WO2024029425A1 - 基地局および通信システム - Google Patents

基地局および通信システム Download PDF

Info

Publication number
WO2024029425A1
WO2024029425A1 PCT/JP2023/027386 JP2023027386W WO2024029425A1 WO 2024029425 A1 WO2024029425 A1 WO 2024029425A1 JP 2023027386 W JP2023027386 W JP 2023027386W WO 2024029425 A1 WO2024029425 A1 WO 2024029425A1
Authority
WO
WIPO (PCT)
Prior art keywords
sps
data
information
gnb
pusch
Prior art date
Application number
PCT/JP2023/027386
Other languages
English (en)
French (fr)
Inventor
満 望月
忠宏 下田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2024029425A1 publication Critical patent/WO2024029425A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/11Semi-persistent scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load

Definitions

  • the present disclosure relates to wireless communication technology.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • NR New Radio Access Technology
  • Non-Patent Document 3 For example, in Europe, an organization called METIS has compiled requirements for 5G (see Non-Patent Document 3).
  • the 5G wireless access system has 1000 times the system capacity, 100 times the data transmission speed, 1/5th the data processing delay, and 100 times the number of simultaneous connection of communication terminals compared to the LTE system.
  • the requirements include realizing further reductions in power consumption and costs of devices (see Non-Patent Document 3).
  • OFDM Orthogonal Frequency Division Multiplexing
  • DFT-s-OFDM Discrete Fourier Transform-spread-OFDM
  • the 5G system does not include circuit switching and only uses a packet communication method.
  • NR allows the use of higher frequencies than LTE in order to improve transmission speed and reduce processing delays.
  • NR which may use a higher frequency than LTE
  • cell coverage is ensured by forming a narrow beam-shaped transmission/reception range (beamforming) and changing the direction of the beam (beam sweeping).
  • FIG. 1 is an explanatory diagram showing the structure of a radio frame used in an NR communication system.
  • one radio frame is 10 ms.
  • a radio frame is divided into 10 equally sized subframes.
  • one or more numerologies ie, one or more subcarrier spacings (SCS)
  • SCS subcarrier spacings
  • one subframe is 1 ms regardless of the subcarrier interval, and one slot is composed of 14 symbols.
  • the number of slots included in one subframe is one when the subcarrier interval is 15 kHz, and the number of slots at other subcarrier intervals increases in proportion to the subcarrier interval (Non-patent Document 11 (3GPP TS38 (See .211)).
  • Non-Patent Document 2 (Chapter 5) and Non-Patent Document 11.
  • a physical broadcast channel is a communication terminal from a base station device (hereinafter sometimes simply referred to as a "base station”) to a mobile terminal device (hereinafter sometimes simply referred to as a “mobile terminal”). This is a channel for downlink transmission to a device (hereinafter sometimes referred to as a “communication terminal” or “terminal”).
  • PBCH is transmitted together with a downlink synchronization signal.
  • Downlink synchronization signals in NR include a first synchronization signal (P-SS) and a second synchronization signal (S-SS).
  • a synchronization signal is transmitted from a base station as a synchronization signal burst (hereinafter sometimes referred to as an SS burst) at a predetermined period and with a predetermined duration.
  • the SS burst is composed of a synchronization signal block (hereinafter sometimes referred to as an SS block) for each beam of the base station.
  • the base station transmits the SS block of each beam by changing the beam within the duration of the SS burst.
  • the SS block is composed of P-SS, S-SS, and PBCH.
  • a physical downlink control channel is a channel for downlink transmission from a base station to a communication terminal.
  • the PDCCH carries downlink control information (DCI).
  • the DCI includes resource allocation information for a Downlink Shared Channel (DL-SCH), which is one of the transport channels described below, and a paging channel (Paging Channel, which is one of the transport channels described later). This includes resource allocation information for PCH, HARQ (Hybrid Automatic Repeat reQuest) information regarding DL-SCH, and the like.
  • the DCI may include an uplink scheduling grant.
  • DCI may include Ack (Acknowledgement)/Nack (Negative Acknowledgement) which is a response signal to uplink transmission.
  • the DCI may include a slot format indication (SFI).
  • PDCCH or DCI is also called L1/L2 control signal.
  • a time/frequency region is provided as a candidate for PDCCH to be included. This area is called a control resource set (CORESET).
  • the communication terminal monitors CORESET and acquires PDCCH.
  • a physical downlink shared channel is a channel for downlink transmission from a base station to a communication terminal.
  • a downlink shared channel (DL-SCH), which is a transport channel, and a PCH, which is a transport channel, are mapped to the PDSCH.
  • a physical uplink control channel is a channel for uplink transmission from a communication terminal to a base station.
  • PUCCH carries uplink control information (UCI).
  • the UCI includes Ack/Nack, which is a response signal for downlink transmission, CSI (Channel State Information), scheduling request (SR), and the like.
  • CSI is composed of RI (Rank Indicator), PMI (Precoding Matrix Indicator), and CQI (Channel Quality Indicator) report.
  • RI is rank information of a channel matrix in MIMO (Multiple Input, Multiple Output).
  • PMI is information on a precoding weight matrix used in MIMO.
  • CQI is quality information indicating the quality of received data or the quality of a communication channel.
  • the UCI may be carried by PUSCH, which will be described later.
  • PUCCH or UCI is also called L1/L2 control signal.
  • a physical uplink shared channel is a channel for uplink transmission from a communication terminal to a base station.
  • An uplink shared channel (UL-SCH), which is one of the transport channels, is mapped to the PUSCH.
  • a physical random access channel is a channel for uplink transmission from a communication terminal to a base station.
  • PRACH carries a random access preamble.
  • the downlink reference signal (Reference Signal: RS) is a symbol known as an NR communication system.
  • the following four types of downlink reference signals are defined.
  • Data demodulation reference signal (DM-RS), phase tracking reference signal (PT-RS), and positioning reference signal, which are UE-specific reference signals (UE-specific Reference Signal) :PRS), Channel State Information Reference Signal (CSI-RS).
  • Measurements of the physical layer of a communication terminal include reference signal received power (RSRP) measurement and reference signal received quality (RSRQ) measurement.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the uplink reference signal is a symbol known as an NR communication system.
  • the following three types of uplink reference signals are defined. These are a data demodulation reference signal (DM-RS), a phase tracking reference signal (PT-RS), and a sounding reference signal (SRS).
  • DM-RS data demodulation reference signal
  • PT-RS phase tracking reference signal
  • SRS sounding reference signal
  • Non-Patent Document 2 (Chapter 5) will be explained.
  • a broadcast channel (BCH) is broadcast throughout the coverage of the base station (cell).
  • the BCH is mapped to a physical broadcast channel (PBCH).
  • PBCH physical broadcast channel
  • DL-SCH downlink shared channel
  • DL-SCH can be broadcast to the entire coverage of a base station (cell).
  • DL-SCH supports dynamic or semi-static resource allocation. Semi-static resource allocation is also called semi-persistent scheduling.
  • DL-SCH supports discontinuous reception (DRX) of communication terminals to reduce power consumption of communication terminals.
  • DL-SCH is mapped to a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • a paging channel supports DRX of a communication terminal to enable low power consumption of the communication terminal.
  • PCH is required to be broadcast throughout the coverage of a base station (cell).
  • the PCH is dynamically mapped to a physical resource such as a physical downlink shared channel (PDSCH) that is available for traffic.
  • PDSCH physical downlink shared channel
  • UL-SCH uplink shared channel
  • PUSCH physical uplink shared channel
  • Random Access Channel is limited to control information. RACH is at risk of collision. RACH is mapped to Physical Random Access Channel (PRACH).
  • PRACH Physical Random Access Channel
  • HARQ is a technology that improves the communication quality of a transmission path by combining automatic repeat request (ARQ) and forward error correction.
  • ARQ automatic repeat request
  • HARQ has the advantage that error correction functions effectively through retransmission even on transmission paths where communication quality changes. In particular, it is possible to further improve the quality by combining the reception results of the first transmission and the retransmission upon retransmission.
  • a CRC error occurs on the receiving side
  • the receiving side issues a retransmission request to the transmitting side.
  • a retransmission request is made by toggling an NDI (New Data Indicator).
  • the transmitting side that receives the retransmission request retransmits the data. If no CRC error occurs on the receiving side, no retransmission request is made. If the transmitting side does not receive a retransmission request for a predetermined period of time, it is assumed that a CRC error has not occurred on the receiving side.
  • a broadcast control channel is a downlink channel for broadcasting system control information.
  • the BCCH which is a logical channel, is mapped to a broadcast channel (BCH), which is a transport channel, or a downlink shared channel (DL-SCH).
  • BCH broadcast channel
  • DL-SCH downlink shared channel
  • PCCH Paging Control Channel
  • PCCH paging channel
  • a common control channel is a channel for transmitting control information between a communication terminal and a base station.
  • CCCH is used when a communication terminal does not have an RRC connection with a network.
  • the CCCH is mapped to a downlink shared channel (DL-SCH), which is a transport channel.
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • a dedicated control channel is a channel that transmits dedicated control information between a communication terminal and a network on a one-to-one basis.
  • DCCH is used when a communication terminal has an RRC connection with the network.
  • the DCCH is mapped to an uplink shared channel (UL-SCH) in uplinks and to a downlink shared channel (DL-SCH) in downlinks.
  • UL-SCH uplink shared channel
  • DL-SCH downlink shared channel
  • the Dedicated Traffic Channel is a channel for one-to-one communication with communication terminals for transmitting user information.
  • DTCH exists on both uplink and downlink.
  • DTCH is mapped to an uplink shared channel (UL-SCH) in uplinks, and mapped to a downlink shared channel (DL-SCH) in downlinks.
  • UL-SCH uplink shared channel
  • DL-SCH downlink shared channel
  • Location tracking of communication terminals is performed in units of areas consisting of one or more cells. Location tracking is performed to track the location of a communication terminal even when it is in a standby state, and to make a call to the communication terminal, in other words, to enable the communication terminal to receive a call.
  • This area for tracking the location of the communication terminal is called a tracking area (TA).
  • NR In NR, calling of a communication terminal is supported in an area smaller than the tracking area. This range is called a RAN notification area (RAN Notification Area: RNA). Paging of a communication terminal in the RRC_INACTIVE state, which will be described later, is performed within this range.
  • RNA RAN Notification Area
  • carrier aggregation is used to aggregate two or more component carriers (CCs) (also referred to as “aggregation”) in order to support wide frequency bandwidths (transmission bandwidths).
  • CCs component carriers
  • aggregation also referred to as “aggregation”
  • CA transmission bandwidths
  • the UE When CA is configured, the UE, which is a communication terminal, has only one RRC connection with the network (NW).
  • one serving cell provides the NAS mobility information and security input. This cell is called a primary cell (PCell).
  • PCell primary cell
  • SCell secondary cell
  • a serving cell set consisting of one PCell and one or more SCells is configured for one UE.
  • DC dual connectivity
  • a master base station Master Node: MN
  • secondary base station Secondary Node: SN
  • Serving cells configured by a master base station may be collectively referred to as a master cell group (Master Cell Group: MCG)
  • serving cells configured by a secondary base station may be collectively referred to as a secondary cell group (Secondary Cell Group: SCG).
  • a primary cell in an MCG or SCG is called a special cell (SpCell or SPCell).
  • a special cell in the MCG is called a PCell
  • a special cell in the SCG is called a primary SCG cell (PSCell).
  • the base station presets a part of the carrier frequency band (hereinafter sometimes referred to as Bandwidth Part (BWP)) to the UE, and the UE performs transmission and reception with the base station in the BWP. By performing this, it is possible to reduce power consumption in the UE.
  • BWP Bandwidth Part
  • 3GPP supports services (or applications) using side link (SL) communication (also called PC5 communication) in both the EPS (Evolved Packet System) described below and the 5G core system. are being considered (see Non-Patent Documents 1, 2, 26-28).
  • SL communication communication is performed between terminals. Examples of services using SL communication include V2X (vehicle-to-everything) services and proximity services.
  • V2X vehicle-to-everything
  • the physical channel used for SL (see Non-Patent Documents 2 and 11) will be explained.
  • the Physical Sidelink Broadcast Channel (PSBCH) carries system and synchronization related information and is transmitted from the UE.
  • a physical sidelink control channel (PSCCH) carries control information from the UE for sidelink communication and V2X sidelink communication.
  • a physical sidelink shared channel (PSSCH) carries data from the UE for sidelink and V2X sidelink communications.
  • a physical sidelink feedback channel (PSFCH) carries HARQ feedback on the sidelink from the UE that received the PSSCH transmission to the UE that transmitted the PSSCH.
  • the transport channel used for SL (see Non-Patent Document 1) will be explained.
  • the sidelink broadcast channel (SL-BCH) has a predetermined transport format and is mapped to the PSBCH, which is a physical channel.
  • the Sidelink shared channel supports broadcast transmission.
  • SL-SCH supports both UE autonomous resource selection and base station scheduled resource allocation. There is a collision risk in UE automatic resource selection, and when the UE is allocated individual resources by the base station, there is no collision.
  • SL-SCH also supports dynamic link adaptation by changing transmit power, modulation, and coding.
  • SL-SCH is mapped to PSSCH, which is a physical channel.
  • a sidelink broadcast control channel is a sidelink channel for broadcasting sidelink system information from one UE to another UE.
  • SBCCH is mapped to SL-BCH, which is a transport channel.
  • the Sidelink Traffic Channel is a one-to-many sidelink traffic channel for transmitting user information from one UE to another UE.
  • STCH is used only by UEs with sidelink communication capabilities and UEs with V2X sidelink communication capabilities.
  • One-to-one communication between UEs with two sidelink communication capabilities is also realized on the STCH.
  • STCH is mapped to SL-SCH, which is a transport channel.
  • a sidelink control channel is a sidelink control channel for transmitting control information from one UE to another UE.
  • SCCH is mapped to SL-SCH, which is a transport channel.
  • Non-Patent Document 27 (3GPP TS23.287)
  • HARQ feedback In unicast communication and group cast communication in SL, HARQ feedback (Ack/Nack), CSI reporting, etc. are supported.
  • IAB Integrated Access and Backhaul
  • Non-Patent Document 30 communication methods suitable for XR (eXtended Reality) and cloud gaming services have been discussed (Non-Patent Document 30), and the characteristics of XR traffic (for example, non-integer periodicity, data generation time fluctuation (jitter) characteristics) , data volume fluctuation characteristics, low delay characteristics, etc.), XR recognition methods, XR-specific power consumption reduction methods, XR-specific capacity improvement methods, etc. have been proposed (Non-patent Documents 31, 32, 33). .
  • Non-Patent Document 30 the period in the periodic transmission/reception method is N milliseconds (N is a positive integer), and the periodically allocated resources are fixed. For this reason, conventional communication methods are not suitable for the characteristics of XR traffic, resulting in an increase in delay time and deterioration in communication quality.
  • one of the objects of the present disclosure is to obtain a base station that can realize a communication system suitable for communication having characteristics such as XR traffic.
  • a base station is a base station capable of periodic communication that transmits and receives data to and from a communication terminal at a predetermined period, and when transmitting downlink data to a communication terminal in periodic communication,
  • a physical downlink control channel and a physical downlink shared channel to be used in the first cycle, which is the downlink data transmission cycle, are allocated, and the physical downlink control channel and physical downlink shared channel to be used in the first cycle are allocated according to fluctuations in the amount of downlink data to be transmitted to communication terminals.
  • the shared channel is changed, and the communication terminal is notified of the result of the change using the physical downlink control channel already allocated in the first cycle.
  • a physical downlink control channel and a physical uplink shared channel to be used in the second period which is the uplink data transmission period, are allocated, and the uplink data transmitted by the communication terminal is
  • the physical uplink shared channel used in the second period is changed according to the fluctuation in the data amount, and the result of the change is notified to the communication terminal through the physical downlink control channel already allocated to the second period.
  • the base station According to the base station according to the present disclosure, it is possible to realize a communication system suitable for communication having characteristics such as XR traffic.
  • FIG. 2 is an explanatory diagram showing the structure of a radio frame used in an NR communication system.
  • 1 is a block diagram showing the overall configuration of an NR communication system 210 being discussed in 3GPP. It is a block diagram of DC by the base station connected to NG core.
  • 3 is a block diagram showing the configuration of a mobile terminal 202 shown in FIG. 2.
  • FIG. 3 is a block diagram showing the configuration of a base station 213 shown in FIG. 2.
  • FIG. 5 is a block diagram showing the configuration of a 5GC unit.
  • FIG. 2 is a flowchart showing an outline of steps from a cell search to a standby operation performed by a communication terminal (UE) in an NR communication system.
  • FIG. 2 is a diagram showing an example of a cell configuration in an NR system.
  • FIG. 2 is a connection configuration diagram showing an example of a connection configuration of terminals in SL communication.
  • FIG. 2 is a connection configuration diagram showing an example of a connection configuration of base stations that support access/backhaul integration.
  • 2 is a diagram illustrating an example of resource allocation when multiple PDSCHs and multiple PDCCHs are configured in one SPS cycle in Embodiment 1.
  • FIG. FIG. 7 is a diagram showing an example of resource allocation when the number of PDCCHs and the number of PDSCHs are individually set in SPS settings in Modification 1 of Embodiment 1;
  • FIG. 7 is a diagram illustrating another example of resource allocation in the case where the number of PDCCHs and the number of PDSCHs are individually set in SPS settings in Modification 1 of Embodiment 1;
  • FIG. 12 is a diagram showing an example of releasing PDSCH resources set in SPS on PDCCH in Modification 2 of Embodiment 1;
  • FIG. 10 is a diagram showing another example of releasing PDSCH resources configured in SPS using PDCCH in Modification 2 of Embodiment 1;
  • FIG. 7 is a diagram showing an example of resource allocation when only one or more PDCCHs are configured in SPS configuration in Modification 3 of Embodiment 1;
  • FIG. 7 is a diagram illustrating an example of resource allocation in a case where a plurality of PUSCHs and a plurality of PDCCHs are configured in CG configuration in Embodiment 2;
  • FIG. 12 is a diagram showing an example of resource allocation in the case where the number of PDCCHs and the number of PUSCHs are individually set in CG setting for Modification 1 of Embodiment 2;
  • FIG. 10 is a diagram showing another resource allocation example in the case where the number of PDCCHs and the number of PUSCHs are individually set in CG setting in Modification 1 of Embodiment 2;
  • FIG. 10 is a diagram showing an example of releasing PUSCH resources set in CG on PDCCH in Modification 2 of Embodiment 2;
  • FIG. 12 is a diagram showing another example of releasing PUSCH resources set in CG on PDCCH in Modification 2 of Embodiment 2;
  • FIG. 10 is a diagram showing an example of resource allocation when two PDCCHs are set in CG setting in Modification 3 of Embodiment 2;
  • FIG. 9 is a diagram showing an example of resource allocation when one or more PDSCHs are configured using the PDSCH configured in the SPS configuration in Embodiment 3;
  • FIG. 10 is a diagram showing an example of resource allocation when one or more PDSCHs are configured using a plurality of PDSCHs configured in the SPS configuration in Modification 1 of Embodiment 3;
  • FIG. 12 is a diagram showing an example of resource allocation in the case of releasing one or more PDSCHs using a plurality of PDSCHs set in SPS settings in Modification 2 of Embodiment 3;
  • FIG. 12 is a diagram showing an example of resource allocation in a case where a scheduling request for one or more PUSCHs is notified using a PUSCH set in a CG setting in Embodiment 4;
  • FIG. 12 is a diagram showing an example of resource allocation when a PUSCH scheduling request is notified using a plurality of PUSCHs set in CG settings in Modification 1 of Embodiment 4;
  • FIG. 10 is a diagram showing an example of resource allocation in a case where information regarding a PUSCH used for transmission by a UE is transmitted using a plurality of PUSCHs set in a CG setting in Modification 2 of Embodiment 4;
  • FIG. 10 is a diagram showing an example of resource allocation in a case where PUSCH release information is transmitted using a plurality of PUSCHs set in CG settings in Modification 3 of Embodiment 4;
  • FIG. 12 is a diagram showing an example of resource allocation in a case where a PUSCH addition request is transmitted using a plurality of PUSCHs set in CG settings in Modification 4 of Embodiment 4;
  • FIG. 10 is a diagram showing an example of resource allocation in the case where an offset value is added to the SPS cycle every n cycles set in SPS in Embodiment 5;
  • FIG. 12 is a diagram showing an example of resource allocation in the case of notifying an offset value to be added to the cycle set in SPS in Modification 1 of Embodiment 5;
  • FIG. 12 is a diagram showing an example of resource allocation in a case where an offset value to be added to the period set in SPS is notified using PDCCH in Modification 2 of Embodiment 5;
  • FIG. 12 is a diagram showing another example of resource allocation in the case of reporting an offset value added to the cycle set in SPS using PDCCH in Modification 2 of Embodiment 5;
  • FIG. 12 is a diagram showing an example of resource allocation in the case where an offset value is added to the CG cycle every n cycles set in CG in accordance with the sixth embodiment;
  • FIG. 12 is a diagram showing an example of resource allocation in the case of notifying a request to add an offset value to the cycle set by CG in Modification 1 of Embodiment 6;
  • FIG. 12 is a diagram showing an example of resource allocation in a case where an offset value to be added to a period set in CG is notified using PDCCH in Modification 2 of Embodiment 6;
  • FIG. 12 is a diagram illustrating an example of a sequence of mobility processing in which modification information for SPS and/or CG settings is transmitted in RA processing in Embodiment 7;
  • FIG. 2 is a block diagram showing the overall configuration of an NR communication system 210 being discussed in 3GPP.
  • the radio access network is called NG-RAN (Next Generation Radio Access Network) 211.
  • a mobile terminal device hereinafter referred to as “mobile terminal (User Equipment: UE)”) 202, which is a communication terminal device, is capable of wireless communication with a base station device (hereinafter referred to as “NR base station (NG-RAN NodeB: gNB)”) 213. It transmits and receives signals via wireless communication.
  • the NG-RAN 211 is configured by one or more NR base stations 213.
  • the term “communication terminal device” includes not only mobile terminal devices such as movable mobile phone terminal devices, but also non-mobile devices such as sensors.
  • a “communication terminal device” may be simply referred to as a “communication terminal.”
  • the AS (Access Stratum) protocol is terminated between the UE 202 and the NG-RAN 211.
  • AS protocols include, for example, RRC (Radio Resource Control), SDAP (Service Data Adaptation Protocol), PDCP (Packet Data Convergence Protocol), RLC (Radio Link Control), MAC (Medium Access Control), and PHY (Physical layer). used.
  • RRC Radio Resource Control
  • SDAP Service Data Adaptation Protocol
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • PHY Physical layer
  • RRC Radio Resource Control
  • SDAP Service Data Adaptation Protocol
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • PHY Physical layer
  • the control protocol RRC Radio Resource Control
  • RRC Radio Resource Control
  • the states of the NR base station 213 and the UE 202 in RRC include RRC_IDLE, RRC_CONNECTED, and RRC_INACTIVE.
  • RRC_IDLE PLMN (Public Land Mobile Network) selection, system information (SI) notification, paging, cell re-selection, mobility, etc. are performed.
  • RRC_CONNECTED the mobile terminal has an RRC connection and can send and receive data to and from the network. Furthermore, in RRC_CONNECTED, handover (HO), measurement of neighbor cells, and the like are performed.
  • RRC_INACTIVE maintains the connection between the 5G core unit 214 and the NR base station 213 while performing system information (SI) broadcasting, paging, cell re-selection, mobility, etc. It will be done.
  • gNB213 is a 5G core unit (hereinafter referred to as "5GC") that includes an access and mobility management function (AMF), a session management function (SMF), or a user plane function (UPF). 214 (sometimes referred to as "part") by an NG interface. Control information and/or user data are communicated between the gNB 213 and the 5GC unit 214.
  • the NG interface is a general term for the N2 interface between gNB 213 and AMF 220, the N3 interface between gNB 213 and UPF 221, the N11 interface between AMF 220 and SMF 222, and the N4 interface between UPF 221 and SMF 222.
  • a plurality of 5GC units 214 may be connected to one gNB 213.
  • the gNBs 213 are connected by an Xn interface, and control information and/or user data are communicated between the gNBs 213.
  • the 5GC unit 214 is a higher-level device, specifically a higher-level node, and controls the connection between the NR base station 213 and the mobile terminal (UE) 202, and controls the connection between one or more NR base stations (gNB) 213 and/or LTE. It distributes paging signals to base stations (E-UTRAN NodeB: eNB). Further, the 5GC unit 214 performs mobility control in an idle state. The 5GC unit 214 manages a tracking area list when the mobile terminal 202 is in a standby state, an inactive state, and an active state. The 5GC unit 214 initiates a paging protocol by transmitting a paging message to a cell belonging to a tracking area in which the mobile terminal 202 is registered.
  • the gNB 213 may constitute one or more cells. When one gNB 213 configures multiple cells, each cell is configured to be able to communicate with the UE 202.
  • the gNB 213 may be divided into a central unit (hereinafter sometimes referred to as CU) 215 and a distributed unit (hereinafter sometimes referred to as DU) 216.
  • CU central unit
  • DU distributed unit
  • One CU 215 is configured in the gNB 213.
  • One or more DUs 216 are configured in the gNB 213.
  • One DU 216 constitutes one or more cells.
  • the CU 215 is connected to the DU 216 by an F1 interface, and control information and/or user data are communicated between the CU 215 and the DU 216.
  • the F1 interface consists of an F1-C interface and an F1-U interface.
  • the CU 215 is responsible for the functions of the RRC, SDAP, and PDCP protocols, and the DU 216 is responsible for the functions of the RLC, MAC, and PHY protocols.
  • One or more TRPs (Transmission Reception Points) 219 may be connected to the DU 216 .
  • the TRP 219 transmits and receives radio signals to and from the UE.
  • the CU 215 may be divided into a C-plane CU (CU-C) 217 and a U-plane CU (CU-U) 218.
  • One CU-C 217 is configured in the CU 215.
  • One or more CU-Us 218 are configured in the CU 215.
  • the CU-C 217 is connected to the CU-U 218 via an E1 interface, and control information is communicated between the CU-C 217 and CU-U 218.
  • the CU-C 217 is connected to the DU 216 through an F1-C interface, and control information is communicated between the CU-C 217 and the DU 216.
  • the CU-U 218 is connected to the DU 216 by an F1-U interface, and user data is communicated between the CU-U 218 and the DU 216.
  • a 5G communication system may include a unified data management (UDM) function and a policy control function (PCF) described in Non-Patent Document 10 (3GPP TS23.501).
  • the UDM and/or the PCF may be included in the 5GC section 214 in FIG.
  • a location management function described in Non-Patent Document 24 (3GPP TS38.305) may be provided.
  • the LMF may be connected to the base station via the AMF, as disclosed in Non-Patent Document 25 (3GPP TS23.273).
  • a 5G communication system may include a non-3GPP interworking function (N3IWF) described in Non-Patent Document 10 (3GPP TS23.501).
  • N3IWF non-3GPP interworking function
  • the N3IWF may terminate an access network (AN) between the UE and the UE.
  • AN access network
  • FIG. 3 is a diagram showing the configuration of a DC (dual connectivity) connected to the NG core.
  • DC dual connectivity
  • solid lines indicate U-Plane connections
  • broken lines indicate C-Plane connections.
  • master base station 240-1 may be a gNB or an eNB.
  • the secondary base station 240-2 may be a gNB or an eNB.
  • NG-EN-DC a DC configuration in which master base station 240-1 is a gNB and secondary base station 240-2 is an eNB may be referred to as NG-EN-DC.
  • FIG. 3 shows an example in which the U-Plane connection between the 5GC unit 214 and the secondary base station 240-2 is performed via the master base station 240-1, the 5GC unit 214 and the secondary base station 240-2 It may also be done directly between. Further, in FIG. 3, instead of the 5GC unit 214, an EPC (Evolved Packet Core), which is a core network connected to the LTE system and the LTE-A system, may be connected to the master base station 240-1. A U-Plane connection between the EPC and the secondary base station 240-2 may be made directly.
  • EPC Evolved Packet Core
  • FIG. 4 is a block diagram showing the configuration of the mobile terminal 202 shown in FIG. 2.
  • the transmission processing of the mobile terminal 202 shown in FIG. 4 will be explained.
  • control data from the control section 310 and user data from the application section 302 are sent to the protocol processing section 301 .
  • Control data and user data may be buffered. Buffers for control data and user data may be provided in the control unit 310, the application unit 302, or the protocol processing unit 301.
  • the protocol processing unit 301 performs operations such as processing protocols such as SDAP, PDCP, RLC, and MAC, determining a destination base station in a DC, etc., and adding headers in each protocol.
  • the data that has been subjected to the protocol processing is passed to the encoder section 304, where it is subjected to encoding processing such as error correction.
  • encoding processing such as error correction.
  • the data encoded by the encoder section 304 is modulated by the modulation section 305.
  • the modulation section 305 may perform MIMO precoding.
  • the modulated data is converted into a baseband signal and then output to frequency conversion section 306, where it is converted into a wireless transmission frequency. Thereafter, transmission signals are transmitted to the base station 213 from the antennas 307-1 to 307-4.
  • FIG. 4 illustrates an example in which the number of antennas is four, the number of antennas is not limited to four.
  • the reception process of the mobile terminal 202 is executed as follows. Radio signals from base station 213 are received by antennas 307-1 to 307-4. The received signal is converted from a radio reception frequency to a baseband signal by frequency converter 306, and demodulated by demodulator 308. Demodulation section 308 may perform weight calculation and multiplication processing. The demodulated data is passed to a decoder section 309, where decoding processing such as error correction is performed. The decoded data is passed to the protocol processing unit 301, and protocol processing such as MAC, RLC, PDCP, SDAP, etc., such as header removal in each protocol, is performed. Among the data subjected to protocol processing, control data is passed to the control unit 310, and user data is passed to the application unit 302.
  • protocol processing such as MAC, RLC, PDCP, SDAP, etc.
  • a series of processing by the mobile terminal 202 is controlled by the control unit 310. Therefore, although not shown in FIG. 4, the control section 310 is also connected to each section 302, 304 to 309.
  • Each section of the mobile terminal 202 is realized by a processing circuit including, for example, a processor and a memory.
  • the control unit 310 is realized by a processor executing a program in which a series of processes of the mobile terminal 202 are described.
  • a program that describes a series of processes for the mobile terminal 202 is stored in memory. Examples of memory are nonvolatile or volatile semiconductor memories such as RAM (Random Access Memory), ROM (Read Only Memory), and flash memory.
  • Each part of the mobile terminal 202 for example, a control unit 310, a protocol processing unit 301, an encoder unit 304, and a decoder unit 309, is an FPGA (Field Programmable Gate Array), an ASIC (Application Specific Integrated Circuit), a DSP (Digital Signal Processor), etc. It may also be realized by a dedicated processing circuit.
  • the number of antennas used by mobile terminal 202 for transmission and the number of antennas used for reception may be the same or different.
  • FIG. 5 is a block diagram showing the configuration of base station 213 shown in FIG. 2. Transmission processing of the base station 213 shown in FIG. 5 will be explained.
  • the EPC communication unit 401 transmits and receives data between the base station 213 and the EPC.
  • the 5GC communication unit 412 transmits and receives data between the base station 213 and the 5GC (5GC unit 214, etc.).
  • Other base station communication section 402 transmits and receives data to and from other base stations.
  • the EPC communication unit 401, 5GC communication unit 412, and other base station communication unit 402 each exchange information with the protocol processing unit 403.
  • Control data from the control unit 411 and user data and control data from the EPC communication unit 401, 5GC communication unit 412, and other base station communication unit 402 are sent to the protocol processing unit 403.
  • Control data and user data may be buffered. Buffers for control data and user data may be provided in the control unit 411, in the EPC communication unit 401, in the 5GC communication unit 412, or in the other base station communication unit 402. may be provided.
  • the protocol processing unit 403 performs operations such as processing protocols such as SDAP, PDCP, RLC, and MAC, for example, routing transmission data in a DC, etc., and adding headers in each protocol.
  • the data that has been subjected to the protocol processing is passed to the encoder unit 405, where it is subjected to encoding processing such as error correction.
  • encoding processing such as error correction.
  • data sent from the 5GC communication unit 412 or the EPC communication unit 401 may be sent to another base station, for example, a secondary base station, via the other base station communication unit 402.
  • the encoded data is subjected to modulation processing in modulation section 406.
  • Precoding in MIMO may be performed in modulation section 406.
  • the modulated data is converted into a baseband signal, it is output to frequency conversion section 407 and converted into a wireless transmission frequency.
  • transmission signals are transmitted to one or more mobile terminals 202 from antennas 408-1 to 408-4.
  • FIG. 5 illustrates an example in which the number of antennas is four, the number of antennas is not limited to four.
  • the reception processing of the base station 213 is executed as follows. Radio signals from one or more mobile terminals 202 are received by antennas 408-1 through 408-4. The received signal is converted from a radio reception frequency to a baseband signal by a frequency converter 407, and demodulated by a demodulator 409. The demodulated data is passed to a decoder section 410, where decoding processing such as error correction is performed. The decoded data is passed to the protocol processing unit 403, where protocol processing such as MAC, RLC, PDCP, SDAP, etc., such as header removal in each protocol, is performed.
  • protocol processing such as MAC, RLC, PDCP, SDAP, etc.
  • control data is passed to the control unit 411, 5GC communication unit 412, EPC communication unit 401, or other base station communication unit 402
  • user data is passed to the 5GC communication unit 412, EPC communication unit 401, or other base station communication unit 402. It is passed to the other base station communication section 402.
  • Data sent from the other base station communication section 402 may be sent to the 5GC communication section 412 or the EPC communication section 401.
  • the data may be, for example, upstream data sent to the 5GC communication unit 412 or the EPC communication unit 401 via another base station in the DC.
  • control section 411 is also connected to each section 401, 402, 405 to 410, 412.
  • Each unit of the base station 213, for example, the control unit 411, protocol processing unit 403, 5GC communication unit 412, EPC communication unit 401, other base station communication unit 402, encoder unit 405, and decoder unit 410, is the same as the mobile terminal 202 described above. It is realized by a processing circuit including a processor and memory, or a dedicated processing circuit such as FPGA, ASIC, or DSP. In FIG. 5, the number of antennas used by base station 213 for transmission and the number of antennas used for reception may be the same or different.
  • a device with a The DU communication unit connects to the protocol processing unit 403.
  • a protocol processing unit 403 in the CU 215 performs protocol processing such as PDCP and SDAP.
  • a configuration in which a CU communication unit is provided except for the EPC communication unit 401, other base station communication unit 402, and 5GC communication unit 412 shown in FIG. 5 may be used.
  • the CU communication unit connects to the protocol processing unit 403.
  • a protocol processing unit 403 in the DU 216 performs protocol processing such as PHY, MAC, and RLC.
  • FIG. 6 is a block diagram showing the configuration of the 5GC section.
  • FIG. 6 shows the configuration of the 5GC unit 214 shown in FIG. 2 described above.
  • FIG. 6 shows a case where the 5GC section 214 shown in FIG. 2 includes an AMF configuration, an SMF configuration, and a UPF configuration.
  • the AMF has the function of the control plane control unit 525
  • the SMF has the function of the session management unit 527
  • the UPF has the functions of the user plane communication unit 523 and the Data Network communication unit 521. good.
  • the Data Network communication unit 521 transmits and receives data between the 5GC unit 214 and the Data Network.
  • the base station communication unit 522 transmits and receives data between the 5GC unit 214 and the base station 213 via the NG interface.
  • User data sent from the Data Network is passed from the Data Network communication unit 521 to the base station communication unit 522 via the user plane communication unit 523, and is transmitted to one or more base stations 213.
  • User data sent from the base station 213 is passed from the base station communication unit 522 to the Data Network communication unit 521 via the user plane communication unit 523, and is transmitted to the Data Network.
  • the control data sent from the base station 213 is passed from the base station communication section 522 to the control plane control section 525.
  • the control plane controller 525 may pass control data to the session manager 527.
  • Control data may be sent from the Data Network.
  • the control data sent from the Data Network may be sent from the Data Network communication section 521 to the session management section 527 via the user plane communication section 523.
  • the session management unit 527 may send control data to the control plane control unit 525.
  • the user plane control unit 523 includes a PDU processing unit 523-1, a mobility anchoring unit 523-2, and the like, and performs overall processing for the user plane (hereinafter sometimes referred to as U-Plane).
  • the PDU processing unit 523-1 processes data packets, for example, transmits and receives packets to and from the Data Network communication unit 521 and transmits and receives packets to and from the base station communication unit 522.
  • the mobility anchoring unit 523-2 is responsible for anchoring data paths when the UE is mobile.
  • the session management unit 527 manages the PDU session established between the UE and the UPF.
  • the session management unit 527 includes a PDU session control unit 527-1, a UE IP address assignment unit 527-2, and the like.
  • the PDU session control unit 527-1 manages the PDU session between the mobile terminal 202 and the 5GC unit 214.
  • the UE IP address assignment unit 527-2 assigns an IP address to the mobile terminal 202, etc.
  • the control plane control unit 525 includes a NAS security unit 525-1, an idle state mobility management unit 525-2, and the like, and performs overall processing for the control plane (hereinafter sometimes referred to as C-Plane).
  • the NAS security unit 525-1 performs security for NAS (Non-Access Stratum) messages.
  • the idle state mobility management unit 525-2 manages mobility in the standby state (Idle State: RRC_IDLE state, or simply referred to as idle), generates and controls paging signals during the standby state, and performs the following functions: Adding, deleting, updating, searching, tracking area list management, etc. of one or more mobile terminals 202 are performed.
  • each part of the 5GC unit 214 is realized, for example, by a processing circuit including a processor and a memory, or a dedicated processing circuit such as an FPGA, an ASIC, or a DSP. Ru.
  • FIG. 7 is a flowchart schematically showing steps from cell search to standby operation performed by a communication terminal (UE) in the NR communication system.
  • the communication terminal starts cell search, in step ST601, the communication terminal determines the slot timing and frame using the first synchronization signal (P-SS) and the second synchronization signal (S-SS) transmitted from surrounding base stations. Synchronize timing.
  • P-SS first synchronization signal
  • S-SS second synchronization signal
  • P-SS and S-SS are collectively referred to as a synchronization signal (SS).
  • a synchronization code that corresponds one-to-one to a PCI (Physical Cell Identifier) assigned to each cell is assigned to the synchronization signal (SS).
  • PCI Physical Cell Identifier
  • 1008 types of PCI are being considered. The communication terminal synchronizes using these 1008 PCIs and detects (identifies) the PCI of the synchronized cell.
  • the communication terminal receives the PBCH from the next synchronized cell in step ST602.
  • a MIB Master Information Block
  • the MIB information includes, for example, SFN (System Frame Number), SIB (System Information Block) 1 scheduling information, subcarrier intervals such as SIB 1, and DM-RS position information.
  • the communication terminal acquires the SS block identifier from the PBCH.
  • a part of the bit string of the SS block identifier is included in the MIB.
  • the remaining bit strings are included in the identifier used to generate the sequence of DM-RS accompanying the PBCH.
  • the communication terminal obtains the SS block identifier using the MIB included in the PBCH and the DM-RS sequence accompanying the PBCH.
  • step ST603 the communication terminal measures the received power of the SS block.
  • the communication terminal selects the cell with the best reception quality, for example, the cell with the highest reception power, ie, the best cell, from among the one or more cells detected up to step ST603. Further, the communication terminal selects a beam with the best reception quality, for example, a beam with the highest reception power of the SS block, that is, the best beam. For example, the received power of the SS block for each SS block identifier is used to select the best beam.
  • SIB1 includes information regarding access to the cell, cell configuration information, and scheduling information of other SIBs (SIBk: an integer of k ⁇ 2). SIB1 also includes a tracking area code (TAC).
  • TAC tracking area code
  • the communication terminal compares the TAC of SIB1 received in step ST605 with the TAC part of the tracking area identifier (Tracking Area Identity: TAI) in the tracking area list already held by the communication terminal.
  • the tracking area list is also referred to as a TAI list.
  • TAI is identification information for identifying a tracking area, and is composed of MCC (Mobile Country Code), MNC (Mobile Network Code), and TAC (Tracking Area Code).
  • MCC is the country code.
  • MNC is a network code.
  • TAC is the tracking area code number.
  • step ST606 if the TAC received in step ST605 is the same as the TAC included in the tracking area list, the communication terminal enters a standby operation in the cell. In comparison, if the TAC received in step ST605 is not included in the tracking area list, the communication terminal transmits TAU (Tracking Area Update) to the core network (EPC) including the MME etc. through the cell. Request a tracking area change in order to do so.
  • TAU Tracking Area Update
  • core network side devices Devices that make up the core network (hereinafter sometimes referred to as “core network side devices”) perform tracking based on the identification number (UE-ID, etc.) of the communication terminal sent from the communication terminal along with the TAU request signal. Update the area list.
  • the core network side device transmits the updated tracking area list to the communication terminal.
  • the communication terminal rewrites (updates) the TAC list held by the communication terminal based on the received tracking area list. Thereafter, the communication terminal enters a standby operation in the cell.
  • random access 4-step random access and 2-step random access are used.
  • contention-based random access that is, random access in which timing collision with other mobile terminals may occur
  • collision-free (contention-based) random access, contention-free) random access exists.
  • the mobile terminal transmits a random access preamble to the base station.
  • the random access preamble may be selected by the mobile terminal from within a predetermined range, or may be individually assigned to the mobile terminal and notified from the base station.
  • the base station transmits a random access response to the mobile terminal.
  • the random access response includes uplink scheduling information used in the third step, a terminal identifier used in uplink transmission in the third step, and the like.
  • the mobile terminal performs uplink transmission to the base station.
  • the mobile terminal uses the information acquired in the second step for uplink transmission.
  • the base station notifies the mobile terminal whether or not there is a conflict resolution.
  • the mobile terminal that is notified that there is no collision ends the random access process.
  • the mobile terminal that is notified that there is a collision restarts the process from the first step.
  • the collision-free 4-step random access method differs from the collision-based 4-step random access method in the following points. That is, prior to the first step, the base station allocates a random access preamble and uplink scheduling to the mobile terminal in advance. Further, the notification of whether or not the conflict is resolved in the fourth step is not required.
  • the mobile terminal transmits a random access preamble and performs uplink transmission to the base station.
  • the base station notifies the mobile terminal of the presence or absence of a collision.
  • the mobile terminal that is notified that there is no collision ends the random access process.
  • the mobile terminal that is notified that there is a collision restarts the process from the first step.
  • the collision-free two-step random access method differs from the collision-based two-step random access method in the following points. That is, prior to the first step, the base station allocates a random access preamble and uplink scheduling to the mobile terminal in advance. Also, in the second step, the base station transmits a random access response to the mobile terminal.
  • FIG. 8 shows an example of a cell configuration in NR.
  • a narrow beam is formed and transmitted by changing direction.
  • base station 750 performs transmission and reception with a mobile terminal using beam 751-1 at a certain time. At other times, base station 750 transmits to and receives from mobile terminals using beam 751-2. Similarly, the base station 750 uses one or more of the beams 751-3 to 751-8 to perform transmission and reception with the mobile terminal. In this way, the base station 750 configures a wide area cell 752.
  • FIG. 8 shows an example in which the number of beams used by the base station 750 is eight, the number of beams may be different from eight. Furthermore, in the example shown in FIG. 8, the number of beams that the base station 750 uses simultaneously is one, but it may be plural.
  • the concept of QCL is used for beam identification (see Non-Patent Document 14 (3GPP TS38.214)). That is, the beam is identified by information indicating which reference signal (eg, SS block, CSI-RS) beam can be regarded as the same beam.
  • the information may include the type of information regarding viewpoints that can be regarded as the same beam, for example, information regarding Doppler shift, Doppler shift spread, average delay, average delay spread, and spatial Rx parameters (Non-patent Document 14 ( 3GPP TS38.214)).
  • SL Side Link
  • D2D Device to Device
  • V2V Vehicle to Vehicle
  • PC5-S signaling is implemented to establish a link for implementing SL, ie, PC5 communication.
  • the link is implemented at the V2X layer and is also referred to as a layer 2 link.
  • RRC signaling in SL communication is also referred to as PC5 RRC signaling.
  • PC5 RRC signaling it has been proposed to notify UE capabilities between UEs that perform PC5 communication, and to notify AS layer settings for performing V2X communication using PC5 communication.
  • FIG. 9 shows an example of a connection configuration of mobile terminals in SL communication.
  • UE 805 and UE 806 exist within coverage 803 of base station 801.
  • UL/DL communication 807 is performed between base station 801 and UE 805.
  • UL/DL communication 808 is performed between base station 801 and UE 806.
  • SL communication 810 is performed between UE 805 and UE 806.
  • UE 811 and UE 812 exist outside the coverage 803.
  • SL communication 814 is performed between UE 805 and UE 811.
  • SL communication 816 is performed between UE 811 and UE 812.
  • a UE 805 shown in FIG. 9 relays communication between a UE 811 and a base station 801.
  • a configuration similar to that in FIG. 4 may be used for a UE that performs relaying.
  • Relay processing in the UE will be explained using FIG. 4.
  • Relay processing by the UE 805 in communication from the UE 811 to the base station 801 will be described.
  • Radio signals from UE 811 are received by antennas 307-1 to 307-4.
  • the received signal is converted from a radio reception frequency to a baseband signal by frequency converter 306, and demodulated by demodulator 308.
  • Demodulation section 308 may perform weight calculation and multiplication processing.
  • the demodulated data is passed to a decoder section 309, where decoding processing such as error correction is performed.
  • the decoded data is passed to the protocol processing unit 301, and protocol processing such as MAC and RLC used for communication with the UE 811, such as header removal in each protocol, is performed. It also performs protocol processing such as RLC and MAC used for communication with the base station 801, such as adding headers in each protocol.
  • the protocol processing unit 301 of the UE 811 may perform PDCP and SDAP protocol processing.
  • the data that has been subjected to the protocol processing is passed to the encoder section 304, where it is subjected to encoding processing such as error correction. There may be data that is directly output from the protocol processing section 301 to the modulation section 305 without being subjected to encoding processing.
  • the data encoded by the encoder section 304 is modulated by the modulation section 305.
  • the modulation section 305 may perform MIMO precoding.
  • the modulated data is converted into a baseband signal and then output to frequency conversion section 306, where it is converted into a wireless transmission frequency. Thereafter, transmission signals are transmitted to the base station 801 from the antennas 307-1 to 307-4.
  • a 5G base station can support integrated access and backhaul (IAB) (see Non-Patent Documents 2 and 20).
  • a base station that supports IAB (hereinafter sometimes referred to as an IAB base station) is an IAB donor CU, which is a CU of a base station that operates as an IAB donor that provides IAB functions, and a DU of a base station that operates as an IAB donor. It is composed of an IAB donor DU and an IAB node that is connected to the IAB donor DU and to the UE using a wireless interface. An F1 interface is provided between the IAB node and the IAB donor CU (see Non-Patent Document 2).
  • IAB donor CU901 is connected to IAB donor DU902.
  • IAB node 903 is connected to IAB donor DU 902 using a wireless interface.
  • IAB node 903 is connected to IAB node 904 using a wireless interface. That is, IAB nodes may be connected in multiple stages.
  • the UE 905 is connected to the IAB node 904 using a wireless interface.
  • the UE 906 may be connected to the IAB node 903 using a wireless interface, and the UE 907 may be connected to the IAB donor DU 902 using a wireless interface.
  • a plurality of IAB donor DUs 902 may be connected to an IAB donor CU 901, a plurality of IAB nodes 903 may be connected to an IAB donor DU 902, and a plurality of IAB nodes 904 may be connected to an IAB node 903. There may be cases.
  • a BAP (Backhaul Adaptation Protocol) layer is provided in the connection between the IAB donor DU and the IAB node and the connection between the IAB nodes (see Non-Patent Document 29).
  • the BAP layer performs operations such as routing received data to an IAB donor DU and/or IAB node and mapping it to an RLC channel (see Non-Patent Document 29).
  • the protocol processing unit of the IAB donor DU performs BAP layer processing, such as adding a BAP header to downlink data, routing to an IAB node, and removing the BAP header from uplink data.
  • the configuration shown in FIG. 5 excluding the EPC communication section 401, other base station communication section 402, and 5GC communication section 412 may be used.
  • Transmission and reception processing at the IAB node will be explained using FIGS. 5 and 10. Transmission and reception processing of the IAB node 903 in communication between the IAB donor CU 901 and the UE 905 will be described.
  • a radio signal from the IAB node 904 is received by the antenna 408 (some or all of the antennas 408-1 to 408-4).
  • the received signal is converted from a radio reception frequency to a baseband signal by a frequency converter 407, and demodulated by a demodulator 409.
  • the demodulated data is passed to a decoder section 410, where decoding processing such as error correction is performed.
  • the decoded data is passed to the protocol processing unit 403, where it performs protocol processing such as MAC and RLC used for communication with the IAB node 904, such as header removal in each protocol. Further, routing to the IAB donor DU 902 using the BAP header is performed, and protocol processing such as RLC and MAC used for communication with the IAB donor DU 902 is performed, for example, operations such as adding headers in each protocol are performed.
  • the data that has been subjected to the protocol processing is passed to the encoder unit 405, where it is subjected to encoding processing such as error correction. There may also be data that is directly output from protocol processing section 403 to modulation section 406 without being subjected to encoding processing.
  • the encoded data is subjected to modulation processing in modulation section 406.
  • Precoding in MIMO may be performed in modulation section 406.
  • the modulated data is converted into a baseband signal, it is output to frequency conversion section 407 and converted into a wireless transmission frequency.
  • transmission signals are transmitted to the IAB donor DU 902 from the antennas 408-1 to 408-4. Similar processing is performed in downlink communication from the IAB donor CU 901 to the UE 905.
  • the IAB node 904 also performs the same transmission and reception processing as the IAB node 903.
  • the protocol processing unit 403 of the IAB node 903 performs BAP layer processing such as adding a BAP header in uplink communication and routing to the IAB node 904, and removing the BAP header in downlink communication.
  • XR traffic An important issue for 5G wireless access systems is to enable communications suitable for XR and cloud gaming services.
  • the characteristics of XR traffic were studied in 3GPP (see Non-Patent Document 34). Characteristics of XR traffic include, for example, non-integer periodicity, data generation time fluctuation (jitter) characteristics, data amount fluctuation characteristics, and low delay characteristics.
  • jitter data generation time fluctuation
  • data amount fluctuation characteristics and low delay characteristics.
  • Embodiment 1 discloses a method for solving such problems.
  • one or more PDSCHs are configured in the SPS configuration.
  • SPS settings performed in conventional RRC are set for the number of PDSCHs to be set in one cycle.
  • information regarding the number of PDSCHs configured in one cycle may be included. It is preferable to assign a different SPS setting identifier to each SPS setting.
  • one reference SPS setting may be determined.
  • the SPS setting of the first PDSCH which is set in the SPS period that is the period when the gNB periodically transmits downlink data (hereinafter referred to as DL data), may be used as a reference.
  • Information indicating the reference SPS may be included in the SPS settings.
  • SPS setting information SPS setting information that is the same as the reference SPS setting information may be omitted. The amount of information that needs to be notified from the gNB to the UE can be reduced. By doing so, it becomes possible to set a plurality of PDSCHs in one SPS cycle.
  • the gNB notifies the UE of SPS activation/deactivation for each SPS setting configured in RRC.
  • SPS activation/deactivation may be included in DCI and notified via PDCCH.
  • MAC signaling may be used for notification.
  • a MAC CE for SPS activation/deactivation information may be provided.
  • SPS activation/deactivation information may be set for each SPS setting set in RRC.
  • Information regarding SPS activation/deactivation includes conventional information such as frequency domain resource allocation, time domain resource allocation, and information indicating whether it is initial transmission or retransmission (NDI) (see Non-Patent Documents 12 and 13).
  • the information regarding SPS activation/deactivation may include an SPS setting identifier set by RRC.
  • the SPS configuration identifier may indicate which PDSCH's SPS configuration is to be activated or deactivated.
  • An offset may be provided as information regarding SPS activation/deactivation.
  • the offset may span slots. May span multiple slots.
  • the offset may be a period from the PDCCH that notifies SPS activation/deactivation.
  • the offset may be set to be continuous for a plurality of PDSCHs, or the offset may be set to be discontinuous. By doing so, resource allocation in the time domain of a plurality of PDSCHs can be flexibly set.
  • Another method of activation/deactivation of SPS is disclosed.
  • activation/deactivation of one SPS is notified.
  • SPS activation/deactivation may be included in DCI and notified via PDCCH. It is preferable that one SPS activation/deactivation includes as many pieces of information regarding SPS activation/deactivation as there are SPS settings. It is preferable to associate the SPS setting identifier set in RRC with information regarding activation/deactivation of the SPS. For information regarding SPS activation/deactivation, the above-described method may be applied as appropriate.
  • one reference SPS setting may be determined.
  • the SPS setting of the first PDSCH, which is set in the SPS cycle may be used as the reference.
  • Which SPS is used as a reference may be statically determined in advance by a standard or the like.
  • information indicating the reference SPS may be included in the information regarding activation/deactivation of the SPS.
  • the same information as the information regarding SPS activation/deactivation of the standard SPS setting may be omitted. The amount of information that needs to be notified from the gNB to the UE can be reduced.
  • a new RNTI Radio Network Temporary Identifier
  • the UE receives the PDCCH using the RNTI.
  • CS-RNTI Configured Scheduling RNTI
  • the CS-RNTI is preferably notified from the gNB to the UE in advance.
  • multiple PDSCHs can be set by activating/deactivating one SPS.
  • Data can be transmitted from the gNB to the UE using multiple PDSCHs in each SPS cycle. Since activation/deactivation of one SPS is sufficient, processing of gNB and UE can be simplified. Malfunctions can be reduced.
  • the gNB configures one or more PDSCHs with one SPS configuration for the UE using RRC.
  • SPS setting information is set for the number of PDSCHs set in one cycle.
  • the SPS configuration information configured in RRC may include information regarding PDSCH configuration in addition to the SPS configuration information configured in conventional RRC. It is preferable to assign a number to one or more PDSCHs set in SPS.
  • the number of PDSCHs and/or the PDSCH number may be included in the SPS setting information.
  • a PDSCH number and SPS configuration information corresponding to the PDSCH may be associated.
  • One reference PDSCH may be determined.
  • the first PDSCH set in the SPS cycle may be used as a reference.
  • Which PDSCH is used as a reference may be statically determined in advance by a standard or the like.
  • information indicating the reference PDSCH may be included in the SPS configuration.
  • the same SPS configuration information as the SPS configuration information of the reference PDSCH may be omitted. The amount of information that needs to be notified from the gNB to the UE can be reduced. By doing so, it becomes possible to set a plurality of PDSCHs in one SPS cycle.
  • a method for activating/deactivating SPS is disclosed.
  • the activation/deactivation of one SPS is notified.
  • SPS activation/deactivation may be included in DCI and notified via PDCCH.
  • MAC signaling may be used for notification.
  • a MAC CE for SPS activation/deactivation information may be provided. It is preferable that one SPS activation/deactivation includes as many pieces of information regarding SPS activation/deactivation as there are PDSCHs. It is preferable to associate the PDSCH number set in RRC with information regarding SPS activation/deactivation of the PDSCH. For information regarding SPS activation/deactivation, the above-described method may be applied as appropriate.
  • one reference PDSCH may be determined.
  • the first PDSCH set in the SPS cycle may be used as a reference.
  • Information indicating the reference PDSCH may be included in information regarding SPS activation/deactivation.
  • the same information as the information regarding SPS activation/deactivation of the reference PDSCH may be omitted. The amount of information that needs to be notified from the gNB to the UE can be reduced.
  • An offset may be provided as information regarding activation/deactivation of SPS of PDSCH.
  • the offset may span slots. May span multiple slots.
  • the offset may be a period from the PDCCH that notifies SPS activation/deactivation.
  • the offset may be set to be continuous for a plurality of PDSCHs, or the offset may be set to be discontinuous. By doing so, resource allocation in the time domain of a plurality of PDSCHs can be flexibly set.
  • a new RNTI may be provided for receiving a PDCCH that includes activation/deactivation of SPS for multiple PDSCHs.
  • the UE receives the PDCCH using the RNTI.
  • CS-RNTI may be used.
  • the CS-RNTI is preferably notified from the gNB to the UE in advance.
  • multiple PDSCHs can be set by activating/deactivating one SPS.
  • Data can be transmitted from the gNB to the UE using multiple PDSCHs in each SPS cycle. Since activation/deactivation of one SPS is sufficient, processing of gNB and UE can be simplified. Malfunctions can be reduced.
  • the gNB notifies the UE of SPS activation/deactivation for each PDSCH set in the SPS cycle.
  • SPS activation/deactivation may be included in DCI and notified via PDCCH. It is preferable to notify information regarding SPS activation/deactivation for each PDSCH.
  • the HARQ process number may be derived using the SPS configuration identifier.
  • the HARQ process number may be a function of the SPS configuration identifier.
  • the HARQ process number may be derived using the PDSCH number.
  • the HARQ process number may be a function of the PDSCH number.
  • the HARQ process number may be derived using the slot number to which the PDSCH is allocated.
  • the HARQ process number may be a function of the slot number in which the PDSCH is allocated.
  • One HARQ process number may be assigned to one or more PDSCHs in an SPS period.
  • the HARQ process number may be derived using the reference SPS configuration identifier.
  • the HARQ process number may be a function of the reference SPS configuration identifier.
  • the HARQ process number may be derived using the slot number to which the reference SPS configuration is allocated.
  • the HARQ process number may be a function of the slot number to which the reference SPS configuration is allocated.
  • the HARQ process number may be derived using the PDSCH number.
  • the HARQ process number may be a function of the PDSCH number.
  • the HARQ process number may be derived using the slot number to which the reference PDSCH is allocated.
  • the HARQ process number may be a function of the slot number in which the reference PDSCH is allocated.
  • the Ack/Nack PUCCH may be set for each PDSCH.
  • Ack/Nack PUCCHs are set according to the number of PDSCHs.
  • Information regarding the Ack/Nack PUCCH may be included in the SPS configuration information. By doing this, it becomes possible to set Ack/Nack for each PDSCH. Furthermore, Ack/Nack can be transmitted early from the received PDSCH without waiting for reception of a plurality of PDSCHs.
  • One Ack/Nack PUCCH may be set for one or more PDSCHs set in the SPS cycle.
  • Information regarding the Ack/Nack PUCCH may be included in the SPS configuration information.
  • the one PUCCH may include Ack/Nack information for each PDSCH that is set in the SPS cycle. Ack/Nack information of one or more PDSCHs is transmitted on one PUCCH. By doing so, it is possible to reduce PUCCH resources. It is possible to improve the efficiency of UL resource usage.
  • information on one or more PDSCHs that have been Acked may be transmitted using the one PUCCH.
  • the one PUCCH may include and transmit Ack information of one or more PDSCHs that have been Acked.
  • information on one or more Nacked PDSCHs may be transmitted using the one PUCCH.
  • the one PUCCH may include the Nack information of one or more PDSCHs that are Nacked. By doing so, the PUCCH resources can be further reduced. It is possible to improve the efficiency of UL resource usage.
  • a priority may be set for which PDSCH's Ack/Nack information is included.
  • the amount of information may be reduced using a codebook. By doing so, it is possible to reduce the amount of information transmitted on the PUCCH.
  • One piece of Ack/Nack information may be derived according to the reception status of one or more PDSCHs set in the SPS cycle. For example, when all PDSCHs are received, it is set as Ack, and otherwise, it is set as Nack.
  • One PUCCH may include one derived Ack/Nack information.
  • One piece of Ack/Nack information is transmitted on one PUCCH. By doing so, it is possible to reduce PUCCH resources. It is possible to improve the efficiency of UL resource usage.
  • One or more PDCCHs are provided in the SPS period.
  • a PDCCH is provided for each PDSCH. It is preferable that the number of PDSCHs and the number of PDCCHs be the same.
  • One or more PDSCHs are configured in the SPS period, and the same number of PDCCHs are configured.
  • One or more CORESETs and a search space may be set as one or more PDCCH settings.
  • One or more CORESETs and a search space may be one set of CORESET and one search space.
  • a list of CORESETs to be set at SPS cycles may be provided.
  • a list of search spaces set at SPS cycles may be provided.
  • the configuration information of the CORESET includes a CORESET identifier, a frequency domain resource, a symbol period, mapping information between a CCE (Control Channel Element) and a REG (Resource Element Group), information regarding a TCI (Transmission Configuration Indication) state, and the like. It may be a combination of these pieces of information.
  • the search space setting information includes a search space identifier, a corresponding CORESET identifier, a search space period, an offset, a slot period used for the search space, the number of monitor symbols, the number of candidates, and DCI format information. A combination of these may also be used.
  • part or all of the configuration information of the CORESET of each PDCCH may be the same.
  • part or all of the search space configuration information for each PDCCH may be the same.
  • the identifiers of CORESET may be different, and the other setting information may be the same.
  • the identifiers and start timings (offsets) of the search spaces may be different, but the other settings may be the same.
  • the same setting information may be omitted.
  • One reference PDCCH may be determined.
  • the first PDCCH set in the SPS cycle may be used as the reference.
  • Which PDCCH is used as a reference may be statically determined in advance by a standard or the like.
  • information indicating the reference PDCCH may be included in the SPS configuration.
  • other PDCCH configuration information such as CORESET configuration information and search space configuration information, the same information as the reference PDCCH configuration information may be omitted. The amount of information that needs to be notified from the gNB to the UE can be reduced.
  • the gNB notifies the UE of the configuration of one or more PDCCHs in the SPS cycle.
  • RRC signaling may also be used.
  • a new RRC message may be provided for this configuration. Misidentification with other PDCCH settings can be reduced.
  • existing RRC messages may be used.
  • the settings may be included in PDCCH-config.
  • the period of the search space may be the period of the SPS.
  • One or more search spaces can be set in the SPS cycle using PDCCH-config.
  • the configuration may be included in the SPS-config of the RRC message. By including it in the SPS-config, it can be set simultaneously with other SPS settings, for example, PDSCH settings. By receiving the SPS-config, the UE can receive the settings of PDSCH and PDCCH in the SPS cycle, and can reduce malfunctions.
  • Part of the configuration information for one or more PDCCHs may be configured in the PDCCH-config, and the rest may be notified in the SPS configuration. Flexible settings are possible.
  • the search space period may be set to one SPS period. For example, if the period is one slot, a search space is set at one slot period for each SPS period.
  • information on the number of search spaces set in one SPS cycle may be provided. The number may be the same as the number of PDCCHs set in the SPS cycle. By doing so, the number of search spaces set in one SPS cycle can be limited.
  • Setting information when the search space period is set to one SPS period may be included in the SPS settings.
  • the gNB includes this information in the SPS settings and transmits it to the UE. For example, it may be included in the SPS-config of the RRC message and transmitted.
  • the UE can monitor the PDCCH set in one SPS cycle by receiving search space setting information such as search space cycle information set in one SPS cycle and information on the number of search spaces.
  • a CORESET and/or search space may be set for each PDSCH set in the SPS cycle.
  • PDSCH scheduling modification can be performed on the PDCCH.
  • a CORESET and/or search space may be configured before the PDSCH resource.
  • a CORESET and/or search space may be set immediately before the PDSCH resource.
  • CORESET and/or search space and PDSCH may be set consecutively. Immediately after receiving PDCCH, it becomes possible to receive PDSCH.
  • the gNB may include the configuration of one or more PDCCHs configured in the SPS in the DCI and transmit it to the UE. It may also be transmitted while being included in the DCI for SPS activation/deactivation. PDCCH may be used to transmit the DCI. Dynamic notifications are possible.
  • the configuration of one or more PDCCHs configured in SPS may be notified using MAC signaling.
  • a MAC CE including one or more PDCCH settings configured in SPS may be provided. Transmission is possible using PDSCH. Even when no PDCCH is transmitted, it is possible to notify the settings of one or more PDCCHs set in SPS.
  • Offset information may be provided from a PDCCH that transmits settings of one or more PDCCHs set in SPS to one or more PDCCHs set in SPS.
  • the offset information may be included in the SPS settings.
  • Configuration information for one or more PDCCHs may be notified using a combination of RRC signaling and PDCCHs. More dynamic and flexible settings are possible.
  • a new RNTI may be provided for reception of one or more PDCCHs set in the SPS cycle.
  • the UE receives the PDCCH using the RNTI.
  • C-RNTI Cell RNTI
  • CS-RNTI Configured Scheduling RNTI
  • PDSCH scheduling modification information is notified on one or more PDCCHs configured in the SPS cycle.
  • PDSCH configuration information other than the configuration information transmitted by RRC or DCI may be notified by each PDCCH.
  • FIG. 11 is a diagram showing an example of resource allocation when multiple PDSCHs and multiple PDCCHs are configured in one SPS cycle.
  • the case where PDCCH is provided for each PDSCH is shown.
  • the hatched squares indicate PDCCH, and the white squares indicate PDSCH.
  • the horizontal axis shows the time domain, and the vertical axis shows the frequency domain.
  • SPS configuration is performed from the gNB to the UE using RRC signaling, and SPS activation/deactivation is notified using the PDCCH.
  • a plurality of PDCCHs are configured for each SPS cycle, and PDSCH scheduling modification information is transmitted on each PDCCH.
  • PDSCHs are allocated consecutively in FIG. 11, they may be allocated discontinuously.
  • the amount of PDSCH resources may be increased. For example, multiple slots may be allocated to one PDSCH.
  • the amount of PDSCH resources may be configurable. By doing so, data can be transmitted using one PDSCH.
  • SPS it is preferable to configure one PDSCH.
  • the amount of PDSCH resources may be configurable.
  • the amount of PDSCH resources may be set by RRC. Alternatively, it may be set using MAC signaling. Alternatively, it may be included in DCI and set in PDCCH. By doing so, the number of PDSCHs set in SPS can be reduced to one, and the processing can be simplified.
  • Embodiment 1 Modification 1 Another method for solving the problem disclosed in Embodiment 1 will be disclosed.
  • one or more PDSCHs are configured and one or more PDCCHs are configured.
  • the number of PDSCHs and the number of PDCCHs are set individually.
  • the method disclosed in Embodiment 1 may be applied as appropriate.
  • the method disclosed in Embodiment 1 may be applied as appropriate. It is preferable to use these methods to individually set the number of PDSCHs and the number of PDCCHs.
  • Scheduling modification information for one or more PDSCHs is notified on each PDCCH configured in one SPS cycle.
  • PDSCH configuration information other than the configuration information transmitted by RRC or DCI may be notified by each PDCCH.
  • a method for notifying scheduling modification information of multiple PDSCHs using one PDCCH is disclosed.
  • a plurality of search spaces are provided corresponding to each PDSCH.
  • the UE receives each search space corresponding to each PDSCH in order to receive DCI including scheduling modification information for each PDSCH.
  • Another method of notifying scheduling modification information of multiple PDSCHs using one PDCCH is disclosed.
  • One search space corresponding to a plurality of PDSCHs is provided.
  • the UE receives each search space corresponding to each PDSCH in order to receive DCI including scheduling modification information for each PDSCH.
  • DCI including scheduling modification information for each PDSCH.
  • the search space setting information may be included in the SPS setting information. It may be included in the PDCCH configuration information configured in the SPS cycle. Search space configuration information may be transmitted from the gNB to the UE using RRC signaling. The search space configuration information may be included in the DCI including SPS activation/deactivation and transmitted from the gNB to the UE using the PDCCH. As these methods, the method disclosed in Embodiment 1 may be applied as appropriate.
  • a number may be assigned to the PDSCH in order to identify one or more PDSCHs set in SPS.
  • the PDSCH configuration information and the PDSCH number may be associated with each other. The method disclosed in Embodiment 1 may be applied as appropriate.
  • the PDSCH number disclosed above may be used to specify which PDSCH is the scheduling modification information. By doing so, it is possible to clearly indicate which PDSCH is the scheduling modification information. Malfunctions between gNB and UE can be reduced.
  • FIG. 12 is a diagram showing an example of resource allocation when the number of PDCCHs and the number of PDSCHs are individually set in SPS settings.
  • SPS configuration one PDCCH and five PDSCHs are configured.
  • One PDCCH is configured for each SPS cycle, and scheduling modification information for the corresponding PDSCH is transmitted on the PDCCH.
  • PDSCHs are allocated consecutively in FIG. 12, they may be allocated discontinuously.
  • the number of PDCCHs configured in one SPS cycle may be plural.
  • the number of PDCCHs may be included as the PDCCH configuration information configured in one SPS cycle.
  • the number of PDCCHs may be set within the range of the number of PDSCHs set in one SPS cycle.
  • As a method for setting a plurality of PDCCHs PDCCHs may be set periodically. It is preferable to apply the CORESET and search space setting methods disclosed in Embodiment 1 as appropriate. It becomes possible to set a plurality of PDCCHs, and it becomes possible to modify PDSCH scheduling by using PDCCHs a number of times appropriate to the DL data generation timing and data amount.
  • the PDCCH that is set in one SPS cycle may be set using a bitmap. It may be a bitmap with the number of bits corresponding to the number of PDSCHs set in SPS.
  • a search space may be configured using a bitmap. The search space set in one SPS cycle does not have to be periodic, allowing flexible PDCCH settings.
  • FIG. 13 is a diagram showing another example of resource allocation when the number of PDCCHs and the number of PDSCHs are individually set in SPS settings.
  • Two PDCCHs and five PDSCHs are configured in the SPS configuration.
  • Two PDCCHs are set for each SPS cycle, and the scheduling modification information of the first to third PDSCHs is transmitted on the first PDCCH, and the scheduling modification information of the fourth to fifth PDSCHs is transmitted on the second PDCCH.
  • PDSCHs are allocated consecutively in FIG. 13, they may be allocated discontinuously.
  • Embodiment 1 Modification 2 Another method for solving the problem disclosed in Embodiment 1 will be disclosed.
  • one or more PDSCHs are configured and one or more PDCCHs are configured.
  • the number of PDSCHs and the number of PDCCHs are set individually.
  • Release information of the PDSCH configured in SPS is included in the PDCCH configured in each SPS cycle.
  • the gNB may notify the UE, on the PDCCH, of release information of one or more PDSCHs configured in the SPS.
  • release information of one or more PDSCHs configured in SPS in the DCI transmitted on one or more PDCCHs configured in each SPS cycle.
  • release information in the DCI a new DCI format may be provided.
  • an existing DCI format may be used.
  • DCI format 2_1 see Non-Patent Document 12
  • processing complexity can be avoided.
  • a new RNTI may be provided to receive DCI including release information.
  • the RNTI for receiving the PDCCH disclosed in Embodiment 1 or Modification 1 of Embodiment 1 may be used. Malfunctions can be reduced by using a PDCCH-specific RNTI in SPS settings.
  • existing RNTI see Non-Patent Document 15
  • it may be C-RNTI or CS-RNTI.
  • INT-RNTI Interruption RNTI
  • INT-RNTI may be used when DCI format 2_1 is used.
  • Release information of one or more PDSCHs may be notified using one PDCCH.
  • Information for specifying which PDSCH to release may be provided and notified. It may be information for assigning a number to a PDSCH set in SPS and specifying a PDSCH to release a PDSCH number.
  • the method disclosed in Modification 1 of Embodiment 1, in which scheduling modification information for one or more PDSCHs is notified using one PDCCH may be applied as appropriate. It is preferable to use PDSCH release information instead of PDSCH scheduling modification information or as PDSCH scheduling modification information.
  • the UE can recognize the PDSCH to be released by receiving one or more PDCCHs for each SPS cycle transmitted from the gNB.
  • the UE can release one or more PDSCHs configured in SPS.
  • the gNB does not transmit data on the PDSCH notified to the UE in the release information.
  • the UE does not have to receive the PDSCH notified by release information.
  • Processing can be simplified for both gNB and UE. For example, by releasing the PDSCH according to the generation timing and data amount of DL data, the gNB can use a PDSCH suitable for the generation timing and data amount of DL data.
  • the gNB may use the released PDSCH resources for other communications. For example, resources may be allocated to PDSCHs of other UEs. It becomes possible to improve the usage efficiency of wireless resources.
  • the PDSCH containing the release information is released in the SPS cycle for which the PDCCH was notified.
  • the PDCCH was notified.
  • PDSCH can be released every SPS cycle depending on the generation timing and data amount of DL data.
  • the PDSCH containing release information is released after the SPS cycle in which the PDCCH was notified.
  • release information for the fourth and fifth PDSCHs is transmitted on the PDCCH in the second SPS cycle.
  • the fourth and fifth PDSCHs of the second and subsequent SPS cycles are released.
  • the PDSCH containing release information is released for a predetermined period from the SPS cycle in which the PDCCH is notified.
  • the unit of period may be time, slot, subframe, radio frame, etc. It may be the number of SPS cycles instead of the period.
  • the gNB may send release period information to the UE. It may also be sent along with release information.
  • release information of the fourth and fifth PDSCHs and release period information are transmitted on the PDCCH of the second SPS cycle.
  • the release period information is set to a 5SPS cycle.
  • the fourth and fifth PDSCHs of the second to sixth SPS cycles are released. By doing so, for example, it becomes possible to limit the release of PDSCH to a predetermined period.
  • flexible settings can be made that take into account trends in the generation of DL data.
  • the gNB may transmit information on which to do to the UE. It may also be sent along with release information. For example, it may be set using release period information. For example, if only the SPS cycle transmitted on PDCCH is to be used, 1 is set as the release period information. When a predetermined period is set, the number of SPS cycles is set as release period information. If the release period information is set to all after the SPS cycle transmitted on the PDCCH, the release period information is set to a predetermined value. For example, it may be set to 0. By doing this, it becomes possible to set the release method to be used. Flexible settings suitable for the communication pattern of DL data are possible.
  • FIG. 14 is a diagram showing an example of releasing PDSCH resources configured in SPS using PDCCH.
  • the number of PDCCHs and the number of PDSCHs are individually set.
  • one PDCCH is configured and multiple PDSCHs are configured.
  • One PDCCH is configured for each SPS cycle.
  • Information for releasing a PDSCH on the PDCCH and information indicating which PDSCH to release are transmitted. By receiving the PDCCH, the UE can recognize which PDSCH to release. The UE does not receive the released PDSCH.
  • the number of PDCCHs may be plural.
  • PDCCHs may be set periodically. It may be set within the range in which PDSCH is set. Alternatively, it may be transmitted within the range where PDSCH is set.
  • the PDCCH may be set using a bitmap. It may be set within the range in which PDSCH is set.
  • FIG. 15 is a diagram showing another example of releasing PDSCH resources configured in SPS using PDCCH.
  • two PDCCHs are set for each SPS cycle.
  • Information on releasing a plurality of PDSCHs set in SPS and information indicating which PDSCH to release is transmitted on the PDCCH.
  • release information of the PDSCH before the n+1-th PDCCH is transmitted and information indicating which PDSCH is to be released are transmitted.
  • release information of the first to third PDSCHs and information indicating which PDSCH is to be released are transmitted on the first PDCCH.
  • Scheduling modification information for the fourth to fifth PDSCHs is transmitted on the second PDCCH.
  • Release information for one or more PDSCHs configured in SPS may be included in the scheduling modification information for one or more PDSCHs configured in SPS, which was disclosed in Modification 1 of Embodiment 1.
  • the scheduling modification information for one or more PDSCHs configured in SPS may include information for releasing the scheduling for one or more PDSCHs configured in SPS.
  • the scheduling modification information for one or more PDSCHs configured in SPS may include information for canceling the scheduling of one or more PDSCHs configured in SPS.
  • the scheduling modification information of one or more PDSCHs configured in SPS as disclosed in Modification 1 of Embodiment 1 may also be used.
  • the scheduling modification information information indicating that PDSCH allocation set in the SPS settings is to be executed may be provided.
  • the scheduling modification information information indicating whether or not to execute the PDSCH allocation set in the SPS settings may be provided.
  • PDSCHs for which information for performing PDSCH allocation is not indicated in the scheduling modification information for one or more PDSCHs configured in the SPS may be released (or may be canceled). By doing so, the UE only needs to receive the scheduling modification information, and the processing at the UE can be simplified.
  • Embodiment 1 Modification 3 Another method for solving the problem disclosed in Embodiment 1 will be disclosed.
  • configuring SPS one or more PDCCHs are configured.
  • PDSCH settings are not performed in SPS settings.
  • the method disclosed above may be applied as appropriate.
  • the method disclosed above may be applied as appropriate.
  • PDSCH is scheduled using one or more PDCCHs set for each SPS cycle.
  • PDSCH scheduling information is notified on the PDCCH.
  • Scheduling information for one or more PDSCHs may be notified using one PDCCH.
  • the notification method the method of notifying scheduling modification information of one or more PDSCHs using one PDCCH, which was disclosed in Modification 1 of Embodiment 1, may be applied as appropriate. It is preferable to use scheduling information instead of scheduling modification information.
  • FIG. 16 is a diagram illustrating an example of resource allocation when only one or more PDCCHs are configured in SPS configuration.
  • Two PDCCHs are configured for each SPS cycle.
  • PDSCH is not configured in SPS configuration.
  • SPS configuration is performed from the gNB to the UE using RRC signaling, and SPS activation/deactivation is notified using the PDCCH.
  • PDSCH scheduling information is notified on the PDCCH set for each SPS cycle. Scheduling information for the PDSCH before the (n+1)th PDCCH is transmitted may be transmitted on the nth PDCCH.
  • the first cycle one PDSCH is scheduled for the first PDCCH and two PDSCHs are scheduled for the second PDCCH.
  • two PDSCHs are scheduled on the first PDCCH and one PDSCH on the second PDCCH.
  • the UE can receive PDSCH scheduling information.
  • Embodiment 2 Another method for solving the problem disclosed in Embodiment 1 will be disclosed.
  • CG settings one or more PUSCHs are set.
  • one or more PDCCHs are configured. It is preferable to provide a PDCCH for each PUSCH in the CG period. It is preferable that the number of PUSCHs and the number of PDCCHs be the same.
  • One or more PUSCHs are configured in the CG period, which is the period when the UE periodically allocates resources for transmitting uplink data (hereinafter referred to as UL data), and the same number of PDCCHs are configured. .
  • UL data uplink data
  • One or more PUSCHs are set in the CG settings.
  • the problem is how to set up multiple PUSCHs in CG settings.
  • a method for solving this problem will be disclosed.
  • CG settings set in conventional RRC are set for the number of PUSCHs set in one cycle. It is preferable to assign a different CG setting identifier to each setting.
  • one reference CG setting may be determined.
  • the CG setting of the first PUSCH, which is set in the CG cycle may be used as the reference.
  • Information indicating the reference CG may be included in the CG settings.
  • CG setting information that is the same as the reference CG setting information may be omitted. The amount of information that needs to be notified from the gNB to the UE can be reduced. By doing so, it becomes possible to set a plurality of PUSCHs in one CG cycle.
  • the gNB may notify the UE of CG activation/deactivation using RRC signaling.
  • the gNB may activate and deactivate the CG by setting and releasing the CG settings to the UE through RRC signaling.
  • CG activation/deactivation is performed for each CG setting set in RRC.
  • the gNB may notify the UE of CG activation/deactivation for each CG setting configured in RRC.
  • CG activation/deactivation may be included in DCI and notified via PDCCH.
  • Information related to CG activation/deactivation includes conventional information, such as frequency domain resource allocation, time domain resource allocation, and information indicating whether it is initial transmission or retransmission (NDI) (see Non-Patent Documents 12 and 13).
  • the CG setting identifier set by RRC may be included as information regarding CG activation/deactivation. It is preferable that the CG setting identifier indicates which PUSCH's CG setting is to be activated or deactivated.
  • the SPS activation/deactivation method disclosed in Embodiment 1 may be applied as appropriate. It is better to use CG instead of SPS. It is preferable to use PUSCH set by CG instead of PDSCH set by SPS. Similar effects can be obtained with CG as well.
  • the gNB configures one or more PUSCHs with one CG configuration for the UE using RRC.
  • the number of PUSCHs set in the CG cycle is set.
  • information regarding PUSCH settings may be included as CG setting information set in RRC. It is preferable to assign a number to one or more PUSCHs set in CG.
  • the number of PUSCHs and/or the number of PUSCHs may be included in the CG setting information.
  • a PUSCH number and CG setting information corresponding to the PUSCH may be associated.
  • One reference PUSCH may be determined.
  • the first PUSCH set in the CG cycle may be used as the reference.
  • Which PUSCH is used as a reference may be statically determined in advance by a standard or the like.
  • information indicating the reference PUSCH may be included in the CG settings.
  • the same CG setting information as the reference PUSCH CG setting information may be omitted. The amount of information that needs to be notified from the gNB to the UE can be reduced. By doing so, it becomes possible to set a plurality of PUSCHs in one CG cycle.
  • the gNB may activate and deactivate the CG by setting and releasing the CG using RRC signaling to the UE.
  • the gNB may include CG activation/deactivation in the DCI and notify the UE using the PDCCH for each CG setting configured in RRC.
  • the SPS activation/deactivation method disclosed in Embodiment 1 may be applied as appropriate.
  • CG may be used instead of SPS. It is preferable to use PUSCH set by CG instead of PDSCH set by SPS. Similar effects can be obtained with CG as well.
  • the HARQ process number may be derived using the CG configuration identifier.
  • the HARQ process number may be a function of the CG configuration identifier.
  • the HARQ process number may be derived using the PUSCH number.
  • the HARQ process number may be a function of the PUSCH number.
  • the HARQ process number may be derived using the slot number to which the PUSCH is allocated.
  • the HARQ process number may be a function of the slot number in which the PUSCH is allocated.
  • One HARQ process number may be assigned to one or more PUSCHs in a CG period.
  • the HARQ process number may be derived using the reference CG configuration identifier.
  • the HARQ process number may be a function of the reference CG configuration identifier.
  • the HARQ process number may be derived using the slot number to which the reference CG configuration is allocated.
  • the HARQ process number may be a function of the slot number to which the reference CG settings are allocated.
  • the HARQ process number may be derived using the PUSCH number.
  • the HARQ process number may be a function of the PUSCH number.
  • the HARQ process number may be derived using the slot number to which the reference PUSCH is allocated.
  • the HARQ process number may be a function of the slot number in which the reference PUSCH is allocated.
  • One or more PDCCHs are provided in the CG period.
  • a PDCCH is provided for each PUSCH. It is preferable that the number of PUSCHs and the number of PDCCHs be the same.
  • One or more PUSCHs are configured in a CG cycle, and the same number of PDCCHs are configured.
  • the method of setting one or more PDCCHs in the SPS cycle disclosed in Embodiment 1 may be applied as appropriate.
  • CG may be used instead of SPS.
  • FIG. 17 is a diagram showing an example of resource allocation when multiple PUSCHs and multiple PDCCHs are configured in CG configuration.
  • a plurality of PUSCHs are set in the CG setting, and a PDCCH is provided for each PUSCH.
  • a hatched square indicates PDCCH, and a white square indicates PUSCH.
  • the horizontal axis shows the time domain, and the vertical axis shows the frequency domain.
  • CG configuration is performed from the gNB to the UE using RRC signaling, and CG activation/deactivation is notified using the PDCCH.
  • a plurality of PDCCHs are set for each CG period, and scheduling modification information for the corresponding PUSCH is transmitted on each PDCCH.
  • multiple PUSCHs are allocated consecutively in FIG. 17, they may be allocated discontinuously.
  • the UE may transmit information regarding the UL data amount and data generation timing using the PUSCH set in the CG as appropriate. This information may be included in the MAC CE. This information may be sent together with the UL data. BSR (Buffer Status Report) may be used to transmit the UL data amount information.
  • the gNB that has received the information may modify the PUSCH scheduling set in the CG. It is preferable to notify the UE of the scheduling modification information of the PUSCH to be modified using the PDCCH. By receiving the PDCCH, the UE can acquire PUSCH scheduling modification information. The UE may transmit UL data using the PUSCH with modified scheduling.
  • the amount of PUSCH resources may be increased. For example, multiple slots may be allocated to one PUSCH.
  • the amount of PUSCH resources may be configurable. By doing so, data can be transmitted using one PUSCH.
  • the amount of PUSCH resources may be configurable.
  • the resource amount of PUSCH may be set by RRC. Alternatively, it may be set using MAC signaling. Alternatively, it may be included in DCI and set in PDCCH. By doing so, the number of PUSCHs set in the CG can be reduced to one, and the processing can be simplified.
  • Embodiment 2 Modification 1 Another method for solving the problem disclosed in Embodiment 1 will be disclosed.
  • CG configuration one or more PUSCHs are configured and one or more PDCCHs are configured.
  • the number of PUSCHs and the number of PDCCHs are set individually.
  • the method disclosed in Embodiment 2 may be applied as appropriate.
  • the method disclosed in Embodiment 2 may be applied as appropriate. It is preferable to use these methods to individually set the number of PUSCHs and the number of PDCCHs.
  • Scheduling modification information for one or more PUSCHs is notified on each PDCCH configured in one CG cycle.
  • PUSCH configuration information other than the configuration information transmitted by RRC or DCI may be notified by each PDCCH.
  • a method for notifying scheduling modification information of multiple PUSCHs using one PDCCH is disclosed.
  • a plurality of search spaces are provided corresponding to each PUSCH.
  • the UE receives each search space corresponding to each PUSCH in order to receive DCI including scheduling modification information for each PUSCH.
  • Another method of notifying scheduling modification information of multiple PUSCHs using one PDCCH is disclosed.
  • One search space corresponding to multiple PUSCHs is provided.
  • the UE receives each search space corresponding to each PUSCH in order to receive DCI including scheduling modification information for each PUSCH.
  • DCI including scheduling modification information for each PUSCH.
  • the search space setting information may be included in the CG setting information. It may be included in the PDCCH configuration information configured in the CG cycle. Search space configuration information may be transmitted from the gNB to the UE using RRC signaling. The search space configuration information may be included in the DCI including CG activation/deactivation and transmitted from the gNB to the UE via the PDCCH. As these methods, the method disclosed in Embodiment 2 may be applied as appropriate.
  • a number may be assigned to the PUSCH in order to identify one or more PUSCHs set in the CG.
  • the PUSCH configuration information and the PUSCH number may be associated with each other. The method disclosed in Embodiment 2 may be applied as appropriate.
  • the PUSCH number disclosed above may be used to specify which PUSCH is the scheduling modification information. By doing so, it is possible to clearly indicate which PUSCH is the scheduling modification information. Malfunctions between gNB and UE can be reduced.
  • FIG. 18 is a diagram showing an example of resource allocation when the number of PDCCHs and the number of PUSCHs are individually set in CG settings.
  • the CG settings one PDCCH and five PUSCHs are set.
  • One PDCCH is set for each CG period, and scheduling modification information for the corresponding PUSCH is transmitted on the PDCCH.
  • multiple PUSCHs are allocated consecutively in FIG. 18, they may be allocated discontinuously.
  • the number of PDCCHs set in one CG cycle may be plural.
  • the number of PDCCHs may be included as the PDCCH configuration information configured in one CG cycle.
  • the number of PDCCHs may be set within the range of the number of PDSCHs set in one CG cycle.
  • As a method for setting a plurality of PDCCHs PDCCHs may be set periodically. It is preferable to apply the CORESET and search space setting methods disclosed in Embodiment 2 as appropriate. It becomes possible to set a plurality of PDCCHs, and it becomes possible to modify PUSCH scheduling by using PDCCHs a number of times appropriate to the UL data generation timing and data amount.
  • the PDCCH that is set in one CG cycle may be set using a bitmap. It may be a bitmap with the number of bits corresponding to the number of PUSCHs set in CG.
  • a search space may be configured using a bitmap. The search space set in one CG period does not have to be periodic, and flexible PDCCH setting is possible.
  • FIG. 19 is a diagram showing another example of resource allocation when the number of PDCCHs and the number of PUSCHs are individually set in CG settings.
  • CG settings two PDCCHs and five PUSCHs are set for each CG period.
  • Scheduling modification information for a PUSCH prior to the (n+1)th PDCCH may be transmitted on the nth PDCCH.
  • scheduling modification information for the first to third PUSCHs is transmitted on the first PDCCH
  • scheduling modification information for the fourth to fifth PUSCHs is transmitted on the second PDCCH.
  • multiple PUSCHs are allocated consecutively in FIG. 19, they may be allocated discontinuously.
  • Embodiment 2 Modification 2 Another method for solving the problem disclosed in Embodiment 1 will be disclosed.
  • CG configuration one or more PUSCHs are configured and one or more PDCCHs are configured.
  • the number of PUSCHs and the number of PDCCHs are set individually.
  • PUSCH release information set in CG is included in PDCCH.
  • the gNB may notify the UE, on the PDCCH, of release information of one or more PUSCHs configured in the CG.
  • release information of one or more PUSCHs set in CG in the DCI transmitted on one or more PDCCHs set in each CG cycle.
  • a new DCI format may be provided.
  • the existing DCI format see Non-Patent Document 12
  • DCI format 2_4 may be used.
  • a new RNTI may be provided to receive the PDCCH that transmits the DCI including release information.
  • the RNTI for receiving the PDCCH disclosed in the second embodiment or the first modification of the second embodiment may be used. Malfunctions can be reduced by using a PDCCH-specific RNTI in CG settings.
  • existing RNTI see Non-Patent Document 15
  • CI-RNTI Cancellation Indication RNTI
  • CI-RNTI may be used when using DCI format 2_4.
  • the method and release method of notifying the release information of one or more PUSCHs using one PDCCH are the same as the method and release method of notifying the release information of one or more PDSCHs using one PDCCH disclosed in Embodiment 1. It is recommended to apply it as appropriate.
  • CG may be used instead of SPS.
  • PUSCH may be used instead of PDSCH. The same effects as in the first embodiment can be obtained.
  • FIG. 20 is a diagram showing an example of releasing PUSCH resources configured in CG on PDCCH.
  • the number of PDCCHs and the number of PUSCHs are individually set.
  • one PDCCH is set and multiple PUSCHs are set.
  • One PDCCH is set for each CG period.
  • Information to release PUSCH on PDCCH and information indicating which PUSCH to release are transmitted. By receiving the PDCCH, the UE can recognize which PUSCH to release. The UE does not transmit the released PUSCH.
  • the number of PDCCHs may be plural.
  • PDCCHs may be set periodically. It may be set within the range in which PUSCH is set. Alternatively, it may be transmitted within the range where PUSCH is set.
  • the PDCCH may be set using a bitmap. It may be set within the range in which PUSCH is set.
  • FIG. 21 is a diagram showing another example of releasing PUSCH resources configured in CG on PDCCH.
  • two PDCCHs are set for each CG cycle.
  • Information for releasing one or more PUSCHs set in CG and information indicating which PUSCH to release are transmitted on the PDCCH.
  • release information of the PUSCH before the n+1-th PDCCH is transmitted and information indicating which PUSCH to release may be transmitted.
  • release information of the first to third PUSCHs and information indicating which PUSCH is to be released are transmitted on the first PDCCH.
  • Scheduling modification information for the fourth and fifth PUSCHs is transmitted on the second PDCCH.
  • Release information for one or more PUSCHs configured in CG may be included in the scheduling modification information for one or more PUSCHs configured in CG, which was disclosed in Modification 1 of Embodiment 2.
  • the scheduling modification information of one or more PUSCHs configured in CG may include information for releasing the scheduling of one or more PUSCHs configured in CG.
  • the scheduling modification information for one or more PUSCHs configured in CG may include information for canceling the scheduling of one or more PUSCHs configured in CG.
  • Another method is to release (cancel) other PUSCHs except for the PUSCH whose scheduling is modified using the scheduling modification information of one or more PUSCHs configured in CG, as disclosed in Modification 1 of Embodiment 2.
  • the scheduling modification information information indicating that the PUSCH allocation set in the CG settings is to be executed may be provided.
  • the scheduling modification information information indicating whether or not to execute the PUSCH allocation set in the CG settings may be provided.
  • a PUSCH for which information for performing PUSCH allocation is not indicated in the scheduling modification information for one or more PUSCHs configured in the CG may be released (or may be canceled). By doing so, the UE only needs to receive the scheduling modification information, and the processing at the UE can be simplified.
  • Embodiment 2 Modification 3 Another method for solving the problem disclosed in Embodiment 1 will be disclosed.
  • CG configuration one or more PDCCHs are configured.
  • PUSCH settings are not performed in CG settings.
  • the PDCCH setting method the method disclosed above may be applied as appropriate.
  • the method disclosed above may be applied as appropriate.
  • PUSCH is scheduled using one or more PDCCHs set for each CG cycle.
  • PUSCH scheduling information is notified on the PDCCH. Scheduling information for multiple PUSCHs may be notified using one PDCCH.
  • the notification method the method of notifying scheduling modification information of a plurality of PUSCHs using one PDCCH, which was disclosed above, may be applied as appropriate.
  • FIG. 22 is a diagram illustrating an example of resource allocation when two PDCCHs are configured in CG configuration.
  • PUSCH is not set in the CG settings.
  • Two PDCCHs are set for each CG period.
  • CG configuration is performed from the gNB to the UE using RRC signaling, and CG activation/deactivation is notified using the PDCCH.
  • PUSCH scheduling information is notified on the PDCCH set for each CG cycle. Scheduling information for PUSCH before the (n+1)th PDCCH is transmitted may be transmitted on the nth PDCCH.
  • in the first cycle one PUSCH is scheduled for the first PDCCH and two PUSCHs are scheduled for the second PDCCH.
  • two PUSCHs are scheduled on the first PDCCH and one PUSCH is scheduled on the second PDCCH.
  • the UE can receive PUSCH scheduling information.
  • Embodiment 3 Another method for solving the problem disclosed in Embodiment 1 will be disclosed.
  • One PDSCH is set in the SPS settings.
  • One or more PDSCHs are configured using the PDSCH configured in the SPS configuration.
  • MAC signaling may be used to configure the one or more PDSCHs.
  • the MAC CE may include scheduling information for the one or more PDSCHs.
  • a conventional SPS setting method may be applied to set one PDSCH in SPS setting.
  • the method disclosed in Embodiment 1 may be applied as appropriate.
  • the DL data and configuration information of one or more PDSCHs may be multiplexed. The multiplexing may be performed by MAC. If DL data is not transmitted on the PDSCH configured in the SPS configuration, only configuration information for one or more PDSCHs may be transmitted.
  • the configuration information may include information indicating that there is no PDSCH configuration.
  • padding may be included in the MAC PDU.
  • FIG. 23 is a diagram illustrating an example of resource allocation when one or more PDSCHs are configured using the PDSCH configured in the SPS configuration.
  • the hatched squares indicate PDCCH, and the white squares indicate PDSCH.
  • the horizontal axis shows the time domain, and the vertical axis shows the frequency domain.
  • SPS configuration is performed from the gNB to the UE using RRC signaling, and SPS activation/deactivation is notified using the PDCCH.
  • One PDSCH is configured for each SPS period.
  • DL data and one or more PDSCH configuration information are transmitted using the PDSCH configured in the SPS configuration.
  • a MAC SDU including DL data and a MAC CE including configuration information of one or more PDSCHs are multiplexed.
  • two PDSCHs are configured using the PDSCH configured in the SPS configuration.
  • DL data may be transmitted on the configured PDSCH.
  • the number of PDSCHs for each SPS cycle can be changed flexibly.
  • resource allocation that is more suitable for changes in data generation timing and data amount becomes possible. . It is possible to reduce delay time and improve resource usage efficiency.
  • Embodiment 3 Modification 1 Another method for solving the problem disclosed in Embodiment 1 will be disclosed.
  • SPS multiple PDSCHs are set.
  • One or more PDSCHs are configured using the PDSCH configured in the SPS configuration.
  • a plurality of PDSCHs are set up, and one or more PDSCHs are additionally set up using the PDSCHs.
  • MAC signaling may be used to configure one or more PDSCHs configured using the PDSCH configured in the SPS configuration.
  • the MAC CE may include configuration information for the one or more PDSCHs.
  • the setting method disclosed in Embodiment 1 may be applied to the method of setting multiple PDSCHs in the SPS setting.
  • the DL data and configuration information of one or more PDSCHs may be multiplexed.
  • the multiplexing may be performed by MAC. If DL data is not transmitted on the PDSCH configured in the SPS configuration, only configuration information for one or more PDSCHs may be transmitted.
  • the configuration information may include information indicating that there is no PDSCH configuration.
  • padding may be included in the MAC PDU.
  • FIG. 24 is a diagram illustrating an example of resource allocation when one or more PDSCHs are configured using multiple PDSCHs configured in SPS configuration.
  • the hatched squares indicate PDCCH, and the white squares indicate PDSCH.
  • the horizontal axis shows the time domain, and the vertical axis shows the frequency domain.
  • SPS configuration is performed from the gNB to the UE using RRC signaling, and SPS activation/deactivation is notified using the PDCCH.
  • Two PDSCHs are configured for each SPS period.
  • DL data and one or more PDSCH configuration information are transmitted using the PDSCH configured in the SPS configuration.
  • a MAC SDU including DL data and a MAC CE including configuration information of one or more PDSCHs are multiplexed.
  • no PDSCH is set using the first PDSCH set in the SPS settings, and two PDSCHs are set (Added) using the second PDSCH.
  • DL data may be transmitted on the configured PDSCH.
  • one PDSCH is set (Add) using the first PDSCH set in the SPS settings, and one PDSCH is set (Add) using the second PDSCH.
  • DL data may be transmitted on the configured PDSCH.
  • Embodiment 3 Modification 2 Another method for solving the problem disclosed in Embodiment 1 will be disclosed.
  • configuring SPS one or more PDSCHs are configured. Release information of one or more PDSCHs is notified using the PDSCH set in the SPS settings.
  • MAC signaling may be used to notify the release information of the one or more PDSCHs.
  • the MAC CE may include release information of the one or more PDSCHs.
  • the setting method disclosed in Embodiment 1 may be applied to the method of setting multiple PDSCHs in the SPS setting.
  • the release information of one or more PDSCHs the release information of one or more PDSCHs configured in the SPS disclosed in Modification 2 of Embodiment 1 may be applied as appropriate.
  • the DL data and release information of one or more PDSCHs may be multiplexed.
  • the multiplexing may be performed by MAC. If DL data is not transmitted on the PDSCH set in the SPS settings, only release information for one or more PDSCHs may be transmitted. If there is no release of one or more PDSCHs, the release information may include information indicating that there is no release information of the PDSCHs.
  • Information indicating which PDSCH to release may be provided and transmitted in addition to or instead of PDSCH release information. By receiving the PDSCH including this information, the UE can recognize which PDSCH to release. The UE does not receive the released PDSCH.
  • FIG. 25 is a diagram showing an example of resource allocation when one or more PDSCHs are released using multiple PDSCHs set in the SPS settings.
  • the hatched squares indicate PDCCH, and the white squares indicate PDSCH.
  • the horizontal axis shows the time domain, and the vertical axis shows the frequency domain.
  • SPS configuration is performed from the gNB to the UE using RRC signaling, and SPS activation/deactivation is notified using the PDCCH.
  • Five PDSCHs are configured for each SPS cycle.
  • DL data and release information of one or more PDSCHs are transmitted using the PDSCH set in the SPS settings.
  • a MAC SDU including DL data and a MAC CE including release information of one or more PDSCHs are multiplexed. Any PDSCH set in the SPS settings may be used to transmit the PDSCH release information. In FIG. 25, five PDSCHs are set in the SPS settings. In the first cycle, PDSCH release information is transmitted using the third PDSCH set in the SPS settings. Release information for the fourth and fifth PDSCHs is transmitted. The released resources may be allocated to other UEs by the gNB. The UE does not receive the released PDSCH. In the second period of SPS, PDSCH release information is transmitted using the first PDSCH configured in the SPS configuration. Release information for the fourth and fifth PDSCHs is transmitted. The released resources may be allocated to other UEs by the gNB. The UE does not receive the released PDSCH.
  • the number of PDSCHs for each SPS cycle can be changed flexibly.
  • resource allocation can be made more suitable for changes in data generation timing and data amount. It is possible to reduce delay time and improve resource usage efficiency. Furthermore, since the PDSCH reception processing of the UE can be reduced, power consumption can be reduced.
  • Embodiment 4 Another method for solving the problem disclosed in Embodiment 1 will be disclosed.
  • One PUSCH is set in the CG settings.
  • a PUSCH scheduling request is notified using the PUSCH set in the CG settings.
  • One or more PUSCHs are scheduled on the PDCCH.
  • a conventional CG setting method may be applied to set one PUSCH in CG setting.
  • the UL data and the PUSCH scheduling request may be multiplexed.
  • the multiplexing may be performed by MAC. If UL data is not transmitted on the PUSCH set in the CG settings, only a PUSCH scheduling request may be transmitted.
  • the gNB can recognize the PUSCH scheduling request by receiving this information from the UE.
  • the gNB can recognize that there is no PUSCH scheduling request.
  • the gNB transmits a PDCCH to the UE and schedules one or more PUSCHs.
  • the gNB may use the PUSCH scheduling request received from the UE to schedule the one or more PUSCHs.
  • the UE receives the PDCCH and receives scheduling information for one or more PUSCHs.
  • the UE may transmit UL data using the scheduled PUSCH.
  • Conventional CG does not require PDCCH reception in the CG cycle.
  • the UE does not need to monitor the PDCCH.
  • the UE needs to receive PDCCH in order to receive scheduling information of one or more PUSCH.
  • the UE transmits a PUSCH scheduling request, it starts PDCCH monitoring.
  • the UE may stop monitoring after receiving the PDCCH.
  • a PDCCH monitoring period may be set. After transmitting the PUSCH scheduling request, the UE monitors the PDCCH during the PDCCH monitoring period. When the UE receives the PDCCH, the UE may continue to monitor the PDCCH during the PDCCH monitoring period. A plurality of PDCCHs may be transmitted during the PDCCH monitoring period, and the UE can receive the plurality of PDCCHs. As another method when receiving the PDCCH, the UE may stop monitoring the PDCCH. The power consumption of the UE can be reduced.
  • One PDCCH may be transmitted during the PDCCH monitoring period. By scheduling one or more PUSCHs on the PDCCH, resource allocation of PUSCHs suitable for the amount of UL data becomes possible.
  • the PDCCH monitoring period may be included in the CG setting information.
  • the gNB may transmit the PDCCH monitoring period to the UE using RRC signaling. It may be included in the CG setting information and transmitted by RRC signaling.
  • the gNB may transmit the PDCCH monitoring period to the UE using the PDCCH.
  • the PDCCH monitoring period may be included in the DCI together with CG activation/deactivation information and transmitted on the PDCCH.
  • the PDCCH monitoring period may be included in the CG activation/deactivation information.
  • a PDCCH that schedules one or more PUSCHs may notify whether there is a subsequent PDCCH or whether there is a need to monitor a subsequent PDCCH.
  • a new PDCCH monitoring period may be set.
  • the PDCCH monitoring period for monitoring the subsequent PDCCH may be notified using the PDCCH.
  • the PDCCH monitoring period may be restarted. By doing so, the gNB can perform flexible PUSCH scheduling for the UE.
  • the method for scheduling one or more PUSCH on PDCCH disclosed in Modification 3 of Embodiment 2 may be applied as appropriate.
  • FIG. 26 is a diagram showing an example of resource allocation when one or more PUSCH scheduling requests are notified using the PUSCH set in the CG settings.
  • a hatched square indicates PDCCH, and a white square indicates PUSCH.
  • the horizontal axis shows the time domain, and the vertical axis shows the frequency domain.
  • CG configuration is performed from the gNB to the UE using RRC signaling, and CG activation/deactivation is notified using the PDCCH.
  • One PUSCH is set for each CG period.
  • One or more PUSCH scheduling requests are transmitted using the PUSCH configured in the CG settings.
  • a MAC SDU including UL data and a MAC CE including one or more PUSCH scheduling requests are multiplexed.
  • the gNB that receives the PUSCH scheduling request from the UE schedules one or more PUSCHs on the PDCCH.
  • PDCCH includes scheduling information for one or more PUSCHs.
  • two consecutive PUSCHs are scheduled in the first cycle of CG, and two non-consecutive PUSCHs are scheduled in the second cycle.
  • the UE monitors the PDCCH during the PDCCH monitoring period.
  • a UE that receives a PDCCH during a PDCCH monitoring period receives scheduling information for one or PUSCH.
  • the UE may transmit UL data using the received PUSCH scheduling information.
  • a PDCCH including PUSCH scheduling information and a PUSCH scheduled by the PDCCH may not be temporally continuous or may be discontinuous. There may be time intervals.
  • PUSCH scheduling request is made using the PUSCH set in the CG settings, it becomes unnecessary to transmit an SR (Scheduling Request). Since there is no need to wait until the SR cycle, delay time can be reduced. Furthermore, since the UE does not need to transmit an SR, power consumption can be reduced. Furthermore, the gNB that has received the scheduling request from the UE can flexibly schedule a number of PUSCHs suitable for the amount of UL data generated by the UE. Therefore, it becomes possible to perform resource allocation that is more suitable for fluctuations in data generation timing and data amount. It is possible to reduce delay time and improve resource usage efficiency.
  • Embodiment 4 Modification 1 Another method for solving the problem disclosed in Embodiment 1 will be disclosed.
  • CG settings multiple PUSCHs are set.
  • a PUSCH scheduling request is notified using the PUSCH set in the CG settings.
  • a PUSCH addition request is notified using the PUSCH set in the CG settings.
  • MAC signaling may be used to notify the PUSCH addition request.
  • a PUSCH addition request may be included in the MAC CE.
  • One or more PUSCHs are scheduled on the PDCCH.
  • the method disclosed in Modification 1 of Embodiment 2 may be applied as appropriate.
  • the UL data and the PUSCH scheduling request may be multiplexed.
  • the multiplexing may be performed by MAC. If UL data is not transmitted on the PUSCH set in the CG settings, only a PUSCH scheduling request may be transmitted.
  • the gNB can recognize the PUSCH scheduling request by receiving this information from the UE.
  • information indicating that there is no PUSCH scheduling request may be included.
  • padding may be included in the MAC PDU.
  • the gNB transmits a PDCCH to the UE and schedules one or more PUSCHs.
  • the gNB may use the PUSCH scheduling request received from the UE to schedule the one or more PUSCHs.
  • the UE receives the PDCCH and receives scheduling information for one or more PUSCHs.
  • the method disclosed in Embodiment 4 may be applied as appropriate. It is preferable that the UE transmits UL data using the PUSCH scheduled by the PDCCH.
  • FIG. 27 is a diagram showing an example of resource allocation when a PUSCH scheduling request is notified using multiple PUSCHs set in the CG settings.
  • a hatched square indicates PDCCH, and a white square indicates PUSCH.
  • the horizontal axis shows the time domain, and the vertical axis shows the frequency domain.
  • CG configuration is performed from the gNB to the UE using RRC signaling, and CG activation/deactivation is notified using the PDCCH.
  • Two PUSCHs are set for each CG period.
  • UL data and a PUSCH scheduling request are transmitted using the PUSCH set in the CG settings.
  • a MAC SDU including UL data and a MAC CE including PUSCH scheduling information are multiplexed.
  • the gNB that receives the PUSCH scheduling request from the UE schedules one or more PUSCHs on the PDCCH.
  • the UE monitors the PDCCH during the PDCCH monitoring period.
  • a UE that receives a PDCCH during a PDCCH monitoring period receives scheduling information for one or PUSCH.
  • the UE may transmit UL data using the received PUSCH scheduling information.
  • a PDCCH including PUSCH scheduling information and a PUSCH scheduled by the PDCCH may not be temporally continuous or may be discontinuous. They may be spaced apart in time.
  • the gNB that has received the scheduling request from the UE can flexibly schedule a number of PUSCHs suitable for the amount of UL data generated by the UE.
  • the gNB can more flexibly schedule a number of PUSCHs suitable for the amount of UL data generated by the UE in a timely manner. Therefore, it becomes possible to perform resource allocation that is more suitable for fluctuations in data generation timing and data amount. It is possible to reduce delay time and improve resource usage efficiency.
  • Embodiment 4 Modification 2 Another method for solving the problem disclosed in Embodiment 1 will be disclosed.
  • CG settings one or more PUSCHs are set.
  • Information regarding the PUSCH used for transmission is notified using the PUSCH set in the CG settings.
  • MAC signaling may be used to notify information regarding PUSCH used for transmission.
  • the MAC CE may include information regarding the PUSCH used for transmission.
  • the setting method disclosed in Modification 1 of Embodiment 2 may be applied to the method of setting a plurality of PUSCH in CG setting.
  • the UL data and information regarding the PUSCH used for transmission may be multiplexed.
  • the multiplexing may be performed by MAC. If UL data is not transmitted on the PUSCH set in the CG settings, only information regarding the PUSCH used for transmission may be transmitted. By receiving this information from the UE, the gNB can recognize which PUSCH the UE uses for transmission.
  • the gNB can recognize that there is no PUSCH used by the UE for transmission.
  • the information regarding the PUSCH used for transmission may be information indicating which PUSCH is used for transmission. By receiving this information, the gNB can identify the PUSCH used by the UE for transmission. In addition, the gNB is able to specify a PUSCH that the UE does not use for transmission among the plurality of PUSCHs set in the CG. The gNB may allocate PUSCH resources that the UE does not use for transmission to other UEs. The UE transmits UL data using the PUSCH used for transmission notified to the gNB. The UE does not transmit UL data on a PUSCH other than the PUSCH used for transmission notified to the gNB.
  • FIG. 28 is a diagram illustrating an example of resource allocation when information regarding the PUSCH used for transmission by the UE is transmitted using a plurality of PUSCHs set in the CG settings.
  • a hatched square indicates PDCCH, and a white square indicates PUSCH.
  • the horizontal axis shows the time domain, and the vertical axis shows the frequency domain.
  • CG configuration is performed from the gNB to the UE using RRC signaling, and CG activation/deactivation is notified using the PDCCH.
  • five PUSCHs are set for each CG cycle.
  • Information regarding the PUSCH used for transmission by the UE is transmitted using the PUSCH configured in the CG settings.
  • a MAC SDU including UL data and a MAC CE including information regarding the PUSC used for transmission by the UE are multiplexed. Any PUSCH configured in the CG settings may be used to transmit information regarding the PUSCH used by the UE for transmission.
  • information regarding the PUSCH used for transmission by the UE is transmitted on the first PUSCH.
  • information on the fourth and fifth PUSCHs is transmitted as information regarding the PUSCHs used by the UE for transmission.
  • information on the third to fifth PUSCHs is transmitted as information regarding the PUSCHs used for transmission by the UE.
  • the UE does not transmit on the second and third PUSCHs in the first cycle of the CG, but transmits UL data on the fourth and fifth PUSCHs.
  • no transmission is performed on the second PUSCH, but UL data is transmitted on the third to fifth PUSCHs.
  • the gNB can recognize which PUSCH the UE uses for transmission and which PUSCH it does not use for transmission, among the PUSCHs set in the CG.
  • the gNB may not receive the second and third PUSCH from the UE in the first cycle of CG, but may receive the fourth and fifth PUSCH. In the second cycle of CG, it is preferable that the second PUSCH from the UE is not received, but the third to fifth PUSCHs are received.
  • the gNB may allocate PUSCH resources that the UE does not use for transmission to other UEs.
  • the gNB since the UE transmits information regarding the PUSCH used for transmission using the PUSCH set in the CG settings, the gNB only needs to receive the PUSCH used by the UE for transmission among the PUSCHs set in the CG.
  • the gNB processing can be simplified and power consumption can be reduced.
  • the gNB can allocate the resources of the PUSCH that the UE does not use for transmission to other UEs, among the PUSCHs set in the CG. Resource usage efficiency can be improved. Even if a large number of PUSCHs are set in the CG settings, resource allocation can be made more suitable for fluctuations in data generation timing and data amount. It is possible to reduce delay time and improve resource usage efficiency.
  • Embodiment 4 Modification 3 Another method for solving the problem disclosed in Embodiment 1 will be disclosed.
  • CG settings one or more PUSCHs are set.
  • PUSCH release information is notified using the PUSCH set in the CG settings.
  • MAC signaling may be used for notification of PUSCH release information.
  • PUSCH release information may be included in the MAC CE.
  • the method disclosed in Modification 1 of Embodiment 2 may be applied as appropriate.
  • the UL data and PUSCH release information may be multiplexed. The multiplexing may be performed by MAC. If UL data is not transmitted on the PUSCH set in the CG settings, only the PUSCH release information may be transmitted. By receiving this information from the UE, the gNB can recognize the PUSCH that may be released.
  • PUSCH release information If there is no PUSCH release information, it is advisable to include information indicating that there is no such information. Alternatively, padding may be included in the MAC PDU. By receiving this information, the gNB can recognize that there is no PUSCH that may be released.
  • the PUSCH release information may include information that identifies the PUSCH to be released. For example, it may be the number of PUSCH to be released. By receiving this information, the gNB is able to identify the PUSCH that may be released. In addition, the gNB can specify which PUSCH may be released from among the plurality of PUSCHs set in the CG. The gNB may allocate PUSCH resources that may be released to other UEs. The UE does not transmit UL data on the released PUSCH notified to the gNB. UL data is transmitted using a PUSCH other than the PUSCH to be released.
  • FIG. 29 is a diagram showing an example of resource allocation when PUSCH release information is transmitted using multiple PUSCHs set in the CG settings.
  • a hatched square indicates PDCCH, and a white square indicates PUSCH.
  • the horizontal axis shows the time domain, and the vertical axis shows the frequency domain.
  • CG configuration is performed from the gNB to the UE using RRC signaling, and CG activation/deactivation is notified using the PDCCH.
  • PUSCH release information is transmitted on the third PUSCH in the first cycle of CG, and on the first PUSCH in the second cycle of CG.
  • information on the fourth and fifth PUSCHs is transmitted as PUSCH release information.
  • information on the fourth and fifth PUSCHs is transmitted as PUSCH release information.
  • the UE does not transmit on the fourth and fifth PUSCHs in the first cycle of the CG, but transmits UL data on the first to third PUSCHs.
  • UL data is transmitted on the first to third PUSCHs without transmitting on the fourth and fifth PUSCHs.
  • the gNB can recognize which PUSCH among the PUSCHs configured in the CG may be released.
  • the gNB may not receive the fourth and fifth PUSCHs from the UE, but may receive the first to third PUSCHs.
  • the fourth and fifth PUSCHs from the UE are not received, but the first to third PUSCHs are received.
  • the gNB may allocate the PUSCH resources indicated by the UE in the release information to other UEs.
  • Embodiment 4 Modification 4 Another method for solving the problem disclosed in Embodiment 1 will be disclosed.
  • CG settings one or more PUSCHs are set.
  • a PUSCH addition request is notified using the PUSCH set in the CG settings.
  • MAC signaling may be used to notify the PUSCH addition request.
  • a PUSCH addition request may be included in the MAC CE.
  • the setting method disclosed in Modification 1 of Embodiment 2 may be applied to the method of setting a plurality of PUSCH in CG setting.
  • the UL data and the PUSCH addition request may be multiplexed.
  • the multiplexing may be performed by MAC. If UL data is not transmitted on the PUSCH set in the CG settings, only a PUSCH addition request may be transmitted. By receiving this information from the UE, the gNB can recognize that it is necessary to add a PUSCH to the UE.
  • PUSCH addition request information indicating that there is no such request may be included.
  • padding may be included in the MAC PDU. By receiving this information, the gNB can recognize that it is necessary to add a PUSCH.
  • the number of PUSCHs to be added may be included in the PUSCH addition request information.
  • the gNB consecutively allocates PUSCH resources for the number of PUSCHs requested by the UE.
  • the gNB does not allocate the allocated resources to other UEs.
  • the UE may use the additionally requested PUSCH for UL transmission.
  • a method for setting the time domain of the PUSCH resource to be added is disclosed.
  • the time domain of the PUSCH resource to be added may be determined using time information from the PDCCH for CG activation/deactivation. Processing becomes easier because the time domain of PUSCH set in CG and resources of PUSCH to be added can be set together. Disclose other methods. It may be determined using time information from the last PUSCH transmission timing set in CG. Since settings can be made regardless of the number of PUSCHs set in CG, malfunctions when adding PUSCHs can be reduced.
  • the PUSCH time domain resources that are additionally allocated after the PUSCH set in the CG do not have to be continuous.
  • An offset may also be provided.
  • the time domain setting information of the PUSCH resource to be added may be statically determined in advance by a standard or the like. Malfunctions in gNB and UE can be reduced.
  • the gNB may notify the UE of the configuration information through RRC signaling. It may be included in RRC information for CG setting and transmitted.
  • the gNB may notify the UE using the PDCCH. For example, it may be included in the DCI for CG activation/deactivation and notified using the PDCCH. By doing so, the UE can recognize the transmission timing of the added PUSCH.
  • the UE may notify the gNB of the time domain information of the PUSCH to be added. For example, the offset from the last PUSCH set in CG may be notified. By doing so, for example, the UE can request allocation of additional PUSCH resources suitable for the UL data generation timing.
  • a notification method from the UE to the gNB for example, MAC signaling may be used for notification. It may be included in the PUSCH addition request notified from the UE to the gNB and transmitted.
  • a method for setting the frequency domain of the PUSCH resource to be added is disclosed.
  • the setting method may be statically determined in advance by a standard or the like. Malfunctions in gNB and UE can be reduced.
  • the information may be the same as the information in the frequency domain of the PUSCH resource set in the CG. For example, it may be the same as the frequency domain of the last PUSCH resource set in CG.
  • a number may be assigned to the PUSCH set in CG.
  • the frequency range may be the same as the frequency domain of the n-th PUSCH resource set in the CG.
  • the gNB may notify the UE of the same PUSCH number.
  • the gNB may notify the UE using RRC signaling.
  • the gNB may notify the UE using the PDCCH. For example, it may be included in the DCI for CG activation/deactivation and notified using PDCCH. By doing so, the UE can recognize the added PUSCH transmission frequency.
  • the UE may notify the gNB of the PUSCH number that has the same frequency domain information. For example, notification may be made using MAC signaling. It may be included in the PUSCH addition request notified from the UE to the gNB and transmitted. By doing so, for example, the UE can request the gNB to use the same frequency region as the PUSCH with good reception quality.
  • the UE can configure additional PUSCH.
  • the UE is enabled to transmit additional PUSCH.
  • FIG. 30 is a diagram showing an example of resource allocation when a PUSCH addition request is transmitted using a plurality of PUSCHs set in the CG settings.
  • a hatched square indicates PDCCH, and a white square indicates PUSCH.
  • the horizontal axis shows the time domain, and the vertical axis shows the frequency domain.
  • CG configuration is performed from the gNB to the UE using RRC signaling, and CG activation/deactivation is notified using the PDCCH.
  • the gNB transmits scheduling information for additional PUSCH resources to the UE in advance.
  • Part or all of the additional PUSCH resource scheduling information may be notified through RRC signaling together with the CG configuration, or may be notified through the PDCCH along with CG activation/deactivation.
  • part of the additional PUSCH resource scheduling information may be notified through RRC signaling along with the CG configuration, and the remaining information may be notified through the PDCCH along with CG activation/deactivation. By doing so, the UE can acquire scheduling information of the added PUSCH.
  • PUSCHs are set for each CG cycle in the CG settings.
  • UL data and PUSCH additional request information are transmitted using the PUSCH set in the CG settings.
  • a MAC SDU including UL data and a MAC CE including PUSCH additional request information are multiplexed. Any PUSCH set in the CG settings may be used to transmit the PUSCH addition request information.
  • PUSCH additional request information is transmitted on the first PUSCH in the first cycle of CG, and on the fourth PUSCH in the second cycle of CG.
  • the first PUSCH includes information indicating no offset, for example, an offset value of 0, along with additional request information for two PUSCHs.
  • the gNB can recognize whether it should receive the scheduled PUSCH in addition to the PUSCH set in the CG.
  • the gNB receives two PUSCHs in addition to the PUSCH set in CG.
  • the second cycle of CG one PUSCH is received in addition to the PUSCH set in CG. At this time, the offset value is taken into account.
  • the gNB When the gNB receives a PUSCH addition request from the UE, it does not allocate the additional PUSCH resources to other UEs.
  • PUSCH can be added in response to a UE's request. Therefore, the number of PUSCHs can be added for each CG cycle. It becomes possible to perform resource allocation more suitable for variations in UL data generation timing and data amount. It is possible to reduce delay time and improve resource usage efficiency.
  • Embodiment 5 As disclosed in Embodiment 1, a characteristic of XR traffic is, for example, non-integer periodicity, but in conventional SPS and CG, the period is N milliseconds (N is a positive integer), so data generation A discrepancy occurs between the timing and the resource allocation timing, and data transmission and reception must wait until the next cycle. For this reason, it is not suitable for the characteristics of XR traffic and causes an increase in delay time. Furthermore, if data is delayed and exceeds the required amount of delay, the data will be discarded, resulting in deterioration of communication quality. Embodiment 5 discloses a method for solving such problems.
  • an offset value is added to the SPS cycle every n cycles (n is a positive integer) set in SPS.
  • the gNB transmits information regarding the offset value to be added to the SPS period to the UE.
  • the information includes n, an offset value, and information that specifies the period at which the offset value is added out of every n period, such as a number (k), which determines the resource allocation timing by applying the offset value out of every n period. It is preferable to use information that specifies the PDSCH to be shifted, such as a number (m), and a combination of these pieces of information.
  • k and/or m is not limited to one, but may be plural.
  • RRC signaling may be used as a method of transmitting this information from the gNB to the UE. For example, it may be included in RRCReconfiguration and transmitted. For example, the information may be included in the SPS settings and transmitted. As another method, the information may be included in the DCI and transmitted. The information may be included in the DCI for SPS activation/deactivation instructions and transmitted. PDCCH may be used to transmit the DCI.
  • the UE receives information from the gNB. Along with the SPS settings, the UE can recognize how many SPS cycles an offset value should be added to. The UE can receive the PDSCH in the SPS cycle to which the offset value has been added. By doing so, it becomes possible to flexibly set the SPS cycle according to the service type and the generation status of DL data.
  • FIG. 31 is a diagram showing an example of resource allocation when an offset value is added to the SPS cycle every n cycles set in SPS.
  • the hatched squares indicate PDCCH, and the white squares indicate PDSCH.
  • the horizontal axis shows the time domain, and the vertical axis shows the frequency domain.
  • one PDSCH is configured in the SPS configuration. Multiple PDSCHs may be configured.
  • SPS configuration is performed from the gNB to the UE using RRC signaling, and SPS activation/deactivation is notified using the PDCCH.
  • the unit of the offset value may be a time unit, a symbol unit, a slot unit, a subframe unit, a radio frame unit, a TTI (Transmission Timing Interval) unit, or a combination thereof.
  • the time interval between the first and second PDSCHs set in SPS is the SPS cycle plus an offset value.
  • the time interval between the second and third PDSCHs is the SPS cycle, and the time interval between the third and fourth PDSCHs is the SPS cycle.
  • the time interval between the fourth and fifth PDSCHs set in SPS is the SPS period plus an offset value.
  • the time interval between the fifth and sixth PDSCHs (not shown) is an SPS cycle, and the time interval between the sixth and seventh PDSCHs (not shown) is an SPS cycle.
  • Such a setting in which an offset value is added to the k-th cycle is repeated every n times.
  • the gNB transmits the PDSCH at a timing obtained by adding an offset value every n SPS cycles.
  • the UE receives the PDSCH using information regarding the offset value to be added to the SPS period received from the gNB.
  • the gNB can make adjustments suitable for the timing of DL data generation. Even if the generation timing of DL data is non-integer periodic, it is possible to reduce the transmission delay time of DL data by adding an appropriate offset value every n cycles. Therefore, it is possible to reduce the situation where DL data is discarded because the transmission delay time of DL data exceeds the required delay amount. It is possible to reduce deterioration in communication quality.
  • Embodiment 5 Modification 1 Another method for solving the problem disclosed in Embodiment 5 will be disclosed.
  • the gNB notifies the UE of the offset value to be added to the period set in the SPS.
  • the offset value may be notified every n SPS cycles.
  • MAC signaling may be used to transmit the offset value from the gNB to the UE. For example, it may be included in the MAC CE and transmitted.
  • the MAC CE may be transmitted using the PDSCH set in the SPS settings.
  • the DL data and the offset value may be multiplexed. The multiplexing may be performed by MAC. If DL data is not transmitted on the PDSCH set in the SPS settings, only the offset value may be transmitted.
  • the gNB transmits an offset value to be added to the period set in SPS to the UE
  • another method is to set the offset value in advance and transmit information on whether to add the offset value. You may.
  • the method for transmitting information regarding the offset value disclosed in Embodiment 5 may be applied as appropriate.
  • the offset value transmitting method disclosed above it is preferable to apply the offset value transmitting method disclosed above as appropriate. By doing so, it is possible to reduce the amount of information to be dynamically transmitted.
  • FIG. 32 is a diagram showing an example of resource allocation in the case of notifying an offset value to be added to the cycle set in SPS.
  • the hatched squares indicate PDCCH, and the white squares indicate PDSCH.
  • the horizontal axis shows the time domain, and the vertical axis shows the frequency domain.
  • one PDSCH is configured in the SPS configuration. SPS configuration is performed from the gNB to the UE using RRC signaling, and SPS activation/deactivation is notified using the PDCCH.
  • the offset value is transmitted from the gNB to the UE using the first PDSCH configured in SPS.
  • a MAC SDU including DL data and a MAC CE including an offset value are multiplexed and transmitted.
  • the transmission timing of the second PDSCH becomes the timing at which the offset value is added to the SPS cycle.
  • No offset value is sent on the second PDSCH.
  • the transmission timing of the third PDSCH becomes the timing of the SPS cycle.
  • No offset value is transmitted on the third PDSCH.
  • the transmission timing of the fourth PDSCH becomes the timing of the SPS cycle.
  • the offset value is transmitted using the fourth PDSCH.
  • the transmission timing of the fifth PDSCH becomes the timing at which the offset value is added to the SPS cycle. In this way, when adding an offset value to the SPS cycle, the gNB notifies the UE of the offset value.
  • the gNB transmits the PDSCH at the SPS cycle or at a timing obtained by adding an offset value to the SPS cycle. If the UE does not receive the offset value from the gNB, it receives the PDSCH in the SPS cycle, and if it receives the offset value, it receives the PDSCH at a timing obtained by adding the offset value to the SPS cycle. By doing so, the gNB can dynamically add an offset value to the SPS cycle, and the UE can derive the PDSCH timing by receiving the offset value from the gNB. The UE becomes able to receive PDSCH.
  • the gNB uses MAC signaling to inform the UE of information that specifies the period in which the offset value is added out of every n period, such as a number (k), to apply the offset value in every n period.
  • Information specifying the PDSCH whose resource allocation timing is to be shifted, such as a number (m), or a combination of these pieces of information may be notified.
  • the offset value may be included in the MAC CE and notified.
  • the gNB can make adjustments appropriate to the timing of DL data generation. Even if the DL data generation timing is non-integer periodic, it is possible to reduce the transmission delay time of the DL data by setting an appropriate offset. Further, even when the generation cycle of DL data fluctuates over time, by dynamically setting an appropriate offset, it is possible to reduce the transmission delay time of DL data. Therefore, it is possible to reduce the situation where DL data is discarded because the transmission delay time of DL data exceeds the required delay amount. It is possible to reduce deterioration in communication quality.
  • Embodiment 5 Modification 2 Another method for solving the problem disclosed in Embodiment 5 will be disclosed.
  • PDCCH is set every n SPS cycles.
  • the gNB transmits information regarding PDCCH configuration to the UE.
  • n the number (k) of the cycle in which the PDCCH is transmitted among every n cycles, and a combination of these pieces of information. k is not limited to one, but may be plural.
  • the PDCCH configuration information disclosed in Embodiment 1 may be used as the information regarding the PDCCH configuration.
  • the method for transmitting this information from the gNB to the UE the method for transmitting information regarding the offset value added to the SPS cycle disclosed in Embodiment 5 may be applied as appropriate. By doing so, the UE can receive the PDCCH set every n SPS cycles.
  • the gNB notifies the UE of the offset value to be added to the period set in SPS.
  • the offset value may be notified every n SPS cycles.
  • the PDCCH disclosed above is used as a method of transmitting the offset value from the gNB to the UE. For example, it may be included in the DCI and transmitted.
  • the DCI is transmitted using the PDCCH disclosed above.
  • the gNB transmits an offset value to be added to the cycle set in SPS to the UE
  • another method is to set the offset value in advance and transmit information on whether to add the offset value. You may.
  • the method for transmitting information regarding the offset value disclosed in Embodiment 5 may be applied as appropriate.
  • the offset value transmitting method disclosed above it is preferable to apply the offset value transmitting method disclosed above as appropriate. By doing so, it is possible to reduce the amount of information to be dynamically transmitted.
  • FIG. 33 is a diagram illustrating an example of resource allocation when an offset value to be added to the period set in SPS is notified using PDCCH.
  • the hatched squares indicate PDCCH, and the white squares indicate PDSCH.
  • the horizontal axis shows the time domain, and the vertical axis shows the frequency domain.
  • a PDCCH is set every n SPS cycles.
  • the PDCCH is transmitted from the gNB to the UE every n SPS cycles.
  • PDCCH is transmitted in the second cycle every three SPS cycles.
  • An offset value to be added to the SPS period is transmitted by PDCCH.
  • the PDCCH is transmitted in the second cycle set by SPS, and the offset value is transmitted.
  • the transmission timing of the second PDSCH becomes the timing at which the offset value is added to the first SPS cycle.
  • the transmission timing of the first and third PDSCHs is the timing set by SPS.
  • the PDCCH is transmitted in the fifth cycle set by SPS, and the offset value is transmitted.
  • the transmission timing of the fifth PDSCH becomes the timing obtained by adding the offset value to the fourth SPS cycle.
  • the transmission timings of the fourth and sixth (not shown) PDSCHs are the timings set by the SPS.
  • the gNB transmits the offset value on the configured PDCCH. If the UE does not receive the offset value from the gNB, it receives the PDSCH in the SPS cycle, and if it receives the offset value, it receives the PDSCH at a timing obtained by adding the offset value to the SPS cycle. By doing so, the gNB can add an offset value to the SPS cycle, and the UE can derive the PDSCH timing by receiving the offset value from the gNB. The UE becomes able to receive PDSCH.
  • FIG. 34 is a diagram illustrating another example of resource allocation in the case where an offset value to be added to the period set in SPS is notified using PDCCH.
  • the hatched squares indicate PDCCH, and the white squares indicate PDSCH.
  • the horizontal axis shows the time domain, and the vertical axis shows the frequency domain.
  • a PDCCH is set every n SPS cycles.
  • the PDCCH is transmitted from the gNB to the UE every n SPS cycles.
  • PDCCH is transmitted in the first cycle every three SPS cycles.
  • An offset value to be added to the SPS period is transmitted by PDCCH.
  • the cycle number (k) for notifying the offset value and the PDSCH number for shifting the resource allocation timing by applying the offset value may be different.
  • the information identifying the PDSCH to which the offset value is applied and the resource allocation timing is shifted may be the number of the PDSCH to which the offset value is applied and the resource allocation timing is shifted, or the offset value and the number of the cycle in which the offset value is transmitted. It may be.
  • the information is transmitted from the gNB to the UE.
  • an offset value notification method may be applied as appropriate.
  • Information specifying the PDSCH to which the resource allocation timing is shifted by applying the offset value may be notified together with the offset value.
  • the notified offset value is applied to the PDSCH allocated in the next SPS cycle.
  • the number of the period for notifying the offset value is 1, and the number of the PDSCH to which the offset value is applied to shift the resource allocation timing is 2.
  • the PDCCH is transmitted in the first cycle set by SPS, and the offset value is transmitted on the PDCCH.
  • the transmission timing of the second PDSCH becomes the timing at which the offset value is added to the SPS cycle.
  • the transmission timing of the first and third PDSCHs is the timing set by SPS.
  • the PDCCH is transmitted in the fourth cycle set by SPS, and the offset value is transmitted on the PDCCH.
  • the transmission timing of the fifth PDSCH becomes the timing at which the offset value is added to the SPS cycle.
  • the transmission timings of the fourth and sixth (not shown) PDSCHs are the timings set by the SPS.
  • the gNB can make adjustments suitable for the timing of DL data generation. Furthermore, by transmitting the offset value on the PDCCH, the UE can acquire the offset value early. Even if the generation timing of DL data is non-integer periodic, it is possible to reduce the transmission delay time of DL data by setting an appropriate offset every n cycles. Therefore, it is possible to reduce the situation where DL data is discarded because the transmission delay time of DL data exceeds the required delay amount. It is possible to reduce deterioration in communication quality.
  • the offset value is a positive value.
  • the offset value does not have to be a positive value. It may be a negative value. In the case of a negative value, the resource allocation timing of the PDSCH to which the offset value is applied is shifted forward by the offset value.
  • the PDSCH resource allocation timing when no offset value is applied is an SPS period after the previous PDSCH resource allocation timing.
  • an offset value may be set based on the timing given from the SPS setting cycle. In other words, only the resource allocation timing of the PDSCH to which the offset value is applied is shifted by the offset value, and the resource allocation timing of other PDSCHs is set to be the resource allocation timing based on the period given in the SPS setting.
  • the SPS period set in the SPS settings is 8 ms
  • the offset value is 1 ms.
  • the first PDSCH resource allocation timing is assumed to be 0 ms.
  • the first PDSCH resource allocation timing is 0 ms
  • the second PDSCH resource allocation timing is 7 ms
  • the third PDSCH resource allocation timing is 16 ms. By doing so, it becomes possible to shift only the second PDSCH resource allocation timing. Appropriate scheduling can be performed for a wide variety of DL data generation patterns.
  • Embodiment 6 Another method for solving the problem disclosed in Embodiment 5 will be disclosed.
  • An offset value is added to the CG cycle every n cycles set in CG.
  • the gNB transmits information regarding the offset value to be added to the CG period to the UE.
  • the information includes n, an offset value, and information specifying the period at which the offset is added out of every n period, such as a number (k), which shifts the resource allocation timing by applying the offset value out of every n period. It is preferable to use information that specifies the PUSCH, such as a number (m), and a combination of these pieces of information.
  • k and/or m is not limited to one, but may be plural.
  • RRC signaling may be used as a method of transmitting this information from the gNB to the UE. For example, it may be included in RRCReconfiguration and transmitted. For example, the information may be included in the CG settings and transmitted. As another method, the information may be included in the DCI and transmitted. The information may be included in the DCI for CG activation/deactivation instructions and transmitted. PDCCH may be used to transmit the DCI.
  • the UE receives information from the gNB. In addition to setting the CG, the UE can recognize how many CG cycles an offset value should be added to. The UE is enabled to transmit PUSCH in the CG cycle to which the offset value is added. By doing so, it becomes possible to flexibly set the CG cycle according to the type of service and the generation status of UL data.
  • FIG. 35 is a diagram showing an example of resource allocation when an offset value is added to the CG cycle every n cycles set in the CG.
  • a hatched square indicates PDCCH, and a white square indicates PUSCH.
  • the horizontal axis shows the time domain, and the vertical axis shows the frequency domain.
  • one PUSCH is set in the CG settings. Multiple PUSCHs may be configured.
  • CG configuration is performed from the gNB to the UE using RRC signaling, and CG activation/deactivation is notified using the PDCCH.
  • the unit of the offset value may be a time unit, a symbol unit, a slot unit, a subframe unit, a radio frame unit, a TTI unit, or a combination thereof.
  • the time interval between the first and second PUSCH set in CG is the CG period plus an offset.
  • the time interval between the second and third PUSCHs is a CG cycle
  • the time interval between the third and fourth PUSCHs is a CG cycle.
  • the time interval between the fourth and fifth PUSCHs set in CG is the CG period plus an offset.
  • the time interval between the 5th and 6th (not shown) PUSCH is a CG cycle
  • the time interval between the 6th and 7th (not shown) PUSCH is a CG cycle.
  • Such a setting in which an offset value is added to the k-th cycle is repeated every n times.
  • the UE transmits the PUSCH at a timing obtained by adding an offset value every n CG cycles.
  • the gNB receives the PUSCH at a timing obtained by adding an offset value every n CG cycles.
  • the gNB can make adjustments suitable for the timing of generation of UL data. Even if the generation timing of UL data is non-integer periodic, it is possible to reduce the transmission delay time of UL data by adding an appropriate offset value every n cycles. Therefore, it is possible to reduce the situation where UL data is discarded because the transmission delay time of UL data exceeds the required delay amount. It is possible to reduce deterioration in communication quality.
  • Embodiment 6 Modification 1 Another method for solving the problem disclosed in Embodiment 5 will be disclosed.
  • the UE requests the gNB to add an offset value to the cycle set in the CG.
  • Information regarding the offset request may be notified every n CG cycles.
  • the information regarding the offset request may be information indicating a request to add an offset value to the CG cycle, the offset value, or a combination thereof.
  • MAC signaling may be used to transmit information regarding the offset request from the UE to the gNB. For example, it may be included in the MAC CE and transmitted.
  • the MAC CE may be transmitted using the PUSCH set in the CG settings.
  • the UL data and information regarding the offset request may be multiplexed. The multiplexing may be performed by MAC. If UL data is not transmitted on the PUSCH set in the CG settings, only information regarding the offset request may be transmitted.
  • the UE sends information regarding a request for an offset value to be added to the cycle set in the CG to the gNB
  • the offset value is set in advance and whether or not to add the offset value is disclosed.
  • information may be sent.
  • the method for transmitting information regarding the offset value disclosed in Embodiment 6 may be applied as appropriate.
  • FIG. 36 is a diagram showing an example of resource allocation in the case of notifying a request to add an offset value to the cycle set by CG.
  • a hatched square indicates PDCCH, and a white square indicates PUSCH.
  • the horizontal axis shows the time domain, and the vertical axis shows the frequency domain.
  • one PUSCH is set in the CG settings.
  • CG configuration is performed from the gNB to the UE using RRC signaling, and CG activation/deactivation is notified using the PDCCH.
  • a MAC SDU including UL data and a MAC CE including an offset value are multiplexed and transmitted.
  • the transmission timing of the second PUSCH becomes the timing in which the offset value is added to the CG period.
  • No offset value is transmitted on the second PUSCH.
  • the transmission timing of the third PUSCH becomes the timing of the CG cycle.
  • No offset value is transmitted on the third PUSCH.
  • the transmission timing of the fourth PUSCH becomes the timing of the CG cycle.
  • the offset value is transmitted using the fourth PUSCH.
  • the transmission timing of the fifth PUSCH becomes a timing obtained by adding an offset value to the CG period. In this way, when the UE notifies the gNB of the offset value, the offset value is added to the CG cycle.
  • the UE receives the PUSCH in the CG period, and if it transmits the information regarding the offset request, it receives the PUSCH at a timing obtained by adding the offset value to the CG period. If the gNB does not receive information regarding an offset request from the UE, it receives the PUSCH at the CG period, and if it receives information regarding the offset request, it receives the PUSCH at a timing obtained by adding the offset value to the CG period. By doing so, it becomes possible to dynamically add an offset value to the CG cycle in response to an offset request from the UE. When the UE transmits information regarding the offset request to the gNB, the gNB can derive the PUSCH timing. The gNB becomes able to receive the PUSCH that the UE transmits by adding an offset value to the CG period.
  • the UE provides the gNB with information that specifies the cycle at which an offset value is added out of every n cycle, such as a number (k), and a PDSCH that shifts the resource allocation timing by applying an offset value out of every n cycle.
  • information that specifies the cycle at which an offset value is added out of every n cycle such as a number (k)
  • a PDSCH that shifts the resource allocation timing by applying an offset value out of every n cycle.
  • a combination of these pieces of information may be notified, such as information that specifies, for example, a number (m).
  • the offset value may be included in the MAC CE and notified.
  • the UE dynamically notifies the gNB of the offset request, allowing the UE to make adjustments appropriate to the timing of UL data generation.
  • the generation timing of UL data is non-integer periodic, it is possible to reduce the transmission delay time of UL data by requesting an appropriate offset and adjusting the CG period.
  • the generation cycle of UL data varies over time, by dynamically requesting an appropriate offset and adjusting the CG cycle, it is possible to reduce the transmission delay time of UL data. Therefore, it is possible to reduce the situation where UL data is discarded because the transmission delay time of UL data exceeds the required delay amount. It is possible to reduce deterioration in communication quality.
  • Embodiment 6 Modification 2 Another method for solving the problem disclosed in Embodiment 5 will be disclosed.
  • PDCCH is set every n CG cycles.
  • the gNB transmits information regarding PDCCH configuration to the UE.
  • n the number (k) of the cycle in which the PDCCH is transmitted among every n cycles, and a combination of these pieces of information.
  • k is not limited to one, but may be plural.
  • the number (k) of the period for transmitting the PDCCH may be the number of the PUSCH to which the resource allocation timing is shifted by applying an offset value.
  • the PDCCH configuration information disclosed in Embodiment 1 may be used as the information regarding the PDCCH configuration.
  • the method for transmitting information regarding the offset value added to the CG cycle disclosed in Embodiment 6 may be applied as appropriate. By doing so, the UE can receive the PDCCH set every n SPS cycles.
  • the gNB notifies the UE of the offset value to be added to the cycle set in the CG.
  • the offset value may be notified every n CG cycles.
  • the PDCCH disclosed above is used as a method of transmitting the offset value from the gNB to the UE. For example, it may be included in the DCI and transmitted.
  • the DCI is transmitted using the PDCCH disclosed above.
  • the gNB transmits an offset value to be added to the cycle set in the CG to the UE
  • another method is to set the offset value in advance and transmit information on whether or not to add the offset value. You may.
  • the method for transmitting information regarding the offset value disclosed in Embodiment 6 may be applied as appropriate.
  • the offset value transmitting method disclosed above it is preferable to apply the offset value transmitting method disclosed above as appropriate. By doing so, it is possible to reduce the amount of information to be dynamically transmitted.
  • FIG. 37 is a diagram illustrating an example of resource allocation when an offset value to be added to the cycle set in CG is notified using PDCCH.
  • a hatched square indicates PDCCH, and a white square indicates PUSCH.
  • the horizontal axis shows the time domain, and the vertical axis shows the frequency domain.
  • PDCCH is set every n CG cycles.
  • the PDCCH is transmitted from the gNB to the UE every n CG cycles.
  • PDCCH is transmitted in the second cycle every three CG cycles.
  • An offset value to be added to the CG period is transmitted by PDCCH.
  • a period during which the UE monitors the PDCCH may be set. For example, it may be a predetermined period before the PUSCH transmission timing in the CG cycle.
  • the gNB may transmit the PDCCH monitoring period to the UE.
  • the above-described PDCCH configuration information transmitting method may be applied as appropriate. It may be included in the PDCCH settings and transmitted.
  • the PDCCH monitoring period is set in the CG cycle in which the PDCCH is set.
  • the PDCCH is transmitted in the second cycle set in the CG, and the offset value is transmitted using the PDCCH.
  • the UE monitors the PDCCH during the PDCCH monitoring period.
  • the UE can receive the offset value by receiving the PDCCH.
  • the transmission timing of the second PUSCH becomes the timing at which the offset value is added to the first CG cycle.
  • the transmission timing of the first and third PUSCHs corresponds to the CG cycle.
  • PDCCH is transmitted in the fifth cycle set by CG, and an offset value is transmitted using PDCCH.
  • the UE monitors the PDCCH during the PDCCH monitoring period.
  • the UE can receive the offset value by receiving the PDCCH.
  • the transmission timing of the fifth PUSCH becomes the timing obtained by adding the offset value to the fourth CG cycle.
  • the transmission timing of the fourth and sixth (not shown) PUSCHs corresponds to the CG cycle.
  • the gNB transmits the offset value on the configured PDCCH. If the UE does not receive the offset value from the gNB, it transmits the PUSCH in the CG cycle, and if it receives the offset value, it transmits the PUSCH at a timing obtained by adding the offset value to the CG cycle. When the gNB does not transmit an offset value, it receives the PUSCH at the CG cycle, and when it transmits the offset value, it receives the PUSCH at a timing obtained by adding the offset value to the CG cycle. By doing so, the gNB can receive the PUSCH transmitted by the UE at the timing to which the offset value is added.
  • the cycle number (k) for notifying the PDCCH may be different from the PUSCH number for shifting the resource allocation timing by applying an offset value.
  • the information identifying the PDSCH to which the resource allocation timing is shifted by applying the offset value may be the number of the PUSCH to which the resource allocation timing is shifted by applying the offset value, or may be the number of the PUSCH to which the resource allocation timing is shifted by applying the offset value, or may be an offset value from the number of the cycle in which the PDCCH is transmitted. There may be.
  • the information is transmitted from the gNB to the UE.
  • a PDCCH configuration notification method may be applied as appropriate.
  • a method of transmitting an offset value may be applied as appropriate. It may also be transmitted using PDCCH. Information specifying the PDSCH to which the resource allocation timing is shifted by applying the offset value may be notified together with the offset value.
  • the PDCCH is transmitted in the first cycle set in the CG, and the offset value and the PDSCH offset for shifting the resource allocation timing by applying the offset value are transmitted on the PDCCH.
  • the offset of the PDSCH that shifts the resource allocation timing by applying an offset value is 1, the transmission timing of the second PUSCH becomes the timing at which the offset value is added to the first CG cycle.
  • the transmission timing of the first and third PUSCHs corresponds to the CG cycle.
  • the PDCCH is transmitted in the fourth cycle set in the CG, and on the PDCCH, an offset value and a PDSCH offset for shifting the resource allocation timing by applying the offset value are transmitted.
  • the transmission timing of the fifth PUSCH becomes the timing when the offset value is added to the fourth CG cycle.
  • the transmission timing of the fourth and sixth PUSCHs corresponds to the CG cycle.
  • the gNB can make adjustments suitable for the timing of UL data generation. Furthermore, by transmitting the offset value on the PDCCH, the UE can acquire the offset value early. Even if the generation timing of UL data is non-integer periodic, it is possible to reduce the transmission delay time of UL data by setting an appropriate offset every n cycles. Therefore, it is possible to reduce the situation where UL data is discarded because the transmission delay time of UL data exceeds the required delay amount. It is possible to reduce deterioration in communication quality.
  • the offset value is a positive value.
  • the offset value does not have to be a positive value. It may be a negative value. In the case of a negative value, the PUSCH resource allocation timing to which the offset value is applied is shifted forward by the offset value.
  • the PUSCH resource allocation timing when no offset value is applied is a CG period after the previous PUSCH resource allocation timing.
  • an offset value may be set based on the timing given from the CG setting period. In other words, only the resource allocation timing of the PUSCH to which the offset value is applied is shifted by the offset value, and the resource allocation timing of other PUSCHs is set to be the resource allocation timing based on the period given in the CG setting.
  • the CG cycle set in CG settings is 8 ms, and the offset value is 1 ms.
  • the first PUSCH resource allocation timing is assumed to be 0 ms.
  • the first PUSCH resource allocation timing is 0ms
  • the second PUSCH resource allocation timing is 7ms
  • the third PUSCH resource allocation timing is 16ms. By doing so, it becomes possible to shift only the second PUSCH resource allocation timing. Appropriate scheduling can be performed for a wide variety of UL data generation patterns.
  • Embodiment 7 Mobility processing may be performed between cells due to movement of the UE.
  • the UE performs RA (Random Access) processing to synchronize with the destination cell.
  • RA Random Access
  • the gNB that has the source cell source gNB (S-gNB)
  • target gNB target gNB
  • S-gNB source gNB
  • T-gNB target gNB
  • DL data is transferred to the S-gNB in the mobility process.
  • the transferred DL data is buffered in the T-gNB until the RA processing is completed between the UE and the gNB and data communication is resumed.
  • the DL data transmission timing at the T-gNB is different from the DL data transmission timing at the S-gNB due to RA processing and transfer processing. For this reason, even if the SPS settings are set to suit the DL data transmission timing at S-gNB, the DL data transmission timing will differ from the T-gNB, resulting in a delay in DL data transmission. Problems may arise.
  • the UL data transmission timing to the T-gNB is different from the UL data transmission timing to the S-gNB due to the RA processing. Therefore, even if the CG settings are set to be suitable for the UL data transmission timing to the S-gNB, the timing will be different from the UL data transmission timing to the T-gNB, resulting in a delay in the UL data transmission. This problem may arise.
  • Embodiment 7 discloses a method for solving such problems.
  • the T-gNB transmits DL data in the buffer to the UE using dynamic scheduling.
  • the T-gNB After performing RA processing with the UE for mobility, the T-gNB performs dynamic scheduling for the UE.
  • the T-gNB performs PDSCH scheduling for DL data transmission using the PDCCH.
  • the UE receives the dynamic grant after RA processing with the T-gNB.
  • the UE monitors the PDCCH and receives the PDCCH including scheduling information for its own UE.
  • the UE receives scheduling information included in the PDCCH, and receives DL data on the PDSCH indicated by the scheduling information.
  • the T-gNB causes the UE to transmit the UL data in the UE's buffer using dynamic scheduling.
  • the T-gNB After performing RA processing with the UE for mobility, the T-gNB performs dynamic scheduling for the UE.
  • the T-gNB performs PUSCH scheduling for UL data transmission using the PDCCH.
  • the UE receives the dynamic grant after RA processing with the T-gNB.
  • the UE monitors the PDCCH and receives the PDCCH including scheduling information for its own UE.
  • the UE receives scheduling information included in the PDCCH and transmits UL data on the PUSCH.
  • the SR may be sent from the UE to the T-gNB.
  • the UE may transmit the SR during or after RA processing.
  • the T-gNB that has received the SR performs dynamic scheduling for the UE.
  • SR from the UE to the T-gNB may not be necessary. For example, if a bearer such as XR that periodically generates UL data is configured, an SR from the UE to the T-gNB may not be necessary in the mobility process. In or after the RA processing in the mobility processing, the SR from the UE to the T-gNB may not be necessary. If a bearer that periodically generates UL data is configured, the T-gNB performs dynamic scheduling for the UE in mobility processing even without receiving an SR. If a bearer in which UL data is periodically generated is configured, the UE may monitor the PDCCH from the T-gNB even if it does not transmit an SR to the T-gNB. By doing so, the T-gNB can perform PUSCH scheduling for the UE at an early stage.
  • the T-gNB transmits information indicating whether or not SR is necessary in mobility processing to the UE. For example, in the mobility process, the information is included in the HO REQUEST ACK message sent from the T-gNB to the S-gNB, and the information is included in the RRCReconfiguraton message and sent from the S-gNB to the UE. By doing so, the T-gNB can set whether or not SR is necessary.
  • the T-gNB may continue dynamic scheduling after RA processing until the T-gNB configures CORESET for the UE. Alternatively, it may continue until the T-gNB configures SPS for the UE. Alternatively, the T-gNB may continue dynamic scheduling until it configures the CG for the UE. Alternatively, dynamic scheduling may be continued until the transmission of the DL data stored in the buffer in the mobility process at the T-gNB is completed. It is possible to avoid the UE continuing to monitor the PDCCH for dynamic scheduling after RA processing. The power consumption of the UE can be reduced.
  • the S-gNB deactivates the configured SPS and/or CG.
  • the S-gNB sends SPS and/or CG deactivation to the UE.
  • the UE that receives the SPS and/or CG deactivation from the S-gNB stops processing the SPS and/or CG.
  • the UE does not release the SPS and/or CG configuration.
  • the T-gNB activates the deactivated SPS and/or CG settings during or after the RA processing.
  • the T-gNB sends activation of SPS and/or CG to the UE.
  • the UE that has received the SPS and/or CG activation from the T-gNB executes the SPS and/or CG process again.
  • a method for notifying deactivation of SPS and/or CG from S-gNB to UE is disclosed.
  • RRC signaling may be used for this notification.
  • the notification may be included and transmitted in RRCReconfiguration transmitted from the S-gNB to the UE in mobility processing. Notifications can be made along with mobility processing instructions.
  • PDCCH may be used for the notification.
  • the notification may include the deactivation of SPS and/or CG in the DCI. Dynamic notifications can be sent according to the timing of deactivation.
  • MAC signaling may be used for the notification.
  • the MAC CE may include deactivation of SPS and/or CG and may be transmitted on a PDSCH configured in SPS. The UE does not need to receive the PDCCH, making processing easier.
  • the UE can receive deactivation of SPS and/or CG from the S-gNB to the UE. Deactivation of SPS and/or CG becomes possible in mobility processing.
  • a method for notifying activation of SPS and/or CG from T-gNB to UE is disclosed.
  • RRC signaling may be used for this notification.
  • the T-gNB transmits RRCReconfiguration to the UE.
  • the notification may be included in the RRCReconfiguration and transmitted.
  • the T-gNB can reliably notify the UE after connecting.
  • PDCCH may be used for the notification.
  • the notification may include the activation of SPS and/or CG in the DCI. Dynamic notifications can be made according to the activation timing.
  • the UE can receive SPS and/or CG activation from the T-gNB. Activation of SPS and/or CG becomes possible in mobility processing.
  • deactivation and/or activation may be automatically performed without notification.
  • deactivation and activation of SPS and/or CG for the UE subject to mobility processing may be automatically performed.
  • the conditions for performing deactivation and activation may be statically determined by standards or the like. By doing so, notification to the UE can be made unnecessary. Signaling load can be reduced.
  • the T-gNB can perform SPS and/or CG for the UE at an early stage.
  • DL data or UL data in the buffer of the T-gNB or UE can be transmitted early.
  • Embodiment 7 Another method for solving the problem disclosed in Embodiment 7 will be disclosed.
  • the S-gNB may send a release of SPS and/or CG configuration to the UE.
  • the UE that receives the release of the SPS and/or CG configuration from the S-gNB releases the SPS and/or CG configuration.
  • the release may be performed without notification from the S-gNB.
  • the conditions for releasing the settings may be statically determined by a standard or the like.
  • the T-gNB configures SPS and/or CG during or after RA processing by mobility processing.
  • the T-gNB notifies the UE of the SPS and/or CG settings. Additionally, the T-gNB may notify the UE of the activation of SPS and/or CG.
  • the UE that has received the SPS and/or CG configuration and activation from the T-gNB executes SPS and/or CG processing.
  • the T-gNB discloses to the UE how to configure SPS and/or CG.
  • the T-gNB transmits the SPS and/or CG configuration to the UE via the S-gNB.
  • the T-gNB includes the settings in the HO REQUEST ACK and transmits them to the S-gNB.
  • the S-gNB includes the configuration received from the T-gNB in RRCReconfiguration and transmits it to the UE.
  • the UE receives the SPS and/or CG configuration from the T-gNB from the S-gNB.
  • the T-gNB should send activation/deactivation of SPS and/or CG to the UE using PDCCH after RA processing by mobility processing. .
  • the UE monitors the PDCCH and receives activation/deactivation of SPS and/or CG using the PDCCH. This enables the UE to execute SPS and/or CG processing at the T-gNB.
  • a method is disclosed in which the T-gNB configures SPS and/or CG for the UE through mobility processing.
  • the T-gNB transmits the SPS and/or CG configuration to the UE via the S-gNB.
  • the T-gNB includes the settings in the HO REQUEST ACK and transmits them to the S-gNB.
  • the S-gNB includes the configuration received from the T-gNB in RRCReconfiguration and transmits it to the UE.
  • the UE receives the SPS and/or CG configuration from the T-gNB from the S-gNB.
  • the T-gNB should send activation/deactivation of SPS and/or CG to the UE using PDCCH after RA processing by mobility processing. .
  • the UE monitors the PDCCH and receives activation/deactivation of SPS and/or CG using the PDCCH. This enables the UE to execute SPS and/or CG processing at the T-gNB.
  • the T-gNB transmits SPS and/or CG settings to the UE via the S-gNB in mobility processing
  • the settings are made before forwarding processing or RA processing in mobility processing, so DL data or There remains the problem that the transmission timing of UL data is shifted.
  • another method is disclosed in which the T-gNB configures SPS and/or CG for the UE using mobility processing.
  • the T-gNB transmits the SPS and/or CG configuration to the UE.
  • the T-gNB transmits RRCReconfiguration to the UE.
  • the settings may be included in the RRCReconfiguration and transmitted. The T-gNB can reliably notify the UE after connecting.
  • the T-gNB transmits the SPS and/or CG configuration to the UE using RRC signaling, and then activates the SPS and/or CG using PDCCH. It is a good idea to send activation/deactivation.
  • the UE monitors the PDCCH and receives the activation/deactivation of the SPS and/or CG using the PDCCH. This enables the UE to execute SPS and/or CG processing at the T-gNB.
  • the T-gNB transmits the SPS and/or CG settings after RA processing to the UE in mobility processing
  • the T-gNB discloses another method of setting SPS and/or CG to the UE through mobility processing.
  • the T-gNB transmits the SPS and/or CG configuration to the UE in the RA process.
  • MSG2 in RA processing may be used for this transmission.
  • MAC signaling may be used in MSG2.
  • the T-gNB includes the SPS and/or CG settings in the MAC CE and transmits it to the UE in MSG2. It is preferable to send activation/deactivation of the settings together with the SPS and/or CG settings. Alternatively, the transmission of the SPS and/or CG settings may be used as activation of the settings.
  • the UE receives the SPS and/or CG configuration in the RA process with the T-gNB.
  • the gNB can use the SPS and/or CG set by the T-gNB for DL data transmission/reception or UL data transmission/reception with the UE.
  • T-gNB When setting SPS and/or CG, T-gNB can take into account the shift in the transmission timing of DL data or UL data due to forwarding processing or RA processing in mobility processing. Furthermore, since SPS and/or CG is configured in the RA process, a UE subject to mobility processing can receive the SPS and/or CG configuration early. By using MSG2 for RA processing, it becomes possible to receive the SPS and/or CG settings at the earliest timing when the UE can communicate with the T-gNB. This makes it possible to use SPS and/or CG when transmitting and receiving DL data or UL data between the UE and the T-gNB. Therefore, it is possible to reduce delays due to shifts in transmission timing of DL data or UL data in mobility processing.
  • the T-gNB transmits the SPS and/or CG configuration to the UE via the S-gNB in the mobility process, and the T-gNB sends modification information for the SPS and/or CG configuration in the RA process. may be transmitted to the UE.
  • the transmission method it is preferable to apply the method disclosed above. It is preferable to transmit using MSG2.
  • An offset value may be provided as correction information.
  • the T-gNB adds the offset value to the SPS start timing set via the S-gNB.
  • the UE that has received the offset value from the T-gNB adds the offset value to the start timing of the SPS and/or CG received via the S-gNB.
  • the offset value may be added to the SPS and/or CG resource allocation timing immediately after receiving the offset value, instead of the start timing.
  • the T-gNB can modify the SPS and/or CG settings in consideration of the shift in the transmission timing of DL data or UL data due to forwarding processing or RA processing in mobility processing.
  • the T-gNB enables the UE to receive the SPS and/or CG configuration modification information at an early stage.
  • MSG2 of RA processing it becomes possible to receive correction information for SPS and/or CG settings at the earliest timing when the UE can communicate with the T-gNB. This makes it possible to use SPS and/or CG setting modification information when transmitting and receiving DL data or UL data between the UE and the T-gNB.
  • FIG. 38 is a diagram illustrating an example sequence of mobility processing in which modification information for SPS and/or CG settings is transmitted in RA processing.
  • step ST3801 data communication is performed between the UPF, S-gNB, and UE.
  • SPS and/or CG may be configured between the S-gNB and the UE.
  • Data communication may be performed using the settings.
  • the UE performs measurements in step ST3802, and reports the measurement results to the S-gNB in step ST3803.
  • the S-gNB determines handover (HO: Hand Over), which is mobility processing, for the UE to the T-gNB.
  • step ST3805 the S-gNB transmits a HO REQUEST to the T-gNB.
  • HO Hand Over
  • the HO REQUEST may include SPS and/or CG settings.
  • the settings may include the setting information disclosed in Embodiment 1 to Embodiment 6 Modification 2.
  • the T-gNB can recognize the SPS and/or CG settings made at the S-gNB.
  • the T-gNB performs admission control.
  • the T-gNB configures SPS and/or CG for the UE that is the target of mobility.
  • the settings of SPS and/or CG by the S-gNB received from the S-gNB may be considered.
  • the T-gNB transmits HO REQUEST ACK to the S-gNB. Include the SPS and/or CG settings by T-gNB in HO REQUEST ACK.
  • the S-gNB notifies the UE of the mobility processing setting instruction. It is preferable to make this notification using RRCReconfiguration. It is preferable to include the SPS and/or CG settings by the T-gNB received from the T-gNB in RRCReconfiguration.
  • the UE may use the SPS and/or CG configuration in communication with the T-gNB.
  • the S-gNB that has transmitted the mobility processing setting instruction to the UE in step ST3808 transmits the data transmission status to the T-gNB in step ST3809. Transmit using SN STATUS TRANSFER.
  • the S-gNB starts transferring the DL data received from the UPF to the T-gNB.
  • the UE that has received the mobility processing setting instruction in step ST3808 starts mobility processing to the T-gNB.
  • the UE transmits PRACH to start RA processing with the T-gNB.
  • the T-gNB that has received the PRACH transmits MSG2 to the UE in step ST3813.
  • the T-gNB may include correction information for SPS and/or CG settings in MSG2.
  • the setting modification information may include the setting modification information disclosed in Embodiment 1 to Embodiment 6 Modified Example 2.
  • the T-gNB When the T-gNB receives a PRACH from the UE, it derives how much time it will take to complete the RA processing and adjusts the time by deriving correction information for the SPS and/or CG settings. good.
  • the modification information may be, for example, an offset value added to the start timing of the SPS and/or CG received via the S-gNB disclosed above.
  • the settings of SPS and/or CG in T-gNB can be set to SPS and/or CG that is suitable for the transmission timing in T-gNB, taking into account the transmission timing shift due to transfer processing and RA processing due to mobility processing. /or CG can be adjusted.
  • the UE that has received the SPS and/or CG setting modification information in step ST3813 applies the modification and starts SPS and/or CG.
  • step ST3814 the UE notifies the T-gNB of RRCReconfiguration complete.
  • step ST3815 the UE performs data communication with the T-gNB. It is preferable to use SPS and/or CG to which the modification information received in step ST3813 is applied for the data communication.
  • step ST3816 the T-gNB transmits UL data to the UPF.
  • steps ST3817 and ST3818 path switching is performed between the T-gNB, AMF, and UPF.
  • step ST3819 an End marker is transmitted from the UPF to the T-gNB via the S-gNB to notify the end of the transfer data.
  • step ST3820 DL data is transmitted from the UPF to the T-gNB.
  • step ST3821 the AMF transmits PATH SWITCH REQUEST ACK to the T-gNB.
  • step ST3822 the T-gNB transmits UE CONTEXT RELEASE to the S-gNB.
  • the method disclosed above in which the T-gNB transmits correction information for SPS and/or CG settings to the UE in RA processing is based on the method of deactivating the SPS and/or CG set by the S-gNB during mobility processing. However, it may be applied as appropriate to the method of activation using T-gNB.
  • the T-gNB may send the configuration modification information to the UE together with the activation of the SPS and/or CG.
  • the UE transmits and receives DL data or UL data using the SPS and/or CG that has been modified using the SPS and/or CG activation and the configuration modification information received from the T-gNB.
  • scheduling takes into consideration the shift in the transmission timing of DL data or UL data due to DL data transfer processing in UE mobility processing and RA processing between UE and gNB. It becomes possible. Therefore, even if mobility processing is performed, it is possible to reduce the delay caused in the transmission of DL data or UL data. It is possible to reduce the situation where DL data or UL data is discarded because the transmission delay time exceeds the required delay amount. It is possible to reduce deterioration in communication quality.
  • gNB may be MCG or SCG. Further, the method disclosed in Embodiment 7 may be applied to changing the PSCell. Similar effects can be obtained when changing the PSCell.
  • the UE may notify the gNB of preference information regarding CG settings.
  • Preference information regarding CG settings includes CG period, offset, time domain resource allocation, frequency domain resource allocation, and the like.
  • the preference information is used in Embodiment 2 to Embodiment 2 Modification 3, Embodiment 4 to Embodiment 4 Modification 4, Embodiment 6 to Embodiment 6 Modification 2, and Embodiment 7. It may be disclosed information. A combination of these may also be used.
  • the gNB can recognize preferred CG settings in the UE.
  • a slot is an example of a time unit of communication in the fifth generation communication system.
  • a slot may be a scheduling unit.
  • the processing described in units of slots may be performed in units of TTI, subframes, subslots, or minislots.
  • the methods disclosed in each of the above embodiments and their modifications may be applied to IAB. It may also be applied to communications between IAB donors and IAB nodes. It may be applied to processing using Uu in IAB.
  • the methods disclosed in each of the above embodiments and their modifications may be applied to SL communication.
  • it may be applied to communication between a UE and a NW via a relay. It may also be applied to communication between the UE and NW using L2 relay.
  • the methods disclosed in each of the above-described embodiments and their modifications may be applied not only to V2X (vehicle-to-everything) services but also to services that use SL communication.
  • the present invention may be applied to SL communication used in various services such as proximity-based service, public safety, communication between wearable terminals, and communication between devices in factories.
  • a base station capable of periodic communication that transmits and receives data to and from a communication terminal at a predetermined period, When transmitting downlink data to the communication terminal in the periodic communication, a physical downlink control channel and a physical downlink shared channel to be used in the first cycle that is the transmission cycle of the downlink data are allocated, and the downlink data to be transmitted to the communication terminal is allocated.
  • the communication terminal changes the physical downlink shared channel used in the first period according to fluctuations in the amount of data, and transmits the result of the change to the physical downlink control channel already assigned to the first period.
  • a physical downlink control channel and a physical uplink shared channel to be used in the second cycle which is the transmission cycle of the uplink data, are allocated and the uplink data transmitted by the communication terminal is
  • the communication terminal changes the physical uplink shared channel used in the second period according to fluctuations in the amount of data, and transmits the result of the change to the physical downlink control channel already assigned to the second period.
  • a base station capable of periodic communication that transmits and receives data to and from a communication terminal at a predetermined period, When transmitting downlink data to the communication terminal in the periodic communication, a physical downlink control channel and a physical downlink shared channel to be used in the first cycle that is the transmission cycle of the downlink data are allocated, and the downlink data to be transmitted to the communication terminal is allocated.
  • the communication terminal changes the physical downlink shared channel used in the first period according to fluctuations in the amount of data, and transmits the result of the change to the physical downlink shared channel already assigned to the first period.
  • a physical downlink control channel and a physical uplink shared channel to be used in the second cycle which is the transmission cycle of the uplink data, are allocated and the uplink data transmitted by the communication terminal is
  • the communication terminal changes the physical uplink shared channel used in the second period according to fluctuations in the amount of data, and transmits the result of the change to the physical downlink control channel already assigned to the second period.
  • notify the A base station characterized by: (Appendix 3)
  • an offset value based on the relationship between the downlink data generation cycle and the first cycle is added to the first cycle to determine the timing of the downlink data generation and the downlink data generation timing.
  • the base station according to supplementary note 1 or 2, characterized in that: (Additional note 4) When the uplink data occurs periodically, an offset value based on the relationship between the uplink data generation cycle and the second cycle is added to the second cycle, and the uplink data generation timing and the upstream data Reduces the difference in transmission timing,
  • the base station according to appendix 1, 2 or 3, characterized in that: (Appendix 5) Equipped with a plurality of base stations described in any one of Supplementary Notes 1 to 4,
  • the second base station allocates a physical downlink control channel and a physical downlink shared channel to be used in the transmission cycle of downlink data to the connection destination switching terminal, which is a communication terminal that switches connection destinations, and also A physical downlink control channel and a physical uplink shared channel used in the data transmission cycle are allocated, and the allocation result of the physical
  • 202 Communication terminal device (mobile terminal), 210 Communication system, 213,240-1,240-2,750 Base station device (NR base station, base station), 214 5G core section, 215 Central unit, 216 Distributed unit, 217 Control plane central unit, 218 User plane central unit, 219 TRP, 301, 403 Protocol processing section, 302 Application section, 304, 405 Encoder section, 305, 406 Modulation section, 306, 407 Frequency conversion section, 307-1 ⁇ 307-4, 408-1 to 408-4 antenna, 308, 409 demodulation unit, 309, 410 decoder unit, 310, 411, 526 control unit, 401 EPC communication unit, 402 other base station communication unit, 412 5GC communication unit, 521 Data Network communication unit, 522 Base station communication unit, 523 User plane communication unit, 523-1 PDU processing unit, 523-2 Mobility anchoring unit, 525 Control plane control unit, 525-1 NAS security unit, 525-2 Idle State mobility management unit, 527 session management unit, 527-1 P

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

基地局は、予め定められた周期で通信端末との間でデータを送受信する周期的通信が可能であり、下りデータを送信する場合、下りデータの送信周期である第1の周期で使用する物理下り制御チャネルおよび物理下り共有チャネルを割り当て、下りデータ量の変動に応じて第1の周期で使用する物理下り共有チャネルを変更するとともに、変更結果を第1の周期に割り当て済みの物理下り制御チャネルにより通信端末に通知し、上りデータを受信する場合、上りデータの送信周期である第2の周期で使用する物理下り制御チャネルおよび物理上り共有チャネルを割り当て、上りデータ量の変動に応じて第2の周期で使用する物理上り共有チャネルを変更するとともに、変更結果を第2の周期に割り当て済みの物理下り制御チャネルにより通信端末に通知する。

Description

基地局および通信システム
 本開示は、無線通信技術に関する。
 移動体通信システムの規格化団体である3GPP(3rd Generation Partnership Project)において、ロングタームエボリューション(Long Term Evolution:LTE)、第4世代無線アクセスシステムの1つであるロングタームエボリューションアドヴァンスド(Long Term Evolution Advanced:LTE-A)(非特許文献1参照)の後継として、第5世代(以下「5G」という場合がある)無線アクセスシステムが検討されている(例えば、非特許文献2)。5Gの無線区間の技術は「New Radio Access Technology」と称される(「New Radio」は「NR」と略称される)。NRシステムは、LTEシステム、LTE-Aシステムを基にして検討が進められている。
 例えば、欧州では、METISという団体で5Gの要求事項がまとめられている(非特許文献3参照)。5G無線アクセスシステムでは、LTEシステムに対して、システム容量は1000倍、データの伝送速度は100倍、データの処理遅延は5分の1(1/5)、通信端末の同時接続数は100倍として、更なる低消費電力化、および装置の低コスト化を実現することが要件として挙げられている(非特許文献3参照)。
 このような要求を満たすために、3GPPでは、5Gの規格検討が進められている(非特許文献4~23参照)。
 NRのアクセス方式としては、下り方向はOFDM(Orthogonal Frequency Division Multiplexing)、上り方向はOFDM、DFT-s-OFDM(Discrete Fourier Transform-spread-OFDM)が用いられる。また、5Gシステムは、LTE、LTE-A同様、回線交換を含まず、パケット通信方式のみになる。
 NRでは、伝送速度向上、処理遅延低減のために、LTEに比べて高い周波数の使用が可能となっている。
 LTEに比較して高い周波数を用いる場合があるNRにおいては、狭いビーム状の送受信範囲を形成する(ビームフォーミング)とともにビームの向きを変化させる(ビームスイーピング)ことで、セルカバレッジの確保が図られる。
 非特許文献1(5章)に記載される、3GPPでの、NRシステムにおけるフレーム構成に関する決定事項について、図1を用いて説明する。図1は、NR方式の通信システムで使用される無線フレームの構成を示す説明図である。図1において、1つの無線フレーム(Radio frame)は10msである。無線フレームは10個の等しい大きさのサブフレーム(Subframe)に分割される。NRのフレーム構成においては、1つまたは複数のヌメロロジ(Numerology)すなわち、1つまたは複数のサブキャリア間隔(Subcarrier spacing:SCS)がサポートされている。NRにおいては、サブキャリア間隔によらず、1サブフレームは1msであり、また、1スロットは14シンボルで構成される。また、1サブフレームに含まれるスロット数は、サブキャリア間隔15kHzにおいては1つであり、他のサブキャリア間隔におけるスロット数は、サブキャリア間隔に比例して多くなる(非特許文献11(3GPP TS38.211)参照)。
 3GPPでの、NRシステムにおけるチャネル構成に関する決定事項が、非特許文献2(5章)および非特許文献11に記載されている。
 物理報知チャネル(Physical Broadcast Channel:PBCH)は、基地局装置(以下、単に「基地局」という場合がある)から移動端末装置(以下、単に「移動端末」、という場合がある)などの通信端末装置(以下、「通信端末」、または「端末」と称する場合がある)への下り送信用のチャネルである。PBCHは、下り同期信号(Downlink Synchronization Signal)とともに送信される。
 NRにおける下り同期信号には、第一同期信号(Primary Synchronization Signal:P-SS)と、第二同期信号(Secondary Synchronization Signal:S-SS)とがある。同期信号は、同期信号バースト(Synchronization Signal Burst:以下、SSバーストと称する場合がある)として、所定の周期で、所定の継続時間をもって基地局から送信される。SSバーストは、基地局のビーム毎の同期信号ブロック(Synchronization Signal Block:以下、SSブロックと称する場合がある)により構成される。
 基地局はSSバーストの継続時間内において各ビームのSSブロックを、ビームを変えて送信する。SSブロックは、P-SS、S-SS、およびPBCHによって構成される。
 物理下り制御チャネル(Physical Downlink Control Channel:PDCCH)は、基地局から通信端末への下り送信用のチャネルである。PDCCHは、下り制御情報(Downlink Control Information:DCI)を運ぶ。DCIには、後述のトランスポートチャネルの1つである下り共有チャネル(Downlink Shared Channel:DL-SCH)のリソース割り当て(allocation)情報、後述のトランスポートチャネルの1つであるページングチャネル(Paging Channel:PCH)のリソース割り当て(allocation)情報、DL-SCHに関するHARQ(Hybrid Automatic Repeat reQuest)情報などが含まれる。また、DCIに、上りスケジューリンググラント(Uplink Scheduling Grant)が含まれる場合がある。DCIに、上り送信に対する応答信号であるAck(Acknowledgement)/Nack(Negative Acknowledgement)が含まれる場合がある。また、スロット内におけるDL/ULの切替えを柔軟に行うために、DCIに、スロット構成通知(Slot Format Indication:SFI)が含まれる場合がある。PDCCH、または、DCIは、L1/L2制御信号とも呼ばれる。
 NRにおいて、PDCCHが含まれる候補となる時間・周波数領域が設けられている。この領域は、制御リソースセット(Control resource set:CORESET)と称される。通信端末は、CORESETをモニタリングし、PDCCHを取得する。
 物理下り共有チャネル(Physical Downlink Shared Channel:PDSCH)は、基地局から通信端末への下り送信用のチャネルである。PDSCHには、トランスポートチャネルである下り共有チャネル(DL-SCH)、およびトランスポートチャネルであるPCHがマッピングされている。
 物理上り制御チャネル(Physical Uplink Control Channel:PUCCH)は、通信端末から基地局への上り送信用のチャネルである。PUCCHは、上り制御情報(Uplink Control Information:UCI)を運ぶ。UCIには、下り送信に対する応答信号(response signal)であるAck/Nack、CSI(Channel State Information)、スケジューリングリクエスト(Scheduling Request:SR)などが含まれる。CSIは、RI(Rank Indicator)、PMI(Precoding Matrix Indicator)、CQI(Channel Quality Indicator)レポートで構成される。RIとは、MIMO(Multiple Input Multiple Output)におけるチャネル行列のランク情報である。PMIとは、MIMOにて用いるプリコーディングウェイト行列の情報である。CQIとは、受信したデータの品質、もしくは通信路品質を示す品質情報である。UCIは、後述のPUSCHによって運ばれる場合がある。PUCCH、または、UCIは、L1/L2制御信号とも呼ばれる。
 物理上り共有チャネル(Physical Uplink Shared Channel:PUSCH)は、通信端末から基地局への上り送信用のチャネルである。PUSCHには、トランスポートチャネルの1つである上り共有チャネル(Uplink Shared Channel:UL-SCH)がマッピングされている。
 物理ランダムアクセスチャネル(Physical Random Access Channel:PRACH)は、通信端末から基地局への上り送信用のチャネルである。PRACHは、ランダムアクセスプリアンブル(random access preamble)を運ぶ。
 下り参照信号(リファレンスシグナル(Reference Signal):RS)は、NR方式の通信システムとして既知のシンボルである。以下の4種類の下りリファレンスシグナルが定義されている。UE固有参照信号(UE-specific Reference Signal)であるデータ復調用参照信号(Demodulation Reference Signal:DM-RS)、位相追尾参照信号(Phase Tracking Reference Signal:PT-RS)、測位参照信号(Positioning Reference Signal:PRS)、チャネル状態情報参照信号(Channel State Information Reference Signal:CSI-RS)である。通信端末の物理レイヤの測定として、リファレンスシグナルの受信電力(Reference Signal Received Power:RSRP)測定、リファレンスシグナルの受信品質(Reference Signal Received Quality:RSRQ)測定がある。
 上り参照信号についても同様に、NR方式の通信システムとして既知のシンボルである。以下の3種類の上りリファレンスシグナルが定義されている。データ復調用参照信号(Demodulation Reference Signal:DM-RS)、位相追尾参照信号(Phase Tracking Reference Signal:PT-RS)、サウンディング用参照信号(Sounding Reference Signal:SRS)である。
 非特許文献2(5章)に記載されるトランスポートチャネル(Transport Channel)について、説明する。下りトランスポートチャネルのうち、報知チャネル(Broadcast Channel:BCH)は、その基地局(セル)のカバレッジ全体に報知される。BCHは、物理報知チャネル(PBCH)にマッピングされる。
 下り共有チャネル(Downlink Shared Channel:DL-SCH)には、HARQによる再送制御が適用される。DL-SCHは、基地局(セル)のカバレッジ全体への報知が可能である。DL-SCHは、ダイナミックあるいは準静的(Semi-static)なリソース割り当てをサポートする。準静的なリソース割り当ては、セミパーシステントスケジューリング(Semi-Persistent Scheduling)ともいわれる。DL-SCHは、通信端末の低消費電力化のために通信端末の間欠受信(Discontinuous reception:DRX)をサポートする。DL-SCHは、物理下り共有チャネル(PDSCH)へマッピングされる。
 ページングチャネル(Paging Channel:PCH)は、通信端末の低消費電力を可能とするために通信端末のDRXをサポートする。PCHは、基地局(セル)のカバレッジ全体への報知が要求される。PCHは、動的にトラフィックに利用できる物理下り共有チャネル(PDSCH)のような物理リソースへマッピングされる。
 上りトランスポートチャネルのうち、上り共有チャネル(Uplink Shared Channel:UL-SCH)には、HARQによる再送制御が適用される。UL-SCHは、ダイナミックあるいは準静的なリソース割り当てをサポートする。準静的なリソース割り当ては、設定済みグラント(Configured Grant)ともいわれる。UL-SCHは、物理上り共有チャネル(PUSCH)へマッピングされる。
 ランダムアクセスチャネル(Random Access Channel:RACH)は、制御情報に限られている。RACHは、衝突のリスクがある。RACHは、物理ランダムアクセスチャネル(PRACH)へマッピングされる。
 HARQについて説明する。HARQとは、自動再送要求(Automatic Repeat reQuest:ARQ)と誤り訂正(Forward Error Correction)との組合せによって、伝送路の通信品質を向上させる技術である。HARQには、通信品質が変化する伝送路に対しても、再送によって誤り訂正が有効に機能するという利点がある。特に、再送にあたって初送の受信結果と再送の受信結果との合成をすることで、更なる品質向上を得ることも可能である。
 再送の方法の一例を説明する。受信側にて、受信データが正しくデコードできなかった場合、換言すればCRC(Cyclic Redundancy Check)エラーが発生した場合(CRC=NG)、受信側から送信側へ「Nack」を送信する。「Nack」を受信した送信側は、データを再送する。受信側にて、受信データが正しくデコードできた場合、換言すればCRCエラーが発生しない場合(CRC=OK)、受信側から送信側へ「Ack」を送信する。「Ack」を受信した送信側は次のデータを送信する。
 再送の方法の他の例を説明する。受信側にて、CRCエラーが発生した場合、受信側から送信側へ再送要求を行う。再送要求は、NDI(New Data Indicator)のトグルによって行われる。再送要求を受信した送信側は、データを再送する。受信側にて、CRCエラーが発生しない場合、再送要求は行われない。送信側は、再送要求を所定の時間受信しなかった場合、受信側にてCRCエラーが発生しなかったとみなす。
 非特許文献1(6章)に記載される論理チャネル(ロジカルチャネル:Logical Channel)について、説明する。報知制御チャネル(Broadcast Control Channel:BCCH)は、システム制御情報を報知するための下りチャネルである。論理チャネルであるBCCHは、トランスポートチャネルである報知チャネル(BCH)、あるいは下り共有チャネル(DL-SCH)へマッピングされる。
 ページング制御チャネル(Paging Control Channel:PCCH)は、ページング情報(Paging Information)およびシステム情報(System Information)の変更を送信するための下りチャネルである。論理チャネルであるPCCHは、トランスポートチャネルであるページングチャネル(PCH)へマッピングされる。
 共有制御チャネル(Common Control Channel:CCCH)は、通信端末と基地局との間の制御情報を送信するためのチャネルである。CCCHは、通信端末がネットワークとの間でRRC接続(connection)を有していない場合に用いられる。下り方向では、CCCHは、トランスポートチャネルである下り共有チャネル(DL-SCH)へマッピングされる。上り方向では、CCCHは、トランスポートチャネルである上り共有チャネル(UL-SCH)へマッピングされる。
 個別制御チャネル(Dedicated Control Channel:DCCH)は、1対1にて、通信端末とネットワークとの間の個別制御情報を送信するチャネルである。DCCHは、通信端末がネットワークとの間でRRC接続を有している場合に用いられる。DCCHは、上りでは上り共有チャネル(UL-SCH)へマッピングされ、下りでは下り共有チャネル(DL-SCH)へマッピングされる。
 個別トラフィックチャネル(Dedicated Traffic Channel:DTCH)は、ユーザ情報の送信のための通信端末への1対1通信のチャネルである。DTCHは、上りおよび下りともに存在する。DTCHは、上りでは上り共有チャネル(UL-SCH)へマッピングされ、下りでは下り共有チャネル(DL-SCH)へマッピングされる。
 通信端末の位置追跡は、1つ以上のセルからなる区域を単位に行われる。位置追跡は、待受け状態であっても通信端末の位置を追跡し、通信端末を呼び出す、換言すれば通信端末が着呼することを可能にするために行われる。この通信端末の位置追跡のための区域をトラッキングエリア(Tracking Area:TA)と呼ぶ。
 NRにおいては、トラッキングエリアよりも小さいエリアを単位とした範囲における通信端末の呼び出しがサポートされている。この範囲を、RAN通知エリア(RAN Notification Area:RNA)と呼ぶ。後述の、RRC_INACTIVE状態の通信端末のページングは、この範囲において行われる。
 NRにおいては、広い周波数帯域幅(transmission bandwidths)をサポートするために、2つ以上のコンポーネントキャリア(Component Carrier:CC)を集約する(「アグリゲーション(aggregation)する」とも称する)、キャリアアグリゲーション(Carrier Aggregation:CA)が検討されている。CAについては、非特許文献1に記載されている。
 CAが構成される場合、通信端末であるUEはネットワーク(Network:NW)と唯一のRRC接続(RRC connection)を有する。RRC接続において、1つのサービングセルがNASモビリティ情報とセキュリティ入力を与える。このセルをプライマリセル(Primary Cell:PCell)と呼ぶ。UEの能力(ケーパビリティ(capability))に応じて、セカンダリセル(Secondary Cell:SCell)が、PCellとともに、サービングセルの組を形成するために構成される。1つのPCellと1つ以上のSCellとからなるサービングセルの組が、1つのUEに対して構成される。
 また、3GPPにおいて、さらなる通信容量の増大を図るために、UEが2つの基地局と接続して通信を行うデュアルコネクティビティ(Dual Connectivity:DCと略称される)などがある。DCについては、非特許文献1、22に記載されている。
 デュアルコネクティビティ(DC)を行う基地局のうち、一方を「マスタ基地局(Master Node:MN)」といい、他方を「セカンダリ基地局(Secondary Node:SN)」という場合がある。マスタ基地局が構成するサービングセルをまとめて、マスタセルグループ(Master Cell Group:MCG)と称し、セカンダリ基地局が構成するサービングセルをまとめて、セカンダリセルグループ(Secondary Cell Group:SCG)と称する場合がある。DCにおいて、MCGまたはSCGの中のプライマリセルをスペシャルセル(Special Cell:SpCellまたはSPCell)と称する。MCGにおけるスペシャルセルをPCellと称し、SCGにおけるスペシャルセルをプライマリSCGセル(PSCell)と称する。
 また、NRにおいては、キャリア周波数帯のうちの一部(以下、Bandwidth Part(BWP)と称する場合がある)を基地局がUEに対して予め設定し、UEが該BWPにおいて基地局との送受信を行うことで、UEにおける消費電力の低減が図られる。
 また、3GPPでは、サイドリンク(SL:Side Link)通信(PC5通信とも称する)を用いたサービス(アプリケーションでもよい)を、後述するEPS(Evolved Packet System)においても、5Gコアシステムにおいてもサポートすることが検討されている(非特許文献1、2、26~28参照)。SL通信では端末間で通信が行われる。SL通信を用いたサービスとして、たとえば、V2X(Vehicle-to-everything)サービス、プロキシミティサービスなどがある。SL通信においては、端末間の直接通信だけでなく、リレー(relay)を介したUEとNWとの間の通信が提案されている(非特許文献26、28参照)。
 SLに用いられる物理チャネル(非特許文献2、11参照)について説明する。物理サイドリンク報知チャネル(PSBCH:Physical sidelink broadcast channel)は、システムと同期に関連する情報を運び、UEから送信される。
 物理サイドリンク制御チャネル(PSCCH:Physical sidelink control channel)は、サイドリンク通信とV2Xサイドリンク通信のためのUEからの制御情報を運ぶ。
 物理サイドリンク共有チャネル(PSSCH:Physical sidelink shared channel)は、サイドリンク通信とV2Xサイドリンク通信のためのUEからのデータを運ぶ。
 物理サイドリンクフィードバックチャネル(PSFCH:Physical sidelink feedback channel)は、PSSCH送信を受信したUEから、PSSCHを送信したUEに、サイドリンク上でのHARQフィードバックを運ぶ。
 SLに用いられるトランスポートチャネル(非特許文献1参照)について説明する。サイドリンク報知チャネル(SL-BCH:Sidelink broadcast channel)は、予め決められたトランスポートフォーマットを有し、物理チャネルであるPSBCHにマッピングされる。
 サイドリンク共有チャネル(SL-SCH:Sidelink shared channel)は、報知送信をサポートする。SL-SCHは、UE自動リソース選択(UE autonomous resource selection)と、基地局によってスケジュールされたリソースアロケーションの両方をサポートする。UE自動リソース選択では衝突リスクが有り、UEが基地局によって個別リソースをアロケーションされた時は、衝突は無い。また、SL-SCHは、送信電力、変調、コーディングを変えることによって、動的リンクアダプテーションをサポートする。SL-SCHは物理チャネルであるPSSCHにマッピングされる。
 SLに用いられる論理チャネル(非特許文献2参照)について説明する。サイドリンク報知制御チャネル(SBCCH:Sidelink Broadcast Control Channel)は、1つのUEから他のUEにサイドリンクシステム情報を報知するためのサイドリンク用チャネルである。SBCCHはトランスポートチャネルであるSL-BCHにマッピングされる。
 サイドリンクトラフィックチャネル(STCH:Sidelink Traffic Channel)は、1つのUEから他のUEにユーザ情報を送信するための1対多のサイドリンク用トラフィックチャネルである。STCHは、サイドリンク通信能力を有するUEと、V2Xサイドリンク通信能力を有するUEによってのみ用いられる。2つのサイドリンク通信能力を有するUE間の1対1通信もまたSTCHで実現される。STCHはトランスポートチャネルであるSL-SCHにマッピングされる。
 サイドリンク制御チャネル(SCCH:Sidelink Control Channel)は、1つのUEから他のUEに制御情報を送信するためのサイドリンク用制御チャネルである。SCCHはトランスポートチャネルであるSL-SCHにマッピングされる。
 LTEではSL通信はブロードキャスト(broadcast)のみであった。NRでは、SL通信として、ブロードキャストに加え、ユニキャスト(unicast)とグループキャスト(groupcast)のサポートが検討されている(非特許文献27(3GPP TS23.287)参照)。
 SLにおけるユニキャスト通信やグループキャスト通信では、HARQのフィードバック(Ack/Nack)、CSI報告等がサポートされる。
 また、3GPPでは、UEと基地局との間のリンクであるアクセスリンク、基地局間のリンクであるバックホールリンクをいずれも無線で行うアクセス・バックホール統合(Integrated Access and Backhaul:IAB)が検討されている(非特許文献2、20、29参照)。
 3GPPでは、いくつかの新たな技術が提案されている。例えば、XR(eXtended Reality)やクラウドゲーミング(Cloud Gaming)サービスに適した通信方法が議論され(非特許文献30)、XRトラフィックの特質(例えば、非整数周期性、データ発生時間変動(ジッタ)特性、データ量変動特性、低遅延特性など)を考慮した、XR認識方法、XR特有の低消費電力化方法、XR特有の容量改善方法などが提案されている(非特許文献31、32、33)。
3GPP TS36.300 V16.7.0 3GPP TS38.300 V16.8.0 "Scenarios, requirements and KPIs for 5G mobile and wireless system"、ICT-317669-METIS/D1.1 3GPP TR23.799 V14.0.0 3GPP TR38.801 V14.0.0 3GPP TR38.802 V14.2.0 3GPP TR38.804 V14.0.0 3GPP TR38.912 V16.0.0 3GPP RP-172115 3GPP TS23.501 V17.3.0 3GPP TS38.211 V17.0.0 3GPP TS38.212 V17.0.0 3GPP TS38.213 V17.0.0 3GPP TS38.214 V17.0.0 3GPP TS38.321 V16.7.0 3GPP TS38.322 V16.2.0 3GPP TS38.323 V16.6.0 3GPP TS37.324 V16.3.0 3GPP TS38.331 V16.7.0 3GPP TS38.401 V16.8.0 3GPP TS38.413 V16.8.0 3GPP TS37.340 V16.8.0 3GPP TS38.423 V16.8.0 3GPP TS38.305 V16.7.0 3GPP TS23.273 V17.3.0 3GPP TR23.703 V12.0.0 3GPP TS23.287 V17.2.0 3GPP TS23.303 V17.0.0 3GPP TS38.340 V16.5.0 3GPP RP-213587 3GPP R1-2204656 3GPP R1-2203132 3GPP R1-2205056 3GPP TR38.838 V17.0.0
 5G無線アクセスシステムでは多種多様なサービスのための通信が行われる。XRやクラウドゲーミングサービスに適した通信を可能にすることも重要な課題である。このような通信を可能とするため、XRトラフィックの特質(例えば、非整数周期性、データ発生時間変動(ジッタ)特性、データ量変動特性、低遅延特性など)を考慮した通信方法が要求される(非特許文献30)。従来の通信方法では、周期的送受信方法における周期はNミリ秒(Nは正の整数)で、また、周期的に割当てられるリソースは固定である。このため、従来の通信方法では、XRトラフィックの特質に適さず、遅延時間の増大や通信品質の劣化を招いてしまう、という課題が生じる。
 本開示は、上記課題に鑑み、XRトラフィックのような特質を有する通信に適した通信システムを実現可能な基地局を得ることを、目的の1つとする。
 本開示にかかる基地局は、予め定められた周期で通信端末との間でデータを送受信する周期的通信が可能な基地局であって、周期的通信において通信端末に下りデータを送信する場合、下りデータの送信周期である第1の周期で使用する物理下り制御チャネルおよび物理下り共有チャネルを割り当て、通信端末に送信する下りデータのデータ量の変動に応じて第1の周期で使用する物理下り共有チャネルを変更するとともに、該変更の結果を第1の周期に割り当て済みの物理下り制御チャネルにより通信端末に通知する。また、周期的通信において通信端末から上りデータを受信する場合、上りデータの送信周期である第2の周期で使用する物理下り制御チャネルおよび物理上り共有チャネルを割り当て、通信端末が送信する上りデータのデータ量の変動に応じて第2の周期で使用する物理上り共有チャネルを変更するとともに、該変更の結果を第2の周期に割り当て済みの物理下り制御チャネルにより通信端末に通知する。
 本開示にかかる基地局によれば、XRトラフィックのような特質を有する通信に適した通信システムを実現することができる。
 本開示の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
NR方式の通信システムで使用される無線フレームの構成を示す説明図である。 3GPPにおいて議論されているNR方式の通信システム210の全体的な構成を示すブロック図である。 NGコアに接続する基地局によるDCの構成図である。 図2に示す移動端末202の構成を示すブロック図である。 図2に示す基地局213の構成を示すブロック図である。 5GC部の構成を示すブロック図である。 NR方式の通信システムにおいて通信端末(UE)が行うセルサーチから待ち受け動作までの概略を示すフローチャートである。 NRシステムにおけるセルの構成の一例を示す図である。 SL通信における端末の接続構成の例を示す接続構成図である。 アクセス・バックホール統合をサポートする基地局の接続構成の例を示す接続構成図である。 実施の形態1について、1つのSPS周期において複数のPDSCHと複数のPDCCHを設定する場合のリソースアロケーション例を示す図である。 実施の形態1変形例1について、SPSの設定においてPDCCHの個数とPDSCHの個数を個別に設定する場合のリソースアロケーション例を示す図である。 実施の形態1変形例1について、SPSの設定においてPDCCHの個数とPDSCHの個数を個別に設定する場合の他のリソースアロケーション例を示す図である。 実施の形態1変形例2について、SPSで設定されたPDSCHのリソースをPDCCHでリリースする例を示す図である。 実施の形態1変形例2について、SPSで設定されたPDSCHのリソースをPDCCHでリリースする他の例を示す図である。 実施の形態1変形例3について、SPSの設定において1つまたは複数のPDCCHのみが設定される場合のリソースアロケーション例を示す図である。 実施の形態2について、CGの設定において複数のPUSCHと複数のPDCCHを設定する場合のリソースアロケーション例を示す図である。 実施の形態2変形例1について、CGの設定においてPDCCHの個数とPUSCHの個数を個別に設定する場合のリソースアロケーション例を示す図である。 実施の形態2変形例1について、CGの設定においてPDCCHの個数とPUSCHの個数を個別に設定する場合の他のリソースアロケーション例を示す図である。 実施の形態2変形例2について、CGで設定されたPUSCHのリソースをPDCCHでリリースする例を示す図である。 実施の形態2変形例2について、CGで設定されたPUSCHのリソースをPDCCHでリリースする他の例を示す図である。 実施の形態2変形例3について、CGの設定において2つのPDCCHを設定する場合のリソースアロケーション例を示す図である。 実施の形態3について、SPSの設定で設定したPDSCHを用いて1つまたは複数のPDSCHを設定する場合のリソースアロケーション例を示す図である。 実施の形態3変形例1について、SPSの設定で設定した複数のPDSCHを用いて1つまたは複数のPDSCHを設定する場合のリソースアロケーション例を示す図である。 実施の形態3変形例2について、SPSの設定で設定した複数のPDSCHを用いて1つまたは複数のPDSCHをリリースする場合のリソースアロケーション例を示す図である。 実施の形態4について、CGの設定で設定したPUSCHを用いて1つまたは複数のPUSCHのスケジューリング要求が通知される場合のリソースアロケーション例を示す図である。 実施の形態4変形例1について、CGの設定で設定した複数のPUSCHを用いてPUSCHスケジューリング要求が通知された場合のリソースアロケーション例を示す図である。 実施の形態4変形例2について、CGの設定で設定した複数のPUSCHを用いて、UEが送信に用いるPUSCHに関する情報が送信される場合のリソースアロケーション例を示す図である。 実施の形態4変形例3について、CGの設定で設定した複数のPUSCHを用いてPUSCHのリリース情報が送信される場合のリソースアロケーション例を示す図である。 実施の形態4変形例4について、CGの設定で設定した複数のPUSCHを用いてPUSCHの追加要求が送信される場合のリソースアロケーション例を示す図である。 実施の形態5について、SPSで設定した周期n回毎にオフセット値をSPS周期に加える場合のリソースアロケーション例を示す図である。 実施の形態5変形例1について、SPSで設定した周期に加えるオフセット値を通知する場合のリソースアロケーション例を示す図である。 実施の形態5変形例2について、SPSで設定した周期に加えるオフセット値をPDCCHを用いて通知する場合のリソースアロケーション例を示す図である。 実施の形態5変形例2について、SPSで設定した周期に加えるオフセット値をPDCCHを用いて通知する場合の他のリソースアロケーション例を示す図である。 実施の形態6について、CGで設定した周期n回毎にオフセット値をCG周期に加える場合のリソースアロケーション例を示す図である。 実施の形態6変形例1について、オフセット値をCGで設定した周期に加える要求を通知する場合のリソースアロケーション例を示す図である。 実施の形態6変形例2について、CGで設定した周期に加えるオフセット値をPDCCHを用いて通知する場合のリソースアロケーション例を示す図である。 実施の形態7について、RA処理においてSPS and/or CGの設定の修正情報を送信するモビリティ処理のシーケンス例を示す図である。
実施の形態1.
 図2は、3GPPにおいて議論されているNR方式の通信システム210の全体的な構成を示すブロック図である。図2について説明する。無線アクセスネットワークは、NG-RAN(Next Generation Radio Access Network)211と称される。通信端末装置である移動端末装置(以下「移動端末(User Equipment:UE)」という)202は、基地局装置(以下「NR基地局(NG-RAN NodeB:gNB)」という)213と無線通信可能であり、無線通信で信号の送受信を行う。NG-RAN211は1つあるいは複数のNR基地局213によって構成される。
 ここで、「通信端末装置」とは、移動可能な携帯電話端末装置などの移動端末装置だけでなく、センサなどの移動しないデバイスも含んでいる。以下の説明では、「通信端末装置」を、単に「通信端末」という場合がある。
 UE202とNG-RAN211との間で、AS(Access Stratum)のプロトコルが終端される。ASのプロトコルとしては、例えばRRC(Radio Resource Control)、SDAP(Service Data Adaptation Protocol)、PDCP(Packet Data Convergence Protocol)、RLC(Radio Link Control)、MAC(Medium Access Control)、PHY(Physical layer)が用いられる。RRCは制御プレイン(以下、Cプレイン、または、C-Planeと称する場合もある)において用いられ、SDAPはユーザプレイン(以下、Uプレイン、または、U-Planeと称する場合もある)において用いられ、PDCP、MAC、RLC、PHYはCプレイン、Uプレインの両方において用いられる。
 UE202とNR基地局213との間の制御プロトコルRRC(Radio Resource Control)は、報知(Broadcast)、ページング(paging)、RRC接続マネージメント(RRC connection management)などを行う。RRCにおけるNR基地局213とUE202との状態として、RRC_IDLEと、RRC_CONNECTEDと、RRC_INACTIVEとがある。
 RRC_IDLEでは、PLMN(Public Land Mobile Network)選択、システム情報(System Information:SI)の報知、ページング(paging)、セル再選択(cell re-selection)、モビリティなどが行われる。RRC_CONNECTEDでは、移動端末はRRC接続(connection)を有し、ネットワークとのデータの送受信を行うことができる。またRRC_CONNECTEDでは、ハンドオーバ(Handover:HO)、隣接セル(Neighbor cell)の測定(メジャメント(measurement))などが行われる。RRC_INACTIVEは5Gコア部214とNR基地局213との間の接続が維持されつつ、システム情報(System Information:SI)の報知、ページング(paging)、セル再選択(cell re-selection)、モビリティなどが行われる。
 gNB213は、アクセス・移動管理機能(Access and Mobility Management Function:AMF)、セッション管理機能(Session Management Function:SMF)、あるいはユーザプレイン機能(User Plane Function:UPF)等を含む5Gコア部(以下「5GC部」という場合がある)214とNGインタフェースにより接続される。gNB213と5GC部214との間で制御情報および/あるいはユーザデータが通信される。NGインタフェースは、gNB213とAMF220との間のN2インタフェース、gNB213とUPF221との間のN3インタフェース、AMF220とSMF222との間のN11インタフェース、および、UPF221とSMF222との間のN4インタフェースの総称である。1つのgNB213に対して、複数の5GC部214が接続されてもよい。gNB213間は、Xnインタフェースにより接続され、gNB213間で制御情報および/あるいはユーザデータが通信される。
 5GC部214は、上位装置、具体的には上位ノードであり、NR基地局213と移動端末(UE)202との接続の制御、1つまたは複数のNR基地局(gNB)213および/あるいはLTE基地局(E-UTRAN NodeB:eNB)に対するページング信号の分配などを行う。また、5GC部214は、待ち受け状態(Idle State)のモビリティ制御(Mobility Control)を行う。5GC部214は、移動端末202が待ち受け状態のとき、インアクティブ状態(Inactive State)および、アクティブ状態(Active State)のときに、トラッキングエリア(Tracking Area)リストの管理を行う。5GC部214は、移動端末202が登録されている(registered)追跡領域(トラッキングエリア:Tracking Area)に属するセルへ、ページングメッセージを送信することで、ページングプロトコルに着手する。
 gNB213は、1つあるいは複数のセルを構成してもよい。1つのgNB213が複数のセルを構成する場合、1つ1つのセルが、UE202と通信可能に構成される。
 gNB213は、中央ユニット(Central Unit:以下、CUと称する場合がある)215と分散ユニット(Distributed Unit:以下、DUと称する場合がある)216に分割されていてもよい。CU215は、gNB213の中に1つ構成される。DU216は、gNB213の中に1つあるいは複数構成される。1つのDU216は、1つまたは複数のセルを構成する。CU215は、DU216とF1インタフェースにより接続され、CU215とDU216との間で制御情報および/あるいはユーザデータが通信される。F1インタフェースはF1-CインタフェースとF1-Uインタフェースとで構成される。CU215はRRC、SDAP、PDCPの各プロトコルの機能を担い、DU216はRLC、MAC、PHYの各プロトコルの機能を担う。DU216に、1つまたは複数のTRP(Transmission Reception Point)219が接続される場合がある。TRP219は、UEとの間で無線信号の送受信を行う。
 CU215は、Cプレイン用CU(CU-C)217とUプレイン用CU(CU-U)218に分割されていてもよい。CU-C217は、CU215の中に1つ構成される。CU-U218は、CU215の中に1つあるいは複数構成される。CU-C217は、CU-U218とE1インタフェースにより接続され、CU-C217とCU-U218との間で制御情報が通信される。CU-C217は、DU216とF1-Cインタフェースにより接続され、CU-C217とDU216との間で制御情報が通信される。CU-U218は、DU216とF1-Uインタフェースにより接続され、CU-U218とDU216との間でユーザデータが通信される。
 5G方式の通信システムにおいて、非特許文献10(3GPP TS23.501)に記載の統合データ管理(Unified Data Management:UDM)機能、ポリシー制御機能(Policy Control Function:PCF)が含まれてもよい。UDMおよび/あるいはPCFは、図2における5GC部214に含まれるとしてもよい。
 5G方式の通信システムにおいて、非特許文献24(3GPP TS38.305)に記載の位置管理機能(Location Management Function:LMF)が設けられてもよい。LMFは、非特許文献25(3GPP TS23.273)に開示されているように、AMFを経由して基地局に接続されていてもよい。
 5G方式の通信システムにおいて、非特許文献10(3GPP TS23.501)に記載の非3GPP相互動作機能(Non-3GPP Interworking Function:N3IWF)が含まれてもよい。N3IWFは、UEとの間における非3GPPアクセスにおいて、アクセスネットワーク(Access Network:AN)をUEとの間で終端してもよい。
 図3は、NGコアに接続するDC(デュアルコネクティビティ)の構成を示した図である。図3において、実線はU-Planeの接続を示し、破線はC-Planeの接続を示す。図3において、マスタ基地局240-1はgNBであってもよいし、eNBであってもよい。また、セカンダリ基地局240-2はgNBであってもよいし、eNBであってもよい。例えば、図3において、マスタ基地局240-1がgNBであり、セカンダリ基地局240-2がeNBであるDC構成を、NG-EN-DCと称する場合がある。図3において、5GC部214とセカンダリ基地局240-2との間のU-Plane接続がマスタ基地局240-1経由で行われる例について示しているが、5GC部214とセカンダリ基地局240-2との間で直接行われてもよい。また、図3において、5GC部214に替えて、LTEシステム、LTE-Aシステムに接続されるコアネットワークであるEPC(Evolved Packet Core)がマスタ基地局240-1と接続していてもよい。EPCとセカンダリ基地局240-2との間のU-Plane接続が直接行われてもよい。
 図4は、図2に示す移動端末202の構成を示すブロック図である。図4に示す移動端末202の送信処理を説明する。まず、制御部310からの制御データ、およびアプリケーション部302からのユーザデータが、プロトコル処理部301に送られる。制御データ、ユーザデータのバッファリングが行われてもよい。制御データ、ユーザデータのバッファが、制御部310に設けられてもよいし、アプリケーション部302に設けられてもよいし、プロトコル処理部301に設けられてもよい。プロトコル処理部301は、SDAP、PDCP、RLC、MAC等のプロトコル処理、例えば、DC等における送信先基地局の決定、各プロトコルにおけるヘッダの付与等の動作を行う。プロトコル処理が行われたデータは、エンコーダー部304へ渡され、誤り訂正などのエンコード処理が施される。エンコード処理を施さずに、プロトコル処理部301から変調部305へ直接出力されるデータが存在してもよい。エンコーダー部304でエンコード処理されたデータは、変調部305にて変調処理が行われる。変調部305にて、MIMOにおけるプリコーディングが行われてもよい。変調されたデータは、ベースバンド信号に変換された後、周波数変換部306へ出力され、無線送信周波数に変換される。その後、アンテナ307-1~307-4から基地局213に送信信号が送信される。図4において、アンテナの数が4つである場合について例示したが、アンテナ数は4つに限定されない。
 また、移動端末202の受信処理は、以下のように実行される。基地局213からの無線信号がアンテナ307-1~307-4により受信される。受信信号は、周波数変換部306にて無線受信周波数からベースバンド信号に変換され、復調部308において復調処理が行われる。復調部308にて、ウェイト計算および乗算処理が行われてもよい。復調後のデータは、デコーダー部309へ渡され、誤り訂正などのデコード処理が行われる。デコードされたデータは、プロトコル処理部301に渡され、MAC、RLC、PDCP、SDAP等のプロトコル処理、例えば、各プロトコルにおけるヘッダの除去等の動作が行われる。プロトコル処理が行われたデータのうち、制御データは制御部310へ渡され、ユーザデータはアプリケーション部302へ渡される。
 移動端末202の一連の処理は、制御部310によって制御される。よって制御部310は、図4では省略しているが、各部302,304~309とも接続している。
 移動端末202の各部、例えば、制御部310、プロトコル処理部301、エンコーダー部304、デコーダー部309は、例えば、プロセッサおよびメモリを含んで構成される処理回路で実現される。例えば、移動端末202の一連の処理が記述されたプログラムをプロセッサが実行することにより制御部310が実現される。移動端末202の一連の処理が記述されたプログラムはメモリに格納されている。メモリの例は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、等の、不揮発性または揮発性の半導体メモリである。移動端末202の各部、例えば、制御部310、プロトコル処理部301、エンコーダー部304、デコーダー部309は、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)、DSP(Digital Signal Processor)などの専用の処理回路で実現されてもよい。図4において、移動端末202が送信に用いるアンテナ数と受信に用いるアンテナ数は、同じであってもよいし、異なっていてもよい。
 図5は、図2に示す基地局213の構成を示すブロック図である。図5に示す基地局213の送信処理を説明する。EPC通信部401は、基地局213とEPCとの間のデータの送受信を行う。5GC通信部412は、基地局213と5GC(5GC部214など)との間のデータの送受信を行う。他基地局通信部402は、他の基地局との間のデータの送受信を行う。EPC通信部401、5GC通信部412、および他基地局通信部402は、それぞれプロトコル処理部403と情報の受け渡しを行う。制御部411からの制御データ、ならびにEPC通信部401、5GC通信部412、および他基地局通信部402からのユーザデータおよび制御データは、プロトコル処理部403へ送られる。制御データ、ユーザデータのバッファリングが行われてもよい。制御データ、ユーザデータのバッファが、制御部411に設けられてもよいし、EPC通信部401に設けられてもよいし、5GC通信部412に設けられてもよいし、他基地局通信部402に設けられてもよい。
 プロトコル処理部403は、SDAP、PDCP、RLC、MAC等のプロトコル処理、例えば、DC等における送信データのルーティング、各プロトコルにおけるヘッダの付与等の動作を行う。プロトコル処理が行われたデータは、エンコーダー部405へ渡され、誤り訂正などのエンコード処理が施される。エンコード処理を施さずに、プロトコル処理部403から変調部406へ直接出力されるデータが存在してもよい。また、プロトコル処理部403から他基地局通信部402にデータが送られてもよい。例えば、DCにおいて、5GC通信部412又はEPC通信部401から送られたデータが他基地局通信部402を介して他基地局、例えば、セカンダリ基地局に送られてもよい。エンコードされたデータは、変調部406にて変調処理が行われる。変調部406にて、MIMOにおけるプリコーディングが行われてもよい。変調されたデータは、ベースバンド信号に変換された後、周波数変換部407へ出力され、無線送信周波数に変換される。その後、アンテナ408-1~408-4より1つもしくは複数の移動端末202に対して送信信号が送信される。図5において、アンテナの数が4つである場合について例示したが、アンテナ数は4つに限定されない。
 また、基地局213の受信処理は以下のように実行される。1つもしくは複数の移動端末202からの無線信号が、アンテナ408-1~408-4により受信される。受信信号は、周波数変換部407にて無線受信周波数からベースバンド信号に変換され、復調部409で復調処理が行われる。復調されたデータは、デコーダー部410へ渡され、誤り訂正などのデコード処理が行われる。デコードされたデータは、プロトコル処理部403に渡され、MAC、RLC、PDCP、SDAP等のプロトコル処理、例えば、各プロトコルにおけるヘッダの除去等の動作が行われる。プロトコル処理が行われたデータのうち、制御データは制御部411あるいは5GC通信部412あるいはEPC通信部401あるいは他基地局通信部402へ渡され、ユーザデータは5GC通信部412あるいはEPC通信部401あるいは他基地局通信部402へ渡される。他基地局通信部402から送られたデータが5GC通信部412あるいはEPC通信部401に送られてもよい。該データは、例えば、DCにおいて他基地局を経由して5GC通信部412あるいはEPC通信部401部に送られる上りデータであってもよい。
 基地局213の一連の処理は、制御部411によって制御される。よって制御部411は、図5では省略しているが、各部401,402,405~410,412とも接続している。
 基地局213の各部、例えば、制御部411、プロトコル処理部403、5GC通信部412、EPC通信部401、他基地局通信部402、エンコーダー部405、デコーダー部410は、上述した移動端末202と同様に、プロセッサおよびメモリを含んで構成される処理回路、または、FPGA、ASIC、DSPなどの専用の処理回路で実現される。図5において、基地局213が送信に用いるアンテナ数と受信に用いるアンテナ数は、同じであってもよいし、異なっていてもよい。
 図2に示すCU215の構成の例として、図5に示すエンコーダー部405、変調部406、周波数変換部407、アンテナ408-1~408-4、復調部409、デコーダー部410を除き、DU通信部を設けたものが用いられる場合がある。DU通信部は、プロトコル処理部403と接続する。CU215におけるプロトコル処理部403は、PDCP、SDAP等のプロトコル処理を行う。
 図2に示すDU216の構成の例として、図5に示すEPC通信部401、他基地局通信部402、5GC通信部412を除き、CU通信部を設けた構成が用いられる場合がある。CU通信部は、プロトコル処理部403と接続する。DU216におけるプロトコル処理部403は、PHY、MAC、RLC等のプロトコル処理を行う。
 図6は、5GC部の構成を示すブロック図である。図6では、前述の図2に示す5GC部214の構成を示す。図6は、図2にて示す5GC部214に、AMFの構成、SMFの構成およびUPFの構成が含まれた場合について示している。図6に示す例において、AMFが制御プレイン制御部525の機能を、SMFがセッション管理部527の機能を、UPFがユーザプレイン通信部523およびData Network通信部521の機能を、それぞれ有してもよい。Data Network通信部521は、5GC部214とData Networkとの間のデータの送受信を行う。基地局通信部522は、5GC部214と基地局213との間のNGインタフェースによるデータの送受信を行う。Data Networkから送られたユーザデータは、Data Network通信部521から、ユーザプレイン通信部523経由で基地局通信部522に渡され、1つあるいは複数の、基地局213へ送信される。基地局213から送られたユーザデータは、基地局通信部522から、ユーザプレイン通信部523経由でData Network通信部521に渡され、Data Networkへ送信される。
 基地局213から送られた制御データは、基地局通信部522から制御プレイン制御部525に渡される。制御プレイン制御部525は、制御データをセッション管理部527へ渡してもよい。Data Networkから制御データが送られてもよい。Data Networkから送られた制御データは、Data Network通信部521からユーザプレイン通信部523経由でセッション管理部527へ送られてもよい。セッション管理部527は、制御データを制御プレイン制御部525へ送ってもよい。
 ユーザプレイン制御部523は、PDU処理部523-1、モビリティアンカリング部523-2などを含み、ユーザプレイン(以下、U-Planeと称する場合もある)に対する処理全般を行う。PDU処理部523-1は、データパケットの処理、例えば、Data Network通信部521との間のパケットの送受信、基地局通信部522との間のパケットの送受信を行う。モビリティアンカリング部523-2は、UEのモビリティ時におけるデータ経路の繋ぎ止めを担う。
 セッション管理部527は、UEとUPFとの間に設けられるPDUセッションの管理などを行う。セッション管理部527は、PDUセッションコントロール部527-1、UE IPアドレス割当部527-2などを含む。PDUセッションコントロール部527-1は、移動端末202と5GC部214との間のPDUセッションの管理を行う。UE IPアドレス割当部527-2は、移動端末202へのIPアドレスの割当てなどを行う。
 制御プレイン制御部525は、NASセキュリティ部525-1、アイドルステート(Idle State)モビリティ管理部525-2などを含み、制御プレイン(以下、C-Planeと称する場合もある)に対する処理全般を行う。NASセキュリティ部525-1は、NAS(Non-Access Stratum)メッセージのセキュリティなどを行う。アイドルステートモビリティ管理部525-2は、待受け状態(アイドルステート(Idle State):RRC_IDLE状態、または、単にアイドルとも称される)のモビリティ管理、待受け状態時のページング信号の生成および制御、傘下の1つあるいは複数の移動端末202のトラッキングエリアの追加、削除、更新、検索、トラッキングエリアリスト管理などを行う。
 5GC部214の一連の処理は、制御部526によって制御される。よって制御部526は、図6では省略しているが、各部521~523,525,527と接続している。5GC部214の各部は、上述した移動端末202の制御部310と同様に、例えば、プロセッサおよびメモリを含んで構成される処理回路、または、FPGA、ASIC、DSPなどの専用の処理回路で実現される。
 次に通信システムにおけるセルサーチ方法の一例を示す。図7は、NR方式の通信システムにおいて通信端末(UE)が行うセルサーチから待ち受け動作までの概略を示すフローチャートである。通信端末は、セルサーチを開始すると、ステップST601で、周辺の基地局から送信される第一同期信号(P-SS)、および第二同期信号(S-SS)を用いて、スロットタイミング、フレームタイミングの同期をとる。
 P-SSとS-SSとを合わせて、同期信号(Synchronization Signal:SS)という。同期信号(SS)には、セル毎に割り当てられたPCI(Physical Cell Identifier)に1対1に対応するシンクロナイゼーションコードが割り当てられている。PCIの数は1008通りが検討されている。通信端末は、この1008通りのPCIを用いて同期をとるとともに、同期がとれたセルのPCIを検出(特定)する。
 通信端末は、次に同期がとれたセルに対して、ステップST602で、PBCHを受信する。PBCH上のBCCHには、セル構成情報が含まれるMIB(Master Information Block)がマッピングされる。したがって、PBCHを受信してBCCHを得ることで、MIBが得られる。MIBの情報としては、例えば、SFN(System Frame Number)、SIB(System Information Block)1のスケジューリング情報、SIB1等のサブキャリア間隔、DM-RS位置の情報などがある。
 また、通信端末は、PBCHより、SSブロック識別子を取得する。SSブロック識別子のビット列の一部は、MIBに含まれている。残りのビット列は、PBCHに付随するDM-RSのシーケンス生成に用いられる識別子に含まれている。通信端末は、PBCHに含まれるMIB、および、PBCHに付随するDM-RSのシーケンスを用いて、SSブロック識別子を取得する。
 次にステップST603で、通信端末は、SSブロックの受信電力を測定する。
 次にステップST604で、通信端末は、ステップST603までで検出された1つ以上のセルの中から、受信品質が最もよいセル、例えば、受信電力が最も高いセル、つまりベストセルを選択する。また、通信端末は、受信品質が最もよいビーム、例えば、SSブロックの受信電力が最も高いビーム、つまりベストビームを選択する。ベストビームの選択には、例えば、SSブロック識別子毎の、SSブロックの受信電力が用いられる。
 次にステップST605で、通信端末は、MIBに含まれるSIB1のスケジューリング情報をもとにDL-SCHを受信して、報知情報BCCHの中のSIB(System Information Block)1を得る。SIB1には、該セルへのアクセスに関する情報、セルの構成情報、他のSIB(SIBk:k≧2の整数)のスケジューリング情報が含まれる。また、SIB1には、トラッキングエリアコード(Tracking Area Code:TAC)が含まれる。
 次にステップST606で、通信端末は、ステップST605で受信したSIB1のTACと、通信端末が既に保有しているトラッキングエリアリスト内のトラッキングエリア識別子(Tracking Area Identity:TAI)のTAC部分とを比較する。トラッキングエリアリストは、TAIリスト(TAI list)とも称される。TAIはトラッキングエリアを識別するための識別情報であり、MCC(Mobile Country Code)と、MNC(Mobile Network Code)と、TAC(Tracking Area Code)とによって構成される。MCCは国コードである。MNCはネットワークコードである。TACはトラッキングエリアのコード番号である。
 通信端末は、ステップST606で比較した結果、ステップST605で受信したTACがトラッキングエリアリスト内に含まれるTACと同じならば、該セルで待ち受け動作に入る。比較して、ステップST605で受信したTACがトラッキングエリアリスト内に含まれなければ、通信端末は、該セルを通して、MMEなどが含まれるコアネットワーク(Core Network,EPC)へ、TAU(Tracking Area Update)を行うためにトラッキングエリアの変更を要求する。
 コアネットワークを構成する装置(以下「コアネットワーク側装置」という場合がある)は、TAU要求信号とともに通信端末から送られてくる該通信端末の識別番号(UE-IDなど)をもとに、トラッキングエリアリストの更新を行う。コアネットワーク側装置は、通信端末に更新後のトラッキングエリアリストを送信する。通信端末は、受信したトラッキングエリアリストに基づいて、通信端末が保有するTACリストを書き換える(更新する)。その後、通信端末は、該セルで待ち受け動作に入る。
 次に通信システムにおけるランダムアクセス方法の例を示す。ランダムアクセスにおいて、4ステップランダムアクセスと2ステップランダムアクセスが用いられる。また、4ステップランダムアクセスと2ステップランダムアクセスのそれぞれについて、衝突ベースの(Contention-based)ランダムアクセス、すなわち、他の移動端末との間のタイミングの衝突が起こりうるランダムアクセスと、衝突無しの(Contention-free)ランダムアクセスが存在する。
 衝突ベースの4ステップランダムアクセス方法の例を示す。最初のステップとして、移動端末は基地局に対し、ランダムアクセスプリアンブルを送信する。ランダムアクセスプリアンブルは、移動端末が所定の範囲の中から選択する場合もあれば、移動端末に個別に割当てられて基地局から通知される場合もある。
 2番目のステップとして、基地局は移動端末に対し、ランダムアクセス応答を送信する。ランダムアクセス応答には、3番目のステップに用いられる上りスケジューリング情報、3番目のステップの上り送信において用いられる端末識別子などが含まれる。
 3番目のステップとして、移動端末は基地局に対し上り送信を行う。移動端末は、上り送信に、2番目のステップにおいて取得した情報を用いる。4番目のステップとして、基地局は移動端末に対し、衝突解決の有無を通知する。衝突なし、と通知された移動端末は、ランダムアクセス処理を終了する。衝突あり、と通知された移動端末は、最初のステップから処理をやり直す。
 衝突無しの4ステップランダムアクセス方法においては、衝突ベースの4ステップランダムアクセス方法と以下の点で異なる。すなわち、最初のステップに先立ち、基地局は移動端末に対し、ランダムアクセスプリアンブルと上りスケジューリングをあらかじめ割り当てる。また、4番目のステップにおける、衝突解決有無の通知が不要となる。
 衝突ベースの2ステップランダムアクセス方法の例を示す。最初のステップとして、移動端末は基地局に対し、ランダムアクセスプリアンブルの送信および上り送信を行う。2番目のステップとして、基地局は移動端末に対し、衝突有無を通知する。衝突なし、と通知された移動端末は、ランダムアクセス処理を終了する。衝突あり、と通知された移動端末は、最初のステップから処理をやり直す。
 衝突無しの2ステップランダムアクセス方法においては、衝突ベースの2ステップランダムアクセス方法と以下の点で異なる。すなわち、最初のステップに先立ち、基地局は移動端末に対し、ランダムアクセスプリアンブルと上りスケジューリングをあらかじめ割り当てる。また、2番目のステップにおいて、基地局は移動端末に対し、ランダムアクセス応答を送信する。
 図8は、NRにおけるセルの構成の一例を示す。NRのセルでは、狭いビームを形成し、方向を変えて送信する。図8に示す例において、基地局750は、ある時間において、ビーム751-1を用いて移動端末との送受信を行う。他の時間において、基地局750は、ビーム751-2を用いて移動端末との送受信を行う。以下同様にして、基地局750はビーム751-3~751-8のうち1つあるいは複数を用いて移動端末との送受信を行う。このようにすることで、基地局750は広範囲のセル752を構成する。
 図8において、基地局750が用いるビームの数を8とする例について示したが、ビームの数は8とは異なっていてもよい。また、図8に示す例において、基地局750が同時に用いるビームの数を1つとしたが、複数であってもよい。
 ビームの識別には、QCL(Quasi-CoLocation)の概念が用いられる(非特許文献14(3GPP TS38.214)参照)。すなわち、当該ビームが、どの基準信号(例、SSブロック、CSI-RS)のビームと同じとみなせるかを示す情報によって識別される。該情報には、同じビームとみなせる観点についての情報の種別、例えば、ドップラーシフト、ドップラーシフト拡散、平均遅延、平均遅延拡散、空間的Rxパラメータに関する情報が含まれる場合がある(非特許文献14(3GPP TS38.214)参照)。
 3GPPにおいて、D2D(Device to Device)通信、V2V(Vehicle to Vehicle)通信のため、サイドリンク(SL:Side Link)がサポートされている(非特許文献1、非特許文献16参照)。SLはPC5インタフェースによって規定される。
 SL通信で、ブロードキャストに加え、ユニキャストとグループキャストをサポートするため、PC5-Sシグナリングのサポートが検討されている(非特許文献27(3GPP TS23.287)参照)。たとえば、SL、すなわちPC5通信を実施するためのリンクを確立するため、PC5-Sシグナリングが実施される。該リンクはV2Xレイヤで実施され、レイヤ2リンクとも称される。
 また、SL通信において、RRCシグナリングのサポートが検討されている(非特許文献27(3GPP TS23.287)参照)。SL通信におけるRRCシグナリングを、PC5 RRCシグナリングとも称する。たとえば、PC5通信を行うUE間で、UEのケーパビリティを通知することや、PC5通信を用いてV2X通信を行うためのASレイヤの設定などを通知することが提案されている。
 SL通信における移動端末の接続構成の例を図9に示す。図9に示す例において、基地局801のカバレッジ803内にUE805、UE806が存在する。基地局801とUE805との間で、UL/DL通信807が行われる。基地局801とUE806との間で、UL/DL通信808が行われる。UE805とUE806との間で、SL通信810が行われる。カバレッジ803の外にUE811、UE812が存在する。UE805とUE811との間でSL通信814が行われる。また、UE811とUE812との間でSL通信816が行われる。
 SL通信における、リレー(relay)を介したUEとNWとの間の通信の例として、図9に示すUE805が、UE811と基地局801との間の通信を中継する。
 リレーを行うUEに、図4と同様の構成が用いられる場合がある。UEにおけるリレーの処理を、図4を用いて説明する。UE811から基地局801への通信における、UE805によるリレーの処理について説明する。UE811からの無線信号がアンテナ307-1~307-4により受信される。受信信号は、周波数変換部306にて無線受信周波数からベースバンド信号に変換され、復調部308において復調処理が行われる。復調部308にて、ウェイト計算および乗算処理が行われてもよい。復調後のデータは、デコーダー部309へ渡され、誤り訂正などのデコード処理が行われる。デコードされたデータは、プロトコル処理部301に渡され、UE811との間の通信に用いるMAC、RLC等のプロトコル処理、例えば、各プロトコルにおけるヘッダの除去等の動作が行われる。また、基地局801との間の通信に用いるRLC、MAC等のプロトコル処理、例えば、各プロトコルにおけるヘッダの付与等の動作を行う。UE811のプロトコル処理部301において、PDCP、SDAPのプロトコル処理が行われる場合もある。プロトコル処理が行われたデータは、エンコーダー部304へ渡され、誤り訂正などのエンコード処理が施される。エンコード処理を施さずに、プロトコル処理部301から変調部305へ直接出力されるデータが存在してもよい。エンコーダー部304でエンコード処理されたデータは、変調部305にて変調処理が行われる。変調部305にて、MIMOにおけるプリコーディングが行われてもよい。変調されたデータは、ベースバンド信号に変換された後、周波数変換部306へ出力され、無線送信周波数に変換される。その後、アンテナ307-1~307-4から基地局801に送信信号が送信される。
 前述において、UE811から基地局801への通信における、UE805によるリレーの例について示したが、基地局801からUE811への通信のリレーにおいても同様の処理が用いられる。
 5G方式の基地局は、アクセス・バックホール統合(Integrated Access and Backhaul:IAB)(非特許文献2、20参照)をサポート可能である。IABをサポートする基地局(以下、IAB基地局と称する場合がある)は、IAB機能を提供するIABドナーとして動作する基地局のCUであるIABドナーCU、IABドナーとして動作する基地局のDUであるIABドナーDU、および、IABドナーDUとの間、UEとの間で無線インタフェースを用いて接続されるIABノードにより構成される。IABノードとIABドナーCUとの間に、F1インタフェースが設けられる(非特許文献2参照)。
 IAB基地局の接続の例を図10に示す。IABドナーCU901はIABドナーDU902と接続されている。IABノード903は、IABドナーDU902と無線インタフェースを用いて接続される。IABノード903は、IABノード904と無線インタフェースを用いて接続される。すなわち、IABノードの多段接続が行われる場合がある。UE905は、IABノード904と無線インタフェースを用いて接続される。UE906がIABノード903と無線インタフェースを用いて接続される場合があるし、UE907がIABドナーDU902と無線インタフェースを用いて接続される場合がある。IABドナーCU901に、複数のIABドナーDU902が接続される場合があるし、IABドナーDU902に複数のIABノード903が接続される場合があるし、IABノード903に、複数のIABノード904が接続される場合がある。
 IABドナーDUとIABノードとの間の接続およびIABノード間の接続において、BAP(Backhaul Adaptation Protocol)レイヤが設けられる(非特許文献29参照)。BAPレイヤは、受信したデータの、IABドナーDUおよび/あるいはIABノードへのルーティング、RLCチャネルへのマッピング等の動作を行う(非特許文献29参照)。
 IABドナーCUの構成の例として、CU215と同様の構成が用いられる。
 IABドナーDUの構成の例として、DU216と同様の構成が用いられる。IABドナーDUのプロトコル処理部においては、BAPレイヤの処理、例えば、下りデータにおけるBAPヘッダの付与、IABノードへのルーティング、上りデータにおけるBAPヘッダの除去等の処理が行われる。
 IABノードの構成の例として、図5に示すEPC通信部401、他基地局通信部402、5GC通信部412を除いた構成が用いられる場合がある。
 IABノードにおける送受信処理を、図5、図10を用いて説明する。IABドナーCU901とUE905との間の通信における、IABノード903の送受信処理について説明する。UE905からIABドナーCU901への上り通信において、IABノード904からの無線信号が、アンテナ408(アンテナ408-1~408-4の一部または全部)により受信される。受信信号は、周波数変換部407にて無線受信周波数からベースバンド信号に変換され、復調部409で復調処理が行われる。復調されたデータは、デコーダー部410へ渡され、誤り訂正などのデコード処理が行われる。デコードされたデータは、プロトコル処理部403に渡され、IABノード904との間の通信に用いるMAC、RLC等のプロトコル処理、例えば、各プロトコルにおけるヘッダの除去等の動作が行われる。また、BAPヘッダを用いたIABドナーDU902へのルーティングが行われるとともに、IABドナーDU902との間の通信に用いるRLC、MAC等のプロトコル処理、例えば、各プロトコルにおけるヘッダの付与等の動作を行う。プロトコル処理が行われたデータは、エンコーダー部405へ渡され、誤り訂正などのエンコード処理が施される。エンコード処理を施さずに、プロトコル処理部403から変調部406へ直接出力されるデータが存在してもよい。エンコードされたデータは、変調部406にて変調処理が行われる。変調部406にて、MIMOにおけるプリコーディングが行われてもよい。変調されたデータは、ベースバンド信号に変換された後、周波数変換部407へ出力され、無線送信周波数に変換される。その後、アンテナ408-1~408-4よりIABドナーDU902に対して送信信号が送信される。IABドナーCU901からUE905への下り通信においても同様の処理が行われる。
 IABノード904においても、IABノード903と同様の送受信処理が行われる。IABノード903のプロトコル処理部403においては、BAPレイヤの処理として、例えば、上り通信におけるBAPヘッダの付与およびIABノード904へのルーティング、下り通信におけるBAPヘッダの除去等の処理が行われる。
 5G無線アクセスシステムでは、XRやクラウドゲーミングサービスに適した通信を可能にすることが重要な課題となる。3GPPにおいてXRトラフィックの特質が検討された(非特許文献34参照)。XRトラフィックの特質として、例えば、非整数周期性、データ発生時間変動(ジッタ)特性、データ量変動特性、低遅延特性などがあげられた。XRやクラウドゲーミングサービスに適した通信を可能にするには、このようなXRトラフィックの特質を考慮した通信方法が要求される。
 従来の周期的通信方法として、SPS(Semi-Persistent Scheduling)やCG(Configured Grant)がある。これらは、あらかじめ送受信に用いるリソースが割当てられるため、低遅延特性や低消費電力特性が得られるという利点がある。しかし、SPSやCGでは、周期はNミリ秒(Nは正の整数)である。このため、データ発生タイミングとリソース割当てタイミングにずれが生じ、次の周期までデータの送受信を待たなくてはならない。また、SPSやCGでは、周期的にリソースが割当てられるタイミングは一定である。このため、データ発生時間が変動した場合、SPSやCGで設定されたリソース割当てタイミングで送受信できず、次の周期までデータの送受信を待たなくてはならない。また、SPSやCGでは、周期的に割当てられるリソースは固定である。このため、データ量が大きくなった場合、SPSやCGで割当てられた1周期あたりのリソースだけではデータの送受信を完了させることができず、次の周期までデータの送受信を待たなくてはならない。
 このように、従来の周期的通信方法を単にXRトラフィックに適用しただけでは、XRトラフィックの特質に適さず遅延時間の増大を招いてしまう。また、データに遅延が生じ、要求される遅延量を超えてしまうような場合はデータを破棄することになり、通信品質の劣化が生じてしまう。
 本実施の形態1では、このような課題を解決する方法を開示する。
 該方法では、SPSの設定において1つまたは複数のPDSCHを設定する。しかし、SPSの設定においてどのように複数のPDSCHを設定するかが問題となる。この問題の解決方法を開示する。従来のRRCで行うSPS設定(非特許文献19参照)を、1つの周期で設定するPDSCHの個数分設定する。SPSの設定において、1つの周期で設定するPDSCHの個数に関する情報を含めてもよい。各SPS設定で異なるSPS設定識別子を付与するとよい。SPS設定のうち、1つの基準SPS設定を決めてもよい。たとえば、gNBが下りデータ(以下、DLデータとする)を周期的に送信する際の周期であるSPS周期で設定する1つ目のPDSCHのSPS設定を基準としてもよい。該基準SPSを示す情報をSPS設定に含めてもよい。他のSPS設定情報のうち、基準SPS設定情報と同じSPS設定情報は省略してもよい。gNBからUEに通知が必要な情報量の削減が図れる。このようにすることで、1つのSPS周期で複数のPDSCHの設定が可能となる。
 SPSのアクティベーション/デアクティベーションについて開示する。gNBはUEに対して、RRCで設定したSPS設定毎に、SPSのアクティベーション/デアクティベーションを通知する。SPSのアクティベーション/デアクティベーションはDCIに含めてPDCCHで通知するとよい。SPSのアクティベーション/デアクティベーションの他の通知方法として、MACシグナリングを用いて通知してもよい。SPSのアクティベーション/デアクティベーション情報のMAC CEを設けてもよい。RRCで設定したSPS設定毎に、SPSのアクティベーション/デアクティベーション情報を設定してもよい。SPSのアクティベーション/デアクティベーションに関する情報として、従来の情報、たとえば、周波数領域リソースアロケーション、時間領域リソースアロケーション、初送か再送かを示す情報(NDI)などがある(非特許文献12、13参照)。SPSのアクティベーション/デアクティベーションに関する情報として、RRCで設定したSPS設定識別子を含めてもよい。SPS設定識別子で、どのPDSCHのSPS設定をアクティベーションするかデアクティベーションするかを示すとよい。
 SPSのアクティベーション/デアクティベーションに関する情報として、オフセットを設けてもよい。該オフセットはスロットをまたいでもよい。複数のスロットをまたいでもよい。オフセットは、SPSのアクティベーション/デアクティベーションを通知するPDCCHからの期間であってもよい。複数のPDSCHで連続になるようにオフセットを設定してもよいし、非連続になるようにオフセットを設定してもよい。このようにすることで、複数のPDSCHの時間領域のリソースアロケーションを柔軟に設定できる。
 このようにすることで、SPSの設定において複数のPDSCHを設定可能となる。gNBからUEに対して各SPS周期で複数のPDSCHを用いてデータを送信可能となる。また、PDSCH毎にSPSをアクティベーション/デアクティベーション可能となるため、たとえばサービスで発生するDLデータ量に応じてPDSCH数を柔軟に設定可能となる。
 SPSのアクティベーション/デアクティベーションの他の方法を開示する。RRCで設定した1つまたは複数のSPS設定をアクティベーション/デアクティベーションするために、1つのSPSのアクティベーション/デアクティベーションを通知する。SPSのアクティベーション/デアクティベーションはDCIに含めてPDCCHで通知するとよい。1つのSPSのアクティベーション/デアクティベーションに、SPS設定の数だけ、SPSのアクティベーション/デアクティベーションに関する情報を含めるとよい。RRCで設定したSPS設定識別子と、該SPSのアクティベーション/デアクティベーションに関する情報とを関連付けるとよい。SPSのアクティベーション/デアクティベーションに関する情報については前述の方法を適宜適用するとよい。
 SPS設定のうち、1つの基準SPS設定を決めてもよい。たとえば、SPS周期で設定する1つ目のPDSCHのSPS設定を基準としてもよい。どのSPSを基準とするかは予め規格等で静的に決められてもよい。他の方法として、該基準SPSを示す情報をSPSのアクティベーション/デアクティベーションに関する情報に含めてもよい。他のSPS設定のSPSのアクティベーション/デアクティベーションに関する情報のうち、基準SPS設定のSPSのアクティベーション/デアクティベーションに関する情報と同じ該情報については省略してもよい。gNBからUEに通知が必要な情報量の削減が図れる。
 SPSの設定において複数のPDSCHが設定される場合の、SPSのアクティベーション/デアクティベーションが含まれるPDCCHの受信用に、新たなRNTI(Radio Network Temporary Identifier)を設けてもよい。UEは該RNTIを用いてPDCCHを受信する。他の方法として、CS-RNTI(Configured Scheduling RNTI)を用いてもよい。CS-RNTIはあらかじめgNBからUEに対して通知されるとよい。CS-RNTIを用いることで既存のRNTIを用いることが可能となるため、処理の簡略化が図れる。
 このようにすることで、1つのSPSのアクティベーション/デアクティベーションで複数のPDSCHを設定可能となる。gNBからUEに対して各SPS周期で複数のPDSCHを用いてデータを送信可能となる。1つのSPSのアクティベーション/デアクティベーションで済むため、gNBおよびUEの処理を簡略化可能となる。誤動作を低減可能となる。
 複数のPDSCHの他の設定方法を開示する。gNBはUEに対して、RRCで、1つのSPS設定で1つまたは複数のPDSCHの設定を行う。1つのSPS設定で、1つの周期で設定するPDSCHを個数分、SPS設定情報を設定する。RRCで設定するSPS設定情報として、従来のRRCで設定されるSPS設定情報に加えて、PDSCHの設定に関する情報を含めるとよい。SPSで設定する1つまたは複数のPDSCHに番号を付与するとよい。PDSCHの設定に関する情報として、PDSCHの個数 and/or PDSCHの番号をSPS設定情報に含めるとよい。PDSCHの番号と該PDSCHに対応するSPS設定情報を関連付けてもよい。
 1つの基準PDSCHを決めてもよい。たとえば、SPS周期で設定する1つ目のPDSCHを基準としてもよい。どのPDSCHを基準とするかは予め規格等で静的に決められてもよい。他の方法として、該基準PDSCHを示す情報をSPS設定に含めてもよい。他のPDSCHのSPS設定情報のうち、基準PDSCHのSPS設定情報と同じSPS設定情報は省略してもよい。gNBからUEに通知が必要な情報量の削減が図れる。このようにすることで、1つのSPS周期で複数のPDSCHの設定が可能となる。
 SPSのアクティベーション/デアクティベーション方法を開示する。RRCで設定した1つのSPSをアクティベーション/デアクティベーションするために、1つのSPSのアクティベーション/デアクティベーションを通知する。SPSのアクティベーション/デアクティベーションはDCIに含めてPDCCHで通知するとよい。SPSのアクティベーション/デアクティベーションの他の通知方法として、MACシグナリングを用いて通知してもよい。SPSのアクティベーション/デアクティベーション情報のMAC CEを設けてもよい。1つのSPSのアクティベーション/デアクティベーションに、PDSCHの数だけ、SPSのアクティベーション/デアクティベーションに関する情報を含めるとよい。RRCで設定したPDSCH番号と、該PDSCHのSPSのアクティベーション/デアクティベーションに関する情報とを関連付けるとよい。SPSのアクティベーション/デアクティベーションに関する情報については前述の方法を適宜適用するとよい。
 PDSCHのうち、1つの基準PDSCHを決めてもよい。たとえば、SPS周期で設定する1つ目のPDSCHを基準としてもよい。該基準PDSCHを示す情報をSPSのアクティベーション/デアクティベーションに関する情報に含めてもよい。他のPDSCHのSPSのアクティベーション/デアクティベーションに関する情報のうち、基準PDSCHのSPSのアクティベーション/デアクティベーションに関する情報と同じ情報は省略してもよい。gNBからUEに通知が必要な情報量の削減が図れる。
 PDSCHのSPSのアクティベーション/デアクティベーションに関する情報として、オフセットを設けてもよい。該オフセットはスロットをまたいでもよい。複数のスロットをまたいでもよい。オフセットは、SPSのアクティベーション/デアクティベーションを通知するPDCCHからの期間であってもよい。複数のPDSCHで連続になるようにオフセットを設定してもよいし、非連続になるようにオフセットを設定してもよい。このようにすることで、複数のPDSCHの時間領域のリソースアロケーションを柔軟に設定できる。
 複数のPDSCH用のSPSのアクティベーション/デアクティベーションが含まれるPDCCHの受信用に、新たなRNTIを設けてもよい。UEは該RNTIを用いてPDCCHを受信する。他の方法として、CS-RNTIを用いてもよい。CS-RNTIはあらかじめgNBからUEに対して通知されるとよい。CS-RNTIを用いることで既存のRNTIを用いることが可能となるため、処理の簡略化が図れる。
 このようにすることで、1つのSPSのアクティベーション/デアクティベーションで複数のPDSCHを設定可能となる。gNBからUEに対して各SPS周期で複数のPDSCHを用いてデータを送信可能となる。1つのSPSのアクティベーション/デアクティベーションで済むため、gNBおよびUEの処理を簡略化可能となる。誤動作を低減可能となる。
 SPSのアクティベーション/デアクティベーションについて他の方法を開示する。gNBはUEに対して、SPS周期で設定するPDSCH毎に、SPSのアクティベーション/デアクティベーションを通知する。SPSのアクティベーション/デアクティベーションはDCIに含めてPDCCHで通知するとよい。PDSCH毎のSPSのアクティベーション/デアクティベーションに関する情報を通知するとよい。
 このようにすることで、gNBからUEに対して各SPS周期で複数のPDSCHを用いてデータを送信可能となる。また、PDSCH毎に異なるタイミングでSPSのアクティベーション/デアクティベーションを実行可能となるため、たとえばDLデータの発生タイミングに応じてSPS設定を行うPDSCH数を柔軟に設定可能となる。
 HARQプロセスナンバーを、PDSCH毎に付与する。HARQプロセスナンバーは、SPS設定識別子を用いて導出してもよい。HARQプロセスナンバーをSPS設定識別子の関数としてもよい。HARQプロセスナンバーは、PDSCH番号を用いて導出してもよい。HARQプロセスナンバーをPDSCH番号の関数としてもよい。HARQプロセスナンバーは、PDSCHがアロケーションされるスロット番号を用いて導出してもよい。HARQプロセスナンバーは、PDSCHがアロケーションされるスロット番号の関数としてもよい。このような方法とすることで、PDSCH毎にHARQを実行可能となる。
 HARQプロセスナンバーの他の方法を開示する。SPS周期における1つまたは複数のPDSCHで1つのHARQプロセスナンバーが付与されてもよい。HARQプロセスナンバーは、基準SPS設定識別子を用いて導出してもよい。HARQプロセスナンバーを基準SPS設定識別子の関数としてもよい。HARQプロセスナンバーは、基準SPS設定がアロケーションされるスロット番号を用いて導出してもよい。HARQプロセスナンバーは、基準SPS設定がアロケーションされるスロット番号の関数としてもよい。HARQプロセスナンバーは、PDSCH番号を用いて導出してもよい。HARQプロセスナンバーをPDSCH番号の関数としてもよい。HARQプロセスナンバーは、基準PDSCHがアロケーションされるスロット番号を用いて導出してもよい。HARQプロセスナンバーは、基準PDSCHがアロケーションされるスロット番号の関数としてもよい。このような方法とすることで、SPS周期における1つまたは複数のPDSCHでHARQを実行可能となる。PDSCH毎のように多数のHARQプロセスが不要となる。またHARQ処理を簡略化可能となる。
 Ack/Nack用PUCCHは、PDSCH毎に設定されてもよい。PDSCHの個数に応じたAck/Nack用PUCCHが設定される。Ack/Nack用PUCCHに関する情報は、SPS設定情報に含めてもよい。このようにすることで、PDSCH毎のAck/Nackを設定可能となる。また複数のPDSCHの受信を待つことなく、受信したPDSCHから早期にAck/Nackを送信可能となる。
 Ack/Nack用PUCCHの他の設定方法を開示する。SPS周期で設定される1つまたは複数のPDSCHに対して、1つのAck/Nack用PUCCHが設定されてもよい。Ack/Nack用PUCCHに関する情報は、SPS設定情報に含めてもよい。
 該1つのPUCCHに、SPS周期で設定されるPDSCH毎のAck/Nack情報を含めてもよい。1つのPUCCHで1つまたは複数のPDSCHのAck/Nack情報を送信する。このようにすることで、PUCCHのリソースを低減可能となる。ULのリソース使用効率を向上可能となる。他の方法として、該1つのPUCCHで、Ackとなった1つまたは複数のPDSCHの情報を送信してもよい。該1つのPUCCHで、Ackとなった1つまたは複数のPDSCHのAck情報を含めて送信してもよい。他の方法として、該1つのPUCCHで、Nackとなった1つまたは複数のPDSCHの情報を送信してもよい。該1つのPUCCHで、Nackとなった1つまたは複数のPDSCHのNack情報を含めて送信してもよい。このようにすることで、PUCCHのリソースをさらに低減可能となる。ULのリソース使用効率を向上可能となる。
 どのPDSCHのAck/Nack情報を含めるかに、優先順位を設けてもよい。あるいは、コードブックにより情報量を低減してもよい。このようにすることで、PUCCHで送信する情報量を低減可能となる。
 SPS周期で設定される1つまたは複数のPDSCHの受信状況に応じて1つのAck/Nack情報を導出してもよい。たとえば、全てのPDSCHを受信した場合にAckとし、そうでない場合はNackとする。1つのPUCCHに、導出した1つのAck/Nack情報を含めてもよい。1つのPUCCHで1つのAck/Nack情報を送信する。このようにすることで、PUCCHのリソースを低減可能となる。ULのリソース使用効率を向上可能となる。
 SPS周期で1つまたは複数のPDCCHを設ける。SPS周期において、PDCCHをPDSCH毎に設ける。PDSCHの個数とPDCCHの個数を同じにするとよい。SPS周期で1つまたは複数のPDSCHが設定され、それと同じ個数のPDCCHが設定される。
 1つまたは複数のPDCCHの設定として、1つまたは複数のCORESETとサーチスペース(SS:Search Space)とを設定してもよい。1つまたは複数のCORESETとサーチスペースとを1組のCORESETと1組のサーチスペースとしてもよい。SPS周期で設定するCORESETのリストを設けてもよい。SPS周期で設定するサーチスペースのリストを設けてもよい。CORESETの設定情報として、CORESETの識別子、周波数領域リソース、シンボル期間、CCE(Control Channel Element)とREG(Resource Element Group)間マッピング情報、TCI(Transmission Configuration Indication)ステートに関する情報などがある。これらの情報の組合せであってもよい。サーチスペースの設定情報として、サーチスペース識別子、対応するCORESET識別子、サーチスペース周期、オフセット、サーチスペースに用いるスロット期間、モニタシンボル数、候補数、DCIフォーマット情報などがある。これらの組合せであってもよい。
 1つまたは複数のPDCCHの設定において、各PDCCHのCORESETの設定情報の一部または全部を同じとしてもよい。同様に、各PDCCHのサーチスペースの設定情報の一部または全部を同じとしてもよい。たとえば、CORESETの識別子は異ならせ、それ以外を同じ設定情報としてもよい。たとえば、サーチスペースの識別子と開始タイミング(オフセット)を異ならせ、それ以外を同じ設定情報としてもよい。同じ設定情報は省略してもよい。
 1つの基準PDCCHを決めてもよい。たとえば、SPS周期で設定する1つ目のPDCCHを基準としてもよい。どのPDCCHを基準とするかは予め規格等で静的に決められてもよい。他の方法として、該基準PDCCHを示す情報をSPS設定に含めてもよい。他のPDCCHの設定情報、たとえば、CORESETの設定情報やサーチスペースの設定情報のうち、基準PDCCHの設定情報と同じ情報は省略してもよい。gNBからUEに通知が必要な情報量の削減が図れる。
 gNBからUEに対して、SPS周期での1つまたは複数のPDCCHの設定が通知される。RRCシグナリングを用いてもよい。該設定用に新たなRRCメッセージが設けられてもよい。他のPDCCHの設定との誤認を低減可能となる。あるいは、既存のRRCメッセージを用いてもよい。たとえば、PDCCH-configに該設定を含めてもよい。たとえば、サーチスペースの周期をSPSの周期としてもよい。PDCCH-configでSPS周期において1つまたは複数のサーチスペースを設定可能となる。
 SPS周期での1つまたは複数のPDCCHの設定の他の通知方法として、RRCメッセージのSPS-configに該設定を含めてもよい。SPS-configに含めることで、SPSの他の設定、たとえば、PDSCHの設定と同時に設定可能となる。UEはSPS-configを受信することで、SPS周期でのPDSCHとPDCCHの設定を受信可能となり、誤動作を低減可能となる。
 1つまたは複数のPDCCHの設定情報のうち一部をPDCCH-configで設定して、残りをSPS設定で通知してもよい。柔軟な設定が可能となる。
 1つまたは複数のPDCCHの設定において、サーチスペースの周期を1つのSPS周期に設定するサーチスペースの周期としてもよい。たとえば、1スロット周期とした場合、SPS周期毎に、1スロット周期でサーチスペースが設定される。1つまたは複数のPDCCHの設定において、1つのSPS周期に設定するサーチスペースの個数情報を設けてもよい。SPS周期に設定されるPDCCHの個数と同じとしてもよい。このようにすることで、1つのSPS周期に設定するサーチスペースの数を限定できる。
 サーチスペースの周期を1つのSPS周期に設定するサーチスペースの周期とした場合の設定情報を、SPSの設定に含めてもよい。gNBはUEに対して該情報をSPSの設定に含めて送信する。たとえば、RRCメッセージのSPS-configに含めて送信してもよい。UEは、1つのSPS周期に設定するサーチスペースの周期情報、サーチスペースの個数情報などのサーチスペースの設定情報を受信することで、1つのSPS周期に設定されるPDCCHをモニタ可能となる。
 1つまたは複数のPDCCHの設定において、CORESET and/or サーチスペースをSPS周期で設定されるPDSCH毎に設定してもよい。該PDCCHでPDSCHのスケジューリング修正を実施可能となる。CORESET and/or サーチスペースを、PDSCHのリソースの前に設定してもよい。CORESET and/or サーチスペースを、PDSCHのリソースの直前に設定してもよい。CORESET and/or サーチスペースとPDSCHとを連続して設定してもよい。PDCCH受信後ただちにPDSCHを受信可能となる。
 gNBはUEに対して、SPSにおいて設定する1つまたは複数のPDCCHの設定を、DCIに含めて送信してもよい。SPSのアクティベーション/デアクティベーション用のDCIに含めて送信してもよい。該DCIの送信に、PDCCHを用いてもよい。ダイナミックな通知が可能となる。SPSにおいて設定する1つまたは複数のPDCCHの設定を、MACシグナリングを用いて通知してもよい。SPSにおいて設定する1つまたは複数のPDCCHの設定を含むMAC CEを設けてもよい。PDSCHを用いて送信可能となる。PDCCHが送信されないような場合にもSPSにおいて設定する1つまたは複数のPDCCHの設定を通知可能となる。SPSにおいて設定する1つまたは複数のPDCCHの設定を送信するPDCCHから、SPSにおいて設定する1つまたは複数のPDCCHまでのオフセット情報を設けてもよい。該オフセット情報をSPSの設定に含めてもよい。1つまたは複数のPDCCHの設定情報を、RRCシグナリングとPDCCHとを組合わせて通知してもよい。よりダイナミックで柔軟な設定が可能となる。
 SPS周期で設定される1つまたは複数のPDCCHの受信用に、新たなRNTIを設けてもよい。UEは該RNTIを用いてPDCCHを受信する。他の方法として、C-RNTI(Cell RNTI)を用いてもよい。CS-RNTI(Configured Scheduling RNTI)を用いてもよい。C-RNTIあるいはCS-RNTIを用いることで既存のRNTIを用いることが可能となるため、処理の簡略化が図れる。
 SPS周期で設定される1つまたは複数のPDCCHで、PDSCHのスケジューリング修正情報を通知する。RRCあるいはDCIで送信した設定情報以外のPDSCHの設定情報を各PDCCHで通知してもよい。
 図11は、1つのSPS周期において複数のPDSCHと複数のPDCCHを設定する場合のリソースアロケーション例を示す図である。PDCCHはPDSCH毎に設けられる場合について示している。ハッチングありの四角はPDCCHを、白色四角はPDSCHを示している。横軸は時間領域を示し、縦軸は周波数領域を示している。gNBからUEに対して、SPSの設定がRRCシグナリングで行われ、SPSのアクティベーション/デアクティベーションがPDCCHで通知される。SPS周期毎に複数のPDCCHが設定され、各PDCCHでPDSCHのスケジューリング修正情報が送信される。
 図11では複数のPDSCHが連続してアロケーションされているが、非連続であってもよい。
 このようにすることで、SPSの設定において複数のPDSCHの設定が可能となり、各PDSCHに対応したPDCCHの設定が可能になる。このため、各PDSCHのスケジューリングの修正が動的に可能となる。PDCCHで各PDSCHのスケジューリングを修正することで、データ発生タイミングやデータ量の変動に対して、各PDSCHに割当てられるリソースやMSC(Mobile Switching Centre)等の設定をより適した設定に修正することが可能となる。遅延時間の削減やリソース使用効率の向上が図れる。
 前述ではデータが1つまたは複数のPDSCHを用いて送信されることを示した。他の方法として、PDSCHのリソース量を増大させてもよい。たとえば1つのPDSCHに複数のスロットを割当ててもよい。PDSCHのリソース量を設定可能としてもよい。このようにすることで、データは1つのPDSCHを用いて送信可能となる。SPSの設定において、1つのPDSCHの設定を行うとよい。PDSCHのリソース量を設定可能としてもよい。PDSCHのリソース量はRRCで設定してもよい。あるいはMACシグナリングで設定してもよい。あるいは、DCIに含めてPDCCHで設定してもよい。このようにすることで、SPSで設定するPDSCHを1つとすることができ、処理を簡略化することが可能となる。
実施の形態1変形例1.
 実施の形態1で開示した課題を解決する他の方法を開示する。SPSの設定において、1つまたは複数のPDSCHを設定し、1つまたは複数のPDCCHを設定する。PDSCHの個数とPDCCHの個数を個別に設定する。
 SPS周期において1つまたは複数のPDSCHを設定する方法は、実施の形態1で開示した方法を適宜適用するとよい。SPS周期において1つまたは複数のPDCCHを設定する方法は、実施の形態1で開示した方法を適宜適用するとよい。これらの方法を用いて、PDSCHの個数とPDCCHの個数を個別に設定するとよい。
 1つのSPS周期において設定された各PDCCHで、1つまたは複数のPDSCHのスケジューリング修正情報を通知する。RRCあるいはDCIで送信した設定情報以外のPDSCHの設定情報を各PDCCHで通知してもよい。
 1つのPDCCHで複数のPDSCHのスケジューリング修正情報を通知する方法を開示する。各PDSCHに対応した複数のサーチスペースを設ける。UEは、各PDSCHのスケジューリング修正情報を含むDCIを受信するため、各PDSCHに対応した各サーチスペースを受信する。このように、各PDSCHに対応した複数のサーチスペースを設けることで、従来のサーチスペース設定方法を用いることが可能となる。SPS処理の複雑化を回避することが可能となる。
 1つのPDCCHで複数のPDSCHのスケジューリング修正情報を通知する他の方法を開示する。複数のPDSCHに対応した1つのサーチスペースを設ける。UEは、各PDSCHのスケジューリング修正情報を含むDCIを受信するため、各PDSCHに対応した各サーチスペースを受信する。このように、各PDSCHに対応した1つのサーチスペースを設けることで、従来のサーチスペース設定方法を用いることが可能となる。SPS処理の複雑化を回避することが可能となる。
 サーチスペースの設定情報は、SPSの設定情報に含めてもよい。SPS周期において設定されるPDCCHの設定情報に含めてもよい。gNBからUEに対してサーチスペースの設定情報を、RRCシグナリングを用いて送信してもよい。gNBからUEに対してサーチスペースの設定情報を、SPSアクティベーション/デアクティベーションを含むDCIに含めてPDCCHで送信してもよい。これらの方法として、実施の形態1で開示した方法を適宜適用するとよい。
 SPSで設定する1つまたは複数のPDSCHを特定するため、PDSCHに番号を付与してもよい。1つまたは複数のPDSCHの設定において、PDSCHの設定情報と、該PDSCHの番号とを対応付けてもよい。実施の形態1で開示した方法を適宜適用してもよい。
 1つのPDCCHで複数のPDSCHのスケジューリング修正情報を通知する方法において、どのPDSCHのスケジューリング修正情報かを特定するため、前述に開示したPDSCHの番号を用いてもよい。このようにすることで、どのPDSCHのスケジューリング修正情報かを明示できる。gNBとUE間での誤動作を低減可能となる。
 図12は、SPSの設定においてPDCCHの個数とPDSCHの個数を個別に設定する場合のリソースアロケーション例を示す図である。SPSの設定において1つのPDCCHが設定され、5つのPDSCHが設定される。SPS周期毎に1つのPDCCHが設定され、該PDCCHで対応するPDSCHのスケジューリング修正情報が送信される。
 図12では複数のPDSCHが連続してアロケーションされているが、非連続であってもよい。
 1つのSPS周期で設定されるPDCCHの個数は複数であってもよい。1つのSPS周期で設定されるPDCCHの設定情報として、PDCCHの数が含まれてもよい。PDCCHの数は1つのSPS周期で設定されるPDSCHの数の範囲内で設定されてもよい。複数のPDCCHの設定方法として、PDCCHを周期的に設定してもよい。実施の形態1で開示したCORESETやサーチスペースの設定方法を適宜適用するとよい。複数のPDCCHを設定可能となり、DLデータ発生タイミングやデータ量に適した回数のPDCCHでPDSCHのスケジューリング修正が可能となる。
 1つのSPS周期で設定されるPDCCHの他の設定方法として、1つのSPS周期で設定されるPDCCHをビットマップで設定してもよい。SPSで設定されるPDSCH数に応じたビット数のビットマップとしてもよい。PDCCHの設定情報として、サーチスペースの設定をビットマップを用いて行ってもよい。1つのSPS周期で設定するサーチスペースが周期的でなくてもよく、柔軟なPDCCHの設定が可能となる。
 図13は、SPSの設定においてPDCCHの個数とPDSCHの個数を個別に設定する場合の他のリソースアロケーション例を示す図である。SPSの設定において2つのPDCCHが設定され、5つのPDSCHが設定される。SPS周期毎に2つのPDCCHが設定され、1番目のPDCCHで1~3番目のPDSCHのスケジューリング修正情報が送信され、2番目のPDCCHで4~5番目のPDSCHのスケジューリング修正情報が送信される。
 図13では複数のPDSCHが連続してアロケーションされているが、非連続であってもよい。
 このようにすることで、SPSの設定において複数のPDSCHの設定が可能となり、各PDSCHに対応したPDCCHの設定が可能になる。PDSCHの個数とPDCCHの個数を個別に設定することで、柔軟なPDCCHの設定が可能となる。また、PDCCHのリソースを削減できるため、リソースの使用効率を向上させられる。また、UEのPDCCH受信処理を削減可能となるため、低消費電力化が図れる。また、実施の形態1の効果と同様に、各PDSCHのスケジューリングの修正が動的に可能となる。PDCCHで各PDSCHのスケジューリングを修正することで、データ発生タイミングやデータ量の変動に対して、各PDSCHに割当てられるリソースやMSC等の設定をより適した設定に修正することが可能となる。遅延時間の削減やリソース使用効率の向上が図れる。
実施の形態1変形例2.
 実施の形態1で開示した課題を解決する他の方法を開示する。SPSの設定において、1つまたは複数のPDSCHを設定し、1つまたは複数のPDCCHを設定する。PDSCHの個数とPDCCHの個数を個別に設定する。SPS周期毎に設定されたPDCCHに、SPSで設定されたPDSCHのリリース情報を含める。gNBはUEに対して、該PDCCHで、SPSで設定された1つまたは複数のPDSCHのリリース情報を通知してもよい。
 SPS周期毎に設定された1つまたは複数のPDCCHで送信するDCIに、SPSで設定された1つまたは複数のPDSCHのリリース情報を含めるとよい。DCIにリリース情報を含める場合、新たなDCIフォーマットを設けてもよい。他の方法として既存のDCIフォーマットを用いてもよい。たとえば、DCIフォーマット2_1(非特許文献12参照)を用いてもよい。既存のDCIフォーマットを用いることで、処理が複雑化するのを回避できる。
 リリース情報を含むDCIを受信するため、新たなRNTIを設けてもよい。たとえば、実施の形態1や実施の形態1変形例1で開示したPDCCHを受信するためのRNTIとしてもよい。SPS設定におけるPDCCH特有のRNTIとすることで、誤動作を低減できる。他の方法として既存のRNTI(非特許文献15参照)を用いてもよい。たとえば、C-RNTIやCS-RNTIとしてもよい。たとえば、INT-RNTI(Interruption RNTI)を用いてもよい。DCIフォーマット2_1を用いる場合にINT-RNTIを用いてもよい。既存のRNTIを用いることで、処理が複雑化するのを回避できる。
 1つのPDCCHで1つまたは複数のPDSCHのリリース情報を通知してもよい。どのPDSCHをリリースするかを特定するための情報を設けて通知してもよい。SPSで設定されるPDSCHに番号を付与し、PDSCH番号をリリースするPDSCHを特定するための情報としてもよい。PDSCHのリリース情報の通知方法として、実施の形態1変形例1で開示した、1つのPDCCHで1つまたは複数のPDSCHのスケジューリング修正情報を通知する方法を適宜適用するとよい。PDSCHのスケジューリング修正情報の代わりに、あるいは、PDSCHのスケジューリング修正情報として、PDSCHのリリース情報とするとよい。UEはgNBから送信されたSPS周期毎の1つまたは複数のPDCCHを受信することで、リリースするPDSCHを認識可能となる。UEは、SPSで設定された1つまたは複数のPDSCHをリリース可能となる。
 gNBは、UEに対してリリース情報で通知したPDSCHでデータを送信しない。UEは、リリース情報により通知されたPDSCHを受信しなくてもよい。gNB、UEともに処理を簡略化できる。たとえば、gNBはDLデータの発生タイミングやデータ量に応じてPDSCHのリリースを行うことで、DLデータの発生タイミングやデータ量に適したPDSCHを使用可能となる。gNBはリリースを行ったPDSCHのリソースを他の通信に用いてもよい。例えば、他のUEのPDSCHをリソースアロケーションしてもよい。無線リソースの使用効率を向上可能となる。
 リリース方法として、リリース情報を含むPDCCHが通知されたSPS周期の当該PDSCHをリリースする。このようにすることで、たとえば、SPS周期毎にリリースするPDSCHを設定可能となる。DLデータの発生タイミングやデータ量に応じてSPS周期毎にPDSCHのリリースが可能となる。
 他のリリース方法として、リリース情報を含むPDCCHが通知されたSPS周期以降の当該PDSCHをリリースする。たとえば、2番目のSPS周期のPDCCHで、4番目と5番目のPDSCHのリリース情報が送信される。この場合、2番目以降のSPS周期の4番目と5番目のPDSCHをリリースする。このようにすることで、たとえば、PDSCHのリリースをSPS周期毎に行う必要がなくなるため、通知に必要な情報量を削減できる。
 他のリリース方法として、リリース情報を含むPDCCHが通知されたSPS周期から所定の期間当該PDSCHをリリースする。期間の単位は、時間、スロット、サブフレーム、無線フレームなどとしてもよい。期間ではなく、SPS周期の回数であってもよい。gNBはUEに対してリリース期間情報を送信するとよい。リリース情報とともに送信してもよい。たとえば、2番目のSPS周期のPDCCHで、4番目と5番目のPDSCHのリリース情報と、リリース期間情報が送信される。たとえば、リリース期間情報として5SPS周期とする。この場合、2番目から6番目のSPS周期の4番目と5番目のPDSCHをリリースする。このようにすることで、たとえば、PDSCHのリリースを所定の期間に限定することが可能となる。たとえば、DLデータの発生動向を考慮した柔軟な設定が可能となる。
 リリースを、PDCCHで送信されたSPS周期のみにするか、それ以降にするか、所定の期間にするかを設定可能としてもよい。gNBはUEに対して、いずれにするかの情報を送信してもよい。リリース情報とともに送信してもよい。たとえば、リリース期間情報を用いて設定してもよい。たとえば、PDCCHで送信されたSPS周期のみにする場合はリリース期間情報として1を設定する。所定の期間にする場合はリリース期間情報としてSPS周期回数を設定する。PDCCHで送信されたSPS周期以降全てとする場合はリリース期間情報をあらかじめ定められた値とする。たとえば、0としてもよい。このようにすることで、どのようなリリース方法にするかを設定可能となる。DLデータの通信パターンに適した柔軟な設定が可能となる。
 図14は、SPSで設定されたPDSCHのリソースをPDCCHでリリースする例を示す図である。SPSの設定においてPDCCHの個数とPDSCHの個数とは個別に設定される。SPSの設定において1つのPDCCHが設定され、複数のPDSCHが設定される。SPS周期毎に1つのPDCCHが設定される。PDCCHでPDSCHをリリースする情報と、どのPDSCHをリリースするかを示す情報が送信される。UEはPDCCHを受信することで、どのPDSCHをリリースするかを認識可能となる。UEはリリースされたPDSCHの受信を行わない。
 PDCCHの個数は複数であってもよい。複数のPDCCHの設定方法として、PDCCHを周期的に設定してもよい。PDSCHが設定される範囲内で設定されてもよい。あるいは、PDSCHが設定される範囲内で送信されてもよい。他の設定方法として、PDCCHをビットマップで設定してもよい。PDSCHが設定される範囲内で設定されてもよい。
 図15は、SPSで設定されたPDSCHのリソースをPDCCHでリリースする他の例を示す図である。SPSの設定においてSPS周期毎に2つのPDCCHが設定される。PDCCHで、SPSで設定された複数のPDSCHをリリースする情報と、どのPDSCHをリリースするかを示す情報が送信される。n番目のPDCCHで、n+1番目のPDCCHが送信される前のPDSCHのリリース情報と、どのPDSCHをリリースするかを示す情報が送信される。図15では、1番目のPDCCHで、1~3番目のPDSCHのリリース情報と、どのPDSCHをリリースするかを示す情報が送信される。2番目のPDCCHで4~5番目のPDSCHのスケジューリング修正情報が送信される。UEはPDCCHを受信することで、どのPDSCHをリリースするかを認識可能となる。UEはリリースされたPDSCHの受信を行わない。
 SPSで設定された1つまたは複数のPDSCHのリリース情報を、実施の形態1変形例1で開示した、SPSで設定された1つまたは複数のPDSCHのスケジューリング修正情報に含めてもよい。SPSで設定された1つまたは複数のPDSCHのスケジューリング修正情報に、SPSで設定された1つまたは複数のPDSCHのスケジューリングをリリースする情報を含めてもよい。SPSで設定された1つまたは複数のPDSCHのスケジューリング修正情報に、SPSで設定された1つまたは複数のPDSCHのスケジューリングをキャンセルする情報を含めてもよい。
 他の方法として、実施の形態1変形例1で開示した、SPSで設定された1つまたは複数のPDSCHのスケジューリング修正情報で、スケジューリングが修正されるPDSCHを除く他のPDSCHはリリースする(キャンセルするでもよい)としてもよい。スケジューリング修正情報として、SPS設定で設定されたPDSCH割当てを実行することを示す情報を設けてもよい。スケジューリング修正情報として、SPS設定で設定されたPDSCH割当てを実行するか否かを示す情報を設けてもよい。SPSで設定された1つまたは複数のPDSCHのスケジューリング修正情報で、PDSCH割当てを実行する情報が示されないPDSCHはリリースする(キャンセルするでもよい)としてもよい。このようにすることで、UEはスケジューリング修正情報を受信すればよく、UEでの処理を簡略化可能となる。
 このようにすることで、SPSの設定において複数のPDSCHの設定が可能となり、各PDSCHに対応したPDCCHの設定が可能になる。PDSCHの個数とPDCCHの個数を個別に設定することで、柔軟なPDCCHの設定が可能となる。また、PDCCHのリソースを削減できるため、リソースの使用効率を向上させられる。また、UEのPDCCH受信処理を削減可能となるため、低消費電力化が図れる。また、各PDSCHのリリースが動的に可能となるため、たとえSPSの設定で多数のPDSCHの設定がなされても、データ発生タイミングやデータ量の変動に適した設定に修正することが可能となる。遅延時間の削減やリソース使用効率の向上が図れる。
実施の形態1変形例3.
 実施の形態1で開示した課題を解決する他の方法を開示する。SPSの設定において、1つまたは複数のPDCCHを設定する。SPSの設定においてPDSCHの設定を行わない。SPS周期において1つまたは複数のPDCCHを設定する方法については前述に開示した方法を適宜適用するとよい。gNBからUEへの該PDCCHの設定の通知方法は、前述に開示した方法を適宜適用するとよい。
 PDSCHは、SPS周期毎に設定された1つまたは複数のPDCCHを用いてスケジューリングする。該PDCCHでPDSCHのスケジューリング情報を通知する。1つのPDCCHを用いて1つまたは複数のPDSCHのスケジューリング情報を通知してもよい。通知方法は、実施の形態1変形例1で開示した、1つのPDCCHで1つまたは複数のPDSCHのスケジューリング修正情報を通知する方法を適宜適用するとよい。スケジューリング修正情報の代わりにスケジューリング情報とするとよい。
 図16は、SPSの設定において1つまたは複数のPDCCHのみが設定される場合のリソースアロケーション例を示す図である。SPS周期毎に2つのPDCCHが設定される。SPSの設定においてPDSCHは設定されない。gNBからUEに対して、SPSの設定がRRCシグナリングで行われ、SPSのアクティベーション/デアクティベーションがPDCCHで通知される。SPSの周期毎に設定されたPDCCHでPDSCHのスケジューリング情報を通知する。n番目のPDCCHで、n+1番目のPDCCHが送信される前のPDSCHのスケジューリング情報が送信されてもよい。図16の例では、最初の周期では、1番目のPDCCHで1つのPDSCH、2番目のPDCCHで2つのPDSCHがスケジューリングされる。2番目の周期では、1番目のPDCCHで2つのPDSCH、2番目のPDCCHで1つのPDSCHがスケジューリングされる。UEはPDCCHを受信することで、PDSCHのスケジューリング情報を受信可能となる。
 このようにすることで、SPSの設定において1つまたは複数のPDCCHの設定が可能になる。SPS周期毎にPDCCHによってPDSCHがスケジューリングされるため、データ発生タイミングやデータ量の変動に対して、スケジューリングするPDSCH数を設定可能となる。このため、遅延時間の削減やリソース使用効率の向上が図れる。
実施の形態2.
 実施の形態1で開示した課題を解決する他の方法を開示する。CGの設定において、1つまたは複数のPUSCHを設定する。CGの設定において、1つまたは複数のPDCCHを設定する。CGの周期においてPDCCHをPUSCH毎に設けるとよい。PUSCHの個数とPDCCHの個数を同じにするとよい。UEが上りデータ(以下、ULデータとする)を送信するためのリソースを周期的に割当てる際の周期であるCG周期で1つまたは複数のPUSCHが設定され、それと同じ個数のPDCCHが設定される。
 CGの設定において1つまたは複数のPUSCHを設定する。CGの設定においてどのように複数のPUSCHを設定するかが問題となる。該問題の解決方法を開示する。従来のRRCで設定されるCG設定(非特許文献19参照)を1つの周期で設定するPUSCHの個数分設定する。各設定で異なるCG設定識別子を付与するとよい。CG設定のうち、1つの基準CG設定を決めてもよい。たとえば、CG周期で設定する1つ目のPUSCHのCG設定を基準としてもよい。該基準CGを示す情報をCG設定に含めてもよい。他のCG設定情報のうち、基準CG設定情報と同じCG設定情報は省略してもよい。gNBからUEに通知が必要な情報量の削減が図れる。このようにすることで、1つのCG周期で複数のPUSCHの設定が可能となる。
 CGのアクティベーション/デアクティベーションについて開示する。gNBはUEに対してCGのアクティベーション/デアクティベーションをRRCシグナリングで通知してもよい。gNBはUEに対してRRCシグナリングで行うCG設定の設定、リリースをもって、CGのアクティベーション、デアクティベーションとしてもよい。RRCで設定したCG設定毎に、CGのアクティベーション/デアクティベーションが行われる。
 他の方法として、gNBはUEに対して、RRCで設定したCG設定毎に、CGのアクティベーション/デアクティベーションを通知してもよい。CGのアクティベーション/デアクティベーションはDCIに含めてPDCCHで通知するとよい。CGのアクティベーション/デアクティベーションに関する情報として、従来の情報、たとえば、周波数領域リソースアロケーション、時間領域リソースアロケーション、初送か再送かを示す情報(NDI)などがある(非特許文献12、13参照)。CGのアクティベーション/デアクティベーションに関する情報として、RRCで設定したCG設定識別子を含めてもよい。CG設定識別子で、どのPUSCHのCG設定をアクティベーションするかデアクティベーションするかを示すとよい。
 CGのアクティベーション/デアクティベーションの方法については、実施の形態1で開示したSPSのアクティベーション/デアクティベーションの方法を適宜適用するとよい。SPSの代わりにCGとするとよい。SPSで設定するPDSCHの代わりにCGで設定するPUSCHとするとよい。CGにおいても同様の効果を得ることができる。
 複数のPUSCHの他の設定方法を開示する。gNBはUEに対してRRCで1つのCG設定で1つまたは複数のPUSCHの設定を行う。1つのCG設定で、CG周期で設定するPUSCHを個数分設定する。RRCで設定するCG設定情報として、従来のRRCで設定されるCG設定情報に加えて、PUSCHの設定に関する情報を含めるとよい。CGで設定する1つまたは複数のPUSCHに番号を付与するとよい。PUSCHの設定に関する情報として、PUSCHの個数 and/or PUSCHの番号をCG設定情報に含めるとよい。PUSCHの番号と該PUSCHに対応するCG設定情報を関連付けてもよい。
 1つの基準PUSCHを決めてもよい。たとえば、CG周期で設定する1つ目のPUSCHを基準としてもよい。どのPUSCHを基準とするかは予め規格等で静的に決められてもよい。他の方法として、該基準PUSCHを示す情報をCG設定に含めてもよい。他のPUSCHのCG設定情報のうち、基準PUSCHのCG設定情報と同じCG設定情報は省略してもよい。gNBからUEに通知が必要な情報量の削減が図れる。このようにすることで、1つのCG周期で複数のPUSCHの設定が可能となる。
 CGのアクティベーション/デアクティベーションは前述に開示した方法を適宜適用してもよい。gNBはUEに対してRRCシグナリングで行うCG設定、リリースをもって、CGのアクティベーション、デアクティベーションとしてもよい。あるいは、gNBはUEに対して、RRCで設定したCG設定毎に、CGのアクティベーション/デアクティベーションをDCIに含めてPDCCHで通知してもよい。
 CGのアクティベーション/デアクティベーションの方法については、実施の形態1で開示したSPSのアクティベーション/デアクティベーションの方法を適宜適用するとよい。該方法において、SPSの代わりにCGとするとよい。SPSで設定するPDSCHの代わりにCGで設定するPUSCHとするとよい。CGにおいても同様の効果を得ることができる。
 HARQプロセスナンバーを、PUSCH毎に付与する。HARQプロセスナンバーは、CG設定識別子を用いて導出してもよい。HARQプロセスナンバーをCG設定識別子の関数としてもよい。HARQプロセスナンバーは、PUSCH番号を用いて導出してもよい。HARQプロセスナンバーをPUSCH番号の関数としてもよい。HARQプロセスナンバーは、PUSCHがアロケーションされるスロット番号を用いて導出してもよい。HARQプロセスナンバーは、PUSCHがアロケーションされるスロット番号の関数としてもよい。このような方法とすることで、PUSCH毎にHARQを実行可能となる。
 HARQプロセスナンバーの他の方法を開示する。CG周期における1つまたは複数のPUSCHで1つのHARQプロセスナンバーが付与されてもよい。HARQプロセスナンバーは、基準CG設定識別子を用いて導出してもよい。HARQプロセスナンバーを基準CG設定識別子の関数としてもよい。HARQプロセスナンバーは、基準CG設定がアロケーションされるスロット番号を用いて導出してもよい。HARQプロセスナンバーは、基準CG設定がアロケーションされるスロット番号の関数としてもよい。HARQプロセスナンバーは、PUSCH番号を用いて導出してもよい。HARQプロセスナンバーをPUSCH番号の関数としてもよい。HARQプロセスナンバーは、基準PUSCHがアロケーションされるスロット番号を用いて導出してもよい。HARQプロセスナンバーは、基準PUSCHがアロケーションされるスロット番号の関数としてもよい。このような方法とすることで、CG周期における1つまたは複数のPUSCHでHARQを実行可能となる。PUSCH毎のように多数のHARQプロセスが不要となる。またHARQ処理を簡略化可能となる。
 CG周期で1つまたは複数のPDCCHを設ける。CG周期において、PDCCHをPUSCH毎に設ける。PUSCHの個数とPDCCHの個数を同じにするとよい。CG周期で1つまたは複数のPUSCHが設定され、それと同じ個数のPDCCHが設定される。
 該PDCCHの設定方法は、実施の形態1で開示したSPS周期で1つまたは複数のPDCCHを設定する方法を適宜適用するとよい。該方法において、SPSの代わりにCGとするとよい。
 図17は、CGの設定において複数のPUSCHと複数のPDCCHを設定する場合のリソースアロケーション例を示す図である。CGの設定において複数のPUSCHが設定され、PDCCHはPUSCH毎に設けられる。ハッチングありの四角はPDCCHを、白色四角はPUSCHを示している。横軸は時間領域を示し、縦軸は周波数領域を示している。gNBからUEに対して、CGの設定がRRCシグナリングで行われ、CGのアクティベーション/デアクティベーションがPDCCHで通知される。CG周期毎に複数のPDCCHが設定され、各PDCCHで対応するPUSCHのスケジューリング修正情報が送信される。
 図17では複数のPUSCHが連続してアロケーションされているが、非連続であってもよい。
 ULの通信において、データ発生タイミングやデータ量の変動が生じる場合がある。UEは適宜CGで設定されたPUSCHを用いてULデータ量やデータ発生タイミングに関する情報を送信してもよい。該情報をMAC CEに含めてもよい。該情報をULデータと一緒に送信してもよい。ULデータ量情報の送信にBSR(Buffer Status Report)を用いてもよい。該情報を受信したgNBは、CGで設定したPUSCHのスケジューリングを修正してもよい。修正するPUSCHのスケジューリング修正情報をPDCCHでUEに対して通知するとよい。UEはPDCCHを受信することで、PUSCHのスケジューリング修正情報を取得可能となる。UEはスケジューリング修正されたPUSCHを用いてULデータを送信するとよい。
 このようにすることで、CGの設定において複数のPUSCHの設定が可能となり、各PUSCHに対応したPDCCHの設定が可能になる。このため、各PUSCHのスケジューリングの修正が動的に可能となる。PDCCHで各PUSCHのスケジューリングを修正することで、データ発生タイミングやデータ量の変動に対して、各PUSCHに割当てられるリソースやMSC等の設定をより適した設定に修正することが可能となる。遅延時間の削減やリソース使用効率の向上が図れる。
 前述ではデータが1つまたは複数のPUSCHを用いて送信されることを示した。他の方法として、PUSCHのリソース量を増大させてもよい。たとえば1つのPUSCHに複数のスロットを割当ててもよい。PUSCHのリソース量を設定可能としてもよい。このようにすることで、データは1つのPUSCHを用いて送信可能となる。CGの設定において、1つのPUSCHの設定を行うとよい。PUSCHのリソース量を設定可能としてもよい。PUSCHのリソース量はRRCで設定してもよい。あるいはMACシグナリングで設定してもよい。あるいは、DCIに含めてPDCCHで設定してもよい。このようにすることで、CGで設定するPUSCHを1つとすることができ、処理を簡略化することが可能となる。
実施の形態2変形例1.
 実施の形態1で開示した課題を解決する他の方法を開示する。CGの設定において、1つまたは複数のPUSCHを設定し、1つまたは複数のPDCCHを設定する。PUSCHの個数とPDCCHの個数を個別に設定する。
 CG周期において1つまたは複数のPUSCHを設定する方法は、実施の形態2で開示した方法を適宜適用するとよい。CG周期において1つまたは複数のPDCCHを設定する方法は、実施の形態2で開示した方法を適宜適用するとよい。これらの方法を用いて、PUSCHの個数とPDCCHの個数を個別に設定するとよい。
 1つのCG周期において設定された各PDCCHで、1つまたは複数のPUSCHのスケジューリング修正情報を通知する。RRCあるいはDCIで送信した設定情報以外のPUSCHの設定情報を各PDCCHで通知してもよい。
 1つのPDCCHで複数のPUSCHのスケジューリング修正情報を通知する方法を開示する。各PUSCHに対応した複数のサーチスペースを設ける。UEは、各PUSCHのスケジューリング修正情報を含むDCIを受信するため、各PUSCHに対応した各サーチスペースを受信する。このように、各PUSCHに対応した複数のサーチスペースを設けることで、従来のサーチスペース設定方法を用いることが可能となる。SPS処理の複雑化を回避することが可能となる。
 1つのPDCCHで複数のPUSCHのスケジューリング修正情報を通知する他の方法を開示する。複数のPUSCHに対応した1つのサーチスペースを設ける。UEは、各PUSCHのスケジューリング修正情報を含むDCIを受信するため、各PUSCHに対応した各サーチスペースを受信する。このように、各PUSCHに対応した1つのサーチスペースを設けることで、従来のサーチスペース設定方法を用いることが可能となる。SPS処理の複雑化を回避することが可能となる。
 サーチスペースの設定情報は、CGの設定情報に含めてもよい。CG周期において設定されるPDCCHの設定情報に含めてもよい。gNBからUEに対してサーチスペースの設定情報を、RRCシグナリングを用いて送信してもよい。gNBからUEに対してサーチスペースの設定情報を、CGアクティベーション/デアクティベーションを含むDCIに含めてPDCCHで送信してもよい。これらの方法として、実施の形態2で開示した方法を適宜適用するとよい。
 CGで設定する1つまたは複数のPUSCHを特定するため、PUSCHに番号を付与してもよい。1つまたは複数のPUSCHの設定において、PUSCHの設定情報と、該PUSCHの番号とを対応付けてもよい。実施の形態2で開示した方法を適宜適用してもよい。
 1つのPDCCHで複数のPUSCHのスケジューリング修正情報を通知する方法において、どのPUSCHのスケジューリング修正情報かを特定するため、前述に開示したPUSCHの番号を用いてもよい。このようにすることで、どのPUSCHのスケジューリング修正情報かを明示できる。gNBとUE間での誤動作を低減可能となる。
 図18は、CGの設定においてPDCCHの個数とPUSCHの個数を個別に設定する場合のリソースアロケーション例を示す図である。CGの設定において1つのPDCCHが設定され、5つのPUSCHが設定される。CG周期毎に1つのPDCCHが設定され、該PDCCHで対応するPUSCHのスケジューリング修正情報が送信される。
 図18では複数のPUSCHが連続してアロケーションされているが、非連続であってもよい。
 1つのCG周期で設定されるPDCCHの個数は複数であってもよい。1つのCG周期で設定されるPDCCHの設定情報として、PDCCHの数が含まれてもよい。PDCCHの数は1つのCG周期で設定されるPDSCHの数の範囲内で設定されてもよい。複数のPDCCHの設定方法として、PDCCHを周期的に設定してもよい。実施の形態2で開示したCORESETやサーチスペースの設定方法を適宜適用するとよい。複数のPDCCHを設定可能となり、ULデータ発生タイミングやデータ量に適した回数のPDCCHでPUSCHのスケジューリング修正が可能となる。
 1つのCG周期で設定されるPDCCHの他の設定方法として、1つのCG周期で設定されるPDCCHをビットマップで設定してもよい。CGで設定されるPUSCH数に応じたビット数のビットマップとしてもよい。PDCCHの設定情報として、サーチスペースの設定をビットマップを用いて行ってもよい。1つのCG周期で設定するサーチスペースが周期的でなくてもよく、柔軟なPDCCHの設定が可能となる。
 図19は、CGの設定においてPDCCHの個数とPUSCHの個数を個別に設定する場合の他のリソースアロケーション例を示す図である。CGの設定において、CG周期毎に2つのPDCCHが設定され、5つのPUSCHが設定される。n番目のPDCCHでn+1番目のPDCCHより前のPUSCHのスケジューリング修正情報を送信されてもよい。図19では、1番目のPDCCHで1~3番目のPUSCHのスケジューリング修正情報が送信され、2番目のPDCCHで4~5番目のPUSCHのスケジューリング修正情報が送信される。
 図19では複数のPUSCHが連続してアロケーションされているが、非連続であってもよい。
 このようにすることで、CGの設定において複数のPUSCHの設定が可能となり、各PUSCHに対応したPDCCHの設定が可能になる。PUSCHの個数とPDCCHの個数を個別に設定することで、柔軟なPDCCHの設定が可能となる。また、PDCCHのリソースを削減できるため、リソースの使用効率を向上させられる。また、UEのPDCCH受信処理を削減可能となるため、低消費電力化が図れる。また、実施の形態2の効果と同様に、各PUSCHのスケジューリングの修正が動的に可能となる。PDCCHで各PUSCHのスケジューリングを修正することで、データ発生タイミングやデータ量の変動に対して、各PUSCHに割当てられるリソースやMSC等の設定をより適した設定に修正することが可能となる。遅延時間の削減やリソース使用効率の向上が図れる。
実施の形態2変形例2.
 実施の形態1で開示した課題を解決する他の方法を開示する。CGの設定において、1つまたは複数のPUSCHを設定し、1つまたは複数のPDCCHを設定する。PUSCHの個数とPDCCHの個数を個別に設定する。PDCCHにCGで設定されたPUSCHのリリース情報を含める。gNBはUEに対して、該PDCCHで、CGで設定された1つまたは複数のPUSCHのリリース情報を通知してもよい。
 CG周期毎に設定された1つまたは複数のPDCCHで送信するDCIに、CGで設定された1つまたは複数のPUSCHのリリース情報を含めるとよい。DCIにリリース情報を含める場合、新たなDCIフォーマットを設けてもよい。他の方法として、既存のDCIフォーマット(非特許文献12参照)を用いてもよい。たとえば、DCIフォーマット2_4を用いてもよい。既存のDCIフォーマットを用いることで、処理が複雑化するのを回避できる。
 リリース情報を含むDCIを送信するPDCCHを受信するため、新たなRNTIを設けてもよい。たとえば、実施の形態2や実施の形態2変形例1で開示したPDCCHを受信するためのRNTIとしてもよい。CG設定におけるPDCCH特有のRNTIとすることで、誤動作を低減できる。他の方法として既存のRNTI(非特許文献15参照)を用いてもよい。たとえば、CI-RNTI(Cancellation Indication RNTI)を用いてもよい。DCIフォーマット2_4を用いる場合にCI-RNTIを用いてもよい。既存のRNTIを用いることで、処理が複雑化するのを回避できる。
 1つのPDCCHで1つまたは複数のPUSCHのリリース情報を通知する方法やリリース方法は、実施の形態1で開示した1つのPDCCHで1つまたは複数のPDSCHのリリース情報を通知する方法やリリース方法を適宜適用するとよい。該各方法において、SPSの代わりにCGとするとよい。PDSCHの代わりにPUSCHとするとよい。実施の形態1と同様の効果を得られる。
 図20は、CGで設定されたPUSCHのリソースをPDCCHでリリースする例を示す図である。CGの設定においてPDCCHの個数とPUSCHの個数とは個別に設定される。CGの設定において1つのPDCCHが設定され、複数のPUSCHが設定される。CG周期毎に1つのPDCCHが設定される。PDCCHでPUSCHをリリースする情報と、どのPUSCHをリリースするかを示す情報が送信される。UEはPDCCHを受信することで、どのPUSCHをリリースするかを認識可能となる。UEはリリースされたPUSCHの送信を行わない。
 PDCCHの個数は複数であってもよい。複数のPDCCHの設定方法として、PDCCHを周期的に設定してもよい。PUSCHが設定される範囲内で設定されてもよい。あるいは、PUSCHが設定される範囲内で送信されてもよい。他の設定方法として、PDCCHをビットマップで設定してもよい。PUSCHが設定される範囲内で設定されてもよい。
 図21は、CGで設定されたPUSCHのリソースをPDCCHでリリースする他の例を示す図である。CGの設定においてCG周期毎に2つのPDCCHが設定される。PDCCHで、CGで設定された1つまたは複数のPUSCHをリリースする情報と、どのPUSCHをリリースするかを示す情報が送信される。n番目のPDCCHで、n+1番目のPDCCHが送信される前のPUSCHのリリース情報と、どのPUSCHをリリースするかを示す情報が送信されてもよい。図21では、1番目のPDCCHで、1~3番目のPUSCHのリリース情報と、どのPUSCHをリリースするかを示す情報が送信される。2番目のPDCCHで4~5番目のPUSCHのスケジューリング修正情報が送信される。UEはPDCCHを受信することで、どのPUSCHをリリースするかを認識可能となる。UEはリリースされたPUSCHの送信を行わない。
 CGで設定された1つまたは複数のPUSCHのリリース情報を、実施の形態2変形例1で開示した、CGで設定された1つまたは複数のPUSCHのスケジューリング修正情報に含めてもよい。CGで設定された1つまたは複数のPUSCHのスケジューリング修正情報に、CGで設定された1つまたは複数のPUSCHのスケジューリングをリリースする情報を含めてもよい。CGで設定された1つまたは複数のPUSCHのスケジューリング修正情報に、CGで設定された1つまたは複数のPUSCHのスケジューリングをキャンセルする情報を含めてもよい。
 他の方法として、実施の形態2変形例1で開示した、CGで設定された1つまたは複数のPUSCHのスケジューリング修正情報で、スケジューリングが修正されるPUSCHを除く他のPUSCHはリリースする(キャンセルするでもよい)としてもよい。スケジューリング修正情報として、CG設定で設定されたPUSCH割当てを実行することを示す情報を設けてもよい。スケジューリング修正情報として、CG設定で設定されたPUSCH割当てを実行するか否かを示す情報を設けてもよい。CGで設定された1つまたは複数のPUSCHのスケジューリング修正情報で、PUSCH割当てを実行する情報が示されないPUSCHはリリースする(キャンセルするでもよい)としてもよい。このようにすることで、UEはスケジューリング修正情報を受信すればよく、UEでの処理を簡略化可能となる。
 このようにすることで、CGの設定において複数のPUSCHの設定が可能となり、各PUSCHに対応したPDCCHの設定が可能になる。PUSCHの個数とPDCCHの個数を個別に設定することで、柔軟なPDCCHの設定が可能となる。また、PDCCHのリソースを削減できるため、リソースの使用効率を向上させられる。また、UEのPDCCH受信処理を削減可能となるため、低消費電力化が図れる。また、各PUSCHのリリースが動的に可能となるため、たとえCGの設定で多数のPUSCHの設定がなされても、データ発生タイミングやデータ量の変動に適した設定に修正することが可能となる。遅延時間の削減やリソース使用効率の向上が図れる。
実施の形態2変形例3.
 実施の形態1で開示した課題を解決する他の方法を開示する。CGの設定において、1つまたは複数のPDCCHを設定する。CGの設定においてPUSCHの設定を行わない。PDCCHの設定方法については前述に開示した方法を適宜適用するとよい。gNBからUEへのPDCCHの設定の通知方法は、前述に開示した方法を適宜適用するとよい。
 PUSCHは、CG周期毎に設定された1つまたは複数のPDCCHでスケジューリングする。該PDCCHでPUSCHのスケジューリング情報を通知する。1つのPDCCHを用いて複数のPUSCHのスケジューリング情報を通知してもよい。通知方法は、前述に開示した、1つのPDCCHで複数のPUSCHのスケジューリング修正情報を通知する方法を適宜適用するとよい。
 図22は、CGの設定において2つのPDCCHを設定する場合のリソースアロケーション例を示す図である。CGの設定においてPUSCHは設定されない。CG周期毎に2つのPDCCHが設定される。gNBからUEに対して、CGの設定がRRCシグナリングで行われ、CGのアクティベーション/デアクティベーションがPDCCHで通知される。CGの周期毎に設定されたPDCCHでPUSCHのスケジューリング情報を通知する。n番目のPDCCHで、n+1番目のPDCCHが送信される前のPUSCHのスケジューリング情報が送信されてもよい。図22の例では、最初の周期では、1番目のPDCCHで1つのPUSCH、2番目のPDCCHで2つのPUSCHがスケジューリングされる。2番目の周期では、1番目のPDCCHで2つのPUSCH、2番目のPDCCHで1つのPUSCHがスケジューリングされる。UEはPDCCHを受信することで、PUSCHのスケジューリング情報を受信可能となる。
 このようにすることで、CGの設定において1つまたは複数のPDCCHの設定が可能になる。CG周期毎にPDCCHによってPUSCHがスケジューリングされるため、データ発生タイミングやデータ量の変動に対して、スケジューリングするPUSCH数を設定可能となる。このため、遅延時間の削減やリソース使用効率の向上が図れる。
実施の形態3.
 実施の形態1で開示した課題を解決する他の方法を開示する。
 SPSの設定において1つのPDSCHを設定する。SPSの設定で設定されたPDSCHを用いて1つまたは複数のPDSCHを設定する。該1つまたは複数のPDSCHの設定にMACシグナリングを用いてもよい。MAC CEに該1つまたは複数のPDSCHのスケジューリング情報を含めてもよい。
 SPSの設定において1つのPDSCHを設定する方法は従来のSPSの設定方法を適用してもよい。1つまたは複数のPDSCHの設定方法として、実施の形態1で開示した方法を適宜適用するとよい。SPSの設定で設定されたPDSCHでDLデータが送信される場合、DLデータと、1つまたは複数のPDSCHの設定情報とを多重してもよい。該多重はMACで行われてもよい。SPSの設定で設定されたPDSCHでDLデータの送信が無い場合、1つまたは複数のPDSCHの設定情報のみ送信してもよい。
 1つまたは複数のPDSCHの設定が無い場合は、設定情報にPDSCHの設定が無いことを示す情報を含めるとよい。他の方法として、MAC PDUにパディングを含めてもよい。UEはこれらの情報を受信することでPDSCHの設定が無いことを認識可能となる。
 図23は、SPSの設定で設定したPDSCHを用いて1つまたは複数のPDSCHを設定する場合のリソースアロケーション例を示す図である。ハッチングありの四角はPDCCHを、白色四角はPDSCHを示している。横軸は時間領域を示し、縦軸は周波数領域を示している。gNBからUEに対して、SPSの設定がRRCシグナリングで行われ、SPSのアクティベーション/デアクティベーションがPDCCHで通知される。SPS周期毎に1つのPDSCHが設定される。SPSの設定で設定されたPDSCHを用いてDLデータと1つまたは複数のPDSCHの設定情報とが送信される。MACで、DLデータが含まれるMAC SDUと、1つまたは複数のPDSCHの設定情報が含まれるMAC CEとが多重される。図23では、SPSの設定で設定されたPDSCHを用いて2つのPDSCHが設定される。設定されたPDSCHでDLデータが送信されてもよい。
 このようにすることで、SPSの周期毎に1つまたは複数のPDSCHの設定が可能となる。また、SPSの設定で設定されたPDSCHを用いて1つまたは複数のPDSCHの設定を行うため、SPSの周期毎のPDSCHの個数を柔軟に変更可能となる。SPSの設定で設定されたPDSCHを用いて行う1つまたは複数のPDSCHの設定情報を動的に変更することで、データ発生タイミングやデータ量の変動に対してより適したリソースアロケーションが可能となる。遅延時間の削減やリソース使用効率の向上が図れる。
実施の形態3変形例1.
 実施の形態1で開示した課題を解決する他の方法を開示する。SPSの設定において、複数のPDSCHを設定する。SPSの設定で設定されたPDSCHを用いて1つまたは複数のPDSCHを設定する。言い換えると、SPSの設定において、複数のPDSCHを設定し、該PDSCHを用いて1つまたは複数のPDSCHを追加設定する。SPSの設定で設定されたPDSCHを用いて設定される1つまたは複数のPDSCHの設定にMACシグナリングを用いてもよい。MAC CEに該1つまたは複数のPDSCHの設定情報を含めてもよい。
 SPSの設定において複数のPDSCHを設定する方法は、実施の形態1で開示した設定方法を適用してもよい。SPSの設定で設定されたPDSCHでDLデータが送信される場合、DLデータと1つまたは複数のPDSCHの設定情報とを多重してもよい。該多重はMACで行われてもよい。SPSの設定で設定されたPDSCHでDLデータの送信が無い場合、1つまたは複数のPDSCHの設定情報のみ送信してもよい。
 1つまたは複数のPDSCHの設定が無い場合は、設定情報にPDSCHの設定が無いことを示す情報を含めるとよい。他の方法として、MAC PDUにパディングを含めてもよい。UEはこれらの情報を受信することでPDSCHの設定が無いことを認識可能となる。
 図24は、SPSの設定で設定した複数のPDSCHを用いて1つまたは複数のPDSCHを設定する場合のリソースアロケーション例を示す図である。ハッチングありの四角はPDCCHを、白色四角はPDSCHを示している。横軸は時間領域を示し、縦軸は周波数領域を示している。gNBからUEに対して、SPSの設定がRRCシグナリングで行われ、SPSのアクティベーション/デアクティベーションがPDCCHで通知される。SPS周期毎に2つのPDSCHが設定される。SPSの設定で設定されたPDSCHを用いてDLデータと1つまたは複数のPDSCHの設定情報が送信される。MACで、DLデータが含まれるMAC SDUと、1つまたは複数のPDSCHの設定情報が含まれるMAC CEとが多重される。
 図24では、SPSの1番目の周期において、SPSの設定で設定された1番目のPDSCHを用いてPDSCHは設定されず、2番目のPDSCHを用いて2つのPDSCHが設定(Add)される。設定されたPDSCHでDLデータが送信されてもよい。SPSの2番目の周期において、SPSの設定で設定された1番目のPDSCHを用いて1つのPDSCHが設定(Add)され、2番目のPDSCHを用いて1つのPDSCHが設定(Add)される。設定されたPDSCHでDLデータが送信されてもよい。
 このようにすることで、SPSの周期毎に1つまたは複数のPDSCHの設定が可能となる。SPSの設定で複数のPDSCHを設定することで、SPSの周期毎のPDSCHの個数およびタイミングを柔軟に変更可能となる。SPSの設定で設定された複数のPDSCHの各PDSCHを用いて行う1つまたは複数のPDSCHの設定情報を動的に変更することで、データ発生タイミングやデータ量の変動に対してより適したリソースアロケーションが可能となる。遅延時間の削減やリソース使用効率の向上が図れる。
実施の形態3変形例2.
 実施の形態1で開示した課題を解決する他の方法を開示する。SPSの設定において、1つまたは複数のPDSCHを設定する。SPSの設定で設定されたPDSCHを用いて1つまたは複数のPDSCHのリリース情報を通知する。該1つまたは複数のPDSCHのリリース情報の通知にMACシグナリングを用いてもよい。MAC CEに該1つまたは複数のPDSCHのリリース情報を含めてもよい。
 SPSの設定において複数のPDSCHを設定する方法は、実施の形態1で開示した設定方法を適用してもよい。1つまたは複数のPDSCHのリリース情報については、実施の形態1変形例2で開示したSPSで設定された1つまたは複数のPDSCHのリリース情報を適宜適用するとよい。
 SPSの設定で設定されたPDSCHでDLデータが送信される場合、DLデータと1つまたは複数のPDSCHのリリース情報とを多重してもよい。該多重はMACで行われてもよい。SPSの設定で設定されたPDSCHでDLデータの送信が無い場合、1つまたは複数のPDSCHのリリース情報のみ送信してもよい。1つまたは複数のPDSCHのリリースが無い場合は、リリース情報にPDSCHのリリース情報が無いことを示す情報を含めてもよい。
 どのPDSCHをリリースするかを示す情報を設けて、PDSCHのリリース情報に加えて、あるいは、PDSCHリリース情報の代わりに送信してもよい。UEは該情報を含むPDSCHを受信することで、どのPDSCHをリリースするかを認識可能となる。UEはリリースされたPDSCHの受信を行わない。
 図25は、SPSの設定で設定した複数のPDSCHを用いて1つまたは複数のPDSCHをリリースする場合のリソースアロケーション例を示す図である。ハッチングありの四角はPDCCHを、白色四角はPDSCHを示している。横軸は時間領域を示し、縦軸は周波数領域を示している。gNBからUEに対して、SPSの設定がRRCシグナリングで行われ、SPSのアクティベーション/デアクティベーションがPDCCHで通知される。SPS周期毎に5つのPDSCHが設定される。SPSの設定で設定されたPDSCHを用いてDLデータと1つまたは複数のPDSCHのリリース情報が送信される。MACで、DLデータが含まれるMAC SDUと、1つまたは複数のPDSCHのリリース情報が含まれるMAC CEとが多重される。PDSCHのリリース情報の送信に、SPSの設定で設定されたどのPDSCHを用いてもよい。図25では、SPSの設定で5つのPDSCHが設定される。1番目の周期において、SPSの設定で設定された3番目のPDSCHを用いてPDSCHリリース情報が送信される。4番目、5番目のPDSCHのリリース情報が送信される。リリースされたリソースは、gNBによって他のUEにアロケーションされてもよい。UEはリリースされたPDSCHを受信しない。SPSの2番目の周期において、SPSの設定で設定された1番目のPDSCHを用いてPDSCHリリース情報が送信される。4番目、5番目のPDSCHのリリース情報が送信される。リリースされたリソースは、gNBによって他のUEにアロケーションされてもよい。UEはリリースされたPDSCHを受信しない。
 このようにすることで、SPSの周期毎に、SPSの設定で設定された複数のPDSCHの1つまたは複数のPDSCHをリリース可能となる。SPSの周期毎のPDSCHの個数を柔軟に変更可能となる。PDSCHのリリース情報を動的に変更することで、たとえSPSの設定で多数のPDSCHの設定がなされても、データ発生タイミングやデータ量の変動に対してより適したリソースアロケーションが可能となる。遅延時間の削減やリソース使用効率の向上が図れる。また、UEのPDSCH受信処理を削減可能となるため、低消費電力化が図れる。
実施の形態4.
 実施の形態1で開示した課題を解決する他の方法を開示する。
 CGの設定において1つのPUSCHを設定する。CGの設定で設定されたPUSCHを用いてPUSCHのスケジューリング要求が通知される。PDCCHで1つまたは複数のPUSCHがスケジューリングされる。
 CGの設定において1つのPUSCHを設定する方法は従来のCGの設定方法を適用してもよい。CGの設定で設定されたPUSCHでULデータが送信される場合、ULデータとPUSCHのスケジューリング要求とを多重してもよい。該多重はMACで行われてもよい。CGの設定で設定されたPUSCHでULデータの送信が無い場合、PUSCHのスケジューリング要求のみ送信してもよい。gNBはUEからこれらの情報を受信することでPUSCHのスケジューリング要求を認識可能となる。
 PUSCHのスケジューリング要求が無い場合は、PUSCHのスケジューリングが無いことを示す情報を通知してもよい。他の方法として、MAC PDUにパディングを含めてもよい。gNBはUEからこれらの情報を受信することでPUSCHのスケジューリング要求が無いことを認識可能となる。
 gNBはUEに対してPDCCHを送信し、1つまたは複数のPUSCHをスケジューリングする。gNBは該1つまたは複数のPUSCHのスケジューリングにUEから受信したPUSCHのスケジューリング要求を用いるとよい。UEはPDCCHを受信して1つまたは複数のPUSCHのスケジューリング情報を受信する。UEはスケジューリングされたPUSCHを用いてULデータを送信するとよい。
 従来のCGではCG周期においてPDCCHの受信を必要としない。UEはPDCCHをモニタする必要が無い。しかし、本実施の形態で開示した方法では、UEは、1つまたは複数のPUSCHのスケジューリング情報を受信するため、PDCCHを受信する必要がある。その方法を開示する。UEはPUSCHのスケジューリング要求を送信した場合、PDCCHモニタを開始する。UEはPDCCH受信後モニタを停止してもよい。
 他の方法を開示する。PDCCHのモニタ期間を設定してもよい。UEはPUSCHのスケジューリング要求を送信後、PDCCHモニタ期間、PDCCHをモニタする。UEは、PDCCHを受信した場合、PDCCHモニタ期間中はPDCCHのモニタを継続してもよい。PDCCHモニタ期間中に複数のPDCCHが送信されてもよく、UEが該複数のPDCCHを受信可能となる。PDCCHを受信した場合の他の方法として、UEはPDCCHのモニタを停止してもよい。UEの低消費電力化が図れる。PDCCHモニタ期間中に1つのPDCCHが送信されるとしてもよい。PDCCHで1つまたは複数のPUSCHのスケジューリングを行うことでULデータ量に適したPUSCHのリソースアロケーションが可能となる。
 PDCCHモニタ期間の設定方法について開示する。PDCCHモニタ期間をCGの設定情報に含めてもよい。gNBはUEに対して、PDCCHモニタ期間を、RRCシグナリングを用いて送信してもよい。CGの設定情報に含めてRRCシグナリングで送信してもよい。gNBはUEに対して、PDCCHモニタ期間を、PDCCHを用いて送信してもよい。PDCCHモニタ期間をCGのアクティベーション/デアクティベーション情報とともにDCIに含めてPDCCHで送信してもよい。他の方法として、PDCCHモニタ期間をCGのアクティベーション/デアクティベーション情報に含めてもよい。
 1つまたは複数のPUSCHをスケジューリングするPDCCHで、後続のPDCCHの有無、あるいは、後続のPDCCHをモニタする必要の有無を通知してもよい。PDCCHモニタ期間を新たに設定してもよい。PDCCHで後続のPDCCHのモニタのためのPDCCHモニタ期間を通知してもよい。他の方法として、UEがPDCCHを受信した場合、PDCCHモニタ期間を再起動してもよい。このようにすることで、gNBはUEに対して柔軟なPUSCHのスケジューリングを実行可能となる。
 PDCCHで1つまたは複数のPUSCHをスケジューリングする方法として、実施の形態2変形例3で開示したPDCCHで1つまたは複数のPUSCHのスケジューリング方法を適宜適用するとよい。
 図26は、CGの設定で設定したPUSCHを用いて1つまたは複数のPUSCHのスケジューリング要求が通知される場合のリソースアロケーション例を示す図である。ハッチングありの四角はPDCCHを、白色四角はPUSCHを示している。横軸は時間領域を示し、縦軸は周波数領域を示している。gNBからUEに対して、CGの設定がRRCシグナリングで行われ、CGのアクティベーション/デアクティベーションがPDCCHで通知される。CG周期毎に1つのPUSCHが設定される。CGの設定で設定されたPUSCHを用いて1つまたは複数のPUSCHのスケジューリング要求が送信される。MACで、ULデータが含まれるMAC SDUと、1つまたは複数のPUSCHのスケジューリング要求が含まれるMAC CEとが多重される。
 UEからPUSCHのスケジューリング要求を受信したgNBは、PDCCHで1つまたは複数のPUSCHのスケジューリングを行う。PDCCHに1つまたは複数のPUSCHのスケジューリング情報が含まれる。図26では、CGの1番目の周期では、連続する2つのPUSCHがスケジューリングされ、2番目の周期では非連続な2つのPUSCHがスケジューリングされる。UEはgNBに対してPUSCHのスケジューリング要求を通知後、PDCCHモニタ期間、PDCCHをモニタする。PDCCHモニタ期間中にPDCCHを受信したUEは、1つまたはPUSCHのスケジューリング情報を受信する。UEは受信したPUSCHのスケジューリング情報を用いてULデータを送信するとよい。PUSCHのスケジューリング情報を含むPDCCHと、該PDCCHによってスケジューリングされたPUSCHとは時間的に連続でなくてもよく、非連続であってもよい。時間的に間隔があってもよい。
 このようにすることで、CGの周期毎に1つまたは複数のPUSCHの設定が可能となる。また、CGの設定で設定されたPUSCHを用いてPUSCHのスケジューリング要求を行うため、SR(Scheduling Request)の送信が不要になる。SRの周期まで待つ必要が無くなるため、遅延時間の削減が図れる。また、UEはSRの送信が不要となるため低消費電力化が図れる。また、UEからスケジューリング要求を受信したgNBはUEで発生したULデータ量に適した数のPUSCHを柔軟にスケジューリング可能となる。このため、データ発生タイミングやデータ量の変動に対してより適したリソースアロケーションが可能となる。遅延時間の削減やリソース使用効率の向上が図れる。
実施の形態4変形例1.
 実施の形態1で開示した課題を解決する他の方法を開示する。CGの設定において、複数のPUSCHを設定する。CGの設定で設定されたPUSCHを用いてPUSCHのスケジューリング要求が通知される。言い換えると、CGの設定で設定されたPUSCHを用いてPUSCHの追加要求が通知される。PUSCHの追加要求の通知にMACシグナリングを用いてもよい。MAC CEにPUSCHの追加要求を含めてもよい。PDCCHで1つまたは複数のPUSCHがスケジューリングされる。
 CGの設定において複数のPUSCHを設定する方法は、実施の形態2変形例1で開示した方法を適宜適用するとよい。CGの設定で設定されたPUSCHでULデータが送信される場合、ULデータとPUSCHのスケジューリング要求とを多重してもよい。該多重はMACで行われてもよい。CGの設定で設定されたPUSCHでULデータの送信が無い場合、PUSCHのスケジューリング要求のみ送信してもよい。gNBはUEからこれらの情報を受信することでPUSCHのスケジューリング要求を認識可能となる。
 PUSCHのスケジューリング要求が無い場合は、PUSCHのスケジューリング要求が無いことを示す情報を含めるとよい。他の方法として、MAC PDUにパディングを含めてもよい。gNBはこれらの情報を受信することでPUSCHのスケジューリング要求が無いことを認識可能となる。
 gNBはUEに対してPDCCHを送信し、1つまたは複数のPUSCHをスケジューリングする。gNBは該1つまたは複数のPUSCHのスケジューリングにUEから受信したPUSCHのスケジューリング要求を用いるとよい。UEはPDCCHを受信して1つまたは複数のPUSCHのスケジューリング情報を受信する。UEが該PDCCHを受信可能とする方法は実施の形態4で開示した方法を適宜適用するとよい。UEは該PDCCHによりスケジューリングされたPUSCHを用いてULデータを送信するとよい。
 図27は、CGの設定で設定した複数のPUSCHを用いてPUSCHスケジューリング要求が通知された場合のリソースアロケーション例を示す図である。ハッチングありの四角はPDCCHを、白色四角はPUSCHを示している。横軸は時間領域を示し、縦軸は周波数領域を示している。gNBからUEに対して、CGの設定がRRCシグナリングで行われ、CGのアクティベーション/デアクティベーションがPDCCHで通知される。CG周期毎に2つのPUSCHが設定される。CGの設定で設定されたPUSCHを用いてULデータとPUSCHのスケジューリング要求とが送信される。MACで、ULデータが含まれるMAC SDUと、PUSCHのスケジューリング情報が含まれるMAC CEとが多重される。
 図27では、CGの1番目の周期において、CGの設定で設定された1番目のPUSCHではULデータのみが送信され、2番目のPUSCHでULデータとPUSCHスケジューリング要求とが多重されて送信される。CGの2番目の周期において、CGの設定で設定された1番目のPUSCHを用いてULデータとPUSCHスケジューリング要求とが多重されて送信され、同様に、2番目のPUSCHを用いてULデータとPUSCHスケジューリング要求とが多重されて送信される。
 UEからPUSCHのスケジューリング要求を受信したgNBは、PDCCHで1つまたは複数のPUSCHのスケジューリングを行う。図27では、CGの1番目の周期では、2番目のPUSCHに含まれるPUSCHスケジューリング要求に応じて、PDCCHで連続する2つのPUSCHがスケジューリング(Add)され、2番目の周期では、1番目のPUSCHと2番目のPUSCHとに含まれるPUSCHスケジューリング要求に応じて、各々PDCCHで1つのPUSCHがスケジューリング(Add)される。UEはgNBに対してPUSCHのスケジューリング要求を通知後、PDCCHモニタ期間、PDCCHをモニタする。PDCCHモニタ期間中にPDCCHを受信したUEは、1つまたはPUSCHのスケジューリング情報を受信する。UEは受信したPUSCHのスケジューリング情報を用いてULデータを送信するとよい。PUSCHのスケジューリング情報を含むPDCCHと、該PDCCHによってスケジューリングされたPUSCHとは時間的に連続でなくてもよく、非連続であってもよい。時間的に間隔が設けられてもよい。
 このようにすることで、CGの周期毎に1つまたは複数のPUSCHの設定が可能となる。また、CGの設定で設定されたPUSCHを用いてPUSCHのスケジューリング要求を行うため、SRの送信が不要になる。SRの送信周期まで待つ必要が無くなるため、遅延時間の削減が図れる。また、UEはSRの送信が不要となるため低消費電力化が図れる。また、UEからスケジューリング要求を受信したgNBはUEで発生したULデータ量に適した数のPUSCHを柔軟にスケジューリング可能となる。CGの設定で複数のPUSCHを設定可能とすることで、gNBはUEで発生したULデータ量に適した数のPUSCHをタイムリーにより柔軟にスケジューリング可能となる。このため、データ発生タイミングやデータ量の変動に対してより適したリソースアロケーションが可能となる。遅延時間の削減やリソース使用効率の向上が図れる。
実施の形態4変形例2.
 実施の形態1で開示した課題を解決する他の方法を開示する。CGの設定において、1つまたは複数のPUSCHを設定する。CGの設定で設定されたPUSCHを用いて送信に用いるPUSCHに関する情報を通知する。送信に用いるPUSCHに関する情報の通知にMACシグナリングを用いてもよい。MAC CEに送信に用いるPUSCHに関する情報を含めてもよい。
 CGの設定において複数のPUSCHを設定する方法は、実施の形態2変形例1で開示した設定方法を適用してもよい。CGの設定で設定されたPUSCHでULデータが送信される場合、ULデータと、送信に用いるPUSCHに関する情報とを多重してもよい。該多重はMACで行われてもよい。CGの設定で設定されたPUSCHでULデータの送信が無い場合、送信に用いるPUSCHに関する情報のみ送信してもよい。gNBはUEから該情報を受信することで、UEがどのPUSCHを送信に用いるかを認識可能となる。
 送信に用いるPUSCHに関する情報が無い場合は、該情報が無いことを示す情報を含めるとよい。他の方法として、MAC PDUにパディングを含めてもよい。gNBはこれらの情報を受信することでUEが送信に用いるPUSCHが無いことを認識可能となる。
 送信に用いるPUSCHに関する情報は、どのPUSCHを送信に用いるかを示す情報であってもよい。gNBは該情報を受信することで、UEが送信に用いるPUSCHを特定することが可能となる。また、gNBは、CGで設定した複数のPUSCHのうち、UEが送信に用いないPUSCHを特定することが可能となる。gNBは、UEが送信に用いないPUSCHのリソースを他のUEに割当ててもよい。UEは、gNBに通知した送信に用いるPUSCHを用いてULデータを送信する。UEは、gNBに通知した送信に用いるPUSCH以外のPUSCHでULデータを送信しない。
 図28は、CGの設定で設定した複数のPUSCHを用いて、UEが送信に用いるPUSCHに関する情報が送信される場合のリソースアロケーション例を示す図である。ハッチングありの四角はPDCCHを、白色四角はPUSCHを示している。横軸は時間領域を示し、縦軸は周波数領域を示している。gNBからUEに対して、CGの設定がRRCシグナリングで行われ、CGのアクティベーション/デアクティベーションがPDCCHで通知される。
 図28では、CG周期毎に5つのPUSCHが設定される。CGの設定で設定されたPUSCHを用いて、UEが送信に用いるPUSCHに関する情報が送信される。MACで、ULデータが含まれるMAC SDUと、UEが送信に用いるPUSCに関する情報が含まれるMAC CEとが多重される。UEが送信に用いるPUSCHに関する情報の送信に、CGの設定で設定されたどのPUSCHを用いてもよい。図28では、1番目のPUSCHにおいて、UEが送信に用いるPUSCHに関する情報が送信される。
 図28では、CGの1番目の周期では、UEが送信に用いるPUSCHに関する情報として4番目と5番目のPUSCHの情報が送信される。CGの2番目の周期では、UEが送信に用いるPUSCHに関する情報として3番目から5番目のPUSCHの情報が送信される。UEは、CGで設定されたPUSCHのうち、CGの1番目の周期では、2番目と3番目のPUSCHで送信はせず、4番目と5番目のPUSCHでULデータを送信する。CGの2番目の周期では、2番目のPUSCHで送信はせず、3番目から5番目のPUSCHでULデータを送信する。
 gNBはUEから、UEが送信に用いるPUSCHに関する情報を受信することによって、CGで設定したPUSCHのうち、UEがどのPUSCHを送信に用いるか、どのPUSCHを送信に用いないかを認識できる。図28では、gNBは、CGの1番目の周期では、UEからの2番目と3番目のPUSCHの受信は行わず、4番目と5番目のPUSCHの受信を行うとよい。CGの2番目の周期では、UEからの2番目のPUSCHの受信は行わず、3番目から5番目のPUSCHの受信を行うとよい。
 gNBは、UEが送信に用いないPUSCHのリソースを、他のUEに割当ててもよい。
 このようにすることで、CGの周期毎に1つまたは複数のPUSCHの設定が可能となる。また、CGの設定で設定されたPUSCHを用いてUEが送信に用いるPUSCHに関する情報を送信するため、gNBはCGで設定したPUSCHのうちUEが送信に用いるPUSCHのみ受信を行えばよい。gNBの処理を簡略化でき、低消費電力化が可能となる。またgNBはCGで設定したPUSCHのうちUEが送信に用いないPUSCHのリソースを他のUEに割当て可能となる。リソースの使用効率の向上が図れる。たとえCGの設定で多数のPUSCHの設定がなされても、データ発生タイミングやデータ量の変動に対してより適したリソースアロケーションが可能となる。遅延時間の削減やリソース使用効率の向上が図れる。
実施の形態4変形例3.
 実施の形態1で開示した課題を解決する他の方法を開示する。CGの設定において、1つまたは複数のPUSCHを設定する。CGの設定で設定されたPUSCHを用いてPUSCHのリリース情報を通知する。PUSCHのリリース情報の通知にMACシグナリングを用いてもよい。MAC CEにPUSCHのリリース情報を含めてもよい。
 CGの設定において複数のPUSCHを設定する方法は、実施の形態2変形例1で開示した方法を適宜適用してもよい。CGの設定で設定されたPUSCHでULデータが送信される場合、ULデータとPUSCHのリリース情報とを多重してもよい。該多重はMACで行われてもよい。CGの設定で設定されたPUSCHでULデータの送信が無い場合、PUSCHのリリース情報のみ送信してもよい。gNBはUEから該情報を受信することで、リリースしてよいPUSCHを認識可能となる。
 PUSCHリリース情報が無い場合は、該情報が無いことを示す情報を含めるとよい。他の方法として、MAC PDUにパディングを含めてもよい。gNBはこれらの情報を受信することでリリースしてよいPUSCHが無いことを認識可能となる。
 PUSCHリリース情報に、リリースするPUSCHを特定する情報を含めてもよい。たとえば、リリースするPUSCHの番号であってもよい。gNBは該情報を受信することで、リリースしてよいPUSCHを特定することが可能となる。また、gNBは、CGで設定した複数のPUSCHのうち、リリースしてよいPUSCHを特定することが可能となる。gNBは、リリースしてよいPUSCHのリソースを他のUEに割当ててもよい。UEは、gNBに通知したリリースするPUSCHでULデータを送信しない。リリースするPUSCH以外のPUSCHを用いてULデータを送信する。
 図29は、CGの設定で設定した複数のPUSCHを用いてPUSCHのリリース情報が送信される場合のリソースアロケーション例を示す図である。ハッチングありの四角はPDCCHを、白色四角はPUSCHを示している。横軸は時間領域を示し、縦軸は周波数領域を示している。gNBからUEに対して、CGの設定がRRCシグナリングで行われ、CGのアクティベーション/デアクティベーションがPDCCHで通知される。
 図29では、CG周期毎に5つのPUSCHが設定される。CGの設定で設定されたPUSCHを用いてULデータとPUSCHのリリース情報が送信される。MACで、ULデータが含まれるMAC SDUと、PUSCHのリリース情報が含まれるMAC CEとが多重される。PUSCHのリリース情報の送信に、CGの設定で設定されたどのPUSCHを用いてもよい。図29では、CGの1番目の周期では3番目のPUSCHにおいて、CGの2番目の周期では1番目のPUSCHにおいて、PUSCHのリリース情報が送信される。
 図29では、CGの1番目の周期では、PUSCHリリース情報として4番目と5番目のPUSCHの情報が送信される。CGの2番目の周期では、PUSCHリリース情報として4番目と5番目のPUSCHの情報が送信される。UEは、CGで設定されたPUSCHのうち、CGの1番目の周期では、4番目と5番目のPUSCHで送信はせず、1番目から3番目のPUSCHでULデータを送信する。CGの2番目の周期では、4番目と5番目のPUSCHで送信はせず、1番目から3番目のPUSCHでULデータを送信する。
 gNBはUEから、PUSCHのリリースに関する情報を受信することによって、CGで設定したPUSCHのうち、どのPUSCHをリリースしてよいかを認識できる。図29では、gNBは、CGの1番目の周期では、UEからの4番目と5番目のPUSCHの受信は行わず、1番目から3番目のPUSCHの受信を行うとよい。CGの2番目の周期では、UEからの4番目と5番目のPUSCHの受信は行わず、1番目から3番目のPUSCHの受信を行うとよい。
 gNBは、UEがリリース情報で示したPUSCHのリソースを、他のUEに割当ててもよい。
 このようにすることで、CGの周期毎に、CGの設定で設定された複数のPUSCHの1つまたは複数のPUSCHをリリース可能となる。CGの周期毎のPUSCHの個数を柔軟に変更可能となる。PUSCHのリリース情報を動的に変更することで、たとえCGの設定で多数のPUSCHの設定がなされても、データ発生タイミングやデータ量の変動に対してより適したリソースアロケーションが可能となる。遅延時間の削減やリソース使用効率の向上が図れる。また、gNBのPUSCH受信処理を削減可能となるため、低消費電力化が図れる。
実施の形態4変形例4.
 実施の形態1で開示した課題を解決する他の方法を開示する。CGの設定において、1つまたは複数のPUSCHを設定する。CGの設定で設定されたPUSCHを用いてPUSCHの追加要求を通知する。PUSCHの追加要求の通知にMACシグナリングを用いてもよい。MAC CEにPUSCHの追加要求を含めてもよい。
 CGの設定において複数のPUSCHを設定する方法は、実施の形態2変形例1で開示した設定方法を適用してもよい。CGの設定で設定されたPUSCHでULデータが送信される場合、ULデータとPUSCHの追加要求とを多重してもよい。該多重はMACで行われてもよい。CGの設定で設定されたPUSCHでULデータの送信が無い場合、PUSCHの追加要求のみ送信してもよい。gNBはUEから該情報を受信することで、UEに対してPUSCHの追加が必要であることを認識可能となる。
 PUSCH追加要求が無い場合は、該要求が無いことを示す情報を含めるとよい。他の方法として、MAC PDUにパディングを含めてもよい。gNBはこれらの情報を受信することでPUSCHの追加が必要であることを認識可能となる。
 PUSCH追加要求情報に、追加するPUSCH数を含めてもよい。gNBは、CGで設定したPUSCH後、UEが要求したPUSCH数分、連続してPUSCH用リソースをアロケーションする。gNBは、アロケーションしたリソースを他のUEに割当てない。UEは追加要求したPUSCHをULの送信に用いてもよい。
 追加するPUSCHのリソースの時間領域の設定方法について開示する。追加するPUSCHのリソースの時間領域を、CGのアクティベーション/デアクティベーションのためのPDCCHからの時間情報を用いて決めてもよい。CGで設定するPUSCHと追加するPUSCHのリソースの時間領域を一緒に設定可能となるため、処理が容易になる。他の方法を開示する。CGで設定した最後のPUSCHの送信タイミングからの時間情報を用いて決めてもよい。CGで設定するPUSCHの個数によらず設定可能となるので、PUSCHを追加する場合の誤動作を低減できる。
 CGで設定したPUSCH後に追加で割当てるPUSCHの時間領域のリソースは、連続でなくてもよい。オフセットを設けてもよい。
 追加するPUSCHのリソースの時間領域の設定情報は、あらかじめ規格等で静的に決めておいてもよい。gNB、UEでの誤動作を低減できる。他の方法として、gNBはUEに対してRRCシグナリングで該設定情報を通知してもよい。CG設定のためのRRCの情報に含めて送信してもよい。他の方法として、gNBはUEに対して、PDCCHを用いて通知してもよい。たとえば、CGのアクティベーション/デアクティベーションのためのDCIに含めてPDCCHを用いて通知してもよい。このようにすることで、UEは追加されたPUSCHの送信タイミングを認識可能となる。
 UEはgNBに対して、追加するPUSCHの時間領域の情報を通知してもよい。たとえば、CGで設定された最後のPUSCHからのオフセットを通知してもよい。このようにすることで、たとえばUEはULデータ発生タイミングに適したPUSCHの追加リソースの割当てを要求可能となる。UEからgNBへの通知方法として、たとえば、MACシグナリングを用いて通知してもよい。UEからgNBに対して通知するPUSCHの追加要求に含めて送信してもよい。
 追加するPUSCHのリソースの周波数領域の設定方法について開示する。該設定方法は、あらかじめ規格等で静的に決めておいてもよい。gNB、UEでの誤動作を低減できる。他の方法として、CGで設定したPUSCHのリソースの周波数数領域の情報と同じにしてもよい。たとえば、CGで設定した最後のPUSCHのリソースの周波数領域と同じにしてもよい。CGで設定したPUSCHに番号を付与してもよい。CGで設定したn番目のPUSCHのリソースの周波数領域と同じにしてもよい。gNBはUEに対して同じにするPUSCHの番号を通知するとよい。gNBはUEに対してRRCシグナリングで通知してもよい。CG設定のためのRRCの情報に含めて送信してもよい。他の方法として、gNBはUEに対して、PDCCHを用いて通知してもよい。たとえば、CGのアクティベーション/デアクティベーションのためのDCIに含めて、PDCCHを用いて通知してもよい。このようにすることで、UEは追加されたPUSCHの送信周波数を認識可能となる。
 UEはgNBに対して、周波数領域の情報を同じにするPUSCHの番号を通知してもよい。たとえば、MACシグナリングを用いて通知してもよい。UEからgNBに対して通知するPUSCHの追加要求に含めて送信してもよい。このようにすることで、たとえばUEは受信品質の良いPUSCHと同じ周波数領域をgNBに対して要求することが可能となる。
 追加するPUSCHの他の設定も、追加するPUSCHのリソースの周波数領域の設定方法を適宜適用するとよい。UEは追加のPUSCHの設定が可能となる。UEは追加のPUSCHの送信が可能となる。
 図30は、CGの設定で設定した複数のPUSCHを用いてPUSCHの追加要求が送信される場合のリソースアロケーション例を示す図である。ハッチングありの四角はPDCCHを、白色四角はPUSCHを示している。横軸は時間領域を示し、縦軸は周波数領域を示している。gNBからUEに対して、CGの設定がRRCシグナリングで行われ、CGのアクティベーション/デアクティベーションがPDCCHで通知される。
 gNBはUEに対して、あらかじめ追加PUSCHのリソースのスケジューリング情報を送信しておくとよい。追加PUSCHのリソースのスケジューリング情報の一部または全部がCGの設定とともにRRCシグナリングで通知されてもよいし、CGのアクティベーション/デアクティベーションとともにPDCCHで通知されてもよい。たとえば、追加PUSCHのリソースのスケジューリング情報の一部がCGの設定とともにRRCシグナリングで通知され、残りの情報がCGのアクティベーション/デアクティベーションとともにPDCCHで通知されてもよい。このようにすることで、UEは追加されるPUSCHのスケジューリング情報を取得可能となる。
 図30では、CGの設定で、CG周期毎に5つのPUSCHが設定される。CGの設定で設定されたPUSCHを用いてULデータとPUSCHの追加要求情報が送信される。MACで、ULデータが含まれるMAC SDUと、PUSCHの追加要求情報が含まれるMAC CEとが多重される。PUSCHの追加要求情報の送信に、CGの設定で設定されたどのPUSCHを用いてもよい。図30では、CGの1番目の周期では1番目のPUSCHにおいて、CGの2番目の周期では4番目のPUSCHにおいて、PUSCHの追加要求情報が送信される。
 図30では、CGの1番目の周期では、2個のPUSCHの追加要求情報が送信される。CGの2番目の周期では、1個のPUSCHの追加要求情報が送信される。PUSCHの追加要求情報に、たとえば、オフセット情報が含まれてもよい。CGの1番目の周期では、1番目のPUSCHに、2個のPUSCHの追加要求情報とともにオフセット無を示す情報、たとえばオフセット値0が含まれる。CGの2番目の周期では、4番目のPUSCHに、1個のPUSCHの追加要求情報とともにオフセット情報、たとえばkスロットを示す情報が含まれる。図30の例ではk=1とする。
 gNBはUEから、PUSCHの追加要求に関する情報を受信することによって、CGで設定したPUSCHに加えてスケジューリングしたPUSCHを受信すればよいかを認識できる。図30では、gNBは、CGの1番目の周期では、CGで設定したPUSCHに加えて2つのPUSCHの受信を行う。CGの2番目の周期では、CGで設定したPUSCHに加えて1つのPUSCHの受信を行う。この際、オフセット値が考慮される。
 gNBは、UEからPUSCHの追加要求を受信した場合、追加するPUSCHのリソースを他のUEに割当てない。
 このようにすることで、CGの周期毎に、CGの設定で設定された複数のPUSCHに加えてさらに1つまたは複数のPUSCHを追加することが可能となる。PUSCHの追加をUEの要求に応じて可能となる。このため、CGの周期毎のPUSCHの個数を追加可能となる。ULデータ発生タイミングやデータ量の変動に対してより適したリソースアロケーションが可能となる。遅延時間の削減やリソース使用効率の向上が図れる。
実施の形態5.
 実施の形態1で開示したように、XRトラフィックの特質として、例えば、非整数周期性があるが、従来のSPSやCGでは、周期はNミリ秒(Nは正の整数)のため、データ発生タイミングとリソース割当てタイミングにずれが生じ、次の周期までデータの送受信を待たなくてはならない。このため、XRトラフィックの特質に適さず遅延時間の増大を招いてしまう。また、データに遅延が生じ、要求される遅延量を超えてしまうような場合はデータを破棄することになり、通信品質の劣化が生じてしまう。本実施の形態5では、このような課題を解決する方法を開示する。
 該方法では、SPSで設定した周期n回毎(nは正の整数)にオフセット値をSPS周期に加える。gNBはUEに対して、SPS周期に加えるオフセット値に関する情報を送信する。該情報として、n、オフセット値、n回毎の周期のうちオフセット値を加える周期を特定する情報、例えば番号(k)など、n回毎の周期のうちオフセット値を適用してリソース割当てタイミングをずらすPDSCHを特定する情報、例えば番号(m)など、これらの情報の組合せを用いるとよい。k and/or mは1つに限らず複数であってもよい。gNBからUEへの該情報の送信方法として、RRCシグナリングを用いてもよい。たとえば、RRCReconfigurationに含めて送信してもよい。たとえば、該情報をSPSの設定に含めて送信してもよい。他の方法として、該情報をDCIに含めて送信してもよい。該情報をSPSのアクティベーション/デアクティベーション指示用のDCIに含めて送信してもよい。該DCIの送信にPDCCHを用いてもよい。UEはgNBから情報を受信する。UEはSPSの設定とともに、SPS周期何回毎にオフセット値を加えたらよいか認識可能となる。UEはオフセット値が加えられたSPS周期で、PDSCHの受信が可能となる。このようにすることで、サービス種類や、DLデータの発生状況に応じて柔軟にSPS周期を設定可能となる。
 SPS周期に加えるオフセット値に関する情報をgNBからUEに対して送信することを開示したが、他の方法として、あらかじめ規格等で静的に決めておいてもよい。処理の簡略化が図れ、誤動作を低減することができる。
 図31は、SPSで設定した周期n回毎にオフセット値をSPS周期に加える場合のリソースアロケーション例を示す図である。ハッチングありの四角はPDCCHを、白色四角はPDSCHを示している。横軸は時間領域を示し、縦軸は周波数領域を示している。図31では、SPSの設定において1つのPDSCHが設定される。複数のPDSCHが設定されてもよい。gNBからUEに対して、SPSの設定がRRCシグナリングで行われ、SPSのアクティベーション/デアクティベーションがPDCCHで通知される。図31では、1つのオフセットが設定され、n=3、k=1の場合を示す。たとえば、k=1のかわりにm=2と設定してもよい。オフセット値の単位は、時間単位、シンボル単位、スロット単位、サブフレーム単位、無線フレーム単位、TTI(Transmission Timing Interval)単位、これらの組合せであってもよい。
 図31では、SPSで設定された1番目と2番目のPDSCHの時間間隔は、SPS周期にオフセット値が加えられたものとなる。2番目と3番目のPDSCHの時間間隔はSPS周期となり、3番目と4番目のPDSCHの時間間隔はSPS周期となる。同様に、SPSで設定された4番目と5番目のPDSCHの時間間隔は、SPS周期にオフセット値が加えられたものとなる。5番目と6番目(不図示)のPDSCHの時間間隔はSPS周期となり、6番目と7番目(不図示)のPDSCHの時間間隔はSPS周期となる。このようなn回毎にk番目の周期にオフセット値が加えられる設定が繰り返される。gNBはSPSの周期n回毎にオフセット値を加えたタイミングでPDSCHを送信する。UEはgNBから受信したSPS周期に加えるオフセット値に関する情報を用いてPDSCHを受信する。
 このように、n回毎にオフセット値を加えることで、gNBはDLデータの発生タイミングに適した調整を行うことが可能となる。たとえDLデータの発生タイミングが非整数周期性であっても、適切なオフセット値を周期n回毎に加えることで、DLデータの送信遅延時間を低減させることが可能となる。このため、DLデータの送信遅延時間が要求される遅延量を超えたためにDLデータが破棄されてしまうような状況を低減可能となる。通信品質の劣化を低減可能となる。
実施の形態5変形例1.
 実施の形態5で開示した課題を解決する他の方法を開示する。gNBはUEに対して、SPSで設定した周期に加えるオフセット値を通知する。SPS周期n回毎にオフセット値を通知してもよい。gNBからUEへのオフセット値の送信に、MACシグナリングを用いてもよい。たとえば、MAC CEに含めて送信してもよい。該MAC CEを、SPSの設定で設定されたPDSCHを用いて送信してもよい。SPSの設定で設定されたPDSCHでDLデータが送信される場合、DLデータとオフセット値とを多重してもよい。該多重はMACで行われてもよい。SPSの設定で設定されたPDSCHでDLデータの送信が無い場合、オフセット値のみ送信してもよい。
 gNBからUEに対してSPSで設定した周期に加えるオフセット値を送信することを開示したが、他の方法として、オフセット値はあらかじめ設定しておいて、オフセット値を加えるか否かの情報を送信してもよい。gNBからUEへのオフセット値を予め設定する方法は、実施の形態5で開示したオフセット値に関する情報の送信方法を適宜適用するとよい。オフセット値を加えるか否かの情報の送信方法は、前述に開示したオフセット値の送信方法を適宜適用するとよい。このようにすることで、ダイナミックに送信する情報量を低減可能となる。
 図32は、SPSで設定した周期に加えるオフセット値を通知する場合のリソースアロケーション例を示す図である。ハッチングありの四角はPDCCHを、白色四角はPDSCHを示している。横軸は時間領域を示し、縦軸は周波数領域を示している。図32では、SPSの設定において1つのPDSCHが設定される。gNBからUEに対して、SPSの設定がRRCシグナリングで行われ、SPSのアクティベーション/デアクティベーションがPDCCHで通知される。
 図32では、SPSで設定された1番目のPDSCHを用いて、gNBからUEに対してオフセット値が送信される。DLデータを含むMAC SDUと、オフセット値を含むMAC CEとが多重され、送信される。これにより、2番目のPDSCHの送信タイミングは、SPS周期にオフセット値が加えられたタイミングとなる。2番目のPDSCHではオフセット値は送信されない。これにより、3番目のPDSCHの送信タイミングはSPS周期のタイミングとなる。3番目のPDSCHではオフセット値は送信されない。これにより、4番目のPDSCHの送信タイミングはSPS周期のタイミングとなる。4番目のPDSCHを用いて、オフセット値が送信される。これにより、5番目のPDSCHの送信タイミングは、SPS周期にオフセット値が加えられたタイミングとなる。このように、SPS周期にオフセット値を加える場合にgNBからUEに対してオフセット値が通知される。
 gNBはSPS周期あるいはSPS周期にオフセット値を加えたタイミングでPDSCHを送信する。UEはgNBからオフセット値を受信しない場合はSPS周期で、オフセット値を受信した場合はSPS周期にオフセット値を加えたタイミングで、PDSCHを受信する。このようにすることで、ダイナミックにgNBはSPS周期にオフセット値を加えることが可能となり、UEがgNBからオフセット値を受信することでPDSCHタイミングを導出することが可能となる。UEがPDSCHを受信可能となる。
 gNBはUEに対して、MACシグナリングを用いて、n回毎の周期のうちオフセット値を加える周期を特定する情報、例えば番号(k)など、n回毎の周期のうちオフセット値を適用してリソース割当てタイミングをずらすPDSCHを特定する情報、例えば番号(m)など、これらの情報の組合せを通知してもよい。オフセット値とともにMAC CEに含めて通知されてもよい。
 このように、ダイナミックにオフセット値を加えることで、gNBはDLデータの発生タイミングに適した調整を行うことが可能となる。たとえDLデータの発生タイミングが非整数周期性であっても、適切なオフセットを設定することで、DLデータの送信遅延時間を低減させることが可能となる。また、DLデータの発生周期が時間的に変動するような場合も、ダイナミックに適切なオフセットを設定することで、DLデータの送信遅延時間を低減させることが可能となる。このため、DLデータの送信遅延時間が要求される遅延量を超えたためにDLデータが破棄されてしまうような状況を低減可能となる。通信品質の劣化を低減可能となる。
実施の形態5変形例2.
 実施の形態5で開示した課題を解決する他の方法を開示する。SPSの設定において、SPS周期n回毎にPDCCHを設定する。gNBはUEに対してPDCCHの設定に関する情報を送信する。該情報として、n、n回毎の周期のうちPDCCHを送信する周期の番号(k)、これらの情報の組合せを用いるとよい。kは1つに限らず複数であってもよい。PDCCHの設定に関する情報として、実施の形態1で開示したPDCCHの設定情報を用いてもよい。gNBからUEへの該情報の送信方法は、実施の形態5で開示した、SPS周期に加えるオフセット値に関する情報の送信方法を適宜適用するとよい。このようにすることで、UEはSPS周期n回毎に設定されたPDCCHを受信可能となる。
 gNBはUEに対して、SPSで設定した周期に加えるオフセット値を通知する。SPS周期n回毎にオフセット値を通知してもよい。gNBからUEへのオフセット値の送信方法として、前述に開示したPDCCHを用いる。たとえば、DCIに含めて送信してもよい。DCIを前述に開示したPDCCHを用いて送信する。
 gNBからUEに対してSPSで設定した周期に加えるオフセット値を送信することを開示したが、他の方法として、オフセット値はあらかじめ設定しておいて、オフセット値を加えるか否かの情報を送信してもよい。gNBからUEへのオフセット値を予め設定する方法は、実施の形態5で開示したオフセット値に関する情報の送信方法を適宜適用するとよい。オフセット値を加えるか否かの情報の送信方法は、前述に開示したオフセット値の送信方法を適宜適用するとよい。このようにすることで、ダイナミックに送信する情報量を低減可能となる。
 図33は、SPSで設定した周期に加えるオフセット値をPDCCHを用いて通知する場合のリソースアロケーション例を示す図である。ハッチングありの四角はPDCCHを、白色四角はPDSCHを示している。横軸は時間領域を示し、縦軸は周波数領域を示している。図33では、SPSの設定においてSPS周期n回毎にPDCCHが設定される。gNBからUEに対してSPS周期n回毎にPDCCHが送信される。図33では、n=3、k=2の場合について示している。SPS周期3回毎に2番目の周期でPDCCHが送信される。PDCCHによってSPS周期に加えるオフセット値が送信される。
 図33では、SPSで設定された2番目の周期でPDCCHが送信され、オフセット値が送信される。これにより、2番目のPDSCHの送信タイミングは、1番目のSPS周期にオフセット値が加えられたタイミングとなる。1番目と3番目のPDSCHの送信タイミングはSPSで設定されたタイミングとなる。同様に、SPSで設定された5番目の周期でPDCCHが送信され、オフセット値が送信される。これにより、5番目のPDSCHの送信タイミングは、4番目のSPS周期にオフセット値が加えられたタイミングとなる。4番目と6番目(不図示)のPDSCHの送信タイミングはSPSで設定されたタイミングとなる。
 gNBは設定したPDCCHでオフセット値を送信する。UEはgNBからオフセット値を受信しない場合はSPS周期で、オフセット値を受信した場合はSPS周期にオフセット値を加えたタイミングで、PDSCHを受信する。このようにすることで、gNBはSPS周期にオフセット値を加えることが可能となり、UEがgNBからオフセット値を受信することでPDSCHタイミングを導出することが可能となる。UEがPDSCHを受信可能となる。
 図34は、SPSで設定した周期に加えるオフセット値をPDCCHを用いて通知する場合の他のリソースアロケーション例を示す図である。ハッチングありの四角はPDCCHを、白色四角はPDSCHを示している。横軸は時間領域を示し、縦軸は周波数領域を示している。図34では、SPSの設定においてSPS周期n回毎にPDCCHが設定される。gNBからUEに対してSPS周期n回毎にPDCCHが送信される。図34では、n=3、k=1の場合について示している。SPS周期3回毎に1番目の周期でPDCCHが送信される。PDCCHによってSPS周期に加えるオフセット値が送信される。
 オフセット値を通知する周期の番号(k)と、オフセット値を適用してリソース割当てタイミングをずらすPDSCHの番号とを異ならせてもよい。オフセット値を適用してリソース割当てタイミングをずらすPDSCHを特定する情報は、オフセット値を適用してリソース割当てタイミングをずらすPDSCHの番号であってもよいし、オフセット値を送信する周期の番号とのオフセットであってもよい。該情報がgNBからUEに対して送信される。オフセット値を適用してリソース割当てタイミングをずらすPDSCHを特定する情報の送信方法は、オフセット値の通知方法を適宜適用してもよい。オフセット値を適用してリソース割当てタイミングをずらすPDSCHを特定する情報はオフセット値とともに通知されてもよい。
 図34の方法では、通知されたオフセット値が次のSPS周期で割当てられるPDSCHに適用される。オフセット値を通知する周期の番号は1、オフセット値を適用してリソース割当てタイミングをずらすPDSCHの番号は2となる。図34では、SPSで設定された1番目の周期でPDCCHが送信され、該PDCCHでオフセット値が送信される。これにより、2番目のPDSCHの送信タイミングは、SPS周期にオフセット値が加えられたタイミングとなる。1番目と3番目のPDSCHの送信タイミングはSPSで設定されたタイミングとなる。同様に、SPSで設定された4番目の周期でPDCCHが送信され、該PDCCHでオフセット値が送信される。これにより、5番目のPDSCHの送信タイミングは、SPS周期にオフセット値が加えられたタイミングとなる。4番目と6番目(不図示)のPDSCHの送信タイミングはSPSで設定されたタイミングとなる。
 このように、n回毎にPDCCHを設定し、PDCCHでオフセット値を通知することで、gNBはDLデータの発生タイミングに適した調整を行うことが可能となる。また、PDCCHでオフセット値を送信することで、UEは早期にオフセット値を取得可能となる。たとえDLデータの発生タイミングが非整数周期性であっても、適切なオフセットを周期n回毎に設定することで、DLデータの送信遅延時間を低減させることが可能となる。このため、DLデータの送信遅延時間が要求される遅延量を超えたためにDLデータが破棄されてしまうような状況を低減可能となる。通信品質の劣化を低減可能となる。
 実施の形態5から実施の形態5変形例2で示した図では、オフセット値が正の値である例を開示した。オフセット値は正の値でなくてもよい。負の値であってもよい。負の値の場合、オフセット値が適用されるPDSCHのリソース割当てタイミングは、該オフセット値分前にずれる。
 実施の形態5から実施の形態5変形例2では、オフセット値を適用しない場合のPDSCHのリソース割当てタイミングは、前のPDSCHのリソース割当てタイミングからSPS周期後となることを示した。他の方法として、SPS設定周期から与えられるタイミングを基準としたオフセット値を設定してもよい。言い換えると、オフセット値を適用するPDSCHのリソース割当てタイミングのみをオフセット値分ずらして、他のPDSCHのリソース割当てタイミングはSPS設定で与えられた周期に基づくリソース割当てタイミングとする。たとえば、実施の形態5において、SPS設定で設定するSPS周期を8msとし、オフセット値を1msとする。また1番目のPDSCHリソース割当てタイミングを0msとする。n=3、k=2とした場合、1番目のPDSCHリソース割当てタイミングは0ms、2番目のPDSCHリソース割当てタイミングは7ms、3番目のPDSCHリソース割当てタイミングは16msとなる。このようにすることで、2番目のPDSCHリソース割当てタイミングのみをずらすことが可能となる。多種多様なDLデータの発生パターンに適切なスケジューリングが可能となる。
実施の形態6.
 実施の形態5で開示した課題を解決する他の方法を開示する。CGで設定した周期n回毎にオフセット値をCG周期に加える。gNBはUEに対して、CG周期に加えるオフセット値に関する情報を送信する。該情報として、n、オフセット値、n回毎の周期のうちオフセットを加える周期を特定する情報、例えば番号(k)など、n回毎の周期のうちオフセット値を適用してリソース割当てタイミングをずらすPUSCHを特定する情報、例えば番号(m)など、これらの情報の組合せを用いるとよい。k and/or mは1つに限らず複数であってもよい。gNBからUEへの該情報の送信方法として、RRCシグナリングを用いてもよい。たとえば、RRCReconfigurationに含めて送信してもよい。たとえば、該情報をCGの設定に含めて送信してもよい。他の方法として、該情報をDCIに含めて送信してもよい。該情報をCGのアクティベーション/デアクティベーション指示用のDCIに含めて送信してもよい。該DCIの送信にPDCCHを用いてもよい。UEはgNBから情報を受信する。UEはCGの設定とともに、CG周期何回毎にオフセット値を加えたらよいか認識可能となる。UEはオフセット値が加えられたCG周期で、PUSCHの送信が可能となる。このようにすることで、サービス種類や、ULデータの発生状況に応じて柔軟にCG周期を設定可能となる。
 CG周期に加えるオフセット値に関する情報をgNBからUEに対して送信することを開示したが、他の方法として、あらかじめ規格等で静的に決めておいてもよい。処理の簡略化が図れ、誤動作を低減することができる。
 図35は、CGで設定した周期n回毎にオフセット値をCG周期に加える場合のリソースアロケーション例を示す図である。ハッチングありの四角はPDCCHを、白色四角はPUSCHを示している。横軸は時間領域を示し、縦軸は周波数領域を示している。図35では、CGの設定において1つのPUSCHが設定される。複数のPUSCHが設定されてもよい。gNBからUEに対して、CGの設定がRRCシグナリングで行われ、CGのアクティベーション/デアクティベーションがPDCCHで通知される。図35では、1つのオフセットが設定され、n=3、k=1の場合を示す。たとえば、k=1のかわりにm=2と設定してもよい。オフセット値の単位は、時間単位、シンボル単位、スロット単位、サブフレーム単位、無線フレーム単位、TTI単位、これらの組合せであってもよい。
 図35では、CGで設定された1番目と2番目のPUSCHの時間間隔は、CG周期にオフセットが加えられたものとなる。2番目と3番目のPUSCHの時間間隔はCG周期となり、3番目と4番目のPUSCHの時間間隔はCG周期となる。同様に、CGで設定された4番目と5番目のPUSCHの時間間隔は、CG周期にオフセットが加えられたものとなる。5番目と6番目(不図示)のPUSCHの時間間隔はCG周期となり、6番目と7番目(不図示)のPUSCHの時間間隔はCG周期となる。このようなn回毎にk番目の周期にオフセット値が加えられる設定が繰り返される。UEはCGの周期n回毎にオフセット値を加えたタイミングでPUSCHを送信する。gNBはCGの周期n回毎にオフセット値を加えたタイミングでPUSCHを受信する。
 このように、n回毎にオフセット値を加えることで、gNBはULデータの発生タイミングに適した調整を行うことが可能となる。たとえULデータの発生タイミングが非整数周期性であっても、適切なオフセット値を周期n回毎に加えることで、ULデータの送信遅延時間を低減させることが可能となる。このため、ULデータの送信遅延時間が要求される遅延量を超えたためにULデータが破棄されてしまうような状況を低減可能となる。通信品質の劣化を低減可能となる。
実施の形態6変形例1.
 実施の形態5で開示した課題を解決する他の方法を開示する。UEはgNBに対して、オフセット値をCGで設定した周期に加えることを要求する。CG周期n回毎にオフセット要求に関する情報を通知してもよい。オフセット要求に関する情報として、オフセット値をCG周期に加える要求を示す情報、オフセット値、これらの組合せであってもよい。UEからgNBへのオフセット要求に関する情報の送信に、MACシグナリングを用いてもよい。たとえば、MAC CEに含めて送信してもよい。該MAC CEを、CGの設定で設定されたPUSCHを用いて送信してもよい。CGの設定で設定されたPUSCHでULデータが送信される場合、ULデータとオフセット要求に関する情報とを多重してもよい。該多重はMACで行われてもよい。CGの設定で設定されたPUSCHでULデータの送信が無い場合、オフセット要求に関する情報のみ送信してもよい。
 UEからgNBに対してCGで設定した周期に加えるオフセット値の要求に関する情報を送信することを開示したが、他の方法として、オフセット値はあらかじめ設定しておいて、オフセット値を加えるか否かの情報を送信してもよい。gNBからUEへのオフセット値を予め設定する方法は、実施の形態6で開示したオフセット値に関する情報の送信方法を適宜適用するとよい。オフセット値を加えるか否かの情報の送信方法は、前述に開示したオフセット要求に関する情報の送信方法を適宜適用するとよい。このようにすることで、ダイナミックに送信する情報量を低減可能となる。
 図36は、オフセット値をCGで設定した周期に加える要求を通知する場合のリソースアロケーション例を示す図である。ハッチングありの四角はPDCCHを、白色四角はPUSCHを示している。横軸は時間領域を示し、縦軸は周波数領域を示している。図36では、CGの設定において1つのPUSCHが設定される。gNBからUEに対して、CGの設定がRRCシグナリングで行われ、CGのアクティベーション/デアクティベーションがPDCCHで通知される。
 CGで設定された1番目のPUSCHを用いて、UEからgNBに対してオフセット要求に関する情報が送信される。ULデータを含むMAC SDUと、オフセット値を含むMAC CEとが多重され、送信される。これにより、2番目のPUSCHの送信タイミングは、CG周期にオフセット値が加えられたタイミングとなる。2番目のPUSCHではオフセット値は送信されない。これにより、3番目のPUSCHの送信タイミングはCG周期のタイミングとなる。3番目のPUSCHではオフセット値は送信されない。これにより、4番目のPUSCHの送信タイミングはCG周期のタイミングとなる。4番目のPUSCHを用いて、オフセット値が送信される。これにより、5番目のPUSCHの送信タイミングは、CG周期にオフセット値が加えられたタイミングとなる。このように、UEからgNBに対してオフセット値が通知された場合、CG周期にオフセット値が加えられる。
 UEはgNBに対してオフセット要求に関する情報を送信しない場合はCG周期で、オフセット要求に関する情報を送信した場合はCG周期にオフセット値を加えたタイミングでPUSCHを受信する。gNBはUEからオフセット要求に関する情報を受信しない場合はCG周期で、オフセット要求に関する情報を受信した場合はCG周期にオフセット値を加えたタイミングでPUSCHを受信する。このようにすることで、UEのオフセット要求に応じてダイナミックにCG周期にオフセット値を加えることが可能となる。UEがgNBに対してオフセット要求に関する情報を送信することで、gNBはPUSCHタイミングを導出することが可能となる。UEがCG周期にオフセット値を加えて送信したPUSCHを、gNBは受信可能となる。
 UEはgNBに対して、n回毎の周期のうちオフセット値を加える周期を特定する情報、例えば番号(k)など、n回毎の周期のうちオフセット値を適用してリソース割当てタイミングをずらすPDSCHを特定する情報、例えば番号(m)など、これらの情報の組合せを通知してもよい。オフセット値とともにMAC CEに含めて通知されてもよい。
 このように、UEがgNBに対してダイナミックにオフセット要求を通知することで、UEはULデータの発生タイミングに適した調整を行うことが可能となる。たとえULデータの発生タイミングが非整数周期性であっても、適切なオフセットを要求し、CG周期を調整することで、ULデータの送信遅延時間を低減させることが可能となる。また、ULデータの発生周期が時間的に変動するような場合も、ダイナミックに適切なオフセットを要求し、CG周期を調整することで、ULデータの送信遅延時間を低減させることが可能となる。このため、ULデータの送信遅延時間が要求される遅延量を超えたためにULデータが破棄されてしまうような状況を低減可能となる。通信品質の劣化を低減可能となる。
実施の形態6変形例2.
 実施の形態5で開示した課題を解決する他の方法を開示する。CGの設定において、CG周期n回毎にPDCCHを設定する。gNBはUEに対してPDCCHの設定に関する情報を送信する。該情報として、n、n回毎の周期のうちPDCCHを送信する周期の番号(k)、これらの情報の組合せを用いるとよい。kは1つに限らず複数であってもよい。PDCCHを送信する周期の番号(k)は、オフセット値を適用してリソース割当てタイミングをずらすPUSCHの番号とするとよい。PDCCHの設定に関する情報として、実施の形態1で開示したPDCCHの設定情報を用いてもよい。gNBからUEへの該情報の送信方法は、実施の形態6で開示した、CG周期に加えるオフセット値に関する情報の送信方法を適宜適用するとよい。このようにすることで、UEはSPS周期n回毎に設定されたPDCCHを受信可能となる。
 gNBはUEに対して、CGで設定した周期に加えるオフセット値を通知する。CG周期n回毎にオフセット値を通知してもよい。gNBからUEへのオフセット値の送信方法として、前述に開示したPDCCHを用いる。たとえば、DCIに含めて送信してもよい。DCIを前述に開示したPDCCHを用いて送信する。
 gNBからUEに対してCGで設定した周期に加えるオフセット値を送信することを開示したが、他の方法として、オフセット値はあらかじめ設定しておいて、オフセット値を加えるか否かの情報を送信してもよい。gNBからUEへのオフセット値を予め設定する方法は、実施の形態6で開示したオフセット値に関する情報の送信方法を適宜適用するとよい。オフセット値を加えるか否かの情報の送信方法は、前述に開示したオフセット値の送信方法を適宜適用するとよい。このようにすることで、ダイナミックに送信する情報量を低減可能となる。
 図37は、CGで設定した周期に加えるオフセット値をPDCCHを用いて通知する場合のリソースアロケーション例を示す図である。ハッチングありの四角はPDCCHを、白色四角はPUSCHを示している。横軸は時間領域を示し、縦軸は周波数領域を示している。図37では、CGの設定においてCG周期n回毎にPDCCHが設定される。gNBからUEに対してCG周期n回毎にPDCCHが送信される。図37では、n=3、k=2の場合について示している。CG周期3回毎に2番目の周期でPDCCHが送信される。PDCCHによってCG周期に加えるオフセット値が送信される。
 UEがPDCCHをモニタする期間を設定してもよい。たとえば、CG周期のPUSCH送信タイミング前の所定の期間としてもよい。gNBはUEに対してPDCCHモニタ期間を送信するとよい。gNBからUEに対してPDCCHモニタ期間を送信する方法は、前述したPDCCH設定情報送信方法を適宜適用するとよい。PDCCHの設定に含めて送信してもよい。図37では、PDCCHが設定されたCG周期でPDCCHモニタ期間が設定される。
 図37では、CGで設定された2番目の周期でPDCCHが送信され、PDCCHを用いてオフセット値が送信される。UEはPDCCHを受信するため、PDCCHモニタ期間、PDCCHをモニタする。UEはPDCCHを受信することでオフセット値を受信可能となる。これにより、2番目のPUSCHの送信タイミングは、1番目のCG周期にオフセット値が加えられたタイミングとなる。1番目と3番目のPUSCHの送信タイミングはCG周期となる。同様に、CGで設定された5番目の周期でPDCCHが送信され、PDCCHを用いてオフセット値が送信される。UEはPDCCHを受信するため、PDCCHモニタ期間、PDCCHをモニタする。UEはPDCCHを受信することでオフセット値を受信可能となる。これにより、5番目のPUSCHの送信タイミングは、4番目のCG周期にオフセット値が加えられたタイミングとなる。4番目と6番目(不図示)のPUSCHの送信タイミングはCG周期となる。
 gNBは設定したPDCCHでオフセット値を送信する。UEはgNBからオフセット値を受信しない場合はCG周期で、オフセット値を受信した場合はCG周期にオフセット値を加えたタイミングでPUSCHを送信する。gNBはオフセット値を送信しない場合はCG周期で、オフセット値を送信した場合はCG周期にオフセット値を加えたタイミングでPUSCHを受信する。このようにすることで、UEがオフセット値を加えたタイミングで送信したPUSCHをgNBは受信可能となる。
 PDCCHを通知する周期の番号(k)と、オフセット値を適用してリソース割当てタイミングをずらすPUSCHの番号とを異ならせてもよい。オフセット値を適用してリソース割当てタイミングをずらすPDSCHを特定する情報は、オフセット値を適用してリソース割当てタイミングをずらすPUSCHの番号であってもよいし、PDCCHを送信する周期の番号とのオフセットであってもよい。該情報がgNBからUEに対して送信される。オフセット値を適用してリソース割当てタイミングをずらすPUSCHを特定する情報の送信方法は、PDCCHの設定の通知方法を適宜適用してもよい。オフセット値を適用してリソース割当てタイミングをずらすPDSCHを特定する情報の他の送信方法として、オフセット値の送信方法を適宜適用してもよい。PDCCHを用いて送信してもよい。オフセット値を適用してリソース割当てタイミングをずらすPDSCHを特定する情報はオフセット値とともに通知されてもよい。
 たとえば、n=3、k=1とする。これにより、CGで設定された1番目の周期でPDCCHが送信され、該PDCCHで、オフセット値と、オフセット値を適用してリソース割当てタイミングをずらすPDSCHのオフセットとが送信される。たとえば、オフセット値を適用してリソース割当てタイミングをずらすPDSCHのオフセットを1とすると、2番目のPUSCHの送信タイミングが、1番目のCG周期にオフセット値が加えられたタイミングとなる。1番目と3番目のPUSCHの送信タイミングはCG周期となる。同様に、CGで設定された4番目の周期でPDCCHが送信され、該PDCCHで、オフセット値と、オフセット値を適用してリソース割当てタイミングをずらすPDSCHのオフセットとが送信される。同様にオフセット値を適用してリソース割当てタイミングをずらすPDSCHのオフセットを1とすると、5番目のPUSCHの送信タイミングが、4番目のCG周期にオフセット値が加えられたタイミングとなる。4番目と6番目のPUSCHの送信タイミングはCG周期となる。
 このように、n回毎にPDCCHを設定し、PDCCHでオフセットを通知することで、gNBはULデータの発生タイミングに適した調整を行うことが可能となる。また、PDCCHでオフセット値を送信することで、UEは早期にオフセット値を取得可能となる。たとえULデータの発生タイミングが非整数周期性であっても、適切なオフセットを周期n回毎に設定することで、ULデータの送信遅延時間を低減させることが可能となる。このため、ULデータの送信遅延時間が要求される遅延量を超えたためにULデータが破棄されてしまうような状況を低減可能となる。通信品質の劣化を低減可能となる。
 実施の形態6から実施の形態6変形例2で示した図では、オフセット値が正の値である例を開示した。オフセット値は正の値でなくてもよい。負の値であってもよい。負の値の場合、オフセット値が適用されるPUSCHのリソース割当てタイミングは、該オフセット値分前にずれる。
 実施の形態6から実施の形態6変形例2では、オフセット値を適用しない場合のPUSCHのリソース割当てタイミングは、前のPUSCHのリソース割当てタイミングからCG周期後となることを示した。他の方法として、CG設定周期から与えられるタイミングを基準としたオフセット値を設定してもよい。言い換えると、オフセット値を適用するPUSCHのリソース割当てタイミングのみをオフセット値分ずらして、他のPUSCHのリソース割当てタイミングはCG設定で与えられた周期に基づくリソース割当てタイミングとする。たとえば、実施の形態6において、CG設定で設定するCG周期を8msとし、オフセット値を1msとする。また1番目のPUSCHリソース割当てタイミングを0msとする。n=3、k=2とした場合、1番目のPUSCHリソース割当てタイミングは0ms、2番目のPUSCHリソース割当てタイミングは7ms、3番目のPUSCHリソース割当てタイミングは16msとなる。このようにすることで、2番目のPUSCHリソース割当てタイミングのみをずらすことが可能となる。多種多様なULデータの発生パターンに適切なスケジューリングが可能となる。
実施の形態7.
 UEの移動によりセル間でモビリティ処理が行われる場合がある。移動元セルから移動先セルへのモビリティ処理において、UEは移動先セルに対して同期処理を行うためRA(Random Access)処理を実施する。また、たとえば、移動元セルを有するgNB(ソースgNB(S-gNB))と移動先セルを有するgNB(ターゲットgNB(T-gNB))が異なるような場合、モビリティ処理においてDLデータがS-gNBからT-gNBに対して転送される。転送処理されたDLデータは、UEとgNBでRA処理が完了しデータ通信が再開されるまでT-gNB内にバッファされる。このようにセル間モビリティでは、RA処理や転送処理のため、T-gNBでのDLデータ送信タイミングがS-gNBでのDLデータ送信タイミングと異なることになる。このため、SPSの設定を、S-gNBでDLデータ送信タイミングに適した設定にしたとしても、T-gNBでのDLデータ送信タイミングと異なってしまい、DLデータの送信に遅延が生じてしまうという問題が生じる場合がある。
 また、ULデータについてもUEとgNBでRA処理が行われデータ通信が再開されるまでUE内にバッファされる。このようにセル間モビリティでは、RA処理により、T-gNBへのULデータ送信タイミングがS-gNBへのULデータ送信タイミングと異なることになる。このため、CGの設定を、S-gNBへのULデータ送信タイミングに適した設定にしたとしても、T-gNBへのULデータ送信タイミングと異なってしまい、ULデータの送信に遅延が生じてしまうという問題が生じる場合がある。
 本実施の形態7では、このような課題を解決する方法を開示する。
 該方法では、T-gNBはバッファにあるDLデータを、UEに対してダイナミックスケジューリングを用いて送信する。T-gNBはモビリティ対象のUEとのRA処理後、該UEに対してダイナミックスケジューリングを行う。T-gNBは、PDCCHにより、DLデータ送信のためのPDSCHのスケジューリングを行う。UEはT-gNBとのRA処理後、ダイナミックグラントを受信する。UEはT-gNBとのRA処理後PDCCHをモニタして自UEに対するスケジューリング情報を含むPDCCHを受信する。UEはPDCCHに含まれるスケジューリング情報を受信し、該スケジューリング情報で示されるPDSCHでDLデータを受信する。
 このようにすることで、モビリティ処理においてT-gNBのバッファにあるDLデータをUEに対して早期に送信可能となる。
 T-gNBは、UEのバッファにあるULデータを、UEに対してダイナミックスケジューリングを用いて送信させる。T-gNBはモビリティ対象のUEとのRA処理後、該UEに対してダイナミックスケジューリングを行う。T-gNBは、PDCCHにより、ULデータ送信のためのPUSCHのスケジューリングを行う。UEはT-gNBとのRA処理後、ダイナミックグラントを受信する。UEはT-gNBとのRA処理後PDCCHをモニタして自UEに対するスケジューリング情報を含むPDCCHを受信する。UEはPDCCHに含まれるスケジューリング情報を受信し、PUSCHでULデータを送信する。
 このようにすることで、モビリティ処理においてUEのバッファにあるULデータをT-gNBに対して早期に送信可能となる。
 UEからT-gNBへSRを送信してもよい。たとえば、UEはRA処理において、あるいはRA処理後SRを送信するとよい。SRを受信したT-gNBは、UEに対してダイナミックスケジューリングを実施する。
 UEからT-gNBへのSRを不要としてもよい。たとえばXRなどの周期的にULデータが発生するようなベアラが設定されている場合、モビリティ処理においてUEからT-gNBに対するSRを不要としてもよい。モビリティ処理におけるRA処理においてあるいはRA処理後、UEからT-gNBに対するSRを不要としてもよい。周期的にULデータが発生するようなベアラが設定されている場合、モビリティ処理においてT-gNBはSRを受信しなくてもUEに対してダイナミックスケジューリングを実施する。UEは、周期的にULデータが発生するようなベアラが設定されている場合、T-gNBに対してSRを送信しない場合でも、T-gNBからのPDCCHをモニタするとよい。このようにすることで、T-gNBは早期にUEに対してPUSCHのスケジューリングを実施可能となる。
 モビリティ処理においてSRを不要とするのを、周期的にULデータが発生するようなベアラが設定されている場合であることを開示したが、他の方法を開示する。T-gNBからUEに対して、モビリティ処理においてSRの要否を示す情報を送信する。たとえば、モビリティ処理において、T-gNBからS-gNBに対して送信するHO REQUEST ACKメッセージに該情報を含めて送信し、S-gNBからUEに対してRRCReconfiguratonメッセージに該情報を含めて送信する。このようにすることで、T-gNBがSRの要否を設定可能となる。
 T-gNBは、RA処理後のダイナミックスケジューリングを、T-gNBからUEに対してCORESETを設定するまで継続してもよい。あるいは、T-gNBがUEに対してSPSを設定するまで継続してもよい。あるいは、T-gNBは、UEに対してCGを設定するまでダイナミックスケジューリングを継続してもよい。あるいは、T-gNBでのモビリティ処理におけるバッファに保存されていたDLデータの送信が完了するまでダイナミックスケジューリングを継続してもよい。UEがRA処理後ダイナミックスケジューリングのためにPDCCHをモニタし続けることを回避できる。UEの低消費電力化が図れる。
 本実施の形態7で開示した課題を解決する他の方法を開示する。モビリティ処理の際は、S-gNBは設定したSPS and/or CGをデアクティベーションする。S-gNBはUEに対してSPS and/or CGのデアクティベーションを送信する。S-gNBからSPS and/or CGのデアクティベーションを受信したUEは、SPS and/or CGの処理を停止する。UEは、SPS and/or CGの設定をリリースしない。T-gNBはRA処理においてあるいはRA処理後、デアクティベーションされたSPS and/or CGの設定をアクティベーションする。T-gNBはUEに対してSPS and/or CGのアクティベーションを送信する。T-gNBからSPS and/or CGのアクティベーションを受信したUEは、SPS and/or CGの処理を再度実行する。
 S-gNBからUEへのSPS and/or CGのデアクティベーションの通知方法を開示する。該通知にRRCシグナリングを用いてもよい。たとえば、モビリティ処理においてS-gNBからUEに対して送信するRRCReconfigurationに該通知を含めて送信してもよい。モビリティ処理の指示とともに通知可能となる。他の方法として、該通知にPDCCHを用いてもよい。DCIにSPS and/or CGのデアクティベーションを含めて通知してもよい。デアクティベーションするタイミングにあわせてダイナミックに通知可能となる。他の方法として、該通知にMACシグナリングを用いてもよい。たとえば、MAC CEにSPS and/or CGのデアクティベーションを含めて、SPSで設定されたPDSCHで送信してもよい。UEはPDCCHを受信する必要がなく処理が容易になる。
 このようにすることで、S-gNBからUEへのSPS and/or CGのデアクティベーションを通知可能となる。UEはS-gNBからUEへのSPS and/or CGのデアクティベーションを受信可能となる。モビリティ処理においてSPS and/or CGのデアクティベーションが可能となる。
 T-gNBからUEへのSPS and/or CGのアクティベーションの通知方法を開示する。該通知にRRCシグナリングを用いてもよい。たとえば、RA処理後T-gNBからUEに対してRRCReconfigurationを送信する。該RRCReconfigurationに該通知を含めて送信してもよい。T-gNBはUEと接続後確実に通知することができる。他の方法として、該通知にPDCCHを用いてもよい。DCIにSPS and/or CGのアクティベーションを含めて通知してもよい。アクティベーションするタイミングにあわせてダイナミックに通知可能となる。
 このようにすることで、T-gNBからUEへのSPS and/or CGのアクティベーションを通知可能となる。UEはT-gNBからSPS and/or CGのアクティベーションを受信可能となる。モビリティ処理においてSPS and/or CGのアクティベーションが可能となる。
 SPS and/or CGのデアクティベーション、アクティベーションをUEに対して通知するようにしたが、他の方法として、デアクティベーション and/or アクティベーションを通知なしに自動的に実施するようにしてもよい。モビリティ処理が発生した場合は、モビリティ処理対象のUEに対するSPS and/or CGのデアクティベーション、アクティベーションを自動的にするようにしてもよい。たとえば、デアクティベーション、アクティベーションを実施する条件を規格等で静的に決めておいてもよい。このようにすることで、UEに対する通知を不要にできる。シグナリング負荷の低減が図れる。
 このようにすることで、S-gNBで設定したSPS and/or CGをリリースすることなく、T-gNBでSPS and/or CGを実行可能となる。このため、T-gNBでUEに対してSPS and/or CGを早期に実行可能となる。モビリティ処理においてT-gNBあるいはUEのバッファにあるDLデータあるいはULデータを早期に送信可能となる。
 本実施の形態7で開示した課題を解決する他の方法を開示する。モビリティ処理の際は、設定されているSPS and/or CG設定をリリースする。S-gNBはUEに対してSPS and/or CG設定のリリースを送信してもよい。S-gNBからSPS and/or CG設定のリリースを受信したUEは、SPS and/or CG設定をリリースする。該リリースはS-gNBからの通知が無くても行われてもよい。たとえば、該設定をリリースする条件を規格等で静的に決めておいてもよい。
 T-gNBはモビリティ処理によるRA処理においてあるいはRA処理後、SPS and/or CGを設定する。T-gNBはUEに対してSPS and/or CGの設定を通知する。また、T-gNBはUEに対してSPS and/or CGのアクティベーションを通知してもよい。T-gNBからSPS and/or CG設定、アクティベーションを受信したUEは、SPS and/or CGの処理を実行する。
 モビリティ処理によりT-gNBがUEに対してSPS and/or CGの設定する方法を開示する。モビリティ処理において、T-gNBはUEに対してS-gNBを介してSPS and/or CGの設定を送信する。T-gNBはS-gNBに対して、該設定をHO REQUEST ACKに含めて送信する。S-gNBはUEに対して、T-gNBから受信した該設定をRRCReconfigurationに含めて送信する。UEはT-gNBからのSPS and/or CGの設定をS-gNBから受信する。SPS and/or CGのアクティベーション/デアクティベーションが必要な場合は、モビリティ処理によるRA処理後T-gNBはUEに対してPDCCHを用いてSPS and/or CGのアクティベーション/デアクティベーションを送信するとよい。UEはT-gNBとのRA処理後PDCCHをモニタして、PDCCHを用いたSPS and/or CGのアクティベーション/デアクティベーションを受信する。これにより、UEはT-gNBでSPS and/or CGの処理を実行可能となる。
 モビリティ処理によりT-gNBがUEに対してSPS and/or CGを設定する方法を開示する。モビリティ処理において、T-gNBはUEに対して、S-gNBを介してSPS and/or CGの設定を送信する。T-gNBはS-gNBに対して、該設定をHO REQUEST ACKに含めて送信する。S-gNBはUEに対して、T-gNBから受信した該設定をRRCReconfigurationに含めて送信する。UEはT-gNBからのSPS and/or CGの設定をS-gNBから受信する。SPS and/or CGのアクティベーション/デアクティベーションが必要な場合は、モビリティ処理によるRA処理後T-gNBはUEに対してPDCCHを用いてSPS and/or CGのアクティベーション/デアクティベーションを送信するとよい。UEはT-gNBとのRA処理後PDCCHをモニタして、PDCCHを用いたSPS and/or CGのアクティベーション/デアクティベーションを受信する。これにより、UEはT-gNBでSPS and/or CGの処理を実行可能となる。
 モビリティ処理においてT-gNBがUEに対してS-gNBを介してSPS and/or CGの設定を送信する方法では、モビリティ処理におけるフォワーディング処理やRA処理以前に該設定がなされるため、DLデータあるいはULデータの送信タイミングがずれる課題が残る。このような課題を解決するため、モビリティ処理によりT-gNBがUEに対してSPS and/or CGを設定する他の方法を開示する。モビリティ処理において、T-gNBはUEに対してSPS and/or CGの設定を送信する。T-gNBはUEとのRA処理後、UEに対してRRCReconfigurationを送信する。該設定を該RRCReconfigurationに含めて送信してもよい。T-gNBはUEと接続後確実に通知することができる。
 SPS and/or CGのアクティベーション/デアクティベーションが必要な場合は、T-gNBはUEに対してRRCシグナリングを用いてSPS and/or CG設定を送信後、PDCCHを用いてSPS and/or CGのアクティベーション/デアクティベーションを送信するとよい。UEはT-gNBからSPS and/or CG設定を受信後、PDCCHをモニタして、PDCCHを用いたSPS and/or CGのアクティベーション/デアクティベーションを受信する。これにより、UEはT-gNBでSPS and/or CGの処理を実行可能となる。
 モビリティ処理においてT-gNBがUEに対してRA処理後SPS and/or CGの設定を送信する方法では、該設定が行われるまでSPS and/or CGを用いることができない、という課題が生じる。このような課題を解決するため、モビリティ処理によりT-gNBがUEに対してSPS and/or CGの設定する他の方法を開示する。
 該他の方法では、モビリティ処理において、T-gNBはUEに対してRA処理においてSPS and/or CGの設定を送信する。該送信に、RA処理におけるMSG2を用いてもよい。MSG2において、MACシグナリングを用いてもよい。たとえば、T-gNBはSPS and/or CGの設定をMAC CEに含めてMSG2でUEに対して送信する。SPS and/or CGの設定とともに該設定のアクティベーション/デアクティベーションを送信するとよい。あるいは、SPS and/or CGの設定の送信をもって該設定のアクティベーションとしてもよい。UEはT-gNBとのRA処理においてSPS and/or CGの設定を受信する。このようにすることで、RA処理においてT-gNBとUE間でSPS and/or CGの設定が可能となる。gNBはUEとのDLデータ送受信あるいはULデータ送受信にT-gNBが設定したSPS and/or CGを用いることができる。
 T-gNBはSPS and/or CGの設定において、モビリティ処理におけるフォワーディング処理やRA処理によるDLデータあるいはULデータの送信タイミングのずれを考慮することが可能となる。また、RA処理においてSPS and/or CGが設定されるので、モビリティ処理対象のUEは、早期にSPS and/or CGの設定を受信可能となる。RA処理のMSG2を用いることで、UEがT-gNBと通信可能になる最も早いタイミングでSPS and/or CGの設定を受信可能となる。これによりUEとT-gNB間でDLデータあるいはULデータの送受信を行う際にSPS and/or CGを用いることが可能となる。このため、モビリティ処理におけるDLデータあるいはULデータの送信タイミングのずれによる遅延を低減可能となる。
 他の方法として、モビリティ処理においてT-gNBがUEに対してS-gNBを介してSPS and/or CGの設定を送信し、T-gNBはRA処理においてSPS and/or CGの設定の修正情報をUEに対して送信してもよい。送信方法は前述に開示した方法を適用するとよい。MSG2を用いて送信するとよい。
 修正情報としてオフセット値を設けてもよい。T-gNBは、S-gNBを介して設定したSPSの開始タイミングに該オフセット値を加える。T-gNBから該オフセット値を受信したUEは、S-gNBを介して受信したSPS and/or CGの開始タイミングに該オフセット値を加える。あるいは、開始タイミングではなく、該オフセット値受信直後のSPS and/or CGのリソースアロケーションタイミングに該オフセット値を加えてもよい。
 このようにすることで、T-gNBはモビリティ処理におけるフォワーディング処理やRA処理によるDLデータあるいはULデータの送信タイミングのずれを考慮してSPS and/or CGの設定を修正可能となる。T-gNBはRA処理においてSPS and/or CG設定の修正情報をUEに対して送信することで、UEは早期にSPS and/or CG設定の修正情報を受信可能となる。RA処理のMSG2を用いることで、UEがT-gNBと通信可能になる最も早いタイミングでSPS and/or CG設定の修正情報を受信可能となる。これによりUEとT-gNB間でDLデータあるいはULデータの送受信を行う際にSPS and/or CG設定の修正情報を用いることが可能となる。このため、モビリティ処理におけるDLデータあるいはULデータの送信タイミングのずれによる遅延を低減可能となる。また、MSG2でSPS and/or CG設定の修正情報のみを送信すればよく、送信する情報量を少なくすることができる。またMSG2の処理時間を短縮可能となる。
 図38は、RA処理においてSPS and/or CGの設定の修正情報を送信するモビリティ処理のシーケンス例を示す図である。ステップST3801でUPFとS-gNBとUE間でデータ通信が行われている。S-gNBとUE間でSPS and/or CGが設定されていてもよい。該設定を用いてデータ通信が行われてもよい。ステップST3802でUEはメジャメントを実施し、ステップST3803でS-gNBに対してメジャメント結果を報告する。ステップST3804でS-gNBはUEに対してT-gNBへのモビリティ処理であるハンドオーバ(HO:Hand Over)を決定する。ステップST3805で、S-gNBはT-gNBに対してHO REQUESTを送信する。HO REQUESTにSPS and/or CGの設定を含めてもよい。該設定に実施の形態1から実施の形態6変形例2で開示した設定情報を含めてもよい。このようにすることで、T-gNBは、S-gNBで行われたSPS and/or CGの設定を認識可能となる。ステップST3806でT-gNBはアドミッション制御を行う。T-gNBはモビリティ対象のUEに対してSPS and/or CGの設定を行う。該設定を行う際に、S-gNBから受信したS-gNBによるSPS and/or CGの設定を考慮してもよい。ステップST3807で、T-gNBはS-gNBに対してHO REQUEST ACKを送信する。HO REQUEST ACKにT-gNBによるSPS and/or CGの設定を含める。ステップST3808で、S-gNBはUEに対してモビリティ処理設定指示の通知を行う。RRCReconfiguraionを用いて該通知を行うとよい。RRCReconfiguraionにT-gNBから受信したT-gNBによるSPS and/or CGの設定を含めるとよい。UEはT-gNBとの通信においてSPS and/or CGの設定を用いることができる。ステップST3808でUEに対してモビリティ処理設定指示を送信したS-gNBは、ステップST3809で、データの送信状況をT-gNBに対して送信する。SN STATUS TRANSFERを用いて送信する。ステップST3810で、S-gNBはUPFから受信したDLデータをT-gNBに転送開始する。S-gNBから転送されたDLデータを受信したT-gNBは、ステップST3811でDLデータをバッファする。T-gNBは、UEとのデータ通信が可能になるまでDLデータをバッファする。ステップST3808でモビリティ処理設定指示を受信したUEは、T-gNBへのモビリティ処理を開始する。ステップST3812で、UEはT-gNBとRA処理を開始するためPRACHを送信する。PRACHを受信したT-gNBは、ステップST3813で、UEに対してMSG2を送信する。T-gNBは、MSG2にSPS and/or CGの設定の修正情報を含めるとよい。該設定の修正情報に実施の形態1から実施の形態6変形例2で開示した設定の修正情報を含めてもよい。T-gNBはUEからPRACHを受信した場合、RA処理完了までにどの程度の時間がかかるかを導出して、該時間を調整するため、SPS and/or CG設定の修正情報を導出してもよい。該修正情報は、たとえば、前述に開示したS-gNBを介して受信したSPS and/or CGの開始タイミングに加えるオフセット値としてもよい。このようにすることで、T-gNBにおけるSPS and/or CGの設定を、モビリティ処理による転送処理やRA処理による送信タイミングのずれを考慮して、T-gNBでの送信タイミングに適したSPS and/or CGに調整可能となる。ステップST3813でSPS and/or CG設定の修正情報を受信したUEは、該修正を適用してSPS and/or CGを開始する。
 ステップST3814で、UEはT-gNBに対してRRCReconfigurationcompleteを通知する。ステップST3815でUEはT-gNBとデータ通信を行う。該データ通信に、ステップST3813で受信した修正情報を適用したSPS and/or CGを用いるとよい。ステップST3816でT-gNBはUPFに対してULデータを送信する。ステップST3817、ST3818で、T-gNB、AMF、UPF間でパススイッチが行われる。ステップST3819で、UPFからS-gNBを介してT-gNBに対してEnd markerが送信され、転送データの終了が通知される。ステップST3820でUPFからT-gNBにDLデータの送信が行われる。これにより、UE、T-gNB、UPF間でDL、ULともデータの送受信が行われる。ステップST3821で、AMFはT-gNBに対してPATH SWITCH REQUEST ACKを送信する。ステップST3822で、T-gNBはS-gNBに対してUE CONTEXT RELEASEを送信する。
 前述に開示したT-gNBがRA処理においてSPS and/or CGの設定の修正情報をUEに対して送信する方法を、モビリティ処理の際にS-gNBが設定したSPS and/or CGをデアクティベーションし、T-gNBでアクティベーションする方法に適宜適用してもよい。T-gNBはUEに対してSPS and/or CGのアクティベーションとともに、該設定の修正情報を送信してもよい。UEはT-gNBから受信したSPS and/or CGのアクティベーションおよび該設定の修正情報を用いて修正したSPS and/or CGを用いて、DLデータあるいはULデータの送受信を行う。
 このようなモビリティ処理とすることで、モビリティ処理におけるDLデータあるいはULデータの送信タイミングのずれによる遅延を低減可能となる。
 本実施の形態で開示した方法のようにすることで、UEのモビリティ処理におけるDLデータの転送処理やUEとgNB間のRA処理によるDLデータあるいはULデータの送信タイミングのずれを考慮したスケジューリングを実施可能となる。このため、モビリティ処理が行われたとしても、DLデータあるいはULデータの送信で生じる遅延を低減することが可能となる。DLデータあるいはULデータの送信遅延時間が要求される遅延量を超えたために破棄されてしまうような状況を低減可能となる。通信品質の劣化を低減可能となる。
 本開示において、gNBあるいはセルとして記載しているが、特に説明の無い限り、gNBであってもよいしセルであってもよい。
 本開示において、gNBはMCGであってもよいしSCGであってもよい。また、実施の形態7で開示した方法は、PSCellの変更に適用してもよい。PSCell変更時同様の効果が得られる。
 UEはgNBに対して、CGの設定に関するプリファレンス情報を通知してもよい。CGの設定に関するプリファレンス情報として、CG周期、オフセット、時間領域リソースアロケーション、周波数領域リソースアロケーションなどがある。該プリファレンス情報は、実施の形態2から実施の形態2変形例3、実施の形態4から実施の形態4変形例4、実施の形態6から実施の形態6変形例2、実施の形態7で開示した情報であってもよい。これらの組合せであってもよい。gNBはUEからCGの設定に関するプリファレンス情報を受信することで、UEにおいて好ましいCGの設定を認識可能となる。
 前述の各実施の形態およびその変形例は、例示に過ぎず、各実施の形態およびその変形例を自由に組合せることができる。また各実施の形態およびその変形例の任意の構成要素を適宜変更または省略することができる。
 例えば、前述の各実施の形態およびその変形例において、スロットは、第5世代通信システムにおける通信の時間単位の一例である。スロットはスケジューリング単位であってもよい。前述の各実施の形態およびその変形例において、スロット単位として記載している処理を、TTI単位、サブフレーム単位、サブスロット単位、ミニスロット単位として行ってもよい。
 例えば、前述の各実施の形態およびその変形例において開示した方法は、IABに適用してもよい。IABドナーとIABノード間の通信に適用してもよい。IABにおいてUuを用いる処理に適用してもよい。
 例えば、前述の各実施の形態およびその変形例において開示した方法は、SL通信に適用してもよい。例えば、リレー(relay)を介したUEとNWとの間の通信に適用してもよい。L2リレーによるUEとNW間の通信に適用してもよい。
 例えば、前述の各実施の形態およびその変形例において開示した方法は、V2X(Vehicle-to-everything)サービスに限らずSL通信が用いられるサービスに適用してもよい。例えば、プロキシミティサービス(Proximity-based service)、パブリックセイフティ(Public Safety)、ウェアラブル端末間通信、工場における機器間通信など、多種のサービスで用いられるSL通信に適用してもよい。
 以下、本開示の諸態様を付記としてまとめて記載する。
(付記1)
 予め定められた周期で通信端末との間でデータを送受信する周期的通信が可能な基地局であって、
 前記周期的通信において前記通信端末に下りデータを送信する場合、前記下りデータの送信周期である第1の周期で使用する物理下り制御チャネルおよび物理下り共有チャネルを割り当て、前記通信端末に送信する下りデータのデータ量の変動に応じて前記第1の周期で使用する前記物理下り共有チャネルを変更するとともに、該変更の結果を前記第1の周期に割り当て済みの前記物理下り制御チャネルにより前記通信端末に通知し、
 前記周期的通信において前記通信端末から上りデータを受信する場合、前記上りデータの送信周期である第2の周期で使用する物理下り制御チャネルおよび物理上り共有チャネルを割り当て、前記通信端末が送信する上りデータのデータ量の変動に応じて前記第2の周期で使用する前記物理上り共有チャネルを変更するとともに、該変更の結果を前記第2の周期に割り当て済みの前記物理下り制御チャネルにより前記通信端末に通知する、
 ことを特徴とする基地局。
(付記2)
 予め定められた周期で通信端末との間でデータを送受信する周期的通信が可能な基地局であって、
 前記周期的通信において前記通信端末に下りデータを送信する場合、前記下りデータの送信周期である第1の周期で使用する物理下り制御チャネルおよび物理下り共有チャネルを割り当て、前記通信端末に送信する下りデータのデータ量の変動に応じて前記第1の周期で使用する前記物理下り共有チャネルを変更するとともに、該変更の結果を前記第1の周期に割り当て済みの前記物理下り共有チャネルにより前記通信端末に通知し、
 前記周期的通信において前記通信端末から上りデータを受信する場合、前記上りデータの送信周期である第2の周期で使用する物理下り制御チャネルおよび物理上り共有チャネルを割り当て、前記通信端末が送信する上りデータのデータ量の変動に応じて前記第2の周期で使用する前記物理上り共有チャネルを変更するとともに、該変更の結果を前記第2の周期に割り当て済みの前記物理下り制御チャネルにより前記通信端末に通知する、
 ことを特徴とする基地局。
(付記3)
 前記下りデータが周期的に発生する場合、前記下りデータの発生周期と前記第1の周期との関係に基づくオフセット値を前記第1の周期に加え、前記下りデータの発生タイミングと前記下りデータの送信タイミングとのずれを低減させる、
 ことを特徴とする付記1または2に記載の基地局。
(付記4)
 前記上りデータが周期的に発生する場合、前記上りデータの発生周期と前記第2の周期との関係に基づくオフセット値を前記第2の周期に加え、前記上りデータの発生タイミングと前記上りデータの送信タイミングとのずれを低減させる、
 ことを特徴とする付記1、2または3に記載の基地局。
(付記5)
 付記1から4のいずれか一つに記載の基地局を複数備え、
 複数の前記基地局の1つである第1の基地局に接続している通信端末が接続先を複数の前記基地局の1つである第2の基地局に切り替える場合、
 前記第2の基地局は、接続先を切り替える通信端末である接続先切替端末への下りデータの送信周期で使用する物理下り制御チャネルおよび物理下り共有チャネルを割り当てるとともに、前記接続先切替端末による上りデータの送信周期で使用する物理下り制御チャネルおよび物理上り共有チャネルを割り当て、前記接続先切替端末への下りデータ送信で使用する物理下り制御チャネルおよび物理下り共有チャネルの割り当て結果と、前記接続先切替端末が上りデータ送信で使用する物理下り制御チャネルおよび物理上り共有チャネルの割り当て結果とを、前記第1の基地局を介して前記接続先切替端末に通知する、
 ことを特徴とする通信システム。
 202 通信端末装置(移動端末)、210 通信システム、213,240-1,240-2,750 基地局装置(NR基地局,基地局)、214 5Gコア部、215 中央ユニット、216 分散ユニット、217 制御プレイン用中央ユニット、218 ユーザプレイン用中央ユニット、219 TRP、301,403 プロトコル処理部、302 アプリケーション部、304,405 エンコーダー部、305,406 変調部、306,407 周波数変換部、307-1~307-4,408-1~408-4 アンテナ、308,409 復調部、309,410 デコーダー部、310,411,526 制御部、401 EPC通信部、402 他基地局通信部、412 5GC通信部、521 Data Network通信部、522 基地局通信部、523 ユーザプレイン通信部、523-1 PDU処理部、523-2 モビリティアンカリング部、525 制御プレイン制御部、525-1 NASセキュリティ部、525-2 アイドルステートモビリティ管理部、527 セッション管理部、527-1 PDUセッションコントロール部、527-2 UE IPアドレス割当部、751-1~751-8 ビーム、752 セル。

Claims (5)

  1.  予め定められた周期で通信端末との間でデータを送受信する周期的通信が可能な基地局であって、
     前記周期的通信において前記通信端末に下りデータを送信する場合、前記下りデータの送信周期である第1の周期で使用する物理下り制御チャネルおよび物理下り共有チャネルを割り当て、前記通信端末に送信する下りデータのデータ量の変動に応じて前記第1の周期で使用する前記物理下り共有チャネルを変更するとともに、該変更の結果を前記第1の周期に割り当て済みの前記物理下り制御チャネルにより前記通信端末に通知し、
     前記周期的通信において前記通信端末から上りデータを受信する場合、前記上りデータの送信周期である第2の周期で使用する物理下り制御チャネルおよび物理上り共有チャネルを割り当て、前記通信端末が送信する上りデータのデータ量の変動に応じて前記第2の周期で使用する前記物理上り共有チャネルを変更するとともに、該変更の結果を前記第2の周期に割り当て済みの前記物理下り制御チャネルにより前記通信端末に通知する、
     ことを特徴とする基地局。
  2.  予め定められた周期で通信端末との間でデータを送受信する周期的通信が可能な基地局であって、
     前記周期的通信において前記通信端末に下りデータを送信する場合、前記下りデータの送信周期である第1の周期で使用する物理下り制御チャネルおよび物理下り共有チャネルを割り当て、前記通信端末に送信する下りデータのデータ量の変動に応じて前記第1の周期で使用する前記物理下り共有チャネルを変更するとともに、該変更の結果を前記第1の周期に割り当て済みの前記物理下り共有チャネルにより前記通信端末に通知し、
     前記周期的通信において前記通信端末から上りデータを受信する場合、前記上りデータの送信周期である第2の周期で使用する物理下り制御チャネルおよび物理上り共有チャネルを割り当て、前記通信端末が送信する上りデータのデータ量の変動に応じて前記第2の周期で使用する前記物理上り共有チャネルを変更するとともに、該変更の結果を前記第2の周期に割り当て済みの前記物理下り制御チャネルにより前記通信端末に通知する、
     ことを特徴とする基地局。
  3.  前記下りデータが周期的に発生する場合、前記下りデータの発生周期と前記第1の周期との関係に基づくオフセット値を前記第1の周期に加え、前記下りデータの発生タイミングと前記下りデータの送信タイミングとのずれを低減させる、
     ことを特徴とする請求項1または2に記載の基地局。
  4.  前記上りデータが周期的に発生する場合、前記上りデータの発生周期と前記第2の周期との関係に基づくオフセット値を前記第2の周期に加え、前記上りデータの発生タイミングと前記上りデータの送信タイミングとのずれを低減させる、
     ことを特徴とする請求項1または2に記載の基地局。
  5.  請求項1または2に記載の基地局を複数備え、
     複数の前記基地局の1つである第1の基地局に接続している通信端末が接続先を複数の前記基地局の1つである第2の基地局に切り替える場合、
     前記第2の基地局は、接続先を切り替える通信端末である接続先切替端末への下りデータの送信周期で使用する物理下り制御チャネルおよび物理下り共有チャネルを割り当てるとともに、前記接続先切替端末による上りデータの送信周期で使用する物理下り制御チャネルおよび物理上り共有チャネルを割り当て、前記接続先切替端末への下りデータ送信で使用する物理下り制御チャネルおよび物理下り共有チャネルの割り当て結果と、前記接続先切替端末が上りデータ送信で使用する物理下り制御チャネルおよび物理上り共有チャネルの割り当て結果とを、前記第1の基地局を介して前記接続先切替端末に通知する、
     ことを特徴とする通信システム。
PCT/JP2023/027386 2022-08-02 2023-07-26 基地局および通信システム WO2024029425A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022123326 2022-08-02
JP2022-123326 2022-08-02

Publications (1)

Publication Number Publication Date
WO2024029425A1 true WO2024029425A1 (ja) 2024-02-08

Family

ID=89848996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027386 WO2024029425A1 (ja) 2022-08-02 2023-07-26 基地局および通信システム

Country Status (1)

Country Link
WO (1) WO2024029425A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019533964A (ja) * 2016-11-03 2019-11-21 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン ユーザ機器、基地局、ワイヤレス通信ネットワーク、データ信号、およびハンドオーバ後に強化されたsps制御および連続的なspsを提供する方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019533964A (ja) * 2016-11-03 2019-11-21 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン ユーザ機器、基地局、ワイヤレス通信ネットワーク、データ信号、およびハンドオーバ後に強化されたsps制御および連続的なspsを提供する方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "NR enhancement for XR capacity improvement", 3GPP DRAFT; R1-2203485, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153014 *
NEC: "Discussion on XR-specific capacity enhancements", 3GPP DRAFT; R1-2203689, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153118 *
QUALCOMM INCORPORATED: "Capacity Enhancement Techniques for XR", 3GPP DRAFT; R1-2205056, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052191717 *

Similar Documents

Publication Publication Date Title
JP7405911B2 (ja) 無線通信システム、基地局
US20240121793A1 (en) Communication system, base station and communication terminal
US20240032137A1 (en) User apparatus, base station and communication system
US20220287003A1 (en) Communication system, communication terminal, and network
JP7420732B2 (ja) ユーザ装置および通信システム
US20220386333A1 (en) Communication system, communication terminal, and base station
JP2023145753A (ja) 通信システム、基地局および通信端末
WO2022113875A1 (ja) 通信システムおよび通信端末
JP2023506128A (ja) 複数のアクティブグラント設定におけるタイマーハンドリング
WO2022030520A1 (ja) 通信システムおよび通信端末
WO2023153336A1 (ja) 通信システムおよび基地局
WO2024029425A1 (ja) 基地局および通信システム
WO2024029423A1 (ja) 通信システム
WO2024029422A1 (ja) 通信システム
WO2024029424A1 (ja) 通信システム
WO2023204186A1 (ja) 通信システム
WO2023153335A1 (ja) 通信システム
US20230284162A1 (en) Communication system and receiver
WO2023013513A1 (ja) 通信システム
US20240187960A1 (en) Communication system and base station
WO2023054394A1 (ja) 通信システム
WO2022210184A1 (ja) 通信システムおよび基地局
US20230088622A1 (en) Communication system, communication terminal, and network
KR20230147612A (ko) 통신 시스템 및 기지국
KR20240068652A (ko) 통신 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849980

Country of ref document: EP

Kind code of ref document: A1