配置第二小区组和第三小区组的共享信息;和/或用于配置第一接入节点的MAC实体和第二接入节点的MAC实体的共享信息。其中第二小区组和第三小区组可以共站(属于同一网络设备)或者不共站(属于不同网络设备)。第二小区组的制式和第三小区组的制式可以相同或者不同。第一接入节点的MAC实体和第二接入节点的MAC实体可以共站或者不共站,第一接入节点的制式和第二接入节点的制式可以相同或不同。
共享信息包括配置信息和/或参数信息等。例如共享信息包括以下至少一个:非连续接收(discontinuous reception,DRX)的配置信息,TA的配置信息,调度请求(scheduling request,SR)的配置信息,C-RNTI的配置信息等、以及PHY实体和/或MAC实体和/或RLC实体和/或PDCP实体和/或SDAP实体和/或RRC实体的配置信息以及各实体维护的定时器、计数器、状态变量等。
可选的,共享信息中可以新增所引用的小区组标识(Cell Group id),即在相关的配置信息中可以新增小区组标识信息。
例如共享信息包括DRX的配置信息时,DRX的配置信息可以包括DRX所在小区组的标识(DRX group id),还可以包括引用的小区组标识(Cell Group id)等信息。如图10中的(b)所示,SCG中的PScell和Scell-1的DRX的配置信息中新增MCG的标识,SCG中的PScell可以共享MCG中Pcell中的DRX1的配置信息,SCG中的Scell-1可以共享MCG中Pcell中的DRX2的配置信息。
又如共享信息包括TA的配置信息时,TA的配置信息可以包括定时提前量组标识(TA group id)(例如可以为TA所在小区组的标识),还可以包括引用的小区组标识(Cell Group id)等信息。如图10中的(b)所示,SCG中的PScell和Scell-1的DRX的配置信息中新 增MCG的标识,SCG中的PScell可以共享MCG中Pcell中的TAG1的配置信息,SCG中的Scell-1可以共享MCG中Pcell中的TAG2的配置信息。
又如共享信息包括SR的配置信息时,SR的配置信息可以包括SR的标识(SR id),还可以包括引用的小区组标识(Cell Group id)等信息。
又如共享信息包括C-RNTI的配置信息,C-RNTI的配置信息可以包括C-RNTI的值,还可以包括引用的小区组标识(Cell Group id)等信息。这样,可以实现跨小区组的C-RNTI共享,每个小区组配置相同的C-RNTI,可以减少终端设备的盲检次数,更利于终端设备的节能。
或者可选的,共享信息中相关的配置信息不做改变,各接入节点和终端设备默认引用一个小区组(如主小区组MCG)中的配置信息和参数信息。
需要说明,在添加激活/去激活图10中的(b)所示的SCG作为辅载波时,可以参照上述激活/去激活第二接入节点(将SCG看作第二接入节点)的过程,相似之处不做赘述。
MR-DC协议栈中,终端设备上报缓冲状态报告(buffer status report,BSR)时,如果BSR的数据量未超过门限时,终端设备向MN上报BSR,如果BSR的数据量超过门限时,终端设备同时向MN和SN上报BSR,即上报至少两份BSR,导致BSR重复上报,信令开销过大。
因此,可选的第一接入节点还可以向终端设备发送第四配置信息。第四配置信息可以用于配置终端设备上报一份BSR,或者第四配置信息可以用于终端设备向第一接入节点上报BSR或向第二接入节点上报BSR,或者第四配置信息可以用于配置终端设备向最先分配传输资源的接入节点上报BSR。这样终端设备可以上报一份BSR,降低终端设备的信令开销。其中最先分配传输资源的接入节点可以为第一接入节点,或者可以为第二接入节点。接入节点分配的传输资源可以为上行传输资源。
或者可选的,终端设备可以默认上报一次BSR。或者终端设备可以默认向第一接入节点上报BSR或向第二接入节点上报BSR。或者终端设备可以默认向优先分配传输资源的接入节点上报BSR。第一接入节点可以不发送第四配置信息进行额外的配置,进一步降低信令开销。例如,终端设备可以知道逻辑信道(logical channel,LCH)与PHY的关联关系,以及LCH的服务质量(quality of service,QoS)流要求,终端设备根据待上报的BSR所对应的QoS流要求,可以确定通过哪个接入节点的PHY实体上报BSR。
本申请实施例提供的通信方法中,可以在目前已支持的协议栈的基础上进行尽可能小的改动,来支持不同制式的载波进行聚合。通过向终端设备配置可以实现终端设备与不同制式的接入节点之间的互联互通,从而可以实现CA特性,提升通信性能。并且还可以实现不同制式的接入节点之间的互联互通,也可以实现不同厂商的接入节点之间的互联互通。
本申请实施例还提供了第二协议栈。第二协议栈适用于网络侧和终端设备侧。以第一接入节点和第二接入节点,第二协议栈为MR-CA为例进行说明。第一接入节点的制式和第二接入节点的制式可以相同或不同。
一种可能的MR-CA协议栈中,一个MAC实体可以连接多个不同制式的PHY实体。DRB和/或LCH所对应的SDAP实体/PDCP实体/RLC实体共享同一个MAC实体。控制面所对应的RRC实体/PDCP实体/RLC实体共享同一个MAC实体。
网络侧的用户面协议栈模型如图11中的(a)所示,第一接入节点的PHY1实体和第二接入节点的PHY2实体分别与MAC实体/RLC实体/PDCP实体/SDAP实体连接。第一接入节点的制式为RAT1,第二接入节点的制式为RAT2,RAT1与RAT2可以相同或不同。
可选的,PHY1实体/MAC实体/RLC实体/PDCP实体/SDAP实体可以同属于第一接入节点,而PHY2实体属于第二接入节点。或者PHY1实体属于第一接入节点,而PHY2实体/MAC实体/RLC实体/PDCP实体/SDAP实体可以同属于第二接入节点。
若PHY1实体与MAC实体同属于第一接入节点,PHY2实体属于第二接入节点,PHY2实体和MAC实体通过第一接入节点和第二接入节点之间的站间接口交互信息,PHY2实体和MAC实体之间的接口可以为私有接口(如PHY2实体/PHY1实体/MAC实体/RLC实体/PDCP实体/SDAP实体等属于同一厂商的情况下),或者可以为标准化接口(如PHY2实体/PHY1实体/MAC实体/RLC实体/PDCP实体/SDAP实体等属于不同厂商的情况下)。
网络侧的控制面协议栈模型如图11中的(b)所示,控制面协议栈模型与用户面协议栈模型的区别在于,控制面协议栈模型中包括RRC实体,用户面协议栈模型中包括SDAP实体,相似之处不做赘述。
终端设备侧的用户面协议栈模型、控制面协议栈模型,与网络侧的用户面协议栈模型、控制面协议栈模型相似。区别在于终端设备中PHY2实体/PHY1实体/MAC实体/RLC实体/PDCP实体/SDAP实体属于同一厂商,因此PHY2实体/PHY1实体/MAC实体之间的接口可以采用私有接口实现,或者也可以采用标准化接口实现。
但是对于终端设备来说,网络侧的协议栈模型中,一个MAC实体关联多个PHY实体,同时可以关联一个或多个DRB/LCH的配置。其中一个DRB关联一个PDCP实体,每个LCH关联一个RLC实体。而第一DRB可以关联至少一个LCH,即第一PDCP实体可以关联多个RLC实体。
一种可能的MR-CA协议栈中,不同RAT的PHY实体连接各自对应的MAC实体。DRB和/或LCH连接一个MAC实体,不同MAC实体之间连接,有接口进行交互。用户面所对应的SDAP实体/PDCP实体/RLC实体共享一个MAC实体。控制面RRC实体/PDCP实体/RLC实体共享同一个MAC实体。第一接入节点的制式为RAT1,第二接入节点的制式为RAT2,RAT1与RAT2可以相同或不同。
网络侧的用户面协议栈如图12中的(a)所示,第一接入节点的PHY1实体和第一接入节点的MAC1实体连接,第二接入节点的PHY2实体和第二接入节点的MAC2实体连接,MAC1实体和MAC2实体可以通过第一接入节点和第二接入节点之间的站间接口交互信息。RLC实体/PDCP实体/SDAP实体连接MAC1实体或MAC2实体。
可选的,PHY1实体/MAC1实体/RLC实体/PDCP实体/SDAP实体可以同属于第一接入节点,而PHY2实体/MAC2实体属于第二接入节点。第一接入节点和第二接入节点之间可以交互PHY实体的信息和MAC实体的信息。MAC1实体和MAC2实体之间的接口可以为私有接口,或者可以为标准化接口。
网络侧的控制面协议栈模型如图12中的(b)所示,控制面协议栈模型与用户面协议栈模型的区别在于,控制面协议栈模型中包括RRC实体,用户面协议栈模型中包括SDAP实体,相似之处不做赘述。
终端设备侧的用户面协议栈模型、控制面协议栈模型,与网络侧的用户面协议栈模型、控制面协议栈模型相似。区别在于终端设备中PHY2实体/PHY1实体/MAC实体/RLC实体 /PDCP实体/SDAP实体属于同一厂商,因此MAC1实体/MAC2实体之间的接口可以采用私有接口实现,或者也可以采用标准化接口实现。
但是对于终端设备来说,网络侧的协议栈模型中,有多个MAC实体,每个MAC实体关联一个PHY实体。多个MAC实体中的一个MAC实体关联一个或多个DRB/LCH的配置。网络侧可以显式/隐式向终端设备配置两个MAC实体之间存在接口,该过程可以参见图14中第一配置信息的配置过程,这里不再赘述。
一种可能的MR-CA协议栈中,不同RAT的PHY实体连接各自对应的MAC实体。DRB和/或LCH连接不同的MAC实体,不同MAC实体之间连接,有接口进行交互。用户面所对应的SDAP实体/PDCP实体/RLC实体共享多个MAC实体。控制面RRC实体/PDCP实体/RLC实体共享多个MAC实体。第一接入节点的制式为RAT1,第二接入节点的制式为RAT2,RAT1与RAT2可以相同或不同。
网络侧的用户面协议栈如图13中的(a)所示,第一接入节点的PHY1实体和第一接入节点的MAC1实体连接,第二接入节点的PHY2实体和第二接入节点的MAC2实体连接,MAC1实体和MAC2实体可以通过第一接入节点和第二接入节点之间的站间接口交互信息。RLC实体/PDCP实体/SDAP实体分别连接MAC1实体和MAC2实体。
可选的,PHY1实体/MAC1实体/RLC实体/PDCP实体/SDAP实体可以同属于第一接入节点,而PHY2实体/MAC2实体属于第二接入节点。第一接入节点和第二接入节点之间可以交互PHY实体的信息、MAC实体和RLC实体的信息。MAC1实体和MAC2实体之间的接口可以为私有接口,或者可以为标准化接口。RLC实体和MAC2实体之间的接口可以为私有接口,或者可以为标准化接口。
网络侧的控制面协议栈模型如图13中的(b)所示,控制面协议栈模型与用户面协议栈模型的区别在于,控制面协议栈模型中包括RRC实体,用户面协议栈模型中包括SDAP实体,相似之处不做赘述。
终端设备侧的用户面协议栈模型、控制面协议栈模型,与网络侧的用户面协议栈模型、控制面协议栈模型相似。区别在于终端设备中PHY2实体/PHY1实体/MAC实体/RLC实体/PDCP实体/SDAP实体属于同一厂商,因此MAC1实体/MAC2实体/RLC实体之间的接口可以采用私有接口实现,或者也可以采用标准化接口实现。
但是对于终端设备来说,网络侧的协议栈模型中,有多个MAC实体,每个MAC实体关联一个PHY实体。多个MAC实体中的每个MAC实体关联一个或多个DRB/LCH的配置。网络侧可以显式/隐式向终端设备配置两个MAC实体之间存在接口,该过程可以参见图14中第一配置信息的配置过程,这里不再赘述。
一种可能的MR-CA协议栈中,不同RAT的PHY实体连接各自对应的MAC实体/RLC实体。DRB和/或LCH连接不同的MAC实体,不同MAC实体之间连接,有接口进行交互。用户面所对应的SDAP实体/PDCP实体共享多个MAC实体。控制面RRC实体/PDCP实体共享多个MAC实体。第一接入节点的制式为RAT1,第二接入节点的制式为RAT2,RAT1与RAT2可以相同或不同。
网络侧的用户面协议栈如图14中的(a)所示,第一接入节点的PHY1实体和第一接入节点的MAC1实体连接,MAC1实体与第一接入节点的RLC1实体连接。第二接入节点的PHY2实体和第二接入节点的MAC2实体连接,MAC2实体与第二接入节点的RLC2实体连接。MAC1实体和MAC2实体可以通过第一接入节点和第二接入节点之间的站间接口 交互信息。PDCP实体/SDAP实体分别连接RLC1实体和RLC2实体。
可选的,PHY1实体/MAC1实体/RLC1实体/PDCP实体/SDAP实体可以同属于第一接入节点,而PHY2实体/MAC2实体/RLC2实体属于第二接入节点。第一接入节点和第二接入节点之间可以交互PHY实体的信息和MAC实体。MAC1实体和MAC2实体之间的接口可以为私有接口,或者可以为标准化接口。RLC1实体/RLC2实体/PDCP实体之间的接口可以为私有接口,或者可以为标准化接口。
网络侧的控制面协议栈模型如图14中的(b)所示,控制面协议栈模型与用户面协议栈模型的区别在于,控制面协议栈模型中包括RRC实体,用户面协议栈模型中包括SDAP实体,相似之处不做赘述。
终端设备侧的用户面协议栈模型、控制面协议栈模型,与网络侧的用户面协议栈模型、控制面协议栈模型相似。区别在于终端设备中PHY2实体/PHY1实体/MAC实体/RLC实体/PDCP实体/SDAP实体属于同一厂商,因此MAC1实体/MAC2实体/RLC1实体/RLC2实体/PDCP实体之间的接口可以采用私有接口实现,或者也可以采用标准化接口实现。
但是对于终端设备来说,网络侧可以显式/隐式向终端设备配置两个MAC实体之间是否存在接口,从而指示网络侧的协议栈模型为MR-DC还是MR-CA,该过程可以参见图14中第一配置信息的配置过程,这里不再赘述。
图14中的(a)和图14中的(b)所示的MR-CA协议栈模型,与MR-DC协议栈模型的区别在于MAC实体之间是否有接口。例如MR-CA协议栈模型中MAC实体之间有接口,可以交互信息,而MR-DC协议栈模型中RLC之间有接口,可以交互信息。
本申请实施例还提供了接入节点之间的调度和数据封装过程。接入节点之间的调度和数据封装过程可以适用于第二协议栈。
如图15中的(a)所示,为一种可能的分布式调度和分布式数据封装的示意图。第一接入节点和第二接入节点之间交互调度约束信息(第一接入节点可以向第二接入节点发送调度约束信息,或者第二接入节点向第一接入节点发送调度约束信息)。第一接入节点的MAC1实体根据调度约束信息,进行数据自调度,生成第一调度信息,根据第一调度信息进行数据封装,将封装后的数据通过PHY1实体发送。第二接入节点的MAC2实体根据调度约束信息,进行数据自调度,生成第二调度信息,根据第二调度信息进行数据封装,将封装后的数据通过PHY2实体发送。
如图15中的(b)所示,为一种可能的集中式调度和分布式数据封装的示意图。例如第一接入节点的MAC1实体根据调度约束信息,进行数据自调度,为第一接入节点生成第一调度信息,以及进行数据跨调度,为第二接入节点生成第二调度信息。第一接入节点的MAC1实体根据第一调度信息进行数据封装,将封装后的数据通过PHY1实体发送。第一接入节点将第二调度发送给第二接入节点,第二接入节点根据第二调度信息进行数据封装,将封装后的数据通过PHY2实体发送。当然,第二接入节点也可以为第一接入节点生成调度信息,这里不做限制。
调度约束信息可以用于指示已用的传输资源和/或剩余可用的传输资源。例如包括但不限于以下至少一个:DRX的配置信息,上行功率(UL power),MIMO层数(layer),单发时分复用(time division multiplexing,TDM)图案(pattern),调度资源信息等。其中调度资源信息可以包括但不限于以下至少一个:上行和/或下行时频域资源的大小,上行和/ 或下行时频域资源的位置,上行和/或下行时频域资源的功率等。
调度信息指调度结果,包括但不限于以下至少一个:调度资源信息,调制与编码策略(modulation and coding scheme,MCS),上行功控(transmit power control,TPC),触发(triggered)CSI/SRS,冗余版本(redundancy version,RV),HARQ id,网络设备接口(network device interface,NDI),天线端口等。
可选的,第一接入节点和第二接入节点之间还可以传输DCI,DCI可以包括但不限于以下至少一个信息:DCI格式指示信息(用于指示上行或下行),载波指示域(carrier indicator),带宽部分指示(bandwidth part indicator),频域资源分配,时域资源分配,频域跳频指示,虚拟资源块(virtual resource block,VRB)到物理资源块(physical resource block,PRB)的映射(VRB-to-PRB mapping),物理资源块捆绑大小指示(PRB bundling size indicator),MCS,新数据指示(New data indicator),冗余版本(Redundancy version),HARQ进程数(HARQ process number),HARQ定时,传输功率控制命令(TPC command for scheduled PUSCH),上行或补充上行指示(UL/SUL indicator),预编码信息和层数(Precoding information and number of layers),天线端口(Antenna ports),SRS资源指示(SRS resource indicator),SRS请求(SRS request),CSI请求(CSI request),码块组(code block group,CBG)传输信息(CBG transmission information,CBGTI),相位追踪参考信号(phase-tracking reference signal,PTRS)-解调参考信号(demodulation reference signal,DMRS)关联(PTRS-DMRS association),DMRS序列初始化(DMRS sequence initialization),开环功控参数集合指示(Open-loop power control parameter set indication),优先级指示(Priority indicator),无效符号图案指示(Invalid symbol pattern indicator),最小适用的调度偏移指示(Minimum applicable scheduling offset indicator),辅小区休眠指示(SCell dormancy indication),下行分配指示(Downlink assignment index),beta偏置指示(beta_offset indicator),UL-同步信道(synchronization channel,SCH)indicator,PUCCH资源指示(PUCCH resource indicator),信道接入(ChannelAccess-CPext),速率匹配指示(Rate matching indicator),零功率信道状态信息参考信号触发(zero power channel state information-reference siganal,ZP CSI-RS trigger),单次HARQ请求(One-shot HARQ-ACK request),PDSCH组标识(PDSCH group index),新的反馈指示(New feedback indicator),请求的PDSCH组数(Number of requested PDSCH group(s)),传输配置指示(Transmission configuration indication)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,以上各个实施例中,由接入节点实现的方法和/或步骤,也可以由可用于接入节点的部件(例如芯片或者电路)实现,由终端设备实现的方法和/或步骤,也可以由可用于终端设备的部件实现。
以上结合图9至图15详细说明了本申请实施例的通信方法,基于与上述通信方法的同一技术构思,本申请实施例还提供了一种通信装置,可用于实现上述方法实施例中描述的方法。
通信装置的一种可能的表现形式如图16所示,所述通信装置1600中包含处理单元 1601和收发单元1602,装置1600可用于实现上述方法实施例中描述的方法。
在一个实施例中,装置1600应用于第一接入节点。第一接入节点可以基站或小区等。
具体的,处理单元1601,用于确定第一配置信息,所述第一配置信息用于配置第一通信方式,所述第一通信方式支持不同制式的载波进行聚合;
收发单元1602,用于向终端设备发送所述第一配置信息。
在一个实现方式中,第一配置信息用于配置第一通信方式,包括:第一配置信息用于指示采用所述第一通信方式进行通信,所述第一配置信息还包括第一协议栈的配置信息。
在一个实现方式中,所述第一配置信息用于配置第一通信方式,包括:所述第一配置信息为第二协议栈的配置信息,所述第二协议栈的配置信息包括第一接入节点的媒体接入控制MAC实体和第二接入节点的MAC实体的关联关系,或者第二协议栈的配置信息包括第一接入节点的MAC实体分别与第一接入节点的物理层PHY实体与第二接入节点的PHY实体的关联关系。
在一个实现方式中,收发单元1602,还用于接收第一消息,所述第一消息用于指示所述终端设备支持所述第一通信方式。
在一个实现方式中,在所述第一通信方式中所述第一接入节点和第二接入节点通信,所述第一接入节点的制式和所述第二接入节点的制式不同。
在一个实现方式中,收发单元1602,还用于向终端设备发送第二配置信息,所述第二配置信息用于指示所述终端设备激活所述第二接入节点,或者所述终端设备去激活所述第二接入节点。
在一个实现方式中,所述第二配置信息用于所述终端设备激活所述第二接入节点,包括:所述第二配置信息用于指示所述终端设备通过随机接入方式接入所述第二接入节点,并使用所述第一通信方式与所述第二接入节点通信;或者所述第二配置信息用于指示所述终端设备通过非随机接入方式接入所述第二接入节点,并使用所述第一通信方式与所述第二接入节点通信。
在一个实现方式中,所述第二配置信息用于指示所述终端设备激活所述第二接入节点,或者所述终端设备去激活所述第二接入节点,包括:所述第二配置信息用于指示所述终端设备激活第一小区组下的所述第二接入节点,或者所述终端设备去激活第一小区组下的所述第二接入节点。
在一个实现方式中,收发单元1602,还用于向所述终端设备发送第三配置信息,所述第三配置信息用于配置第二小区组和第三小区组的共享信息;和/或用于配置第一接入节点的MAC实体和第二接入节点的MAC实体的共享信息。
在一个实现方式中,所述共享信息包括以下至少一个:非连续接收DRX的配置信息,定时提前量TA的配置信息,调度请求SR的配置信息,计数器信息,计时器信息,小区无线网络临时标识C-RNTI的配置信息。
在一个实现方式中,所述第一接入节点的MAC实体与所述第二接入节点的MAC实体连接;或者所述第一接入节点的MAC实体分别与所述第一接入节点的物理层PHY实体和所述第二接入节点的PHY实体连接。
在另一个实施例中,装置1600应用于终端设备。
具体的,收发单元1602,用于接收第一配置信息,所述第一配置信息用于配置第一通信方式,所述第一通信方式支持不同制式的载波进行聚合。
处理单元1601,用于根据所述第一配置信息,确定使用所述第一通信方式通信。
收发单元1602,还用于使用第一通信方式通信。
在一个实现方式中,所述第一配置信息用于配置第一通信方式,包括:所述第一配置信息用于指示采用所述第一通信方式进行通信,所述第一配置信息还包括第一协议栈的配置信息。
在一个实现方式中,所述第一配置信息用于配置第一通信方式,包括:所述第一配置信息为第二协议栈的配置信息,所述第二协议栈的配置信息包括所述第一接入节点的媒体接入控制MAC实体和第二接入节点的MAC实体的关联关系,或者第二协议栈的配置信息包括第一接入节点的MAC实体分别与第一接入节点的物理层PHY实体与第二接入节点的PHY实体的关联关系。
在一个实现方式中,收发单元1602,还用于向所述第一接入节点发送第一消息,所述第一消息用于指示所述终端设备支持所述第一通信方式。
在一个实现方式中,在所述第一通信方式中所述第一接入节点和第二接入节点通信,所述第一接入节点的制式和所述第二接入节点的制式不同。
在一个实现方式中,收发单元1602,还用于接收第二配置信息,所述第二配置信息用于指示所述终端设备激活所述第二接入节点,或者所述终端设备去激活所述第二接入节点。
在一个实现方式中,所述第二配置信息用于所述终端设备激活所述第二接入节点,包括:
所述第二配置信息用于指示所述终端设备通过随机接入方式接入所述第二接入节点,并使用所述第一通信方式与所述第二接入节点通信;或者所述第二配置信息用于指示所述终端设备通过非随机接入方式接入所述第二接入节点,并使用所述第一通信方式与所述第二接入节点通信。
在一个实现方式中,所述第二配置信息用于指示所述终端设备激活所述第二接入节点,或者所述终端设备去激活所述第二接入节点,包括:所述第二配置信息用于指示所述终端设备激活第一小区组下的所述第二接入节点,或者所述终端设备去激活第一小区组下的所述第二接入节点。
在一个实现方式中,收发单元1602,还用于接收第三配置信息,所述第三配置信息用于配置第二小区组和第三小区组的共享信息;和/或用于配置第一接入节点的MAC实体和第二接入节点的MAC实体的共享信息。
在一个实现方式中,所述共享信息包括以下至少一个:非连续接收DRX的配置信息,定时提前量TA的配置信息,调度请求SR的配置信息,计数器信息,计时器信息,小区无线网络临时标识C-RNTI的配置信息。
在一个实现方式中,所述第一接入节点的MAC实体与所述第二接入节点的MAC实体连接;或者所述第一接入节点的MAC实体分别与所述第一接入节点的物理层PHY实体和所述第二接入节点的PHY实体连接。
需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可 以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
通信装置的另一种可能的表现形式如图17所示,装置1700可用于实现上述方法实施例中描述的方法。
所述装置1700包括一个或多个处理器1701。所述处理器1701可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。所述通信装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,所述收发单元可以为收发器,射频芯片等。
所述装置1700包括一个或多个所述处理器1701,所述一个或多个处理器1701可实现上述所示的实施例中描述的方法。
可选的,处理器1701除了实现上述所示的实施例的方法,还可以实现其他功能。
可选的,一种设计中,处理器1701可以执行指令,使得所述装置1700执行上述方法实施例中描述的方法。所述指令可以全部或部分存储在所述处理器内,如指令1703,也可以全部或部分存储在与所述处理器耦合的存储器1702中,如指令1704,也可以通过指令1703和1704共同使得装置1700执行上述方法实施例中描述的方法。
在又一种可能的设计中,通信装置1700也可以包括逻辑电路,所述逻辑电路可以实现前述方法实施例中描述的方法。
在又一种可能的设计中所述装置1700中可以包括一个或多个存储器1702,其上存有指令1704,所述指令可在所述处理器上被运行,使得所述装置1700执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,所述一个或多个存储器1702可以存储上述实施例中所描述的对应关系,或者上述实施例中所涉及的相关的参数或表格等。所述处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,所述装置1700还可以包括收发器1705以及天线1706。所述处理器1701可以称为处理单元,对装置(终端或者基站)进行控制。所述收发器1705可以称为收发机、收发电路、输入输出接口电路或者收发单元等,用于通过天线1706实现装置的收发功能。可选的,天线1706可以集成在收发器1705中。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或 者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述方法实施例描述的方法。
本申请实施例还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述方法实施例描述的方法。
本申请实施例还提供一种计算机程序,该计算机程序在计算机上执行时实现上述方法实施例描述的方法。
本申请实施例还提供一种通信系统,所述通信系统包括第一接入节点和终端设备。第一接入节点可以实现上述方法实施例描述的方法,终端设备可以实现上述方法实施例描述的方法。
可选的,该通信系统还可以包括第二接入节点。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例 如,高密度数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Drive,SSD))等。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器,用于执行上述方法实施例描述的方法;该接口用于与该通信装置之外的模块通信,接口可以为通信接口、输入输出接口等。或者,该接口可以为代码/数据读写接口,该接口用于接收执行指令(执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器,以使该处理器运行执行指令以执行上述方法实施例描述的方法。
应理解,上述处理装置可以是一个芯片,所述处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,改存储器可以集成在处理器中,可以位于所述处理器之外,独立存在。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线 (DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (51)

  1. 一种通信方法,其特征在于,包括:
    第一接入节点确定第一配置信息,所述第一配置信息用于配置第一通信方式,所述第一通信方式支持不同制式的载波进行聚合;
    所述第一接入节点向终端设备发送所述第一配置信息。
  2. 如权利要求1所述的方法,其特征在于,所述第一配置信息用于配置第一通信方式,包括:
    所述第一配置信息用于指示采用所述第一通信方式进行通信,所述第一配置信息还包括第一协议栈的配置信息。
  3. 如权利要求1所述的方法,其特征在于,所述第一配置信息用于配置第一通信方式,包括:
    所述第一配置信息为第二协议栈的配置信息,所述第二协议栈的配置信息包括所述第一接入节点的媒体接入控制MAC实体和第二接入节点的MAC实体的关联关系,或者所述第二协议栈的配置信息包括所述第一接入节点的MAC实体分别与所述第一接入节点的物理层PHY实体与所述第二接入节点的PHY实体的关联关系。
  4. 如权利要求1-3任一项所述的方法,其特征在于,还包括:
    所述第一接入节点接收第一消息,所述第一消息用于指示所述终端设备支持所述第一通信方式。
  5. 如权利要求1-4任一项所述的方法,其特征在于,在所述第一通信方式中所述第一接入节点和第二接入节点通信,所述第一接入节点的制式和所述第二接入节点的制式不同;
    所述方法还包括:
    所述第一接入节点向所述终端设备发送第二配置信息,所述第二配置信息用于指示所述终端设备激活所述第二接入节点,或者所述终端设备去激活所述第二接入节点。
  6. 如权利要求5所述的方法,其特征在于,所述第二配置信息用于所述终端设备激活所述第二接入节点,包括:
    所述第二配置信息用于指示所述终端设备通过随机接入方式接入所述第二接入节点,并使用所述第一通信方式与所述第二接入节点通信;或者
    所述第二配置信息用于指示所述终端设备通过非随机接入方式接入所述第二接入节点,并使用所述第一通信方式与所述第二接入节点通信。
  7. 如权利要求5或6所述的方法,其特征在于,所述第二配置信息用于指示所述终端设备激活所述第二接入节点,或者所述终端设备去激活所述第二接入节点,包括:
    所述第二配置信息用于指示所述终端设备激活第一小区组下的所述第二接入节点,或者所述终端设备去激活第一小区组下的所述第二接入节点。
  8. 如权利要求1-7任一项所述的方法,其特征在于,还包括:
    所述第一接入节点向所述终端设备发送第三配置信息,所述第三配置信息用于配置第二小区组和第三小区组的共享信息;和/或用于配置所述第一接入节点的MAC实体和第二接入节点的MAC实体的共享信息。
  9. 如权利要求8所述的方法,其特征在于,所述共享信息包括以下至少一个:非连续接收DRX的配置信息,定时提前量TA的配置信息,调度请求SR的配置信息,计数器信 息,计时器信息,小区无线网络临时标识C-RNTI的配置信息。
  10. 如权利要求6-9任一项所述的方法,其特征在于,所述第一接入节点的MAC实体与所述第二接入节点的MAC实体连接;或者
    所述第一接入节点的MAC实体分别与所述第一接入节点的物理层PHY实体和所述第二接入节点的PHY实体连接。
  11. 如权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    所述第一接入节点向所述终端设备发送第四配置信息,所述第四配置信息用于配置所述终端设备上报一次缓冲状态报告BSR,或者所述第四配置信息用于配置所述终端设备向所述第一接入节点上报BSR或向第二接入节点上报BSR,或者所述第四配置信息用于配置所述终端设备向最先分配传输资源的接入节点上报BSR。
  12. 一种通信方法,其特征在于,包括:
    终端设备接收第一配置信息,所述第一配置信息用于配置第一通信方式,所述第一通信方式支持不同制式的载波进行聚合;
    所述终端设备根据所述第一配置信息,使用所述第一通信方式通信。
  13. 如权利要求12所述的方法,其特征在于,所述第一配置信息用于配置第一通信方式,包括:
    所述第一配置信息用于指示采用所述第一通信方式进行通信,所述第一配置信息还包括第一协议栈的配置信息。
  14. 如权利要求12所述的方法,其特征在于,所述第一配置信息用于配置第一通信方式,包括:
    所述第一配置信息为第二协议栈的配置信息,所述第二协议栈的配置信息包括第一接入节点的媒体接入控制MAC实体和第二接入节点的MAC实体的关联关系,或者所述第二协议栈的配置信息包括所述第一接入节点的MAC实体分别与所述第一接入节点的物理层PHY实体与所述第二接入节点的PHY实体的关联关系。
  15. 如权利要求12-14任一项所述的方法,其特征在于,还包括:
    所述终端设备向第一接入节点发送第一消息,所述第一消息用于指示所述终端设备支持所述第一通信方式。
  16. 如权利要求12-15任一项所述的方法,其特征在于,在所述第一通信方式中第一接入节点和第二接入节点通信,所述第一接入节点的制式和所述第二接入节点的制式不同;
    所述方法还包括:
    所述终端设备接收第二配置信息,所述第二配置信息用于指示所述终端设备激活所述第二接入节点,或者所述终端设备去激活所述第二接入节点。
  17. 如权利要求16所述的方法,其特征在于,所述第二配置信息用于所述终端设备激活所述第二接入节点,包括:
    所述第二配置信息用于指示所述终端设备通过随机接入方式接入所述第二接入节点,并使用所述第一通信方式与所述第二接入节点通信;或者
    所述第二配置信息用于指示所述终端设备通过非随机接入方式接入所述第二接入节点,并使用所述第一通信方式与所述第二接入节点通信。
  18. 如权利要求16或17所述的方法,其特征在于,所述第二配置信息用于指示所述终端设备激活所述第二接入节点,或者所述终端设备去激活所述第二接入节点,包括:
    所述第二配置信息用于指示所述终端设备激活第一小区组下的所述第二接入节点,或者所述终端设备去激活第一小区组下的所述第二接入节点。
  19. 如权利要求12-18任一项所述的方法,其特征在于,还包括:
    所述终端设备接收第三配置信息,所述第三配置信息用于配置第二小区组和第三小区组的共享信息;和/或用于配置第一接入节点的MAC实体和第二接入节点的MAC实体的共享信息。
  20. 如权利要求19所述的方法,其特征在于,所述共享信息包括以下至少一个:非连续接收DRX的配置信息,定时提前量TA的配置信息,调度请求SR的配置信息,计数器信息,计时器信息,小区无线网络临时标识C-RNTI的配置信息。
  21. 如权利要求16-20任一项所述的方法,其特征在于,所述第一接入节点的MAC实体与所述第二接入节点的MAC实体连接;或者
    所述第一接入节点的MAC实体分别与所述第一接入节点的物理层PHY实体和所述第二接入节点的PHY实体连接。
  22. 如权利要求12-21任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第四配置信息,所述第四配置信息用于配置所述终端设备上报一次缓冲状态报告BSR,或者所述第四配置信息用于配置所述终端设备向第一接入节点上报BSR或向第二接入节点上报BSR,或者所述第四配置信息用于配置所述终端设备向最先分配传输资源的接入节点上报BSR。
  23. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一配置信息,所述第一配置信息用于配置第一通信方式,所述第一通信方式支持不同制式的载波进行聚合;
    收发单元,用于向终端设备发送所述第一配置信息。
  24. 如权利要求23所述的装置,其特征在于,所述第一配置信息用于配置第一通信方式,包括:所述第一配置信息用于指示采用所述第一通信方式进行通信,所述第一配置信息还包括第一协议栈的配置信息。
  25. 如权利要求23所述的装置,其特征在于,所述第一配置信息用于配置第一通信方式,包括:所述第一配置信息为第二协议栈的配置信息,所述第二协议栈的配置信息包括所述通信装置的媒体接入控制MAC实体和第二接入节点的MAC实体的关联关系,或者所述第二协议栈的配置信息包括所述通信装置的MAC实体分别与所述通信装置的物理层PHY实体与所述第二接入节点的PHY实体的关联关系。
  26. 如权利要求23-25任一项所述的装置,其特征在于,所述收发单元,还用于接收第一消息,所述第一消息用于指示所述终端设备支持所述第一通信方式。
  27. 如权利要求23-26任一项所述的装置,其特征在于,在所述第一通信方式中所述通信装置和第二接入节点通信,所述通信装置的制式和所述第二接入节点的制式不同;
    所述收发单元,还用于向所述终端设备发送第二配置信息,所述第二配置信息用于指示所述终端设备激活所述第二接入节点,或者所述终端设备去激活所述第二接入节点。
  28. 如权利要求27所述的装置,其特征在于,所述第二配置信息用于所述终端设备激活所述第二接入节点,包括:所述第二配置信息用于指示所述终端设备通过随机接入方式接入所述第二接入节点,并使用所述第一通信方式与所述第二接入节点通信;或者所述第 二配置信息用于指示所述终端设备通过非随机接入方式接入所述第二接入节点,并使用所述第一通信方式与所述第二接入节点通信。
  29. 如权利要求27或28所述的装置,其特征在于,所述第二配置信息用于指示所述终端设备激活所述第二接入节点,或者所述终端设备去激活所述第二接入节点,包括:所述第二配置信息用于指示所述终端设备激活第一小区组下的所述第二接入节点,或者所述终端设备去激活第一小区组下的所述第二接入节点。
  30. 如权利要求23-29任一项所述的装置,其特征在于,所述收发单元,还用于向所述终端设备发送第三配置信息,所述第三配置信息用于配置第二小区组和第三小区组的共享信息;和/或用于配置所述通信装置的MAC实体和第二接入节点的MAC实体的共享信息。
  31. 如权利要求30所述的装置,其特征在于,所述共享信息包括以下至少一个:非连续接收DRX的配置信息,定时提前量TA的配置信息,调度请求SR的配置信息,计数器信息,计时器信息,小区无线网络临时标识C-RNTI的配置信息。
  32. 如权利要求28-31任一项所述的装置,其特征在于,所述通信装置的MAC实体与所述第二接入节点的MAC实体连接;或者所述通信装置的MAC实体分别与所述通信装置的物理层PHY实体和所述第二接入节点的PHY实体连接。
  33. 如权利要求23-32任一项所述的装置,其特征在于,所述收发单元,还用于向所述终端设备发送第四配置信息,所述第四配置信息用于配置所述终端设备上报一次缓冲状态报告BSR,或者所述第四配置信息用于配置所述终端设备向所述通信装置上报BSR或向第二接入节点上报BSR,或者所述第四配置信息用于配置所述终端设备向最先分配传输资源的接入节点上报BSR。
  34. 一种通信装置,其特征在于,包括:
    收发单元,用于接收第一配置信息,所述第一配置信息用于配置第一通信方式,所述第一通信方式支持不同制式的载波进行聚合;
    处理单元,用于根据所述第一配置信息,确定使用所述第一通信方式通信;
    所述收发单元,还用于根据所述第一配置信息,使用所述第一通信方式通信。
  35. 如权利要求34所述的装置,其特征在于,所述第一配置信息用于配置第一通信方式,包括:所述第一配置信息用于指示采用所述第一通信方式进行通信,所述第一配置信息还包括第一协议栈的配置信息。
  36. 如权利要求34所述的装置,其特征在于,所述第一配置信息用于配置第一通信方式,包括:所述第一配置信息为第二协议栈的配置信息,所述第二协议栈的配置信息包括第一接入节点的媒体接入控制MAC实体和第二接入节点的MAC实体的关联关系,或者所述第二协议栈的配置信息包括所述第一接入节点的MAC实体分别与所述第一接入节点的物理层PHY实体与所述第二接入节点的PHY实体的关联关系。
  37. 如权利要求34-36任一项所述的装置,其特征在于,所述收发单元,还用于向第一接入节点发送第一消息,所述第一消息用于指示所述通信装置支持所述第一通信方式。
  38. 如权利要求34-37任一项所述的装置,其特征在于,在所述第一通信方式中第一接入节点和第二接入节点通信,所述第一接入节点的制式和所述第二接入节点的制式不同;
    所述收发单元,还用于接收第二配置信息,所述第二配置信息用于指示所述通信装置激活所述第二接入节点,或者所述通信装置去激活所述第二接入节点。
  39. 如权利要求38所述的装置,其特征在于,所述第二配置信息用于所述通信装置激 活所述第二接入节点,包括:所述第二配置信息用于指示所述通信装置通过随机接入方式接入所述第二接入节点,并使用所述第一通信方式与所述第二接入节点通信;或者所述第二配置信息用于指示所述通信装置通过非随机接入方式接入所述第二接入节点,并使用所述第一通信方式与所述第二接入节点通信。
  40. 如权利要求38或39所述的装置,其特征在于,所述第二配置信息用于指示所述通信装置激活所述第二接入节点,或者所述通信装置去激活所述第二接入节点,包括:所述第二配置信息用于指示所述通信装置激活第一小区组下的所述第二接入节点,或者所述通信装置去激活第一小区组下的所述第二接入节点。
  41. 如权利要求34-40任一项所述的装置,其特征在于,所述收发单元,还用于接收第三配置信息,所述第三配置信息用于配置第二小区组和第三小区组的共享信息;和/或用于配置第一接入节点的MAC实体和第二接入节点的MAC实体的共享信息。
  42. 如权利要求41所述的装置,其特征在于,所述共享信息包括以下至少一个:非连续接收DRX的配置信息,定时提前量TA的配置信息,调度请求SR的配置信息,计数器信息,计时器信息,小区无线网络临时标识C-RNTI的配置信息。
  43. 如权利要求38-42任一项所述的装置,其特征在于,所述第一接入节点的MAC实体与所述第二接入节点的MAC实体连接;或者所述第一接入节点的MAC实体分别与所述第一接入节点的物理层PHY实体和所述第二接入节点的PHY实体连接。
  44. 如权利要求34-43任一项所述的装置,其特征在于,所述收发单元,还用于接收第四配置信息,所述第四配置信息用于配置所述通信装置上报一次缓冲状态报告BSR,或者所述第四配置信息用于配置所述通信装置向第一接入节点上报BSR或向第二接入节点上报BSR,或者所述第四配置信息用于配置所述通信装置向最先分配传输资源的接入节点上报BSR。
  45. 一种通信装置,其特征在于,所述通信装置包括:处理器;
    所述处理器,用于读取存储器中存储的计算机程序或指令,并执行所述计算机程序或指令,以使所述通信装置执行如权利要求1-11中任一项所述的方法,或者,以使所述通信装置执行如权利要求12-22中任一项所述的方法。
  46. 如权利要求45所述的装置,其特征在于,所述通信装置还包括所述存储器,所述处理器与所述存储器耦合。
  47. 一种通信装置,其特征在于,所述通信装置包括:处理器和接口电路;
    所述接口电路,用于与所述通信装置之外的模块通信;
    所述处理器用于执行计算机程序或指令,以使所述通信装置执行如权利要求1-11中任一项所述的方法,或者,以使所述通信装置执行如权利要求12-22中任一项所述的方法。
  48. 一种计算机可读存储介质,其特征在于,包括计算机程序或指令,当其在计算机上运行时,使得权利要求1-11中任意一项所述的方法被执行,或者,使得权利要求12-22中任一项所述的方法被执行。
  49. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得权利要求1-11中任意一项所述的方法被执行,或者,使得权利要求12-22中任一项所述的方法被执行。
  50. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求1-11中任一项所述的方法,或者,用于执行如权利要求12-22中任一项所述的方法。
  51. 一种通信系统,其特征在于,所述通信系统包括如权利要求23-33中任一项所述的 通信装置和如权利要求34-44中任一项所述的通信装置。
PCT/CN2022/089916 2021-04-30 2022-04-28 一种通信方法及装置 WO2022228518A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110480166.8A CN115276925A (zh) 2021-04-30 2021-04-30 一种通信方法及装置
CN202110480166.8 2021-04-30

Publications (1)

Publication Number Publication Date
WO2022228518A1 true WO2022228518A1 (zh) 2022-11-03

Family

ID=83746143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089916 WO2022228518A1 (zh) 2021-04-30 2022-04-28 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN115276925A (zh)
WO (1) WO2022228518A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160037432A1 (en) * 2013-03-15 2016-02-04 Interdigital Patent Holdings, Inc. Enhanced common logical-a protocol for reconfigurable systems
CN107409022A (zh) * 2015-03-14 2017-11-28 高通股份有限公司 不同无线接入技术的载波聚合
US20190173626A1 (en) * 2017-12-05 2019-06-06 Google Llc Inter-Radio Access Technology Carrier Aggregation
CN111373686A (zh) * 2017-12-12 2020-07-03 谷歌有限责任公司 无线电接入技术间载波聚合
CN111757552A (zh) * 2019-03-28 2020-10-09 苹果公司 用于快速载波聚合和双连接配置的辅助信息

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160037432A1 (en) * 2013-03-15 2016-02-04 Interdigital Patent Holdings, Inc. Enhanced common logical-a protocol for reconfigurable systems
CN107409022A (zh) * 2015-03-14 2017-11-28 高通股份有限公司 不同无线接入技术的载波聚合
US20190173626A1 (en) * 2017-12-05 2019-06-06 Google Llc Inter-Radio Access Technology Carrier Aggregation
CN111373686A (zh) * 2017-12-12 2020-07-03 谷歌有限责任公司 无线电接入技术间载波聚合
CN111757552A (zh) * 2019-03-28 2020-10-09 苹果公司 用于快速载波聚合和双连接配置的辅助信息

Also Published As

Publication number Publication date
CN115276925A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
JP6819757B2 (ja) gNB−DU、gNB−CU、及びこれらの方法
US9848414B2 (en) Method for signaling control information, and apparatus therefor
US10075279B2 (en) Method for deactivating secondary cells by a base station and device therefor
US11770729B2 (en) Distributed scheduling algorithm for CPRI over ethernet
CN105453687B (zh) 用于辅基站的连接配置激活的方法和网络节点
US11064557B2 (en) Method and device for establishing radio resource control connection
US20220394682A1 (en) L1 signaling for scell dormancy indication
US20220393794A1 (en) Timer handling in multiple active grant configurations
KR102528306B1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 장치
EP3738379A1 (en) Configured grants in time division duplex communications
TW202027553A (zh) 用於共享通訊通道之方法及設備
US20230275738A1 (en) Apparatuses and methods for flexible spectrum
US20230276249A1 (en) Apparatuses and methods for flexible spectrum
WO2023153336A1 (ja) 通信システムおよび基地局
WO2022228518A1 (zh) 一种通信方法及装置
KR102549723B1 (ko) 무선 통신 시스템에서 디폴트 공간 파라미터 기반 송수신 방법 및 장치
WO2020156394A1 (zh) 一种反馈方法及装置
WO2022228519A1 (zh) 一种通信方法及装置
JP7492608B2 (ja) 無線通信システムにおいて上りリンク送受信方法及び装置
US20230042752A1 (en) Method and apparatus for supporting power headroom report for multiple transmission reception points in next generation mobile communication system
WO2024029425A1 (ja) 基地局および通信システム
WO2023164867A1 (en) System and method for l1 connection setup and l1 reconfiguration
KR20240027692A (ko) 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 장치
KR20240071372A (ko) 무선 통신 시스템에서 상향링크 송수신을 수행하는 방법 및 장치
KR20230152561A (ko) 무선 통신 시스템에서 상향링크 전송 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794988

Country of ref document: EP

Kind code of ref document: A1