WO2022228185A1 - 信号传输方法及通信装置 - Google Patents

信号传输方法及通信装置 Download PDF

Info

Publication number
WO2022228185A1
WO2022228185A1 PCT/CN2022/087421 CN2022087421W WO2022228185A1 WO 2022228185 A1 WO2022228185 A1 WO 2022228185A1 CN 2022087421 W CN2022087421 W CN 2022087421W WO 2022228185 A1 WO2022228185 A1 WO 2022228185A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
signal
preset value
time
network device
Prior art date
Application number
PCT/CN2022/087421
Other languages
English (en)
French (fr)
Inventor
赵文琪
余健
邵家枫
李怡然
郭志恒
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022228185A1 publication Critical patent/WO2022228185A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a signal transmission method and a communication device.
  • the integrated technology of radar communication can realize the functions of radar detection and data transmission at the same time. That is, the network device can not only send a radar detection signal to realize the radar detection function, but also send a synchronization signal block (SSB) signal to synchronize the terminal device and the network device to realize the data transmission function.
  • SSB synchronization signal block
  • the network device transmits the radar detection signal and the SSB signal at the same time, interference between different signals is likely to occur, and the system communication efficiency is low.
  • Embodiments of the present application provide a signal transmission method and a communication device, which can avoid interference between a first signal (such as a radar detection signal) and a synchronization signal block SSB signal, and improve system communication efficiency.
  • a first signal such as a radar detection signal
  • SSB signal synchronization signal block
  • an embodiment of the present application provides a signal transmission method, and the execution body of the method may be a network device or a chip applied in the network device.
  • the following description takes the execution subject being a network device as an example.
  • the method includes: the network device determines a first resource, wherein the first resource and the second resource do not overlap in the time domain, the second resource is used for sending a synchronization signal block SSB signal, and the first resource and the second resource have a corresponding relationship. Then, the network device transmits at least one first signal on the first resource, wherein the first signal is used to detect the property of the target.
  • the existence of a corresponding relationship between the first resource and the second resource means that the first resource and the second resource have a corresponding relationship in resource positions.
  • the first resource determined by the network device is a resource that does not overlap with the second resource in the time domain, and there is a corresponding relationship in resource location between the two.
  • the transmission times of the first signal and the SSB signal are different, so that the first signal and the SSB signal do not collide and interfere with each other, thereby improving the communication efficiency of the system.
  • the first resource does not include the resource overlapping the candidate position of the SSB signal in the third resource.
  • the target duration is composed of at least one time slot where the second resource is located, and the third resource is determined based on the transmission period of the first signal.
  • the first resource is the resource that overlaps with the candidate position of the SSB signal among the third resources. Therefore, the network device does not transmit the first signal and the SSB signal at the same time, so as to avoid the collision between the first signal and the SSB signal, so as to improve the System communication efficiency.
  • the first resource when some of the resources in the third resource overlap with the candidate position of the SSB signal, the first resource at least includes: advancing or delaying the resource overlapping the candidate position of the SSB signal in the third resource by at least one The resource after the time domain symbol.
  • the first resource is composed of resources that do not overlap with the candidate position of the SSB signal among the third resources.
  • all the resources constituting the first resource do not overlap with the candidate positions of the SSB signal, thereby preventing the network device from simultaneously transmitting the first signal and the SSB signal.
  • the first resource is determined based on the second resource. That is to say, the first resource is a resource adjusted based on the second resource, so that the first resource and the second resource do not overlap in the time domain.
  • the first interval is different from the second interval.
  • the first interval is an interval between two adjacent first signals in the at least one first signal within the target duration.
  • the second interval is an interval between two adjacent first signals in the at least one first signal outside the target duration.
  • the target duration is composed of at least one time slot in which the second resource is located.
  • the time interval between two adjacent first signals within the target duration is different from the time interval between two adjacent first signals outside the target duration.
  • first intervals there are multiple first intervals, and the time lengths of the multiple first intervals are the same.
  • the number of first intervals is multiple, which means that the network device transmits multiple first signals within the target duration, and there is a first interval between every two adjacent first signals. As such, the number of the first interval is multiple. In other words, the first signal is still transmitted at equal intervals within the target duration.
  • the first resource includes a time-domain resource unit with an index value of a first preset value.
  • the time domain resource unit is a time domain symbol
  • the first preset value includes one of the following: 0, 1, 12, or 13.
  • the indices of the time domain symbols that are not occupied by the second resource are as follows: 0, 1, 12, and 13. Therefore, the first A resource occupies one of symbols 0, 1, 12, or 13 in a time slot within the target duration, and does not overlap with the second resource in the time domain, thereby avoiding collision between the first signal and the SSB signal.
  • the first signal may not be transmitted at equal intervals within the target duration.
  • the first resource includes a time-domain resource unit with an index value of a second preset value.
  • the time-domain resource units are time-domain symbols, and the time-domain symbols are distributed in two consecutive time slots, and the second preset value includes at least three of the following: 0, 1, 2, 3, and 12 , 13, 14, 15, 24, 25, 26, or 27. Wherein, the difference between any two items in the second preset value is greater than or equal to the third preset value.
  • the difference between any two items in the second preset value is greater than or equal to the third preset value, which also makes the first resource discontinuous in the time domain, thereby ensuring the first signal to a certain extent Evenly distributed.
  • the time-domain resource units are time-domain symbols, and the time-domain symbols are distributed in two consecutive time slots, and the second preset value includes: 3, 13, and 24, or the second preset value includes : 13, 20, 27.
  • the second resource is determined based on the first resource. That is to say, the second resource is a resource adjusted based on the first resource, so that the first resource and the second resource do not overlap in the time domain.
  • the first interval is the same as the second interval.
  • the first interval is an interval between two adjacent first signals in the at least one first signal within the target duration.
  • the second interval is an interval between two adjacent first signals in the at least one first signal outside the target duration.
  • the target duration is composed of at least one time slot where the candidate position of the SSB signal is located.
  • the first signal maintains the same transmission period whether within the target duration or outside the target duration.
  • the second resource includes a time-domain resource unit with an index value of a fourth preset value, and the fourth preset value satisfies the following formula:
  • M represents a fourth preset value
  • N is an integer
  • 0 ⁇ N ⁇ 27 0 ⁇ N ⁇ 27
  • k is a positive integer
  • the time-domain symbol index of the first resource satisfies: 7*k-1.
  • the time domain symbol index of the SSB signal is not equal to the time domain symbol index of the first resource, so as to avoid overlapping of the first resource and the second resource in the time domain .
  • the second resource includes a time-domain resource unit with an index value of a fourth preset value, and the fourth preset value satisfies the following formula:
  • M represents a fourth preset value
  • the value of N includes at least two of the following: 0, 1, 2, 7, 8, 9, 14, 15, 16, 21, 22, or 23.
  • the value of N includes: 2, 8, 16, or 22.
  • the signal transmission method further includes: the network device sends indication information to the terminal device, where the indication information indicates the index value.
  • the network device first indicates the index value of the second resource to the terminal device, so that the terminal device can display the index value of the second resource in the indication information.
  • the SSB signal is received at the indicated resource location.
  • an embodiment of the present application provides a signal transmission method, and the execution body of the method may be a terminal device or a chip applied in the terminal device.
  • the following description takes the execution subject being a terminal device as an example.
  • the method includes: a terminal device receiving indication information.
  • the indication information indicates location information of the second resource.
  • the terminal device receives the synchronization signal block SSB signal on the second resource.
  • the network device first indicates the location information of the second resource to the terminal device, and the terminal device indicates the location information of the second resource to the terminal device.
  • the SSB signal is received at the resource location.
  • the location information of the second resource includes a fourth preset value.
  • the fourth preset value includes the index value of the time domain resource unit of the second resource, and the fourth preset value satisfies the following formula:
  • M represents a fourth preset value
  • N is an integer
  • 0 ⁇ N ⁇ 27 0 ⁇ N ⁇ 27
  • k is a positive integer
  • the location information of the second resource includes a fourth preset value.
  • the fourth preset value includes the index value of the time domain resource unit of the second resource, and the fourth preset value satisfies the following formula:
  • M represents a fourth preset value
  • the value of N includes at least two of the following: 0, 1, 2, 7, 8, 9, 14, 15, 16, 21, 22, or 23.
  • the value of N includes: 2, 8, 16, or 22.
  • an embodiment of the present application provides a signal transmission method, and the execution body of the method may be a network device or a chip applied in the network device.
  • the following description takes the execution subject being a network device as an example.
  • the method includes: a network device determining a first resource. The first resource and the second resource overlap in the time domain and do not overlap in the frequency domain, and the second resource is used for sending communication signals. There is a corresponding relationship between the first resource and the second resource. Then, the network device transmits at least one first signal on the first resource. Wherein, the first signal is used to detect the properties of the target.
  • the first resource determined by the network device is a resource that overlaps with the second resource in the time domain but does not overlap with the second resource in the frequency domain, and there is a corresponding relationship in resource location between the two.
  • the first signal and the communication signal are sent through different frequency domain resources, so that the first signal and the communication signal do not collide and interfere with each other, thereby improving the communication efficiency of the system.
  • the first resource includes X frequency-domain resource units with the smallest frequency in the system bandwidth, where X is a positive integer.
  • the first resource includes Y frequency-domain resource units with the highest frequency in the system bandwidth, where Y is a positive integer.
  • the signal transmission method further includes: the network device sends the first indication information to the terminal device.
  • the first indication information indicates the following two items:
  • the first item is that the sum of the first bandwidth and the bandwidth of the communication signal is less than or equal to the system bandwidth.
  • the first bandwidth is a bandwidth when the first signal and the communication signal overlap in the time domain. That is to say, in the case where the bandwidth configured by the first signal is the system bandwidth, the network device indicates to the terminal device the first bandwidth when the first signal and the communication signal overlap, so that the terminal device uses the first bandwidth indicated by the indication information to A first signal is received.
  • the second term, the second bandwidth is equal to the system bandwidth.
  • the second bandwidth is a bandwidth when the first signal and the communication signal do not overlap in the time domain. That is, when the bandwidth configured by the first signal is the system bandwidth, the network device indicates to the terminal device the second bandwidth when the first signal and the communication signal do not overlap, so that the terminal device is based on the second bandwidth indicated by the indication information. to receive the first signal.
  • the signal transmission method further includes: the network device sends second indication information to the terminal device.
  • the second indication information indicates the following two items: the bandwidth of the first signal is equal to the system bandwidth, and the network device does not send the first signal on the second resource, so that the terminal device can know the bandwidth of the first signal, and there is no need to use the second resource to receive the first signal.
  • the first resource includes frequency domain resource elements other than the second resource in the system bandwidth.
  • the signal transmission method further includes: the network device sends third indication information to the terminal device.
  • the third indication information indicates location information of the first resource, so that the terminal device obtains the resource location of the first resource.
  • the third indication information also indicates location information of the fourth resource, where the fourth resource and the second resource do not overlap in the time domain, and the fourth resource is used to transmit the first signal, so that the terminal The device obtains the resource location of the fourth resource.
  • the communication information is carried on the first signal. That is, the network device sends the communication information to the terminal device through the first signal.
  • the communication signal includes a synchronization signal block SSB signal.
  • an embodiment of the present application provides a signal transmission method, and the execution body of the method may be a terminal device or a chip applied in the terminal device.
  • the following description takes the execution subject being a terminal device as an example.
  • the method includes: the terminal device receives at least one first signal on the first resource.
  • the first signal carries communication information, the first resource and the second resource overlap in the time domain and do not overlap in the frequency domain, and the second resource is used for receiving communication signals. There is a corresponding relationship between the first resource and the second resource.
  • the first resource includes X frequency-domain resource units with the smallest frequency in the system bandwidth, where X is a positive integer; or, the first resource includes Y frequency-domain resource units with the highest frequency in the system bandwidth, Y is a positive integer.
  • the signal transmission method further includes: the terminal device receives the first indication information from the network device.
  • the first indication information indicates the following two items:
  • the first item is that the sum of the first bandwidth and the bandwidth of the communication signal is less than or equal to the system bandwidth.
  • the first bandwidth is a bandwidth when the first signal and the communication signal overlap in the time domain.
  • the second term, the second bandwidth is equal to the system bandwidth.
  • the second bandwidth is a bandwidth when the first signal and the communication signal do not overlap in the time domain.
  • the signal transmission method further includes: the terminal device receives the second indication information from the network device.
  • the second indication information indicates the following two items: the bandwidth of the first signal is equal to the system bandwidth, and the network device does not send the first signal on the second resource.
  • the terminal device can determine the bandwidth of the first signal according to the content indicated by the second indication information, and it does not need to receive the first signal on the second resource.
  • the first resource includes frequency domain resource elements other than the second resource in the system bandwidth.
  • the signal transmission method further includes: the terminal device receives third indication information from the network device.
  • the third indication information indicates location information of the first resource.
  • the third indication information also indicates location information of the fourth resource.
  • the fourth resource and the second resource do not overlap in the time domain, and the fourth resource is used for transmitting the first signal.
  • the communication signal includes a synchronization signal block SSB signal.
  • an embodiment of the present application provides a communication device, and the communication device may be a network device in the first aspect or any possible design of the first aspect, or a device disposed in the network device, or A chip that realizes the function of the above-mentioned network device; the communication device includes a corresponding module, unit, or means (means) for realizing the above-mentioned method, and the module, unit, or means can be realized by hardware, software, or by hardware. accomplish.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a processing module and a communication module.
  • the processing module is used for determining the first resource, the first resource and the second resource do not overlap in the time domain, the second resource is used for sending the synchronization signal block SSB signal, and the first resource and the second resource have a corresponding relationship.
  • the communication module is used for transmitting at least one first signal on the first resource, wherein the first signal is used to detect the attribute of the target.
  • the first resource is determined based on the second resource.
  • the first interval is different from the second interval.
  • the first interval is an interval between two adjacent first signals in the at least one first signal within the target duration.
  • the second interval is an interval between two adjacent first signals in the at least one first signal outside the target duration.
  • the target duration is composed of at least one time slot in which the second resource is located.
  • the first resource includes a time-domain resource unit with an index value of a first preset value.
  • the time domain resource unit is a time domain symbol
  • the first preset value includes one of the following: 0, 1, 12, or 13.
  • the first resource includes a time-domain resource unit with an index value of a second preset value.
  • the time-domain resource units are time-domain symbols, and the time-domain symbols are distributed in two consecutive time slots, and the second preset value includes at least three of the following: 0, 1, 2, 3, and 12 , 13, 14, 15, 24, 25, 26, or 27;
  • the difference between any two items in the second preset value is greater than or equal to the third preset value.
  • the time-domain resource units are time-domain symbols, and the time-domain symbols are distributed in two consecutive time slots, and the second preset value includes: 3, 13, and 24, or the second preset value includes : 13, 20, 27.
  • the first interval is the same as the second interval.
  • the first interval is an interval between two adjacent first signals in the at least one first signal within the target duration.
  • the second interval is an interval between two adjacent first signals in the at least one first signal outside the target duration.
  • the target duration is composed of at least one time slot where the candidate position of the SSB signal is located.
  • the second resource includes a time-domain resource unit with an index value of a fourth preset value, and the fourth preset value satisfies the following formula:
  • M represents a fourth preset value
  • N is an integer
  • 0 ⁇ N ⁇ 27 0 ⁇ N ⁇ 27
  • k is a positive integer
  • the second resource includes a time-domain resource unit with an index value of a fourth preset value, and the fourth preset value satisfies the following formula:
  • M represents a fourth preset value
  • the value of N includes at least two of the following: 0, 1, 2, 7, 8, 9, 14, 15, 16, 21, 22, or 23.
  • the value of N includes: 2, 8, 16, or 22.
  • the communication module is further configured to send indication information to the terminal device, where the indication information indicates an index value.
  • an embodiment of the present application provides a communication device, and the communication device may be a terminal device in the second aspect or any possible design of the second aspect, or a device disposed in the above-mentioned terminal device, or A chip that realizes the functions of the above-mentioned terminal equipment; the communication device includes a corresponding module, unit, or means (means) for realizing the above-mentioned method.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a processing module and a communication module.
  • the processing module receives the indication information through the communication module, wherein the indication information indicates the location information of the second resource; and receives the synchronization signal block SSB signal on the second resource.
  • the location information of the second resource includes a fourth preset value.
  • the fourth preset value includes the index value of the time domain resource unit of the second resource, and the fourth preset value satisfies the following formula:
  • M represents a fourth preset value
  • N is an integer
  • 0 ⁇ N ⁇ 27 0 ⁇ N ⁇ 27
  • k is a positive integer
  • the location information of the second resource includes a fourth preset value.
  • the fourth preset value includes the index value of the time domain resource unit of the second resource, and the fourth preset value satisfies the following formula:
  • M represents a fourth preset value
  • the value of N includes at least two of the following: 0, 1, 2, 7, 8, 9, 14, 15, 16, 21, 22, or 23.
  • the value of N includes: 2, 8, 16, or 22.
  • an embodiment of the present application provides a communication device, and the communication device may be a network device in the third aspect or any possible design of the third aspect, or a device disposed in the network device, or A chip that realizes the function of the above-mentioned network device; the communication device includes a corresponding module, unit, or means (means) for realizing the above-mentioned method, and the module, unit, or means can be realized by hardware, software, or by hardware. accomplish.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a processing module and a communication module.
  • the processing module is used to determine the first resource.
  • the first resource and the second resource overlap in the time domain and do not overlap in the frequency domain, and the second resource is used for sending communication signals. There is a corresponding relationship between the first resource and the second resource.
  • the communication module is used for transmitting at least one first signal on the first resource, wherein the first signal is used to detect the attribute of the target.
  • the first resource includes X frequency-domain resource units with the smallest frequency in the system bandwidth, where X is a positive integer.
  • the first resource includes Y frequency-domain resource units with the highest frequency in the system bandwidth, where Y is a positive integer.
  • the communication module is further configured to send the first indication information to the terminal device.
  • the first indication information indicates the following two items:
  • the first item is that the sum of the first bandwidth and the bandwidth of the communication signal is less than or equal to the system bandwidth.
  • the first bandwidth is a bandwidth when the first signal and the communication signal overlap in the time domain.
  • the second term, the second bandwidth is equal to the system bandwidth.
  • the second bandwidth is a bandwidth when the first signal and the communication signal do not overlap in the time domain.
  • the communication module is further configured to send the second indication information to the terminal device.
  • the second indication information indicates the following two items:
  • the first term, the bandwidth of the first signal is equal to the system bandwidth.
  • the second item is that the communication apparatus does not send the first signal on the second resource.
  • the first resource includes frequency domain resource elements other than the second resource in the system bandwidth.
  • the communication module is further configured to send the third indication information to the terminal device.
  • the third indication information indicates location information of the first resource.
  • the third indication information also indicates location information of the fourth resource.
  • the fourth resource and the second resource do not overlap in the time domain, and the fourth resource is used for transmitting the first signal.
  • the communication information is carried on the first signal.
  • the communication signal includes a synchronization signal block SSB signal.
  • an embodiment of the present application provides a communication device, and the communication device may be a terminal device in the fourth aspect or any possible design of the fourth aspect, or a device disposed in the above-mentioned terminal device, or A chip that realizes the functions of the above-mentioned terminal equipment; the communication device includes a corresponding module, unit, or means (means) for realizing the above-mentioned method.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a processing module and a communication module.
  • the processing module receives at least one first signal on the first resource through the communication module.
  • the first signal carries communication information, the first resource and the second resource overlap in the time domain and do not overlap in the frequency domain, and the second resource is used for receiving communication signals. There is a corresponding relationship between the first resource and the second resource.
  • the first resource includes X frequency-domain resource units with the smallest frequency in the system bandwidth, where X is a positive integer.
  • the first resource includes Y frequency-domain resource units with the highest frequency in the system bandwidth, where Y is a positive integer.
  • the communication module is further configured to receive the first indication information from the network device.
  • the first indication information indicates the following two items:
  • the first item is that the sum of the first bandwidth and the bandwidth of the communication signal is less than or equal to the system bandwidth, where the first bandwidth is the bandwidth when the first signal and the communication signal overlap in the time domain.
  • the second bandwidth is equal to the system bandwidth, where the second bandwidth is the bandwidth when the first signal and the communication signal do not overlap in the time domain.
  • the communication module is further configured to receive the second indication information from the network device.
  • the second indication information indicates the following two items: the first item, the bandwidth of the first signal is equal to the system bandwidth.
  • the second item is that the network device does not send the first signal on the second resource.
  • the first resource includes frequency domain resource elements other than the second resource in the system bandwidth.
  • the communication module is further configured to receive third indication information from the network device.
  • the third indication information indicates location information of the first resource.
  • the third indication information also indicates location information of the fourth resource.
  • the fourth resource and the second resource do not overlap in the time domain, and the fourth resource is used for transmitting the first signal.
  • the communication signal includes a synchronization signal block SSB signal.
  • an embodiment of the present application provides a communication device, including: a processor and a memory; the memory is used to store a computer instruction, and when the processor executes the instruction, the communication device is made to perform any one of the above-mentioned aspects or any A method performed by a network device in any of the possible designs.
  • the communication device may be a network device in the first aspect or any possible design of the first aspect, or be implemented as a network device in the third aspect or any possible design of the third aspect, or implement the above network The chip of the device function.
  • an embodiment of the present application provides a communication device, including: a processor; the processor is coupled to a memory, and is configured to read and execute instructions in the memory, so that the communication device performs any of the above-mentioned aspects Or a method performed by a network device in any possible design of any aspect.
  • the communication device may be a network device in the first aspect or any possible design of the first aspect, or be implemented as a network device in the third aspect or any possible design of the third aspect, or implement the above network The chip of the device function.
  • an embodiment of the present application provides a chip, including a logic circuit and an input and output interface.
  • the input and output interfaces are used for communicating with modules other than the chip.
  • the chip may be a chip that implements the network device function in the first aspect or any possible design of the first aspect.
  • the input and output interface outputs the first signal.
  • a logic circuit is used to run a computer program or instructions to implement the method in the above first aspect or any possible design of the first aspect.
  • the chip may be a chip that implements the network device function in the third aspect or any possible design of the third aspect.
  • the input and output interface outputs the first signal.
  • a logic circuit is used to run a computer program or instructions to implement the method in the above third aspect or any possible design of the third aspect.
  • an embodiment of the present application provides a communication device, including: a processor and a memory; the memory is used to store a computer instruction, and when the processor executes the instruction, the communication device is made to execute any of the foregoing aspects or A method performed by a terminal device in any possible design of any aspect.
  • the communication device may be a terminal device in the second aspect or any possible design of the second aspect, or be implemented as a terminal device in the fourth aspect or any possible design of the fourth aspect, or implement the above terminal The chip of the device function.
  • an embodiment of the present application provides a communication device, including: a processor; the processor is coupled to a memory, and is configured to read and execute instructions in the memory, so that the communication device executes any of the above A method performed by a terminal device in any possible design of the aspect or any aspect.
  • the communication apparatus may be a terminal device in the second aspect or any possible design of the second aspect, or be implemented as a terminal device in the fourth aspect or any possible design of the fourth aspect, or implement the above terminal The chip of the device function.
  • an embodiment of the present application provides a chip, including a logic circuit and an input and output interface.
  • the input and output interfaces are used for communication with modules other than the chip.
  • the chip may be a chip that implements the function of the terminal device in the second aspect or any possible design of the second aspect.
  • Input and output interface input indication information and SSB signal.
  • a logic circuit is used to run a computer program or instructions to implement the method in the above second aspect or any possible design of the second aspect.
  • the chip may be a chip that implements the function of the terminal device in the fourth aspect or any possible design of the fourth aspect.
  • the input and output interface inputs the indication information and the first signal.
  • the logic circuit is used to run the computer program or instructions to implement the method in the above fourth aspect or any possible design of the fourth aspect.
  • an embodiment of the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium runs on a computer, the computer can execute any one of the preceding aspects. method.
  • the embodiments of the present application provide a computer program product including instructions, which, when executed on a computer, enables the computer to execute the method of any one of the foregoing aspects.
  • embodiments of the present application provide a circuit system, where the circuit system includes a processing circuit, and the processing circuit is configured to perform the method according to any one of the foregoing aspects.
  • an embodiment of the present application provides a communication system, where the communication system includes the terminal device and the network device in any one of the foregoing aspects.
  • FIG. 1 is a schematic structural diagram of a synchronization signal block provided by an embodiment of the present application
  • FIG. 2a is a schematic diagram of the location of a synchronization signal block provided by an embodiment of the present application.
  • FIG. 2b is a schematic diagram of the location of still another synchronization signal block provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a signal transmission method provided by an embodiment of the present application.
  • FIG. 5a is a schematic diagram of resource distribution provided by an embodiment of the present application.
  • FIG. 5b is still another schematic diagram of resource distribution provided by an embodiment of the present application.
  • FIG. 5c is another schematic diagram of resource distribution provided by an embodiment of the present application.
  • FIG. 5d is another schematic diagram of resource distribution provided by an embodiment of the present application.
  • FIG. 5e is another schematic diagram of resource distribution provided by an embodiment of the present application.
  • 6a is a schematic flowchart of still another signal transmission method provided by an embodiment of the present application.
  • FIG. 6b is a schematic flowchart of another signal transmission method provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another signal transmission method provided by an embodiment of the present application.
  • FIG. 8a is another schematic diagram of resource distribution provided by an embodiment of the present application.
  • FIG. 8b is another schematic diagram of resource distribution provided by an embodiment of the present application.
  • FIG. 9a is a schematic flowchart of another signal transmission method provided by an embodiment of the present application.
  • FIG. 9b is a schematic flowchart of another signal transmission method provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of still another communication apparatus provided by an embodiment of the present application.
  • references to the terms “comprising” and “having” in the description of this application, and any variations thereof, are intended to cover non-exclusive inclusion.
  • a process, method, system, product or device comprising a series of steps or units is not limited to the listed steps or units, but optionally also includes other unlisted steps or units, or optionally also Include other steps or units inherent to these processes, methods, products or devices.
  • "a plurality of" includes two or more.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • “transmit” may include “send” or “receive”, and may also include both sending and receiving, depending on the specific situation.
  • An SSB signal includes a synchronization signal (SS) and a physical broadcast channel (PBCH).
  • the SS includes a primary synchronization signal (primary synchronization signal, PSS) and a secondary synchronization signal (secondary synchronization signal, SSS).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the terminal equipment identifies and synchronizes with the cell through the PSS and SSS.
  • the terminal device obtains the most basic system information through the PBCH, such as the system frame number and intra-frame timing information.
  • the prerequisite for the terminal equipment to access the cell is that the terminal equipment successfully receives the SSB signal.
  • one SSB signal occupies 4 time domain symbols, such as 4 time domain symbols numbered 0 to 3 in the time domain in FIG. 1 .
  • an SSB signal occupies 20 resource blocks (resource blocks, RBs), that is, 240 subcarriers. Within these 20 RBs, the subcarriers are numbered from 0 to 239.
  • the PSS is located on the middle 127 sub-carriers of time-domain symbol 0, and the SSS is located on the middle 127 sub-carriers of time-domain symbol 2.
  • guard subcarriers are set to 0, that is, the guard subcarriers are not used to carry signals, and 8 subcarriers and 9 subcarriers are reserved on both sides of the SSS for use as guardband subcarriers, such as
  • the blank areas on both sides of the SSS in FIG. 1 are guard subcarriers.
  • PBCH occupies all sub-carriers of time-domain symbol 1 and time-domain symbol 3, and occupies a part of the remaining sub-carriers except the sub-carriers occupied by SSS in all sub-carriers of time-domain symbol 2 (that is, the remaining sub-carriers). sub-carriers other than guard sub-carriers).
  • An SSB signal is associated with an index to identify the SSB signal.
  • the SSB signal identified by the index is the first SSB signal in the field; when the index of an SSB signal is 1, the SSB signal identified by the index is the first SSB signal in the field.
  • the second SSB signal in the frame, and so on for others.
  • the SSB signal identified by index 0 is the first SSB signal in the field, and the indices of the occupied time domain symbols are 4 to 7.
  • the SSB signal identified by index 1 is the second SSB signal in the field, and the indices of the occupied time domain symbols are 8 to 11.
  • the SSB signal identified by index 2 is the third SSB signal in the field, and the indices of the occupied time domain symbols are 16 to 19.
  • the SSB signal identified by index 3 is the fourth SSB signal in the field, and the indices of the occupied time domain symbols are 20 to 23.
  • the SSB signal identified by index 0 is the first SSB signal in the field
  • the indices of the occupied time domain symbols are 4 to 7
  • the SSB signal identified by index 1 is the second SSB signal in the field
  • the indices of the occupied time domain symbols are 16 to 19.
  • Two SSB signals that are consecutive in the index may be consecutive in the time domain, such as the SSB signal indicated by index 0 and the SSB signal indicated by index 1 in FIG. 2a.
  • the two SSB signals that are continuous in the index may also be discontinuous in the time domain, such as the SSB signal identified by index 0 and the SSB signal identified by index 1 in FIG. 2b.
  • the candidate positions of the SSB signal are also different.
  • the candidate positions of the SSB signal are introduced in five cases:
  • n 0
  • n 2
  • n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
  • n 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18.
  • n 0, 1, 2, 3, 5, 6, 7, 8.
  • the terminal device receives the SSB signal from the network device at the candidate position of the SSB signal according to the protocol, and the network device does not need to indicate the SSB signal to the terminal device. candidate location.
  • the above formula (1) to formula (5) all indicate the index of the first time domain symbol of the candidate position of the SSB signal.
  • the overall spectrum resources of the 5th generation mobile communication technology (5G) network can be divided into the following two frequency ranges, as shown in Table 1 below:
  • FR1 Sub 6G frequency band, in other words, low frequency frequency band, which is the main frequency band of 5G network.
  • FR1 frequencies below 3GHz can be called Sub 3G, and the rest of the bands can be called C-band.
  • the frequency range corresponding to FR1 may correspond to 410MHz-7125MHz as shown in Table 1, but it is not limited to this, and this application does not exclude the possibility of defining other ranges in future protocols to represent the same or similar meanings.
  • FR2 Millimeter waves above 6G, in other words, high-frequency frequency bands, which are the extended frequency bands of 5G networks, with abundant spectrum resources. It should be understood that the frequency range corresponding to FR2 may correspond to 24250MHz-52600MHz as shown in Table 1, but it is not limited thereto, and this application does not exclude the possibility of defining other ranges in future protocols to represent the same or similar meanings.
  • the radar device transmits a radar detection signal, and after the radar detection signal encounters the target object, diffuse reflection occurs to form an echo signal.
  • the radar device receives the echo signal reflected by the target object, and realizes the target object detection based on the radar detection signal and the echo signal, such as determining the distance, azimuth, height, speed, attitude, shape and other characteristic quantities of the target object.
  • the radar device may also be referred to as a radar, a detector, or a radar detection device.
  • Radar detection which can also be described as radar perception, is mostly used in traffic detection, weather monitoring and other scenarios. However, if the radar is used alone to detect a wide range, there will be a higher cost. Therefore, the fusion of the abundant spectrum resources of wireless communication with radar detection can support large-scale requirements such as continuous networking.
  • the integration of radar communication refers to the simultaneous realization of the functions of radar detection and data transmission by sharing hardware equipment.
  • the network device After the radar detection function is integrated into the network device, the network device not only sends radar detection signals to realize the radar detection function, but also sends SSB signals to synchronize the terminal device and the network device to transmit data.
  • the network device transmits the radar detection signal and the SSB signal at the same time, interference between different signals is likely to occur, which affects the normal transmission of the radar detection signal and the SSB signal. , the system communication efficiency is low.
  • FIG. 3 is a schematic structural diagram of a communication system applicable to the signal transmission method according to the embodiment of the present application, where the communication system includes a network device 301 and terminal devices 302-307. Only one network device and six terminal devices are shown in FIG. 3 .
  • FIG. 3 is only a schematic diagram, and does not constitute a limitation on the applicable scenarios of the signal transmission method according to the embodiment of the present application.
  • the terminal equipment may also be referred to as user equipment (UE), terminal, access terminal, subscriber unit, subscriber station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device, etc.
  • the terminal device may be a wireless terminal or a wired terminal.
  • a wireless terminal can refer to a device with wireless transceiver functions, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal device may be a drone, an internet of things (IoT) device (for example, a sensor, an electricity meter, a water meter, etc.), a vehicle-to-everything (V2X) device, a wireless local area networks, WLAN) stations (station, ST), cellular phones, cordless phones, session initiation protocol (session initiation protocol, SIP) phones, wireless local loop (wireless local loop, WLL) stations, personal digital processing (personal digital assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices (also known as wearable smart devices).
  • IoT internet of things
  • V2X vehicle-to-everything
  • WLAN wireless local area networks
  • WLAN wireless local area networks
  • ST wireless local area networks
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal device may also be a terminal in a next-generation communication system, for example, a terminal in a 5G communication system or a terminal in a future evolved public land mobile network (public land mobile network, PLMN), etc., which is not limited in this embodiment of the present application .
  • the terminal devices may be high-speed rail communication devices 302 , smart air conditioners 303 , smart fuel dispensers 304 , mobile phones 305 , smart tea cups 306 , printers 307 , etc., which are not limited in this embodiment of the present application.
  • a network device is a device in a wireless communication network, such as a radio access network (RAN) node that connects a terminal device to the wireless communication network.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B) B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), base band unit (base band unit) , BBU), or wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), or 5G communication network or network-side equipment in the communication network after 5G, etc.
  • a network device may be a physical entity or a combination of multiple physical entities. The multiple physical entities may be deployed in the same location or in different locations. The multiple physical entities are used to jointly implement the functions of the network entity. .
  • the network device determines the first resource, wherein the first resource and the second resource do not overlap in the time domain, the second resource is used for sending the synchronization signal block SSB signal, the first resource There is a corresponding relationship with the second resource. Then, the network device transmits at least one first signal on the first resource, wherein the first signal is used to detect the property of the target. That is to say, the first resource determined by the network device is a resource that does not overlap with the second resource in the time domain, and there is a corresponding relationship in resource location between the two.
  • the transmission times of the first signal and the SSB signal are different, so that the first signal and the SSB signal do not collide and interfere with each other, thereby improving the communication efficiency of the system.
  • the first signal may be a radar detection signal, or an echo signal of the radar detection signal.
  • the first resource There is a corresponding relationship between the first resource and the second resource. For a specific description, please refer to the following introduction, which will not be repeated here.
  • the first resource is determined based on the second resource. That is, when the resource position of the second resource remains unchanged, the first resource is obtained by adjusting the resource position of the first signal, so that the first resource and the second resource do not overlap in the time domain.
  • the second resource is a resource determined from candidate positions of the SSB signal and used for sending the SSB signal.
  • the candidate position of the SSB signal is the candidate position specified in the technical specification (technical specification, TS) 38.213 of the 3GPP protocol. For details, please refer to the introduction of the above five cases.
  • the second resource is determined based on the first resource. That is to say, when the transmission period of the first signal remains unchanged, the second resource is obtained by adjusting the candidate position of the SSB signal, so that the first resource and the second resource do not overlap in the time domain.
  • the embodiments of the present application will be described below with reference to specific examples.
  • the names of messages between network elements or the names of parameters in the messages in the following embodiments are just an example, and other names may also be used in specific implementations.
  • the prefix of the time domain symbol is a normal cyclic prefix (NCP)
  • NCP normal cyclic prefix
  • the index value range of the time domain symbol is [0, 13].
  • the index value range of the time domain symbol is [0, 27].
  • the first resource is used to transmit at least one first signal.
  • the second resource is used to transmit at least one SSB signal.
  • the third resource is a resource determined based on the transmission period of the first signal, that is, the resource where the first signal is located regardless of interference with the SSB.
  • There is a corresponding relationship between the first resource and the second resource which may mean that in a preset number of time domain resource units, the first resource and the second resource have a corresponding relationship in resource positions, such as a first resource and a plurality of first resources.
  • Each second resource in the two resources has a corresponding relationship in resource position, or each first resource in the plurality of first resources has a corresponding relationship in resource position with each second resource in the plurality of second resources .
  • the number of the first resource is one, occupying the time domain symbol of index 13.
  • the number of the second resources is two, and the occupied time domain symbol indices include: 4, 5, 6, 7, 8, 9, 10, and 11.
  • a first resource and two second resources in the time slot have corresponding relationships in time domain symbols, for example, the first resource and the first second resource are separated by 9 time domain symbols in time domain, and the first resource and the first second resource are separated by 9 time domain symbols.
  • the second second resource is spaced in time domain by 5 time domain symbols.
  • the number of the first resources is two, and the occupied time domain symbol indices include 3 and 13.
  • the number of the second resources is two, and the occupied time domain symbol indices include: 4 to 11.
  • each first resource and each second resource have a corresponding relationship in the time domain symbol, for example, the first first resource and the first second resource are consecutive in the time domain, and the first first resource
  • the second second resource is separated by 5 time domain symbols in the time domain, the second first resource and the first second resource are separated by 9 time domain symbols in the time domain, and the second first resource and the second resource are separated by 9 time domain symbols in the time domain.
  • the second resources are separated by 4 time-domain symbols in the time domain.
  • each first resource and each second resource have a corresponding relationship in the time domain symbol, for example, the positional relationship between the first first resource and the four second resources in the time domain is as follows: The domain is continuous, the interval is 5 time-domain symbols, the interval is 13 time-domain symbols, and the interval is 20 time-domain symbols.
  • the positional relationship between the second first resource and the four second resources in the time domain is: domain symbol, interval 5 time domain symbols, interval 3 time domain symbols, interval 7 time domain symbols
  • the positional relationship between the third first resource and the four second resources in the time domain is: interval 20 time domain symbols Domain symbols, interval 16 time domain symbols, interval 8 time domain symbols, time domain continuous.
  • the interval between two resources refers to a difference value determined based on the indexes of the two resources. For example, in the same time slot, the index of the time domain symbol occupied by resource 1 is 1, and the index of the time domain symbol occupied by resource 2 is 6, then the interval between resource 1 and resource 2 is 5 time domain symbols.
  • the interval between the two resources can also be equally replaced by the number of time-domain resource units located between the two resources, but the difference in value is 1. Still taking the above resource 1 and resource 2 as an example, the number of time domain symbols located between resource 1 and resource 2 is four.
  • the above-mentioned at least one first signal can also be described as a first signal as a whole. There is at least one first resource, and each of the at least one first resource carries a signal, and the signal carried on each first resource is described as a sub-signal. That is, the first signal includes at least one sub-signal.
  • the network device is the network device 301 and the terminal device is the terminal device 305 as an example for description.
  • a unified description is provided, and details are not repeated below.
  • the embodiment of the present application provides a signal transmission method 400, and the signal transmission method 400 is applied in the signal transmission process of radar communication integration.
  • the method includes the following steps:
  • the network device 301 determines a first resource.
  • the first resource and the second resource do not overlap in the time domain.
  • the number of the first resources is one or more, and any two adjacent first resources among the plurality of first resources may be continuous or discontinuous in the time domain.
  • Each first resource may be a time domain symbol.
  • the network device 301 may determine one or more first resources. It can be understood that the first resource and the second resource do not overlap in the time domain, and when the number of the first resource and the number of the second resource are both multiple, any one of the multiple first resources and the multiple None of the second resources of the two second resources overlap in the time domain.
  • each second resource may be four consecutive time-domain symbols in the time-domain, please refer to the relevant description of FIG. 1 for details.
  • the number of second resources may be multiple.
  • any two adjacent second resources may be consecutive in the time domain.
  • the time domain resources and indexes occupied by the SSB with index 0 are shown in Figure 2a.
  • the time domain resources occupied by the SSB with index 1 are continuous
  • the time domain resources occupied by the SSB with index 2 and the time domain resources occupied by the SSB with index 3 are continuous.
  • Any two second resources may also be discontinuous.
  • the time domain resource occupied by the SSB with index 1 and the time domain resource occupied by the SSB with index 2 are discontinuous.
  • the index is The time domain resources occupied by the SSB of 0 and the time domain resources occupied by the SSB with the index of 1 are discontinuous.
  • S401 includes the following two:
  • the first resource is determined based on the second resource. That is, when the resource position of the second resource remains unchanged, the first resource is obtained by adjusting the resource position of the first signal, so that the first resource and the second resource do not overlap in the time domain.
  • the second resource is a resource determined from candidate positions of the SSB signal and used for sending the SSB signal.
  • the third resource overlaps with the candidate position of the SSB signal
  • the first resource does not include the resource that overlaps with the candidate position of the SSB signal in the third resource.
  • the first signal is still transmitted at equal intervals within the target duration.
  • the target duration is composed of at least one time slot where the second resource is located. Taking the second resource belonging to the resource location specified in 3GPP TS 38.213 as an example, the target duration is one half frame, which is 5ms.
  • the resource location density of the second resource is relatively high, which may mean that the number of SSB signals is less than or equal to 64, that is, it can be understood that the number of SSB signals included in one SSB burst is less than or equal to 64.
  • the maximum number of candidate positions of the SSB signal can support 64, that is, in formula (4), the number of values of n reaches the maximum , is 16.
  • the number of SSB signals is 64, that is, 64 SSB signals are sent within 5 ms.
  • the interval between any two adjacent first signals is the same.
  • the first interval is multiple, and the time of the multiple first intervals is same length.
  • the number of first intervals is multiple, which means that the network device 301 transmits multiple first signals within the target duration, and there is a first interval between every two adjacent first signals. As such, the number of the first interval is multiple.
  • the first resource includes a time domain resource unit with an index value of a first preset value.
  • the time domain resource unit as the time domain symbol as an example, when the subcarrier interval for transmitting SSB signals is 120 kHz, with a single time slot as the granularity, the index of the time domain symbol that the second resource does not always occupy is as follows: 0, 1, 12, and 13. Therefore, the first preset value includes one of the following: 0, 1, 12, or 13. That is, the first resource occupies one of the time domain symbols 0, 1, 12, or 13 in the time slot within the target duration, and does not overlap with the second resource in the time domain, thereby avoiding collision between the first signal and the SSB signal.
  • the first preset value may be one of 0, 1, 12, 13, ⁇ 0, 1 ⁇ , and ⁇ 12, 13 ⁇ , where ⁇ 0, 1 ⁇ indicates that the time domain symbols 0 and time symbols are occupied at the same time.
  • Domain Symbol 1 It should be understood that, taking the subcarrier interval of the SSB signal as 120kHz as an example, within the target duration (5ms), when the network device 301 transmits the first signal on the time domain symbol 12 in each time slot, there are 40 An interval, and each first interval is 1 slot (ie, 14 symbols). Within the target duration (5ms), when the network device 301 transmits the first signal on time-domain symbol 0 and time-domain symbol 1 in each time slot, there are 40 first intervals, and each first interval is are 13 time domain symbols.
  • FIG. 5a shows a schematic diagram of resource distribution.
  • the resource location of the second resource is determined based on case D of 3GPP TS 38.213.
  • the number of SSB signals is 64, that is, the SSB signals occupy all the candidate positions of the SSB in the field.
  • the time-domain symbol index of the first resource is 13, that is, there are multiple first resources, and it is the time-domain symbol with index 13 in each time slot in the first 5 ms. That is, the network device 301 transmits the first signal on the time domain symbol 13 in each slot for 5 ms.
  • the time domain symbol indices occupied by the second resource are as follows: 4, 5, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20, 21, 22, 23.
  • any first resource in the plurality of first resources and any second resource in the plurality of second resources do not overlap in the time domain.
  • the time length of each first interval is the same.
  • the time-domain resource unit as the time-domain symbol as an example
  • the subcarrier interval for transmitting the SSB signal is 120 kHz
  • the resource position of the second resource is always different.
  • the occupied time domain symbol indices are as follows: 0, 1, 2, 3, 12, 13, 14, 15, 24, 25, 26, 27. Therefore, in every two first preset values, one first preset value includes one of the following: 0, 1, 2, 3, 12, 13, and the other first preset value includes one of the following: 14, 15, 24, 25, 26, 27. In this way, any first resource among the plurality of first resources and any second resource among the plurality of second resources do not overlap in the time domain, thereby avoiding collision between the first signal and the SSB signal.
  • the first signal can be transmitted at equal intervals within the target duration, for example, the two first preset values are 0 and 14, 1 and 15, 12 and 26, 13 and 27, ⁇ 0 and 1, 14 and 15 ⁇ , and ⁇ 12 and 13, and 26 and 27 ⁇ , the first interval between two adjacent first signals is one time slot.
  • the first signal may not be transmitted at equal intervals within the target duration.
  • the two first preset values are 0 and 15, 1 and 14, 12 and 27, 13 and 26, ⁇ 0 and 1, 24 and 25 ⁇ , ⁇ 12 and 13, 25 and 26 ⁇ , the first interval between two adjacent first signals is different, that is, the transmission of the first signals is unequal interval, but the network device 301 is in the One first signal can be transmitted in each time slot without colliding with the SSB signal.
  • the first signal when the resource location density of the second resource is relatively high, the first signal can still maintain a relatively high time-domain density within the target duration.
  • the target duration For the introduction of the target duration, reference may be made to the relevant description of the above example 1, which will not be repeated here.
  • the intervals between two adjacent first signals are not all the same, that is, there are at least "the interval between two adjacent first signals" and "the other two adjacent first signals".
  • the interval" between the first signals is different.
  • “the first interval is multiple” can refer to the relevant description of the above example 1, and details are not repeated here.
  • the first interval between domain symbol 3 and time domain symbol 13 is 10 time domain symbols
  • the first interval between time domain symbol 13 and time domain symbol 24 is 11 time domain symbols
  • the first interval between time domain symbols 3 in a slot is 7 time domain symbols.
  • the first resource includes a time domain resource unit with an index value of a second preset value.
  • the time domain resource unit as the time domain symbol as an example, when the subcarrier interval for transmitting SSB signals is 120 kHz, with two consecutive time slots as the granularity, the time domain symbol index of the resource position of the second resource that is always not occupied is as follows: : 0, 1, 2, 3, 12, 13, 14, 15, 24, 25, 26, and 27.
  • the value of the second preset value includes the following two possible designs:
  • the second preset value includes at least three of the following: 0, 1, 2, 3, 12, 13, 14, 15, 24, 25, 26, or 27.
  • the difference between any two items in the second preset value is greater than or equal to the third preset value.
  • the value of the third preset value may be 6.
  • the value of the second preset value may refer to the second possible design, so that there is at least one first resource, that is, the network device 301 transmits at least one first signal in each time slot.
  • the difference between any two items in the second preset value is greater than or equal to the third preset value, which also makes the first resource discontinuous in the time domain, and to a certain extent ensures that the first resource is available at the time The distribution over the domain is uniform.
  • the value of the second preset value is at least three items, that is, there are at least three first resources in every two time slots, so that the network device 301 transmits at least three first signals in every two time slots.
  • the half frame of Example 1 there is one first resource in each time slot, that is, one first signal is transmitted in each time slot.
  • Example 2 improves the time-domain density of the first signal, which is beneficial to improve radar detection accuracy.
  • the value of the third preset value can also be other values, for example, the value of the third preset value can be 1, and the value of the second preset value can be ⁇ 0, 2, 14 ⁇ , ⁇ 0, 2, 15 ⁇ , ⁇ 0, 3, 24 ⁇ , ⁇ 0, 3, 27 ⁇ , ⁇ 12, 15, 25 ⁇ , ⁇ 12, 15, 27 ⁇ , ⁇ 12, 24, 27 ⁇ , ⁇ 15, 24, 27 ⁇ an item. That is, the network device 301 may transmit the two first signals on the resources between the two SSB signals, and the network device 301 may also not transmit the first signals on the resources between the two SSB signals. However, the network device 301 can always transmit three first signals in two time slots, so as to improve the time domain density of the first signals.
  • the number of second preset values is three.
  • the three second preset values satisfy:
  • the first second preset value includes one of the following: 0, 1, 2, or 3.
  • the second second preset value includes one of the following: 12, 13, 14, or 15.
  • the third second preset value includes one of the following: 24, 25, 26, or 27.
  • the network device 301 transmits one first signal on resources between two SSB signals, and the network device 301 can always transmit three first signals in two time slots.
  • the second preset value may be one of the following: ⁇ 0, 12, 24 ⁇ , ⁇ 1, 13, 25 ⁇ , ⁇ 2, 14, 26 ⁇ , ⁇ 3, 15, 27 ⁇ , ⁇ 0 , 13, 24 ⁇ , ⁇ 1, 13, 24 ⁇ , ⁇ 2, 14, 24 ⁇ , ⁇ 3, 13, 27 ⁇ , ⁇ 0, 15, 24 ⁇ , ⁇ 1, 15, 24 ⁇ , ⁇ 2, 15 , 24 ⁇ , or ⁇ 3, 15, 27 ⁇ .
  • the network device 301 transmits the first signal on time domain symbols 0, 12, and 24, respectively.
  • the difference between the second preset values is relatively uniform.
  • the distribution of the time-domain symbols indexed by the second preset value on the time slot is relatively uniform, so that the first signal is transmitted as uniformly as possible in the time domain, which not only ensures that the time domain of the first signal is Domain density, and avoid collision with SSB signal.
  • the manner provided in Example 2 of the first implementation manner can also be understood as: when part of the resources in the third resource overlap with the candidate positions of the SSB signal, the first resource includes at least: combining the third resource with the SSB signal.
  • the overlapping resources of the candidate positions of the signals are advanced or delayed by at least one time domain symbol, so as to prevent the network device 301 from transmitting the first signal and the SSB signal at the same time, and at the same time, the first resources can be uniformly distributed as much as possible to ensure that the radar Detection accuracy.
  • the third resource includes a time-domain symbol 6 .
  • the time-domain symbol 6 is used to carry the SSB signal, so the third resource "time-domain symbol 6" is moved forward, as shown in the time-domain symbol 3 in Fig. 5b, and the time-domain symbol 3 is used to transmit the first signal .
  • the third resource includes time-domain symbols 20 .
  • the time-domain symbol 20 still carries the SSB signal, so the third resource "time-domain symbol 20" is moved backward, as shown by the time-domain symbol 24 in Fig. 5b, the time-domain symbol 24 is used to transmit the first signal .
  • the third resource includes time domain symbols 27 .
  • the time domain symbol 3 and the time domain symbol 24 are both used to transmit the first signal, and the time domain symbol 27 can no longer be used to transmit the first signal, so as to avoid frequent transmission of the first signal and save transmission. resources, and is close to the original transmission period of the first signal.
  • the time-domain symbol 27 may also be used to transmit the first signal, so as to reduce the computation load of the network device, which is not limited in this embodiment of the present application.
  • FIG. 5b shows a schematic diagram of resource distribution.
  • the resource location of the second resource is determined based on case D of 3GPP TS 38.213.
  • the time-domain symbol indices of the first resource include 3, 13, and 24, which neither collide with the SSB signal, but also ensure that the first signal is transmitted as uniformly as possible .
  • the SSB signal only occupies part of the candidate locations.
  • the subcarrier spacing of the SSB signal is 120 kHz
  • the time-domain symbol index of the SSB signal satisfies:
  • n 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18.
  • the resource location density of the second resource is low, which may mean that the number of SSB signals is less than or equal to 32, that is, it can be understood that the number of SSB signals included in one SSB burst is less than or equal to 32, that is, a candidate for SSB signals
  • the maximum number of positions supported is 32, that is, in formula (6), the maximum number of n values is 16.
  • the number of SSB signals is 32, that is, 32 SSB signals are sent within 5 ms.
  • the first resource includes a time domain resource unit with an index value of a second preset value.
  • the second preset value satisfies the following formula:
  • K represents the second preset value
  • K 2, 3, and 4. That is, the values of the second preset value include 13, 20, and 27.
  • the time domain symbol indices of the second resource are: 4, 5, 6, 7, 16, 17, 18, and 19.
  • the time-domain symbol indices of the first resource are: 13, 20, and 27. That is, according to the transmission period of the first signal, the time domain symbol 6 is used to transmit the first signal. However, the time domain symbol 6 is used to transmit the SSB signal, so the time domain symbol 6 is no longer used to transmit the first signal. That is, within the target duration, the third resource that conflicts with the second resource is no longer used for transmitting the first signal. In other words, within the target duration, the first resource is composed of resources that do not overlap with the candidate positions of the SSB signal among the third resources.
  • FIG. 5c shows a schematic diagram of resource distribution.
  • the resource location of the second resource is determined based on the above formula (6).
  • the time domain symbol indices of the first resource include 13, 20, and 27.
  • the network device 301 does not transmit the first signal, that is, the value of the second preset value does not include 6, thereby avoiding collision between the first signal and the SSB signal, and ensuring the time-domain density of the first signal.
  • the SSB signal is no longer sent. In other words, outside the target duration, there is no second resource.
  • the first signal can maintain the original transmission period. That is to say, the time interval between two adjacent first signals within the target duration is different from the time interval between two adjacent first signals outside the target duration.
  • the target duration when the interval between two adjacent first signals in the at least one first signal is recorded as the second interval, there are multiple second intervals, and the time lengths of the multiple second intervals are the same , but is different from the time length of the first interval, and when there are multiple first intervals, the second interval is different from at least one first interval.
  • the number of second intervals is multiple, which means that the network device 301 transmits multiple first signals outside the target duration, and there is a second interval between every two adjacent first signals. As such, the number of second intervals is multiple.
  • the first resource includes a time domain resource unit with an index value of a preset value of 1.
  • the value of the preset value 1 may include: 6, 13, see Figure 5a, Figure 5b and Figure 5c for details.
  • the transmission period of the first signal is 7 symbols as an example for introduction.
  • the transmission period of the first signal is of other durations, in addition to the target duration, the The resource location may also be designed at other intervals to meet the transmission requirements of the first signal in different scenarios, which is not limited in this embodiment of the present application.
  • the second resource is determined based on the first resource. That is to say, when the transmission period of the first signal remains unchanged, the second resource is obtained by adjusting the candidate position of the SSB signal, so that the first resource and the second resource do not overlap in the time domain.
  • the SSB signal only occupies part of the candidate locations.
  • the subcarrier spacing for transmitting SSB signals is 120 kHz
  • the second resource is introduced through two possible designs:
  • the second resource includes a time-domain resource unit with an index value of a fourth preset value, and the fourth preset value satisfies the following formula:
  • M represents a fourth preset value
  • N is an integer
  • 0 ⁇ N ⁇ 27 0 ⁇ N ⁇ 27
  • k is a positive integer
  • the time-domain symbol index of the first resource satisfies: 7*k-1.
  • the time domain symbol index of the SSB signal is not equal to the time domain symbol index of the first resource, so as to avoid overlapping of the first resource and the second resource in the time domain .
  • the time domain symbol indices of the first resource include: 6, 13, 20, and 27.
  • the time domain symbol indices of the second resource include: 0, 1, 2, and 3, which are not equal to the time domain symbol indices of the first resource. Therefore, the time domain symbols ⁇ 0, 1, 2, 3 ⁇ can be used as a second resource for sending SSB signals.
  • the time-domain symbol indices of the second resource include: 3, 4, 5, and 6. In this case, a value "6" in the time domain symbol index of the second resource is equal to the time domain symbol index of the first resource. Therefore, the time domain symbols ⁇ 3, 4, 5, 6 ⁇ cannot be used as the second resource. , not used to send SSB signals.
  • the transmission period of the first signal is 7 time-domain symbols as an example for introduction.
  • the transmission period of is T time domain symbols, the above formula (8) can be replaced by:
  • M represents the fourth preset value
  • T is the transmission period of the first signal
  • N is an integer
  • k is a positive integer. That is to say, when the transmission period of the first signal is T time-domain symbols, the time-domain symbol index of the first resource satisfies: T*k-1.
  • the time-domain symbol index of the SSB signal is not equal to the time-domain symbol index of the first resource, that is, the time-domain symbol index of the second resource (ie, the second resource).
  • the value of the time domain symbol index M, M+1, M+2, M+3) is not equal to the value of the time domain symbol index of the first resource, so as to avoid overlapping of the first resource and the second resource in the time domain.
  • the time domain symbol indices of the first resource include: 7, 15, and 23.
  • the time domain symbol indices of the second resource include: 0, 1, 2, and 3, which are not equal to the time domain symbol indices of the first resource. Therefore, the time domain symbols ⁇ 0, 1, 2, 3 ⁇ can be used as a second resource for sending SSB signals.
  • the time-domain symbol indices of the second resource include: 4, 5, 6, and 7. In this case, a value "7" in the time-domain symbol index of the second resource is equal to the time-domain symbol index of the first resource. Therefore, the time-domain symbols ⁇ 4, 5, 6, 7 ⁇ cannot be used as the second resource. , not used to send SSB signals.
  • the second resource includes a time-domain resource unit with an index value of a fourth preset value, and the fourth preset value satisfies the following formula:
  • M represents a fourth preset value
  • N includes at least two of the following values: 0, 1, 2, 7, 8, 9, 14, 15, 16, 21, 22, or 23. It can be seen from the introduction in FIG. 1 that one SSB signal occupies four time domain symbols, therefore, the difference between any two items in the fourth preset value is greater than 4 to avoid overlapping of resources occupied by SSB signals.
  • the fourth preset value may be one of the following: ⁇ 0, 7 ⁇ , ⁇ 0, 8 ⁇ , ⁇ 0, 9 ⁇ , ⁇ 0, 22 ⁇ , ⁇ 1, 7 ⁇ , ⁇ 1, 8 ⁇ , ⁇ 1, 9 ⁇ , ⁇ 1, 22 ⁇ , ⁇ 1, 23 ⁇ , ⁇ 1, 8, 16 ⁇ , or ⁇ 2, 9, 16 ⁇ .
  • the value of the fourth preset value only needs to be taken from the above-mentioned values (ie 0, 1, 2, 7, 8, 9, 14, 15, 16, 21, 22, or 23).
  • FIG. 5d shows a schematic diagram of resource distribution.
  • the resource position of the second resource that is, the position carrying the SSB signal
  • the resource position of the second resource includes time domain symbols 8, 9, 10, 11, 16, 17, 18, 19, as shown in FIG. 5d, none of them overlap with any resource in the first resource. In this way, the first signal transmitted by the network device 301 does not collide with the SSB signal.
  • the SSB signal occupies all candidate locations in a half frame.
  • the time domain symbol index of the SSB signal satisfies:
  • n 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18.
  • the SSB signal identified by index 0 is the first SSB signal in the field, and the indices of the occupied time domain symbols are 2 to 5.
  • the SSB signal identified by index 1 is the second SSB signal in the field, and the indices of the occupied time domain symbols are 8 to 11.
  • the SSB signal identified by index 2 is the third SSB signal in the field, and the indices of the occupied time domain symbols are 16 to 19.
  • the SSB signal identified by index 3 is the fourth SSB signal in the field, and the indices of the occupied time domain symbols are 22 to 25.
  • the time-domain symbol indices of the first resource include: 6, 13, 20, and 27.
  • the time-domain symbol index of the second resource includes: 4, 5, 6, and 7, that is, the values in the time-domain symbol index of the second resource "6" is equal to the time-domain symbol index of the first resource, that is, it overlaps with the first resource. Therefore, "4" is adjusted to "2", as shown in formula (11).
  • the first time-domain symbol index of 2 The second resource includes: time-domain symbol 2, time-domain symbol 3, time-domain symbol 4, and time-domain symbol 5, and does not overlap with the first resource.
  • the time-domain symbol indexes of the second resource include: 20, 21, 22, and 23, that is, in the time-domain symbol index of the second resource.
  • the value "20" is equal to the time-domain symbol index of the first resource, that is, it overlaps with the first resource. Therefore, "20” is adjusted to "22", as shown in formula (11).
  • the first time-domain symbol index is 22
  • the second resource includes: time-domain symbol 22, time-domain symbol 23, time-domain symbol 24, and time-domain symbol 25, which do not overlap with the first resource.
  • the first signal maintains the original transmission period, that is, the first interval and the second interval have the same duration.
  • each second interval in the plurality of second intervals is the same as each first interval in the plurality of first intervals.
  • the target duration is composed of at least one time slot where the candidate position of the SSB signal is located.
  • the first resource includes a time-domain resource unit with an index value of a preset value of 1.
  • the value of the preset value 1 may include: 6 and 13, as shown in FIG. 5d .
  • the network device 301 transmits at least one first signal on the first resource.
  • the network device 301 has a sensing function, and the first signal is used to detect the attribute of the target.
  • the properties of the target include at least one of the following: movement speed, position, or shape size.
  • the target detected by the first signal includes the terminal device 305, and the network device 301 can receive to the echo signal reflected by the terminal device 305, so as to perceive the properties such as the location of the terminal device 305.
  • the network device 301 cannot receive the echo signal reflected by the terminal device 305, that is, the sensing object of the network device 301 does not include the terminal device. 305, it is impossible to detect attributes such as the location of the terminal device 305.
  • the target may also be other objects that reflect the echo signal. After the network device 301 receives the echo signal, it can also perceive the attribute of the target.
  • the first resource in S402 is the first resource in S401.
  • the first resource in S402 may be determined based on the second resource, see the introduction of the first implementation in S401, the first resource in S402 may also be used to determine the second resource, see the second implementation in S402 Introduction, which will not be repeated here.
  • Each first resource carries a first signal.
  • the network device 301 transmits one first signal on the first resource.
  • the network device 301 transmits one first signal on each of the multiple first resources.
  • the network device 301 sends at least one first signal on the first resource.
  • the network device 301 sends one first signal on the first resource.
  • the network device 301 sends a first signal on each of the multiple first resources.
  • the first signal may be implemented as a radar detection signal.
  • the network device 301 receives at least one first signal on the first resource.
  • the network device 301 receives one first signal on the first resource.
  • the network device 301 receives one first signal on each of the multiple first resources.
  • the first signal may be implemented as an echo signal of the radar detection signal.
  • the network device 301 sends and receives the first signal on the first resource, such as in the case that the first resource is one, the network device 301 sends and receives the first signal on the first resource.
  • the network device 301 sends and receives the first signal on each of the multiple first resources.
  • the transmitted first signal may be implemented as a radar detection signal
  • the received first signal may be implemented as an echo signal of the radar detection signal.
  • Example 4 In the case where there are multiple first resources, the multiple first resources are divided into two parts, and the network device executes one of the above three examples (Example 1 to Example 3) on a part of the first resources, The network device executes another of the above three examples (Example 1 to Example 3) on another part of the first resource. Alternatively, the multiple first resources are divided into three parts, and the network device executes one of the above three examples (Example 1 to Example 3) on each part of the first resources.
  • S402 is introduced in two cases:
  • the first signal carries communication information.
  • the network device 301 executes S403:
  • the network device 301 sends the first indication information to the terminal device 305 .
  • the terminal device 305 receives the first indication information from the network device 301 .
  • the first indication information indicates the index value of the first resource.
  • the first indication information may carry an index value of the first resource.
  • the first indication information may be an index value that uses 4 bits to indicate the first resource.
  • the first indication information may be an index value that uses 5 bits to indicate the first resource.
  • the index value of the first resource reference may be made to the relevant introduction of S401, and details are not repeated here.
  • the first indication information may also indicate an offset between the first resource and the second resource.
  • the unit of the offset is a time-domain symbol, and the value of the offset indicates the number of time-domain symbols spaced between the first resource and the second resource.
  • the offset can be represented by a preset number of bits. For example, when the offset is small, such as less than 8 time-domain symbols, the first indication information may use 3 bits to indicate the offset. For another example, when the offset is relatively large, such as more than 8 time-domain symbols, the first indication information may use 4 or 5 bits to indicate the offset.
  • the first indication information may be high-level signaling, such as radio resource control (radio resource control, RRC) signaling, or, the first indication information may also be physical layer signaling, such as downlink control information (downlink control information). control information, DCI).
  • RRC radio resource control
  • DCI control information
  • S402 is specifically implemented as S402a:
  • the network device 301 sends communication information to the terminal device 305 on the first resource.
  • the terminal device 305 receives the communication information from the network device 301 on the first resource.
  • the communication information is carried in the first signal.
  • the communication information includes but is not limited to: physical downlink shared channel (physical downlink shared channel, PDSCH), etc.
  • the terminal device 305 obtains the communication information from the first signal by processing such as demodulation and decoding.
  • the network device 301 does not need to execute S403 before executing S402. That is, the network device 301 may transmit the first signal according to the resource position of the first resource.
  • the network device 301 can also send an SSB signal, as shown in the steps in Figure 6b:
  • the network device 301 sends at least one SSB signal to the terminal device 305 on the second resource.
  • the terminal device 305 may receive at least one SSB signal from the network device 301 on the second resource.
  • the second resource in S404 is the second resource in S401.
  • the second resource in S404 may be used to determine the first resource, see the introduction of the first implementation in S401, and the second resource in S404 may also be determined based on the first resource, see the second implementation in S402 Introduction, which will not be repeated here.
  • Each second resource carries one SSB signal.
  • the network device 301 sends one SSB signal on the second resource.
  • the network device 301 sends one SSB signal on each of the multiple second resources.
  • S404 is introduced in two cases:
  • the second resource is determined based on the first resource.
  • the network device 301 executes S405:
  • the network device 301 sends the second indication information to the terminal device 305 .
  • the terminal device 305 receives the second indication information from the network device 301 .
  • the second indication information indicates the index value of the second resource.
  • the second indication information may carry an index value of the second resource.
  • the second indication information may be an index value that uses 4 bits to indicate the second resource.
  • the second indication information may be an index value indicating the second resource using 5 bits.
  • the index value of the second resource reference may be made to the relevant introduction of S401, which will not be repeated here.
  • the second indication information may also indicate the offset between the second resource and the candidate position of the SSB signal.
  • the unit of the offset is a time-domain symbol, and the value of the offset indicates the number of time-domain symbols spaced between the second resource and the candidate position of the SSB signal.
  • the offset can be represented by a preset number of bits. For example, when the offset is small, such as less than 8 time-domain symbols, the second indication information may use 3 bits to indicate the offset. For another example, when the offset is relatively large, such as more than 8 time-domain symbols, the second indication information may use 4 or 5 bits to indicate the offset.
  • the second indication information may be high layer signaling, such as signaling, or the second indication information may also be physical layer signaling, such as DCI.
  • the network device 301 first indicates the index value of the second resource to the terminal device 305, so that the terminal device 305 The SSB signal is received at the resource location indicated by the second indication information.
  • the network device 301 sends an SSB signal to the terminal device 305 on a known resource. Accordingly, the terminal device 305 receives the SSB signal from the network device 301 on a resource that may be known.
  • the known resources are resources specified based on existing protocols (such as 3GPP TS38.213). In this way, the terminal device 305 is synchronized with the network device 301 through the SSB signal within the preset duration, and then the terminal device 305 executes S405.
  • the network device 301 may not perform S405, in this case, the terminal device 305 performs blind detection, that is, scans each time-domain symbol. If the SSB signal is transmitted on some time domain symbols, the terminal device 305 can detect the SSB signal from the network device 301 .
  • the second resource is used to determine the first resource, as described in the introduction of the first implementation manner in S401 for details.
  • the network device 301 does not need to execute S405 before executing S404.
  • the network device 301 sends the indication information (such as the first indication information and the second indication information above) to the terminal device 305
  • the terminal device 305 can send the indication information to the network device 301.
  • Acknowledgement (ACK) if the terminal device 305 does not receive the indication information, the terminal device 305 sends a negative acknowledgement (NACK) to the network device 301 .
  • NACK negative acknowledgement
  • the network device 301 Even in a half frame for transmitting SSB signals, some time slots include candidate positions of SSB signals, and another part of time slots do not include candidate positions of SSB signals, the distribution state of the first resource in the two time slots is still consistent , the network device 301 always transmits the first signal in a fixed pattern, so as to avoid frequent changes of the resource position of the first signal, and also simplify the complexity of the network device 301 to determine the first resource.
  • FIG. 6a and FIG. 6b can be implemented individually or in combination. This application does not limit this.
  • the above description is made by taking an example that the first resource and the second resource do not overlap in the time domain, so as to avoid mutual interference between signals.
  • the first resource and the second resource overlap in the time domain
  • the first resource and the second resource do not overlap in the frequency domain, which can also avoid mutual interference between signals.
  • the embodiment of the present application further provides another signal transmission method.
  • the technical concept of the signal transmission method is as follows: the network device determines the first resource. The first resource and the second resource overlap in the time domain and do not overlap in the frequency domain, and the second resource is used for sending communication signals. There is a corresponding relationship between the first resource and the second resource. Then, the network device transmits at least one first signal on the first resource. In this way, the first signal and the communication signal are transmitted in a frequency division multiplexing manner, so that the first signal and the communication signal do not collide and interfere with each other, thereby improving the communication efficiency of the system.
  • the first resource and the second resource may mean that, in a preset number of frequency domain resource units, the first resource and the second resource have a corresponding relationship in resource positions, for example, the first resource and the second resource have a corresponding relationship in resource positions.
  • the number of the two resources is the same, and they correspond one-to-one.
  • the number of the first resources is different from the number of the second resources, and one first resource among the plurality of first resources corresponds to one second resource among the plurality of second resources. For example, taking the frequency domain resource unit as an RB as an example, in the same system bandwidth, there are multiple first resources, and each first resource occupies an RB whose index is x 1 .
  • each second resource occupies an RB whose index is a 1 .
  • x 1 is the index of the X RBs with the smallest frequency in the system bandwidth, and X is a positive integer.
  • SSB signal it can be known from FIG. 1 that one SSB signal occupies 20 RBs.
  • x 1 ⁇ a 1 it can be understood that the RB index corresponding to the first resource is smaller than the index of each of the 20 RBs corresponding to the second resource.
  • each first resource occupies an RB whose index is y1 .
  • each second resource occupies an RB whose index is a 1 .
  • y 1 is the index of the Y RBs with the highest frequency in the system bandwidth, and Y is a positive integer.
  • the RB index corresponding to the first resource is greater than the index of each of the 20 RBs corresponding to the second resource.
  • an embodiment of the present application provides a signal transmission method 700 , and the signal transmission method 700 is applied in a signal transmission process of radar communication integration.
  • the method includes the following steps:
  • the network device 301 determines a first resource.
  • the first resource and the second resource overlap in the time domain and do not overlap in the frequency domain.
  • the number of the first resources is one or more, and any two adjacent first resources among the plurality of first resources may be continuous or discontinuous in the frequency domain, as shown in FIG. 8 a .
  • Each first resource may occupy one or more frequency domain resource units in the frequency domain.
  • the network device 301 may determine one or more first resources. It can be understood that the first resource and the second resource overlap in the time domain and do not overlap in the frequency domain.
  • the One first resource and one second resource among the plurality of second resources overlap in the time domain and do not overlap in the frequency domain.
  • the number of the first resources and the number of the second resources may be the same, and the first resources in the plurality of first resources are in one-to-one correspondence with the second resources in the plurality of second resources, that is, the number of the first resources in the plurality of first resources is in one-to-one correspondence.
  • One first resource and one second resource among the plurality of second resources overlap in the time domain and do not overlap in the frequency domain.
  • the number of first resources and the number of second resources may be different, for example, at least two first resources among multiple first resources correspond to one second resource among multiple second resources, such as multiple first resources Two first resources in and one second resource in the plurality of second resources overlap in the time domain, and neither the above two first resources nor the above one second resource overlap in the frequency domain.
  • each second resource may be 20 consecutive RBs in the frequency domain, as detailed in the relevant description of FIG. 1 .
  • the number of second resources may be multiple.
  • any two adjacent second resources may occupy RBs with the same index in the frequency domain, or may occupy RBs with different indexes.
  • This embodiment of the present application This is not limited. In the embodiment of the present application, the description is made by taking as an example that any two adjacent second resources may occupy RBs with the same index in the frequency domain.
  • the first resource includes a frequency domain resource unit indicated by the first index value
  • the second resource includes a frequency domain resource unit indicated by the second index value.
  • the frequency domain resource unit is implemented as RB
  • the system bandwidth includes 90 RBs
  • the index value is 0 ⁇ 89.
  • the value of the first index value includes one of the following: 45, 46, 47, ⁇ 48, 49 ⁇ , or ⁇ 50, 51, 52 ⁇ , and the like.
  • ⁇ 48, 49 ⁇ indicates that the first resource includes an RB with an index of 48 and an RB with an index of 49.
  • the value of the second index value includes one of the following: ⁇ 0 to 19 ⁇ , ⁇ 1 to 20 ⁇ , ⁇ 2 to 21 ⁇ , or ⁇ 3 to 22 ⁇ .
  • ⁇ 0 to 19 ⁇ indicates that the second resource includes RBs with indices of 0 to 19. It should be understood that as long as any value in the first index value is different from all the values in the second index value, the first index value and the second index value may also have other values, which are not limited in this embodiment of the present application . Below, the first index value and the second index value are introduced through two implementation manners:
  • the first index value is smaller than the second index value. That is, each value in the first index value is smaller than all the values in the second index value.
  • one frequency domain resource unit may include one RB.
  • the first resource occupies 20 RBs, the first index value ranges from 0 to 19, and the first index value may be recorded as ⁇ 0 to 19 ⁇ . That is, the first index value indicates the 20 RBs with the smallest frequency in the system bandwidth.
  • the communication signal is implemented as an SSB signal
  • the number of RBs occupied by the second resource is 20.
  • the value of the second index value includes 30 to 49, and the second index value may be recorded as ⁇ 30 to 49 ⁇ .
  • one frequency domain resource unit may include 20 RBs, that is, every 20 RBs is denoted as one frequency domain resource unit.
  • the indices of the frequency-domain resource units are 0-9.
  • the first resource occupies one frequency domain resource unit (that is, the first resource occupies 20 RBs), and the frequency domain resource unit occupied by the first resource is located in one or more frequency domain resources in the first N frequency domain resource units of the system bandwidth unit, N is a positive integer.
  • the value of the first index value is 0, and the value of N may be 3.
  • the first resource includes one frequency domain resource unit in the first three frequency domain resource units of the system bandwidth.
  • the first N frequency domain resource units of the system bandwidth can be understood as all the frequency domain resource units in the system bandwidth are arranged in the order of frequency from low to high.
  • the first N frequency domain resource units of the system bandwidth are , which may refer to the N frequency-domain resource units with the smallest frequency in the system bandwidth.
  • the first resource occupies X frequency-domain resource units with the smallest frequency in the system bandwidth, X is a positive integer, and X ⁇ N.
  • the second resource occupies one frequency domain resource unit (that is, the number of RBs occupied by the second resource is 20), for example, the value of the second index value may include 7. It should be understood that one frequency domain resource unit may also include other numbers of RBs, such as 10 RBs, and the embodiment of the present application does not limit the number of RBs in the frequency domain resource unit.
  • the first index value is greater than the second index value. That is, each value in the first index value is greater than all the values in the second index value.
  • one frequency domain resource unit may include one RB.
  • the first resource occupies 20 RBs, the value of the first index value includes 40 to 59, and the first index value may be recorded as ⁇ 40 to 59 ⁇ . That is, the first index value indicates the 20 RBs with the highest frequency in the system bandwidth.
  • the communication signal is implemented as an SSB signal
  • the number of RBs occupied by the second resource is 20, the value of the second index value includes 0 to 19, and the second index value may be recorded as ⁇ 0 to 19 ⁇ .
  • one frequency domain resource unit may include 20 RBs.
  • the indices of the frequency-domain resource units are 0-9.
  • the first resource occupies one frequency domain resource unit, and the frequency domain resource unit occupied by the first resource is located at one or more frequency domain resource units among the N frequency domain resource units at the end of the system bandwidth, where N is a positive integer.
  • the value of the first index value is 9, and the value of N may be 3. That is to say, the first resource includes one frequency-domain resource unit among the last three frequency-domain resource units of the system bandwidth.
  • the last N frequency domain resource units of the system bandwidth can be understood as all the frequency domain resource units in the system bandwidth are arranged in the order of frequency from low to high.
  • the last N frequency domain resource units of the system bandwidth are , which may refer to the N frequency-domain resource units with the largest frequency in the system bandwidth.
  • the first resource occupies Y frequency-domain resource units with the highest frequency in the system bandwidth, Y is a positive integer, and Y ⁇ N.
  • the second resource occupies one frequency domain resource unit, the value of the second index value includes 9, and the second index value may be recorded as 9.
  • the number of frequency domain resource units occupied by the first signal may be one or multiple, which is not made in this embodiment of the present application. limited. 8a and 8b only take 20 RBs occupied by the first resource as an example for description, and the number of frequency domain resource units occupied by the first resource may have other values, which are not limited in this embodiment of the present application.
  • the first signal may be transmitted at equal intervals in the time domain, or may be transmitted at unequal intervals, which is not limited in this embodiment of the present application.
  • the distribution of the SSB signal in the time domain can refer to the introduction of the five cases (such as case A, case B, case C, case D, and case E) shown in the nomenclature section , and will not be repeated here.
  • the bandwidth of the first signal is introduced as follows: as a case, the sum of the bandwidth of the first signal and the bandwidth of the communication signal is less than or equal to the system bandwidth.
  • the system bandwidth is 60 RBs.
  • the bandwidth of the communication signal is 20 RBs.
  • the bandwidth of the first signal may be 40 RBs or 35 RBs.
  • the bandwidth of the first signal may also have other values, such as 20 RBs, which is not limited in this embodiment of the present application. That is, the bandwidth of the first signal is determined based on the system bandwidth and the bandwidth of the communication signal. In this way, the first signal and the communication signal occupy different frequency domain resource units in the system bandwidth respectively.
  • the bandwidth of the first signal is equal to the system bandwidth.
  • the system bandwidth is 60 RBs.
  • the bandwidth of the first signal may be 60 RBs.
  • the system bandwidth can also have other values, such as 100 RBs.
  • the bandwidth of the first signal is 100 RBs, and the embodiment of the present application does not limit the size of the system bandwidth.
  • the network device 301 transmits at least one first signal on the first resource.
  • S702 may refer to the introduction of S402, which will not be repeated here.
  • the first resource determined by the network device is a resource that overlaps with the second resource in the time domain but does not overlap with the second resource in the frequency domain, and there is a resource location between the two. Correspondence.
  • the first signal and the communication signal are sent through different frequency domain resources, so that the first signal and the communication signal do not collide and interfere with each other, thereby improving the communication efficiency of the system.
  • the first signal may carry communication information, or may not carry communication information. Below, two situations are introduced:
  • the first signal carries communication information.
  • the network device 301 executes S703:
  • the network device 301 sends the indication information 1 to the terminal device 305 .
  • the terminal device 305 receives the indication information 1 from the network device 301 .
  • the indication information 1 indicates the resource location of the first resource, such as the resource location of the first resource in the frequency domain.
  • the indication information 1 may carry the index value of the first resource, that is, the first index value.
  • the indication information 1 may use a preset number of bits to indicate the first index value.
  • the first index value reference may be made to the relevant introduction of S701, and details are not repeated here.
  • the indication information 1 may also indicate the offset between the first resource and the second resource.
  • the unit of the offset is a frequency-domain resource unit, such as RB, and the value of the offset indicates the number of frequency-domain resource units spaced between the first resource and the second resource.
  • the offset can be represented by a preset number of bits. For example, when the offset is small, such as less than 8 RBs, the indication information 1 may use 3 bits to indicate the offset. For another example, when the offset is relatively large, such as more than 8 RBs, the indication information 1 may use 4 or 5 bits to indicate the offset.
  • the indication information 1 further indicates the resource location of the fourth resource, such as the resource location of the fourth resource in the frequency domain.
  • the fourth resource and the second resource do not overlap in the time domain, and the fourth resource is also used for transmitting the first signal.
  • the indication information 1 may carry the index value of the fourth resource.
  • the index value corresponding to the frequency domain resource unit occupied by the fourth resource may include 0 to 59. That is, when the first signal does not collide with the communication signal, the bandwidth of the first signal is equal to the system bandwidth.
  • the indication information 1 further indicates that the index value of the fourth resource includes 0 to 59.
  • the index value corresponding to the frequency domain resource unit occupied by the fourth resource may include 0 to 35. That is to say, when the first signal does not collide with the communication signal, the first signal occupies a part of the system bandwidth.
  • the indication information 1 further indicates that the index value of the fourth resource includes 0 to 35.
  • the index value corresponding to the frequency domain resource unit occupied by the fourth resource may include 0 to 4. That is, when the first signal does not collide with the communication signal, the bandwidth of the first signal is equal to the system bandwidth.
  • the indication information 1 further indicates that the index value of the fourth resource includes 0 to 4.
  • the index value corresponding to the frequency domain resource unit occupied by the fourth resource may include 0 to 3. That is to say, when the first signal does not collide with the communication signal, the first signal occupies a part of the system bandwidth.
  • the indication information 1 further indicates that the index value of the fourth resource includes 0 to 3.
  • the network device 301 may also execute S704:
  • the network device 301 sends the indication information 2 to the terminal device 305 .
  • the terminal device 305 receives the indication information 2 from the network device 301 .
  • the indication information 2 at least indicates the bandwidth. Below, two examples are introduced:
  • Example 1 indication information 2 indicates the following two items:
  • the first item is that the sum of the first bandwidth and the bandwidth of the communication signal is less than or equal to the system bandwidth.
  • the first bandwidth is a bandwidth when the first signal and the communication signal overlap in the time domain.
  • the system bandwidth is still 60 RBs.
  • the bandwidth of the communication signal is 20 RBs.
  • the first bandwidth may be 40 RBs or 35 RBs.
  • the first bandwidth may also have other values, such as 20 RBs, which is not limited in this embodiment of the present application. That is, when the bandwidth of the first signal is the system bandwidth, the network device indicates to the terminal device the first bandwidth when the first signal and the communication signal overlap. Correspondingly, the terminal device receives the first signal based on the first bandwidth indicated by the indication information 2 .
  • the second term, the second bandwidth is equal to the system bandwidth.
  • the second bandwidth is a bandwidth when the first signal and the communication signal do not overlap in the time domain.
  • the system bandwidth is still 60 RBs.
  • the second bandwidth may be 60 RBs.
  • the system bandwidth can also have other values, such as 100 RBs.
  • the second bandwidth is 100 RBs, and the size of the system bandwidth is not limited in this embodiment of the present application. That is to say, when the bandwidth configured by the first signal is the system bandwidth, the network device indicates to the terminal device the second bandwidth when the first signal and the communication signal do not overlap.
  • the terminal device receives the first signal based on the second bandwidth indicated by the indication information 2 .
  • indication information 2 indicates the following two items:
  • the bandwidth of the first signal is equal to the system bandwidth.
  • the system bandwidth is still 60 RBs.
  • the bandwidth of the first signal may be 60 RBs.
  • the system bandwidth can also have other values, such as 100 RBs.
  • the bandwidth of the first signal is 100 RBs, and the embodiment of the present application does not limit the size of the system bandwidth.
  • the second item is that the network device does not send the first signal on the second resource.
  • the first resource includes frequency domain resource elements other than the second resource in the system bandwidth.
  • the system bandwidth is still 60 RBs, and the bandwidth of the communication signal is 20 RBs.
  • the first resource includes 40 RBs.
  • the system bandwidth can also have other values, such as 100 RBs.
  • the first resource includes 80 RBs, and the size of the system bandwidth is not limited in this embodiment of the present application.
  • the second resource carrying the communication signal is used for transmitting the communication signal and not used for transmitting the first signal.
  • the network device 301 does not send the first signal on the second resource, and sends the first signal to the terminal device 305 on the first resource.
  • the terminal device 305 does not receive the first signal on the second resource, and receives the first signal from the network device 301 on the first resource. If the first signal and the communication signal do not overlap in the time domain, the first signal occupies all resources of the system bandwidth. That is, under the condition that the first signal and the communication signal do not overlap in the time domain, the network device 301 sends the first signal to the terminal device 305 over the full bandwidth of the system bandwidth.
  • the terminal device 305 receives the first signal from the network device 301 on the full bandwidth of the system bandwidth.
  • the indication information (such as indication information 1 in the above S703, or indication information 2 in S704) may be higher layer signaling, such as RRC signaling, or the indication information may also be physical layer signaling, such as DCI.
  • the network device 301 executes S703 and does not execute S704, and correspondingly, the terminal device 305 executes S703 but does not execute S704.
  • the network device 301 executes S704 and does not execute S703, and accordingly, the terminal device 305 executes S704 and does not execute S703.
  • the terminal device 305 can receive at least one first signal based on the indication information 1 or the indication information 2 .
  • the terminal device 305 executes S704 since the terminal device 305 can determine the resource location of the second resource, the terminal device 305 determines the resource location of the first resource based on the system bandwidth and the resource location of the second resource, or The location range where the first resource is located. Afterwards, the terminal device 305 receives the first signal based on the resource location of the first resource, or the location range where the first resource is located.
  • the terminal device 305 can For sending ACK or NACK to the network device 301, refer to the introduction in the signal transmission method 400 for details.
  • the network device 301 does not need to execute S703 and S704 before executing S702. That is, the network device 301 may transmit the first signal according to the resource position of the first resource.
  • the network device 301 can also send a communication signal, that is, the network device 301 sends at least one communication signal to the terminal device 305 on the second resource.
  • the terminal device 305 may receive at least one communication signal from the network device 301 on the second resource. Implicitly, the network device 301 does not send the first signal to the terminal device 305 on the second resource.
  • the terminal device 305 does not receive the first signal from the network device 301 on the second resource.
  • the network device transmits the first signal and the communication signal in a frequency division multiplexing manner.
  • the system bandwidth may refer to the bandwidth supported by one carrier in the NR system.
  • the carrier bandwidth of the NR system may be one of 10MHz, 15MHz, 20MHz, 50MHz, 100MHz, and 400MHz.
  • a carrier can be configured with multiple partial bandwidths (bandwidth part, BWP).
  • the system bandwidth may also refer to the bandwidth supported by a serving cell in the LTE system, which is not limited in this embodiment of the present application.
  • an embodiment of the present application further provides a communication device, and the communication device may be a network element in the foregoing method embodiments, or a device including the foregoing network element, or a component usable for a network element.
  • the communication apparatus includes corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware or a combination of hardware and computer software with the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • FIG. 10 shows a schematic structural diagram of a chip 1000 .
  • the chip 1000 includes a logic circuit 1010 and an input and output interface 1030 .
  • the input/output interface 1030 is used for communicating with modules other than the chip 1000, and the logic circuit 1010 is used for performing other operations on the device where the chip 1000 is located in the above method embodiments except for the transceiving operation.
  • the input/output interface 1030 may be used to perform S402 on the network device 301 side in this embodiment of the present application, and/or the input/output interface 1030 may further It is used to perform other transceiving steps on the network device 301 side in this embodiment of the present application.
  • the logic circuit 1010 may be configured to perform S401 on the network device 301 side in the embodiment of the present application, and/or the input/output interface 1030 may be further configured to perform other processing steps on the network device 301 side in the embodiment of the present application.
  • the input/output interface 1030 may be used to execute S403 and S402a on the network device 301 side, and/or the input/output interface 1030 may also be used for Other transceiving steps on the side of the network device 301 in the embodiment of the present application are performed.
  • the logic circuit 1010 may be used to perform other processing steps in the network device 301 side.
  • the input/output interface 1030 may be used to execute S405 and S404 on the network device 301 side, and/or the input/output interface 1030 may also be used for Other transceiving steps on the side of the network device 301 in the embodiment of the present application are performed.
  • the logic circuit 1010 may be used to perform other processing steps in the network device 301 side.
  • the input/output interface 1030 may be used to execute S702 on the network device 301 side in this embodiment of the present application, and/or the input/output interface 1030 It is also used to perform other sending and receiving steps on the network device 301 side in this embodiment of the present application.
  • the logic circuit 1010 may be used to perform S701 on the network device 301 side in the embodiment of the present application, and/or the input/output interface 1030 may be further configured to perform other processing steps on the network device 301 side in the embodiment of the present application.
  • the input/output interface 1030 may be used to execute S703 on the network device 301 side, and/or the input/output interface 1030 may also be used to execute Other transceiving steps on the network device 301 side in this embodiment of the present application.
  • the logic circuit 1010 may be used to perform other processing steps in the network device 301 side.
  • the input/output interface 1030 may be used to execute S704 on the network device 301 side, and/or the input/output interface 1030 may also be used to execute Other transceiving steps on the network device 301 side in this embodiment of the present application.
  • the logic circuit 1010 may be used to perform other processing steps in the network device 301 side.
  • the input/output interface 1030 may be used to perform S403 and S402a on the terminal device 305 side, and/or the input/output interface 1030 may also be used for Perform other transceiving steps on the terminal device 305 side in this embodiment of the present application.
  • the logic circuit 1010 may be used to perform other processing steps in the end device 305 side.
  • the input/output interface 1030 may be used to execute S405 and S404 on the terminal device 305 side, and/or the input/output interface 1030 may also be used for in the implementation of other transceiving steps on the side of the terminal device 305 in the embodiment of the present application.
  • the logic circuit 1010 may be used to perform other processing steps in the end device 305 side.
  • the input/output interface 1030 may be used to execute S703 on the terminal device 305 side, and/or the input/output interface 1030 may also be used to execute Other transceiving steps on the side of the terminal device 305 in this embodiment of the present application.
  • the logic circuit 1010 may be used to perform other processing steps in the end device 305 side.
  • the input/output interface 1030 may be used to execute S704 on the terminal device 305 side, and/or the input/output interface 1030 may also be used to execute Other transceiving steps on the side of the terminal device 305 in this embodiment of the present application.
  • the logic circuit 1010 may be used to perform other processing steps in the end device 305 side.
  • the chip 1000 further includes a memory 1040 for storing program codes and data of the chip 1000, and the data may include, but is not limited to, original data or intermediate data.
  • the chip 1000 may further include a bus 1020 .
  • the logic circuit 1010, the input/output interface 1030 and the memory 1040 may be connected to each other through the bus 1020; the bus 1020 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) ) bus, etc.
  • the bus 1020 can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • FIG. 11 shows a schematic structural diagram of a communication apparatus 1100 .
  • the communication device 1100 includes a communication module 1103 and a processing module 1102 .
  • the communication module 1103 executes S402 of the network device 301, and/or the communication module 1103 is further configured to execute the network device 301 side in the embodiment of the present application other sending and receiving steps.
  • the processing module 1102 is configured to perform S401 on the network device 301 side in the embodiment of the present application, and/or the processing module 1102 is further configured to perform other processing steps on the network device 301 side in the embodiment of the present application.
  • the communication module 1103 executes S402a and S403 of the network device 301, and/or the communication module 1103 is further configured to execute the network device in the embodiment of the present application. Other transceiving steps on the device 301 side.
  • the processing module 1102 is configured to execute other processing steps on the side of the network device 301 in this embodiment of the present application.
  • the communication module 1103 executes S404 and S405 of the network device 301, and/or the communication module 1103 is further configured to execute the network device in the embodiment of the present application. Other transceiving steps on the device 301 side.
  • the processing module 1102 is configured to execute other processing steps on the side of the network device 301 in this embodiment of the present application.
  • the communication module 1103 executes S702 of the network device 301, and/or the communication module 1103 is further configured to execute the network device 301 in the embodiment of the present application other transceiving steps on the side.
  • the processing module 1102 is configured to perform S701 on the network device 301 side in the embodiment of the present application, and/or the processing module 1102 is further configured to perform other processing steps on the network device 301 side in the embodiment of the present application.
  • the communication module 1103 executes S703 of the network device 301, and/or the communication module 1103 is further configured to execute the network device 301 in the embodiment of the present application other transceiving steps on the side.
  • the processing module 1102 is configured to execute other processing steps on the side of the network device 301 in this embodiment of the present application.
  • the communication module 1103 executes S704 of the network device 301, and/or the communication module 1103 is further configured to execute the network device 301 in the embodiment of the present application other transceiving steps on the side.
  • the processing module 1102 is configured to execute other processing steps on the side of the network device 301 in this embodiment of the present application.
  • the communication module 1103 executes S402a and S403 of the terminal device 305, and/or the communication module 1103 is further configured to execute the terminal device in the embodiment of the present application Other transceiving steps on the 305 side.
  • the processing module 1102 is configured to perform other processing steps on the side of the terminal device 305 in this embodiment of the present application.
  • the communication module 1103 executes S404 and S405 of the terminal device 305, and/or the communication module 1103 is further configured to execute the terminal device in the embodiment of the present application.
  • the processing module 1102 is configured to perform other processing steps on the side of the terminal device 305 in this embodiment of the present application.
  • the communication module 1103 executes S703 of the terminal device 305, and/or the communication module 1103 is further configured to execute the terminal device 305 in the embodiment of the present application. other transceiving steps on the side.
  • the processing module 1102 is configured to perform other processing steps on the side of the terminal device 305 in this embodiment of the present application.
  • the communication module 1103 executes S704 of the terminal device 305, and/or the communication module 1103 is further configured to execute the terminal device 305 in the embodiment of the present application. other transceiving steps on the side.
  • the processing module 1102 is configured to perform other processing steps on the side of the terminal device 305 in this embodiment of the present application.
  • processing module 1102 in this embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • the communication module 1103 may be implemented by a transceiver or a transceiver-related circuit component.
  • the communication device 1100 may further include a storage module 1101 for storing program codes and data of the communication device 1100, and the data may include but not limited to original data or intermediate data.
  • the processing module 1102 may be a processor or a controller, such as a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), or an application specific integrated circuit (application specific integrated circuit). circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • a processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the communication module 1103 may be a communication interface, a transceiver or a transceiver circuit, or the like.
  • the communication interface is a general term, and in a specific implementation, the communication interface may include multiple interfaces.
  • the storage module 1101 may be a memory.
  • the processing module 1102 is a processor
  • the communication module 1103 is a transceiver
  • the storage module 1101 is a memory
  • the communication apparatus 1200 involved in this embodiment of the present application may be as shown in FIG. 12 .
  • the communication device 1200 includes: a processor 1202 , a transceiver 1203 , and a memory 1201 .
  • the transceiver 1203 may be an independently set transmitter, and the transmitter may be used to send information to other devices, and the transceiver may also be an independently set receiver, used to receive information from other devices.
  • the transceiver may also be a component that integrates the functions of sending and receiving information, and the specific implementation of the transceiver is not limited in this embodiment of the present application.
  • the communication device 1200 may further include a bus 1204 .
  • the transceiver 1203, the processor 1202, and the memory 1201 may be connected to each other through a bus 1204; for the specific implementation of the bus 1204, reference may be made to the introduction in FIG. 10, which will not be repeated here.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, digital video disc (DVD), or semiconductor media (eg, solid state disk, SSD)) Wait.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network devices. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each functional unit may exist independently, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the present application can be implemented by means of software plus necessary general-purpose hardware, and of course hardware can also be used, but in many cases the former is a better implementation manner .
  • the technical solution of the present application can be embodied in the form of a software product.
  • the computer software product is stored in a readable storage medium, such as a floppy disk, a hard disk or an optical disk of a computer, and includes several instructions to make a
  • a computer device (which may be a personal computer, a server, or a network device, etc.) executes the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信号传输方法及通信装置,涉及通信技术领域,能够避免第一信号和同步信号块SSB信号之间的干扰,提高系统通信效率。该方法包括:网络设备确定第一资源,其中,第一资源和第二资源在时域上不重叠,第二资源用于发送同步信号块SSB信号,第一资源与第二资源存在对应关系。然后,网络设备在第一资源上传输至少一个第一信号,其中,第一信号用于探测目标的属性。

Description

信号传输方法及通信装置
本申请要求于2021年04月30日提交国家知识产权局、申请号为202110482926.9、发明名称为“信号传输方法及通信装置”的中国专利申请的优先权,以及要求于2021年08月24日提交国家知识产权局、申请号为202110975580.6、发明名称为“信号传输方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信号传输方法及通信装置。
背景技术
雷达通信一体化技术能够同时实现雷达探测与数据传输的功能。即,网络设备可以既发送雷达探测信号,以实现雷达探测功能,又发送同步信号块(synchronization signal block,SSB)信号,以使终端设备与网络设备之间同步,实现数据传输功能。
然而,若雷达探测信号的传输资源与SSB信号的传输资源在时域上重叠,即网络设备同时发送雷达探测信号和SSB信号,则不同信号之间容易产生干扰,系统通信效率低。
发明内容
本申请实施例提供一种信号传输方法及通信装置,能够避免第一信号(如雷达探测信号)和同步信号块SSB信号之间的干扰,提高系统通信效率。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供一种信号传输方法,该方法的执行主体可以是网络设备,也可以是应用于网络设备中的芯片。下面以执行主体是网络设备为例进行描述。该方法包括:网络设备确定第一资源,其中,第一资源和第二资源在时域上不重叠,第二资源用于发送同步信号块SSB信号,第一资源与第二资源存在对应关系。然后,网络设备在第一资源上传输至少一个第一信号,其中,第一信号用于探测目标的属性。其中,第一资源与第二资源存在对应关系,是指,第一资源与第二资源在资源位置上存在对应关系。
也就是说,网络设备确定的第一资源是时域上与第二资源不重叠的资源,两者之间在资源位置上存在对应关系。如此,第一信号与SSB信号的发送时间不同,以使第一信号与SSB信号不发生碰撞,互不干扰,从而提升系统通信效率。
在一种可能的设计中,在目标时长内,第一资源不包含第三资源中与SSB信号的候选位置重叠的资源。其中,目标时长由第二资源所在的至少一个时隙构成,第三资源是基于第一信号的传输周期确定的。
也就是说,第一资源是第三资源中除去与SSB信号的候选位置重叠的资源,所以,网络设备不同时传输第一信号和SSB信号,从而避免第一信号与SSB信号发生碰撞,以提高系统通信效率。
在一种可能的设计中,当第三资源中部分资源与SSB信号的候选位置重叠,则 第一资源至少包括:将第三资源中与SSB信号的候选位置重叠的资源提前或延后至少一个时域符号之后的资源。
也就是说,在第三资源中部分资源与SSB信号的候选位置重叠的情况下,移动(如提前或延后)与SSB信号的候选位置重叠的资源,以避免网络设备同时传输第一信号和SSB信号。
在一种可能的设计中,在目标时长内,第一资源由第三资源中与SSB信号的候选位置不重叠的资源构成。
也就是说,构成第一资源的资源均与SSB信号的候选位置不重叠,从而避免网络设备同时传输第一信号和SSB信号。
在一种可能的设计中,第一资源是基于第二资源确定的。也就是说,第一资源是以第二资源为基准,进行调整后的资源,以使第一资源与第二资源在时域上不重叠。
在一种可能的设计中,第一间隔与第二间隔不同。其中,第一间隔是目标时长内,至少一个第一信号中相邻两个第一信号之间的间隔。第二间隔是目标时长外,至少一个第一信号中相邻两个第一信号之间的间隔。目标时长是由第二资源所在的至少一个时隙构成。
也就是说,目标时长内相邻两个第一信号之间的时间间隔,与目标时长外相邻两个第一信号之间的时间间隔不同。
在一种可能的设计中,第一间隔为多个,且多个第一间隔的时间长度相同。其中,第一间隔为多个,是指:网络设备在目标时长内传输多个第一信号,每相邻两个第一信号之间存在一个第一间隔。如此,第一个间隔的数量为多个。换言之,第一信号在目标时长内仍保持等间隔传输。
在一种可能的设计中,在目标时长内,第一资源包括索引值为第一预设值的时域资源单元。
在一种可能的设计中,时域资源单元为时域符号,第一预设值包括以下其中一项:0、1、12、或13。
也就是说,在传输SSB信号的子载波间隔为120kHz的情况下,以单个时隙为粒度,第二资源始终不占用的时域符号索引如下:0、1、12、和13,所以,第一资源在目标时长内占用一个时隙内的符号0、1、12、或13中的一个,与第二资源在时域上不重叠,从而避免第一信号与SSB信号发生碰撞。
在一种可能的设计中,第一间隔为多个,且多个第一间隔中至少两个的时间长度不同。也就是说,第一信号在目标时长内可以不保持等间隔传输。
在一种可能的设计中,在目标时长内,第一资源包括索引值为第二预设值的时域资源单元。
在一种可能的设计中,时域资源单元为时域符号,且时域符号分布于两个连续的时隙,第二预设值包括以下至少三项:0、1、2、3、12、13、14、15、24、25、26、或27。其中,第二预设值中的任意两项之间的差值大于或等于第三预设值。
也就是说,每连续的两个时隙上至少存在三个第一资源。换言之,每两个时隙至少传输三个第一信号,提升了第一信号的时域密度,有利于提高雷达探测精度。并且,第二预设值中的任意两项之间的差值大于或等于第三预设值,也就使得第一资源在时 域上是非连续的,从而在一定程度上保证了第一信号均匀分布。
在一种可能的设计中,时域资源单元为时域符号,且时域符号分布于两个连续的时隙,第二预设值包括:3、13、24,或第二预设值包括:13、20、27。
在一种可能的设计中,第二资源是基于第一资源确定的。也就是说,第二资源是以第一资源为基准,进行调整后的资源,以使第一资源与第二资源在时域上不重叠。
在一种可能的设计中,第一间隔与第二间隔相同。其中,第一间隔是目标时长内,至少一个第一信号中相邻两个第一信号之间的间隔。第二间隔是目标时长外,至少一个第一信号中相邻两个第一信号之间的间隔。目标时长是由SSB信号的候选位置所在的至少一个时隙构成。
也就是说,无论在目标时长内,还是在目标时长外,第一信号保持相同的传输周期。
在一种可能的设计中,在目标时长内,第二资源包括索引值为第四预设值的时域资源单元,第四预设值满足如下公式:
Figure PCTCN2022087421-appb-000001
其中,M表示第四预设值,N为整数,且0≤N≤27,k为正整数。
也就是说,在第一信号的传输周期为7个时域符号的情况下,第一资源的时域符号索引满足:7*k-1。在N遍历28个整数(即从0至27)的过程中,承载SSB信号的时域符号索引不等于第一资源的时域符号索引,从而避免第一资源与第二资源在时域上重叠。
在一种可能的设计中,在目标时长内,第二资源包括索引值为第四预设值的时域资源单元,第四预设值满足如下公式:
Figure PCTCN2022087421-appb-000002
其中,M表示第四预设值,N的取值包括以下至少两项:0、1、2、7、8、9、14、15、16、21、22、或23。
在一种可能的设计中,N的取值包括:2、8、16、或22。
在一种可能的设计中,本申请实施例信号传输方法还包括:网络设备向终端设备发送指示信息,其中,指示信息指示所述索引值。
也就是说,在第一资源的资源位置保持不变,且第二资源是基于第一资源确定的情况下,网络设备先为终端设备指示第二资源的索引值,以使终端设备在指示信息指示的资源位置上接收SSB信号。
第二方面,本申请实施例提供一种信号传输方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。该方法包括:终端设备接收指示信息。其中,指示信息指示第二资源的位置信息。然后,终端设备在第二资源上,接收同步信号块SSB信号。
也就是说,在第一资源的资源位置保持不变,且第二资源是基于第一资源确定的 情况下,网络设备先为终端设备指示第二资源的位置信息,终端设备在指示信息指示的资源位置上接收SSB信号。
在一种可能的设计中,第二资源的位置信息包括第四预设值。其中,第四预设值包括第二资源的时域资源单元的索引值,且第四预设值满足如下公式:
Figure PCTCN2022087421-appb-000003
其中,M表示第四预设值,N为整数,且0≤N≤27,k为正整数。
在一种可能的设计中,第二资源的位置信息包括第四预设值。其中,第四预设值包括第二资源的时域资源单元的索引值,且第四预设值满足如下公式:
Figure PCTCN2022087421-appb-000004
其中,M表示第四预设值,N的取值包括以下至少两项:0、1、2、7、8、9、14、15、16、21、22、或23。
在一种可能的设计中,N的取值包括:2、8、16、或22。
第三方面,本申请实施例提供一种信号传输方法,该方法的执行主体可以是网络设备,也可以是应用于网络设备中的芯片。下面以执行主体是网络设备为例进行描述。该方法包括:网络设备确定第一资源。其中,第一资源和第二资源在时域上重叠,且在频域上不重叠,第二资源用于发送通信信号。第一资源与第二资源存在对应关系。然后,网络设备在第一资源上传输至少一个第一信号。其中,第一信号用于探测目标的属性。
也就是说,网络设备确定的第一资源是时域上与第二资源重叠,但频域上与第二资源不重叠的资源,两者之间在资源位置上存在对应关系。如此,第一信号与通信信号通过不同的频域资源发送,以使第一信号与通信信号不发生碰撞,互不干扰,从而提升系统通信效率。
在一种可能的设计中,第一资源包括系统带宽中频率最小的X个频域资源单元,X为正整数。或者,第一资源包括系统带宽中频率最大的Y个频域资源单元,Y为正整数。
在一种可能的设计中,本申请实施例信号传输方法还包括:网络设备向终端设备发送第一指示信息。其中,第一指示信息指示以下两项:
第一项,第一带宽与通信信号的带宽之和小于或等于系统带宽。其中,第一带宽是第一信号与通信信号在时域上重叠时的带宽。也就是说,在第一信号配置的带宽为系统带宽的情况下,网络设备为终端设备指示第一信号与通信信号重叠时的第一带宽,以使终端设备基于指示信息指示的第一带宽来接收第一信号。
第二项,第二带宽等于系统带宽。其中,第二带宽是第一信号与通信信号在时域上不重叠时的带宽。也就是说,在第一信号配置的带宽为系统带宽的情况下,网络设备为终端设备指示第一信号与通信信号不重叠时的第二带宽,以使终端设备基于指示信息指示的第二带宽来接收第一信号。
在一种可能的设计中,本申请实施例信号传输方法还包括:网络设备向终端设备发送第二指示信息。其中,第二指示信息指示以下两项:第一信号的带宽等于系统带 宽,网络设备在第二资源上未发送第一信号,以使终端设备获知第一信号的带宽,且无需在第二资源上接收第一信号。
在一种可能的设计中,第一资源包括系统带宽中除第二资源之外的频域资源单元。
在一种可能的设计中,本申请实施例信号传输方法还包括:网络设备向终端设备发送第三指示信息。其中,第三指示信息指示第一资源的位置信息,以使终端设备获取第一资源的资源位置。
在一种可能的设计中,第三指示信息还指示第四资源的位置信息,其中,第四资源和第二资源在时域上不重叠,第四资源用于传输第一信号,以使终端设备获取第四资源的资源位置。
在一种可能的设计中,第一信号上承载有通信信息。也就是说,网络设备通过第一信号向终端设备发送通信信息。
在一种可能的设计中,通信信号包括同步信号块SSB信号。
第四方面,本申请实施例提供一种信号传输方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。该方法包括:终端设备在第一资源上,接收至少一个第一信号。其中,第一信号上承载有通信信息,第一资源和第二资源在时域上重叠,且在频域上不重叠,第二资源用于接收通信信号。第一资源与第二资源存在对应关系。
在一种可能的设计中,第一资源包括系统带宽中频率最小的X个频域资源单元,X为正整数;或者,第一资源包括系统带宽中频率最大的Y个频域资源单元,Y为正整数。
在一种可能的设计中,本申请实施例信号传输方法还包括:终端设备接收来自网络设备的第一指示信息。其中,第一指示信息指示以下两项:
第一项,第一带宽与通信信号的带宽之和小于或等于系统带宽。其中,第一带宽是第一信号与通信信号在时域上重叠时的带宽。
第二项,第二带宽等于系统带宽。其中,第二带宽是第一信号与通信信号在时域上不重叠时的带宽。
在一种可能的设计中,本申请实施例信号传输方法还包括:终端设备接收来自网络设备的第二指示信息。其中,第二指示信息指示以下两项:第一信号的带宽等于系统带宽,网络设备在第二资源上未发送第一信号。相应的,终端设备根据第二指示信息指示的内容,即可确定第一信号的带宽,以及自身在第二资源上无需接收第一信号。
在一种可能的设计中,第一资源包括系统带宽中除第二资源之外的频域资源单元。
在一种可能的设计中,本申请实施例信号传输方法还包括:终端设备接收来自网络设备的第三指示信息。其中,第三指示信息指示第一资源的位置信息。
在一种可能的设计中,第三指示信息还指示第四资源的位置信息。其中,第四资源和第二资源在时域上不重叠,第四资源用于传输第一信号。
在一种可能的设计中,通信信号包括同步信号块SSB信号。
第五方面,本申请实施例提供一种通信装置,该通信装置可以为上述第一方面或第一方面任一种可能的设计中的网络设备,或者为设置于上述网络设备内的装置,或者实现上述网络设备功能的芯片;所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相 应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
该通信装置包括处理模块和通信模块。其中,处理模块,用于确定第一资源,第一资源和第二资源在时域上不重叠,第二资源用于发送同步信号块SSB信号,第一资源与第二资源存在对应关系。通信模块,用于在第一资源上传输至少一个第一信号,其中,第一信号用于探测目标的属性。
在一种可能的设计中,第一资源是基于第二资源确定的。
在一种可能的设计中,第一间隔与第二间隔不同。其中,第一间隔是目标时长内,至少一个第一信号中相邻两个第一信号之间的间隔。第二间隔是目标时长外,至少一个第一信号中相邻两个第一信号之间的间隔。目标时长是由第二资源所在的至少一个时隙构成。
在一种可能的设计中,第一间隔为多个,且多个第一间隔的时间长度相同。
在一种可能的设计中,在目标时长内,第一资源包括索引值为第一预设值的时域资源单元。
在一种可能的设计中,时域资源单元为时域符号,第一预设值包括以下其中一项:0、1、12、或13。
在一种可能的设计中,第一间隔为多个,且多个第一间隔中至少两个的时间长度不同。
在一种可能的设计中,在目标时长内,第一资源包括索引值为第二预设值的时域资源单元。
在一种可能的设计中,时域资源单元为时域符号,且时域符号分布于两个连续的时隙,第二预设值包括以下至少三项:0、1、2、3、12、13、14、15、24、25、26、或27;
其中,第二预设值中的任意两项之间的差值大于或等于第三预设值。
在一种可能的设计中,时域资源单元为时域符号,且时域符号分布于两个连续的时隙,第二预设值包括:3、13、24,或第二预设值包括:13、20、27。
在一种可能的设计中,第一间隔与第二间隔相同。其中,第一间隔是目标时长内,至少一个第一信号中相邻两个第一信号之间的间隔。第二间隔是目标时长外,至少一个第一信号中相邻两个第一信号之间的间隔。目标时长是由SSB信号的候选位置所在的至少一个时隙构成。
在一种可能的设计中,在目标时长内,第二资源包括索引值为第四预设值的时域资源单元,第四预设值满足如下公式:
Figure PCTCN2022087421-appb-000005
其中,M表示第四预设值,N为整数,且0≤N≤27,k为正整数。
在一种可能的设计中,在目标时长内,第二资源包括索引值为第四预设值的时域资源单元,第四预设值满足如下公式:
Figure PCTCN2022087421-appb-000006
其中,M表示第四预设值,N的取值包括以下至少两项:0、1、2、7、8、9、14、15、16、21、22、或23。
在一种可能的设计中,N的取值包括:2、8、16、或22。
在一种可能的设计中,通信模块还用于向终端设备发送指示信息,其中,指示信息指示索引值。
第六方面,本申请实施例提供一种通信装置,该通信装置可以为上述第二方面或第二方面任一种可能的设计中的终端设备,或者为设置于上述终端设备内的装置,或者实现上述终端设备功能的芯片;所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
该通信装置包括处理模块和通信模块。处理模块通过通信模块接收指示信息,其中,指示信息指示第二资源的位置信息;以及在第二资源上,接收同步信号块SSB信号。
在一种可能的设计中,第二资源的位置信息包括第四预设值。其中,第四预设值包括第二资源的时域资源单元的索引值,且第四预设值满足如下公式:
Figure PCTCN2022087421-appb-000007
其中,M表示第四预设值,N为整数,且0≤N≤27,k为正整数。
在一种可能的设计中,第二资源的位置信息包括第四预设值。其中,第四预设值包括第二资源的时域资源单元的索引值,且第四预设值满足如下公式:
Figure PCTCN2022087421-appb-000008
其中,M表示第四预设值,N的取值包括以下至少两项:0、1、2、7、8、9、14、15、16、21、22、或23。
在一种可能的设计中,N的取值包括:2、8、16、或22。
第七方面,本申请实施例提供一种通信装置,该通信装置可以为上述第三方面或第三方面任一种可能的设计中的网络设备,或者为设置于上述网络设备内的装置,或者实现上述网络设备功能的芯片;所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
该通信装置包括处理模块和通信模块。其中,处理模块,用于确定第一资源。其中,第一资源和第二资源在时域上重叠,且在频域上不重叠,第二资源用于发送通信信号。第一资源与第二资源存在对应关系。通信模块,用于在第一资源上传输至少一个第一信号,其中,第一信号用于探测目标的属性。
在一种可能的设计中,第一资源包括系统带宽中频率最小的X个频域资源单元,X为正整数。或者,第一资源包括系统带宽中频率最大的Y个频域资源单元,Y为正整数。
在一种可能的设计中,通信模块,还用于向终端设备发送第一指示信息。其中,第一指示信息指示以下两项:
第一项,第一带宽与通信信号的带宽之和小于或等于系统带宽。其中,第一带宽是第一信号与通信信号在时域上重叠时的带宽。
第二项,第二带宽等于系统带宽。其中,第二带宽是第一信号与通信信号在时域上不重叠时的带宽。
在一种可能的设计中,通信模块,还用于向终端设备发送第二指示信息。其中,第二指示信息指示以下两项:
第一项,第一信号的带宽等于系统带宽。
第二项,通信装置在第二资源上未发送第一信号。
在一种可能的设计中,第一资源包括系统带宽中除第二资源之外的频域资源单元。
在一种可能的设计中,通信模块,还用于向终端设备发送第三指示信息。其中,第三指示信息指示第一资源的位置信息。
在一种可能的设计中,第三指示信息还指示第四资源的位置信息。其中,第四资源和第二资源在时域上不重叠,第四资源用于传输第一信号。
在一种可能的设计中,第一信号上承载有通信信息。
在一种可能的设计中,通信信号包括同步信号块SSB信号。
第八方面,本申请实施例提供一种通信装置,该通信装置可以为上述第四方面或第四方面任一种可能的设计中的终端设备,或者为设置于上述终端设备内的装置,或者实现上述终端设备功能的芯片;所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
该通信装置包括处理模块和通信模块。处理模块通过通信模块在第一资源上,接收至少一个第一信号。其中,第一信号上承载有通信信息,第一资源和第二资源在时域上重叠,且在频域上不重叠,第二资源用于接收通信信号。第一资源与第二资源存在对应关系。
在一种可能的设计中,第一资源包括系统带宽中频率最小的X个频域资源单元,X为正整数。或者,第一资源包括系统带宽中频率最大的Y个频域资源单元,Y为正整数。
在一种可能的设计中,通信模块,还用于接收来自网络设备的第一指示信息。其中,第一指示信息指示以下两项:
第一项,第一带宽与通信信号的带宽之和小于或等于系统带宽,其中,第一带宽是第一信号与通信信号在时域上重叠时的带宽。
第二项,第二带宽等于系统带宽,其中,第二带宽是第一信号与通信信号在时域上不重叠时的带宽。
在一种可能的设计中,通信模块,还用于接收来自网络设备的第二指示信息。其中,第二指示信息指示以下两项:第一项,第一信号的带宽等于系统带宽。第二项,网络设备在第二资源上未发送第一信号。
在一种可能的设计中,第一资源包括系统带宽中除第二资源之外的频域资源单元。
在一种可能的设计中,通信模块,还用于接收来自网络设备的第三指示信息。其中,第三指示信息指示第一资源的位置信息。
在一种可能的设计中,第三指示信息还指示第四资源的位置信息。其中,第四资源和第二资源在时域上不重叠,第四资源用于传输第一信号。
在一种可能的设计中,通信信号包括同步信号块SSB信号。
第九方面,本申请实施例提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,使得该通信装置执行上述任一方面或任一方面任一种可能的设计中网络设备所执行的方法。该通信装置可以为上述第一方面或第一方面任一种可能的设计中的网络设备,或者实现为上述第三方面或第三方面任一种可能的设计中的网络设备,或者实现上述网络设备功能的芯片。
第十方面,本申请实施例提供了一种通信装置,包括:处理器;所述处理器与存储器耦合,用于读取存储器中的指令并执行,以使该通信装置执行如上述任一方面或任一方面任一种可能的设计中的网络设备所执行的方法。该通信装置可以为上述第一方面或第一方面任一种可能的设计中的网络设备,或者实现为上述第三方面或第三方面任一种可能的设计中的网络设备,或者实现上述网络设备功能的芯片。
第十一方面,本申请实施例提供一种芯片,包括逻辑电路和输入输出接口。其中,输入输出接口用于与芯片之外的模块通信,例如,该芯片可以为实现上述第一方面或第一方面任一种可能的设计中的网络设备功能的芯片。输入输出接口输出第一信号。逻辑电路用于运行计算机程序或指令,以实现以上第一方面或第一方面任一种可能的设计中的方法。再如,该芯片可以为实现上述第三方面或第三方面任一种可能的设计中的网络设备功能的芯片。输入输出接口输出第一信号。逻辑电路用于运行计算机程序或指令,以实现以上第三方面或第三方面任一种可能的设计中的方法。
第十二方面,本申请实施例提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,使得该通信装置执行上述任一方面或任一方面任一种可能的设计中终端设备所执行的方法。该通信装置可以为上述第二方面或第二方面任一种可能的设计中的终端设备,或者实现为上述第四方面或第四方面任一种可能的设计中的终端设备,或者实现上述终端设备功能的芯片。
第十三方面,本申请实施例提供了一种通信装置,包括:处理器;所述处理器与存储器耦合,用于读取存储器中的指令并执行,以使该通信装置执行如上述任一方面或任一方面任一种可能的设计中的终端设备所执行的方法。该通信装置可以为上述第二方面或第二方面任一种可能的设计中的终端设备,或者实现为上述第四方面或第四方面任一种可能的设计中的终端设备,或者实现上述终端设备功能的芯片。
第十四方面,本申请实施例提供一种芯片,包括逻辑电路和输入输出接口。其中,输入输出接口用于与芯片之外的模块通信,例如,该芯片可以为实现上述第二方面或第二方面任一种可能的设计中的终端设备功能的芯片。输入输出接口输入指示信息和SSB信号。逻辑电路用于运行计算机程序或指令,以实现以上第二方面或第二方面任一种可能的设计中的方法。再如,该芯片可以为实现上述第四方面或第四方面任一种可能的设计中的终端设备功能的芯片。输入输出接口输入指示信息和第一信号。逻辑电路用于运行计算机程序或指令,以实现以上第四方面或第四方面任一种可能的设计中的方法。
第十五方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面中任一项的方法。
第十六方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面中任一项的方法。
第十七方面,本申请实施例提供一种电路系统,电路系统包括处理电路,处理电路被配置为执行如上述任一方面中任一项的方法。
第十八方面,本申请实施例提供一种通信系统,该通信系统包括上述各个方面中任一项中的终端设备和网络设备。
其中,第五方面至第十八方面中任一种设计所带来的技术效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种同步信号块的结构示意图;
图2a为本申请实施例提供的一种同步信号块的位置示意图;
图2b为本申请实施例提供的再一种同步信号块的位置示意图;
图3为本申请实施例提供的一种网络架构的示意图;
图4为本申请实施例提供的一种信号传输方法的流程示意图;
图5a为本申请实施例提供的一种资源分布示意图;
图5b为本申请实施例提供的再一种资源分布示意图;
图5c为本申请实施例提供的又一种资源分布示意图;
图5d为本申请实施例提供的又一种资源分布示意图;
图5e为本申请实施例提供的又一种资源分布示意图;
图6a为本申请实施例提供的再一种信号传输方法的流程示意图;
图6b为本申请实施例提供的又一种信号传输方法的流程示意图;
图7为本申请实施例提供的又一种信号传输方法的流程示意图;
图8a为本申请实施例提供的又一种资源分布示意图;
图8b为本申请实施例提供的又一种资源分布示意图;
图9a为本申请实施例提供的又一种信号传输方法的流程示意图;
图9b为本申请实施例提供的又一种信号传输方法的流程示意图;
图10为本申请实施例提供的一种芯片的结构示意图;
图11为本申请实施例提供的一种通信装置的结构示意图;
图12为本申请实施例提供的再一种通信装置的结构示意图。
具体实施方式
本申请的说明书以及附图中的术语“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。此外,本申请的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。本申请实施例中,“多个”包括两个或两个以上。本申请 实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。在本申请实施例中,“传输”视具体情况,可以包括“发送”或“接收”,还可以包括发送和接收。
首先,介绍本申请中所涉及的技术术语:
1、同步信号块(synchronization signal block,SSB)信号
在新无线(new radio,NR)中,网络设备周期性地发送SSB信号。一个SSB信号包括同步信号(synchronization signal,SS)和物理广播信道(physical broadcast channel,PBCH)。其中,SS包括主同步信号(primary synchronization signal,PSS)和辅同步信号(secondary synchronization signal,SSS)。终端设备通过PSS和SSS识别小区以及和小区进行同步。终端设备通过PBCH获得最基本的系统信息,例如系统帧号、帧内定时信息等。终端设备成功接收SSB信号是其接入该小区的前提。
如图1所示,在时域上,一个SSB信号占4个时域符号,如图1中时域符号编号为0至3的4个时域符号。在频域上,一个SSB信号占20个资源块(resource block,RB),也就是240个子载波,在这20个RB内,子载波编号为0~239。PSS位于时域符号0的中间的127个子载波上,SSS位于时域符号2的中间的127个子载波上。为了保护PSS和SSS,分别有不同的保护子载波被设为0,也就是保护子载波不用于承载信号,在SSS两侧分别留了8个子载波和9个子载波用于作为保护带子载波,如图1中的SSS两侧的空白区域就是保护子载波。PBCH占用时域符号1和时域符号3的全部子载波,以及占用时域符号2的全部子载波中除了SSS所占用的子载波之外的剩余的子载波中的一部分子载波(即剩余的子载波中除了保护子载波之外的子载波)。
一个SSB信号关联一个索引(index),以标识该SSB信号。在一个半帧中,一个SSB信号的索引为0时,该索引标识的SSB信号是该半帧中的首个SSB信号,一个SSB信号的索引为1时,该索引标识的SSB信号是该半帧中的第二个SSB信号,其它可以此类推。示例性的,在图2a中,索引0标识的SSB信号为半帧中的首个SSB信号,所占时域符号的索引为4至7。索引1标识的SSB信号为半帧中的第二个SSB信号,所占时域符号的索引为8至11。索引2标识的SSB信号为半帧中的第三个SSB信号,所占时域符号的索引为16至19。索引3标识的SSB信号为半帧中的第四个SSB信号,所占时域符号的索引为20至23。在图2b中,索引0标识的SSB信号为半帧中的首个SSB信号,所占时域符号的索引为4至7,索引1标识的SSB信号为半帧中的第二个SSB信号,所占时域符号的索引为16至19。索引上连续的两个SSB信号在时域上可以连续,如图2a中索引0标识的SSB信号和索引1标识的SSB信号。索引上连续的两个SSB信号在时域上也可以不连续,如图2b中索引0标识的SSB信号和索引1标识的SSB信号。
需要说明的是,若传输SSB信号的子载波间隔(subcarrier spacing,SCS)不同,则SSB信号的候选位置也不一样。下面,基于不同的子载波间隔,分5种情况(case)对SSB信号的候选位置进行介绍:
情况A,在SCS为15kHz的情况下,SSB信号的时域符号索引满足:
{2,8}+14*n    公式(1)
其中,在没有共享频谱信道接入的情况下,若载波频率小于或等于3GHz,则n=0,1,若频率范围(frequency range)大于3GHz,则n=0,1,2,3。在有共享频谱信道接入的情况下,n=0,1,2,3,4。
示例性的,在有共享频谱信道接入的情况下,SSB信号的候选位置最多有10个。在n=0的情况下,对应两个SSB信号的候选位置。其中,第一个候选位置的首个时域符号索引为2,第二个候选位置的首个时域符号索引为8。
情况B,在SCS为30kHz的情况下,SSB信号的时域符号索引满足:
{4,8,16,20}+28*n    公式(2)
其中,若载波频率小于或等于3GHz,则n=0,若频率范围大于3GHz,则n=0,1。
情况C,在SCS为30kHz的情况下,SSB信号的时域符号索引满足:
{2,8}+14*n     公式(3)
其中,在没有共享频谱信道接入的情况下,对于配对的频谱而言,若载波频率小于或等于3GHz,则n=0,1,若频率范围大于3GHz,则n=0,1,2,3。对于无配对的频谱而言,若载波频率小于1.88GHz,则n=0,1,若频率范围大于或等于1.88GHz,则n=0,1,2,3。在有共享频谱信道接入的情况下,n=0,1,2,3,4,5,6,7,8,9。
情况D,在SCS为120kHz的情况下,SSB信号的时域符号索引满足:
{4,8,16,20}+28*n    公式(4)
其中,若载波频段属于频率范围2(frequency range 2,FR2),则n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18。
情况E,在SCS为240kHz的情况下,SSB信号的时域符号索引满足:
{8,12,16,20,32,36,40,44}+56*n     公式(5)
其中,若载波频段属于FR2,则n=0,1,2,3,5,6,7,8。
需要说明的是,在终端设备与网络设备之间实现同步的过程中,终端设备按照协议规定,在上述SSB信号的候选位置上接收来自网络设备的SSB信号,网络设备无需为终端设备指示SSB信号的候选位置。上述公式(1)至公式(5),均指示SSB信号的候选位置的首个时域符号的索引。
2、频率范围
在第三代合作伙伴计划3GPP协议中,第五代移动通信技术(the 5th generation mobile communication technology,5G)网络的总体频谱资源可以分为以下两个频率范围,如下表1所示:
表1
频率范围名称 频率范围
FR1 410MHz–7125MHz
FR2 24250MHz–52600MHz
应理解,上述FR1、FR2的命名不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他名称来表示相同或相似含义的可能。
FR1:Sub 6G频段,换句话说,低频频段,为5G网络的主用频段。在FR1中,3GHz以下的频率可以称为Sub 3G,其余波段可以称为C-band。应理解,FR1对应的频率范围可以对应于如表1所示的410MHz–7125MHz,但不限于此,本申请并不排除在未来的协 议中定义其他的范围来表示相同或相似含义的可能。
FR2:6G以上的毫米波,换句话说,高频频段,为5G网络的扩展频段,频谱资源丰富。应理解,FR2对应的频率范围可以对应于如表1所示的24250MHz–52600MHz,但不限于此,本申请并不排除在未来的协议中定义其他的范围来表示相同或相似含义的可能。
3、雷达探测
雷达装置发射雷达探测信号,雷达探测信号遇到目标物体之后发生漫反射,形成回波信号。雷达装置接收经过目标物体反射的回波信号,基于雷达探测信号和回波信号从而实现目标物体探测,如确定目标物体的距离、方位、高度、速度、姿态、形状等特征量。其中,雷达装置,也可以称为雷达、探测器、或雷达探测装置等。
雷达探测,也可以描述为雷达感知,多应用于交通探测、气象监测等场景。但是如果单独使用雷达对广范围探测,会有较高成本。因此,将无线通信丰富的频谱资源与雷达探测进行融合,可支持连续组网等大规模需求。
4、雷达通信一体化
雷达通信一体化,是指通过共用硬件设备来同时实现雷达探测与数据传输的功能。在雷达探测功能融合到网络设备后,网络设备既发送雷达探测信号,以实现雷达探测功能,又发送SSB信号,以使终端设备与网络设备之间实现同步,从而传输数据。
然而,在雷达探测信号的传输资源与SSB信号的传输资源重叠的情况下,即网络设备同时发送雷达探测信号和SSB信号,不同信号之间容易产生干扰,影响雷达探测信号和SSB信号的正常传输,系统通信效率低。
有鉴于此,本申请实施例提供一种信号传输方法,本申请实施例信号传输方法适用于各种通信系统。本申请实施例提供的信号传输方法可以应用于长期演进(long term evolution,LTE)系统,或者5G网络,或者其他类似的网络中,或者未来的其它网络中。图3为可适用于本申请实施例信号传输方法的通信系统的架构示意图,该通信系统包括网络设备301和终端设备302-307。图3中仅示出了一个网络设备和六个终端设备。图3仅为示意图,并不构成对本申请实施例信号传输方法的适用场景的限定。
其中,终端设备,也可以称为用户设备(user equipment,UE)、终端、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置等。终端设备可以是无线终端,也可以是有线终端。无线终端可以是指一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是无人机、物联网(internet of things,IoT)设备(例如,传感器,电表,水表等)、车联网(vehicle-to-everything,V2X)设备、无线局域网(wireless local area networks,WLAN)中的站点(station,ST)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(也可以称为穿戴式智能设备)。终端设备还可以为下一代通信系统中的终端,例如,5G通信系统中的终端或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的终端等,本申请实施例对此不作限定。示例性的,在图3中,终端设备可以为高铁通信设备302、智能空调303、智能加油机304、 手机305、智能茶杯306、打印机307等,本申请实施例对此不作限定。
网络设备是无线通信网络中的设备,例如将终端设备接入到无线通信网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP),或5G通信网络或5G之后的通信网络中的网络侧设备等。网络设备可以是一个物理实体,也可以是多个物理实体的组合,该多个物理实体可以部署在同一位置,也可以部署在不同位置,该多个物理实体用于共同实现该网络实体的功能。
本申请实施例描述的通信系统以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面,对本申请实施例提供的信号传输方法进行具体阐述。本申请实施例信号传输方法的技术构思如下:网络设备确定第一资源,其中,第一资源和第二资源在时域上不重叠,第二资源用于发送同步信号块SSB信号,第一资源与第二资源存在对应关系。然后,网络设备在第一资源上传输至少一个第一信号,其中,第一信号用于探测目标的属性。也就是说,网络设备确定的第一资源是时域上与第二资源不重叠的资源,两者之间在资源位置上存在对应关系。如此,第一信号与SSB信号的传输时间不同,以使第一信号与SSB信号不发生碰撞,互不干扰,从而提升系统通信效率。示例性的,第一信号可以是雷达探测信号,也可以是雷达探测信号的回波信号。第一资源与第二资源存在对应关系,具体说明可以参见下述介绍,此处不再赘述。
作为一种实施方式,第一资源是基于第二资源确定的。也就是说,在第二资源的资源位置保持不变的情况下,通过调整第一信号的资源位置,以得到第一资源,从而实现第一资源与第二资源在时域上不重叠。其中,第二资源是从SSB信号的候选位置中确定的用于发送SSB信号的资源。在本申请实施例中,SSB信号的候选位置是3GPP协议技术规范(technical specification,TS)38.213规定的候选位置,具体参见上述5种情况的介绍。
作为另一种实施方式,第二资源是基于第一资源确定的。也就是说,在第一信号的传输周期保持不变的情况下,通过调整SSB信号的候选位置,以得到第二资源,从而实现第一资源与第二资源在时域上不重叠。
下面结合具体示例,对本申请实施例进行说明。下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字。在本申请实施例中,以单个时隙为粒度时,在时域符号的前缀为普通循环前缀(normal cyclic prefix,NCP)的情况下,时域符号的索引值范围是[0,13]。以连续两个时隙为粒度时,时域符号的索引值范围是[0,27]。第一资源用于传输至少一个第一信号。第二资源用于传输至少一个SSB信号。第三资源是基于第一信号的传输周期确定的资源,即不考虑与SSB的干扰,第一信号所在的资源。第一资源与第二资源存在对应关系,可以是指,在预设数量的时域 资源单元中,第一资源与第二资源在资源位置上存在对应关系,如一个第一资源与多个第二资源中的每一第二资源在资源位置上存在对应关系,或多个第一资源中的每一第一资源与多个第二资源中的每一第二资源在资源位置上存在对应关系。例如,以单个时隙为粒度,在同一时隙中,第一资源的数量为一个,占用索引13的时域符号。第二资源的数量为两个,占用的时域符号索引包括:4、5、6、7、8、9、10、11。该时隙中的一个第一资源与两个第二资源在时域符号上分别存在对应关系,如第一资源与首个第二资源在时域上间隔9个时域符号,第一资源与第二个第二资源在时域上间隔5个时域符号。再如,以单个时隙为粒度,在同一时隙中,第一资源的数量为两个,占用的时域符号索引包括3和13。第二资源的数量为两个,占用的时域符号索引包括:4至11。在该时隙中,每个第一资源与每个第二资源在时域符号上分别存在对应关系,如首个第一资源与首个第二资源在时域上连续,首个第一资源与第二个第二资源在时域上间隔5个时域符号,第二个第一资源与首个第二资源在时域上间隔9个时域符号,第二个第一资源与第二个第二资源在时域上间隔4个时域符号。又如,以两个连续的时隙为粒度,在两个连续的时隙中,第一资源的数量为三个,占用的时域符号索引包括3、13和24。第二资源的数量为四个,占用的时域符号索引包括:4至11、16至23。在该时隙中,每个第一资源与每个第二资源在时域符号上分别存在对应关系,如首个第一资源与四个第二资源在时域上的位置关系依次为:时域连续、间隔5个时域符号、间隔13个时域符号、间隔20个时域符号,第二个第一资源与四个第二资源在时域上的位置关系依次为:间隔9个时域符号、间隔5个时域符号、间隔3个时域符号、间隔7个时域符号,第三个第一资源与四个第二资源在时域上的位置关系依次为:间隔20个时域符号、间隔16个时域符号、间隔8个时域符号、时域连续。在本申请实施例中,两个资源之间的间隔,是指,以两个资源的索引为基准来确定的差值。例如,同一时隙中,资源1占用时域符号的索引为1,资源2占用时域符号的索引为6,则资源1与资源2之间的间隔为5个时域符号。应理解,两个资源之间的间隔,也可以同等替换为,位于两个资源之间的时域资源单元数量,但在数值上相差1。仍以上述资源1和资源2为例,位于资源1与资源2之间的时域符号数量为4个。另外,上述至少一个第一信号也可以作为一个整体,描述为第一信号。第一资源为至少一个,且至少一个第一资源中每个第一资源上承载一个信号,每个第一资源上承载的信号,描述为子信号。也就是说,第一信号包括至少一个子信号。为了描述方便,本申请实施例中,是以网络设备为网络设备301,终端设备为终端设备305为例进行介绍。在此统一说明,以下不再赘述。
本申请实施例提供一种信号传输方法400,该信号传输方法400应用在雷达通信一体化的信号传输过程中。参见图4,该方法包括如下步骤:
S401、网络设备301确定第一资源。
其中,第一资源和第二资源在时域上不重叠。第一资源的数量为一个或多个,且多个第一资源中任意两个相邻的第一资源在时域上可以连续,也可以不连续。每个第一资源可以是一个时域符号。具体的,网络设备301可以确定一个或多个第一资源。可以理解的,第一资源和第二资源在时域上不重叠,当第一资源的数量和第二资源的数量都为多个时,该多个第一资源中任一第一资源和多个第二资源中任一第二资源在时域上均不重叠。
其中,每个第二资源可以是时域上连续的四个时域符号,详见图1的相关说明。第二 资源的数量可以为多个,在多个第二资源中,任意两个相邻的第二资源在时域上可以连续,如图2a中索引为0的SSB占用的时域资源和索引为1的SSB占用的时域资源是连续的,索引为2的SSB占用的时域资源和索引为3的SSB占用的时域资源是连续的。任意两个第二资源也可以不连续,如图2a中,索引为1的SSB占用的时域资源和索引为2的SSB占用的时域资源是不连续的,再如图2b中,索引为0的SSB占用的时域资源和索引为1的SSB占用的时域资源是不连续的。
其中,S401的具体实现方式包括如下两种:
作为第一种实现方式,第一资源是基于第二资源确定的。也就是说,在第二资源的资源位置保持不变的情况下,通过调整第一信号的资源位置,以得到第一资源,从而实现第一资源与第二资源在时域上不重叠。其中,第二资源是从SSB信号的候选位置中确定的用于发送SSB信号的资源。示例性的,当第三资源与SSB信号的候选位置重叠,则第一资源不包含第三资源中与SSB信号的候选位置重叠的资源。下面,分三种示例进行介绍:
作为第一种实现方式的示例一、在第二资源的资源位置密度较高的情况下,第一信号在目标时长内仍保持等间隔传输。其中,目标时长是由第二资源所在的至少一个时隙构成。以第二资源属于3GPP TS 38.213规定的资源位置为例,目标时长是一个半帧,为5ms。第二资源的资源位置密度较高,可以是指,SSB信号的数量小于或等于64,即可以理解为一个SSB突发(burst)中包括的SSB信号的数量小于或等于64。例如,在协议3GPP TS 38.213中,传输SSB信号的子载波的子载波间隔为120kHz的情况下,SSB信号的候选位置最大可支持64个,即公式(4)中,n的取值数量达到最大,为16个。在SSB信号的候选位置占满的情况下,SSB信号的数量为64,即5ms内发送64个SSB信号。
也就是说,在目标时长内,任意相邻两个的第一信号之间的间隔相同。换言之,在目标时长内,将上述至少一个第一信号中相邻两个第一信号之间的间隔记为第一间隔的情况下,第一间隔为多个,且多个第一间隔的时间长度相同。其中,第一间隔为多个,是指:网络设备301在目标时长内传输多个第一信号,每相邻两个第一信号之间存在一个第一间隔。如此,第一个间隔的数量为多个。
示例性的,在目标时长内,第一资源包括索引值为第一预设值的时域资源单元。以时域资源单元为时域符号为例,在传输SSB信号的子载波间隔为120kHz的情况下,以单个时隙为粒度,第二资源始终不占用的时域符号索引如下:0、1、12、和13。所以,第一预设值包括以下其中一项:0、1、12、或13。即第一资源在目标时长内占用时隙内的时域符号0、1、12、或13中的一个,与第二资源在时域上不重叠,从而避免第一信号与SSB信号发生碰撞。具体的,第一预设值可以是0,1,12,13,{0,1},{12,13}中的一项,其中,{0,1}表示同时占用时域符号0和时域符号1。应理解,以SSB信号的子载波间隔为120kHz为例,在目标时长(5ms)内,网络设备301在每个时隙中的时域符号12上传输第一信号的情况下,存在40个第一间隔,且每个第一间隔都是1个时隙(即14个符号)。在目标时长(5ms)内,网络设备301在每个时隙中的时域符号0和时域符号1上传输第一信号的情况下,存在40个第一间隔,且每个第一间隔都是13个时域符号。
示例性的,参见图5a,图5a示出了一种资源分布示意图。第二资源的资源位置是基于3GPP TS 38.213的情况D确定的。在SSB信号的数量为64的情况下,即SSB信号占用了半帧内的所有的SSB的候选位置。在半帧内,第一资源的时域符号索引为13,即第一 资源为多个,且为前5ms中每个时隙上索引13的时域符号。也就是说,网络设备301在5ms内每个时隙中的时域符号13上传输第一信号。以两个连续的时隙为粒度,第二资源始终占用的时域符号索引如下:4、5、6、7、8、9、10、11、16、17、18、19、20、21、22、23。如此,多个第一资源中任一第一资源与多个第二资源中任一第二资源在时域上不重叠。并且,每相邻两个第一信号之间存在一个第一间隔的情况下,每个第一间隔的时间长度相同。
应理解,仍以时域资源单元为时域符号为例,在传输SSB信号的子载波间隔为120kHz的情况下,若以相邻两个时隙为粒度,则第二资源的资源位置始终不占用的时域符号索引如下:0、1、2、3、12、13、14、15、24、25、26、27。所以,在每两个第一预设值中,一个第一预设值包括以下其中一项:0、1、2、3、12、13,另一个第一预设值包括以下其中一项:14、15、24、25、26、27。如此,多个第一资源中任一第一资源与多个第二资源中任一第二资源在时域上不重叠,从而避免第一信号与SSB信号发生碰撞。在以相邻两个时隙为粒度的情况下,第一信号在目标时长内可以保持等间隔传输,比如,两个第一预设值为0和14,1和15,12和26,13和27,{0和1,14和15},{12和13,26和27}中的一组时,相邻两个第一信号间的第一间隔都是1个时隙。第一信号在目标时长内也可以不保持等间隔传输,比如,两个第一预设值为0和15,1和14,12和27,13和26,{0和1,24和25},{12和13,25和26}中的一组时,相邻两个第一信号间的第一间隔是不一样的,即第一信号的传输是不等间隔的,但网络设备301在每个时隙中能够传输一个第一信号,且不与SSB信号发生碰撞。
作为第一种实现方式的示例二、在第二资源的资源位置密度较高的情况下,第一信号在目标时长内仍能够保持较高的时域密度。其中,目标时长的介绍可以参见上述示例一的相关说明,此处不再赘述。
此种情况下,在目标时长内,两个相邻的第一信号之间的间隔不全一样,即至少存在“两个相邻的第一信号之间的间隔”与“另外两个相邻的第一信号之间的间隔”不同。换言之,在目标时长内,第一间隔为多个,且多个第一间隔中至少两个第一间隔的时间长度不同。其中,“第一间隔为多个”可以参见上述示例一的相关说明,此处不再赘述。例如,以两个时隙为粒度,在目标时长(5ms)内,网络设备301在时域符号3、13和24上分别传输第一信号的情况下,存在3种长度的第一间隔,即时域符号3与时域符号13之间的第一间隔为10个时域符号,时域符号13与时域符号24之间的第一间隔为11个时域符号,时域符号24与下一个时隙中的时域符号3之间的第一间隔为7个时域符号。
示例性的,在目标时长内,第一资源包括索引值为第二预设值的时域资源单元。以时域资源单元为时域符号为例,在传输SSB信号的子载波间隔为120kHz的情况下,以连续两个时隙为粒度,第二资源的资源位置始终不占用的时域符号索引如下:0、1、2、3、12、13、14、15、24、25、26和27。基于此,第二预设值的取值包括如下两种可能的设计:
在第一种可能的设计中,第二预设值包括以下至少三项:0、1、2、3、12、13、14、15、24、25、26、或27。其中,第二预设值中任意两项之间的差值大于或等于第三预设值。示例性的,第三预设值的取值可以是6,此种情况下,第二预设值的取值可以参见第二种可能的设计,以使每个时隙中存在至少一个第一资源,即网络设备301在每个时隙中至少传输一个第一信号。并且,第二预设值中任意两项之间的差值大于或等于第三预设值,也 使得第一资源在时域上是非连续的,且在一定程度上保证了第一资源在时域上的分布是均匀的。第二预设值的取值至少是三项,即每两个时隙中,至少存在三个第一资源,从而使得网络设备301在每两个时隙中至少传输三个第一信号。而在示例一的半帧内,每个时隙上存在一个第一资源,即每个时隙传输一个第一信号。相比于示例一而言,示例二提升了第一信号的时域密度,有利于提高雷达探测精度。当然,第三预设值的取值也可以是其他数值,如第三预设值的取值可以是1,第二预设值可以是{0,2,14},{0,2,15},{0,3,24},{0,3,27},{12,15,25},{12,15,27},{12,24,27},{15,24,27}中的一项。也就是说,网络设备301可以在两个SSB信号之间的资源上传输两个第一信号,网络设备301也可以在两个SSB信号之间的资源上不传输第一信号。但网络设备301在两个时隙上总能够传输三个第一信号,以提升第一信号的时域密度。
在第二种可能的设计中,第二预设值的数量为三个。其中,三个第二预设值满足:
第一个第二预设值包括以下其中一项:0、1、2、或3。
第二个第二预设值包括以下其中一项:12、13、14、或15。
第三个第二预设值包括以下其中一项:24、25、26、或27。
换言之,在两个相邻的时隙上,网络设备301在两个SSB信号之间的资源上传输一个第一信号,且网络设备301在两个时隙上总能够传输三个第一信号。示例性的,第二预设值可以是以下其中一项:{0,12,24},{1,13,25},{2,14,26},{3,15,27},{0,13,24},{1,13,24},{2,14,24},{3,13,27},{0,15,24},{1,15,24},{2,15,24},或{3,15,27}。以第二预设值包括{0,12,24}为例,网络设备301在时域符号0、12和24上分别传输第一信号。
也就是说,第二预设值之间的差值是相对均匀的。相应的,以第二预设值为索引的时域符号在时隙上的分布是相对均匀的,也就使得第一信号在时域上尽可能均匀地传输,既保证了第一信号的时域密度,又避免了与SSB信号发生碰撞。
或者,第一种实现方式的示例二所提供的方式,也可以理解为:当第三资源中部分资源与SSB信号的候选位置重叠,则第一资源包括至少包括:将第三资源中与SSB信号的候选位置重叠的资源提前或延后至少一个时域符号之后的资源,以避免网络设备301同时传输第一信号和SSB信号,同时还能够尽可能地保证第一资源均匀分布,以保证雷达探测精度。例如,以图5b为例,按照第一信号的传输周期来说,第三资源包括时域符号6。但时域符号6用于承载SSB信号,所以,将“时域符号6”这一第三资源前移,如图5b中的时域符号3所示,时域符号3用于传输第一信号。再如,仍以图5b为例,按照第一信号的传输周期来说,第三资源包括时域符号20。但时域符号20仍承载了SSB信号,所以,将“时域符号20”这一第三资源后移,如图5b中的时域符号24所示,时域符号24用于传输第一信号。应理解,在图5b所示的场景中,第三资源包括时域符号27。但执行前移和后移之后,时域符号3和时域符号24均用于传输第一信号,时域符号27可以不再用于传输第一信号,以避免第一信号频繁传输,节省传输资源,且贴近第一信号原有的传输周期。当然,时域符号27也可以用于传输第一信号,以降低网络设备的运算量,本申请实施例对此不作限定。
示例性的,参见图5b,图5b示出了一种资源分布示意图。第二资源的资源位置是基于3GPP TS 38.213的情况D确定的。在SSB信号的数量为64的情况下,在半帧内,第一 资源的时域符号索引包括3、13、24,既未与SSB信号发生碰撞,又能够保证第一信号尽可能均匀地传输。
作为第一种实现方式的示例三、在第二资源的资源位置密度较低的情况下,SSB信号只占用了部分候选位置。在传输SSB信号的子载波间隔为120kHz的情况下,SSB信号的时域符号索引满足:
{4,16}+28*n    公式(6)
其中,n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18。
其中,第二资源的资源位置密度较低,可以是指,SSB信号的数量小于或等于32,即可以理解为一个SSB突发中包括的SSB信号的数量小于或等于32,即SSB信号的候选位置最大可支持32个,即公式(6)中,n的取值数量最大,为16个。在SSB信号的候选位置占满的情况下,SSB信号的数量为32,即5ms内发送32个SSB信号。
此种情况下,在目标时长内,两个相邻的第一信号之间的间隔不全一样,具体可以参见上述示例二的描述,此处不再赘述。示例性的,在目标时长内,第一资源包括索引值为第二预设值的时域资源单元。以时域资源单元为时域符号为例,以连续的两个时隙为粒度,第二预设值满足如下公式:
K=7*k-1    公式(7)
其中,K表示第二预设值,K=2、3、4。即第二预设值的取值包括13、20、27。结合公式(6)和公式(7)可知,以两个相邻的时隙为粒度,第二资源的时域符号索引为:4、5、6、7、16、17、18、19。第一资源的时域符号索引为:13、20、27。即按照第一信号的传输周期来说,时域符号6用于传输第一信号。但是,时域符号6用于发送SSB信号,所以,时域符号6不再用于传输第一信号。也就是说,在目标时长内,与第二资源冲突的第三资源不再用于传输第一信号。换言之,在目标时长内,第一资源由第三资源中与SSB信号的候选位置不重叠的资源构成。
示例性的,参见图5c,图5c示出了一种资源分布示意图。第二资源的资源位置是基于上述公式(6)确定的。在SSB信号的数量为小于或等于32的情况下,在半帧内,以连续的两个时隙为粒度,第一资源的时域符号索引包括13、20、27。
也就是说,以第一信号的传输周期为7个时域符号为例,在第一信号的传输位置与SSB信号的传输位置(即第二资源)重叠的情况下,第一信号被丢弃,网络设备301不传输第一信号,即第二预设值的取值不包括6,从而避免第一信号与SSB信号发生碰撞,又能够保证第一信号的时域密度。
需要说明的是,在第一种实现方式的目标时长外,SSB信号不再发送。换言之,目标时长外,不存在第二资源。第一信号可以保持原有的传输周期。也就是说,目标时长内相邻两个第一信号之间的时间间隔与目标时长外相邻两个第一信号之间的时间间隔不同。在目标时长外,将上述至少一个第一信号中相邻两个第一信号之间的间隔记为第二间隔的情况下,第二间隔为多个,且多个第二间隔的时间长度相同,但与第一间隔的时间长度不同,当第一间隔为多个的情况下,第二间隔与至少一个第一间隔不同。其中,第二间隔为多个,是指:网络设备301在目标时长外传输多个第一信号,每相邻两个第一信号之间存在一个第二间隔。如此,第二个间隔的数量为多个。在目标时长外,第一资源包括索引值为预设值1的时域资源单元。在时域资源单元为时域符号的情况下,预设值1的取值可以包括: 6、13,具体参见图5a、图5b和图5c所示。
应理解,在本申请实施例中,仅以第一信号的传输周期为7个符号为例,进行介绍,在第一信号的传输周期是其他时长的情况下,目标时长外,第一资源的资源位置也可以按照其他的间隔进行设计,以满足不同场景下对第一信号的传输需求,本申请实施例对此不作限定。
作为第二种实现方式,第二资源是基于第一资源确定的。也就是说,在第一信号的传输周期保持不变的情况下,通过调整SSB信号的候选位置,以得到第二资源,从而实现第一资源与第二资源在时域上不重叠。下面,分两个示例进行介绍:
作为第二种实现方式的示例一、在第二资源的资源位置密度较低的情况下,SSB信号只占用了部分候选位置。在传输SSB信号的子载波间隔为120kHz的情况下,通过两种可能的设计,对第二资源进行介绍:
在第一种可能的设计中,在目标时长内,第二资源包括索引值为第四预设值的时域资源单元,第四预设值满足如下公式:
Figure PCTCN2022087421-appb-000009
其中,M表示第四预设值,N为整数,且0≤N≤27,k为正整数。
由公式(8)可知,在第一信号的传输周期为7个时域符号的情况下,第一资源的时域符号索引满足:7*k-1。在N遍历28个整数(即从0至27)的过程中,承载SSB信号的时域符号索引不等于第一资源的时域符号索引,从而避免第一资源与第二资源在时域上重叠。
示例性的,以两个相邻时隙为粒度,第一资源的时域符号索引包括:6、13、20、27。例如,在N=0的情况下,第二资源的时域符号索引包括:0、1、2、3,均不等于第一资源的时域符号索引,所以,时域符号{0、1、2、3}可以作为第二资源,用于发送SSB信号。再如,在N=3的情况下,第二资源的时域符号索引包括:3、4、5、6。此种情况下,第二资源的时域符号索引中有一个数值“6”等于第一资源的时域符号索引,所以,时域符号{3、4、5、6}不可以作为第二资源,不用于发送SSB信号。
应理解,在第一种可能的设计中,仅以第一信号的传输周期为7个时域符号为例,进行介绍,在第一信号的传输周期是其他时长的情况下,如第一信号的传输周期为T个时域符号,上述公式(8)可以替换为:
Figure PCTCN2022087421-appb-000010
其中,M表示第四预设值,T为第一信号的传输周期,N为整数,且0≤N≤27,k为正整数。也就是说,在第一信号的传输周期为T个时域符号的情况下,第一资源的时 域符号索引满足:T*k-1。在N遍历28个整数(即从0至27)的过程中,承载SSB信号的时域符号索引不等于第一资源的时域符号索引,即第二资源的时域符号索引(即第二资源的时域符号索引M、M+1、M+2、M+3)取值不等于第一资源的时域符号索引取值,从而避免第一资源与第二资源在时域上重叠。
示例性的,以两个相邻时隙为粒度,以T=8为例,第一资源的时域符号索引包括:7、15、23。例如,在N=0的情况下,第二资源的时域符号索引包括:0、1、2、3,均不等于第一资源的时域符号索引,所以,时域符号{0、1、2、3}可以作为第二资源,用于发送SSB信号。再如,在N=4的情况下,第二资源的时域符号索引包括:4、5、6、7。此种情况下,第二资源的时域符号索引中有一个数值“7”等于第一资源的时域符号索引,所以,时域符号{4、5、6、7}不可以作为第二资源,不用于发送SSB信号。
在第二种可能的设计中,在目标时长内,第二资源包括索引值为第四预设值的时域资源单元,第四预设值满足如下公式:
Figure PCTCN2022087421-appb-000011
其中,M表示第四预设值,N包括以下取值中的至少两项:0、1、2、7、8、9、14、15、16、21、22、或23。由图1的介绍可知,一个SSB信号占四个时域符号,因此,第四预设值中任意两项之间的差值大于4,以避免SSB信号之间占用的资源重叠。示例性的,第四预设值可以是以下其中一个:{0,7},{0,8},{0,9},{0,22},{1,7},{1,8},{1,9},{1,22},{1,23},{1,8,16},或{2,9,16}。应理解,在第四预设值中任意两项之间的差值大于4的情况下,第四预设值的取值只要取自上述取值(即0、1、2、7、8、9、14、15、16、21、22、或23)即可。
示例性的,参见图5d,图5d示出了一种资源分布示意图。以两个时隙为粒度,在N包括8和16的情况下,第二资源的资源位置(即承载SSB信号的位置)包括时域符号8、9、10、11、16、17、18、19,如图5d所示,均与第一资源中任一资源不重叠。如此,网络设备301传输的第一信号与SSB信号不发生碰撞。
作为第二种实现方式的示例二、在第二资源的资源位置密度较高的情况下,SSB信号占用了半帧内所有的候选位置。在传输SSB信号的子载波间隔为120kHz的情况下,对SSB信号的时域符号索引满足:
{2,8,16,22}+28*n     公式(11)
其中,n=0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18。
示例性的,在图5e中,在n=0的情况下,索引0标识的SSB信号为半帧中的首个SSB信号,所占时域符号的索引为2至5。索引1标识的SSB信号为半帧中的第二个SSB信号,所占时域符号的索引为8至11。索引2标识的SSB信号为半帧中的第三个SSB信号,所占时域符号的索引为16至19。索引3标识的SSB信号为半帧中的第四个SSB信号,所占时域符号的索引为22至25。
也就是说,以两个相邻时隙为粒度,在第一信号的传输周期是7个时域符号的情况下,第一资源的时域符号索引包括:6、13、20、27。例如,结合公式(4),在首个时域符号索引为4的情况下,第二资源的时域符号索引包括:4、5、6、7,即第二资源的时域符号索引中数值“6”等于第一资源的时域符号索引,即与第一资源重叠,所以,将“4”调整为 “2”,如公式(11)所示,如此,首个时域符号索引2的第二资源包括:时域符号2、时域符号3、时域符号4和时域符号5,未与第一资源重叠。再如,结合公式(4),在首个时域符号索引为20的情况下,第二资源的时域符号索引包括:20、21、22、23,即第二资源的时域符号索引中数值“20”等于第一资源的时域符号索引,即与第一资源重叠,所以,将“20”调整为“22”,如公式(11)所示,如此,首个时域符号索引22的第二资源包括:时域符号22、时域符号23、时域符号24和时域符号25,未与第一资源重叠。
需要说明的是,在第二种实现方式中,无论在目标时长内,还是在目标时长外,第一信号保持原有的传输周期,即第一间隔与第二间隔的时间长度相同。当第一间隔和第二间隔的数量为多个的情况下,多个第二间隔中每一第二间隔与多个第一间隔中每一第一间隔均相同。其中,目标时长是由SSB信号的候选位置所在的至少一个时隙构成。第一间隔与第二间隔可以参见第一种实现方式的介绍,此处不再赘述。在第二种实现方式中,第一资源包括索引值为预设值1的时域资源单元。在时域资源单元为时域符号的情况下,预设值1的取值可以包括:6、13,如图5d所示。
S402、网络设备301在第一资源上传输至少一个第一信号。
其中,网络设备301具有感知功能,第一信号用于探测目标的属性。目标的属性包括以下至少一项:移动速度、位置、或形状大小。示例性的,若终端设备305处于第一信号的探测区域内,且雷达截面积(radar cross-section,RCS)大于阈值,则第一信号探测到的目标包括终端设备305,网络设备301能够接收到由终端设备305反射的回波信号,从而感知终端设备305的位置等属性。反之,若终端设备305处于第一信号的探测区域外,或RCS小于或等于阈值,则网络设备301无法接收到由终端设备305反射的回波信号,即网络设备301的感知对象不包括终端设备305,也就无法探测终端设备305的位置等属性。当然,除上述终端设备305之外,目标也可以是其他物体,反射回波信号,网络设备301接收到回波信号之后,也就能够感知到目标的属性。
其中,S402中的第一资源是S401中的第一资源。S402中的第一资源可以是基于第二资源确定的,参见S401中第一种实现方式的介绍,S402中的第一资源也可以用于确定第二资源,参见S402中第二种实现方式的介绍,此处不再赘述。每个第一资源承载一个第一信号。在第一资源为一个的情况下,网络设备301在第一资源上传输一个第一信号。在第一资源为多个的情况下,网络设备301在多个第一资源的每一第一资源上传输一个第一信号。
示例性的,S402的具体实现过程包括:
示例1,网络设备301在第一资源上发送至少一个第一信号,如在第一资源为一个的情况下,网络设备301在第一资源上发送一个第一信号。在第一资源为多个的情况下,网络设备301在多个第一资源的每一第一资源上发送一个第一信号。此种情况下,第一信号可以实现为雷达探测信号。
示例2,网络设备301在第一资源上接收至少一个第一信号,如在第一资源为一个的情况下,网络设备301在第一资源上接收一个第一信号。在第一资源为多个的情况下,网络设备301在多个第一资源的每一第一资源上接收一个第一信号。此种情况下,第一信号可以实现为雷达探测信号的回波信号。
示例3,网络设备301在第一资源上发送和接收第一信号,如在第一资源为一个的情 况下,网络设备301在第一资源上发送和接收第一信号。在第一资源为多个的情况下,网络设备301在多个第一资源的每一第一资源上发送和接收第一信号。此种情况下,发送的第一信号可以实现为雷达探测信号,接收的第一信号可以实现为雷达探测信号的回波信号。
示例4,在第一资源为多个的情况下,将多个第一资源划分为两部分,网络设备在一部分第一资源上执行上述三种示例(示例1~示例3)中的一种,网络设备在另一部分第一资源上执行上述三种示例(示例1~示例3)中的另一种。或者,将多个第一资源划分为三部分,网络设备在每一部分第一资源上执行上述三种示例(示例1~示例3)中的一种。
示例性的,分两种情况对S402进行介绍:
作为第一种情况,第一信号承载了通信信息。参见图6a,在执行S402之前,网络设备301执行S403:
S403、网络设备301向终端设备305发送第一指示信息。相应的,终端设备305接收来自网络设备301的第一指示信息。
其中,第一指示信息指示第一资源的索引值。
示例性的,第一指示信息可以携带第一资源的索引值。例如,在以单个时隙为粒度的情况下,第一指示信息可以是采用4个比特来指示第一资源的索引值。再如,在以两个时隙为粒度的情况下,第一指示信息可以是采用5个比特来指示第一资源的索引值。第一资源的索引值可以参见S401的相关介绍,此处不再赘述。
或者,第一指示信息也可以指示第一资源与第二资源之间的偏移量。其中,偏移量的单位为时域符号,偏移量的取值指示第一资源与第二资源之间间隔的时域符号的数量。偏移量可以通过预设数量的比特来表示。例如,偏移量较小,如小于8个时域符号的情况下,第一指示信息可以是采用3个比特来指示偏移量。再如,偏移量较大,如大于8个时域符号的情况下,第一指示信息可以是采用4个或5个比特来指示偏移量。
示例性的,第一指示信息可以是高层信令,比如无线资源控制(radio resource control,RRC)信令,或者,第一指示信息也可以是物理层信令,如下行链路控制信息(downlink control information,DCI)。
在S403被执行的情况下,S402具体实现为S402a:
S402a、网络设备301在第一资源上向终端设备305发送通信信息。相应的,终端设备305在第一资源上接收来自网络设备301的通信信息。
其中,通信信息承载于第一信号。通信信息包括但不限于:物理下行共享信道(physical downlink shared channel,PDSCH)等。终端设备305通过解调、解码等处理,从第一信号中获取通信信息。
作为第二种情况,第一信号上未承载通信信息。此种情况下,网络设备301在执行S402之前,无需执行S403。即网络设备301按照第一资源的资源位置传输第一信号即可。
对于网络设备301而言,网络设备301还能够发送SSB信号,如图6b所示的步骤:
S404、网络设备301在第二资源上向终端设备305发送至少一个SSB信号。相应的,终端设备305可以在第二资源上接收来自网络设备301的至少一个SSB信号。
其中,S404中的第二资源是S401中的第二资源。S404中的第二资源可以用于确定第一资源,参见S401中第一种实现方式的介绍,S404中的第二资源也可以是基于第一资源确定的,参见S402中第二种实现方式的介绍,此处不再赘述。每个第二资源承载一个SSB 信号。在第二资源为一个的情况下,网络设备301在第二资源上发送一个SSB信号。在第二资源为多个的情况下,网络设备301在多个第二资源的每一第二资源上发送一个SSB信号。
示例性的,分两种情况对S404进行介绍:
作为第一种情况,第二资源是基于第一资源确定的,详见S401中第二种实现方式的介绍。参见图6b,在执行S404之前,网络设备301执行S405:
S405、网络设备301向终端设备305发送第二指示信息。相应的,终端设备305接收来自网络设备301的第二指示信息。
其中,第二指示信息指示第二资源的索引值。
示例性的,第二指示信息可以携带第二资源的索引值。例如,在以单个时隙为粒度的情况下,第二指示信息可以是采用4个比特来指示第二资源的索引值。再如,在以两个时隙为粒度的情况下,第二指示信息可以是采用5个比特来指示第二资源的索引值。第二资源的索引值可以参见S401的相关介绍,此处不再赘述。
或者,第二指示信息也可以指示第二资源与SSB信号的候选位置之间的偏移量。其中,偏移量的单位为时域符号,偏移量的取值指示第二资源与SSB信号的候选位置之间间隔的时域符号的数量。偏移量可以通过预设数量的比特来表示。例如,偏移量较小,如小于8个时域符号的情况下,第二指示信息可以是采用3个比特来指示偏移量。再如,偏移量较大,如大于8个时域符号的情况下,第二指示信息可以是采用4个或5个比特来指示偏移量。
示例性的,第二指示信息可以是高层信令,比如信令,或者,第二指示信息也可以是物理层信令,如DCI。
也就是说,在第一资源的资源位置保持不变,且第二资源是基于第一资源确定的情况下,网络设备301先为终端设备305指示第二资源的索引值,以使终端设备305在第二指示信息指示的资源位置上接收SSB信号。
需要说明的是,终端设备305在执行S405之前的预设时长内(如n秒),网络设备301在已知的资源上向终端设备305发送SSB信号。相应的,终端设备305在可以已知的资源上接收来自网络设备301的SSB信号。其中,已知的资源是基于已有协议(如3GPP TS38.213)规定的资源。如此,通过上述预设时长内的SSB信号,终端设备305与网络设备301实现同步,然后,终端设备305执行S405。另外,网络设备301也可以不执行S405,此种情况下,终端设备305执行盲检测,即扫描每一时域符号。若某些时域符号上传输了SSB信号,则终端设备305即可检测到来自网络设备301的SSB信号。
作为第二种情况,第二资源用于确定第一资源,详见S401中第一种实现方式的介绍。此种情况下,网络设备301在执行S404之前,无需执行S405。
需要的说明的是,在网络设备301向终端设备305发送指示信息(如上述第一指示信息、第二指示信息)之后,若终端设备305接收到指示信息,终端设备305可以向网络设备301发送应答(acknowledgement,ACK)。反之,若终端设备305未接收到指示信息,则终端设备305向网络设备301发送否定应答(negative acknowledgement,NACK)。另外,在传输SSB信号的半帧中,第一资源的分布状况是一致的。即使在传输SSB信号的半帧中,一部分时隙中包括SSB信号的候选位置,另一部分时隙中不包括SSB信号的候选位 置,第一资源在两种时隙中的分布状态仍是一致的,以网络设备301始终以固定的图样(pattern)来传输第一信号,避免第一信号的资源位置频繁变化,也简化网络设备301确定第一资源的复杂度。
可以理解的,图6a和图6b所示的方法可以单独实施,也可以组合实施。本申请对此不作限制。
以上均是以第一资源和第二资源在时域上不重叠为例进行介绍的,以避免信号之间相互干扰。当然,第一资源和第二资源在时域上重叠的情况下,第一资源和第二资源在频域上不重叠也能够避免信号之间相互干扰。本申请实施例还提供另一种信号传输方法。该信号传输方法的技术构思如下:网络设备确定第一资源。其中,第一资源和第二资源在时域上重叠,且在频域上不重叠,第二资源用于发送通信信号。第一资源与第二资源存在对应关系。然后,网络设备在第一资源上传输至少一个第一信号。这样一来,第一信号与通信信号采用频分复用的方式传输,以使第一信号与通信信号不发生碰撞,互不干扰,从而提升系统通信效率。
其中,第一资源与第二资源存在对应关系,可以是指,在预设数量的频域资源单元中,第一资源与第二资源在资源位置上存在对应关系,如,第一资源和第二资源的数量相同,且一一对应。或者,第一资源的数量与第二资源的数量不同,且多个第一资源中的一个第一资源与多个第二资源中的一个第二资源对应。例如,以频域资源单元为RB为例,在同一系统带宽中,第一资源的数量为多个,且每个第一资源占用索引为x 1的RB。第二资源的数量为多个,且每个第二资源占用索引为a 1的RB。其中,x 1<a 1。x 1为系统带宽中频率最小的X个RB的索引,X为正整数。以通信信号为SSB信号为例,由图1可知,一个SSB信号占用20个RB。x 1<a 1,可以理解为,第一资源对应的RB索引小于第二资源对应的20个RB中每个RB的索引。再如,仍以频域资源单元为RB为例,在同一系统带宽中,第一资源的数量为多个,且每个第一资源占用索引为y 1的RB。第二资源的数量为多个,且每个第二资源占用索引为a 1的RB。其中,a 1<y 1。y 1为系统带宽中频率最大的Y个RB的索引,Y为正整数。以通信信号为SSB信号为例,由图1可知,一个SSB信号占用20个RB。a 1<y 1,可以理解为,第一资源对应的RB索引大于第二资源对应的20个RB中每个RB的索引。第一信号的描述可以参见信号传输方法400中的介绍,此处不再赘述。
如图7所示,本申请实施例提供一种信号传输方法700,该信号传输方法700应用在雷达通信一体化的信号传输过程中。参见图7,该方法包括如下步骤:
S701、网络设备301确定第一资源。
其中,第一资源和第二资源在时域上重叠,在频域上不重叠。第一资源的数量为一个或多个,且多个第一资源中任意两个相邻的第一资源在频域上可以连续,也可以不连续,如图8a所示。每个第一资源在频域上可以占一个或多个频域资源单元。具体的,网络设备301可以确定一个或多个第一资源。可以理解的,第一资源和第二资源在时域上重叠,在频域上不重叠,当第一资源的数量和第二资源的数量都为多个时,该多个第一资源中的一个第一资源和多个第二资源中的一个第二资源在时域上重叠,且在频域上不重叠。其中,第一资源的数量和第二资源的数量可以相同,且多个第一资源中的第一资源和多个第二资 源中的第二资源一一对应,即多个第一资源中的一个第一资源和多个第二资源中的一个第二资源在时域上重叠,且在频域上不重叠。或者,第一资源的数量和第二资源的数量可以不同,如多个第一资源中的至少两个第一资源和多个第二资源中的一个第二资源对应,如多个第一资源中的两个第一资源和多个第二资源中的一个第二资源在时域上重叠,且上述两个第一资源和上述一个第二资源在频域上均不重叠。
其中,每个第二资源可以是频域上连续的20个RB,详见图1的相关说明。第二资源的数量可以为多个,在多个第二资源中,任意两个相邻的第二资源在频域上可以占用相同索引的RB,也可以占用索引不同的RB,本申请实施例对此不作限定。在本申请实施例中,以任意两个相邻的第二资源在频域上可以占用相同索引的RB为例进行介绍。
示例性的,第一资源包括第一索引值指示的频域资源单元,第二资源包括第二索引值指示的频域资源单元。在频域资源单元实现为RB的情况下,以系统带宽包括90个RB,且索引值为0~89。示例性的,第一索引值的取值包括以下其中一项:45、46、47、{48、49}、或{50、51、52}等。其中,{48、49}表示第一资源包括索引为48的RB和索引为49的RB。以通信信号实现为SSB信号为例,第二索引值的取值包括以下其中一项:{0至19}、{1至20}、{2至21}、或{3至22}等。其中,{0至19}表示第二资源包括索引为0至19的RB。应理解,只要第一索引值中的任一数值与第二索引值中的全部数值不同即可,第一索引值和第二索引值还可以有其他取值,本申请实施例对此不作限定。下面,通过两种实现方式对第一索引值和第二索引值进行介绍:
作为第一种实现方式,第一索引值小于第二索引值。也就是说,第一索引值中的每一数值均小于第二索引值中的全部数值。
示例性的,参见图8a,以系统带宽为60个RB为例,一个频域资源单元可以包括一个RB。第一资源占用20个RB,第一索引值的取值为0至19,第一索引值可以记为{0至19}。也就是说,第一索引值指示系统带宽中频率最小的20个RB。在通信信号实现为SSB信号的情况下,第二资源占用的RB数量为20个,如第二索引值的取值包括30至49,第二索引值可以记为{30至49}。
或者,一个频域资源单元可以包括20个RB,也就是说,每20个RB记为一个频域资源单元。此种情况下,以系统带宽包括10个频域资源单元(即系统带宽包括200个RB)为例,频域资源单元的索引为0~9。第一资源占用一个频域资源单元(即第一资源占用20个RB),且第一资源占用的频域资源单元位于系统带宽的前N个频域资源单元中的一个或多个频域资源单元,N为正整数。如第一索引值的取值为0,N的取值可以为3。也就是说,第一资源包括系统带宽的前3个频域资源单元中的一个频域资源单元。其中,系统带宽的前N个频域资源单元,可以理解为,系统带宽中全部频域资源单元按照频率从低到高的顺序排列,此种情况下,系统带宽的前N个频域资源单元,可以是指系统带宽中频率最小的N个频域资源单元。换言之,第一资源占用系统带宽中频率最小的X个频域资源单元,X为正整数,且X≤N。在通信信号实现为SSB信号的情况下,第二资源占用一个频域资源单元(即第二资源占用RB数量为20个),如第二索引值的取值可以包括7。应理解,一个频域资源单元也可以包括其他数量的RB,如10个RB,本申请实施例对频域资源单元中RB的数量不作限定。
作为第二种实现方式,第一索引值大于第二索引值。也就是说,第一索引值中的 每一数值均大于第二索引值中的全部数值。
示例性的,参见图8b,仍以系统带宽为60个RB为例,一个频域资源单元可以包括一个RB。第一资源占用20个RB,第一索引值的取值包括40至59,第一索引值可以记为{40至59}。也就是说,第一索引值指示系统带宽中频率最大的20个RB。在通信信号实现为SSB信号的情况下,第二资源占用的RB数量为20个,第二索引值的取值包括0至19,第二索引值可以记为{0至19}。
或者,一个频域资源单元可以包括20个RB。此种情况下,以系统带宽包括10个频域资源单元(即系统带宽包括200个RB)为例,频域资源单元的索引为0~9。第一资源占用一个频域资源单元,且第一资源占用的频域资源单元位于系统带宽的末尾N个频域资源单元中的一个或多个频域资源单元,N为正整数。如第一索引值的取值为9,N的取值可以为3。也就是说,第一资源包括系统带宽的末尾3个频域资源单元中的一个频域资源单元。其中,系统带宽的末尾N个频域资源单元,可以理解为,系统带宽中全部频域资源单元按照频率从低到高的顺序排列,此种情况下,系统带宽的末尾N个频域资源单元,可以是指系统带宽中频率最大的N个频域资源单元。换言之,第一资源占用系统带宽中频率最大的Y个频域资源单元,Y为正整数,且Y≤N。在通信信号实现为SSB信号的情况下,第二资源占用一个频域资源单元,第二索引值的取值包括9,第二索引值可以记为9。
应理解,在采用频分复用的方式发送第一信号和通信信号的情况下,第一信号占用的频域资源单元的数量可以是一个,也可以是多个,本申请实施例对此不作限定。图8a和图8b仅以第一资源占用20个RB为例进行介绍,第一资源占用的频域资源单元数量可以有其他取值,本申请实施例对此不作限定。第一信号在时域上可以保持等间隔传输,也可以保持非等间隔传输,本申请实施例对此不作限定。在通信信号实现为SSB信号的情况下,SSB信号在时域上的分布情况可以参见名词解释部分示出的5种情况(如情况A、情况B、情况C、情况D、情况E)的介绍,此处不再赘述。
可选地,第一信号的带宽介绍如下:作为一种情况,第一信号的带宽与通信信号的带宽之和小于或等于系统带宽。例如,系统带宽为60个RB。通信信号的带宽为20个RB。此种情况下,第一信号的带宽可以是40个RB,也可以是35个RB。当然,第一信号的带宽还可以有其他取值,如20个RB,本申请实施例对此不作限定。也就是说,第一信号的带宽是基于系统带宽和通信信号的带宽确定的。如此,第一信号和通信信号分别占用系统带宽中不同的频域资源单元,所以,即使网络设备同时传输第一信号和通信信号,由于两者采用频分复用的方式传输,信号之间不会产生干扰。作为另一种情况,第一信号的带宽等于系统带宽。例如,系统带宽为60个RB。此种情况下,第一信号的带宽可以是60个RB。当然,系统带宽也可以有其他取值,如100个RB。相应的,第一信号的带宽为100个RB,本申请实施例对系统带宽的大小不作限定。
S702、网络设备301在第一资源上传输至少一个第一信号。
其中,S702的实现过程可以参见S402的介绍,此处不再赘述。
在本申请实施例信号传输方法700中,网络设备确定的第一资源是时域上与第二资源重叠,但频域上与第二资源不重叠的资源,两者之间在资源位置上存在对应关系。如此, 第一信号与通信信号通过不同的频域资源发送,以使第一信号与通信信号不发生碰撞,互不干扰,从而提升系统通信效率。
在一些实施例中,第一信号上可以承载通信信息,也可以不承载通信信息。下面,通过两种情况进行介绍:
作为第一种情况,第一信号承载通信信息。参见图9a,在执行S702之前,网络设备301执行S703:
S703、网络设备301向终端设备305发送指示信息1。相应的,终端设备305接收来自网络设备301的指示信息1。
其中,指示信息1指示第一资源的资源位置,如第一资源在频域上的资源位置。
示例性的,指示信息1可以携带第一资源的索引值,即第一索引值。例如,指示信息1可以是采用预设数量的比特来指示第一索引值。其中,第一索引值可以参见S701的相关介绍,此处不再赘述。
或者,指示信息1也可以指示第一资源与第二资源之间的偏移量。其中,偏移量的单位为频域资源单元,如RB,偏移量的取值指示第一资源与第二资源之间间隔的频域资源单元的数量。偏移量可以通过预设数量的比特来表示。例如,偏移量较小,如小于8个RB的情况下,指示信息1可以是采用3个比特来指示偏移量。再如,偏移量较大,如大于8个RB的情况下,指示信息1可以是采用4个或5个比特来指示偏移量。
可选的,指示信息1还指示第四资源的资源位置,如第四资源在频域上的资源位置。其中,第四资源与第二资源在时域上不重叠,第四资源也用于传输第一信号。
示例性的,指示信息1可以携带第四资源的索引值。在系统带宽为60个RB的情况下,一个频域资源单元包括一个RB。例如,第四资源占用的频域资源单元对应的索引值可以包括0至59。也就是说,第一信号在未与通信信号碰撞的情况下,第一信号的带宽等于系统带宽。示例性的,指示信息1还指示第四资源的索引值包括0至59。再如,第四资源占用的频域资源单元对应的索引值可以包括0至35。也就是说,第一信号在未与通信信号碰撞的情况下,第一信号占用系统带宽的一部分。示例性的,指示信息1还指示第四资源的索引值包括0至35。在系统带宽为100个RB的情况下,一个频域资源单元包括20个RB。例如,第四资源占用的频域资源单元对应的索引值可以包括0至4。也就是说,第一信号在未与通信信号碰撞的情况下,第一信号的带宽等于系统带宽。示例性的,指示信息1还指示第四资源的索引值包括0至4。再如,第四资源占用的频域资源单元对应的索引值可以包括0至3。也就是说,第一信号在未与通信信号碰撞的情况下,第一信号占用系统带宽的一部分。示例性的,指示信息1还指示第四资源的索引值包括0至3。
在第一信号承载通信信息的情况下,参见图9b,在执行S702之前,网络设备301还可以执行S704:
S704、网络设备301向终端设备305发送指示信息2。相应的,终端设备305接收来自网络设备301的指示信息2。
其中,指示信息2至少指示带宽。下面,通过两种示例进行介绍:
示例1,指示信息2指示以下两项:
第一项,第一带宽与通信信号的带宽之和小于或等于系统带宽。其中,第一带宽是第一信号与通信信号在时域上重叠时的带宽。示例性的,仍以系统带宽为60个RB。通信 信号的带宽为20个RB。此种情况下,第一带宽可以是40个RB,也可以是35个RB。当然,第一带宽还可以有其他取值,如20个RB,本申请实施例对此不作限定。也就是说,在第一信号的带宽为系统带宽的情况下,网络设备为终端设备指示第一信号与通信信号重叠时的第一带宽。相应的,终端设备基于指示信息2指示的第一带宽来接收第一信号。
第二项,第二带宽等于系统带宽。其中,第二带宽是第一信号与通信信号在时域上不重叠时的带宽。示例性的,仍以系统带宽为60个RB。此种情况下,第二带宽可以是60个RB。当然,系统带宽也可以有其他取值,如100个RB。相应的,第二带宽为100个RB,本申请实施例对系统带宽的大小不作限定。也就是说,在第一信号配置的带宽为系统带宽的情况下,网络设备为终端设备指示第一信号与通信信号不重叠时的第二带宽。相应的,终端设备基于指示信息2指示的第二带宽来接收第一信号。
示例2,指示信息2指示以下两项:
第一项,第一信号的带宽等于系统带宽。示例性的,仍以系统带宽为60个RB。此种情况下,第一信号的带宽可以是60个RB。当然,系统带宽也可以有其他取值,如100个RB。相应的,第一信号的带宽为100个RB,本申请实施例对系统带宽的大小不作限定。
第二项,网络设备在第二资源上未发送第一信号。此种情况下,若第一信号与通信信号在时域上重叠,则第一资源包括系统带宽中除第二资源之外的频域资源单元。示例性的,仍以系统带宽为60个RB,通信信号的带宽为20个RB。此种情况下,第一资源包括40个RB。当然,系统带宽也可以有其他取值,如100个RB。相应的,第一资源包括80个RB,本申请实施例对系统带宽的大小不作限定。承载通信信号的第二资源用于发送通信信号,而不用于发送第一信号。也就是说,在第一信号与通信信号在时域上重叠的情况下,网络设备301在第二资源上不发送第一信号,在第一资源上向终端设备305发送第一信号。相应的,终端设备305在第二资源上不接收第一信号,在第一资源上接收来自网络设备301的第一信号。若第一信号与通信信号在时域上不重叠,则第一信号占用系统带宽的全部资源。也就是说,在第一信号与通信信号在时域上不重叠的情况下,网络设备301在系统带宽的全带宽上向终端设备305发送第一信号。相应的,终端设备305在系统带宽的全带宽上接收来自网络设备301的第一信号。
示例性的,指示信息(如上述S703中的指示信息1,或S704中的指示信息2)可以是高层信令,比如RRC信令,或者,指示信息也可以是物理层信令,如DCI。
应理解,网络设备301执行S703,不执行S704,相应的,终端设备305执行S703,不执行S704。或者,网络设备301执行S704,不执行S703,相应的,终端设备305执行S704,不执行S703。如此,终端设备305即可基于指示信息1或指示信息2,来接收至少一个第一信号。其中,终端设备305执行S704的情况下,由于终端设备305能够确定第二资源的资源位置,所以,终端设备305基于系统带宽和第二资源的资源位置,来确定第一资源的资源位置,或第一资源所在的位置范围。之后,终端设备305基于第一资源的资源位置,或第一资源所在的位置范围,来接收第一信号。
在S703或S704被执行的情况下,S702具体实现过程可以参见S402a的介绍,此处不再赘述。
需要的说明的是,在网络设备301向终端设备305发送指示信息(如上述S703中的 指示信息1,或S704中的指示信息2)之后,若终端设备305接收到指示信息,终端设备305可以向网络设备301发送ACK或NACK,具体参见信号传输方法400中的介绍。
作为第二种情况,第一信号上未承载通信信息。此种情况下,网络设备301在执行S702之前,无需执行S703和S704。即网络设备301按照第一资源的资源位置传输第一信号即可。
对于网络设备301而言,网络设备301还能够发送通信信号,即网络设备301在第二资源上向终端设备305发送至少一个通信信号。相应的,终端设备305可以在第二资源上接收来自网络设备301的至少一个通信信号。隐式地,网络设备301在第二资源上不向终端设备305发送第一信号。相应的,终端设备305在第二资源上不接收来自网络设备301的第一信号。
也就是说,网络设备采用频分复用的方式传输第一信号和通信信号。
应理解,在本申请实施例信号传输方法400和信号传输方法700中,仅以传输SSB信号的子载波间隔为120kHz为例,进行介绍。当然,子载波间隔还可以替换为其他数值,本申请实施例信号传输方法的核心思想同样适用。在本申请实施例信号传输方法400和信号传输方法700中,系统带宽可以是指NR系统中一个载波支持的带宽。例如,NR系统的载波带宽可以为10MHz、15MHz、20MHz、50MHz、100MHz以及400MHz等中的一种。其中,一个载波可以配置多个部分带宽(bandwidth part,BWP)。当然,系统带宽还可以是指LTE系统中一个服务小区支持的带宽,本申请实施例对此不作限定。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置可以为上述方法实施例中的网元,或者包含上述网元的装置,或者为可用于网元的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
作为一种可能的实施例,图10示出了一种芯片1000的结构示意图。该芯片1000包括逻辑电路1010和输入输出接口1030。其中,输入输出接口1030用于与芯片1000之外的模块通信,逻辑电路1010用于执行上述方法实施例中芯片1000所在设备上除了收发操作之外的其他操作。
比如,以芯片1000实现为上述方法实施例图4的网络设备301的功能为例,输入输出接口1030可以用于执行本申请实施例中网络设备301侧的S402,和/或输入输出接口1030还用于执行本申请实施例中网络设备301侧的其他收发步骤。逻辑电路1010可以用于执行本申请实施例中网络设备301侧的S401,和/或输入输出接口1030还用于执行本申请实施例中网络设备301侧的其他处理步骤。
再如,以芯片1000实现为上述方法实施例中图6a的网络设备301的功能为例,输入输出接口1030可以用于执行网络设备301侧的S403、S402a,和/或输入输出接口1030还用于执行本申请实施例中网络设备301侧的其他收发步骤。逻辑电路1010可以用于执行网络设备301侧中的其他处理步骤。
又如,以芯片1000实现为上述方法实施例中图6b的网络设备301的功能为例,输入输出接口1030可以用于执行网络设备301侧的S405和S404,和/或输入输出接口1030还用于执行本申请实施例中网络设备301侧的其他收发步骤。逻辑电路1010可以用于执行网络设备301侧中的其他处理步骤。
又如,以芯片1000实现为上述方法实施例图7的网络设备301的功能为例,输入输出接口1030可以用于执行本申请实施例中网络设备301侧的S702,和/或输入输出接口1030还用于执行本申请实施例中网络设备301侧的其他收发步骤。逻辑电路1010可以用于执行本申请实施例中网络设备301侧的S701,和/或输入输出接口1030还用于执行本申请实施例中网络设备301侧的其他处理步骤。
又如,以芯片1000实现为上述方法实施例中图9a的网络设备301的功能为例,输入输出接口1030可以用于执行网络设备301侧的S703,和/或输入输出接口1030还用于执行本申请实施例中网络设备301侧的其他收发步骤。逻辑电路1010可以用于执行网络设备301侧中的其他处理步骤。
又如,以芯片1000实现为上述方法实施例中图9b的网络设备301的功能为例,输入输出接口1030可以用于执行网络设备301侧的S704,和/或输入输出接口1030还用于执行本申请实施例中网络设备301侧的其他收发步骤。逻辑电路1010可以用于执行网络设备301侧中的其他处理步骤。
比如,以芯片1000实现为上述方法实施例中图6a的终端设备305的功能为例,输入输出接口1030可以用于执行终端设备305侧的S403、S402a,和/或输入输出接口1030还用于执行本申请实施例中终端设备305侧的其他收发步骤。逻辑电路1010可以用于执行终端设备305侧中的其他处理步骤。
再如,以芯片1000实现为上述方法实施例中图6b的终端设备305的功能为例,输入输出接口1030可以用于执行终端设备305侧的S405和S404,和/或输入输出接口1030还用于执行本申请实施例中终端设备305侧的其他收发步骤。逻辑电路1010可以用于执行终端设备305侧中的其他处理步骤。
又如,以芯片1000实现为上述方法实施例中图9a的终端设备305的功能为例,输入输出接口1030可以用于执行终端设备305侧的S703,和/或输入输出接口1030还用于执行本申请实施例中终端设备305侧的其他收发步骤。逻辑电路1010可以用于执行终端设备305侧中的其他处理步骤。
又如,以芯片1000实现为上述方法实施例中图9b的终端设备305的功能为例,输入输出接口1030可以用于执行终端设备305侧的S704,和/或输入输出接口1030还用于执行本申请实施例中终端设备305侧的其他收发步骤。逻辑电路1010可以用于执行终端设备305侧中的其他处理步骤。
芯片1000还包括存储器1040,用于存储芯片1000的程序代码和数据,数据可以包括不限于原始数据或者中间数据等。
可选的,芯片1000还可以包括总线1020。其中,逻辑电路1010、输入输出接口1030以及存储器1040可以通过总线1020相互连接;总线1020可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线1020可以分为地址总线、数据总线、控制 总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
作为另一种可能的实施例,图11示出了一种通信装置1100的结构示意图。该通信装置1100包括通信模块1103和处理模块1102。
比如,以通信装置1100为上述方法实施例中图4的网络设备301为例,通信模块1103执行网络设备301的S402,和/或通信模块1103还用于执行本申请实施例中网络设备301侧的其他收发步骤。处理模块1102用于执行本申请实施例中网络设备301侧的S401,和/或处理模块1102还用于执行本申请实施例中网络设备301侧的其他处理步骤。
再如,以通信装置1100为上述方法实施例中图6a的网络设备301为例,通信模块1103执行网络设备301的S402a、S403,和/或通信模块1103还用于执行本申请实施例中网络设备301侧的其他收发步骤。处理模块1102用于执行本申请实施例中网络设备301侧的其他处理步骤。
又如,以通信装置1100为上述方法实施例中图6b的网络设备301为例,通信模块1103执行网络设备301的S404、S405,和/或通信模块1103还用于执行本申请实施例中网络设备301侧的其他收发步骤。处理模块1102用于执行本申请实施例中网络设备301侧的其他处理步骤。
又如,以通信装置1100为上述方法实施例中图7的网络设备301为例,通信模块1103执行网络设备301的S702,和/或通信模块1103还用于执行本申请实施例中网络设备301侧的其他收发步骤。处理模块1102用于执行本申请实施例中网络设备301侧的S701,和/或处理模块1102还用于执行本申请实施例中网络设备301侧的其他处理步骤。
又如,以通信装置1100为上述方法实施例中图9a的网络设备301为例,通信模块1103执行网络设备301的S703,和/或通信模块1103还用于执行本申请实施例中网络设备301侧的其他收发步骤。处理模块1102用于执行本申请实施例中网络设备301侧的其他处理步骤。
又如,以通信装置1100为上述方法实施例中图9b的网络设备301为例,通信模块1103执行网络设备301的S704,和/或通信模块1103还用于执行本申请实施例中网络设备301侧的其他收发步骤。处理模块1102用于执行本申请实施例中网络设备301侧的其他处理步骤。
比如,以通信装置1100为上述方法实施例中图6a的终端设备305为例,通信模块1103执行终端设备305的S402a、S403,和/或通信模块1103还用于执行本申请实施例中终端设备305侧的其他收发步骤。处理模块1102用于执行本申请实施例中终端设备305侧的其他处理步骤。
再如,以通信装置1100为上述方法实施例中图6b的终端设备305为例,通信模块1103执行终端设备305的S404、S405,和/或通信模块1103还用于执行本申请实施例中终端设备305侧的其他收发步骤。处理模块1102用于执行本申请实施例中终端设备305侧的其他处理步骤。
又如,以通信装置1100为上述方法实施例中图9a的终端设备305为例,通信模块1103执行终端设备305的S703,和/或通信模块1103还用于执行本申请实施例中终端设备305侧的其他收发步骤。处理模块1102用于执行本申请实施例中终端设备305侧的其他处 理步骤。
又如,以通信装置1100为上述方法实施例中图9b的终端设备305为例,通信模块1103执行终端设备305的S704,和/或通信模块1103还用于执行本申请实施例中终端设备305侧的其他收发步骤。处理模块1102用于执行本申请实施例中终端设备305侧的其他处理步骤。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
应理解,本申请实施例中的处理模块1102可以由处理器或处理器相关电路组件实现,通信模块1103可以由收发器或收发器相关电路组件实现。
可选的,通信装置1100还可以包括存储模块1101,用于存储通信装置1100的程序代码和数据,数据可以包括不限于原始数据或者中间数据等。
其中,处理模块1102可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application specific integrated circuit,ASIC),现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
通信模块1103可以是通信接口、收发器或收发电路等。其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口。
存储模块1101可以是存储器。
当处理模块1102为处理器,通信模块1103为收发器,存储模块1101为存储器时,本申请实施例所涉及的通信装置1200可以为图12所示。
参阅图12所示,该通信装置1200包括:处理器1202、收发器1203、存储器1201。
其中,收发器1203可以为独立设置的发送器,该发送器可用于向其他设备发送信息,该收发器也可以为独立设置的接收器,用于从其他设备接收信息。该收发器也可以是将发送、接收信息功能集成在一起的部件,本申请实施例对收发器的具体实现不做限制。
可选的,通信装置1200还可以包括总线1204。其中,收发器1203、处理器1202以及存储器1201可以通过总线1204相互连接;总线1204的具体实现可以参见图10的介绍,此处不再赘述。
本领域普通技术人员可以理解:在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算 机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络设备上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个功能单元独立存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (57)

  1. 一种信号传输方法,其特征在于,包括:
    网络设备确定第一资源,其中,所述第一资源和第二资源在时域上不重叠,所述第二资源用于发送同步信号块SSB信号;所述第一资源与所述第二资源存在对应关系;
    所述网络设备在所述第一资源上传输至少一个第一信号,其中,所述第一信号用于探测目标的属性。
  2. 根据权利要求1所述的方法,其特征在于,所述第一资源是基于所述第二资源确定的。
  3. 根据权利要求1或2所述的方法,其特征在于,第一间隔与第二间隔不同;其中,
    所述第一间隔是目标时长内,所述至少一个第一信号中相邻两个第一信号之间的间隔;所述第二间隔是所述目标时长外,所述至少一个第一信号中相邻两个第一信号之间的间隔;所述目标时长是由所述第二资源所在的至少一个时隙构成。
  4. 根据权利要求3所述的方法,其特征在于,所述第一间隔为多个,且多个所述第一间隔的时间长度相同。
  5. 根据权利要求3或4所述的方法,其特征在于,在所述目标时长内,所述第一资源包括索引值为第一预设值的时域资源单元。
  6. 根据权利要求5所述的方法,其特征在于,所述时域资源单元为时域符号,所述第一预设值包括以下其中一项:0、1、12、或13。
  7. 根据权利要求3所述的方法,其特征在于,所述第一间隔为多个,且多个所述第一间隔中至少两个的时间长度不同。
  8. 根据权利要求3或7所述的方法,其特征在于,在所述目标时长内,所述第一资源包括索引值为第二预设值的时域资源单元。
  9. 根据权利要求8所述的方法,其特征在于,所述时域资源单元为时域符号,且所述时域符号分布于两个连续的时隙,所述第二预设值包括以下至少三项:0、1、2、3、12、13、14、15、24、25、26、或27;
    其中,所述第二预设值中的任意两项之间的差值大于或等于第三预设值。
  10. 根据权利要求8所述的方法,其特征在于,所述时域资源单元为时域符号,且所述时域符号分布于两个连续的时隙,所述第二预设值包括:3、13、24,或所述第二预设值包括:13、20、27。
  11. 根据权利要求1所述的方法,其特征在于,所述第二资源是基于所述第一资源确定的。
  12. 根据权利要求1或11所述的方法,其特征在于,第一间隔与第二间隔相同;
    其中,所述第一间隔是目标时长内,所述至少一个第一信号中相邻两个第一信号之间的间隔;所述第二间隔是所述目标时长外,所述至少一个第一信号中相邻两个第一信号之间的间隔;所述目标时长是由所述SSB信号的候选位置所在的至少一个时隙构成。
  13. 根据权利要求12所述的方法,其特征在于,在所述目标时长内,所述第二资源包括索引值为第四预设值的时域资源单元,所述第四预设值满足如下公式:
    Figure PCTCN2022087421-appb-100001
    其中,所述M表示所述第四预设值,所述N为整数,且0≤N≤27,所述k为正整数。
  14. 根据权利要求12所述的方法,其特征在于,在所述目标时长内,所述第二资源包括索引值为第四预设值的时域资源单元,所述第四预设值满足如下公式:
    Figure PCTCN2022087421-appb-100002
    其中,所述M表示所述第四预设值,所述N的取值包括以下至少两项:0、1、2、7、8、9、14、15、16、21、22、或23。
  15. 根据权利要求13或14所述的方法,其特征在于,所述N的取值包括:2、8、16、或22。
  16. 根据权利要求13至15任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向终端设备发送指示信息,其中,所述指示信息指示所述索引值。
  17. 一种信号传输方法,其特征在于,包括:
    终端设备接收指示信息,其中,所述指示信息指示第二资源的位置信息;
    所述终端设备在所述第二资源上,接收同步信号块SSB信号。
  18. 根据权利要求17所述的方法,其特征在于,所述第二资源的位置信息包括第四预设值;
    其中,所述第四预设值包括所述第二资源的时域资源单元的索引值,且所述第四预设值满足如下公式:
    Figure PCTCN2022087421-appb-100003
    其中,所述M表示所述第四预设值,所述N为整数,且0≤N≤27,所述k为正整数。
  19. 根据权利要求17所述的方法,其特征在于,所述第二资源的位置信息包括第四预设值;
    其中,所述第四预设值包括所述第二资源的时域资源单元的索引值,且所述第四预设值满足如下公式:
    Figure PCTCN2022087421-appb-100004
    其中,所述M表示所述第四预设值,所述N的取值包括以下至少两项:0、1、2、7、8、9、14、15、16、21、22、或23。
  20. 根据权利要求18或19所述的方法,其特征在于,所述N的取值包括:2、8、 16、或22。
  21. 一种信号传输方法,其特征在于,包括:
    网络设备确定第一资源,所述第一资源和第二资源在时域上重叠,且在频域上不重叠,所述第二资源用于发送通信信号;所述第一资源与所述第二资源存在对应关系;
    所述网络设备在所述第一资源上传输至少一个第一信号,其中,所述第一信号用于探测目标的属性。
  22. 根据权利要求21所述的方法,其特征在于,所述第一资源包括系统带宽中频率最小的X个频域资源单元,X为正整数;
    或者,所述第一资源包括所述系统带宽中频率最大的Y个频域资源单元,Y为正整数。
  23. 根据权利要求21或22所述的方法,其特征在于,所述方法还包括:
    所述网络设备向终端设备发送第一指示信息,所述第一指示信息指示以下两项:
    第一带宽与所述通信信号的带宽之和小于或等于系统带宽,其中,所述第一带宽是所述第一信号与所述通信信号在时域上重叠时的带宽;
    第二带宽等于所述系统带宽,其中,所述第二带宽是所述第一信号与所述通信信号在时域上不重叠时的带宽。
  24. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二指示信息,其中,所述第二指示信息指示以下两项:所述第一信号的带宽等于系统带宽,所述网络设备在所述第二资源上未发送所述第一信号。
  25. 根据权利要求24所述的方法,其特征在于,所述第一资源包括所述系统带宽中除所述第二资源之外的频域资源单元。
  26. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第三指示信息,其中,所述第三指示信息指示所述第一资源的位置信息。
  27. 根据权利要求26所述的方法,其特征在于,所述第三指示信息还指示第四资源的位置信息,其中,所述第四资源和所述第二资源在时域上不重叠,所述第四资源用于传输所述第一信号。
  28. 根据权利要求26或27所述的方法,其特征在于,所述第一信号上承载有通信信息。
  29. 根据权利要求21至28任一项所述的方法,其特征在于,所述通信信号包括同步信号块SSB信号。
  30. 一种信号传输方法,其特征在于,包括:
    终端设备在第一资源上,接收至少一个第一信号,其中,所述第一信号上承载有通信信息,所述第一资源和第二资源在时域上重叠,且在频域上不重叠,所述第二资源用于接收通信信号;所述第一资源与所述第二资源存在对应关系。
  31. 根据权利要求30所述的方法,其特征在于,所述第一资源包括系统带宽中频率最小的X个频域资源单元,X为正整数;
    或者,所述第一资源包括所述系统带宽中频率最大的Y个频域资源单元,Y为正整 数。
  32. 根据权利要求30或31所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自网络设备的第一指示信息,其中,所述第一指示信息指示以下两项:
    第一带宽与所述通信信号的带宽之和小于或等于系统带宽,其中,所述第一带宽是所述第一信号与所述通信信号在时域上重叠时的带宽;
    第二带宽等于所述系统带宽,其中,所述第二带宽是所述第一信号与所述通信信号在时域上不重叠时的带宽。
  33. 根据权利要求30所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第二指示信息,其中,所述第二指示信息指示以下两项:所述第一信号的带宽等于系统带宽,所述终端设备在所述第二资源上不接收所述第一信号。
  34. 根据权利要求33所述的方法,其特征在于,所述第一资源包括所述系统带宽中除所述第二资源之外的频域资源单元。
  35. 根据权利要求30所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第三指示信息,其中,所述第三指示信息指示所述第一资源的位置信息。
  36. 根据权利要求35所述的方法,其特征在于,所述第三指示信息还指示第四资源的位置信息,其中,所述第四资源和所述第二资源在时域上不重叠,所述第四资源用于传输所述第一信号。
  37. 根据权利要求30至36任一项所述的方法,其特征在于,所述通信信号包括同步信号块SSB信号。
  38. 一种通信装置,其特征在于,包括:
    处理模块,用于确定第一资源,所述第一资源和第二资源在时域上不重叠,所述第二资源用于发送同步信号块SSB信号;所述第一资源与所述第二资源存在对应关系;
    通信模块,用于在所述第一资源上传输至少一个第一信号,其中,所述第一信号用于探测目标的属性。
  39. 根据权利要求38所述的装置,其特征在于,所述第一资源是基于所述第二资源确定的。
  40. 根据权利要求38或39所述的装置,其特征在于,第一间隔与第二间隔不同;其中,所述第一间隔是目标时长内,所述至少一个第一信号中相邻两个第一信号之间的间隔;所述第二间隔是所述目标时长外,所述至少一个第一信号中相邻两个第一信号之间的间隔;所述目标时长是由所述第二资源所在的至少一个时隙构成。
  41. 根据权利要求40所述的装置,其特征在于,所述第一间隔为多个,且多个所述第一间隔的时间长度相同。
  42. 根据权利要求40所述的装置,其特征在于,所述第一间隔为多个,且多个所述第一间隔中至少两个的时间长度不同。
  43. 根据权利要求40或42所述的装置,其特征在于,在所述目标时长内,所述第一资源包括索引值为第二预设值的时域资源单元。
  44. 根据权利要求43所述的装置,其特征在于,所述时域资源单元为时域符号,且所述时域符号分布于两个连续的时隙,所述第二预设值包括以下至少三项:0、1、2、3、12、13、14、15、24、25、26、或27;
    其中,所述第二预设值中的任意两项之间的差值大于或等于第三预设值。
  45. 根据权利要求38所述的装置,其特征在于,所述第二资源是基于所述第一资源确定的。
  46. 根据权利要求38或45所述的装置,其特征在于,第一间隔与第二间隔相同;
    其中,所述第一间隔是目标时长内,所述至少一个第一信号中相邻两个第一信号之间的间隔;所述第二间隔是所述目标时长外,所述至少一个第一信号中相邻两个第一信号之间的间隔;所述目标时长是由所述SSB信号的候选位置所在的至少一个时隙构成。
  47. 根据权利要求46所述的装置,其特征在于,在所述目标时长内,所述第二资源包括索引值为第四预设值的时域资源单元,所述第四预设值满足如下公式:
    Figure PCTCN2022087421-appb-100005
    其中,所述M表示所述第四预设值,所述N为整数,且0≤N≤27,所述k为正整数。
  48. 根据权利要求47所述的装置,其特征在于,在所述目标时长内,所述第二资源包括索引值为第四预设值的时域资源单元,所述第四预设值满足如下公式:
    Figure PCTCN2022087421-appb-100006
    其中,所述M表示所述第四预设值,所述N的取值包括以下至少两项:0、1、2、7、8、9、14、15、16、21、22、或23。
  49. 根据权利要求47或48所述的装置,其特征在于,
    所述通信模块,还用于向终端设备发送指示信息,所述指示信息指示所述索引值。
  50. 一种通信装置,其特征在于,包括:处理模块和通信模块,所述处理模块通过所述通信模块接收指示信息,其中,所述指示信息指示第二资源的位置信息;以及
    在所述第二资源上,接收同步信号块SSB信号。
  51. 根据权利要求50所述的装置,其特征在于,所述第二资源的位置信息包括第四预设值;
    其中,所述第四预设值包括所述第二资源的时域资源单元的索引值,且所述第四预设值满足如下公式:
    Figure PCTCN2022087421-appb-100007
    其中,所述M表示所述第四预设值,所述N为整数,且0≤N≤27,所述k为正整数。
  52. 根据权利要求50所述的装置,其特征在于,所述第二资源的位置信息包括第四预设值;
    其中,所述第四预设值包括所述第二资源的时域资源单元的索引值,且所述第四预设值满足如下公式:
    Figure PCTCN2022087421-appb-100008
    其中,所述M表示所述第四预设值,所述N的取值包括以下至少两项:0、1、2、7、8、9、14、15、16、21、22、或23。
  53. 一种通信装置,其特征在于,包括:处理器,所述处理器和存储器耦合,所述存储器存储有指令,当所述指令被所述处理器执行时,如权利要求1至16中任一项所述的方法被执行,或如权利要求21至29中任一项所述的方法被执行。
  54. 一种芯片,其特征在于,所述芯片包括逻辑电路和输入输出接口,所述输入输出接口用于与所述芯片之外的模块通信,所述逻辑电路用于运行计算机程序或指令,以使得通信设备执行如权利要求1至16中任一项所述的方法,或执行如权利要求21至29中任一项所述的方法。
  55. 一种通信装置,其特征在于,包括:处理器,所述处理器和存储器耦合,所述存储器存储有指令,当所述指令被所述处理器执行时,如权利要求17至20中任一项所述的方法被执行,或如权利要求30至37中任一项所述的方法被执行。
  56. 一种芯片,其特征在于,所述芯片包括逻辑电路和输入输出接口,所述输入输出接口用于与所述芯片之外的模块通信,所述逻辑电路用于运行计算机程序或指令,以使得通信设备执行如权利要求17至20中任一项所述的方法,或执行如权利要求30至37中任一项所述的方法。
  57. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储程序,所述程序被处理器调用时,权利要求1至16任一项所述的方法被执行,或权利要求17至20任一项所述的方法被执行,或权利要求21至29任一项所述的方法被执行,或权利要求30至37任一项所述的方法被执行。
PCT/CN2022/087421 2021-04-30 2022-04-18 信号传输方法及通信装置 WO2022228185A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110482926.9 2021-04-30
CN202110482926 2021-04-30
CN202110975580.6 2021-08-24
CN202110975580.6A CN115278852A (zh) 2021-04-30 2021-08-24 信号传输方法及通信装置

Publications (1)

Publication Number Publication Date
WO2022228185A1 true WO2022228185A1 (zh) 2022-11-03

Family

ID=83758669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087421 WO2022228185A1 (zh) 2021-04-30 2022-04-18 信号传输方法及通信装置

Country Status (2)

Country Link
CN (1) CN115278852A (zh)
WO (1) WO2022228185A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118055453A (zh) * 2022-11-16 2024-05-17 华为技术有限公司 一种信号传输方法及相关装置
CN118509141A (zh) * 2023-02-16 2024-08-16 华为技术有限公司 一种信号传输方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016183731A1 (zh) * 2015-05-15 2016-11-24 华为技术有限公司 一种信号处理方法、装置及系统
WO2017123279A1 (en) * 2016-01-15 2017-07-20 Intel IP Corporation Evolved node-b (enb), user equipment (ue) and methods for communication of a channel raster frequency offset
CN109842917A (zh) * 2017-11-29 2019-06-04 维沃移动通信有限公司 系统信息块的传输方法和用户终端
CN110839290A (zh) * 2018-08-17 2020-02-25 成都华为技术有限公司 信号传输的方法和通信装置
CN112399566A (zh) * 2019-08-14 2021-02-23 华为技术有限公司 处理数据的方法和通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016183731A1 (zh) * 2015-05-15 2016-11-24 华为技术有限公司 一种信号处理方法、装置及系统
WO2017123279A1 (en) * 2016-01-15 2017-07-20 Intel IP Corporation Evolved node-b (enb), user equipment (ue) and methods for communication of a channel raster frequency offset
CN109842917A (zh) * 2017-11-29 2019-06-04 维沃移动通信有限公司 系统信息块的传输方法和用户终端
CN110839290A (zh) * 2018-08-17 2020-02-25 成都华为技术有限公司 信号传输的方法和通信装置
CN112399566A (zh) * 2019-08-14 2021-02-23 华为技术有限公司 处理数据的方法和通信装置

Also Published As

Publication number Publication date
CN115278852A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
EP3297368B1 (en) User terminal, wireless base station, and wireless communication method
US10931407B2 (en) User terminal and radio communication method
US9743401B2 (en) Method, user equipment and base station for configuring radio frame for offsetting Doppler effect
CN106789800B (zh) 一种下行同步的方法、装置及系统
US9763248B2 (en) Method for configuring wireless frame of user equipment, user equipment, method for configuring wireless frame of base station, and base station
KR101507867B1 (ko) 이종 네트워크 환경에서의 네트워크 통신 방법 및 단말
US9848397B2 (en) Synchronizing signal receiving method and user equipment, and synchronizing signal transmitting method and base station
WO2018192015A1 (zh) 时频资源传输方向的配置方法和装置
US20170202019A1 (en) Method and terminal for receiving data through unlicensed band in mobile communication system
CN109565884A (zh) 未许可频带中的mbms和pmch
EP3487254A1 (en) User terminal and radio communication method
WO2022228185A1 (zh) 信号传输方法及通信装置
CN109392129B (zh) 一种资源分配的方法,终端以及网络设备
US20210410182A1 (en) Random access method and apparatus
CN107836129A (zh) 一种数据传输的方法、无线网络设备和通信系统
JP2018537923A (ja) 複数のトーンホッピング距離をもつ狭帯域prach
CN108029145B (zh) 无线基站、用户终端和无线通信方法
CA3017311A1 (en) User terminal, radio base station and radio communication method
WO2018082575A1 (zh) 一种下行控制信号的传输方法及装置
WO2022068177A1 (zh) 用于资源调度的通信方法及装置
KR20190017588A (ko) 비면허대역에서 상향링크 자발적 전송을 위한 채널엑세스, 데이터 자원 설정 방법, 및 재전송을 위한 장치 및 시스템
WO2021062689A1 (zh) 一种上行传输的方法及装置
KR20180039501A (ko) 비면허대역에서 상향링크 캐리어 채널엑세스 및 데이터 전송 방법, 장치 및 시스템
KR20170127634A (ko) 비면허대역에서 상향링크 채널 및 신호 전송 방법, 장치 및 시스템
CN115004615A (zh) 用户设备(ue) 关于相同准共置(qcl)参数的频带组共享的能力

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794656

Country of ref document: EP

Kind code of ref document: A1