WO2022228177A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2022228177A1
WO2022228177A1 PCT/CN2022/087367 CN2022087367W WO2022228177A1 WO 2022228177 A1 WO2022228177 A1 WO 2022228177A1 CN 2022087367 W CN2022087367 W CN 2022087367W WO 2022228177 A1 WO2022228177 A1 WO 2022228177A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio access
request
access network
network node
identifier
Prior art date
Application number
PCT/CN2022/087367
Other languages
English (en)
French (fr)
Inventor
王燕
李秉肇
曹振臻
李濛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22794648.0A priority Critical patent/EP4319208A1/en
Publication of WO2022228177A1 publication Critical patent/WO2022228177A1/zh
Priority to US18/496,458 priority patent/US20240057219A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/146Markers for unambiguous identification of a particular session, e.g. session cookie or URL-encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/04Network layer protocols, e.g. mobile IP [Internet Protocol]

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and apparatus.
  • FIG. 1 shows a schematic diagram of a dual-connection control plane architecture.
  • two radio access network nodes respectively provide services for user equipment (UE) through air interfaces such as Uu interfaces
  • one of the radio access network nodes is the master radio access network node (master radio access network node).
  • network node referred to as the master node (master node, MN)
  • another radio access network node is the secondary radio access network node (secondary radio access network node), referred to as the secondary node (secondary node, SN).
  • the master node establishes the NG control plane protocol of the UE with the core network (CN), such as the NG application protocol (NG application protocol, NGAP) association.
  • CN core network
  • NG application protocol NG application protocol
  • NGAP NG application protocol
  • MBS multicast/broadcast service
  • the present application provides a communication method and apparatus, so as to realize the provision of MBS data to terminal equipment by the SN in a dual-connection scenario, thereby improving the flexibility of data transmission.
  • a first aspect provides a communication method, the method comprising: a primary radio access network node sending a first request to a secondary radio access network node, where the first request is used to request the secondary radio access network node Provide a terminal device with a multicast broadcast service, where the first request includes a first identifier corresponding to the multicast broadcast service; and the primary radio access network node receives the first response from the secondary radio access network node, so The first response is used to instruct the secondary radio access network node to accept providing the terminal device with the multicast broadcast service.
  • the terminal device is dual-connected with the MN and the SN.
  • the MN requests the SN to provide the MBS service for its terminal device, and the SN responds to the MN's acceptance of providing the terminal device with the MBS service, thereby realizing the dual-connection scenario through the SN.
  • the MBS service data is sent to the UE.
  • the first response includes address information of the first interface between the secondary radio access network node and the core network, or the secondary radio access network node and the primary radio access network node.
  • the first interface address information is the interface address information allocated by the SN for the MBS service, and the first interface address information may also be called the NG-U interface tunnel address information of the secondary base station, that is, the SN passes the NG-U interface address information.
  • the interface performs data transmission with the core network;
  • the second interface address information is the interface address information allocated by the SN for the MBS service, and the second interface address information may also be called the Xn-U interface tunnel address information of the secondary base station, that is, the SN passes
  • the Xn-U interface performs data transmission with the MN.
  • the MN receives the first interface address information or the second interface address information provided by the SN, and sends the first interface address information or the second interface address information to the core network, so that the core network can The address information sends MBS service data to the SN.
  • the first response includes MBS air interface configuration information of the secondary radio access network node, and the primary wireless communication node sends the MBS air interface configuration information to the Terminal Equipment.
  • the first response is further used to indicate that the multicast broadcast service is already in the secondary radio access network node exists, or the data transmission channel of the multicast broadcast service has been established at the secondary radio access network node.
  • the MN requests the SN to provide the MBS service for its UE
  • the shared NG-U tunnel corresponding to the MBS service already exists on the SN the SN can indicate that the MBS service already exists in the SN, or the The data transmission channel of the MBS service has been established in the SN, so as to avoid repeatedly establishing a tunnel for the MBS service, reduce communication overhead and save communication resources.
  • the first identifier is at least one of the following information: a reference identifier of the multicast broadcast service, the multicast Session ID of the broadcast service.
  • the first request further includes at least one of the following information: an access point AP identifier of the multicast broadcast service, Access and Mobility Management Function Identifier, Session Management Function Identifier, Multicast Broadcast-Session Management Function Identifier, Multicast Broadcast-Function Identifier.
  • the MN sends the above at least one piece of information to the SN, and after the SN acquires the above at least one piece of information, it can request MBS service data from the core network by itself without sending the request through the MN.
  • the first request further includes the IP multicast group address of the multicast broadcast service, so The IP multicast group address is used to receive the data of the multicast broadcast service.
  • the MN when the MN requests the SN to provide the MBS service for its UE, the MN provides an IP multicast group address.
  • the SN accepts to provide the MBS service for the UE, it joins the IP multicast group address to obtain the MBS service. data.
  • the core network only needs to send one MBS service data to the IP multicast group address, which improves the communication efficiency and saves the communication overhead.
  • the method further includes: the primary radio access network node sends a second request to the core network, where the second request It includes the first identifier, and at least one of the following items: the first interface address information, or the second identifier corresponding to the secondary radio access network node.
  • the second identifier is the identifier of the secondary radio access network node, or the identifier of the cell of the secondary radio access node.
  • the MN sends the second request to the core network, requesting the core network to send MBS service data to the first interface address information; or the MN sends the second request to the core network, informing the core network that the UE will be sent by the second request.
  • the SN indicated by the identifier provides the MBS service, so that the core network can perceive the SN and clearly know that the MBS data is sent to the SN.
  • the method further includes: the primary radio access network node receiving a third radio access network node from the secondary radio access network node request, the third request includes at least one of the following: the first identifier, the second identifier corresponding to the secondary radio access network node, the first interface between the secondary radio access network node and the core network address information; the primary radio access network node sends a fourth request to the core network, where the fourth request includes at least one of the following: the first identifier, the second identifier, the first interface address information; the primary wireless access network The access network node receives a second response from the core network, where the second response includes the first identification.
  • the primary radio access network node sends a third response to the secondary radio access network node, where the third response includes the first identifier and optionally the Second logo.
  • the core network is aware of the SN, but the interaction between the SN and the core network is through the MN.
  • the method further includes: a primary radio access network node receiving the multicast broadcast service from the core network and the primary radio access network node forwards the data to the secondary radio access network node according to the second interface address information.
  • a way of establishing an Xn-U tunnel from the MN to the SN is provided, so that the SN can provide the UE with the MBS service.
  • a second aspect provides a communication method, the method comprising: a secondary radio access network node receiving a first request from a primary radio access network node, where the first request is used to request the secondary radio access network node to be
  • the terminal device provides a multicast broadcast service, the first request includes a first identifier corresponding to the multicast broadcast service; and the secondary radio access network node sends to the primary radio access network node according to the first request a first response, where the first response is used to instruct the secondary radio access network node to accept providing the terminal device with the multicast broadcast service.
  • the first response includes address information of the first interface between the secondary radio access network node and the core network, or the secondary radio access network node and the address information of the second interface between the primary radio access network nodes.
  • the first response is further used to indicate that the multicast broadcast service is already in the secondary radio access network node exists or is established, or the data transmission channel of the broadcast multicast service has been established at the secondary radio access network node.
  • the first response includes MBS air interface configuration information of the secondary radio access network node.
  • the secondary wireless access node after receiving the first request, sends the MBS air interface configuration information to the terminal device.
  • the first identifier is at least one of the following information: a reference identifier of the multicast broadcast service, the multicast Session ID of the broadcast service.
  • the first request further includes the access point AP identifier, access and mobility of the multicast broadcast service management function identifier, session management function identifier, multicast broadcast-session management function identifier, multicast broadcast-function identifier; the method further includes: the secondary radio access network node sends a fifth request to the core network according to the first request request, the fifth request includes the first interface address information; and the secondary radio access network node receives the data of the multicast broadcast service from the core network according to the first interface address information.
  • the first request includes an Internet Protocol IP multicast group address of the multicast broadcast service; the The method further includes: the secondary radio access network node joins the IP multicast group according to the IP multicast group address; and the secondary radio access network node receives the data of the multicast broadcast service from the core network.
  • the method includes: a secondary radio access network node receives information from the core according to the first interface address information data of the multicast broadcast service of the network.
  • the method further includes: the secondary radio access network node sends a third request to the primary radio access network node , the third request includes at least one of the following: the first identifier, the second identifier corresponding to the secondary radio access network node, the first identifier between the secondary radio access network node and the core network interface address information; and the secondary radio access network node receives a third response from the primary radio access network node, where the third response includes the first identifier and optionally the second identifier.
  • the method further includes: a secondary radio access network node receiving information from the second interface address according to the second interface address information data of the multicast broadcast service of the primary radio access network node.
  • a communication method comprising: a core network receiving a second request, where the second request includes a first identifier corresponding to a multicast broadcast service, and at least one of the following: a secondary radio access network address information of the first interface between the node and the core network, or the second identifier corresponding to the secondary radio access network node; according to the first identifier and the address information of the first interface or the second identifier At least one item is to send the data of the multicast broadcast service.
  • a communication apparatus which can implement the communication method in the above-mentioned first aspect.
  • the communication device may be a chip or a radio access network node.
  • the above method can be implemented by software, hardware, or by hardware executing corresponding software.
  • the communication apparatus may include a transceiver unit and a processing unit; wherein: the transceiver unit is configured to send a first request to the secondary radio access network node, where the first request is used to request
  • the secondary radio access network node provides a multicast broadcast service for terminal equipment, and the first request includes a first identifier corresponding to the multicast broadcast service; and the transceiver unit is further configured to receive data from the secondary radio access network.
  • the first response of the network access node where the first response is used to instruct the secondary radio access network node to accept the provision of the multicast broadcast service for the terminal device.
  • the transceiver unit is further configured to send a second request to the core network, where the second request includes the first identifier and at least one of the following: the first interface address information, or the secondary wireless The second identifier corresponding to the access network node.
  • the transceiver unit is further configured to receive a third request from the secondary radio access network node, where the third request includes the first identifier and at least one of the following: the secondary radio access network The second identifier corresponding to the network node, the address information of the first interface between the secondary radio access network node and the core network; the transceiver unit is further configured to send a fourth request to the core network, the fourth request It includes at least one of the following: the first identifier, the second identifier, and the first interface address information; the transceiver unit is further configured to receive a second response from the core network, where the second response includes the first identifier and optionally the second identifier; and the transceiver unit is further configured to send a third response to the secondary radio access network node, where the third response includes the first identifier and Optionally include the second identifier.
  • the transceiver unit is further configured to receive the data of the multicast broadcast service from the core network; and the transceiver unit is further configured to send data to the secondary wireless interface according to the second interface address information.
  • the network access node forwards the data.
  • the first response includes MBS air interface configuration information of the secondary radio access network node
  • the transceiver unit is further configured to send the MBS air interface configuration information to the terminal device.
  • a communication apparatus which can implement the communication method in the second aspect.
  • the communication device may be a chip or a radio access network node.
  • the above method can be implemented by software, hardware, or by hardware executing corresponding software.
  • the communication apparatus may include a transceiver unit and a processing unit; wherein: the transceiver unit is configured to receive a first request from a primary radio access network node, and the first request is used for Requesting the secondary radio access network node to provide a multicast broadcast service for the terminal device, the first request includes a first identifier corresponding to the multicast broadcast service; and the transceiver unit is further configured to send a request to the terminal device according to the first request.
  • the primary radio access network node sends a first response, where the first response is used to instruct the secondary radio access network node to accept providing the terminal device with the multicast broadcast service.
  • the first identifier is a reference identifier of the multicast broadcast service, or a session identifier of the multicast broadcast service.
  • the first request further includes the access point AP identifier of the multicast broadcast service, the access and mobility management function identifier, the session management function identifier, the multicast broadcast-session management function identifier, and the multicast broadcast service identifier.
  • the transceiver unit is further configured to send a fifth request to the core network according to the first request, where the fifth request includes the first interface address information; and the transceiver unit is further configured to send a fifth request to the core network according to the first request
  • the first interface address information is received, and the data of the multicast broadcast service from the core network is received.
  • the first request includes an IP multicast group address of the multicast broadcast service; the processing unit is configured to join an IP multicast group according to the IP multicast group address; and The transceiver unit is further configured to receive the data of the multicast broadcast service from the core network.
  • the transceiver unit is further configured to receive data of the multicast broadcast service from the core network according to the first interface address information.
  • the transceiver unit is further configured to send a third request to the primary radio access network node, where the third request includes at least one of the following: the first identifier, the secondary radio access network node the corresponding second identifier, the address information of the first interface between the secondary radio access network node and the core network; and the transceiver unit is further configured to receive a third response from the primary radio access network node , the third response includes the first identifier and optionally the second identifier.
  • the transceiver unit is further configured to receive, according to the second interface address information, the data of the multicast broadcast service from the primary radio access network node.
  • the first response includes MBS air interface configuration information of the secondary radio access network node.
  • the transceiver unit is further configured to send the MBS air interface configuration information to the terminal device.
  • a communication apparatus which can implement the communication method in the above-mentioned first aspect.
  • the communication device may be a chip or a core network.
  • the above method can be implemented by software, hardware, or by hardware executing corresponding software.
  • the communication apparatus may include a transceiver unit and a processing unit; wherein: the transceiver unit is configured to receive a second request, and the second request includes a first identifier corresponding to a multicast broadcast service , and at least one of the following: the first interface address information between the secondary radio access network node and the core network, or the second identifier corresponding to the secondary radio access network node; The first identifier, and at least one of the first interface address information or the second identifier, send the data of the multicast broadcast service.
  • the communication apparatuses in the above fourth to sixth aspects include a processor coupled to a memory; the processor is configured to support the apparatus to perform corresponding functions in the above communication method.
  • the memory is used for coupling with the processor, which holds the necessary programs (instructions) and/or data for the apparatus.
  • the communication apparatus may further include a communication interface for supporting communication between the apparatus and other network elements.
  • the memory may be located inside the communication device, or may be located outside the communication device.
  • the communication apparatus in the above-mentioned fourth to sixth aspects includes a processor and a transceiver, the processor is coupled to the transceiver, and the processor is configured to execute a computer program or instruction , so as to control the transceiver device to receive and send information; when the processor executes the computer program or instructions, the processor is further configured to implement the above method through a logic circuit or executing code instructions.
  • the transceiver may be a transceiver, a transceiver circuit or an input/output interface, configured to receive signals from other communication devices other than the communication device and transmit to the processor or transmit signals from the processor sent to other communication devices than the communication device.
  • the transceiver device is a transceiver circuit or an input and output interface.
  • the sending unit may be an output unit, such as an output circuit or a communication interface; the receiving unit may be an input unit, such as an input circuit or a communication interface.
  • the sending unit may be a transmitter or a transmitter; the receiving unit may be a receiver or a receiver.
  • a computer-readable storage medium where computer programs or instructions are stored in the computer-readable storage medium, and when the computer programs or instructions are executed, the methods described in the above aspects are implemented.
  • a computer program product comprising instructions which, when executed on a communication device, cause the communication device to perform the methods of the above aspects.
  • a communication system in a ninth aspect, includes the communication device of the fourth aspect, the communication device of the fifth aspect, and the communication device of the sixth aspect.
  • FIG. 1 is a schematic diagram of a dual-connection control plane architecture
  • FIG. 2 is a schematic structural diagram of a communication system 1000 to which an embodiment of the present application is applied;
  • FIG. 3 is a schematic diagram of a connection between a radio access network node and a core network
  • FIG. 4 is a schematic diagram of the architecture of dual connectivity on the UE side
  • FIG. 5 is a schematic diagram of the architecture of the dual connection on the radio access network side
  • FIG. 8 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of establishing an NG-U tunnel between the core network and the SN under the dual connectivity scenario of the example of the application;
  • FIG. 11 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 14 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 15 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 16 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 17 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • 18 is a schematic diagram of establishing an Xn-U tunnel between the MN and the SN under the dual connectivity scenario of the example of this application;
  • FIG. 19 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 21 is a schematic structural diagram of still another communication apparatus provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a communication system 1000 to which an embodiment of the present application is applied.
  • the communication system includes a radio access network 100 and a core network 200 .
  • the communication system 1000 may further include the Internet 300 .
  • the radio access network 100 may include at least two radio access network nodes (110a and 110b in FIG. 2), and may also include at least one terminal device (120a-120j in FIG. 2).
  • the terminal equipment is wirelessly connected to the wireless access network node, and the wireless access network node is wirelessly or wiredly connected to the core network.
  • the core network and radio access network nodes can be independent and different physical devices, or the functions of the core network and the logical functions of the radio access network nodes can be integrated on the same physical device, or they can be integrated on one physical device. Part of the core network functions and part of the radio access network node functions.
  • the terminal equipment and the terminal equipment and the radio access network node and the radio access network node may be connected to each other in a wired or wireless manner. It can be understood that FIG. 2 is only a schematic diagram, and the communication system 1000 may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 2 .
  • the radio access network node communicates with the core network control plane and exchanges signaling; the radio access network node communicates with the core network user plane to transmit and receive data.
  • one of the at least two radio access network nodes may be an MN, and the other radio access network node may be an SN.
  • At least two radio access network nodes provide dual connectivity services for terminal equipment.
  • 3 is a schematic diagram of the connection between the radio access network nodes and the core network, wherein the radio access network nodes and the core network are connected by NG interfaces, and the radio access network nodes are connected by Xn interfaces.
  • FIG. 3 takes a 5G communication system as an example.
  • the communication system includes a 5G core network (5th generation core, 5GC ) and a next generation-radio access network (NG-RAN).
  • the 5GC includes an access and mobility management function (AMF) network element, a user plane function (user plane function, UPF) network element, and the like.
  • AMF access and mobility management function
  • UPF user plane function
  • NG-RAN consists of multiple gNBs or ng-eNBs connected to 5GC.
  • the gNB and the gNB, or the gNB and the ng-eNB, or the ng-eNB and the ng-eNB are connected through the Xn interface; the gNB and the 5GC, or the ng-eNB and the 5GC are connected through the NG interface.
  • the radio access network node can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), the next generation in the fifth generation (5th generation, 5G) mobile communication system
  • Base station (next generation NodeB, gNB), the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also complete the base station part
  • a functional module or unit for example, may be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the radio access network node can be a macro base station (110a in Figure 2), a micro base station or an indoor station (110b in Figure 2), a relay node or a donor (donor) node, a home base station Wait.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the radio access network node.
  • the following description takes the base station as an example of the radio access network node.
  • a terminal device may also be referred to as a terminal, user equipment (UE), a mobile station, a mobile terminal device, and the like. To simplify the description, it is collectively referred to as UE hereinafter.
  • UE can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of things (IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminal devices can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the UE.
  • the base station and the UE can be fixed or mobile.
  • Base stations and UEs can be deployed on land, including indoor or outdoor, hand-held or vehicle-mounted; on water; and on aircraft, balloons, and satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of the base station and the UE.
  • the roles of the base station and the UE may be relative, for example, the helicopter or drone 120i in FIG. 2 may be configured as a mobile base station, and for those UEs 120j that access the radio access network 100 through 120i, the UE 120i is the base station; But for the base station 110a, 120i is a UE, that is, communication between 110a and 120i is performed through a wireless air interface protocol. Of course, the communication between 110a and 120i may also be performed through an interface protocol between the base station and the base station. In this case, compared to 110a, 120i is also a base station. Therefore, both the base station and the UE may be collectively referred to as communication devices, 110a and 110b in FIG. 2 may be referred to as communication devices with base station functions, and 120a-120j in FIG. 2 may be referred to as communication devices with UE functions.
  • the communication between the base station and the UE, between the base station and the base station, and between the UE and the UE can be carried out through the licensed spectrum, the unlicensed spectrum, or the licensed spectrum and the unlicensed spectrum at the same time;
  • the frequency spectrum below gigahertz (GHz) is used for communication, the frequency spectrum above 6GHz can also be used for communication, and the frequency spectrum below 6GHz and the frequency spectrum above 6GHz can be used for communication at the same time.
  • the embodiments of the present application do not limit the spectrum resources used for wireless communication.
  • the function of the base station may also be performed by a module (eg, a chip) in the base station, or may be performed by a control subsystem including the function of the base station.
  • the control subsystem including the base station function here may be the control center in the above application scenarios such as smart grid, industrial control, intelligent transportation, and smart city.
  • the functions of the UE may also be performed by a module in the UE (such as a chip or a modem), and may also be performed by a device including the functions of the UE.
  • the base station sends a downlink signal or downlink information to the UE, and the downlink information is carried on the downlink channel; the UE sends an uplink signal or uplink information to the base station, and the uplink information is carried on the uplink channel.
  • the cell controlled by the base station that serves the UE is called the serving cell of the UE. When the UE communicates with the serving cell, it will also be interfered by signals from neighboring cells.
  • FIG. 4 it is a schematic diagram of the architecture of dual connectivity on the UE side
  • FIG. 5 it is a schematic diagram of the architecture of dual connectivity on the radio access network side.
  • the included protocol layers from top to bottom are: Service Data Adaptation Protocol (SDAP), Packet Data Convergence Protocol (PDCP), Radio Link Control (RLC) , media access control (media access control, MAC), physical layer (physical layer, PHY) (not shown).
  • SDAP Service Data Adaptation Protocol
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • media access control media access control
  • MAC physical layer
  • PHY physical layer
  • MN-terminated bearer MN-terminated bearer
  • SN-side bearer MN-side bearer
  • primary cell group bearer master cell group bearer, MCG bearer
  • secondary cell group bearer secondary cell group bearer
  • split bearer split bearer
  • SN terminated SCG bearer indicates the downlink direction. Data is sent from the CN to the downlink address of the SN, the SN adds the PDCP header, and then sends it to the UE through the air interface of the SN.
  • the SN terminated split bearer, indicating the downlink direction, the data is sent from the CN to the downlink address of the SN, the SN adds the PDCP header, and sends a part of the data to the UE through the air interface of the SN, and forwards the other part of the data to the MN through the Xn interface, and then through the MN
  • the air interface is sent to the UE.
  • MN terminated MCG bearer indicating the downlink direction
  • the data is sent from the CN to the downlink address of the MN
  • the MN adds the PDCP header, and then sends it to the UE through the air interface of the MN.
  • the MN terminated split bearer, indicating the downlink direction
  • the data is sent from the CN to the downlink address of the MN
  • the MN adds the PDCP header, and sends a part of the data to the UE through the air interface of the MN, and forwards the other part of the data to the SN through the Xn interface.
  • the air interface is sent to the UE.
  • the 5G communication system of Rel-17 will support MBS.
  • MBS will greatly improve the data transmission efficiency on the air interface and the backhaul interface.
  • UEs listening to the same MBS service can receive data through group scheduling such as point to multiple points (PTM), and the same data base station can send it to multiple UEs after sending it once.
  • PTM point to multiple points
  • multiple UEs are connected to an AMF network element through one gNB.
  • the UPF only provides a copy of the data to be sent to the gNB through the shared NG interface (NG-U) tunnel.
  • the gNB sends it to the UE in a point-to-point (PTP) or PTM manner over the air interface.
  • PTP point-to-point
  • this embodiment does not support the provision of MBS service from the SN to the UE in the dual connectivity scenario, or the SN and the MN jointly provide the MBS service for the UE.
  • an embodiment of the present application provides a communication method.
  • the UE establishes dual connections with the MN and the SN.
  • the MN requests the SN to provide the MBS service for its UE
  • the MN sends a first request to the SN, where the first request includes the first identifier corresponding to the MBS; after receiving the first request, the SN sends a first response to the MN, the A response is used to indicate that the SN accepts to provide MBS services for the UE. Therefore, in the dual connectivity scenario, the MBS service data is sent to the UE through the SN.
  • FIG. 8 which is a schematic flowchart of a communication method provided by an embodiment of the present application, the method may include the following steps:
  • the MN sends the first request to the SN.
  • the SN receives the first request.
  • the UE establishes dual connections with the MN and the SN.
  • the MN requests the SN to provide the MBS service for the UE
  • the MN sends the first request to the SN.
  • the first request is used to request the SN to provide the MBS service for the UE.
  • the first request includes a first identifier corresponding to the MBS, such as an MBS session identifier (MBS session ID). This first identifier corresponds to which MBS session needs to provide the service, and the corresponding message should carry the first identifier.
  • MBS session ID MBS session identifier
  • the SN sends a first response to the MN according to the first request.
  • the MN receives the first response.
  • the SN After receiving the first request, the SN sends a first response to the MN.
  • the first response is used to instruct the SN to accept the provision of the MBS service for the UE.
  • the SN may communicate by establishing an NG-U tunnel with the core network.
  • the SN may carry the first interface address information in the first response, or the SN provides the first interface address information to the core network (for example, the first interface address information is not forwarded through the MN), so as to establish the communication with the core network. between NG-U tunnels.
  • the first interface address information is the interface address information allocated by the SN for the MBS service.
  • the first interface address information may also be referred to as NG-U interface tunnel address information of the secondary base station, that is, the SN transmits data to the core network through the NG-U interface, for example, the core network sends downlink data to the SN through the NG-U interface.
  • the SN may communicate by establishing an Xn-U tunnel with the MN. Further, the MN has established an NG-U tunnel with the core network. The SN may carry the second interface address information in the first response to establish an Xn-U tunnel between the SN and the MN.
  • the second interface address information is the interface address information allocated by the SN for the MBS service.
  • the second interface address information may also be called Xn-U interface tunnel address information of the secondary base station, that is, the SN transmits data with the MN through the Xn-U interface, for example, the MN sends downlink data to the SN through the Xn-U interface.
  • the MBS service already exists in the SN, or the data transmission channel of the MBS has been established in the SN, for example, an NG-U interface for the MBS has been established between the SN and the core network, or the SN and the If the Xn-U interface for the MBS has been established between other MNs, the SN can receive the MBS service data through the established data transmission channel.
  • the SN provides the air interface configuration information of the MBS service in the first response, and the MN sends the air interface configuration information of the MBS service to the UE, or the SN sends the MBS to the UE after receiving the first request. Air interface configuration information.
  • the MN sends a second request to the core network.
  • the core network receives the second request.
  • the second request includes the first identification.
  • the second request further includes address information of the first interface and/or a second identifier corresponding to the SN.
  • the core network does not perceive the existence of the SN.
  • the core network only knows that the MN serves the UE. At this time, the existing technology is changed little, and the core network still considers the MN as the serving node of the UE.
  • the core network can perceive the existence of the SN according to the second identifier corresponding to the SN.
  • the core network knows that the SN serves the UE, and the core network knows that the MBS service of the UE is provided by the SN, so it can establish a shared tunnel with the SN, and the subsequent session activation or deactivation can also be directly sent to the SN.
  • the core network sends the data of the multicast broadcast service corresponding to the first identifier to the SN according to the first identifier, and at least one of the first interface address information or the second identifier.
  • the core network sends data of the multicast broadcast service corresponding to the first identifier to the MN according to the first identifier, and the data is forwarded to the SN via the MN.
  • this embodiment of the present application further includes the following step S804.
  • the core network stores the correspondence between the first identifier and the first interface address information, and/or stores the correspondence between the first identifier and the second identifier.
  • the core network After receiving the second request, stores the correspondence between the first identifier and the first interface address information, that is, records the data of the MBS of the UE and sends it to the first interface address; and/or stores the first identifier and the first interface address.
  • the correspondence between the second identifiers is to record that the MBS service of the UE is served by the SN corresponding to the second identifier, or add the SN corresponding to the second identifier to the list of radio access network nodes served by the MBS service.
  • the UE in a dual connectivity scenario, establishes dual connectivity with the MN and the SN.
  • the MN requests the SN to provide the MBS service for its UE
  • the MN sends a first request to the SN, where the first request includes the first identifier corresponding to the MBS; after receiving the first request, the SN sends a first response to the MN.
  • a response is used to indicate that the SN accepts to provide MBS services for the UE. Therefore, in the dual connectivity scenario, the MBS service data is sent to the UE through the SN.
  • FIG. 9 is a schematic flowchart of another communication method provided by an embodiment of the present application, the method may include the following steps:
  • the MN sends the first request to the SN.
  • the SN receives the first request.
  • the MN requests to newly establish a shared NG-U tunnel to transmit a certain MBS service data. Therefore, the MN sends a first request to the SN.
  • the first request may be referred to as an SN Addition Request or a SN Modification Request.
  • the first request is used to request the SN to provide the MBS service for the UE.
  • the first request includes a first identifier corresponding to the MBS service, such as an MBS session identifier.
  • the first request may further include an MBS quality of service flow list (MBS QoS flow list).
  • the SN sends a first response to the MN according to the first request.
  • the MN receives the first response.
  • the first response is used to instruct the SN to accept the provision of the MBS service for the UE.
  • the first response includes address information of the first interface between the SN and the core network.
  • the first interface address information is the interface address information allocated by the SN for the MBS service.
  • the first interface address information may also be referred to as NG-U interface tunnel address information of the secondary base station, that is, the SN performs data transmission with the core network through the NG-U interface.
  • the first interface address information includes the IP address of the SN and the General Packet Radio Service Tunneling Protocol-tunnel endpoint identifier (GPRS tunneling protocol-tunnel endpoint identifier, GTP-TEID).
  • GPRS tunneling protocol-tunnel endpoint identifier GTP-TEID
  • the SN provides the air interface configuration information of the MBS service in the first response, and the MN sends the air interface configuration information of the MBS service to the UE.
  • the SN after receiving the first request, the SN sends the MBS air interface configuration information to the UE.
  • the MN sends a second request to the core network.
  • the core network receives the second request.
  • the core network includes AMF, session management function (session management function, SMF) network elements, and MB-SMF.
  • the core network includes MB-UPF and UPF.
  • Step S903 is specifically: the MN sends a second request to the AMF/SMF or multicast broadcast-session management function (multicast/broadcast-session management function, MB-SMF), and the AMF/SMF sends the MB-UPF or the MB-SMF to the MB.
  • the UPF sends the first interface address.
  • the path for the MN to send the message to the core network is the same or similar as described later.
  • the second request includes the first identifier and the first interface address information. That is, the MN sends the second request to the core network, provides the obtained first identifier and the first interface address information, and requests the core network to send the MBS service data corresponding to the first identifier to the first interface address information.
  • the MN may indicate that the interface address information carried this time is new address information; or, assign the first interface address information Different MBS reference identifiers (MBS reference identifiers) or MBS service identifiers (MBS transaction identifiers), combined with the first identifier, the MBS reference identifier and/or the MBS service identifier, can distinguish different interface address information; or in the second request It also includes an interface address information list, or carries the interface address information list through other messages.
  • MBS reference identifiers MBS reference identifiers
  • MBS transaction identifiers MBS service identifiers
  • the interface address information list includes the interface address information of the MN, the interface address information of the SN, and the interface address information of other SNs.
  • the core network sends the interface address information to the interface.
  • the interface addresses in the address information list send the same MBS service data.
  • the core network In response to the second request, the core network sends a response message to the MN.
  • the MN receives the response message sent by the AMF.
  • This step is optional and is indicated by a dashed line in the figure.
  • the response message may include the first identifier, and may also include the MBS reference identifier or the MBS service identifier.
  • the MB-SMF/AMF/SMF sends a response message to the MN.
  • the path for sending messages from the core network to the MN will be the same or similar to this in the subsequent description.
  • the core network sends MBS service data to the SN according to the first interface address information.
  • the SN receives the MBS service data.
  • the core network sends the MBS service data through the shared NG-U tunnel.
  • FIG 10 is a schematic diagram of establishing an NG-U tunnel between the core network and the SN in the dual connectivity scenario.
  • gNB1 serves as the MN serving UE1 and establishes an NGAP connection for the UE with the core network.
  • gNB1 requests gNB2 as the SN to provide UE1 with a service of a certain MBS session, gNB2 accepts the request and provides the first interface address information, and the core network sends the MBS service data to gNB2 according to the first interface address information.
  • the release of the data transmission channel of the MBS service may be triggered.
  • the radio access network node will trigger the release only when the UE serving as the MN or SN no longer receives the MBS service data.
  • the MN receives the MBS session deactivation request or the MBS session release request sent by the core network, the MN forwards the corresponding information to the SN.
  • a method for establishing and releasing an NG-U tunnel from the core network to the SN is provided, so that the SN can provide MBS service for the UE.
  • FIG. 11 which is a schematic flowchart of another communication method provided by an embodiment of the present application, the method may include the following steps:
  • the MN sends the first request to the SN.
  • the SN receives the first request.
  • the UE is served by the MN, and the CN does not perceive the existence of the SN accordingly.
  • the CN does not perceive the existence of the SN accordingly.
  • the SN sends a first response to the MN according to the first request.
  • the MN receives the first response.
  • step S902 The difference between this step and the above-mentioned step S902 is that the first response is only used to instruct the SN to accept the provision of the MBS service for the UE.
  • the first response does not include first interface address information.
  • the first response may include MBS air interface configuration information, so that the MN sends the MBS air interface configuration information to the UE. Or the first response does not contain the MBS air interface configuration, and the SN directly sends the MBS air interface configuration to the UE.
  • the SN sends a setup request message to the MN.
  • the MN receives the setup request message.
  • the SN sends the first interface address information to the MN through a separate establishment request message. That is, the establishment request message includes address information of the first interface between the SN and the core network. The meaning of the first interface address information is the same as the above description, and details are not repeated here.
  • the MN sends a second request to the core network.
  • the core network receives the second request.
  • the core network In response to the second request, the core network sends a response message to the MN.
  • the MN receives the response message.
  • This step is optional and is indicated by a dashed line in the figure.
  • the MN sends a setup response message to the SN in response to the setup request message.
  • the SN receives the setup response message.
  • the establishment response message is used to indicate that the NG-U tunnel between the core network and the SN is successfully established. This step is optional and is indicated by a dashed line in the figure.
  • the core network sends the MBS service data to the SN according to the first interface address information.
  • the SN receives the MBS service data.
  • a method for establishing and releasing an NG-U tunnel from the core network to the SN is provided, so that the SN can provide MBS service for the UE.
  • FIG. 12 which is a schematic flowchart of another communication method provided by an embodiment of the present application, the method may include the following steps:
  • a shared NG-U tunnel has been established between S1201.SN and the core network.
  • the MN sends the first request to the SN.
  • the SN receives the first request.
  • the SN sends a first response to the MN according to the first request.
  • the MN receives the first response.
  • the UE is served by the MN, and the CN does not perceive the existence of the SN accordingly.
  • the shared NG-U tunnel corresponding to the MBS service already exists on the SN.
  • the MN requests the SN to provide the MBS service for its UE
  • the SN sends a first response, where the first response is used to instruct the SN to accept the provision of the MBS service for the UE.
  • the first response is also used to indicate that the MBS service already exists in the SN, or the data transmission channel of the MBS service has been established in the SN, so as to avoid the MN triggering the establishment of the tunnel again.
  • the first response may also not include the first interface address information to implicitly indicate that the MBS service already exists in the SN, or the data transmission channel of the MBS service has been established in the SN.
  • the sending step S1103 may not be triggered to implicitly indicate that the MBS service already exists in the SN, or the data transmission channel of the MBS service has been established in the SN.
  • the SN when the MN requests the SN to provide the MBS service for its UE, when the shared NG-U tunnel corresponding to the MBS service already exists on the SN, the SN can indicate that the MBS service already exists on the SN , or the data transmission channel of the MBS service has been established in the SN, so as to avoid repeatedly establishing a tunnel for the MBS service, reduce communication overhead and save communication resources.
  • a schematic flowchart of another communication method provided by the embodiment of the application may include the following steps:
  • the MN sends the first request to the SN.
  • the SN receives the first request.
  • the first request is used to request the SN to provide the UE with the MBS service.
  • the first request includes the first identifier corresponding to the MBS service, and also includes at least one of the following information: the reference identifier of the multicast broadcast service, the session identifier of the multicast broadcast service, and the access point (access point, AP) of the multicast broadcast service.
  • the SN sends a first response to the MN according to the first request.
  • the MN receives the first response.
  • the difference between this step and the above step S902 is that the first response is only used to instruct the SN to accept the provision of the MBS service for the UE.
  • the first response does not include first interface address information.
  • the SN sends a fifth request to the core network according to the first request.
  • the core network receives the fifth request.
  • the SN can request the MBS service data from the core network by itself without sending the request through the MN.
  • the fifth request includes the above-mentioned first interface address information.
  • the fifth request is used for requesting to send MBS service data to the first interface address.
  • the fifth request may further include an identifier of the MN, such as a base station identifier, which means that the SN requests the MBS service data for the MN.
  • the core network In response to the fifth request, the core network sends a response message to the SN.
  • the SN receives the response message. This step is optional and is indicated by a dashed line in the figure.
  • the response message may include the first identifier, and may also include the MBS reference identifier or the MBS service identifier, or be empty.
  • the core network sends MBS service data to the SN according to the first interface address information.
  • the SN receives the MBS service data.
  • a method for establishing and releasing an NG-U tunnel from the core network to the SN is provided, so that the SN can provide MBS service for the UE.
  • FIG. 14 which is a schematic flowchart of another communication method provided by an embodiment of the present application, the method may include the following steps:
  • the MN sends the first request to the SN.
  • the SN receives the first request.
  • the UE is served by the MN, and the CN does not perceive the existence of the SN accordingly.
  • the first request further includes an internet protocol (internet protocol, IP) multicast group address of the MBS, where the IP multicast group address is used to receive MBS service data.
  • IP internet protocol
  • the core network allocates an IP multicast group address.
  • Relevant radio access network nodes can join the IP multicast group to obtain MBS service data.
  • the core network only sends one copy of the data to the IP multicast group address.
  • the SN sends a first response to the MN according to the first request.
  • the MN receives the first response.
  • the difference between this step and the above step S902 is that the first response is only used to instruct the SN to accept the provision of the MBS service for the UE.
  • the first response does not include first interface address information.
  • S1403.SN joins the IP multicast group according to the IP multicast group address.
  • the SN joins the IP multicast group by itself, and waits to receive the MBS service data sent to the IP multicast group.
  • the core network sends MBS service data to the IP multicast group.
  • the SN receives MBS service data from the IP multicast group.
  • the core network only sends one copy of the MBS service data to the IP multicast group address. After the SN joins the IP multicast group, it can obtain the MBS service data.
  • the MN when the MN requests the SN to provide the MBS service for its UE, the MN provides an IP multicast group address, and when the SN accepts to provide the MBS service for the UE, it joins the IP multicast group address to obtain MBS service data.
  • the core network only needs to send one MBS service data to the IP multicast group address, which improves the communication efficiency and saves the communication overhead.
  • FIG. 15 is a schematic flowchart of another communication method provided by an embodiment of the present application, the method may include the following steps:
  • the MN sends the first request to the SN.
  • the SN receives the first request.
  • the MN requests to additionally establish a shared NG-U tunnel to transmit a certain MBS service data. Therefore, the MN sends a first request to the SN.
  • This first request may be referred to as a SN add request or a SN modification request.
  • the first request is used to request the SN to provide the MBS service for the UE.
  • the first request includes a first identifier corresponding to the MBS service, such as an MBS session identifier.
  • the SN sends a first response to the MN according to the first request.
  • the MN receives the first response.
  • the first response is used to instruct the SN to accept the provision of the MBS service for the UE.
  • the first response may also indicate that the MBS service already exists on the SN, or the data transmission channel for the MBS service has been established on the SN, and there is no need to perform the following steps. process.
  • the core network can send the MBS service data to the SN through the existing shared NG-U tunnel.
  • the MN sends a second request to the core network.
  • the core network receives the second request.
  • the second request includes the first identifier and the second identifier corresponding to the SN.
  • the MN sends the second request to the core network, informing the core network that the UE will provide the MBS service service by the SN indicated by the second identifier, so that the core network can perceive the SN and clearly know that the MBS data is sent to the SN.
  • the MN sends the second request to the SMF, and the second request may specifically be a packet data unit session resource modification indication (packet data unit session resource modification indication).
  • step S1504 is also included.
  • the core network stores the correspondence between the first identifier and the second identifier.
  • the core network After receiving the second request, stores the correspondence between the first identifier and the second identifier, that is, records that the MBS service of the UE is served by the SN corresponding to the second identifier, or stores the SN corresponding to the second identifier. Add to the list of radio access network nodes serving the MBS service.
  • the SN sends a data acquisition request to the core network, where the data acquisition request is used to request the core network to provide the MBS service data to the SN.
  • the core network receives the data acquisition request.
  • the SN sends the data acquisition request to the MB-SMF through the AMF.
  • the core network In response to the data acquisition request, the core network sends a data acquisition response to the SN.
  • the SN receives the data acquisition response.
  • the MB-SMF sends the data acquisition response to the SN through the AMF.
  • S1505a and S1506a are scheme 1.
  • scheme 2 can also be included:
  • the core network sends the first notification to the SN according to the second identifier.
  • the SN receives the first notification.
  • the first notification is used to notify the SN that the MBS session is started.
  • the MB-SMF sends the first notification to the SN through the AMF.
  • S1506b sends a notification response to the core network in response to the first notification.
  • the core network receives the notification response.
  • the notification response is used to indicate receipt of the first notification.
  • the SN sends the notification response to the MB-SMF through the AMF.
  • S1505b and S1506b are scheme 2.
  • Option 1 and Option 2 can be arbitrarily selected for implementation.
  • the core network In response to the second request, the core network sends a second response to the MN.
  • the MN receives the second response.
  • the SMF sends the second response to the MN, and the second response may specifically be a packet data unit session resource modification confirmation (packet data unit session resource modification confirm).
  • a method for establishing and releasing an NG-U tunnel from the core network to the SN is provided, so that the SN can provide MBS service for the UE.
  • FIG. 16 which is a schematic flowchart of another communication method provided by an embodiment of the present application, the method may include the following steps:
  • the MN sends the first request to the SN.
  • the SN receives the first request.
  • the SN sends a first response to the MN according to the first request.
  • the MN receives the first response.
  • the MN sends a second request to the core network.
  • the core network receives the second request.
  • the core network stores the correspondence between the first identifier and the second identifier.
  • the MN receives the third request.
  • the third request includes at least one of the following items: a first identifier, a second identifier corresponding to the SN, and address information of the first interface between the SN and the core network.
  • the third request may also be the same message as the first response, that is, the SN may also include at least one of the following in the first response: the first identifier, the second identifier corresponding to the SN, and the relationship between the SN and the core network. address information of the first interface between them.
  • the MN sends a fourth request to the core network.
  • the core network receives the fourth request.
  • the fourth request is forwarded by the MN, the fourth request carries the second identifier corresponding to the SN, which is used to distinguish that the message is directed to the SN rather than to the MN itself.
  • the fourth request includes at least one of the following items: a first identifier, a second identifier corresponding to the SN, and first interface address information between the SN and the core network.
  • the core network sends a second response to the MN.
  • the MN receives the second response.
  • the second response includes the first identification, or includes the second identification, or includes the first identification and the second identification.
  • the MN sends the third response to the SN.
  • the SN receives the third response.
  • the third response includes the first identification, or includes the second identification, or includes the first identification and the second identification.
  • S1605a to S1608a are scheme 1.
  • scheme 2 can also be included:
  • the core network sends the first notification to the MN according to the second identifier.
  • the MN receives the first notification.
  • the first notification is used to notify the SN that the MBS session is started.
  • the MB-SMF sends the first notification to the MN through the AMF.
  • the MN forwards the first notification to the SN.
  • the SN receives the first notification.
  • the first notification is forwarded by the MN
  • the first notification carries the second identifier corresponding to the SN, which is used to distinguish that the message is for the SN rather than for the MN itself.
  • the first identification can also be carried.
  • the SN sends a notification response to the MN in response to the first notification.
  • the MN receives the notification response.
  • the notification response is used to indicate receipt of the first notification.
  • MN forwards the notification response to the core network.
  • the core network receives the notification response.
  • the MN forwards the notification response to the MB-SMF through the AMF.
  • S1605b to S1608b are scheme 2.
  • Option 1 and Option 2 can be arbitrarily selected for implementation.
  • the core network In response to the second request, the core network sends a second response to the MN.
  • the MN receives the second response.
  • step S1607 For the specific implementation of this step, reference may be made to step S1607.
  • a method for establishing and releasing an NG-U tunnel from the core network to the SN is provided, so that the SN can provide MBS service for the UE.
  • FIG. 17 which is a schematic flowchart of another communication method provided by an embodiment of the present application, the method may include the following steps:
  • the MN sends the first request to the SN.
  • the SN receives the first request.
  • the first request is used to request the SN to provide the MBS service for the UE.
  • the first request includes a first identifier corresponding to the MBS.
  • the SN sends the first response to the MN.
  • the MN receives the first response.
  • the first response is used to instruct the SN to accept the provision of the MBS service for the UE.
  • the first response includes address information of the second interface between the SN and the MN.
  • the second interface address information is the interface address information allocated by the SN for the MBS service.
  • the second interface address information may also be referred to as Xn-U interface tunnel address information of the secondary base station, that is, the SN performs data transmission with the MN through the Xn-U interface.
  • the SN when the MN requests the SN to provide the MBS service for its UE, the SN sends A first response, where the first response is used to instruct the SN to accept the provision of the MBS service for the UE. Then, the first response may not include the second interface address information to implicitly indicate that the MBS service already exists in the SN, or the data transmission channel of the MBS service has been established in the SN.
  • the core network sends MBS service data to the MN through the shared NG-U tunnel with the MN.
  • the MN receives the MBS service data.
  • the MN forwards the MBS service data to the SN according to the second interface address information.
  • the SN receives the MBS service data.
  • the SN can use the packet data convergence protocol (packet data convergence protocol, PDCP) sequence number (sequence number, SN), or MBS quality of service (quality of service) , QoS) Flow SN and GTP-US SN to remove duplicate packets, and only send one piece of data on the air interface.
  • packet data convergence protocol packet data convergence protocol
  • PDCP packet data convergence protocol
  • sequence number sequence number
  • MBS quality of service quality of service
  • QoS QoS
  • the MN sends the IP packet to the SN (the core network sends the IP packet to the MN, and the MN does not process it at the SDAP and PDCP layers), and the SN removes the duplicate packets according to the MBS QoS Flow SN and/or GTP-US SN .
  • FIG. 18 which is a schematic diagram of establishing an Xn-U tunnel between the MN and the SN in the dual connectivity scenario of the example in this application
  • UE1 establishes dual connectivity with gNB1 and gNB2
  • UE2 establishes dual connectivity with gNB2 and gNB3.
  • MN MN
  • gNB1 has established an NG-U tunnel with the core network.
  • gNB1 requests gNB2 as an SN to provide MBS services for UE1 in cell 1 served by gNB1
  • gNB2 sends a response to gNB1, indicating that it accepts the provision of MBS services for UE1, and carries the second interface address information allocated by gNB2.
  • gNB1 When gNB1 receives the MBS service data sent by the core network through the NG-U tunnel, it sends the MBS service data to gNB2 through the shared Xn-U tunnel. gNB2 sends it to UE1 through the air interface. As the MN, the gNB3 requests the gNB2 to provide the MBS service for the UE2 in the cell 3 served by the gNB3. The process is similar to the above description.
  • the MBS service data is sent from the MN to the SN, and the core network does not need to send multiple pieces of data, nor does it need to perceive the existence of the SN.
  • a manner of establishing an Xn-U tunnel from the MN to the SN is provided, so that the SN can provide the MBS service for the UE.
  • FIG. 19 which is a schematic flowchart of another communication method provided by an embodiment of the present application, the method may include the following steps:
  • the MN sends the first request to the SN.
  • the SN receives the first request.
  • the SN sends the first response to the MN.
  • the MN receives the first response.
  • the first response is used to instruct the SN to accept the provision of the MBS service for the UE. Different from step S1702, the first response does not include second interface address information.
  • the SN sends a setup request message to the MN.
  • the MN receives the setup request message.
  • the SN sends the second interface address information to the MN through a separate setup request message. That is, the establishment request message includes address information of the second interface between the SN and the core network. The meaning of the second interface address information is the same as the above description, and is not repeated here.
  • the core network sends MBS service data to the MN through the shared NG-U tunnel with the MN.
  • the MN receives the MBS service data.
  • the MN forwards the MBS service data to the SN according to the second interface address information.
  • the SN receives the MBS service data.
  • the MBS service data is sent from the MN to the SN, and the core network does not need to send multiple pieces of data, nor does it need to perceive the existence of the SN.
  • a manner of establishing an Xn-U tunnel from the MN to the SN is provided, so that the SN can provide the MBS service for the UE.
  • the MN, SN or core network includes corresponding hardware structures and/or software modules for performing each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software-driven hardware depends on the specific application scenarios and design constraints of the technical solution.
  • FIG. 20 and FIG. 21 are schematic structural diagrams of possible communication apparatuses provided by embodiments of the present application. These communication apparatuses can be used to implement the functions of the MN, SN or core network in the above method embodiments, and thus can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be the base station 110a or 110b shown in FIG. 2 , the core network 200 shown in FIG. 2 , or a module applied to the base station or the core network (such as chip).
  • the communication apparatus 2000 includes a processing unit 2010 and a transceiver unit 2020 .
  • the communication apparatus 2000 is configured to implement the functions of the MN, the SN or the core network in the method embodiments shown in FIG. 8 to FIG. 19 above.
  • the transceiver unit 2020 is used to send a first request to the secondary radio access network node, where the first request is used to request all
  • the secondary radio access network node provides a multicast broadcast service for terminal equipment, and the first request includes a first identifier corresponding to the multicast broadcast service
  • the transceiver unit 2020 is further configured to receive data from the secondary radio access network.
  • the first response of the network access node where the first response is used to instruct the secondary radio access network node to accept the provision of the multicast broadcast service for the terminal device.
  • the transceiver unit 2020 is further configured to send a second request to the core network, where the second request includes the first identifier and the first interface address information, and/or the second request includes The first identifier and the second identifier corresponding to the secondary radio access network node.
  • the transceiver unit 2020 is further configured to receive a third request from the secondary radio access network node, where the third request includes at least one of the following: the first identifier, the secondary radio access network The second identifier corresponding to the network node, the address information of the first interface between the secondary radio access network node and the core network; the transceiver unit 2020 is further configured to send a fourth request to the core network, where the fourth request includes At least one of the following: the first identifier, the second identifier, and the first interface address information; the transceiver unit 2020 is further configured to receive a second response from the core network, where the second response includes the first identifier and optionally the second identifier; and the transceiver unit 2020 is further configured to send a third response to the secondary radio access network node, where the third response includes the first identifier and optionally including the second identifier.
  • the transceiver unit 2020 is further configured to receive the data of the multicast broadcast service from the core network; and the transceiver unit 2020 accesses the secondary radio to the secondary radio according to the second interface address information The network node forwards the data.
  • the first response includes MBS air interface configuration information of the secondary radio access network node
  • the transceiver unit 2020 is further configured to send the MBS air interface configuration information to the terminal device.
  • the transceiver unit 2020 is used to receive a first request from the primary radio access network node, where the first request is used to request
  • the secondary radio access network node provides the terminal device with a multicast broadcast service, and the first request includes a first identifier corresponding to the multicast broadcast service
  • the transceiver unit 2020 is further configured to, according to the first request, send a request to the terminal device.
  • the primary radio access network node sends a first response, where the first response is used to instruct the secondary radio access network node to accept providing the terminal device with the multicast broadcast service.
  • the first request further includes the reference identifier of the multicast broadcast service, the access point AP identifier of the multicast broadcast service, the access and mobility management function identifier, the session management function identifier, the multicast broadcast-session management function identifier, multicast broadcast-function identifier;
  • the transceiver unit 2020 is further configured to send a fifth request to the core network according to the first request, where the fifth request includes the first interface address information ; and the transceiver unit 2020 is further configured to receive the data of the multicast broadcast service from the core network according to the first interface address information.
  • the first request includes an IP multicast group address of the multicast broadcast service; the processing unit 2010 is configured to join an IP multicast group according to the IP multicast group address; and The transceiver unit 2020 is further configured to receive the data of the multicast broadcast service from the core network.
  • the transceiver unit 2020 is further configured to receive the data of the multicast broadcast service from the core network according to the first interface address information.
  • the transceiver unit 2020 is further configured to send a third request to the primary radio access network node, where the third request includes at least one of the following: the first identifier, the secondary radio access network The second identifier corresponding to the node, the address information of the first interface between the secondary radio access network node and the core network; and the transceiver unit 2020 is further configured to receive the first interface from the primary radio access network node.
  • the transceiver unit 2020 is further configured to receive the data of the multicast broadcast service from the primary radio access network node according to the second interface address information.
  • the first response includes MBS air interface configuration information of the secondary radio access network node.
  • the transceiver unit 2020 is further configured to send the MBS air interface configuration information to the terminal device.
  • the transceiver unit 2020 is used to receive a second request, where the second request includes the first identifier corresponding to the multicast broadcast service , and at least one of the following: the first interface address information between the secondary radio access network node and the core network, or the second identifier corresponding to the secondary radio access network node; and the transceiver unit 2020 is further configured to The first interface address information or the second identifier sends the data of the multicast broadcast service.
  • processing unit 2010 and the transceiver unit 2020 can be obtained directly by referring to the relevant descriptions in the method embodiments shown in FIG. 8 to FIG. 19 , and details are not repeated here.
  • the communication apparatus 2100 includes a processor 2110 and an interface circuit 2120 .
  • the processor 2110 and the interface circuit 2120 are coupled to each other.
  • the interface circuit 2120 can be a transceiver or an input-output interface.
  • the communication apparatus 2100 may further include a memory 2130 for storing instructions executed by the processor 2110 or input data required by the processor 2110 to execute the instructions or data generated after the processor 2110 executes the instructions.
  • the processor 2110 is used to implement the functions of the above-mentioned processing unit 2010
  • the interface circuit 2120 is used to implement the functions of the above-mentioned transceiver unit 2020 .
  • the MN chip When the above communication device is a chip applied to the MN, the MN chip implements the functions of the MN in the above method embodiments.
  • the MN chip receives information from other modules (such as radio frequency modules or antennas) in the MN, and the information is sent to the MN by the core network or the UE; or, the MN chip sends information to other modules in the MN (such as radio frequency modules or antennas) information, which is sent by the MN to the core network or the UE.
  • the SN chip When the above communication device is a chip applied to the SN, the SN chip implements the function of the SN in the above method embodiment.
  • the SN chip receives information from other modules (such as radio frequency modules or antennas) in the SN, and the information is sent to the SN by the core network or UE or MN; or, the SN chip sends information to other modules in the SN (such as radio frequency modules or antennas) ) to send information, the information is sent by the SN to the core network or the UE or the MN.
  • modules such as radio frequency modules or antennas
  • the core network chip implements the functions of the core network in the above method embodiments.
  • the core network chip receives information from other modules (such as radio frequency modules or antennas) in the core network, and the information is sent by the MN/SN to the core network; or, the core network chip sends information to other modules (such as radio frequency modules) in the core network or antenna) to send information, the information is sent by the core network to the MN/SN.
  • processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application-specific integrated circuits (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions may be composed of corresponding software modules, and software modules may be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in the base station or in the terminal equipment.
  • the processor and the storage medium may also exist in the base station or the terminal device as discrete components.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs or instructions.
  • the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, special purpose computer, computer network, base station, user equipment, or other programmable apparatus.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website site, computer, A server or data center transmits by wire or wireless to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server, data center, or the like that integrates one or more available media.
  • the usable media may be magnetic media, such as floppy disks, hard disks, magnetic tapes; optical media, such as digital video discs; and semiconductor media, such as solid-state drives.
  • “at least one” means one or more, and “plurality” means two or more.
  • “And/or”, which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are a kind of "or” relationship; in the formula of this application, the character "/” indicates that the related objects are a kind of "division" Relationship.

Abstract

本申请公开了一种通信方法及装置。在双连接场景下,UE与MN、SN建立双连接。当MN请求SN为其UE提供MBS业务时,MN向SN发送第一请求,该第一请求包括MBS对应的第一标识;SN接收到该第一请求后,向MN发送第一响应,该第一响应用于指示该SN接受为该UE提供MBS业务。从而,实现了双连接场景下通过SN将MBS业务数据发送给UE。

Description

通信方法及装置
本申请要求于2021年4月30日提交中国国家知识产权局、申请号为202110484680.9、发明名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
目前的网络系统支持双连接技术。图1示出了双连接的控制面架构示意图。如图1所示,两个无线接入网节点分别通过空中接口如Uu接口为用户设备(user equipment,UE)提供服务,其中一个无线接入网节点为主无线接入网节点(master radio access network node),简称为主节点(master node,MN),另一个无线接入网节点为辅无线接入网节点(secondary radio access network node),简称为辅节点(secondary node,SN)。主节点与核心网(core network,CN)建立该UE的NG控制面协议,如NG应用协议(NG application protocol,NGAP)关联,MN和SN之间通过Xn接口控制面(Xn-control,Xn-C)连通。
利用组播广播业务(multicast/broadcast service,MBS)技术可以大大提升空口及回传(backhaul)接口上的数据传输效率。然而,目前没有相关技术可以解决双连接场景下由SN提供MBS数据给UE的问题。
发明内容
本申请提供一种通信方法及装置,以实现双连接场景下由SN提供MBS数据给终端设备,提高数据传输的灵活性。
第一方面,提供了一种通信方法,所述方法包括:主无线接入网节点向辅无线接入网节点发送第一请求,所述第一请求用于请求所述辅无线接入网节点为终端设备提供组播广播业务,所述第一请求包括所述组播广播业务对应的第一标识;以及主无线接入网节点接收来自所述辅无线接入网节点的第一响应,所述第一响应用于指示所述辅无线接入网节点接受为所述终端设备提供所述组播广播业务。在该方面中,终端设备与MN、SN双连接,MN通过向SN请求为其终端设备提供MBS业务,SN响应MN接受为该终端设备提供MBS业务,从而,实现了双连接场景下通过SN将MBS业务数据发送给UE。
结合第一方面,在一种可能的实现中,所述第一响应包括所述辅无线接入网节点与核心网之间的第一接口地址信息,或所述辅无线接入网节点与主无线接入网节点之间的第二接口地址信息。在该实现中,该第一接口地址信息为SN为该MBS业务分配的接口地址信息,该第一接口地址信息又可以称为辅基站的NG-U接口隧道地址信息,即SN通过NG-U接口与核心网进行数据传输;该第二接口地址信息为SN为该MBS业务分配的接口地址信息,该第二接口地址信息又可以称为辅基站的Xn-U接口隧道地址信息,即SN通过Xn-U接口与MN进行数据传输。MN通过接收SN提供的第一接口地址信息或第二接口地址信息,并将第一接口地址信息或第二接口地址信息发送给核心网,使得核心网可以根据第一接口地址信息或第二接口地址信息向SN发送MBS业务数据。
结合第一方面,在一种可能的实现中,所述第一响应包括所述辅无线接入网节点的MBS 空口配置信息,所述主无线通信节点将所述MBS空口配置信息发送给所述终端设备。
结合第一方面或第一方面的任一种可能的实现,在又一种可能的实现中,所述第一响应还用于指示所述组播广播业务已在所述辅无线接入网节点存在,或所述组播广播业务的数据传输通道已在所述辅无线接入网节点建立。在该实现中,MN请求SN为其UE提供MBS业务时,当所述MBS业务对应的共享的NG-U隧道在SN上已经存在,SN可以指示所述MBS业务已在该SN存在,或者所述MBS业务的数据传输通道已在SN建立,以避免为所述MBS业务重复建立隧道,降低了通信开销,节约了通信资源。
结合第一方面或第一方面的任一种可能的实现,在又一种可能的实现中,所述第一标识为以下至少一个信息:所述组播广播业务的参考标识,所述组播广播业务的会话标识。
结合第一方面或第一方面的任一种可能的实现,在又一种可能的实现中,所述第一请求还包括以下至少一个信息:所述组播广播业务的接入点AP标识,接入和移动性管理功能标识,会话管理功能标识,组播广播-会话管理功能标识,组播广播-功能标识。在该实现中,MN向SN发送上述至少一个信息,SN在获取到上述至少一个信息后,可以自己向核心网请求MBS业务数据,而无需通过MN发送该请求。
结合第一方面或第一方面的任一种可能的实现,在又一种可能的实现中,所述第一请求还包括所述组播广播业务的网际互连协议IP组播组地址,所述IP组播组地址用于接收所述组播广播业务的数据。在该实现中,当MN请求SN为其UE提供MBS业务服务时,MN提供一个IP组播组地址,当SN接受为UE提供MBS业务时,加入该IP组播组地址,可以获取到MBS业务数据。核心网只需发送一份MBS业务数据到该IP组播组地址,提高了通信效率,节省了通信开销。
结合第一方面或第一方面的任一种可能的实现,在又一种可能的实现中,所述方法还包括:主无线接入网节点向核心网发送第二请求,所述第二请求包括所述第一标识,以及如下至少一项:所述第一接口地址信息,或所述辅无线接入网节点对应的第二标识。其中,所述第二标识为所述辅无线接入网节点的标识,或者为所述辅无线接入节点的小区的标识。在该实现中,MN向核心网发送该第二请求,请求核心网向该第一接口地址信息发送MBS业务数据;或者MN向核心网发送该第二请求,告知核心网该UE将由该第二标识所指示的SN提供该MBS业务服务,从而核心网可以感知该SN,清楚地知道MBS数据是发送给该SN的。
结合第一方面或第一方面的任一种可能的实现,在又一种可能的实现中,所述方法还包括:主无线接入网节点接收来自所述辅无线接入网节点的第三请求,所述第三请求包括以下至少一项:所述第一标识,所述辅无线接入网节点对应的第二标识,所述辅无线接入网节点与核心网之间的第一接口地址信息;主无线接入网节点向核心网发送第四请求,所述第四请求包括以下至少一项:所述第一标识,所述第二标识,所述第一接口地址信息;主无线接入网节点接收来自所述核心网的第二响应,所述第二响应包括所述第一标识。以及可选的包括所述第二标识;以及主无线接入网节点向所述辅无线接入网节点发送第三响应,所述第三响应包括所述第一标识以及可选的包括所述第二标识。在该实现中,核心网可以感知SN,但是SN与核心网之间的交互通过MN进行。
结合第一方面或第一方面的任一种可能的实现,在又一种可能的实现中,所述方法还包括:主无线接入网节点接收来自所述核心网的所述组播广播业务的数据;以及主无线接入网节点根据所述第二接口地址信息,向所述辅无线接入网节点转发所述数据。在该实现中,提供了建立MN到SN的Xn-U隧道的方式,使得SN可以为UE提供MBS业务服务。
第二方面,提供了一种通信方法,所述方法包括:辅无线接入网节点接收来自主无线接 入网节点的第一请求,所述第一请求用于请求辅无线接入网节点为终端设备提供组播广播业务,所述第一请求包括所述组播广播业务对应的第一标识;以及辅无线接入网节点根据所述第一请求,向所述主无线接入网节点发送第一响应,所述第一响应用于指示所述辅无线接入网节点接受为所述终端设备提供所述组播广播业务。
结合第二方面,在一种可能的实现中,所述第一响应包括所述辅无线接入网节点与核心网之间的第一接口地址信息,或所述辅无线接入网节点与所述主无线接入网节点之间的第二接口地址信息。
结合第二方面或第二方面的任一种可能的实现,在又一种可能的实现中,所述第一响应还用于指示所述组播广播业务已在所述辅无线接入网节点存在或建立,或所述广播组播业务的数据传输通道已在所述辅无线接入网节点建立。
结合第二方面,在一种可能的实现中,所述第一响应包括所述辅无线接入网节点的MBS空口配置信息。
结合第二方面,在一种可能的实现中,接收所述第一请求后,所述辅无线接入节点向所述终端设备发送所述MBS空口配置信息。
结合第二方面或第二方面的任一种可能的实现,在又一种可能的实现中,所述第一标识为以下至少一个信息:所述组播广播业务的参考标识,所述组播广播业务的会话标识。
结合第二方面或第二方面的任一种可能的实现,在又一种可能的实现中,所述第一请求还包括所述组播广播业务的接入点AP标识,接入和移动性管理功能标识,会话管理功能标识,组播广播-会话管理功能标识,组播广播-功能标识;所述方法还包括:辅无线接入网节点根据所述第一请求,向核心网发送第五请求,所述第五请求包括所述第一接口地址信息;以及辅无线接入网节点根据所述第一接口地址信息,接收来自所述核心网的所述组播广播业务的数据。
结合第二方面或第二方面的任一种可能的实现,在又一种可能的实现中,所述第一请求包括所述组播广播业务的网际互连协议IP组播组地址;所述方法还包括:辅无线接入网节点根据所述IP组播组地址,加入所述IP组播组;以及辅无线接入网节点从核心网接收所述组播广播业务的数据。
结合第二方面或第二方面的任一种可能的实现,在又一种可能的实现中,所述方法包括:辅无线接入网节点根据所述第一接口地址信息,接收来自所述核心网的所述组播广播业务的数据。
结合第二方面或第二方面的任一种可能的实现,在又一种可能的实现中,所述方法还包括:辅无线接入网节点向所述主无线接入网节点发送第三请求,所述第三请求包括以下至少一项:所述第一标识,所述辅无线接入网节点对应的第二标识,所述辅无线接入网节点与所述核心网之间的第一接口地址信息;以及辅无线接入网节点接收来自所述主无线接入网节点的第三响应,所述第三响应包括所述第一标识以及可选的包括所述第二标识。
结合第二方面或第二方面的任一种可能的实现,在又一种可能的实现中,所述方法还包括:辅无线接入网节点根据所述第二接口地址信息,接收来自所述主无线接入网节点的所述组播广播业务的数据。
第三方面,提供了一种通信方法,所述方法包括:核心网接收第二请求,所述第二请求包括组播广播业务对应的第一标识,以及如下至少一项:辅无线接入网节点与核心网之间的第一接口地址信息,或所述辅无线接入网节点对应的第二标识;根据所述第一标识以及所述第一接口地址信息或所述第二标识中的至少一项,发送所述组播广播业务的数据。
第四方面,提供了一种通信装置,可以实现上述第一方面中的通信方法。例如所述通信装置可以是芯片或者无线接入网节点。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置,可以包括收发单元和处理单元;其中:所述收发单元用于向辅无线接入网节点发送第一请求,所述第一请求用于请求所述辅无线接入网节点为终端设备提供组播广播业务,所述第一请求包括所述组播广播业务对应的第一标识;以及所述收发单元还用于接收来自所述辅无线接入网节点的第一响应,所述第一响应用于指示所述辅无线接入网节点接受为所述终端设备提供所述组播广播业务。
可选地,所述收发单元还用于向核心网发送第二请求,所述第二请求包括所述第一标识,以及如下至少一项:所述第一接口地址信息,或所述辅无线接入网节点对应的第二标识。
可选地,所述收发单元还用于接收来自所述辅无线接入网节点的第三请求,所述第三请求包括所述第一标识,以及以下至少一项:所述辅无线接入网节点对应的第二标识,所述辅无线接入网节点与核心网之间的第一接口地址信息;所述收发单元还用于向所述核心网发送第四请求,所述第四请求包括以下至少一项:所述第一标识,所述第二标识,所述第一接口地址信息;所述收发单元还用于接收来自所述核心网的第二响应,所述第二响应包括所述第一标识以及可选的包括所述第二标识;以及所述收发单元还用于向所述辅无线接入网节点发送第三响应,所述第三响应包括所述第一标识以及可选的包括所述第二标识。
可选地,所述收发单元还用于接收来自所述核心网的所述组播广播业务的数据;以及所述收发单元还用于根据所述第二接口地址信息,向所述辅无线接入网节点转发所述数据。
可选地,所述第一响应包括所述辅无线接入网节点的MBS空口配置信息,所述收发单元还用于将所述MBS空口配置信息发送给所述终端设备。
第五方面,提供了一种通信装置,可以实现上述第二方面中的通信方法。例如所述通信装置可以是芯片或者无线接入网节点。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置,可以包括收发单元和处理单元;其中:所述收发单元用于接收来自主无线接入网节点的第一请求,所述第一请求用于请求辅无线接入网节点为终端设备提供组播广播业务,所述第一请求包括所述组播广播业务对应的第一标识;以及所述收发单元还用于根据所述第一请求,向所述主无线接入网节点发送第一响应,所述第一响应用于指示所述辅无线接入网节点接受为所述终端设备提供所述组播广播业务。
可选地,所述第一标识为所述组播广播业务的参考标识,或所述组播广播业务的会话标识。
可选地,所述第一请求还包括所述组播广播业务的接入点AP标识,接入和移动性管理功能标识,会话管理功能标识,组播广播-会话管理功能标识,组播广播-功能标识;所述收发单元还用于根据所述第一请求,向核心网发送第五请求,所述第五请求包括所述第一接口地址信息;以及所述收发单元还用于根据所述第一接口地址信息,接收来自所述核心网的所述组播广播业务的数据。
可选地,所述第一请求包括所述组播广播业务的网际互连协议IP组播组地址;所述处理单元用于根据所述IP组播组地址,加入IP组播组;以及所述收发单元还用于从核心网接收所述组播广播业务的数据。
可选地,所述收发单元还用于根据所述第一接口地址信息,接收来自所述核心网的所述组播广播业务的数据。
可选地,所述收发单元还用于向所述主无线接入网节点发送第三请求,所述第三请求包括以下至少一项:所述第一标识,所述辅无线接入网节点对应的第二标识,所述辅无线接入网节点与所述核心网之间的第一接口地址信息;以及所述收发单元还用于接收来自所述主无线接入网节点的第三响应,所述第三响应包括所述第一标识以及可选的包括所述第二标识。
可选地,所述收发单元还用于根据所述第二接口地址信息,接收来自所述主无线接入网节点的所述组播广播业务的数据。
可选地,所述第一响应包括所述辅无线接入网节点的MBS空口配置信息。
可选地,所述收发单元还用于向所述终端设备发送所述MBS空口配置信息。
第六方面,提供了一种通信装置,可以实现上述第一方面中的通信方法。例如所述通信装置可以是芯片或者核心网。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置,可以包括收发单元和处理单元;其中:所述收发单元用于接收第二请求,所述第二请求包括组播广播业务对应的第一标识,以及如下至少一项:辅无线接入网节点与核心网之间的第一接口地址信息,或所述辅无线接入网节点对应的第二标识;以及所述收发单元还用于根据所述第一标识,以及所述第一接口地址信息或所述第二标识中的至少一项,发送所述组播广播业务的数据。
在一种可能的实现方式中,上述第四方面至第六方面中的通信装置包括与存储器耦合的处理器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的程序(指令)和/或数据。可选的,所述通信装置还可以包括通信接口用于支持所述装置与其他网元之间的通信。可选的,该存储器可以位于该通信装置内部,也可以位于该通信装置外部。
在又一种可能的实现方式中,上述第四方面至第六方面中的通信装置包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于通过逻辑电路或执行代码指令实现上述方法。其中,所述收发装置可以为收发器、收发电路或输入输出接口,用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置。当所述通信装置为芯片时,所述收发装置为收发电路或输入输出接口。
当上述第四方面至第六方面中的通信装置为芯片时,发送单元可以是输出单元,比如输出电路或者通信接口;接收单元可以是输入单元,比如输入电路或者通信接口。当所述通信装置为终端设备时,发送单元可以是发射器或发射机;接收单元可以是接收器或接收机。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被执行时,实现上述各方面所述的方法。
第八方面,提供了一种包含指令的计算机程序产品,当该指令在通信装置上运行时,使得通信装置执行上述各方面所述的方法。
第九方面,提供了一种通信系统,该通信系统包括第四方面的通信装置、第五方面的通信装置和第六方面的通信装置。
附图说明
图1为双连接的控制面架构示意图;
图2为本申请的实施例应用的通信系统1000的架构示意图;
图3为无线接入网节点与核心网之间的连接示意图;
图4为UE侧的双连接的架构示意图;
图5为无线接入网络侧的双连接的架构示意图;
图6为数据传输示意图;
图7为组播示意图;
图8为本申请实施例提供的一种通信方法的流程示意图;
图9为本申请实施例提供的又一种通信方法的流程示意图;
图10为本申请示例的双连接场景下建立核心网和SN之间的NG-U隧道的示意图;
图11为本申请实施例提供的又一种通信方法的流程示意图;
图12为本申请实施例提供的又一种通信方法的流程示意图;
图13为本申请实施例提供的又一种通信方法的流程示意图;
图14为本申请实施例提供的又一种通信方法的流程示意图;
图15为本申请实施例提供的又一种通信方法的流程示意图;
图16为本申请实施例提供的又一种通信方法的流程示意图;
图17为本申请实施例提供的又一种通信方法的流程示意图;
图18为本申请示例的双连接场景下建立MN和SN之间的Xn-U隧道的示意图;
图19为本申请实施例提供的又一种通信方法的流程示意图;
图20为本申请实施例提供的一种通信装置的结构示意图;
图21为本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
下面结合附图对本申请实施例进行描述。
图2是本申请的实施例应用的通信系统1000的架构示意图。如图2所示,该通信系统包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少两个无线接入网节点(如图2中的110a和110b),还可以包括至少一个终端设备(如图2中的120a-120j)。终端设备通过无线的方式与无线接入网节点相连,无线接入网节点通过无线或有线方式与核心网连接。核心网与无线接入网节点可以是独立的不同的物理设备,也可以是将核心网的功能与无线接入网节点的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网的功能和部分的无线接入网节点的功能。终端设备和终端设备之间以及无线接入网节点和无线接入网节点之间可以通过有线或无线的方式相互连接。可以理解的,图2只是示意图,该通信系统1000中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图2中未画出。其中,无线接入网节点与核心网控制面通信,交互信令;无线接入网节点和核心网用户面通信,传送和接收数据。
其中,至少两个无线接入网节点中的其中一个无线接入网节点可以是MN,另一个无线接入网节点可以是SN。至少两个无线接入网节点为终端设备提供双连接服务。图3为无线接入网节点与核心网之间的连接示意图,其中,无线接入网节点和核心网之间采用NG接口相连接,无线接入网节点之间采用Xn接口相连接。图3是以5G通信系统为例,该通信系统包括5G核心网(5 th generation core,5GC)和下一代无线接入网(next generation-radio access network,NG-RAN)。其中,5GC包括接入和移动性管理功能(access and mobility management function,AMF)网元和用户面功能(user plane function,UPF)网元等。其中,AMF主要完成终端设备的接入和移动性管理。UPF主要完成UE面的管理。NG-RAN由多个与5GC连接 的gNB或ng-eNB组成。gNB与gNB之间、或者gNB与ng-eNB之间、或者ng-eNB与ng-eNB之间通过Xn接口相连接;gNB与5GC、或ng-eNB与5GC之间通过NG接口相连接。
无线接入网节点可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。无线接入网节点可以是宏基站(如图2中的110a),也可以是微基站或室内站(如图2中的110b),还可以是中继节点或施主(donor)节点,家庭基站等。本申请的实施例对无线接入网节点所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网节点的例子进行描述。
终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端设备等。为简化描述,下文统一称为UE。UE可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车与任何事物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对UE所采用的具体技术和具体设备形态不做限定。
基站和UE可以是固定位置的,也可以是可移动的。基站和UE可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对基站和UE的应用场景不做限定。
基站和UE的角色可以是相对的,例如,图2中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的UE120j来说,UE120i是基站;但对于基站110a来说,120i是UE,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和UE都可以统一称为通信装置,图2中的110a和110b可以称为具有基站功能的通信装置,图2中的120a-120j可以称为具有UE功能的通信装置。
基站和UE之间、基站和基站之间、UE和UE之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,基站的功能也可以由基站中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工业控制、智能交通、智慧城市等上述应用场景中的控制中心。UE的功能也可以由UE中的模块(如芯片或调制解调器)来执行,也可以由包含有UE功能的装置来执行。
在本申请中,基站向UE发送下行信号或下行信息,下行信息承载在下行信道上;UE向基站发送上行信号或上行信息,上行信息承载在上行信道上。基站控制的为UE提供服务的小区称为该UE的服务小区。当UE与该服务小区进行通信的时候,还会受到来自邻区的信号的干扰。
图1描述了双连接的控制面架构,下面描述双连接的架构。用户数据可以在MN和UE间传输,也可以在SN和UE间传输。如图4所示,为UE侧的双连接的架构示意图,以及如图5所示,为无线接入网络侧的双连接的架构示意图。包含的协议层从上到下分别是:服务数据适配协议(service data adaptation protocol,SDAP),分组数据汇聚协议(packet data convergence protocol,PDCP),无线链路层控制(radio link control,RLC),媒体接入控制(media access control,MAC),物理层(physical layer,PHY)(未示出)。
按照PDCP层所在的位置,相关承载可以分为MN端承载(MN terminated bearer)和SN端承载(SN terminated bearer)。当CN的数据是传输至MN的PDCP层,则称为MN端承载;当CN的数据是传输至SN的PDCP层,则称为SN端承载。按照RLC协议/MAC层/PHY的位置,进一步的可以分为主小区组承载(master cell group bearer,MCG bearer),辅小区组承载(secondary cell group bearer,SCG bearer)以及分裂承载(split bearer)。
例如,SN terminated SCG bearer,表示下行方向,数据从CN发给SN的下行地址,SN加上PDCP包头,再通过SN的空口发给UE。
SN terminated split bearer,表示下行方向,数据从CN发给SN的下行地址,SN加上PDCP包头,将一部分数据通过SN的空口发给UE,将另一部分数据通过Xn接口转发给MN,再通过MN的空口发给UE。
MN terminated MCG bearer,表示下行方向,数据从CN发给MN的下行地址,MN加上PDCP包头,再通过MN的空口发给UE。
MN terminated split bearer,表示下行方向,数据从CN发给MN的下行地址,MN加上PDCP包头,将一部分数据通过MN的空口发给UE,将另一部分数据通过Xn接口转发给SN,通过SN的空口发给UE。
随着第五代无线通信技术的发展,在经历了Rel-15,Rel-16两个版本的进展后,Rel-17的5G通信系统将支持MBS。MBS将大大提升空口及回传(backhaul)接口上的数据传输效率。如图6所示,空口上,收听同一MBS业务的UE,可以通过组调度如点到多点(point to multiple points,PTM)方式来接收数据,同一数据基站发送一遍就可以发给多个UE。对于回传接口,从核心网向相关的基站也不会像单播业务一样为多个UE中的每个UE传输一份数据,而是将通过共享的隧道来在同一核心网节点和同一基站间只传输一份数据。
在一个实施例中,如图7所示,以组播为例,多个UE通过一个gNB连接到AMF网元。当这多个UE要收听同一个MBS时,UPF仅提供一份数据通过共享的NG接口(NG-U)隧道发送给gNB。gNB在空口通过点到点(point to point,PTP)或者PTM的方式发送给UE。然而,该实施例不支持双连接场景下从SN给UE提供MBS服务,或者SN和MN共同为UE提供MBS服务。
基于上述问题,本申请实施例提供一种通信方法,在双连接场景下,UE与MN、SN建立双连接。当MN请求SN为其UE提供MBS业务时,MN向SN发送第一请求,该第一请求包括MBS对应的第一标识;SN接收到该第一请求后,向MN发送第一响应,该第一响应用于指示该SN接受为该UE提供MBS业务。从而,实现了双连接场景下通过SN将MBS业务数据发送给UE。
如图8所示,为本申请实施例提供的一种通信方法的流程示意图,该方法可以包括以下步骤:
S801.MN向SN发送第一请求。
相应地,SN接收该第一请求。
在本实施例中,UE与MN、SN建立双连接。当MN请求SN为UE提供MBS业务时,MN向SN发送第一请求。该第一请求用于请求SN为UE提供MBS业务。该第一请求包括MBS对应的第一标识,例如MBS会话标识(MBS session ID)。这个第一标识对应了需要提供服务的是哪个MBS会话,相应的消息都应该携带该第一标识。
S802.SN根据第一请求,向MN发送第一响应。
相应地,MN接收该第一响应。
SN接收到该第一请求后,向MN发送第一响应。该第一响应用于指示SN接受为UE提供MBS业务。
在一个实现中,SN可以通过建立与核心网之间的NG-U隧道进行通信。具体地,SN可以在第一响应中携带第一接口地址信息,或者SN向核心网提供该第一接口地址信息(比如不经过MN转发该第一接口地址信息),以建立该与核心网之间的NG-U隧道。该第一接口地址信息为SN为该MBS业务分配的接口地址信息。该第一接口地址信息又可以称为辅基站的NG-U接口隧道地址信息,即SN通过NG-U接口与核心网进行数据传输,比如核心网通过该NG-U接口向SN发送下行数据。
在另一个实现中,SN可以通过建立与MN之间的Xn-U隧道进行通信。进一步地,MN已经建立了与核心网之间的NG-U隧道。SN可以在第一响应中携带第二接口地址信息,以建立SN与MN之间的Xn-U隧道。该第二接口地址信息为SN为该MBS业务分配的接口地址信息。该第二接口地址信息又可以称为辅基站的Xn-U接口隧道地址信息,即SN通过Xn-U接口与MN进行数据传输,比如MN通过该Xn-U接口向SN发送下行数据。
在又一个实现中,该MBS业务已在该SN存在,或者该MBS的数据传输通道已在SN建立,比如,SN与核心网之间已经建立了针对该MBS的NG-U接口,或者SN与其它MN之间已经建立了针对该MBS的Xn-U接口,则SN可以通过已经建立的数据传输通道接收MBS业务数据。
进一步地,SN在第一响应中提供该MBS业务的空口配置信息,MN将该MBS业务的空口配置信息发送给所述UE,或者,SN接收第一请求后,向所述UE发送所述MBS空口配置信息。
S803.MN向核心网发送第二请求。
相应地,核心网接收该第二请求。
该第二请求包括第一标识。
进一步的,该第二请求还包括第一接口地址信息和/或SN对应的第二标识。
当第二请求包括第一接口地址信息但不包括SN对应的第二标识时,核心网不感知SN的存在。核心网只知道MN服务该UE,此时对已有技术改动较小,核心网仍然认为MN为该UE的服务节点。当第二请求包括SN对应的第二标识但不包括第一接口地址信息时,核心网根据SN对应的第二标识,可以感知SN的存在。核心网知道由该SN服务该UE,此时核心网知道这个UE的该MBS业务由该SN提供,则可以和该SN建立共享隧道,并且后续会话激活或去激活也可以直接发送给SN。
进一步的,核心网根据第一标识,以及第一接口地址信息或所述第二标识中的至少一项,向SN发送第一标识对应的组播广播业务的数据。或者,核心网根据第一标识,向MN发送第一标识对应的组播广播业务的数据,该数据经MN转发给SN。
可选的,本申请实施例还包括下面步骤S804。
S804.核心网存储第一标识与第一接口地址信息之间的对应关系,和/或存储第一标识与第 二标识之间的对应关系。
核心网收到该第二请求后,存储第一标识与第一接口地址信息之间的对应关系,即记录该UE的该MBS的数据发送到第一接口地址;和/或存储第一标识与第二标识之间的对应关系,即记录该UE的该MBS业务由第二标识对应的SN提供服务,或者将第二标识对应的SN加入该MBS业务提供服务的无线接入网节点列表。
根据本申请实施例提供的一种通信方法,在双连接场景下,UE与MN、SN建立双连接。当MN请求SN为其UE提供MBS业务时,MN向SN发送第一请求,该第一请求包括MBS对应的第一标识;SN接收到该第一请求后,向MN发送第一响应,该第一响应用于指示该SN接受为该UE提供MBS业务。从而,实现了双连接场景下通过SN将MBS业务数据发送给UE。
如图9所示,为本申请实施例提供的又一种通信方法的流程示意图,该方法可以包括以下步骤:
S901.MN向SN发送第一请求。
相应地,SN接收该第一请求。
在本实施例中,MN请求新建立一条共享的NG-U隧道来传输某一MBS业务数据。因此,MN向SN发送第一请求。该第一请求可以称为SN添加请求(SN Addition Request)或SN修改请求(SN Modification Request)。该第一请求用于请求SN为UE提供MBS业务。该第一请求包括MBS业务对应的第一标识,例如MBS会话标识。可选地,该第一请求还可以包括MBS业务质量流列表(MBS QoS flow list)。
S902.SN根据第一请求,向MN发送第一响应。
相应地,MN接收该第一响应。
该第一响应用于指示SN接受为UE提供MBS业务。该第一响应包括SN与核心网之间的第一接口地址信息。该第一接口地址信息为SN为该MBS业务分配的接口地址信息。该第一接口地址信息又可以称为辅基站的NG-U接口隧道地址信息,即SN通过NG-U接口与核心网进行数据传输。具体地,该第一接口地址信息包括SN的IP地址和通用分组无线服务隧道协议-隧道端点标识(GPRS tunneling protocol-tunnel endpoint identifier,GTP-TEID)。
在一个实现中,SN在第一响应中提供该MBS业务的空口配置信息,MN将该MBS业务的空口配置信息发送给所述UE。
在又一个实现中,SN接收所述第一请求后,向所述UE发送所述MBS空口配置信息。
S903.MN向核心网发送第二请求。
相应地,核心网接收该第二请求。
其中,核心网包括AMF、会话管理功能(session management function,SMF)网元、MB-SMF。核心网包括MB-UPF,UPF。步骤S903具体为:MN向AMF/SMF或组播广播-会话管理功能(multicast/broadcast-session management function,MB-SMF)发送第二请求,AMF/SMF向MB-UPF或通过MB-SMF向MB-UPF发送第一接口地址。后面描述MN向核心网发送消息的路径与此相同或类似。
该第二请求包括上述第一标识和第一接口地址信息。即MN向核心网发送该第二请求,提供获得的第一标识和第一接口地址信息,请求核心网向该第一接口地址信息发送该第一标识对应的MBS业务数据。
进一步地,在本实施例中,从核心网的角度来看,UE是由MN服务的,CN不会因此感知SN的存在,因此,如果MN之前已经请求过核心网向另一个接口地址信息发送该MBS业 务数据,则在该第二请求中,为了让核心网区分不同的接口地址信息,MN可以指示此次携带的接口地址信息为新的地址信息;或者,为该第一接口地址信息分配不同的MBS参考标识(MBS reference identifier)或MBS业务标识(MBS transaction identifier),结合第一标识、该MBS参考标识和/或MBS业务标识,可以区分不同的接口地址信息;或者该第二请求中还包括接口地址信息列表,或者通过其它的消息携带该接口地址信息列表,该接口地址信息列表包括MN的接口地址信息、该SN的接口地址信息以及其它SN的接口地址信息,核心网向该接口地址信息列表中的接口地址发送同一个MBS业务数据。
S904.核心网响应于第二请求,向MN发送响应消息。
相应地,MN接收AMF发来的响应消息。该步骤是可选的,图中以虚线表示。该响应消息可以包括第一标识,还可以包括MBS参考标识或MBS业务标识。具体地,MB-SMF/AMF/SMF向MN发送响应消息。后续描述核心网向MN发送消息的路径与此相同或类似。
S905.核心网根据第一接口地址信息,向SN发送MBS业务数据。
相应地,SN接收该MBS业务数据。具体地,核心网通过共享的NG-U隧道发送该MBS业务数据。
如图10所示的双连接场景下建立核心网和SN之间的NG-U隧道的示意图,以UE1为例,gNB1作为服务UE1的MN,和核心网建立该UE的NGAP连接。gNB1请求gNB2作为SN为UE1提供某MBS会话的服务,gNB2接受该请求,并提供第一接口地址信息,核心网根据第一接口地址信息,将该MBS业务的数据发给gNB2。
进一步地,当MBS业务数据传输完毕,可以触发释放该MBS业务的数据传输通道。当该数据传输通道的释放是由某个无线接入网节点触发的,则该无线接入网节点只有在自身作为MN或SN服务的UE都不再接收该MBS业务数据了,才会触发释放该数据传输通道;当该数据传输通道的释放是由核心网或MN触发的,则SN只有在自身服务的UE都不再接收该MBS业务数据了,才会同意释放该数据传输通道。可选地,当MN收到核心网发来的MBS会话去激活请求,或者MBS会话释放请求时,MN转发相应信息给SN。
根据本申请实施例提供的一种通信方法,提供了建立及释放核心网到SN的NG-U隧道的方式,使得SN可以为UE提供MBS业务服务。
如图11所示,为本申请实施例提供的又一种通信方法的流程示意图,该方法可以包括以下步骤:
S1101.MN向SN发送第一请求。
相应地,SN接收该第一请求。
在本实施例中,从核心网的角度来看,UE是由MN服务的,CN不会因此感知SN的存在。该步骤的具体实现可参考上述步骤S901。
S1102.SN根据第一请求,向MN发送第一响应。
相应地,MN接收该第一响应。
该步骤与上述步骤S902的不同是,该第一响应仅用于指示SN接受为UE提供MBS业务。该第一响应不包括第一接口地址信息。
第一响应中可以包含MBS空口配置信息,从而MN将该MBS空口配置信息发送给UE。或者第一响应中不包含MBS空口配置,SN直接将MBS空口配置发送给UE。
S1103.SN向MN发送建立请求消息。
相应地,MN接收该建立请求消息。
与图9所示实施例的不同在于,本实施例中SN通过单独的建立请求消息向MN发送第一接口地址信息。即该建立请求消息包括SN与核心网之间的第一接口地址信息。第一接口地址信息的含义与上面的描述相同,在此不再赘述。
S1104.MN向核心网发送第二请求。
相应地,核心网接收该第二请求。
该步骤的具体实现可参考上述步骤S903。
S1105.核心网响应于第二请求,向MN发送响应消息。
相应地,MN接收该响应消息。该步骤是可选的,图中以虚线表示。
该步骤的具体实现可参考上述步骤S904。
S1106.MN响应于上述建立请求消息,向SN发送建立响应消息。
相应地,SN接收该建立响应消息。该建立响应消息用于指示核心网与SN之间的NG-U隧道建立成功。该步骤是可选的,图中以虚线表示。
S1107.核心网根据第一接口地址信息,向SN发送MBS业务数据。
相应地,SN接收该MBS业务数据。
该步骤的具体实现可参考上述步骤S905。
MBS业务的数据传输通道的释放可参考图9所示实施例中的描述。
根据本申请实施例提供的一种通信方法,提供了建立及释放核心网到SN的NG-U隧道的方式,使得SN可以为UE提供MBS业务服务。
如图12所示,为本申请实施例提供的又一种通信方法的流程示意图,该方法可以包括以下步骤:
S1201.SN与核心网之间已经建立了共享的NG-U隧道。
S1202.MN向SN发送第一请求。
相应地,SN接收该第一请求。
该步骤的具体实现可参考上述步骤S901。
S1203.SN根据第一请求,向MN发送第一响应。
相应地,MN接收该第一响应。
在本实施例中,从核心网的角度来看,UE是由MN服务的,CN不会因此感知SN的存在。该实施例与图9或图11所示的实施例不同的是,MBS业务对应的共享的NG-U隧道在SN上已经存在。当MN请求SN为其UE提供MBS业务服务时,SN发送第一响应,该第一响应用于指示SN接受为UE提供MBS业务。另外,该第一响应还用于指示MBS业务已在该SN存在,或者该MBS业务的数据传输通道已在SN建立,以避免MN触发再次建立隧道。
作为一种替换方式,也可以在该第一响应不包括第一接口地址信息来隐式指示MBS业务已在该SN存在,或者该MBS业务的数据传输通道已在SN建立。
作为另一种替换方式,也可以不触发发送步骤S1103来隐式指示MBS业务已在该SN存在,或者该MBS业务的数据传输通道已在SN建立。
MBS业务的数据传输通道的释放可参考图9所示实施例中的描述。
根据本申请实施例提供的一种通信方法,MN请求SN为其UE提供MBS业务时,当MBS业务对应的共享的NG-U隧道在SN上已经存在,SN可以指示MBS业务已在该SN存在,或者该MBS业务的数据传输通道已在SN建立,以避免为该MBS业务重复建立隧道,降低了通信开销,节约了通信资源。
如图13所示,为本申请实施例提供的又一种通信方法的流程示意图,该方法可以包括以 下步骤:
S1301.MN向SN发送第一请求。
相应地,SN接收该第一请求。
在本实施例中,从核心网的角度来看,UE是由MN服务的,CN不会因此感知SN的存在。该第一请求用于请求SN为UE提供MBS业务服务。该第一请求包括MBS业务对应的第一标识,还包括以下至少一个信息:组播广播业务的参考标识,组播广播业务的会话标识,组播广播业务的接入点(access point,AP)标识,接入和移动性管理功能标识,会话管理功能标识,组播广播-会话管理功能标识,组播广播-功能标识。
S1302.SN根据第一请求,向MN发送第一响应。
相应地,MN接收该第一响应。
该步骤与上述步骤S902不同的是,该第一响应仅用于指示SN接受为UE提供MBS业务。该第一响应不包括第一接口地址信息。
S1303.SN根据第一请求,向核心网发送第五请求。
相应地,核心网接收该第五请求。
SN在获取到上述至少一个信息后,可以自己向核心网请求MBS业务数据,而无需通过MN发送该请求。该第五请求包括上述第一接口地址信息。该第五请求用于请求向第一接口地址发送MBS业务数据。可选地,该第五请求还可以包括MN的标识,例如基站标识,即表示SN是为了MN请求该MBS业务数据的。
S1304.核心网响应于第五请求,向SN发送响应消息。
相应地,SN接收该响应消息。该步骤是可选的,图中以虚线表示。该响应消息可以包括第一标识,还可以包括MBS参考标识或MBS业务标识,或者为空。
S1305.核心网根据第一接口地址信息,向SN发送MBS业务数据。
相应地,SN接收该MBS业务数据。
MBS业务的数据传输通道的释放可参考图9所示实施例中的描述。
根据本申请实施例提供的一种通信方法,提供了建立及释放核心网到SN的NG-U隧道的方式,使得SN可以为UE提供MBS业务服务。
如图14所示,为本申请实施例提供的又一种通信方法的流程示意图,该方法可以包括以下步骤:
S1401.MN向SN发送第一请求。
相应地,SN接收该第一请求。
在本实施例中,从核心网的角度来看,UE是由MN服务的,CN不会因此感知SN的存在。该步骤的具体实现可参考步骤S901。另外,该第一请求还包括MBS的网际互连协议(internet protocol,IP)组播组地址,该IP组播组地址用于接收MBS业务数据。
其中,针对一个MBS会话,核心网分配一个IP组播组地址。相关的无线接入网节点可加入该IP组播组来获取MBS业务数据。核心网只发送一份数据到IP组播组地址。
S1402.SN根据第一请求,向MN发送第一响应。
相应地,MN接收该第一响应。
该步骤与上述步骤S902不同的是,该第一响应仅用于指示SN接受为UE提供MBS业务。该第一响应不包括第一接口地址信息。
S1403.SN根据IP组播组地址,加入IP组播组。
具体地,SN根据MN发送的某个MBS会话对应的IP组播组地址,SN自行加入该IP组 播组,等待接收发送到该IP组播组的MBS业务数据。
S1404.核心网向该IP组播组发送MBS业务数据。
相应地,SN从该IP组播组接收MBS业务数据。
具体地,核心网只发送一份MBS业务数据到该IP组播组地址。SN加入该IP组播组后,可获取到该MBS业务数据。
MBS业务的数据传输通道的释放可参考图9所示实施例中的描述。
根据本申请实施例提供的一种通信方法,当MN请求SN为其UE提供MBS业务服务时,MN提供一个IP组播组地址,当SN接受为UE提供MBS业务时,加入该IP组播组地址,可以获取到MBS业务数据。核心网只需发送一份MBS业务数据到该IP组播组地址,提高了通信效率,节省了通信开销。
如图15所示,为本申请实施例提供的又一种通信方法的流程示意图,该方法可以包括以下步骤:
S1501.MN向SN发送第一请求。
相应地,SN接收该第一请求。
在本实施例中,MN请求额外建立一条共享的NG-U隧道来传输某一MBS业务数据。因此,MN向SN发送第一请求。该第一请求可以称为SN添加请求或SN修改请求。该第一请求用于请求SN为UE提供MBS业务。该第一请求包括MBS业务对应的第一标识,例如MBS会话标识。
S1502.SN根据第一请求,向MN发送第一响应。
相应地,MN接收该第一响应。
该第一响应用于指示SN接受为UE提供MBS业务。
可选地,当共享的NG-U隧道在SN上已经存在,该第一响应还可以指示用于MBS业务已在该SN存在,或者该MBS业务的数据传输通道已在SN建立,无需执行后面的流程。核心网可通过已经存在的共享的NG-U隧道向SN发送该MBS业务数据。
S1503.MN向核心网发送第二请求。
相应地,核心网接收该第二请求。
该第二请求包括上述第一标识和SN对应的第二标识。
MN向核心网发送该第二请求,告知核心网该UE将由该第二标识所指示的SN提供该MBS业务服务,从而核心网可以感知该SN,清楚地知道MBS数据是发送给该SN的。具体地,MN向SMF发送该第二请求,该第二请求具体可以是分组数据单元会话资源修改指示(packet data unit session resource modify indication)。
可选的,还包括步骤S1504。
S1504.核心网存储第一标识与第二标识之间的对应关系。
核心网收到该第二请求后,存储第一标识与第二标识之间的对应关系,即记录该UE的该MBS业务由第二标识对应的SN提供服务,或者将第二标识对应的SN加入该MBS业务提供服务的无线接入网节点列表。
S1505a.SN向核心网发送数据获取请求,该数据获取请求用于请求核心网向SN提供该MBS业务数据。
相应地,核心网接收该数据获取请求。
具体地,SN通过AMF向MB-SMF发送该数据获取请求。
S1506a.核心网响应于数据获取请求,向SN发送数据获取响应。
相应地,SN接收该数据获取响应。
具体地,MB-SMF通过AMF向SN发送该数据获取响应。
其中,S1505a和S1506a为方案1。可替换地,还可以包括方案2:
S1505b.核心网根据第二标识,向SN发送第一通知。
相应地,SN接收该第一通知。
该第一通知用于通知SN该MBS会话开始启动。
具体地,MB-SMF通过AMF向SN发送该第一通知。
S1506b.SN响应于该第一通知,向核心网发送通知响应。
相应地,核心网接收该通知响应。
该通知响应用于指示收到该第一通知。
具体地,SN通过AMF向MB-SMF发送该通知响应。
其中,S1505b和S1506b为方案2。
方案1和方案2可以任意选择其中一个执行。
S1507.核心网响应于第二请求,向MN发送第二响应。
相应地,MN接收该第二响应。
具体地,SMF向MN发送该第二响应,该第二响应具体可以是分组数据单元会话资源修改确认(packet data unit session resource modify confirm)。
根据本申请实施例提供的一种通信方法,提供了建立及释放核心网到SN的NG-U隧道的方式,使得SN可以为UE提供MBS业务服务。
如图16所示,为本申请实施例提供的又一种通信方法的流程示意图,该方法可以包括以下步骤:
S1601.MN向SN发送第一请求。
相应地,SN接收该第一请求。
该步骤的具体实现可参考步骤S1501。
S1602.SN根据第一请求,向MN发送第一响应。
相应地,MN接收该第一响应。
该步骤的具体实现可参考步骤S1502。
S1603.MN向核心网发送第二请求。
相应地,核心网接收该第二请求。
该步骤的具体实现可参考步骤S1503。
S1604.核心网存储第一标识与第二标识之间的对应关系。
该步骤的具体实现可参考步骤S1504。
S1605a.SN向MN发送第三请求。
相应地,MN接收该第三请求。
其中,该第三请求包括以下至少一项:第一标识,SN对应的第二标识,SN与核心网之间的第一接口地址信息。
可选地,该第三请求也可以与第一响应是同一条消息,即SN还可以在第一响应中包括以下至少一项:第一标识,SN对应的第二标识,SN与核心网之间的第一接口地址信息。
S1606a.MN向核心网发送第四请求。
相应地,核心网接收该第四请求。
由于本实施例中,第四请求是通过MN转发的,因此,该第四请求中携带SN对应的第 二标识,用来区分此消息是针对该SN的,而不是针对MN自身的。具体地,该第四请求包括以下至少一项:第一标识,SN对应的第二标识,SN与核心网之间的第一接口地址信息。
S1607a.核心网向MN发送第二响应。
相应地,MN接收该第二响应。
其中,该第二响应包括第一标识,或者包括第二标识,或者包括第一标识和第二标识。
S1608a.MN向SN发送第三响应。
相应地,SN接收该第三响应。
其中,该第三响应包括第一标识,或者包括第二标识,或者包括第一标识和第二标识。
其中,S1605a~S1608a为方案1。可替换地,还可以包括方案2:
S1605b.核心网根据第二标识,向MN发送第一通知。
相应地,MN接收该第一通知。
该第一通知用于通知SN该MBS会话开始启动。
具体地,MB-SMF通过AMF向MN发送该第一通知。
S1606b.MN向SN转发该第一通知。
相应地,SN接收该第一通知。
由于本实施例中,该第一通知是通过MN转发的,因此,该第一通知中携带SN对应的第二标识,用来区分此消息是针对该SN的,而不是针对MN自身的。还可以携带第一标识。
S1607b.SN响应于该第一通知,向MN发送通知响应。
相应地,MN接收该通知响应。
该通知响应用于指示收到该第一通知。
S1608b.MN向核心网转发该通知响应。
相应地,核心网接收该通知响应。
具体地,MN通过AMF向MB-SMF转发该通知响应。
其中,S1605b~S1608b为方案2。
方案1和方案2可以任意选择其中一个执行。
S1609.核心网响应于第二请求,向MN发送第二响应。
相应地,MN接收该第二响应。
该步骤的具体实现可参考步骤S1607。
根据本申请实施例提供的一种通信方法,提供了建立及释放核心网到SN的NG-U隧道的方式,使得SN可以为UE提供MBS业务服务。
如图17所示,为本申请实施例提供的又一种通信方法的流程示意图,该方法可以包括以下步骤:
S1701.MN向SN发送第一请求。
相应地,SN接收该第一请求。
其中,该第一请求用于请求SN为UE提供MBS业务。该第一请求包括MBS对应的第一标识。该步骤的具体实现可参考步骤S901。
S1702.SN向MN发送第一响应。
相应地,MN接收该第一响应。
其中,该第一响应用于指示SN接受为UE提供MBS业务。
在本实施例中,第一响应包括SN与MN之间的第二接口地址信息。该第二接口地址信息为SN为该MBS业务分配的接口地址信息。该第二接口地址信息又可以称为辅基站的Xn-U 接口隧道地址信息,即SN通过Xn-U接口与MN进行数据传输。
可选地,若SN已经在为其它UE提供该MBS业务了,即SN上已经有来自其它MN或者核心网的该MBS业务数据,则当MN请求SN为其UE提供MBS业务服务时,SN发送第一响应,该第一响应用于指示SN接受为UE提供MBS业务。则可以在该第一响应不包括第二接口地址信息来隐式指示MBS业务已在该SN存在,或者该MBS业务的数据传输通道已在SN建立。
S1703.核心网通过与MN之间的共享NG-U隧道向MN发送MBS业务数据。
相应地,MN接收该MBS业务数据。
S1704.MN根据第二接口地址信息,向SN转发该MBS业务数据。
相应地,SN接收该MBS业务数据。
可选地,若多个MN向SN发送同一个MBS业务数据,则SN可以根据分组数据汇聚协议(packet data convergence protocol,PDCP)序列号(sequence number,SN),或者MBS服务质量(quality of service,QoS)Flow SN以及GTP-U SN来去除重复的包,在空口只发送一份数据。具体地:
1)MN发给SN的是PDCP PDU,SN根据PDCP SN来去除重复的包;
2)MN发给SN的是IP包(核心网发给MN的是IP包,MN在SDAP和PDCP层没有进行处理),SN根据MBS QoS Flow SN和/或GTP-U SN来去除重复的包。
如图18所示,为本申请示例的双连接场景下建立MN和SN之间的Xn-U隧道的示意图,UE1与gNB1和gNB2建立双连接,UE2与gNB2和gNB3建立双连接。gNB1作为MN,已经与核心网建立NG-U隧道。当gNB1请求gNB2作为SN,为gNB1服务的小区1中的UE1提供MBS业务时,gNB2发送响应给gNB1,表示接受为UE1提供MBS业务,且携带gNB2分配的第二接口地址信息。gNB1通过NG-U隧道接收到核心网发送的MBS业务数据时,通过共享的Xn-U隧道将该MBS业务数据发送给gNB2。gNB2再通过空口发送给UE1。gNB3作为MN,请求gNB2为gNB3服务的小区3中的UE2提供MBS业务的流程与上述描述类似。
在本实施例中,MBS业务数据由MN发送给SN,核心网不需要发送多份数据,也不需要感知SN的存在。
根据本申请实施例提供的一种通信方法,提供了建立MN到SN的Xn-U隧道的方式,使得SN可以为UE提供MBS业务服务。
如图19所示,为本申请实施例提供的又一种通信方法的流程示意图,该方法可以包括以下步骤:
S1901.MN向SN发送第一请求。
相应地,SN接收该第一请求。
该步骤的具体实现可参考步骤S1701。
S1902.SN向MN发送第一响应。
相应地,MN接收该第一响应。
其中,该第一响应用于指示SN接受为UE提供MBS业务。与步骤S1702不同的是,该第一响应不包括第二接口地址信息。
S1903.SN向MN发送建立请求消息。
相应地,MN接收该建立请求消息。
与图17所示实施例的不同在于,本实施例中SN通过单独的建立请求消息向MN发送第二接口地址信息。即该建立请求消息包括SN与核心网之间的第二接口地址信息。第二接口 地址信息的含义与上面的描述相同,在此不再赘述。
S1904.核心网通过与MN之间的共享NG-U隧道向MN发送MBS业务数据。
相应地,MN接收该MBS业务数据。
S1905.MN根据第二接口地址信息,向SN转发该MBS业务数据。
相应地,SN接收该MBS业务数据。
在本实施例中,MBS业务数据由MN发送给SN,核心网不需要发送多份数据,也不需要感知SN的存在。
根据本申请实施例提供的一种通信方法,提供了建立MN到SN的Xn-U隧道的方式,使得SN可以为UE提供MBS业务服务。
可以理解的是,为了实现上述实施例中的功能,MN、SN或核心网包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图20和图21为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中MN、SN或核心网的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图2所示的基站110a或110b,也可以是如图2所示的核心网200,还可以是应用于基站或核心网的模块(如芯片)。
如图20所示,通信装置2000包括处理单元2010和收发单元2020。通信装置2000用于实现上述图8~图19中所示的方法实施例中MN、SN或核心网的功能。
当通信装置2000用于实现图8~图19所示的方法实施例中MN的功能时:收发单元2020用于向辅无线接入网节点发送第一请求,所述第一请求用于请求所述辅无线接入网节点为终端设备提供组播广播业务,所述第一请求包括所述组播广播业务对应的第一标识;以及所述收发单元2020还用于接收来自所述辅无线接入网节点的第一响应,所述第一响应用于指示所述辅无线接入网节点接受为所述终端设备提供所述组播广播业务。
可选地,所述收发单元2020还用于向核心网发送第二请求,所述第二请求包括所述第一标识和所述第一接口地址信息,和/或,所述第二请求包括所述第一标识和所述辅无线接入网节点对应的第二标识。
可选地,所述收发单元2020还用于接收来自所述辅无线接入网节点的第三请求,所述第三请求包括以下至少一项:所述第一标识,所述辅无线接入网节点对应的第二标识,所述辅无线接入网节点与核心网之间的第一接口地址信息;所述收发单元2020还用于向核心网发送第四请求,所述第四请求包括以下至少一项:所述第一标识,所述第二标识,所述第一接口地址信息;所述收发单元2020还用于接收来自所述核心网的第二响应,所述第二响应包括所述第一标识以及可选的包括所述第二标识;以及所述收发单元2020还用于向所述辅无线接入网节点发送第三响应,所述第三响应包括所述第一标识以及可选的包括所述第二标识。
可选地,所述收发单元2020还用于接收来自所述核心网的所述组播广播业务的数据;以及所述收发单元2020根据所述第二接口地址信息,向所述辅无线接入网节点转发所述数据。
可选地,所述第一响应包括所述辅无线接入网节点的MBS空口配置信息,所述收发单元2020还用于将所述MBS空口配置信息发送给所述终端设备。
当通信装置2000用于实现图8~图19所示的方法实施例中SN的功能时:收发单元2020用于接收来自主无线接入网节点的第一请求,所述第一请求用于请求辅无线接入网节点为终 端设备提供组播广播业务,所述第一请求包括所述组播广播业务对应的第一标识;以及所述收发单元2020还用于根据所述第一请求,向所述主无线接入网节点发送第一响应,所述第一响应用于指示所述辅无线接入网节点接受为所述终端设备提供所述组播广播业务。
可选地,所述第一请求还包括所述组播广播业务的参考标识,所述组播广播业务的接入点AP标识,接入和移动性管理功能标识,会话管理功能标识,组播广播-会话管理功能标识,组播广播-功能标识;所述收发单元2020还用于根据所述第一请求,向核心网发送第五请求,所述第五请求包括所述第一接口地址信息;以及所述收发单元2020还用于根据所述第一接口地址信息,接收来自所述核心网的所述组播广播业务的数据。
可选地,所述第一请求包括所述组播广播业务的网际互连协议IP组播组地址;所述处理单元2010用于根据所述IP组播组地址,加入IP组播组;以及所述收发单元2020还用于从核心网接收所述组播广播业务的数据。
可选地,所述收发单元2020还用于根据所述第一接口地址信息,接收来自所述核心网的所述组播广播业务的数据。
可选地,所述收发单元2020还用于向所述主无线接入网节点发送第三请求,所述第三请求包括以下至少一项:所述第一标识,所述辅无线接入网节点对应的第二标识,所述辅无线接入网节点与所述核心网之间的第一接口地址信息;以及所述收发单元2020还用于接收来自所述主无线接入网节点的第三响应,所述第三响应包括所述第一标识以及可选的包括所述第二标识。
可选地,所述收发单元2020还用于根据所述第二接口地址信息,接收来自所述主无线接入网节点的所述组播广播业务的数据。
可选地,所述第一响应包括所述辅无线接入网节点的MBS空口配置信息。
可选地,所述收发单元2020还用于向所述终端设备发送所述MBS空口配置信息。
当通信装置2000用于实现图8~图19所示的方法实施例中核心网的功能时:收发单元2020用于接收第二请求,所述第二请求包括组播广播业务对应的第一标识,以及如下至少一项:辅无线接入网节点与核心网之间的第一接口地址信息,或所述辅无线接入网节点对应的第二标识;以及所述收发单元2020还用于根据所述第一接口地址信息或所述第二标识,发送所述组播广播业务的数据。
有关上述处理单元2010和收发单元2020更详细的描述可以直接参考图8~图19所示的方法实施例中相关描述直接得到,这里不加赘述。
如图21所示,通信装置2100包括处理器2110和接口电路2120。处理器2110和接口电路2120之间相互耦合。可以理解的是,接口电路2120可以为收发器或输入输出接口。可选的,通信装置2100还可以包括存储器2130,用于存储处理器2110执行的指令或存储处理器2110运行指令所需要的输入数据或存储处理器2110运行指令后产生的数据。
当通信装置2100用于实现图8~图19所示的方法时,处理器2110用于实现上述处理单元2010的功能,接口电路2120用于实现上述收发单元2020的功能。
当上述通信装置为应用于MN的芯片时,该MN芯片实现上述方法实施例中MN的功能。该MN芯片从MN中的其它模块(如射频模块或天线)接收信息,该信息是核心网或UE发送给MN的;或者,该MN芯片向MN中的其它模块(如射频模块或天线)发送信息,该信息是MN发送给核心网或UE的。
当上述通信装置为应用于SN的芯片时,该SN芯片实现上述方法实施例中SN的功能。该SN芯片从SN中的其它模块(如射频模块或天线)接收信息,该信息是核心网或UE或 MN发送给SN的;或者,该SN芯片向SN中的其它模块(如射频模块或天线)发送信息,该信息是SN发送给核心网或UE或MN的。
当上述通信装置为应用于核心网的芯片时,该核心网芯片实现上述方法实施例中核心网的功能。该核心网芯片从核心网中的其它模块(如射频模块或天线)接收信息,该信息是MN/SN发送给核心网的;或者,该核心网芯片向核心网中的其它模块(如射频模块或天线)发送信息,该信息是核心网发送给MN/SN的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于基站或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、基站、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (36)

  1. 一种通信方法,其特征在于,所述方法包括:
    向辅无线接入网节点发送第一请求,所述第一请求用于请求所述辅无线接入网节点为终端设备提供组播广播业务,所述第一请求包括所述组播广播业务对应的第一标识;
    接收来自所述辅无线接入网节点的第一响应,所述第一响应用于指示所述辅无线接入网节点接受为所述终端设备提供所述组播广播业务。
  2. 根据权利要求1所述的方法,其特征在于,所述第一响应包括所述辅无线接入网节点与核心网之间的第一接口地址信息,或所述辅无线接入网节点与主无线接入网节点之间的第二接口地址信息。
  3. 根据权利要求1所述的方法,其特征在于,所述第一响应还用于指示所述组播广播业务已在所述辅无线接入网节点存在,或所述组播广播业务的数据传输通道已在所述辅无线接入网节点建立。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述第一请求还包括以下至少一个信息:所述组播广播业务的参考标识,所述组播广播业务的会话标识,所述组播广播业务的接入点AP标识,接入和移动性管理功能标识,会话管理功能标识,组播广播-会话管理功能标识,组播广播-功能标识。
  5. 根据权利要求1,3或4所述的方法,其特征在于,所述第一请求还包括所述组播广播业务的网际互连协议IP组播组地址,所述IP组播组地址用于接收所述组播广播业务的数据。
  6. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    向核心网发送第二请求,所述第二请求包括所述第一标识,以及如下至少一项:所述第一接口地址信息或所述辅无线接入网节点对应的第二标识。
  7. 根据权利要求1或5所述的方法,其特征在于,所述方法还包括:
    接收来自所述辅无线接入网节点的第三请求,所述第三请求包括以下至少一项:所述第一标识,所述辅无线接入网节点对应的第二标识,所述辅无线接入网节点与核心网之间的第一接口地址信息;
    向核心网发送第四请求,所述第四请求包括以下至少一项:所述第一标识,所述第二标识,所述第一接口地址信息;
    接收来自所述核心网的第二响应,所述第二响应包括所述第一标识和/或所述第二标识;
    向所述辅无线接入网节点发送第三响应,所述第三响应包括所述第一标识和/或所述第二标识。
  8. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    接收来自所述核心网的所述组播广播业务的数据;
    根据所述第二接口地址信息,向所述辅无线接入网节点转发所述数据。
  9. 一种通信方法,其特征在于,所述方法包括:
    接收来自主无线接入网节点的第一请求,所述第一请求用于请求辅无线接入网节点为终端设备提供组播广播业务,所述第一请求包括所述组播广播业务对应的第一标识;
    根据所述第一请求,向所述主无线接入网节点发送第一响应,所述第一响应用于指示所述辅无线接入网节点接受为所述终端设备提供所述组播广播业务。
  10. 根据权利要求9所述的方法,其特征在于,所述第一响应包括所述辅无线接入网节点与核心网之间的第一接口地址信息,或所述辅无线接入网节点与所述主无线接入网节点之间的第二接口地址信息。
  11. 根据权利要求9所述的方法,其特征在于,所述第一响应还用于指示所述组播广播业务已在所述辅无线接入网节点存在,或所述广播组播业务的数据传输通道已在所述辅无线接入网节点建立。
  12. 根据权利要求10所述的方法,其特征在于,所述第一请求还包括所述组播广播业务的参考标识,所述组播广播业务的接入点AP标识,接入和移动性管理功能标识,会话管理功能标识,组播广播-会话管理功能标识,组播广播-功能标识;
    所述方法还包括:
    根据所述第一请求,向核心网发送第五请求,所述第五请求包括所述第一接口地址信息;
    根据所述第一接口地址信息,接收来自所述核心网的所述组播广播业务的数据。
  13. 根据权利要求9所述的方法,其特征在于,所述第一请求包括所述组播广播业务的网际互连协议IP组播组地址;
    所述方法还包括:
    根据所述IP组播组地址
    从核心网接收所述组播广播业务的数据。
  14. 根据权利要求10所述的方法,其特征在于,所述方法包括:
    根据所述第一接口地址信息,接收来自所述核心网的所述组播广播业务的数据。
  15. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    向所述主无线接入网节点发送第三请求,所述第三请求包括以下至少一项:所述第一标识,所述辅无线接入网节点对应的第二标识,所述辅无线接入网节点与所述核心网之间的第一接口地址信息;
    接收来自所述主无线接入网节点的第三响应,所述第三响应包括所述第一标识和/或所述第二标识。
  16. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    根据所述第二接口地址信息,接收来自所述主无线接入网节点的所述组播广播业务的数 据。
  17. 一种通信方法,其特征在于,所述方法包括:
    接收第二请求,所述第二请求包括组播广播业务对应的第一标识,以及如下至少一项:辅无线接入网节点与核心网之间的第一接口地址信息,或,所述辅无线接入网节点对应的第二标识;
    根据所述第一标识,以及第一接口地址信息或所述第二标识中的至少一项,发送所述组播广播业务的数据。
  18. 一种通信装置,其特征在于,所述装置包括:收发单元和处理单元;其中:
    所述收发单元用于向辅无线接入网节点发送第一请求,所述第一请求用于请求所述辅无线接入网节点为终端设备提供组播广播业务,所述第一请求包括所述组播广播业务对应的第一标识;
    所述收发单元还用于接收来自所述辅无线接入网节点的第一响应,所述第一响应用于指示所述辅无线接入网节点接受为所述终端设备提供所述组播广播业务。
  19. 根据权利要求18所述的装置,其特征在于,所述第一响应包括所述辅无线接入网节点与核心网之间的第一接口地址信息,或所述辅无线接入网节点与主无线接入网节点之间的第二接口地址信息。
  20. 根据权利要求18所述的装置,其特征在于,所述第一响应还用于指示所述组播广播业务已在所述辅无线接入网节点存在,或所述组播广播业务的数据传输通道已在所述辅无线接入网节点建立。
  21. 根据权利要求18-20中任一项所述的装置,其特征在于,所述第一请求还包括以下至少一个信息:所述组播广播业务的参考标识,所述组播广播业务的会话标识,所述组播广播业务的接入点AP标识,接入和移动性管理功能标识,会话管理功能标识,组播广播-会话管理功能标识,组播广播-功能标识。
  22. 根据权利要求18或21所述的装置,其特征在于,所述第一请求还包括所述组播广播业务的网际互连协议IP组播组地址,所述IP组播组地址用于接收所述组播广播业务的数据。
  23. 根据权利要求19所述的装置,其特征在于,所述收发单元还用于向核心网发送第二请求,所述第二请求包括所述第一标识,以及如下至少一项:所述第一接口地址信息,或所述辅无线接入网节点对应的第二标识。
  24. 根据权利要求18或22所述的装置,其特征在于:
    所述收发单元还用于接收来自所述辅无线接入网节点的第三请求,所述第三请求包括以下至少一项:所述第一标识,所述辅无线接入网节点对应的第二标识,所述辅无线接入网节点与核心网之间的第一接口地址信息;
    所述收发单元还用于向核心网发送第四请求,所述第四请求包括以下至少一项:所述第 一标识,所述第二标识,所述第一接口地址信息;
    所述收发单元还用于接收来自所述核心网的第二响应,所述第二响应包括所述第一标识和/或所述第二标识;
    所述收发单元还用于向所述辅无线接入网节点发送第三响应,所述第三响应包括所述第一标识和/或所述第二标识。
  25. 根据权利要求19所述的装置,其特征在于:
    所述收发单元还用于接收来自所述核心网的所述组播广播业务的数据;
    所述收发单元还用于根据所述第二接口地址信息,向所述辅无线接入网节点转发所述数据。
  26. 一种通信装置,其特征在于,所述装置包括:收发单元和处理单元;其中:
    所述收发单元用于接收来自主无线接入网节点的第一请求,所述第一请求用于请求辅无线接入网节点为终端设备提供组播广播业务,所述第一请求包括所述组播广播业务对应的第一标识;
    所述收发单元还用于根据所述第一请求,向所述主无线接入网节点发送第一响应,所述第一响应用于指示所述辅无线接入网节点接受为所述终端设备提供所述组播广播业务。
  27. 根据权利要求26所述的装置,其特征在于,所述第一响应包括所述辅无线接入网节点与核心网之间的第一接口地址信息,或所述辅无线接入网节点与所述主无线接入网节点之间的第二接口地址信息。
  28. 根据权利要求26所述的装置,其特征在于,所述第一响应还用于指示所述组播广播业务已在所述辅无线接入网节点存在,或所述广播组播业务的数据传输通道已在所述辅无线接入网节点建立。
  29. 根据权利要求27所述的装置,其特征在于,所述第一请求还包括所述组播广播业务的参考标识,所述组播广播业务的接入点AP标识,接入和移动性管理功能标识,会话管理功能标识,组播广播-会话管理功能标识,组播广播-功能标识;
    所述收发单元还用于根据所述第一请求,向核心网发送第五请求,所述第五请求包括所述第一接口地址信息;
    所述收发单元还用于根据所述第一接口地址信息,接收来自所述核心网的所述组播广播业务的数据。
  30. 根据权利要求26所述的装置,其特征在于,所述第一请求包括所述组播广播业务的网际互连协议IP组播组地址;
    所述处理单元用于根据所述IP组播组地址;
    所述收发单元还用于从核心网接收所述组播广播业务的数据。
  31. 根据权利要求27所述的装置,其特征在于,所述收发单元还用于根据所述第一接口地址信息,接收来自所述核心网的所述组播广播业务的数据。
  32. 根据权利要求26所述的装置,其特征在于:
    所述收发单元还用于向所述主无线接入网节点发送第三请求,所述第三请求包括以下至少一项:所述第一标识,所述辅无线接入网节点对应的第二标识,所述辅无线接入网节点与所述核心网之间的第一接口地址信息;
    所述收发单元还用于接收来自所述主无线接入网节点的第三响应,所述第三响应包括所述第一标识和/或所述第二标识。
  33. 根据权利要求27所述的装置,其特征在于,所述收发单元还用于根据所述第二接口地址信息,接收来自所述主无线接入网节点的所述组播广播业务的数据。
  34. 一种通信装置,其特征在于,所述装置包括:收发单元和处理单元;其中:
    所述收发单元用于接收第二请求,所述第二请求包括组播广播业务对应的第一标识,以及如下至少一项:辅无线接入网节点与核心网之间的第一接口地址信息,或所述辅无线接入网节点对应的第二标识;
    所述收发单元还用于根据所述第一标识,以及所述第一接口地址信息或所述第二标识中的至少一项,发送所述组播广播业务的数据。
  35. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,并读取所述存储器中的指令,并根据所述指令实现如权利要求1-8中任一项所述的方法、或者实现如权利要求9-16中任一项所述的方法、或者实现如权利要求17所述的方法。
  36. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-8中任一项所述的方法、或者实现如权利要求9-16中任一项所述的方法、或者实现如权利要求17所述的方法。
PCT/CN2022/087367 2021-04-30 2022-04-18 通信方法及装置 WO2022228177A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22794648.0A EP4319208A1 (en) 2021-04-30 2022-04-18 Communication method and apparatus
US18/496,458 US20240057219A1 (en) 2021-04-30 2023-10-27 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110484680.9A CN115278547A (zh) 2021-04-30 2021-04-30 通信方法及装置
CN202110484680.9 2021-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/496,458 Continuation US20240057219A1 (en) 2021-04-30 2023-10-27 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022228177A1 true WO2022228177A1 (zh) 2022-11-03

Family

ID=83745176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087367 WO2022228177A1 (zh) 2021-04-30 2022-04-18 通信方法及装置

Country Status (4)

Country Link
US (1) US20240057219A1 (zh)
EP (1) EP4319208A1 (zh)
CN (1) CN115278547A (zh)
WO (1) WO2022228177A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511989A (zh) * 2020-10-23 2021-03-16 中兴通讯股份有限公司 一种切换处理方法、通信设备及计算机可读存储介质
WO2021051320A1 (zh) * 2019-09-18 2021-03-25 Oppo广东移动通信有限公司 一种业务数据传输方法及装置、网络设备、终端设备
US20210105787A1 (en) * 2019-10-03 2021-04-08 Comcast Cable Communications, Llc Sidelink Bearer Mode Selection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021051320A1 (zh) * 2019-09-18 2021-03-25 Oppo广东移动通信有限公司 一种业务数据传输方法及装置、网络设备、终端设备
US20210105787A1 (en) * 2019-10-03 2021-04-08 Comcast Cable Communications, Llc Sidelink Bearer Mode Selection
CN112511989A (zh) * 2020-10-23 2021-03-16 中兴通讯股份有限公司 一种切换处理方法、通信设备及计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Miscellaneous Aspects of MBS Provisioning", 3GPP DRAFT; R2-2102946, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 2 April 2021 (2021-04-02), Electronic; 20210412 - 20210420, XP051992433 *

Also Published As

Publication number Publication date
CN115278547A (zh) 2022-11-01
US20240057219A1 (en) 2024-02-15
EP4319208A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
CN110169098B (zh) 在移动通信系统中选择接入和移动性管理功能的方法和装置
CN110383895B (zh) 在切换过程期间获取按需系统信息的方法
KR102401279B1 (ko) 무선 통신 네트워크에서 통신 방법 및 이를 위한 시스템
WO2022121991A1 (zh) 通信方法、装置及系统
WO2022082754A1 (zh) 一种通信方法及装置
KR20200125274A (ko) 무선 통신 시스템에서 QoS Flow 기반으로 브로드캐스트와 그룹캐스트를 통한 단말 대 단말 직접 통신을 지원하는 방법
WO2021254353A1 (zh) 一种释放中继连接的方法、设备及系统
US20230142993A1 (en) Method for sidelink relay communication under dual connectivity
WO2021233445A1 (zh) 一种通信方法及装置
WO2021097858A1 (zh) 一种通信方法及装置
CN113079712A (zh) 双向侧链路无线电链路控制承载
WO2022027656A1 (zh) 一种侧行链路通信中链路切换的方法及装置
JP2020519063A (ja) 端末ページングの方法、装置及びシステム
WO2022228177A1 (zh) 通信方法及装置
WO2022021251A1 (zh) 一种通信方法、装置及系统
WO2024074148A1 (zh) 通信方法、装置及系统
WO2024027636A1 (zh) 一种通信方法、通信装置及通信系统
WO2022037361A1 (zh) 一种基于数据边缘协议的通信方法及装置
WO2023274042A1 (zh) 一种通信的方法、装置和系统
WO2022002134A1 (zh) 一种通信方法及装置
WO2024007895A1 (zh) 一种通信方法及装置
WO2021134718A1 (zh) 多跳路径的数据传输方法及装置
WO2024027390A1 (zh) 一种基于接入回传一体化iab的通信方法及装置
WO2023185992A1 (zh) 中继通信方法与装置
WO2022141332A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794648

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022794648

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022794648

Country of ref document: EP

Effective date: 20231102

NENP Non-entry into the national phase

Ref country code: DE