WO2022227853A1 - 微流控芯片、盒体装置、微流控装置 - Google Patents

微流控芯片、盒体装置、微流控装置 Download PDF

Info

Publication number
WO2022227853A1
WO2022227853A1 PCT/CN2022/078956 CN2022078956W WO2022227853A1 WO 2022227853 A1 WO2022227853 A1 WO 2022227853A1 CN 2022078956 W CN2022078956 W CN 2022078956W WO 2022227853 A1 WO2022227853 A1 WO 2022227853A1
Authority
WO
WIPO (PCT)
Prior art keywords
microfluidic chip
sub
channel
flow channel
unit
Prior art date
Application number
PCT/CN2022/078956
Other languages
English (en)
French (fr)
Inventor
杨帆
邓林
丁丁
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2021/090291 external-priority patent/WO2022226791A1/zh
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US18/262,223 priority Critical patent/US20230405587A1/en
Priority to GB2317811.4A priority patent/GB2621756A/en
Publication of WO2022227853A1 publication Critical patent/WO2022227853A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/24Methods of sampling, or inoculating or spreading a sample; Methods of physically isolating an intact microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1468Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle
    • G01N15/147Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle the analysis being performed on a sample stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/046Function or devices integrated in the closure
    • B01L2300/047Additional chamber, reservoir
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/165Specific details about hydrophobic, oleophobic surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/149Optical investigation techniques, e.g. flow cytometry specially adapted for sorting particles, e.g. by their size or optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology

Definitions

  • the present disclosure relates to the field of biomedical detection, and in particular, to a microfluidic chip, a box device used in cooperation with the microfluidic chip, and a microfluidic device including the microfluidic chip and the box device.
  • Cells are the basic structural and functional units of living organisms. Since there is usually a high degree of heterogeneity among individual cells, the mean of the data obtained by analyzing the cell population essentially masks the differences between individual cells, and thus cannot characterize the stochastic nature of gene expression and cannot reflect the real situation. With the continuous development of life science and precision medicine, cell population analysis is gradually developing towards single cell analysis.
  • a key technique for single-cell analysis is how individual cells can be isolated from highly heterogeneous biological samples containing numerous cells.
  • Single-cell sorting technology provides new options for popular medical fields such as single-cell analysis, early cancer diagnosis, and companion diagnostics.
  • a microfluidic chip includes: a first accommodating part, configured to accommodate a first fluid; a second accommodating part, configured to accommodate a second fluid, the second fluid including a cell suspension; a delivery channel, including the first delivery flow and a second delivery channel, the first delivery channel communicates with the first accommodating part and the second delivery channel communicates with the second accommodating part, the first delivery channel communicates with the first accommodating part
  • the second delivery channels intersect and communicate with each other at the junction, and the shape of the delivery channel is designed such that the first fluid and the second fluid meet at the junction;
  • the sorting channel located at Downstream of the conveying flow channel, the sorting flow channel includes a first sorting flow channel and a second sorting flow channel; and a collecting part is located downstream of the sorting flow channel and includes a first collecting part and a second sorting flow channel; Two collecting parts, the first collecting part communicates with the first sorting flow channel, and the second collecting part communicates with the second sorting flow channel.
  • a portion of the first delivery channel is divided by the junction into a first section and a second section, in each of the first section and the second section In the section, the area of the first cross-section of the section gradually increases along a first direction away from the merging point, the first cross-section is perpendicular to the first direction, and the second conveying
  • the flow channel is divided into a third section and a fourth section by the confluence point, and in each of the third section and the fourth section, the second cross-section of the section is The area gradually increases along a second direction away from the meeting point, the second cross-section being perpendicular to the second direction.
  • the start end of the first sorting flow channel and the start end of the second sorting flow channel are both communicated with the end of the delivery flow channel, and the end of the first sorting flow channel is connected to the The first collection part is communicated with and the end of the second sorting flow channel is communicated with the second collection part, the first sorting flow channel and the second sorting flow channel
  • the tip is bent towards the junction, and the first collection portion and the second collection portion are located between the junction and the tip of the delivery channel.
  • the sorting flow channel further includes at least two connecting flow channels.
  • the second sorting flow channel includes at least two cascaded branches, and a connection channel is provided between any two adjacent branches of the at least two cascaded branches, and the any adjacent two The branches are communicated through the connecting flow channel; the start end of the first sorting flow channel is communicated with the end of the conveying flow channel, the end of the first sorting flow channel is communicated with the first collection part, and the The first sorting flow channel is adjacent to the first stage branch in the at least two cascaded branches, and one of the connecting flow channels is arranged between the first sorting flow channel and the first stage branch and the first sorting flow channel and the first-stage branch are communicated via the connecting flow channel; and the second collecting part includes at least two sub-collecting parts, and the cascaded branch is connected to the sub-collecting part One-to-one correspondence, and one of the cascaded branches communicates with a corresponding one of the sub-collecting parts.
  • the second sorting flow channel includes a cascaded first-stage branch, a second-stage branch, and a third-stage branch
  • the at least two connecting flow channels include a first connecting flow channel, a second-stage branch, and a second-stage branch.
  • a connecting flow channel and a third connecting flow channel, the second collecting part includes a first sub-collecting part, a second sub-collecting part, and a third sub-collecting part.
  • the first sorting flow channel communicates with the first-stage branch via the first connecting flow channel
  • the first-stage branch communicates with the second-stage branch via the second connecting flow channel
  • the The second-stage branch communicates with the third-stage branch via the third connection flow channel
  • the end of the first-stage branch communicates with the first sub-collecting portion
  • the end of the second-stage branch communicates with the first sub-collection portion.
  • the second sub-collection part communicates with the third sub-collection part
  • the end of the third-stage branch communicates with the third sub-collection part.
  • the second connecting flow channel is closer to the collecting portion in the second direction than the first connecting flow channel
  • the third connecting flow channel is closer to the collecting portion than the second connecting flow channel
  • the connecting flow channel is closer to the collecting portion in the second direction.
  • the microfluidic chip further includes two third receiving parts.
  • the start end of the first-stage branch and the start end of the second-stage branch are respectively communicated with one of the two third accommodating parts, and the third accommodating part is configured to accommodate the first fluid.
  • the sorting flow channel further includes at least two connecting flow channels.
  • the first sorting flow channel includes at least two cascaded branches, and one of the connecting channels is provided between any two adjacent branches of the at least two cascaded branches, and the any adjacent The two branches are communicated through the connecting flow channel, and the ends of the at least two cascaded branches are all communicated with the first collection part; and the start end of the second sorting flow channel is through one of the connecting flow channels It communicates with the last stage branch of the first sorting flow channel, and the end of the second sorting flow channel communicates with the second collecting part.
  • the sorting flow channel further includes a main flow channel, the main flow channel is helical in the plane where the microfluidic chip is located, and an end of the main flow channel is connected to the first
  • the sorting flow channel is in communication with the second sorting flow channel, the first sorting flow channel is configured to screen first droplets, the second sorting flow channel is configured to screen second droplets, and the The first droplets screened by the first sorting flow channel and the second droplets screened by the second sorting flow channel have different particle sizes.
  • a portion of the first delivery channel includes a first subsection, a second subsection including the junction, and a third subsection, the first subsection belonging to the first zone segment, the third subsection belongs to the second section, the second subsection spans the first section and the second section and is located in the first subsection and the third subsection Between the parts, the areas of the first cross-section of the first sub-section and the third sub-section are both larger than the area of the first cross-section of the second sub-section.
  • the first cross-section of the second sub-portion of the first delivery channel at the junction is sized to allow a first fluid having a specific particle size to flow therein, so The specific particle size of the first fluid is larger than the particle size of a single cell in the cell suspension.
  • the second delivery channel includes a first sub-channel, a second sub-channel and a third sub-channel, and the first sub-channel and the second sub-channel belong to the A third section, the third sub-channel belongs to the fourth section.
  • the first end of the first sub-channel communicates with the second receiving part, the second end of the first sub-channel communicates with the first end of the second sub-channel, and the second sub-channel communicates with the first end of the second sub-channel.
  • the second end of the flow channel is communicated with the first end of the third sub-flow channel, and the second end of the second sub-flow channel and the first end of the third sub-flow channel are both located at the confluence point place.
  • the areas of the second cross section of the first sub-channel and the third sub-channel are both larger than the area of the second cross-section of the second sub-channel.
  • the second cross-section of the second sub-channel is sized to allow a second fluid having a specific particle size to flow therein, the specific particle size of the second fluid being larger than the 1 times the particle size of a single cell in a cell suspension and less than 2 times the particle size of the single cell.
  • the area of the second cross-section of the third sub-channel gradually increases in a direction from the first end to the second end of the third sub-channel.
  • the area of the first cross-section of the second sub-portion of the first delivery channel at the junction is greater than or equal to the second sub-channel of the second delivery channel and the The area of the second cross-section of the third sub-channel at the confluence point.
  • the inner wall surface of the delivery channel is hydrophobic.
  • the contours of the first accommodating portion and the second accommodating portion include four chamfers, and the shape of the chamfers includes an arc shape.
  • both the first accommodating part and the second accommodating part are provided with a filter structure
  • the filter structure includes a plurality of microstructures, and the space between adjacent two of the plurality of microstructures is The gap is larger than 1 times the particle size and smaller than 2 times the particle size of the single cells in the cell suspension.
  • the microfluidic chip further includes a sample inlet and a sample outlet.
  • the sample inlet is arranged in the first accommodating part and the second accommodating part, and the sample outlet is arranged in the collecting part.
  • a cassette device is provided.
  • the box device is configured to be used with the microfluidic chip described in any one of the preceding embodiments, the microfluidic chip includes a sample inlet and a sample outlet, and the box device includes: an accommodating cavity configured to accommodate the front The microfluidic chip described in any one of the embodiments; a sampling unit, communicated with a sampling port of the microfluidic chip, the sampling unit is configured to store a first reagent and release the first reagent to the a sample inlet of the microfluidic chip; and a sample outlet unit in communication with the sample outlet of the microfluidic chip, the sample outlet unit configured to receive and store processed by the microfluidic chip and from the microfluidic chip The sample outlet of the fluid control chip flows into the second reagent of the sample outlet unit.
  • the sampling unit includes a sampling hole and a first storage cavity, the sampling hole is a through hole and communicates with the first storage cavity, and the sampling hole extends from the surface of the box body device to the box.
  • the inside of the body device is concave, and the first storage cavity is located on the side of the injection hole away from the surface of the box body device.
  • the first storage cavity is located inside the box body device, and the orthographic projection of the injection hole on the box body device falls on the first storage cavity in the box body within the orthographic projection on the device.
  • the sample injection unit further includes a second storage chamber, the second storage chamber is located on a side of the first storage chamber away from the sample injection hole and communicated with the first storage chamber,
  • the second storage cavity includes a first opening communicating with the first storage cavity and a second opening opposite to the first opening, and the orthographic projection of the second opening on the box device falls on the The first opening is within the orthographic projection on the box device.
  • the orthographic projection of the second opening of the second storage cavity on the box device falls within the orthographic projection of the injection hole on the box device.
  • the sample outlet unit includes a sample outlet hole and a third storage chamber, the sample outlet hole is a through hole and communicates with the third storage chamber, and the sample outlet hole is connected from the box body device
  • the surface of the box is concave toward the inside of the box device, and the third storage cavity is located on the side of the sample outlet away from the surface of the box device.
  • the third storage cavity is located inside the box body device, and the orthographic projection of the sample output hole on the box body device falls on the third storage cavity in the box body within the orthographic projection on the device.
  • the sample extraction unit further includes a fourth storage cavity, the fourth storage cavity is located on a side of the third storage cavity away from the sample extraction hole and communicated with the third storage cavity.
  • the orthographic projection of the fourth storage cavity on the box device and the orthographic projection of the sample output hole on the box device overlap at most a part.
  • the orthographic projection of the fourth storage cavity on the box device falls within the orthographic projection of the sample outlet hole on the box device.
  • the sampling unit includes a first sampling unit, a second sampling unit, and a third sampling unit
  • the sampling port of the microfluidic chip includes a first sampling port, a second sampling port A sample port and a third sample inlet port
  • the first reagent includes a first fluid, a cell suspension, and a biochemical reagent.
  • the first sampling unit is in communication with a first sampling port of the microfluidic chip, the first sampling unit is configured to store the first fluid and release the first fluid to the microfluidic
  • the first injection port of the control chip the second injection unit is communicated with the second injection port of the microfluidic chip, and the second injection unit is configured to store the cell suspension and inject the The cell suspension is released to the second injection port of the microfluidic chip; the third injection unit is communicated with the third injection port of the microfluidic chip, and the third injection unit is configured to store the biochemical reagent and release the biochemical reagent to the third injection port of the microfluidic chip.
  • the box device further includes a first installation area and a second installation area, the first installation area is configured to install the optical recognition device, and the second installation area is configured to install the drive electrode device.
  • the sampling unit includes a first sampling unit and a second sampling unit
  • the sampling port of the microfluidic chip includes a first sampling port and a second sampling port
  • the first sampling port A reagent includes a first fluid and a droplet including a single cell.
  • the first sampling unit is in communication with a first sampling port of the microfluidic chip, the first sampling unit is configured to store the first fluid and release the first fluid to the microfluidic the first injection port of the microfluidic chip;
  • the second injection unit is communicated with the second injection port of the microfluidic chip, and the second injection unit is configured to store the droplets including single cells and The droplet comprising the single cells is released to the second inlet of the microfluidic chip.
  • the sample output unit includes a first sample output unit, a second sample output unit, and a third sample output unit located between the first sample output unit and the second sample output unit, and the second reagent includes a first sample output unit.
  • the third sampling unit is configured to receive and store the first droplet
  • the first sampling unit and the second sampling unit are configured to receive and store the Second drop.
  • the sampling unit includes a first sampling unit, a second sampling unit, and a third sampling unit
  • the sampling port of the microfluidic chip includes a first sampling port, a second sampling port A sample port and a third sample inlet port
  • the first reagent includes a first fluid, a cell suspension, and a biochemical reagent.
  • the first sampling unit is in communication with a first sampling port of the microfluidic chip, the first sampling unit is configured to store the first fluid and release the first fluid to the microfluidic
  • the first injection port of the control chip the second injection unit is communicated with the second injection port of the microfluidic chip, and the second injection unit is configured to store the cell suspension and inject the The cell suspension is released to the second injection port of the microfluidic chip; the third injection unit is communicated with the third injection port of the microfluidic chip, and the third injection unit is configured to store The biochemical reagent is released to the third injection port of the microfluidic chip.
  • the sample dispensing unit includes a first sampling unit and a second sampling unit, the second reagent includes a first droplet and a second droplet, and the first sampling unit is configured to receive and store the first sample droplets, the second sample discharge unit is configured to receive and store the second droplets.
  • the first sampling unit and the second sampling unit are located between the sampling unit and the first installation area and the second installation area.
  • the first installation area and the second installation area are located between the sample introduction unit and the sample discharge unit, and the first installation area includes a first sub-installation unit, a second sub-installation unit an installation unit and a third sub-installation unit, the second installation area includes a fourth sub-installation unit, a fifth sub-installation unit, and a sixth sub-installation unit, the first sub-installation unit is associated with the fourth sub-installation unit , the second sub-installation unit is associated with the fifth sub-installation unit, and the third sub-installation unit is associated with the sixth sub-installation unit.
  • the sampling unit includes a first sampling unit, a second sampling unit, and a third sampling unit
  • the sampling port of the microfluidic chip includes a first sampling port, a second sampling port a sample port, a third sample inlet
  • the first reagent includes a first fluid and a droplet including a single cell.
  • the first sampling unit is in communication with a first sampling port of the microfluidic chip, the first sampling unit is configured to store the first fluid and release the first fluid to the microfluidic the first injection port of the microfluidic chip; the second injection unit is communicated with the second injection port of the microfluidic chip, and the second injection unit is configured to store the first fluid and inject the The first fluid is released to the second injection port of the microfluidic chip; the third injection unit is communicated with the third injection port of the microfluidic chip, and the third injection unit is configured to store The droplet including the single cell and the droplet including the single cell are released to the third injection port of the microfluidic chip.
  • the sample dispensing unit includes a first sampling unit and a second sampling unit, the second reagent includes a first droplet and a second droplet, and the first sampling unit is configured to receive and store the first sample droplets, the second sample discharge unit is configured to receive and store the second droplets.
  • the number of the first sampling units is one, and the number of the second sampling units is three.
  • the number of the first sampling unit is one, and the number of the second sampling unit is one.
  • the box device includes one sample introduction unit and two sample output units
  • the second reagent includes a first droplet and a second droplet
  • the first droplet and the second droplet The droplets have different particle sizes
  • one of the two sampling units is configured to receive and store the first droplet
  • the other of the two sampling units is configured to receive and store the second droplet droplets.
  • a microfluidic device comprising the microfluidic chip described in any of the preceding embodiments and the box device described in any of the preceding embodiments, The microfluidic chip is assembled with the box device.
  • FIG. 1A shows a schematic structural diagram of a microfluidic chip according to an embodiment of the present disclosure
  • FIG. 1B shows an enlarged schematic view of region I of the microfluidic chip of FIG. 1A;
  • FIG. 1C shows an enlarged schematic view of the accommodating part of the microfluidic chip of FIG. 1A;
  • FIG. 2 shows a schematic structural diagram of a microfluidic chip according to another embodiment of the present disclosure
  • FIG. 3 shows a schematic structural diagram of a modification of the microfluidic chip of FIG. 2;
  • FIG. 4 shows a schematic structural diagram of a microfluidic chip according to yet another embodiment of the present disclosure
  • FIG. 5A shows a schematic structural diagram of a box device according to an embodiment of the present disclosure
  • Fig. 5B shows a schematic structural diagram of a microfluidic chip adapted to the box device of Fig. 5A;
  • FIG. 6A shows a schematic structural diagram of a box device according to another embodiment of the present disclosure.
  • Fig. 6B shows a schematic structural diagram of a microfluidic chip adapted to the box device of Fig. 6A;
  • FIG. 7 shows a schematic structural diagram of a box device according to another embodiment of the present disclosure.
  • FIG. 8 shows a schematic structural diagram of a box device according to still another embodiment of the present disclosure.
  • FIG. 9 shows a schematic structural diagram of a box device according to still another embodiment of the present disclosure.
  • FIG. 10 shows a block diagram of a microfluidic device according to an embodiment of the present disclosure.
  • fluid refers to all substances capable of flowing, and is a general term for liquids and gases.
  • a fluid is a substance that can continuously deform under the action of small shear forces. Fluids can be composed of a single substance or a mixture of many different substances.
  • the fluid can be a continuous phase (eg, an oil phase), a dispersed phase (eg, an aqueous phase), or a mixture of continuous and dispersed phases. Fluids have the characteristics of easy flowability, compressibility and viscosity.
  • oil phase means that, according to the principle of similar compatibility, substances that are not easily soluble in water belong to the oil phase. For example, if a substance is miscible with water, if the mixed liquid exhibits layering or turbidity, the substance is in the oil phase.
  • the oil may have a density higher or lower than water and/or a viscosity higher or lower than water.
  • liquid paraffin, silicone oil, petrolatum, mineral oil, perfluorinated oil, etc. belong to the oil phase.
  • aqueous phase means that substances that are readily soluble in water belong to the aqueous phase according to the principle of similar compatibility.
  • a substance that is miscible with water is in the water phase if the mixed liquid presents a clear and homogeneous solution.
  • water, glycerol, alcohol, acetone, etc. belong to the water phase.
  • cell suspension refers to a cell solution obtained by mechanically or chemically separating cells from tissue and diluting and mixing with a cell culture medium. Numerous numbers of cells can be included in the cell suspension, eg, hundreds, thousands, tens of thousands, millions, tens of millions, or more cells.
  • the cells in the cell suspension can be of any type including but not limited to prokaryotic cells, eukaryotic cells, bacteria, fungi, plants, mammalian or other animal cell types, mycoplasma, normal tissue cells, tumor cells or any other cells type, whether derived from unicellular or multicellular organisms.
  • Cells in a cell suspension can include DNA, RNA, organelles, proteins, or any combination thereof.
  • the term "A and B in communication” means that the A element and the B element are interconnected and in communication that allows fluid to flow between the A element and the B element, ie, fluid can flow from the A element as required by the product design to the B element, or from the B element to the A element.
  • the A element can be in direct communication with the B element, ie fluid can flow directly from the A element to the B element or from the B element to the A element without passing through other intermediate elements (eg pipes).
  • the A element and the B element may be in indirect communication, ie fluid may flow from the A element via one or more intermediate elements (eg, conduits) to the B element or from the B element via one or more intermediate elements (eg, conduits) to the B element A component.
  • PCR Polymerase Chain Reaction
  • DNA deoxyribonucleic acid
  • PCR Polymerase Chain Reaction
  • DNA deoxyribonucleic acid
  • the basic principle of PCR is that DNA can be denatured and melted into single-stranded DNA at high temperature (for example, about 95°C). When the temperature drops to low temperature (for example, about 60°C), the primer and the single-strand are combined according to the principle of base complementary pairing. back to double-stranded.
  • PCR reactions include but are not limited to digital PCR (digital PCR, dPCR), quantitative PCR, real-time PCR.
  • dPCR technology can provide quantitative analysis technology for digitizing DNA quantification information, which combined with microfluidic technology can provide higher sensitivity and precision.
  • microfluidic chip refers to a chip with micrometer-scale microchannels, which can integrate basic operation units such as sample preparation, reaction, separation, detection, etc. involved in the fields of biology, chemistry, and medicine. On the micro-scale chip, the whole process of reaction and analysis is automatically completed. Analysis and detection devices based on microfluidic chips can have the following advantages: controllable liquid flow, less sample consumption, fast detection speed, simple operation, multi-functional integration, small size, and easy portability.
  • the term "particle size of XX” refers to the size of substance XX, ie, the length of substance XX in a certain direction.
  • Substance XX can be a single cell or a single droplet.
  • the term “particle size of a single cell” refers to the diameter of a single cell
  • “particle size of a single droplet” refers to the diameter of a single droplet.
  • particle size of a single cell refers to the length of a single cell in the direction of the shorter side
  • particle size of a single droplet refers to the length of a single droplet in the direction of the shorter side The length in the direction of the edge.
  • the inventors of the present application found that in conventional techniques, methods for sorting single cells are mainly divided into two categories: one is to use a fluorescence flow cytometry (Fluorescence Activated Cell Sorting, FACS) to automatically sort single cells,
  • FACS Fluorescence Activated Cell Sorting
  • the fluorescence flow cytometer is expensive and expensive to maintain; the other is to manually sort single cells by professional operators, but this manual sorting method not only depends on the skill and proficiency of the operator, but also requires Micropipette platform, optical tweezers and other large and medium-sized instruments.
  • the single-cell sorting process is highly susceptible to contamination by aerosols and microorganisms floating in the environment, which are usually difficult to remove in subsequent detection links. Therefore, the existing single-cell sorting methods have disadvantages such as high cost, high skill requirements for operators, site restrictions on the required instruments and equipment, and easy environmental pollution.
  • microfluidic chip can be used to prepare droplets containing single cells derived from cell suspensions and to sort target droplets from the prepared droplets.
  • the microfluidic chip can realize the preparation and sorting of single cells, which can effectively improve the automatic operation while reducing the use cost, and can eliminate cross-contamination and improve the cell survival rate.
  • the microfluidic chip 300 includes: a first accommodating part 301 , a second accommodating part 302 , a conveying channel 303 , a sorting channel 305 and a collecting part 306 .
  • the first accommodating portion 301 is configured to accommodate a first fluid
  • the second accommodating portion 302 is configured to accommodate a second fluid including a cell suspension.
  • the delivery channel 303 includes a first delivery channel 3031 and a second delivery channel 3032.
  • the first delivery channel 3031 communicates with the first accommodating part 301 and the second delivery channel 3032 communicates with the second accommodating part 302.
  • the flow channel 3031 and the second delivery flow channel 3032 intersect and communicate with each other at the confluence point 304 .
  • the shape of the delivery channel 303 is designed such that the first fluid and the second fluid meet at the meeting point 304 .
  • the sorting flow channel 305 is located downstream of the conveying flow channel 303 , and the sorting flow channel 305 includes a first sorting flow channel 3051 and a second sorting flow channel 3052 .
  • the collecting part 306 is located downstream of the sorting flow channel 305 and includes a first collecting part 3061 and a second collecting part 3062, the first collecting part 3061 communicates with the first sorting flow channel 3051, and the second collecting part 3062 is connected with the second sorting The flow channel 3052 communicates.
  • the first sorting flow channel 3051 can be configured to screen first droplets and the second sorting flow channel 3052 can be configured to screen second droplets.
  • the first collecting portion 3061 is configured to collect the first droplets
  • the second collecting portion 3062 is configured to collect the second droplets.
  • first droplet may refer to a non-target droplet
  • second droplet may refer to a target droplet
  • a non-target droplet means that the droplet includes non-target cells from the cell suspension
  • a target droplet means that the droplet includes a single target cell from the cell suspension.
  • the cell suspension includes a large number of cells, including most non-target cells and a small amount of target cells (eg, circulating tumor cells, rare cells, cancer cells, etc. in a peripheral blood sample).
  • target cells eg, circulating tumor cells, rare cells, cancer cells, etc. in a peripheral blood sample.
  • the microfluidic chip 300 can not only prepare a droplet containing a single cell (a single target cell or a single non-target cell) from a cell suspension, but also can sort a target liquid containing a single target cell from the droplet drop. Therefore, the microfluidic chip 300 has a high degree of integration, and can automatically complete the preparation of droplets containing a single cell and the sorting of droplets containing a single target cell without manual operation by an operator, thereby effectively improving the The degree of automation of the operation.
  • the first fluid and the second fluid only flow in the delivery channel 303 and are completely isolated from the external environment, contamination by aerosols, microorganisms, etc. floating in the environment can be avoided.
  • the single cells isolated from the cell suspension are wrapped and protected by the droplets, the whole preparation process is relatively mild, which can effectively improve the cell viability.
  • FIG. 1B is an enlarged view of region I of the microfluidic chip 300 of FIG. 1A .
  • the delivery channel 303 of the microfluidic chip 300 includes a first delivery channel 3031 and a second delivery channel 3032 .
  • the first delivery channel 3031 communicates with the first accommodating portion 301 and allows the first fluid to flow therein.
  • the first fluid is a continuous phase (eg, oil phase) liquid, which may be, for example, any suitable fluid such as mineral oil, perfluorinated oil, and the like.
  • the first fluid may be mixed with a surfactant that facilitates stabilization of the resulting droplets, eg, inhibits subsequent coalescence of the resulting droplets.
  • the surfactant may be a perfluorinated surfactant.
  • the second delivery channel 3032 communicates with the second receiving portion 302 and allows the second fluid to flow therein.
  • the second fluid is an aqueous liquid.
  • the second accommodating part 302 includes a first sub-accommodating part 3021 and a second sub-accommodating part 3022, the first sub-accommodating part 3021 is configured to accommodate the cell suspension, and the second sub-accommodating part 3022 is configured to accommodate the biochemical reagents.
  • Different biochemical reagents can be adopted according to different biochemical reactions, and the chemical components of the biochemical reagents are not specifically limited in the embodiments of the present disclosure.
  • FIG. 1A shows that the cell suspension is contained in the first sub-accommodating part 3021 and the biochemical reagents are contained in the second sub-accommodating part 3022 separated from the first sub-accommodating part 3021, this is only a An example, embodiments of the present disclosure are not limited thereto. In an alternative embodiment, the cell suspension and biochemical reagents may be premixed and contained within the same container.
  • the first delivery channel 3031 and the second delivery channel 3032 intersect and communicate at the confluence point 304 .
  • a portion of the first delivery channel 3031 is divided into a first section and a second section by the confluence point 304, and in each of the first section and the second section, the first cross section of the section is The area gradually increases along a first direction away from the confluence point 304, the first cross-section is perpendicular to the first direction, and the first direction is the vertical direction in the figure.
  • the second delivery channel 3032 is divided into a third section and a fourth section by the junction 304, and in each of the third and fourth sections, the area of the second cross-sectional area of the section It gradually increases along the second direction away from the confluence point 304 , the second cross section is perpendicular to the second direction, and the second direction refers to the flow direction of the second fluid in the second delivery channel 3032 .
  • the first delivery channel 3031 includes a first sub-section 3031-1, a second sub-section 3031-2 and a third sub-section 3031-3 arranged in sequence along the first direction, and the second sub-section 3031-2 is located in Between and including the junction 304 between the first subsection 3031-1 and the third subsection 3031-3.
  • the first subsection 3031-1 belongs to the first section described above
  • the third subsection 3031-3 belongs to the second section described above
  • the second subsection 3031-2 spans the first section and the second section.
  • the areas of the first cross-sections of the first sub-section 3031-1 and the third sub-section 3031-3 are both larger than the areas of the first cross-sections of the second sub-section 3031-2, that is, along the direction from the first sub-section 3031 -1 to the direction of the third sub-section 3031-3, the first conveying flow channel 3031 gradually becomes thinner first and then gradually thicker, so that the first conveying flow channel 3031 presents up and down (the first sub-section 3031-1 and the third sub-section 3031-1 and the third sub-section 3031-1 and the third sub-section 3031-1 and Section 3031-3) thick middle (second subsection 3031-2) thin shape.
  • the shapes of the first cross-sections of the first subsection 3031-1, the second subsection 3031-2, and the third subsection 3031-3 of the first delivery channel 3031 may be a circle, a square, a rectangle, a regular polygon, a Regular shapes, etc., are not limited in the embodiments of the present disclosure.
  • the size of the first cross-section of the second subsection 3031-2 of the first delivery channel 3031 at the confluence point 304 is configured to allow a first fluid having a specific particle size to flow therein, the specific particle size of the first fluid being larger than The particle size of a single cell (eg, a single target cell). That is, the width of the first cross section of the second subsection 3031-2 of the first delivery channel 3031 at the confluence point 304 is larger than the particle size of a single cell.
  • the particle size of each cell in the cell suspension is about 10 ⁇ m
  • the width of the cross-section of the second sub-section 3031-2 of the first delivery channel 3031 at the confluence point 304 is greater than 10 ⁇ m, eg, slightly greater than 10 ⁇ m.
  • “Slightly larger than 10 ⁇ m” here means that the width of the first cross-section of the second sub-section 3031-2 of the first delivery channel 3031 at the confluence point 304 is larger than 10 ⁇ m, but smaller than 20 ⁇ m, that is, the width is larger than that of a single cell
  • the particle size is, however, less than the sum of the particle sizes of the two cells.
  • the phrase "the width of the first cross-section of the second sub-portion 3031-2 of the first delivery channel 3031 at the confluence point 304" can be understood as when the second sub-section of the first delivery channel 3031 When the shape of the first cross section of the part 3031-2 at the confluence point 304 is a circle, the width of the first cross section is the diameter of the circle; when the second subsection 3031- 2.
  • the width of the first cross-section is the side length of the square;
  • the width of the first cross section is the length of the short side of the rectangle;
  • the width of the first cross section is the distance between the two furthest vertices of the regular polygon.
  • the first delivery channel 3031 at the confluence point 304 when the first cross-section of the second subsection 3031-2 of the first delivery channel 3031 at the confluence point 304 is circular and the shape of a single cell is spherical, then the first delivery channel 3031
  • the width of the first cross-section of the second subsection 3031-2 at the confluence point 304 is greater than the particle size of a single cell should be understood as the width of the second subsection 3031-2 of the first delivery channel 3031 at the confluence point 304.
  • the diameter is larger than that of a single cell.
  • the first fluid in the first delivery channel 3031 flows from the first sub-section 3031-1 to the second sub-section 3031-2 or from the third sub-section 3031-3 to the second sub-section 3031
  • the first fluid can form a single row of fluid particles arranged in sequence near the confluence point 304, and the particle size of each particle in the single row of fluid particles is greater than 1 times the particle size of a single cell and less than 2 times the size of a single cell. times the particle size.
  • the particle size of each particle formed by the first fluid can be slightly larger than that of a single cell, so that a single cell can be better encapsulated and a better encapsulation effect can be achieved.
  • such a design can also increase the flow rate of the first fluid at the confluence point 304, which is beneficial to the formation of droplets.
  • the second delivery channel 3032 includes a first sub-channel 3032-1, a second sub-channel 3032-2, and a third sub-channel 3032-3.
  • the first sub-channel 3032-1 and the second sub-channel 3032-2 belong to the third section described above, and the third sub-channel 3032-3 belongs to the fourth section described above.
  • the first end of the first sub-channel 3032-1 is communicated with the second accommodating portion 302, and the second end of the first sub-channel 3032-1 is communicated with the first end of the second sub-channel 3032-2;
  • the second end of the channel 3032-2 communicates with the first end of the third sub channel 3032-3, and the second end of the second sub channel 3032-2 is connected to the first end of the third sub channel 3032-3 Both are located at the confluence point 304 ; the second end of the third sub-channel 3032 - 3 communicates with the beginning of the sorting channel 305 .
  • the first sub-flow channel 3032-1 includes a first branch and a second branch, the first branch communicates with the first sub-accommodating part 3021 of the second accommodating part 302 and is configured to flow the cell suspension inside it, and the second branch communicates with the first sub-accommodating part 3021 of the second accommodating part 302.
  • the second sub-accommodating portion 3022 of the second accommodating portion 302 communicates and is configured to flow the biochemical reagent therein.
  • the first branch and the second branch intersect and communicate with each other at a point, and the included angle between the first branch and the second branch at the point is an acute angle. In one example, the angle between the first branch and the second branch at this point is about 60 degrees.
  • the design of the angle between the first branch and the second branch can ensure that the cell suspension in the first branch and the biochemical reagent in the second branch have sufficient forward (towards the direction of the confluence point 304 ) flow rate, buffer pressure On the other hand, it can also ensure that the cell suspension and biochemical reagents can be fully mixed at this point; on the other hand, it can also reduce the dead volume of the mixed solution in the flow channel, and improve the storage accuracy of the first branch and the second branch.
  • the areas of the second cross sections of the first sub-channel 3032-1 and the third sub-channel 3032-3 of the second delivery channel 3032 are both larger than the second sub-channel 3032-2 of the second delivery channel 3032.
  • the area of the second cross section of 3032-3 is larger than the area of the second cross section of the second sub-channel 3032-2.
  • the second conveying channel 3032 changes from thick to thin and then thick.
  • the shapes of the second cross-sections of the first sub-channel 3032-1, the second sub-channel 3032-2 and the third sub-channel 3032-3 of the second delivery channel 3032 may be It is a circle, a square, a rectangle, a regular polygon, an irregular shape, etc., which is not limited by the embodiments of the present disclosure.
  • the size of the second cross-section of the second sub-channel 3032-2 of the second delivery channel 3032 is configured to allow a second fluid having a specific particle size to flow inside it, the specific particle size of the second fluid being larger than 1 for a single cell times the particle size and less than 2 times the size of a single cell. That is, the width of the second cross section of the second sub-channel 3032-2 is greater than 1 times the diameter of a single cell and less than 2 times the diameter of a single cell.
  • the width of the second cross-section of the second sub-channel 3032-2 is larger than that of the single cell 1 times the diameter of a cell and less than 2 times the diameter of a single cell should be understood as the diameter of the second sub-channel 3032-2 is greater than 1 times the diameter of a single cell and less than 2 times the diameter of a single cell.
  • the diameter of the second sub-channel 3032-2 may be 1.1 times, 1.2 times, 1.3 times, 1.4 times, 1.5 times, 1.6 times, 1.7 times, 1.8 times, 1.9 times, etc. .
  • the width of the second cross-section of the second sub-channel 3032-2 is greater than 1 times the particle size of a single cell and less than 2 times particle size, so that the mixed solution is arranged in a single row of single cell strings in the second sub-channel 3032-2, as shown in FIG. 1B . That is, the width of the second cross-section of the second sub-channel 3032-2 allows only a single cell to be accommodated in the width direction thereof, but cannot accommodate two side-by-side cells.
  • the single-row single cell string moves to the confluence point 304, under the pressure of the first fluid in the first delivery channel 3031, a cell in the cell string closest to the confluence point 304 (that is, the closest cell in the cell string The previous cell) is separated from the cell string, and the separated cell combines with a single particle in the first fluid at a confluence point 304, thereby forming a droplet containing the single cell.
  • the first fluid is the oil phase
  • the second fluid that is, the mixed solution of the cell suspension and the biochemical reagent
  • the formed droplets have a water-in-oil structure, that is, the second fluid of the oil phase.
  • a fluid encapsulates a second fluid of the aqueous phase.
  • the area of the second cross-section of the third sub-channel 3032-3 of the second delivery channel 3032 gradually increases along the direction from the first end to the second end thereof, that is, the third sub-channel 3032 -3 gradually thickens from its first end to its second end.
  • the purpose of this design is to make the prepared droplets gradually grow larger as they move forward along the third sub-channel 3032-3, thereby facilitating droplet phase stabilization.
  • the area of the first cross-section of the second sub-portion 3031 - 2 of the first delivery channel 3031 at the confluence point 304 is greater than or equal to the area of the second sub-channel 3032 - 2 and the third sub-channel of the second delivery channel 3032 3032-3 The area of the second cross-section at the junction 304.
  • the area of the first cross-section of the second sub-portion 3031 - 2 of the first delivery runner 3031 at the junction 304 is equal to the area of the second sub-channel 3032 - 2 and the third sub-channel 3032 - 2 of the second delivery runner 3032 The area of the second cross-section of the sub-runner 3032 - 3 at the junction 304 .
  • the above describes in detail how to use the microfluidic chip 300 to prepare droplets containing single cells.
  • the following describes in detail how to use the microfluidic chip 300 to sort out target droplets from the prepared droplets, that is, droplets containing a single target cell.
  • the microfluidic chip 300 may further include an optical identification device and a driving electrode device (not shown in the figure), and the optical identification device and the driving electrode device may be disposed in the third sub-channel 3032 - 3 of the second delivery channel 3032 nearby.
  • the droplets generated at the confluence point 304 flow forward along the third sub-channel 3032-3, which communicates with the downstream sorting channel 305.
  • cell suspensions contain a large number of cells, among which a large number of non-target cells and a small number of target cells (e.g. circulating tumor cells, rare cells, cancer cells in peripheral blood samples) Wait).
  • the cell suspension has been stained before being injected into the first sub-accommodating part 3021.
  • droplets can be roughly divided into the following three categories: (a) droplets containing a single target cell with a target color; (b) droplets containing non-target cells (including droplets containing one or more non-target cells) cells and the droplets containing multiple target cells) or (c) the droplets contain no cells.
  • the optical recognition device performs real-time detection on the optical signal (eg, color) of the droplets in the third sub-flow channel 3032-3.
  • the optical recognition device When the optical recognition device detects that the droplet is in the above situation (b) or (c), it will not notify the circuit system, so the circuit system will not apply a voltage to the driving electrode, and the non-target droplet flows into the first under the action of inertial force.
  • a sorting flow channel 3051 flows into the first collecting part 3061 .
  • the optical recognition device when the optical recognition device detects that the droplet is in the above-mentioned situation (b) or (c), it can also notify the circuit system, and the circuit system applies a certain voltage to the driving electrode after receiving the notification, and the non-target The droplets flow into the first sorting channel 3051 and then flow into the first collecting part 3061 driven by the dielectric force.
  • the optical recognition device detects that the droplet is in the above-mentioned situation (a), it immediately informs the circuit system to apply an appropriate voltage (for example, 800-1000V) to the driving electrode, and the target droplet containing a single target cell is polarized, and under the action of the electric field Then, the target droplets are deflected upward and flow into the second sorting flow channel 3052 , and then flow into the second collecting part 3062 . Therefore, the microfluidic chip 300 realizes the sorting of droplets, the non-target droplets are collected in the first collection part 3061 , and the target droplets are collected in the second collection part 3062 .
  • an appropriate voltage for example, 800-1000V
  • the staining treatment of the cell suspension is only an example of the embodiment of the present disclosure, and the treatment method of the cell suspension is not limited to this, as long as the target cells in the cell suspension can be distinguished from non-target cells
  • the processing methods are all within the protection scope of the present disclosure.
  • FIG. 1A shows that the sorting flow channel 305 includes two flow channels 3051 and 3052 , the embodiments of the present disclosure are not limited thereto.
  • the sorting flow channel 305 may also include more flow channels (eg, three flow channels, four flow channels, or even more), one flow channel of the plurality of flow channels being configured to separate the liquid droplets from the droplets.
  • Non-target droplets are screened out of the plurality of flow channels, and the remaining flow channels in the plurality of flow channels are configured to screen out target droplets from the droplets.
  • the collection part 306 may include a plurality of collection parts, the plurality of collection parts are in one-to-one correspondence with the plurality of flow channels of the sorting flow channel 305 , and one of the plurality of collection parts corresponds to one of the plurality of flow channels of the sorting flow channel 305 .
  • One of the plurality of collecting portions is in communication with and configured to collect non-target droplets, and the remaining collecting portions of the plurality of collecting portions are respectively communicated with the remaining flow channels of the plurality of flow channels of the sorting flow channel 305 and are configured to collect target droplets.
  • the beginning of the first sorting channel 3051 and the beginning of the second sorting channel 3052 are both connected to the end of the delivery channel 303 (ie, the end of the third sub-channel 3032 - 3 of the delivery channel 303 )
  • the end of the first sorting flow channel 3051 communicates with the first collecting part 3061
  • the end of the second sorting flow channel 3052 communicates with the second collecting part 3062 .
  • the first sorting flow channel 3051 and the second sorting flow channel 3052 are bent from the end of the conveying flow channel 303 toward the confluence point 304, so that the first collecting part 3061 and the second collecting part 3062 are located at the converging point 304 and the conveying flow channel 303 between the ends.
  • first sorting flow channel 3051 and the second sorting flow channel 3052 Compared with the first sorting flow channel 3051 and the second sorting flow channel 3052 extending straight in the horizontal direction (ie the first sorting flow channel 3051 and the second sorting flow channel 3052 are straight towards the right direction in the figure) extending) so that the first collecting part 3061 and the second collecting part 3062 are respectively connected to their ends, by making the first sorting flow channel 3051 and the second sorting flow channel 3052 from the end of the conveying flow channel 303 towards the confluence point 304 Folding back can reduce the volume occupied by the microfluidic chip 300 , make the microfluidic chip 300 more miniaturized, and save production costs.
  • the term "the end of the delivery channel 303" refers to the end of the third sub-channel 3032-3 of the delivery channel 303, that is, the third sub-channel 3032-3 of the delivery channel 303 , which is directly connected to the downstream sorting flow channel 305 .
  • the term "the beginning of the first sorting flow channel 3051 and the beginning end of the second sorting flow channel 3052" refers to the first end of the first sorting flow channel 3051 and the first end of the second sorting flow channel 3052,
  • the first ends of the first sorting flow channel 3051 and the second sorting flow channel 3052 are directly connected to the ends of the third sub-flow channel 3032-3 of the upstream conveying flow channel 303, and the droplets flow from the third sub-flow channel 3032-3.
  • the ends of the sub-channels 3032-3 flow into the first end of the first sorting channel 3051 and the first end of the second sorting channel 3052, respectively.
  • the term "the end of the first sorting flow channel 3051 and the end of the second sorting flow channel 3052" refers to the second end of the first sorting flow channel 3051 and the second end of the second sorting flow channel 3052,
  • the second end of the first sorting channel 3051 is connected to the first collecting part 3061
  • the second end of the second sorting channel 3052 is connected to the second collecting part 3062 .
  • the non-target droplets flow from the first end of the first sorting flow channel 3051 to the second end of the first sorting flow channel 3051, and then flow into the first collection part 3061; the target droplets flow from the second sorting flow channel
  • the first end of 3052 flows to the second end of the second sorting channel 3052 and then flows into the second collection section 3062.
  • the inner wall surface of the delivery channel 303 is hydrophobic treated and thus has hydrophobicity.
  • the delivery channel 303 includes a first delivery channel 3031 configured for the flow of the first fluid therein and a second delivery channel 3032 configured for the flow of the second fluid therein.
  • the hydrophobic treatment of the first delivery channel 3031 may facilitate the flow of the first fluid therein.
  • the hydrophobically-treated second delivery channel 3032 can promote the smooth flow of the cell suspension in the first branch of the first sub-channel 3032-1 of the second delivery channel 3032 without sticking to the inner wall surface, and can The mixed solution of the cell suspension and the biochemical reagent is promoted to flow smoothly in the second sub-channel 3032-2 and the third sub-channel 3032-3 of the second delivery channel 3032 without sticking to the inner wall surface.
  • the dosage of the cell suspension can be precisely controlled, which is conducive to the uniform mixing of the cell suspension and the biochemical reagent, thereby promoting the uniform generation of droplets. At the same time, this can also improve the utilization rate of the cell suspension and avoid the waste of the cell suspension.
  • the first accommodating part 301 further includes an injection port, and an external device (such as the box device described below) is connected to the injection port and through which the first accommodating port is connected.
  • the fluid is injected into the first accommodating portion 301 .
  • the first sub-accommodating part 3021 of the second accommodating part 302 includes an injection port to which an external device (such as a box device described below) is connected and through which the cell suspension is injected into the first sub-accommodating port Section 3021.
  • the second sub-accommodating part 3022 of the second accommodating part 302 includes an injection port to which an external device (such as a box device described below) is connected and injects biochemical reaction reagents into the second sub-accommodating port through the injection port section 3022.
  • the first collection part 3061 and the second collection part 3062 respectively include a sample outlet, and the sample outlet is used to connect with an external device (such as a box device described below) to connect the samples in the first collection part 3061 and the second collection part 3062.
  • the droplets are delivered to this external device.
  • Fig. 1C is an enlarged schematic view of any one of the first accommodating portion 301, the first sub-accommodating portion 3021 and the second sub-accommodating portion 3022 of the second accommodating portion 302 in Fig. 1A .
  • the contours of the first accommodating portion 301 , the first sub-accommodating portion 3021 and the second sub-accommodating portion 3022 of the second accommodating portion 302 each include four chamfers.
  • the shape of the four chamfers may be any appropriate shape, for example, a circular arc shape. It should be understood that the embodiment of the present disclosure does not limit the specific size of the chamfer.
  • the outline of the first sub-accommodating portion 3021 includes four chamfers 313 , and the four chamfers 313 are arc-shaped.
  • the arc-shaped chamfer design can reduce the dead volume of the cell suspension in the first sub-accommodating part 3021 and improve the liquid storage accuracy of the first sub-accommodating part 3021 .
  • the "dead volume” here refers to the uncontrollable volume during reagent injection.
  • the cell suspension will be located at the four right-angled positions of the first sub-accommodating part 3021 It is not a right-angle shape, that is, the cell suspension cannot perfectly match the shape of the first sub-accommodating portion 3021 , and cannot fill the space occupied by the four right angles of the first sub-accommodating portion 3021 . Therefore, the shape and volume of the cell suspension will change, and there is a certain randomness in the change of the shape and volume, thereby introducing dead volume.
  • the first sub-accommodating part 3021 of the microfluidic chip 300 may accommodate a different volume of cell suspension in each operation and the previous operation, thus making it impossible to precisely control the amount of the cell suspension.
  • the four corners 313 of the first sub-accommodating portion 3021 are designed as arc-shaped chamfers, so that the cell suspension can be perfectly matched with the shape of the first sub-accommodating portion 3021.
  • the cell suspension fills the space occupied by the four arc-shaped chamfers of the first sub-accommodating portion 3021, thereby effectively reducing or even avoiding the difference in the accommodation volume of the first sub-accommodating portion 3021, and improving the manipulation accuracy of the cell suspension.
  • the four arc-shaped chamfers of the first accommodating part 301 can reduce the dead volume of the first fluid in the first accommodating part 301 and improve the liquid storage accuracy of the first accommodating part 301 .
  • the four arc-shaped chamfers of the second sub-accommodating part 3022 of the second containing part 302 can reduce the dead volume of the biochemical reagent in the second sub-accommodating part 3022 and improve the liquid storage accuracy of the second sub-accommodating part 3022 .
  • any one of the first sub-accommodating portion 3021 and the second sub-accommodating portion 3022 of the first accommodating portion 301 and the second accommodating portion 302 of the microfluidic chip 300 is provided with a filter structure 312 . Since the structures of the filter structures 312 of the first accommodating portion 301 , the first sub-accommodating portion 3021 , and the second sub-accommodating portion 3022 are completely the same, the following takes the filtering structure 312 in the first sub-accommodating portion 3021 as an example to describe in detail. The structure and function of the filter structure 312 .
  • the filter structure 312 includes a plurality of microstructures spaced apart from each other, and the gap d between two adjacent microstructures 312-1 and 312-2 is larger than 1 times the diameter of a single cell and smaller than that of a single cell. 2 times the particle size.
  • the particle size of a single cell derived from the cell suspension is about 10 ⁇ m, and accordingly, the gap d between two adjacent microstructures 312-1 and 312-2 is greater than 10 ⁇ m and less than 20 ⁇ m.
  • the heights of the multiple microstructures of the filtering structure 312 may be the same, completely different, or only partially the same. The specific heights may be flexibly designed according to product requirements, which are not specifically limited in the embodiments of the present disclosure.
  • the height of each micropillar is about 100-200 ⁇ m.
  • the shape of the cross section of each micro-column can be any suitable shape, such as diamond, square, rectangle, circle, ellipse, regular polygon, irregular shape etc., the embodiments of the present disclosure do not specifically limit this.
  • the cell suspension in the first sub-accommodating part 3021 flows through the gaps between the adjacent microstructures of the filter structure 312 , and then flows into the first sub-flow of the second delivery channel 3032 in the first branch of track 3032-1.
  • the gap d between two adjacent microstructures is greater than 1 times the diameter of a single cell and less than 2 times the diameter of a single cell
  • the cell suspension when the cell suspension flows through the gap between adjacent microstructures, on the one hand, it can Block the excessive debris in the cell suspension (for example, debris with a particle size larger than 2 times the particle size of a single cell, such as dust, salting-out substances, etc.) from flowing into the subsequent flow channels, so as to prevent excessive debris from clogging the flow channel and affecting the The normal flow of the cell suspension; on the other hand, under the force of the adjacent microstructures on the cell suspension and the screening of the size of the cell suspension by the gap between the adjacent microstructures, the cell suspension sticks to each other
  • a plurality of cells eg, two cells, three cells, or more cells adhering to each other
  • the filtering structure 312 in the first accommodating part 301 and the second sub-accommodating part 3022 For the structure of the filtering structure 312 in the first accommodating part 301 and the second sub-accommodating part 3022, reference may be made to the above description of the filtering structure in the first sub-accommodating part 3021, which is not repeated here for the sake of brevity.
  • the first fluid in the first accommodating portion 301 flows through the gaps between the adjacent microstructures of the filter structure 312 , and then flows into the first delivery channel 3031 of the delivery channel 303 .
  • the first fluid flows through the gaps between the adjacent microstructures of the filter structure 312
  • excessive impurities in the first fluid for example, impurities with a particle size larger than 2 times the particle size of a single cell, such as dust, salt, etc.
  • the biochemical reagents in the second sub-accommodating part 3022 flow through the gaps between the adjacent microstructures of the filter structure 312 , and then flow into the first sub-channels of the second delivery channel 3032 3032-1 in the second branch.
  • the biochemical reagent When the biochemical reagent flows through the gaps between the adjacent microstructures of the filter structure 312, it can block the oversized impurities in the biochemical reagent (for example, impurities with a particle size larger than 2 times the particle size of a single cell, such as dust, salting out substances) etc.) flow into the second branch of the first sub-flow channel 3032-1, so as to prevent excessive debris from clogging the second branch and affecting the normal flow of biochemical reagents.
  • the oversized impurities in the biochemical reagent for example, impurities with a particle size larger than 2 times the particle size of a single cell, such as dust, salting out substances
  • FIG. 2 shows a schematic structural diagram of the microfluidic chip 400, wherein (a) is a front view of the microfluidic chip 400, (b) is a left side view of the microfluidic chip 400, and (c) is the microfluidic chip 400.
  • the rear view of the control chip 400 and (d) is an axial view of the microfluidic chip 400 .
  • the microfluidic chip 400 can be used to sort target droplets including a single target cell from the droplets.
  • the microfluidic chip 400 can be used alone as an independent component to realize the sorting of target droplets, and can also be used to replace the sorting flow channel 305 and the collection part 306 of the microfluidic chip 300, so as to realize the Preparation of droplets and sorting of target droplets.
  • the microfluidic chip 400 includes a sorting channel 403 , a connecting channel 404 , and collecting parts 405 and 406 .
  • the sorting flow channel 403 includes a first sorting flow channel 4031 and a second sorting flow channel 4032
  • the second sorting flow channel 4032 includes a cascaded first-stage branch 4032A, a second-stage branch 4032B, and a third-stage branch 4032C .
  • the connection channel 404 includes a first connection channel 4041 , a second connection channel 4042 and a third connection channel 4043 .
  • the collection part includes a first collection part 405 and a second collection part 406
  • the second collection part 406 includes a first sub-collection part 4061 , a second sub-collection part 4062 , and a third sub-collection part 4063
  • the microfluidic chip 400 may further include two third accommodating parts 401 and one fourth accommodating part 402 , each third accommodating part 401 is configured to accommodate the first fluid of the oil phase, and the fourth accommodating part 402 is configured To accommodate a large number of droplets, the large number of droplets includes target droplets and non-target droplets, wherein each target droplet includes a single target cell.
  • the droplets can be prepared by other means.
  • the beginning of the first sorting flow channel 4031 communicates with the fourth accommodating portion 402
  • the end of the first sorting flow channel 4031 communicates with the first collecting portion 405
  • the first sorting flow channel 4031 communicates with the second accommodating portion 402.
  • the first-stage branches 4032A of the sorting flow channel 4032 are communicated via the first connecting flow channel 4041 .
  • the start end of the first-stage branch 4032A of the second sorting flow channel 4032 communicates with the third accommodating part 401
  • the end of the first-stage branch 4032A of the second sorting flow channel 4032 communicates with the first sub-collecting part 4061
  • the second The first-stage branch 4032A and the second-stage branch 4032B of the sorting flow channel 4032 communicate via the second connecting flow channel 4042 .
  • the start end of the second-stage branch 4032B of the second sorting flow channel 4032 communicates with the third accommodating part 401
  • the end of the second-stage branch 4032B of the second sorting flow channel 4032 communicates with the second sub-collecting part 4062
  • the second The second-stage branch 4032B of the sorting flow channel 4032 communicates with the third-stage branch 4032C via the third connecting flow channel 4043
  • the start end of the third-stage branch 4032C of the second sorting flow channel 4032 communicates with the third connecting flow channel 4043
  • the end of the third-stage branch 4032C of the second sorting flow channel 4032 communicates with the third sub-collecting part 4063 .
  • the microfluidic chip 400 may further include a plurality of optical identification devices and a plurality of driving electrode devices (not shown in the figure), so that the microfluidic chip 400 can realize cascade sorting of target cells.
  • a cell suspension there may be only one target cell, or there may be many different types of target cells. When there are multiple different types of target cells, these different types of target cells need to be screened out and collected into different collection parts for subsequent detection.
  • the process of using the microfluidic chip 400 to sort target droplets is roughly as follows: add the first fluid into the third accommodating part 401 , and add other devices (such as other microfluidic chips) into the fourth accommodating part 402
  • the resulting droplets are prepared.
  • the droplets include target droplets and non-target droplets, wherein the target droplets include a single target cell.
  • the droplet includes four different types of cells, A, B, C, and D, where type A, B, and C cells are all target cells, and type D cells are non-target cells.
  • target droplets include: (a) droplets containing a single type A target cell, (b) droplets containing a single type B target cell, and (c) droplets containing a single type C target cell; non-target liquids
  • a droplet includes: (d) a droplet comprising one or more D-type non-target cells. The above droplets have been dyed in the early stage.
  • the droplets in the fourth accommodating part 402 flow into the first sorting flow channel 4031.
  • the optical signal of the droplet by the first optical recognition device e.g. color
  • the first optical recognition device detects that the droplet is the above-mentioned situation (d)
  • it will not notify the circuit system, and the circuit system will not apply a voltage to the first drive electrode device associated with the first optical recognition device. Therefore, the non-target droplets continue to move along the first sorting channel 4031 until they flow into the first collecting part 405 .
  • the first optical recognition device When the first optical recognition device detects that the droplet is any of the above-mentioned situations (a)-(c), it immediately informs the circuit system to apply an appropriate voltage to the first drive electrode device, and the target droplet is polarized, Under the action of the electric field, the target droplets are deflected upward and flow into the first connecting flow channel 4041 , and then flow into the first branch 4032A of the second sorting flow channel 4032 via the first connecting flow channel 4041 . At the connecting position of the first-stage branch 4032A and the second connecting flow channel 4042, the second optical identification device performs real-time detection on the optical signal of the target droplet.
  • the second optical identification device When the second optical identification device detects that the target droplet is the above-mentioned situation (a), it will not notify the circuit system, and the circuit system will not apply voltage to the second drive electrode device associated with the second optical identification device. Therefore, the target droplet (a) continues to move along the first stage branch 4032A until it flows into the first sub-collecting part 4061, so that the target droplet containing a single A-type target cell can be screened from the droplets.
  • the second optical recognition device detects that the target droplet is the above-mentioned situation (b) or (c), it immediately informs the circuit system to apply an appropriate voltage to the second drive electrode device, and the target droplet (b) or (c) is Polarized, under the action of the electric field, the target droplet (b) or (c) is deflected upward and flows into the second connecting flow channel 4042 , and then flows into the second branch 4032B via the second connecting flow channel 4042 .
  • the third optical identification device performs real-time detection on the optical signal of the target droplet (b) or (c).
  • the third optical identification device When the third optical identification device detects that the target droplet is the above-mentioned situation (b), it will not notify the circuit system, and the circuit system will not apply voltage to the third drive electrode device associated with the third optical identification device. Therefore, the target droplet (b) continues to move along the second branch 4032B until it flows into the second sub-collecting part 4062, so that the target droplet containing a single B-type target cell can be screened from the droplets.
  • the third optical recognition device detects that the target droplet is the above-mentioned situation (c) it immediately informs the circuit system to apply an appropriate voltage to the third driving electrode device, and the target droplet (c) is polarized.
  • the target droplet (c) is deflected upward and flows into the third connecting flow channel 4043, and then flows into the third-stage branch 4032C through the third connecting flow channel 4043, and finally flows into the third sub-collecting part 4063, thereby screening out the droplets containing a single C target droplets of type target cells.
  • microfluidic chip 400 Using the microfluidic chip 400, three different types of target cells can be screened through a single sorting process, which greatly improves the sorting speed and efficiency of cells. Moreover, compared to using three different microfluidic chips to screen three different types of target cells, the embodiment of the present disclosure can realize the classification of three different types of target cells using only one microfluidic chip 400 . option, which greatly saves the number of microfluidic chips required, thereby saving production costs.
  • the fourth accommodating part 402 can be omitted.
  • the beginning of the first sorting channel 4031 is connected to the end of the third sub-channel 3032-3 of the microfluidic chip 300, and other settings of the microfluidic chip 400 may remain unchanged.
  • the droplets generated at the confluence point 304 flow into the first sorting flow channel 4031 along the third sub-channel 3032-3, and the droplets are then subjected to cascade sorting as described above.
  • cascade sorting can be performed on such droplets to sort out many different types of target cells.
  • the oil-phase first fluid in the third accommodating part 401 can be pre-filled with the microfluidic chip 400, so that the droplets in the sorting channel 403 can flow more smoothly.
  • one end of the first connection channel 4041 is located between the beginning and the end of the first sorting channel 4031, and the other end of the first connection channel 4041 is located between the beginning and the end of the first-stage branch 4032A ;
  • one end of the second connecting flow channel 4042 is located between the beginning and the end of the first stage branch 4032A, the other end of the second connecting flow channel 4042 is located between the beginning and the end of the second stage branch 4032B, and the second connecting flow channel 4042 is closer to the collecting part in the second direction (ie, the lateral direction in FIG. 2 ) than the first connecting flow channel 4041 (ie, in the figure, the second connecting flow channel 4042 is closer to the collecting part than the first connecting flow channel 4041 ).
  • One end of the third connecting flow channel 4043 is located between the beginning and the end of the second-stage branch 4032B, the other end of the third connecting flow channel 4043 communicates with the starting end of the third-stage branch 4032C, and the first Compared with the second connection flow channel 4042, the third connection flow channel 4043 is closer to the collecting part in the lateral direction (that is, in the figure, the third connection flow channel 4043 is offset to the right by a distance compared with the second connection flow channel 4042 ).
  • the first connecting flow channel 4041 is located on the left side of the second connecting flow channel 4042
  • the second connecting flow channel 4042 is located on the left side of the third connecting flow channel 4043 .
  • the droplets can smoothly flow from the first sorting flow channel 4031 to the first-stage branch 4032A, the second-stage branch 4032B, and the third-stage branch 4032C of the second sorting flow channel 4032, thereby achieving Cascade sorting as described above.
  • the sorting flow channel 403 and the connecting flow channel 404 are configured so that the droplets flow from the first sorting flow channel 4031 through the connecting flow channel 404 into the first-stage branch 4032A, the second-stage branch 4032A of the second sorting flow channel 4032 in sequence Branch 4032B and third-order branch 4032C, and the direction of flow of the droplets is irreversible. With this arrangement, the droplets flowing into the next-level branch are prevented from flowing back to the previous-level branch, thereby avoiding the cross-liquid flow of different types of target cells.
  • the second sorting flow channel 4032 of the microfluidic chip 400 shown in FIG. 2 includes three branches 4032A, 4032B and 4032C, this is only an example, and the second sorting flow channel 4032 includes The number of branches depends on the type and number of target cells to be sorted, which is not specifically limited in the embodiment of the present disclosure.
  • the microfluidic chip 400 may include N connecting flow channels, and the second sorting flow channel 4032 may include N stages A connecting flow channel is set between any two adjacent branches in the N cascaded branches, and any two adjacent branches are communicated via the connecting flow channel.
  • the second collecting part 406 includes N sub-collecting parts
  • the N cascaded branches of the second sorting flow channel 4032 correspond to the N sub-collecting parts one-to-one
  • one of the N cascaded branches corresponds to the N sub-collecting parts.
  • a corresponding one of the collection parts is connected.
  • Figure 3 shows a variant 400' of the microfluidic chip 400, wherein (a) is a front view of the microfluidic chip 400', (b) is a left side view of the microfluidic chip 400', (c) ) is a rear view of the microfluidic chip 400', and (d) is an axial view of the microfluidic chip 400'.
  • the microfluidic chip 400' shown in FIG. 3 has a similar structure except for the sorting flow channel 403 and the collecting parts 405' and 406.
  • the same reference numerals refer to the same components. Therefore, for the sake of brevity, the functions and functions of these same components will not be described. Reference may be made to the description of the microfluidic chip 400 , and only different parts will be described below.
  • the microfluidic chip 400' can be used to sort target droplets including a single target cell from the droplets.
  • the microfluidic chip 400 ′ can be used alone as an independent component to realize the sorting of target droplets, and can also be used to replace the sorting flow channel 305 and the collection part 306 of the microfluidic chip 300 , so as to realize the inclusion of a single cell Preparation of droplets and sorting of target droplets.
  • the microfluidic chip 400' includes a sorting flow channel 403, a connecting flow channel 404, and collecting parts 405' and 406.
  • the sorting flow channel 403 includes a first sorting flow channel 4031 and a second sorting flow channel 4032
  • the first sorting flow channel 4031 includes a cascaded first-stage branch 4031A, a second-stage branch 4031B and a third-stage branch 4031C .
  • the connection channel 404 includes a first connection channel 4041 , a second connection channel 4042 and a third connection channel 4043 .
  • the collection part includes a first collection part 405' and a second collection part 406.
  • the microfluidic chip 400' may further include two third accommodating parts 401 and one fourth accommodating part 402, each third accommodating part 401 is configured to accommodate the first fluid of the oil phase, and the fourth accommodating part 402 is configured to hold a plurality of droplets including target droplets and non-target droplets, wherein each target droplet includes a single target cell. As shown in FIG.
  • the beginning end of the first-stage branch 4031A of the first sorting flow channel 4031 communicates with the fourth accommodating part 402
  • the end of the first-stage branch 4031A of the first sorting flow channel 4031 communicates with the first collecting part 405 ' communicated
  • the first-stage branch 4031A and the second-stage branch 4031B of the first sorting flow channel 4031 communicate via the first connecting flow channel 4041 .
  • the start end of the second-stage branch 4031B of the first sorting flow channel 4031 communicates with the third accommodating part 401
  • the end of the second-stage branch 4031B of the first sorting flow channel 4031 communicates with the first collecting part 405 ′
  • the first The second-stage branch 4031B of the sorting flow channel 4031 communicates with the third-stage branch 4031C via the second connecting flow channel 4042 .
  • the start end of the third-stage branch 4031C of the first sorting flow channel 4031 communicates with the third accommodating part 401
  • the end of the third-stage branch 4031C of the first sorting flow channel 4031 communicates with the first collecting part 405'
  • the first The third-stage branch 4031C of the sorting flow channel 4031 communicates with the second sorting flow channel 4032 via the third connecting flow channel 4043
  • the start end of the second sorting flow channel 4032 communicates with the third connection flow channel 4043
  • the end of the second sorting flow channel 4032 communicates with the second collecting part 406 .
  • the microfluidic chip 400' may further include a plurality of optical identification devices and a plurality of driving electrode devices (not shown in the figure), so that the microfluidic chip 400' can realize cascade sorting of target cells.
  • the microfluidic chip 400 is not used to simultaneously screen out multiple different types of target cells, but is used to improve the purity of the sorted target cells.
  • the process of using the microfluidic chip 400 ′ for target droplet sorting is roughly as follows: adding the first fluid into the third accommodating part 401 , adding the fourth accommodating part 402 using other equipment (for example, other microfluidic chips) ) prepared droplets.
  • the droplets include target droplets and non-target droplets, wherein the target droplets include a single target cell.
  • the droplet includes two different types of cells, E and F, where E-type cells are target cells, F-type cells are non-target cells, and E-type target cells are indistinguishable from F-type non-target cells.
  • target droplets include: (e) droplets containing a single E-type target cell; non-target droplets include: (f) droplets containing one or more F-type non-target cells.
  • the above droplets have been dyed in the early stage.
  • the droplets in the fourth accommodating part 402 flow into the first-level branch 4031A of the first sorting channel 4031 .
  • the first optical identification device detects the liquid droplets.
  • the optical signal (eg color) of the droplet is detected in real time.
  • the first optical identification device When the first optical identification device detects that the droplet is the above-mentioned situation (f), it will not notify the circuit system, and the circuit system will not apply a voltage to the first drive electrode device associated with the first optical identification device. Therefore, the non-target droplets continue to move along the first stage branch 4031A until they flow into the first collection portion 405'.
  • the first optical recognition device determines that the droplet is in the above-mentioned situation (e), it immediately informs the circuit system to apply an appropriate voltage to the first driving electrode device, and the above-mentioned droplet (actually still includes a part of the non-target droplet) is polarized , under the action of the electric field, the above-mentioned droplets are deflected upward and flow into the first connecting flow channel 4041 , and then flow into the second branch 4031B through the first connecting flow channel 4041 .
  • the second optical identification device performs real-time detection on the optical signal of the droplet.
  • the second optical identification device When the second optical identification device detects that the above-mentioned condition (f) still exists in the droplet, it will not notify the circuit system, and thus the circuit system will not apply a voltage to the second drive electrode device associated with the second optical identification device. Therefore, the non-target droplets (f) that are further screened continue to move along the second-stage branch 4031B, and finally flow into the first collection part 405'.
  • the second optical recognition device determines that the droplet is in the above-mentioned situation (e), it immediately informs the circuit system to apply an appropriate voltage to the second driving electrode device, the droplet is polarized, and under the action of the electric field, the droplet is deflected upward and flows into the second drive electrode device.
  • the second connecting flow channel 4042 then flows into the third-stage branch 4031C through the second connecting flow channel 4042 .
  • the third optical identification device performs real-time detection on the optical signal of the droplet (which actually still includes a small amount of non-target droplets).
  • the circuit system will not be notified, and the circuit system will not apply voltage to the third drive electrode device associated with the third optical recognition device. Therefore, the non-target droplets continue to move along the third-stage branch 4031C, and then flow into the first collection part 405'.
  • the third optical identification device When the third optical identification device detects that the droplet is the above-mentioned situation (e), it immediately informs the circuit system to apply an appropriate voltage to the third drive electrode device, and the target droplet (e) is polarized. Under the action of the electric field, the target The droplet (e) is deflected upward and flows into the third connecting flow channel 4043, and then flows into the second sorting flow channel 4032 through the third connecting flow channel 4043, and finally flows into the second collecting part 406, thereby screening out the droplets containing a single E target droplets of type target cells.
  • microfluidic chip 400' through multiple cascade sorting of droplets, indistinguishable target droplets can be distinguished from non-target droplets, which greatly improves the purity of the final collected target droplets.
  • the possibility of non-target droplets being included in the collected target droplets is reduced or even excluded.
  • first sorting flow channel 4031 of the microfluidic chip 400 ′ shown in FIG. 3 includes three branches 4031A, 4031B and 4031C, this is only an example.
  • the specific number of branches may be determined according to the difficulty of distinguishing target cells from non-target cells, which is not specifically limited in the embodiment of the present disclosure.
  • the fourth accommodating part 402 can be omitted, and instead, the first sorting channel 4031 of the first stage
  • the beginning of the branch 4031A is connected to the end of the third sub-channel 3032-3 of the microfluidic chip 300, and other settings of the microfluidic chip 400' can remain unchanged.
  • the droplets generated at the confluence point 304 flow along the third sub-channel 3032-3 into the first-stage branch 4031A of the first sorting channel 4031, and then perform the cascade separation of the droplets as described above. select.
  • FIG. 4 shows a schematic structural diagram of the microfluidic chip 500, wherein (a) is a front view of the microfluidic chip 500, (b) is a left side view of the microfluidic chip 500, and (c) is the microfluidic chip 500.
  • the rear view of the control chip 500 , and (d) is an axial view of the microfluidic chip 500 .
  • the microfluidic chip 500 can be used to sort two kinds of droplets with different particle sizes from the droplets.
  • the microfluidic chip 500 can be used alone as an independent component, or can be used to replace the sorting channel 305 and the collecting part 306 of the microfluidic chip 300, so that the preparation of droplets containing single cells and the target droplets can be realized of sorting.
  • the microfluidic chip 500 includes a sorting flow channel 502 and a collecting portion 506 , and the sorting flow channel 502 includes a main flow channel 503 , a first sorting flow channel 504 , and a second sorting flow channel 505 , the collection part 506 includes a first collection part 507 and a second collection part 508 .
  • the main flow channel 503 is helical in the plane where the microfluidic chip 500 is located.
  • the end of the second sorting channel 505 communicates with the second collecting part 508 .
  • the microfluidic chip 500 may further include a third accommodating part 501, the third accommodating part 501 is configured to accommodate droplets, the droplets include first type droplets and second type liquids with different particle sizes drop.
  • the cell suspension includes cells with a smaller particle size and cells with a larger particle size.
  • the droplets formed are thus also Available in different particle sizes.
  • droplets including cells with smaller particle sizes are referred to as the first type of droplets, and the first type of droplets have smaller particle sizes; droplets including cells with larger particle sizes are referred to as the second type droplets, the second type of droplets has a larger particle size.
  • the microfluidic chip 500 is used to sort the droplets, the droplets in the third accommodating part 501 flow into the spiral main body flow channel 503 . Due to the difference in particle size of the droplets, the inertial force is different.
  • the first type of droplets with smaller particle diameters are subject to less inertial force, so they follow the extension direction of the main flow channel 503 . It enters the first sorting channel 504 and then flows into the first collecting part 507 .
  • the second type of droplets with larger particle sizes are subjected to larger inertial force, and are thrown out of the main flow channel 503 to enter the second sorting flow channel 505 and finally flow into the second collection part 508 due to the small inertial force.
  • FIG. 4 only shows a possible shape of the main body flow channel 503 as an example, but the shape of the main body flow channel 503 is not limited to this, as long as the shape of the main body flow channel 503 can make the droplets with different particle diameters in different Under the action of inertial force, it can enter different sorting flow channels.
  • the microfluidic chip 500 does not need to be provided with an optical identification device and a driving electrode device, and only depends on the shape of the main flow channel 503 to distinguish droplets of different particle sizes. Since the optical identification device and the driving electrode device are not required, not only the volume of the microfluidic chip 500 can be reduced, but also the production cost can be saved.
  • the third accommodating part 501 can be omitted, and instead, the beginning of the main channel 503 is connected to the microfluidic chip At the end of the third sub-channel 3032-3 of 300, other settings of the microfluidic chip 500 may remain unchanged. In this way, the droplets generated at the confluence point 304 flow into the main flow channel 503 along the third sub-channel 3032-3, and then the sorting operation as described above is performed on the droplets.
  • using a microfluidic chip not only can prepare droplets containing a single cell, but also can distinguish droplets of different particle sizes.
  • the inventors of the present application found that, in conventional technology, the first fluid and the second fluid (including cell suspension and biochemical reagents) described in the above embodiments need to be stored in external devices independent of the microfluidic chip, respectively.
  • manual operation is required each time to connect the external device with the injection port of the microfluidic chip using a flexible pipe, so as to inject the first fluid and the second fluid into the microfluidic chip in real time , and then through the corresponding processing of the microfluidic chip, the droplets are prepared and/or the target droplets are sorted from the droplets.
  • the preparation of droplets and/or the sorting of target droplets requires at least the presence of external devices for storing fluids, flexible tubing, and microfluidic chips. This makes the system bulky and not easy to carry.
  • the external device needs to be cleaned to accommodate the new reagents required to fit the replaced microfluidic chip, but it is usually not guaranteed that the external device can be thoroughly cleaned, so before Residual reagents tend to remain in the external device, causing contamination of new reagents to be replaced.
  • the embodiments of the present disclosure provide a box body device adapted to a microfluidic chip, each microfluidic chip has a corresponding box body device, and the box body device can adopt an appropriate combination method with the microfluidic chip.
  • Fluidics chip combination The cartridge device can store reagents and release the reagents to the sample inlet of the microfluidic chip, and can receive and store the reagents flowing into the cartridge device from the sample outlet of the microfluidic chip.
  • Such a cassette device can provide a sterile environment as the cell suspension can be completely contained within the sealed cassette device before and after cell sorting.
  • FIG. 5A shows a schematic structural diagram of a box device 1000 according to an embodiment of the present disclosure, wherein (a) is a front view of the box device 1000 , (b) is a right side view of the box device 1000 , (c) It is a top view of the box device 1000 , and (d) is an axial view of the box device 1000 .
  • FIG. 5B shows a schematic structural diagram of the microfluidic chip 100, which is described in the priority application (No. 202180000922.0).
  • the box device 1000 is adapted to the microfluidic chip 100, and the combination of the two can be used to prepare droplets containing a single cell.
  • the specific preparation process of the droplets please refer to the records of the priority application.
  • the box device 1000 is configured to be used with a microfluidic chip 100 , and the microfluidic chip 100 includes a sample inlet 1 , 2 , 3 and a sample outlet 4 .
  • the box device 1000 includes: an accommodating cavity configured to accommodate the microfluidic chip 100; a sample injection unit 1001, which is communicated with the injection ports 1, 2, and 3 of the microfluidic chip 100, and the sample injection unit 1001 is configured to store a first reagent and release the first reagent to the sample inlets 1, 2, and 3 of the microfluidic chip 100; and the sample outlet unit 1002, which is communicated with the sample outlet 4 of the microfluidic chip 100, and the sample outlet unit 1002 is configured to receive and store
  • the sampling unit 1001 includes sampling holes 1003A/1004A/1005A and a first storage cavity 1003B/1004B/1005B, each sampling hole is a through hole and communicates with the corresponding first storage cavity, and each sampling hole is connected from the box body.
  • the surface of the device 1000 is concave toward the inside of the box device 1000 , and the first storage cavity corresponding to the injection hole is located on the side of the injection hole away from the surface of the box device 1000 .
  • each microfluidic chip 100 can be configured with a separate cartridge device 1000, and the cartridge device 1000 can store the injection reagent (ie, the first reagent) required by the microfluidic chip 100 and the The output reagent (ie, the second reagent) processed by the microfluidic chip 100 does not need to provide an external storage device, which can greatly reduce the size of the device and is easy to carry.
  • the box device 1000 since each microfluidic chip 100 is configured with a separate box device 1000, the box device 1000 stores the first reagent required by the microfluidic chip 100 and the produced second reagent, therefore, there is no Risk of cross-contamination of reagents in external storage devices due to replacement of microfluidic chips in conventional techniques.
  • the sample injection unit 1001 includes a sample injection hole and a first storage chamber. Such a design can better guide the first reagent to flow from the sample injection hole to the first storage chamber, and then flow into the microfluidic chamber through the first storage chamber.
  • the injection port of the control chip 100 can better guide the first reagent to flow from the sample injection hole to the first storage chamber, and then flow into the microfluidic chamber through the first storage chamber.
  • the sampling unit 1001 of the box device 1000 includes a first sampling unit 1003, a second sampling unit 1004, and a third sampling unit 1005, and the sampling port of the microfluidic chip 100 includes a first sampling unit 1003, a second sampling unit 1004, and a third sampling unit 1005.
  • the first reagent includes the first sub-reagent (ie the first fluid), the second sub-reagent (ie the cell suspension), and the third sub-reagent (ie biochemical reagents).
  • the first sampling unit 1003 of the cartridge device 1000 is in communication with the first sampling port 1 of the microfluidic chip 100, and the first sampling unit 1003 is configured to store the first sub-reagent and release the first sub-reagent to the microfluidic control chip 100.
  • the sample extraction unit 1002 of the cartridge device 1000 includes a sample extraction unit 1006, and the second reagent received and stored by the sample extraction unit 1006 includes target droplets and non-target droplets.
  • the first sampling unit 1003 includes a sampling hole 1003A and a first storage cavity 1003B
  • the second sampling unit 1004 includes a sampling hole 1004A and a first storage cavity 1004B
  • the third sampling unit 1005 includes sampling Aperture 1005A and first storage cavity 1005B.
  • the first sampling unit 1003, the second sampling unit 1004, and the third sampling unit 1005 have the same structure, and the first sampling unit 1003 is taken as an example to describe the structure of each sampling unit below. Since the first sampling unit 1003 , the second sampling unit 1004 , and the third sampling unit 1005 have the same structure, the following description about the structure of the first sampling unit 1003 is also applicable to the second sampling unit 1004 and the third sampling unit 1005.
  • the first storage cavity 1003B of the first sampling unit 1003 is located inside the box device 1000 , and the orthographic projection of the injection hole 1003A on the box device 1000 falls on the orthographic projection of the first storage cavity 1003B on the box device 1000 within.
  • the width of the injection hole 1003A in the lateral direction is smaller than the width of the first storage chamber 1003B in the lateral direction.
  • the first sampling unit 1003 may further include a second storage chamber 1003C (similarly, the second sampling unit 1004 may further include a second storage chamber 1004C, and the third sampling unit 1005 may further include a second storage chamber 1003C).
  • storage chamber 1005C) the second storage chamber 1003C is located on the side of the first storage chamber 1003B away from the injection hole 1003A and communicates with the first storage chamber 1003B.
  • the second storage cavity 1003C includes a first opening communicating with the first storage cavity 1003B and a second opening opposite to the first opening.
  • the orthographic projection of the second opening of the second storage cavity 1003C on the box device 1000 falls on the first opening. The opening is within the orthographic projection on the box device 1000 . In one example, as shown in FIG.
  • the second storage cavity 1003C has a bowl-like shape, that is, the second storage cavity 1003C has a shape that is thick at the top and narrow at the bottom.
  • the second storage chamber 1003C can well collect the first sub-reagent flowing into it from the first storage chamber 1003B, and guide the first sub-reagent to the first injection port of the microfluidic chip 100 1.
  • the orthographic projection of the second opening of the second storage chamber 1003C on the cartridge device 1000 falls within the orthographic projection of the injection hole 1003A on the cartridge device 1000 .
  • the sample extraction unit 1006 of the cassette device 1000 includes a sample extraction hole 1006A and a third storage cavity 1006B.
  • the sample outlet hole 1006A is a through hole and communicates with the third storage cavity 1006B, the sample outlet hole 1006A is recessed from the surface of the box body device 1000 to the inside of the box body device 1000, and the third storage cavity 1006B is located in the sample outlet hole 1006A away from the box one side of the surface of the body device 1000 .
  • the third storage cavity 1006B is located inside the box device 1000 , and the orthographic projection of the sample outlet 1006A on the box device 1000 falls within the orthographic projection of the third storage cavity 1006B on the box device 1000 Inside.
  • the width of the sampling hole 1006A in the lateral direction is smaller than the width of the third storage cavity 1006B in the lateral direction.
  • the third storage chamber 1006B mainly plays the role of storing the second reagent, and the sample outlet hole 1006A can better facilitate the transfer of the second reagent in the third storage chamber 1006B to an external device (if any if necessary).
  • the sample extraction unit 1006 may further include a fourth storage chamber 1006C, which is located on a side of the third storage chamber 1006B away from the sample extraction hole 1006A and communicates with the third storage chamber 1006B.
  • the fourth storage chamber 1006C can be used to connect the sample outlet 4 of the microfluidic chip 100 with the sample outlet unit 1006 of the box device 1000, and guide the second reagent flowing out from the sample outlet 4 of the microfluidic chip 100 to the sample outlet 4 of the microfluidic chip 100.
  • the third storage chamber 1006B of the cassette device 1000 .
  • the orthographic projection of the fourth storage chamber 1006C on the cassette device 1000 and the orthographic projection of the sample outlet 1006A on the cassette device 1000 overlap at most by a portion.
  • the first fluid, the cell suspension and the biochemical reagent are respectively pre-added to the first sampling unit 1003 , the second sampling unit 1004 and the third sampling unit 1005 .
  • the first fluid is the oil phase, which may be mixed with surfactants.
  • the first fluid in the first sampling unit 1003 flows into the first sampling port 1 of the microfluidic chip 100 through the sampling hole 1003A, the first storage cavity 1003B and the second storage cavity 1003C; the second sampling unit
  • the cell suspension in 1004 flows into the second injection port 2 of the microfluidic chip 100 through the injection hole 1004A, the first storage cavity 1004B and the second storage cavity 1004C; the biochemical reagent in the third sampling unit 1005 is injected through the injection port 2
  • the hole 1005A, the first storage cavity 1005B and the second storage cavity 1005C flow into the third injection port 3 of the microfluidic chip 100 .
  • the first fluid of the oil phase can be filled with the microfluidic chip 100 first, and then the cell suspension and biochemical reagents can be injected.
  • the above-mentioned first fluid, cell suspension, and biochemical reagents converge at the confluence point 105 of the microfluidic chip 100 to form droplets (ie, the above-mentioned second reagents), and the droplets include target droplets and non-target droplets , where the target droplet includes a single target cell.
  • the droplets flow into the first collection part 104 through the delivery channel 103 of the microfluidic chip 100 , and then flow into the sample output unit 1006 of the box device through the sample outlet 4 at the first collection part 104 .
  • the sampling unit 1006 can store the droplets or can transfer the droplets to other equipment as needed.
  • FIG. 6A shows a schematic structural diagram of a box device 2000 according to another embodiment of the present disclosure, wherein (a) is a front view of the box device 2000, (b) is a right side view of the box device 2000, (c) ) is a top view of the box device 2000 , and (d) is an axial view of the box device 2000 .
  • FIG. 6B shows a schematic structural diagram of the microfluidic chip 200, which is described in the priority application (No. 202180000922.0).
  • the box device 2000 is adapted to the microfluidic chip 200, and the combination of the two can be used to sort droplets to obtain target droplets.
  • the specific sorting process of droplets please refer to the records of the priority application.
  • the cassette device 2000 includes a sample introduction unit 2001 and a sample discharge unit 2002 .
  • the sampling unit 2001 is in communication with the sampling port of the microfluidic chip 200, and is configured to store and release the first reagent to the sampling port of the microfluidic chip 200.
  • the first reagent is a large amount of droplets, and a large amount of liquid At least a portion of the droplet includes a single cell;
  • the sample outlet unit 2002 is in communication with the sample outlet of the microfluidic chip 200 and is configured to receive and store processed by the microfluidic chip 200 and flow from the sample outlet of the microfluidic chip 200
  • the second reagent includes a target droplet and a non-target droplet, wherein the target droplet includes a single target cell.
  • the sampling unit 2001 includes a first sampling unit 2003 and a second sampling unit 2004, and the sampling unit 2002 includes a first sampling unit 2005, a second sampling unit 2006, and the first sampling unit 2005 and the second sampling unit 2006.
  • the injection port of the microfluidic chip 200 includes a first injection port 5 and a second injection port 6 .
  • the first sampling unit 2003 is in communication with the first sampling port 5 of the microfluidic chip 200, and the first sampling unit 2003 is configured to store the first sub-reagent (ie, the first fluid) and release the first sub-reagent to the microfluidic
  • the first injection port 5 of the control chip 200; the second injection unit 2004 is communicated with the second injection port 6 of the microfluidic chip 200, and the second injection unit 2004 is configured to store the second sub-reagent (that is, including a single cell droplet) and release the second sub-reagent to the second injection port 6 of the microfluidic chip 200.
  • the third sampling unit 2007 of the sampling unit 2002 is configured to receive and store non-target droplets, and the first sampling unit 2005 and the second sampling unit 2006 of the sampling unit 2002 are configured to receive and store target droplets.
  • the first sampling unit 2003 of the box device 2000 includes a sampling hole 2003A, a first storage cavity 2003B, and a second storage cavity 2003C; the second sampling unit 2004 includes a sampling hole 2004A, a first storage cavity 2004B, and a Two storage chambers 2004C.
  • the structures of the first sampling unit 2003 and the second sampling unit 2004 of the cassette device 2000 are exactly the same as those of the first sampling unit 1003 of the cassette device 1000. Therefore, the first sampling unit 2003 and The second sampling unit 2004 has the same technical effect as the first sampling unit 1003 of the cartridge device 1000 . For the sake of brevity, their structures and technical effects are not repeated here.
  • the first sampling unit 2005 of the box device 2000 includes a sampling hole 2005A, a third storage cavity 2005B and a fourth storage cavity 2005C
  • the second sampling unit 2006 of the box device 2000 includes a sampling hole 2006A, a third storage cavity 2006B and the fourth storage cavity 2006C
  • the third sampling unit 2007 of the box device 2000 includes a sampling hole 2007A, a third storage cavity 2007B and a fourth storage cavity 2007C.
  • the first sampling unit 2005, the second sampling unit 2006 and the third sampling unit 2007 have exactly the same structure.
  • the structures of the first sample output unit 2005 , the second sample output unit 2006 and the third sample output unit 2007 of the box device 2000 are the same as the sample output of the box device 1000
  • the structure of the unit 1006 is basically the same, so the structure and technical effect of each sample extraction unit of the box device 2000 can refer to the structure and technical effect of the sample extraction unit 1006 of the box device 1000 .
  • the orthographic projection of the fourth storage cavity 2005C on the box device 2000 falls within the orthographic projection of the sample outlet 2005A on the box device 2000 .
  • the box device 2000 further includes a first installation area 2008 and a second installation area 2009, the first installation area 2008 is configured to install the optical identification device, and the second installation area 2009 is configured to install the drive electrode device.
  • the optical identification device and the driving electrode device are used to cooperate with the microfluidic chip 200 to realize the sorting of target droplets.
  • the general process of sorting target droplets using the box device 2000 and the microfluidic chip 200 can be described as follows:
  • the first fluid and a droplet including a single cell are pre-added to the first sampling unit 2003 and the second sampling unit 2004, respectively, and the droplet can be prepared by the above-mentioned box device 1000 and microfluidic chip 100.
  • the first fluid is the oil phase, which may be mixed with surfactants.
  • the first fluid in the first sampling unit 2003 flows into the first sampling port 5 of the microfluidic chip 200 through the sampling hole 2003A, the first storage cavity 2003B and the second storage cavity 2003C; the second sampling unit The droplets in 2004 flow into the second injection port 6 of the microfluidic chip 200 through the injection hole 2004A, the first storage cavity 2004B and the second storage cavity 2004C.
  • the microfluidic chip 200 can be filled with the first fluid of the oil phase first, and then the droplets are injected.
  • the target droplets in the first sub-collection part 2041 flow into the first sample discharge unit 2005 of the cartridge device 2000 through the sample outlet 7A, and the target droplets in the second sub-collection part 2042 flow into the cartridge device 2000 through the sample outlet 7B
  • the non-target droplets in the third sub-collection part 2043 flow into the third sample discharge unit 2007 of the box device 2000 through the sample discharge port 7C.
  • the first sampling unit 2005, the second sampling unit 2006, and the third sampling unit 2007 may store corresponding droplets or may transfer these droplets to other devices as needed.
  • the box device 2000 is adapted to the microfluidic chip 200 to jointly realize the sorting of target droplets.
  • a cartridge device 2000 provides an environment for aseptic operation as the droplets are completely confined within the sealed cartridge device 2000 and microfluidic chip 200 before and after sorting.
  • the existence of the box device 2000 makes the system composed of the box device 2000 and the microfluidic chip 200 more concise and convenient, and easy to carry.
  • FIG. 7 shows a schematic structural diagram of a box device 3000 according to another embodiment of the present disclosure, wherein (a) is a front view of the box device 3000, (b) is a right side view of the box device 3000, (c) ) is a plan view of the box device 3000 , and (d) is an axial view of the box device 3000 .
  • the cassette device 3000 is adapted to the microfluidic chip 300 shown in FIG. 1A of the present application, and the combination of the two can be used to prepare droplets including single cells and sort the droplets to obtain target droplets.
  • the microfluidic chip 300 For the preparation and sorting process of droplets, reference may be made to the description of the microfluidic chip 300 .
  • the cassette device 3000 includes a sample introduction unit 3001 and a sample discharge unit 3002 .
  • the sampling unit 3001 communicates with the sampling port of the microfluidic chip 300 and is configured to store the first reagent and release the first reagent to the sampling port of the microfluidic chip 300 .
  • the sample outlet unit 3002 communicates with the sample outlet of the microfluidic chip 300 and is configured to receive and store the second reagent processed by the microfluidic chip 300 and flowing into the sample outlet unit 3002 from the sample outlet of the microfluidic chip 300 , the second reagent includes a target droplet and a non-target droplet, wherein the target droplet includes a single target cell.
  • the sampling unit 3001 includes a first sampling unit 3003 , a second sampling unit 3004 and a third sampling unit 3005 .
  • the sampling unit 3002 includes a first sampling unit 3006 and a second sampling unit 3007 .
  • the injection port of the microfluidic chip 300 includes a first injection port located at the first accommodating portion 301 , a second injection port located at the first sub-accommodating portion 3021 , and a third injection port located at the second sub-accommodating portion 3022 . Injector.
  • the first sampling unit 3003 is in communication with the first sampling port of the microfluidic chip 300, and the first sampling unit 3003 is configured to store the first sub-reagent (ie, the first fluid) and release the first sub-reagent to the microfluidic control unit
  • the first injection port of the chip 300; the second injection unit 3004 is communicated with the second injection port of the microfluidic chip 300, and the second injection unit 3004 is configured to store the second sub-reagent (ie, the cell suspension) and transfer the The second sub-reagent is released to the second injection port of the microfluidic chip 300;
  • the third injection unit 3005 is communicated with the third injection port of the microfluidic chip 300, and the third injection unit 3005 is configured to store the third sub-reagent reagents (ie, biochemical reagents) and release the third sub-reagent to the third injection port of the microfluidic chip 300 .
  • the first sampling unit 3006 of the sampling unit 3002 is configured to receive and store non-target droplets,
  • the first sampling unit 3003 of the box device 3000 includes a sampling hole 3003A, a first storage cavity 3003B, and a second storage cavity 3003C;
  • the second sampling unit 3004 includes a sampling hole 3004A, a first storage cavity 3004B, and a Two storage chambers 3004C;
  • the third sample injection unit 3005 includes a sample injection hole 3005A, a first storage chamber 3005B, and a second storage chamber 3005C.
  • the structures of the first sampling unit 3003 , the second sampling unit 3004 and the third sampling unit 3005 of the cassette device 3000 are exactly the same as those of the first sampling unit 1003 of the cassette device 1000 .
  • the first sampling unit 3003 , the second sampling unit 3004 and the third sampling unit 3005 have the same technical effects as the first sampling unit 1003 of the cassette device 1000 .
  • the first sampling unit 3006 of the box device 3000 includes a sampling hole 3006A, a third storage cavity 3006B and a fourth storage cavity 3006C
  • the second sampling unit 3007 of the box device 3000 includes a sampling hole 3007A, a third storage cavity 3007B and the fourth storage chamber 3007C. Both the first sampling unit 3006 and the second sampling unit 3007 have exactly the same structure.
  • the structures of the first sample outlet unit 3006 and the second sample outlet unit 3007 of the box device 3000 are basically the same as those of the sample outlet unit 1006 of the box device 1000. Therefore, the structure and technical effect of each sample extraction unit of the box device 3000 may refer to the structure and technical effect of the sample extraction unit 1006 of the box device 1000 .
  • the orthographic projection of the fourth storage cavity 3006C on the box device 3000 falls within the orthographic projection of the sample outlet 3006A on the box device 3000 .
  • the box device 3000 further includes a first installation area 3008 and a second installation area 3009, the first installation area 3008 is configured to install the optical identification device, and the second installation area 3009 is configured to install the drive electrode device.
  • the optical identification device and the driving electrode device are used to cooperate with the microfluidic chip 300 to realize the sorting of target droplets.
  • the first sampling unit 3006 and the second sampling unit 3007 are located between the sampling unit 3001 and the first installation area 3008 and the second installation area 3009 . Similar to the microfluidic chip 300, through such an arrangement, the volume of the box device 3000 can be reduced, the box device 3000 can be more miniaturized, and the cost can be saved.
  • the first fluid, the cell suspension and the biochemical reagent are respectively pre-added to the first sampling unit 3003, the second sampling unit 3004 and the third sampling unit 3005.
  • the first fluid is the oil phase, which may be mixed with surfactants.
  • the first fluid in the first sampling unit 3003 flows into the first sampling port of the microfluidic chip 300 through the sampling hole 3003A, the first storage cavity 3003B and the second storage cavity 3003C; the second sampling unit 3004
  • the cell suspension inside flows into the second injection port of the microfluidic chip 300 through the injection hole 3004A, the first storage cavity 3004B and the second storage cavity 3004C; the biochemical reagent in the third sampling unit 3005 passes through the injection hole 3005A , the first storage cavity 3005B and the second storage cavity 3005C flow into the third injection port of the microfluidic chip 300 .
  • the microfluidic chip 300 can be filled with the first fluid of the oil phase first, and then the cell suspension and biochemical reagents can be injected.
  • the first fluid, cell suspension, and biochemical reagents converge at the confluence point 304 of the microfluidic chip 300 to generate droplets including a single cell, and then the droplets are sorted at the sorting channel 305 and enter the corresponding In the sub-collecting part of , non-target droplets are collected in the first sub-collecting part 3051 , and target droplets (including a single target cell) are collected in the second sub-collecting part 3052 .
  • the non-target droplets in the first sub-collection part 3051 flow into the first sample-out unit 3006 of the box device 3000 through the sample outlet, and the target droplets in the second sub-collection part 3052 flow into the box device 3000 through the sample outlet.
  • the second sampling unit 3007 .
  • the first sampling unit 3006 and the second sampling unit 3007 can store corresponding droplets or can transfer these droplets to other devices as needed.
  • the cassette device 3000 is adapted to the microfluidic chip 300 to jointly realize the preparation of droplets including single cells and the sorting of target droplets.
  • a cartridge device 3000 provides an environment for aseptic operation since the droplets are completely confined within the sealed cartridge device 3000 and microfluidic chip 300 before and after sorting.
  • the existence of the box device 3000 makes the system composed of the box device 3000 and the microfluidic chip 300 more concise and convenient, and easy to carry.
  • FIG. 8 shows a schematic structural diagram of a box device 4000 according to still another embodiment of the present disclosure, wherein (a) is a front view of the box device 4000, (b) is a right side view of the box device 4000, (c) ) is a top view of the box device 4000 , and (d) is an axial view of the box device 4000 .
  • the cassette device 4000 is adapted to the microfluidic chip 400 shown in FIG. 2 of the present application, and the combination of the two can be used for cascade sorting of target droplets to obtain target droplets containing different types of target cells.
  • the cascade sorting process of droplets reference may be made to the description about the microfluidic chip 400 .
  • the cassette device 4000 includes a sample introduction unit 4001 and a sample discharge unit 4002 .
  • the sampling unit 4001 communicates with the sampling port of the microfluidic chip 400 and is configured to store the first reagent and release the first reagent to the sampling port of the microfluidic chip 400 .
  • the sample outlet unit 4002 communicates with the sample outlet of the microfluidic chip 400 and is configured to receive and store the second reagent processed by the microfluidic chip 400 and flowing into the sample outlet unit 4002 from the sample outlet of the microfluidic chip 400 , the second reagent includes a target droplet and a non-target droplet, wherein the target droplet includes: a target droplet comprising a single type A target cell, a target droplet comprising a single type B target cell, and a target droplet comprising a single type C target cell Target droplets; non-target droplets are droplets comprising D-type non-target cells.
  • the sampling unit 4001 includes a first sampling unit 4003 , a second sampling unit 4004 and a third sampling unit 4005
  • the sampling unit 4002 includes a first sampling unit 4006 and second sampling units 4007 , 4008 and 4009 .
  • the injection ports of the microfluidic chip 400 include a first injection port and a second injection port located at the two third accommodating parts 401 and a third injection port located at the fourth accommodating part 402 .
  • the first sampling unit 4003 is in communication with the first sampling port of the microfluidic chip 400, and the first sampling unit 4003 is configured to store the first sub-reagent (ie, the first fluid) and release the first sub-reagent to the microfluidic control unit
  • the first injection port of the chip 400; the second injection unit 4004 is communicated with the second injection port of the microfluidic chip 400, and the second injection unit 4004 is configured to store the first sub-reagent (ie, the first fluid) and transmit
  • the first sub-reagent is released to the second injection port of the microfluidic chip 400;
  • the third injection unit 4005 is communicated with the third injection port of the microfluidic chip 400, and the third injection unit 4005 is configured to store the second sub-reagent reagent (ie, a droplet comprising a single cell) and release the second sub-reagent to the third injection port of the microfluidic chip 400 .
  • the first sampling unit 4006 of the sampling unit 4002 is configured to receive and store non-target droplets
  • the second sampling units 4007-4009 of the sampling unit 4002 are configured to receive and store target droplets comprising a single A-type cell, Target droplets comprising a single B-type cell, and target droplets comprising a single C-type cell.
  • the first sampling unit 4003 of the box device 4000 includes a sampling hole 4003A, a first storage cavity 4003B, and a second storage cavity 4003C;
  • the second sampling unit 4004 includes a sampling hole 4004A, a first storage cavity 4004B, and a Two storage chambers 4004C;
  • the third sample injection unit 4005 includes a sample injection hole 4005A, a first storage chamber 4005B, and a second storage chamber 4005C.
  • the structures of the first sampling unit 4003 , the second sampling unit 4004 and the third sampling unit 4005 of the cassette device 4000 are exactly the same as those of the first sampling unit 1003 of the cassette device 1000 .
  • the first sampling unit 4003 , the second sampling unit 4004 and the third sampling unit 4005 have the same technical effects as the first sampling unit 1003 of the cassette device 1000 .
  • the first sampling unit 4006 of the box device 4000 includes a sampling hole 4006A, a third storage cavity 4006B and a fourth storage cavity 4006C
  • the second sampling unit 4007 of the box device 4000 includes a sampling hole 4007A, a third storage cavity 4007B and the fourth storage cavity 4007C
  • the second sampling unit 4008 of the box device 4000 includes a sampling hole 4008A, a third storage cavity 4008B and a fourth storage cavity 4008C
  • the second sampling unit 4009 of the box device 4000 includes A sample well 4009A, a third storage chamber 4009B, and a fourth storage chamber 4009C.
  • the first sampling unit 4006 and the second sampling units 4007-4009 have exactly the same structure. Except for the relative positions of the fourth storage cavity and the sampling hole, the structures of the first sampling unit 4006 and the second sampling units 4007-4009 of the box device 4000 are basically the same as the structure of the sampling unit 1006 of the box device 1000 Therefore, the structure and technical effect of each sample extraction unit of the box device 4000 may refer to the structure and technical effect of the sample extraction unit 1006 of the box device 1000 .
  • the orthographic projection of the fourth storage cavity 4006C on the box device 4000 falls within the orthographic projection of the sample outlet 4006A on the box device 4000 .
  • the box device 4000 further includes a first installation area and a second installation area located between the sample introduction unit 4001 and the sample discharge unit 4002 .
  • the first mounting area is configured to mount a plurality of optical identification devices
  • the second mounting area is configured to mount a plurality of drive electrode devices.
  • the optical identification device and the driving electrode device are used to cooperate with the microfluidic chip 400 to realize cascade sorting of target droplets.
  • the first installation area includes a first sub-installation unit 4010, a second sub-installation unit 4011, and a third sub-installation unit 4012
  • the second installation area includes a fourth sub-installation unit 4013, a fifth sub-installation unit 4014, a Six sub-mounting unit 4015.
  • the first sub-installation unit 4010 is associated with the fourth sub-installation unit 4013
  • the second sub-installation unit 4011 is associated with the fifth sub-installation unit 4014
  • the third sub-installation unit 4012 is associated with the sixth sub-installation unit 4015 .
  • the first fluid is pre-added to the first sampling unit 4003 and the second sampling unit 4004, respectively, and the droplet including a single cell is pre-added to the third sampling unit 4005.
  • the droplet can pass through the above-mentioned box device 1000. and the microfluidic chip 100 is prepared.
  • the first fluid is the oil phase, which may be mixed with surfactants.
  • the first fluid in the first sampling unit 4003 flows into the first sampling port of the microfluidic chip 400 through the sampling hole 4003A, the first storage cavity 4003B and the second storage cavity 4003C; the second sampling unit 4004
  • the first fluid inside flows into the second injection port of the microfluidic chip 400 through the injection hole 4004A, the first storage cavity 4004B and the second storage cavity 4004C; the droplets in the third sampling unit 4005 pass through the injection hole 4005A , the first storage cavity 4005B and the second storage cavity 4005C flow into the third injection port of the microfluidic chip 400 .
  • the microfluidic chip 400 can be filled with the first fluid of the oil phase first, and then the droplets are injected.
  • the above-mentioned droplets are sorted at the sorting channel 403 of the microfluidic chip 400 and enter the corresponding sub-collecting part, and the non-target droplets including D-type non-target cells are collected in the first collecting part 405,
  • the target droplet including a single type A target cell is collected to the first sub-collecting part 4061
  • the target droplet including a single type B target cell is collected to the second sub-collecting part 4062
  • the target droplet including a single type C target cell are collected in the third sub-collection unit 4063 .
  • the non-target droplets in the first collection part 405 flow into the first sample output unit 4006 of the box device 4000 through the sample outlet, and the target droplets in the first sub-collection part 4061 flow into the first sample outlet of the box device 4000 through the sample outlet.
  • the target droplets in the second sub-collecting part 4062 flow into the second sampling unit 4008 of the cassette device 4000 through the sample outlet, and the target droplets in the third sub-collecting part 4063 flow into the second sampling unit 4008 through the sample outlet
  • the second sampling unit 4009 of the box device 4000 may store the corresponding droplets or may transfer the droplets to other devices as needed.
  • the box device 4000 is adapted to the microfluidic chip 400 to jointly realize the cascade sorting of target droplets.
  • three different types of target cells can be screened out through a single sorting process, which greatly improves the cell sorting speed and efficiency.
  • the embodiment of the present disclosure can realize the three different types of target cells using only one box device 4000 and one microfluidic chip 400. for the sorting of target cells, which greatly saves the number of microfluidic chips and cassette devices required, thereby saving production costs.
  • the cartridge device 4000 can be slightly modified to obtain the cartridge device 4000', and the modified cartridge device 4000' can be adapted to the microfluidic chip 400' shown in FIG. 3 of the present application.
  • the modified cassette device 4000' only needs to change the number of sample output units, and other components do not need to be changed.
  • the number of the first sampling unit 4006 is one, and the number of the second sampling unit is three.
  • the number of the first sampling unit 4006 is one, and the number of the second sampling unit is one.
  • the first three steps of using the box device 4000 ′ and the microfluidic chip 400 ′ for the cascade sorting of target droplets are the same as the above about using the box device 4000 and the microfluidic chip 400 for the cascade sorting of target droplets
  • the first three steps (1)-(3) are exactly the same. For the sake of brevity, the description is not repeated here. Next, the description will be started from the fourth step.
  • the droplets are sorted at the sorting channel 403 of the microfluidic chip 400' and enter the corresponding sub-collecting part, and the non-target droplets including the F-type non-target cells pass through the first sorting channel 4031A, 4031B, 4031C are collected in the first collection part 405 ′, and the target droplets including a single E-type target cell are collected in the second collection part 406 .
  • the non-target droplets in the first collection part 405' flow into the first sample output unit of the box device 4000' through the sample outlet, and the target droplets in the second collection part 406 flow into the box device 4000' through the sample outlet.
  • the second sampling unit The first sample discharge unit and the second sample discharge unit can store the corresponding droplets or can transfer these droplets to other equipment as needed.
  • the box device 4000' is adapted to the microfluidic chip 400' to jointly realize the cascade sorting of target droplets. Using the box body device 4000' and the microfluidic chip 400', through multiple cascade sorting of droplets, indistinguishable target droplets and non-target droplets can be distinguished, which greatly improves the final collected droplets. The purity of the target droplets reduces or even eliminates the possibility that the collected target droplets contain non-target droplets.
  • FIG. 9 shows a schematic structural diagram of a box device 5000 according to yet another embodiment of the present disclosure, wherein (a) is a front view of the box device 5000, (b) is a right side view of the box device 5000, (c) ) is a plan view of the box device 5000 , and (d) is an axial view of the box device 5000 .
  • the box device 5000 is adapted to the microfluidic chip 500 shown in FIG. 4 of the present application, and the combination of the two can be used to sort droplets with different particle sizes. For the specific sorting process of droplets, reference may be made to the description about the microfluidic chip 500 .
  • the cassette device 5000 includes a sample introduction unit 5001 and a sample discharge unit 5002 .
  • the sampling unit 5001 is in communication with the sampling port of the microfluidic chip 500, and is configured to store and release the first reagent to the sampling port of the microfluidic chip 500.
  • the first reagent is a large amount of droplets, and a large amount of liquid At least a portion of the droplet includes a single cell;
  • the sample extraction unit 5002 is in communication with the sample outlet of the microfluidic chip 500 and is configured to receive and store processed by the microfluidic chip 500 and flow from the sample outlet of the microfluidic chip 500
  • the second reagent to the sampling unit 5002, the second reagent includes two kinds of droplets with different particle sizes.
  • the sampling unit 5001 includes a sampling unit 5003
  • the sampling unit 5002 includes a first sampling unit 5004 and a second sampling unit 5005 .
  • the sampling unit 5003 communicates with the sampling port of the microfluidic chip 500
  • the sampling unit 5003 is configured to store droplets and release the droplets to the sampling port of the microfluidic chip 500 .
  • the first sampling unit 5004 of the sampling unit 5002 is configured to receive and store droplets with smaller particle sizes
  • the second sampling unit 5005 of the sampling unit 5002 is configured to receive and store droplets with larger particle sizes.
  • the sample injection unit 5003 of the cassette device 5000 includes a sample injection hole 5003A, a first storage chamber 5003B, and a second storage chamber 5003C.
  • the structure of the sampling unit 5003 of the cassette device 5000 is exactly the same as that of the first sampling unit 1003 of the cassette device 1000. Therefore, the sampling unit 5003 of the cassette device 5000 has the same structure as the first sampling unit 1003 of the cassette device 1000. technical effect. For the sake of brevity, its structure and technical effects are not repeated here.
  • the first sampling unit 5004 of the box device 5000 includes a sampling hole 5004A, a third storage cavity 5004B and a fourth storage cavity 5004C; the second sampling unit 5005 of the box device 5000 includes a sampling hole 5005A, a third storage cavity 5005B and the fourth storage chamber 5005C.
  • the first sampling unit 5004 and the second sampling unit 5005 have exactly the same structure. Except for the relative positions of the fourth storage cavity and the sample output hole, the structures of the first sample output unit 5004 and the second sample output unit 5005 of the box body device 5000 are basically the same as the structure of the sample output unit 1006 of the box body device 1000.
  • each sample extraction unit of the box device 5000 may refer to the structure and technical effect of the sample extraction unit 1006 of the box device 1000 .
  • the orthographic projection of the fourth storage cavity 5004C on the box device 5000 falls within the orthographic projection of the sample outlet 5004A on the box device 5000 .
  • a droplet including a single cell is pre-added to the sample introduction unit 5003 , and the droplet can be prepared by the above-mentioned box device 1000 and the microfluidic chip 100 .
  • the first fluid is the oil phase, which may be mixed with surfactants.
  • the above-mentioned droplets flow in the main flow channel 503 of the microfluidic chip 500, and are sorted under the action of inertial force and enter the corresponding collection part.
  • the first type of droplets with smaller particle size are less affected by the inertial force, so they enter the first sorting flow channel 504 along the extending direction of the main flow channel 503, and then flow into the first sorting flow channel 504.
  • a collection section 507 The second type of droplets with larger particle sizes are subjected to larger inertial force, and are thrown out of the main flow channel 503 to enter the second sorting flow channel 505 and finally flow into the second collection part 508 due to the small inertial force.
  • the first type of droplets in the first collection part 507 flow into the first sample output unit 5004 of the box device 5000 through the sample outlet, and the second type of droplets in the second collection part 508 flow into the box device 5000 through the sample outlet
  • the first sample outputting unit 5004 and the second sample outputting unit 5005 can store the corresponding droplets or can transfer the droplets to other devices as needed.
  • the box device 5000 is adapted to the microfluidic chip 500, and can sort droplets of different particle sizes.
  • the box device 5000 does not need to set aside an area for installing an optical recognition device and an area for installing a driving electrode device, and the microfluidic chip 500 also does not need to provide an optical recognition device and a driving electrode device, but only relies on the main flow channel
  • the shape of 503 can distinguish droplets of different particle sizes. Since the optical identification device and the driving electrode device are not required, not only the volume of the box device 5000 and the microfluidic chip 500 can be reduced, but also the production cost can be saved.
  • a microfluidic device is provided.
  • Figure 10 shows a block diagram of the microfluidic device.
  • the microfluidic device includes the microfluidic chip described in any of the preceding embodiments and the cartridge device described in any of the preceding embodiments, the microfluidic chip being assembled with the corresponding cartridge device. Since the microfluidic device can have basically the same technical effect as the microfluidic chip and box device described in the previous embodiments, for the sake of brevity, the description of the technical effect of the microfluidic device is not repeated here.
  • first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections It should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed above could be termed a second element, component, region, layer or section without departing from the teachings of the present disclosure.
  • Embodiments of the disclosure are described herein with reference to schematic illustrations (and intermediate structures) of idealized embodiments of the disclosure. As such, variations to the shapes of the illustrations are to be expected, eg, as a result of manufacturing techniques and/or tolerances. Accordingly, embodiments of the present disclosure should not be construed as limited to the particular shapes of the regions illustrated herein, but are to include deviations in shapes due, for example, to manufacturing. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of the present disclosure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Fluid Mechanics (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

一种微流控芯片、适配该微流控芯片的盒体装置、以及包括该微流控芯片和盒体装置的微流控装置。该微流控芯片(300)包括:容纳第一流体的第一容纳部(301)、容纳第二流体的第二容纳部(302)、输送流道(303)、分选流道(305)及收集部(306)。输送流道(303)的形状被设计为使得第一流体和第二流体在汇合点(304)处汇合。分选流道(305)包括第一分选流道(3051)和第二分选流道(3052)。收集部(306)包括第一收集部(3061)和第二收集部(3062)。

Description

微流控芯片、盒体装置、微流控装置
相关申请的交叉引用
本申请要求享有2021年4月27日提交的PCT国际申请NO.PCT/CN2021/090291和2022年1月29日提交的中国专利申请NO.202210112214.2的优先权,其全部公开内容通过引用合并于此。
技术领域
本公开涉及生物医学检测领域,尤其涉及一种微流控芯片、与该微流控芯片配合使用的盒体装置、以及包括该微流控芯片和盒体装置的微流控装置。
背景技术
细胞是生物体基本的结构和功能单位。由于各个细胞之间通常存在高度异质性,因此通过对细胞群体分析而获得的数据均值实质上掩盖了单个细胞之间的差异性,因而不能表征基因表达的随机性本质,无法反映真实情况。随着生命科学和精准医学的不断发展,细胞群体分析逐渐向单细胞分析发展。单细胞分析的一个关键技术是如何能够从高度异质的包含众多细胞的生物样品中分离出单个细胞。单细胞分选技术为单细胞分析、癌症早期诊断和伴随诊断等热门医学领域提供了新的选择。
发明内容
根据本公开的一方面,提供了一种微流控芯片。该微流控芯片包括:第一容纳部,配置为容纳第一流体;第二容纳部,配置为容纳第二流体,所述第二流体包括细胞悬液;输送流道,包括第一输送流道和第二输送流道,所述第一输送流道与所述第一容纳部连通且所述第二输送流道与所述第二容纳部连通,所述第一输送流道与所述第二输送流道在汇合点处彼此交叉且连通,所述输送流道的形状被设计为使得所述第一流体和所述第二流体在所述汇合点处汇合;分选流道,位于所述输送流道的下游,所述分选流道包括第一分选流道和第二分选流道;以及收集部,位于所述分选流道的下游且包括第一收集部和第 二收集部,所述第一收集部与所述第一分选流道连通,所述第二收集部与所述第二分选流道连通。
在一些实施例中,所述第一输送流道的一部分被所述汇合点分割为第一区段和第二区段,在所述第一区段和所述第二区段中的每一个区段中,该区段的第一横截面的面积沿着远离所述汇合点的第一方向逐渐增大,所述第一横截面垂直于所述第一方向,并且,所述第二输送流道被所述汇合点分割为第三区段和第四区段,在所述第三区段和所述第四区段中的每一个区段中,该区段的第二横截面的面积沿着远离所述汇合点的第二方向逐渐增大,所述第二横截面垂直于所述第二方向。
在一些实施例中,所述第一分选流道的始端和所述第二分选流道的始端均与所述输送流道的末端连通,所述第一分选流道的末端与所述第一收集部连通且所述第二分选流道的末端与所述第二收集部连通,所述第一分选流道和所述第二分选流道从所述输送流道的末端朝向所述汇合点弯折,并且所述第一收集部和所述第二收集部位于所述汇合点和所述输送流道的末端之间。
在一些实施例中,所述分选流道还包括至少两个连接流道。所述第二分选流道包括至少两个级联的分支,所述至少两个级联的分支中的任意相邻两个分支之间设置有一个连接流道且所述任意相邻两个分支经由所述连接流道连通;所述第一分选流道的始端与所述输送流道的末端连通,所述第一分选流道的末端与所述第一收集部连通,所述第一分选流道与所述至少两个级联的分支中的第一级分支相邻,所述第一分选流道与所述第一级分支之间设置有一个所述连接流道且所述第一分选流道与所述第一级分支经由所述连接流道连通;并且所述第二收集部包括至少两个子收集部,所述级联的分支与所述子收集部一一对应,并且所述级联的分支中的一个与所述子收集部中的相应一个连通。
在一些实施例中,所述第二分选流道包括级联的第一级分支、第二级分支以及第三级分支,所述至少两个连接流道包括第一连接流道、第二连接流道、第三连接流道,所述第二收集部包括第一子收集部、第二子收集部、第三子收集部。所述第一分选流道与所述第一级分支经由所述第一连接流道连通,所述第一级分支与所述第二级分支经由 所述第二连接流道连通,所述第二级分支与所述第三级分支经由所述第三连接流道连通;以及所述第一级分支的末端与所述第一子收集部连通,所述第二级分支的末端与所述第二子收集部连通,所述第三级分支的末端与所述第三子收集部连通。
在一些实施例中,所述第二连接流道相较于所述第一连接流道在第二方向上更靠近所述收集部,并且所述第三连接流道相较于所述第二连接流道在所述第二方向上更靠近所述收集部。
在一些实施例中,所述微流控芯片还包括两个第三容纳部。所述第一级分支的始端和所述第二级分支的始端分别与所述两个第三容纳部中的一个连通,所述第三容纳部配置为容纳所述第一流体。
在一些实施例中,所述分选流道还包括至少两个连接流道。所述第一分选流道包括至少两个级联的分支,所述至少两个级联的分支中的任意相邻两个分支之间设置有一个所述连接流道且所述任意相邻两个分支经由所述连接流道连通,所述至少两个级联的分支的末端均与所述第一收集部连通;并且所述第二分选流道的始端经由一个所述连接流道与所述第一分选流道的最后一级分支连通,所述第二分选流道的末端与所述第二收集部连通。
在一些实施例中,所述分选流道还包括主体流道,所述主体流道在所述微流控芯片所在的平面内呈螺旋状,所述主体流道的末端与所述第一分选流道和所述第二分选流道连通,所述第一分选流道配置为筛选第一液滴,所述第二分选流道配置为筛选第二液滴,并且所述第一分选流道筛选的所述第一液滴和所述第二分选流道筛选的所述第二液滴具有不同的粒径。
在一些实施例中,所述第一输送流道的一部分包括第一子部分、包括所述汇合点的第二子部分、以及第三子部分,所述第一子部分属于所述第一区段,所述第三子部分属于所述第二区段,所述第二子部分跨越所述第一区段和所述第二区段并且位于所述第一子部分和所述第三子部分之间,所述第一子部分和所述第三子部分的所述第一横截面的面积均大于所述第二子部分的所述第一横截面的面积。
在一些实施例中,所述第一输送流道的第二子部分在所述汇合点处的所述第一横截面的尺寸配置为允许具有特定粒径的第一流体在其内部流动,所述第一流体的特定粒径大于所述细胞悬液中的单个细胞 的粒径。
在一些实施例中,所述第二输送流道包括第一子流道、第二子流道以及第三子流道,所述第一子流道和所述第二子流道属于所述第三区段,所述第三子流道属于所述第四区段。所述第一子流道的第一端与所述第二容纳部连通,所述第一子流道的第二端与所述第二子流道的第一端连通,所述第二子流道的第二端与所述第三子流道的第一端连通,且所述第二子流道的第二端与所述第三子流道的第一端均位于所述汇合点处。所述第一子流道和所述第三子流道的所述第二横截面的面积均大于所述第二子流道的所述第二横截面的面积。
在一些实施例中,所述第二子流道的所述第二横截面的尺寸配置为允许具有特定粒径的第二流体在其内部流动,所述第二流体的特定粒径大于所述细胞悬液中的单个细胞的1倍粒径且小于所述单个细胞的2倍粒径。
在一些实施例中,所述第三子流道的所述第二横截面的面积沿着从所述第三子流道的第一端到第二端的方向逐渐增大。
在一些实施例中,所述第一输送流道的第二子部分在所述汇合点处的所述第一横截面的面积大于或等于所述第二输送流道的第二子流道和第三子流道在所述汇合点处的所述第二横截面的面积。
在一些实施例中,所述输送流道的内壁表面具有疏水性。
在一些实施例中,所述第一容纳部和所述第二容纳部的轮廓包括四个倒角,所述倒角的形状包括圆弧状。
在一些实施例中,所述第一容纳部和所述第二容纳部均设置有过滤结构,所述过滤结构包括多个微结构,所述多个微结构中的相邻两个之间的间隙大于所述细胞悬液中的单个细胞的1倍粒径且小于所述单个细胞的2倍粒径。
在一些实施例中,所述微流控芯片还包括进样口和出样口。所述进样口布置在所述第一容纳部和所述第二容纳部中,所述出样口布置在所述收集部中。
根据本公开的另一方面,提供了一种盒体装置。该盒体装置配置为与前面任一个实施例描述的微流控芯片搭配使用,所述微流控芯片包括进样口和出样口,所述盒体装置包括:容纳腔,配置为容纳前面任一个实施例描述的微流控芯片;进样单元,与所述微流控芯片的进 样口连通,所述进样单元配置为存储第一试剂并将所述第一试剂释放到所述微流控芯片的进样口;以及出样单元,与所述微流控芯片的出样口连通,所述出样单元配置为接纳和存储被所述微流控芯片处理且从所述微流控芯片的出样口流入到所述出样单元的第二试剂。所述进样单元包括进样孔和第一储存腔,所述进样孔为通孔并与所述第一储存腔连通,所述进样孔从所述盒体装置的表面向所述盒体装置的内部凹入,并且所述第一储存腔位于所述进样孔远离所述盒体装置的表面的一侧。
在一些实施例中,所述第一储存腔位于所述盒体装置的内部,并且所述进样孔在所述盒体装置上的正投影落在所述第一储存腔在所述盒体装置上的正投影之内。
在一些实施例中,所述进样单元还包括第二储存腔,所述第二储存腔位于所述第一储存腔远离所述进样孔的一侧并与所述第一储存腔连通,所述第二储存腔包括与所述第一储存腔连通的第一开口和与所述第一开口相对的第二开口,所述第二开口在所述盒体装置上的正投影落在所述第一开口在所述盒体装置上的正投影之内。
在一些实施例中,所述第二储存腔的第二开口在所述盒体装置上的正投影落在所述进样孔在所述盒体装置上的正投影之内。
在一些实施例中,所述出样单元包括出样孔和第三储存腔,所述出样孔为通孔并与所述第三储存腔连通,所述出样孔从所述盒体装置的表面向所述盒体装置的内部凹入,并且所述第三储存腔位于所述出样孔远离所述盒体装置的表面的一侧。
在一些实施例中,所述第三储存腔位于所述盒体装置的内部,并且所述出样孔在所述盒体装置上的正投影落在所述第三储存腔在所述盒体装置上的正投影之内。
在一些实施例中,所述出样单元还包括第四储存腔,所述第四储存腔位于所述第三储存腔远离所述出样孔的一侧并与所述第三储存腔连通。
在一些实施例中,所述第四储存腔在所述盒体装置上的正投影与所述出样孔在所述盒体装置上的正投影至多交叠一部分。
在一些实施例中,所述第四储存腔在所述盒体装置上的正投影落在所述出样孔在所述盒体装置上的正投影之内。
在一些实施例中,所述进样单元包括第一进样单元、第二进样单元、第三进样单元,所述微流控芯片的进样口包括第一进样口、第二进样口、第三进样口,所述第一试剂包括第一流体、细胞悬液、生化试剂。所述第一进样单元与所述微流控芯片的第一进样口连通,所述第一进样单元配置为存储所述第一流体并将所述第一流体释放到所述微流控芯片的第一进样口;所述第二进样单元与所述微流控芯片的第二进样口连通,所述第二进样单元配置为存储所述细胞悬液并将所述细胞悬液释放到所述微流控芯片的第二进样口;所述第三进样单元与所述微流控芯片的第三进样口连通,所述第三进样单元配置为存储所述生化试剂并将所述生化试剂释放到所述微流控芯片的第三进样口。
在一些实施例中,所述盒体装置还包括第一安装区域和第二安装区域,所述第一安装区域配置为安装光学识别装置,所述第二安装区域配置为安装驱动电极装置。
在一些实施例中,所述进样单元包括第一进样单元和第二进样单元,所述微流控芯片的进样口包括第一进样口和第二进样口,所述第一试剂包括第一流体和包括单个细胞的液滴。所述第一进样单元与所述微流控芯片的第一进样口连通,所述第一进样单元配置为存储所述第一流体并将所述第一流体释放到所述微流控芯片的第一进样口;所述第二进样单元与所述微流控芯片的第二进样口连通,所述第二进样单元配置为存储所述包括单个细胞的液滴并将所述包括单个细胞的液滴释放到所述微流控芯片的第二进样口。所述出样单元包括第一出样单元、第二出样单元以及位于所述第一出样单元和所述第二出样单元之间的第三出样单元,所述第二试剂包括第一液滴和第二液滴,所述第三出样单元配置为接纳和存储所述第一液滴,所述第一出样单元和所述第二出样单元配置为接纳和存储所述第二液滴。
在一些实施例中,所述进样单元包括第一进样单元、第二进样单元、第三进样单元,所述微流控芯片的进样口包括第一进样口、第二进样口、第三进样口,所述第一试剂包括第一流体、细胞悬液、生化试剂。所述第一进样单元与所述微流控芯片的第一进样口连通,所述第一进样单元配置为存储所述第一流体并将所述第一流体释放到所述微流控芯片的第一进样口;所述第二进样单元与所述微流控芯片的第二进样口连通,所述第二进样单元配置为存储所述细胞悬液并将所述 细胞悬液释放到所述微流控芯片的第二进样口;所述第三进样单元与所述微流控芯片的第三进样口连通,所述第三进样单元配置为存储所述生化试剂并将生化试剂释放到所述微流控芯片的第三进样口。所述出样单元包括第一出样单元和第二出样单元,所述第二试剂包括第一液滴和第二液滴,所述第一出样单元配置为接纳和存储所述第一液滴,所述第二出样单元配置为接纳和存储所述第二液滴。
在一些实施例中,所述第一出样单元和所述第二出样单元位于所述进样单元与所述第一安装区域和第二安装区域之间。
在一些实施例中,所述第一安装区域和所述第二安装区域位于所述进样单元和所述出样单元之间,所述第一安装区域包括第一子安装单元、第二子安装单元、第三子安装单元,所述第二安装区域包括第四子安装单元、第五子安装单元、第六子安装单元,所述第一子安装单元和所述第四子安装单元关联,所述第二子安装单元和所述第五子安装单元关联,所述第三子安装单元和所述第六子安装单元关联。
在一些实施例中,所述进样单元包括第一进样单元、第二进样单元、第三进样单元,所述微流控芯片的进样口包括第一进样口、第二进样口、第三进样口,所述第一试剂包括第一流体和包括单个细胞的液滴。所述第一进样单元与所述微流控芯片的第一进样口连通,所述第一进样单元配置为存储所述第一流体并将所述第一流体释放到所述微流控芯片的第一进样口;所述第二进样单元与所述微流控芯片的第二进样口连通,所述第二进样单元配置为存储所述第一流体并将所述第一流体释放到所述微流控芯片的第二进样口;所述第三进样单元与所述微流控芯片的第三进样口连通,所述第三进样单元配置为存储所述包括单个细胞的液滴并将所述包括单个细胞的液滴释放到所述微流控芯片的第三进样口。所述出样单元包括第一出样单元和第二出样单元,所述第二试剂包括第一液滴和第二液滴,所述第一出样单元配置为接纳和存储所述第一液滴,所述第二出样单元配置为接纳和存储所述第二液滴。
在一些实施例中,所述第一出样单元的数量为一个,所述第二出样单元的数量为三个。
在一些实施例中,所述第一出样单元的数量为一个,所述第二出样单元的数量为一个。
在一些实施例中,所述盒体装置包括一个进样单元和两个出样单元,所述第二试剂包括第一液滴和第二液滴,所述第一液滴与所述第二液滴具有不同的粒径,所述两个出样单元中的一个配置为接纳和存储所述第一液滴,所述两个出样单元中的另一个配置为接纳和存储所述第二液滴。
根据本公开的又一方面,提供了一种微流控装置,该微流控装置包括在前面任一个实施例中描述的微流控芯片和在前面任一个实施例中描述的盒体装置,所述微流控芯片与所述盒体装置组装在一起。
附图说明
为了更清楚地描述本公开实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A示出了根据本公开一实施例的微流控芯片的结构示意图;
图1B示出了图1A的微流控芯片的区域I的放大示意图;
图1C示出了图1A的微流控芯片的容纳部的放大示意图;
图2示出了根据本公开另一实施例的微流控芯片的结构示意图;
图3示出了图2的微流控芯片的一种变型的结构示意图;
图4示出了根据本公开又一实施例的微流控芯片的结构示意图;
图5A示出了根据本公开一实施例的盒体装置的结构示意图;
图5B示出了图5A的盒体装置适配的微流控芯片的结构示意图;
图6A示出了根据本公开另一实施例的盒体装置的结构示意图;
图6B示出了图6A的盒体装置适配的微流控芯片的结构示意图;
图7示出了根据本公开又一实施例的盒体装置的结构示意图;
图8示出了根据本公开再一实施例的盒体装置的结构示意图;
图9示出了根据本公开再一实施例的盒体装置的结构示意图;以及
图10示出了根据本公开实施例的微流控装置的框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方 案进行清楚、完整地描述。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在正式描述本公开实施例的技术方案之前,对本公开实施例中使用的术语做出如下解释和定义,以帮助本领域技术人员能够更加清楚地理解本公开实施例的技术方案。
如本文所使用的,术语“流体”是指能够流动的所有物质,是液体和气体的总称。流体是一种在微小剪切力的作用下能够连续变形的物质。流体可以由单纯的一种物质组成,也可以由多种不同的物质混合而成。流体可以是连续相(例如油相),也可以是分散相(例如水相),还可以是连续相和分散相的混合。流体具有易流动性、可压缩性、黏性等特性。
如本文所使用的,术语“油相”是指,根据相似相溶原理,不易溶于水的物质属于油相。例如,将一种物质与水混溶,如果混合后的液体呈现分层或浑浊现象,则该物质属于油相。油可以具有高于或低于水的密度和/或高于或低于水的粘度。例如,液状石蜡、硅油、凡士林、矿物油、全氟化油等均属于油相。
如本文所使用的,术语“水相”是指,根据相似相溶原理,易溶于水的物质属于水相。例如,将一种物质与水混溶,如果混合后的液体呈现透明且均匀的溶液,则该物质属于水相。例如,水、甘油、酒精、丙酮等均属于水相。
如本文所使用的,术语“细胞悬液”是指通过机械或化学方法将细胞从组织上分离并用细胞培养液稀释混匀得到的细胞溶液。细胞悬液中可以包括众多数量的细胞,例如数百个、数千个、数万个、数百万个、数千万个或更多个细胞。细胞悬液中的细胞可以是任何类型的细胞,包括但不限于原核细胞、真核细胞、细菌、真菌、植物、哺乳动物或其他动物细胞类型、支原体、正常组织细胞、肿瘤细胞或任何其他细胞类型,无论是否衍生来自单细胞或多细胞生物。细胞悬液中的细胞可以包括DNA、RNA、细胞器、蛋白质或其任何组合。
如本文所使用的,术语“A与B连通”是指A元件与B元件互相连接且相通,其允许流体在A元件与B元件之间流动,即,流体可以 按照产品设计要求从A元件流动至B元件,或者从B元件流动至A元件。A元件与B元件可以直接连通,即流体可以从A元件直接流动至B元件或从B元件直接流动至A元件而不经过其他中间元件(例如管道)。替代地,A元件与B元件可以间接连通,即流体可以从A元件经由一个或多个中间元件(例如管道)流动至B元件或从B元件经由一个或多个中间元件(例如管道)流动至A元件。
如本文所使用的,术语“聚合酶链式反应(Polymerase Chain Reaction,PCR)”是一种用于放大扩增特定的脱氧核糖核酸(DNA)片段的分子生物学技术,它可以看作是生物体外的特殊DNA复制,其能将微量的DNA大量复制,使其数量大幅增加。PCR的基本原理是,DNA在高温(例如95°左右)时可以发生变性解链变为单链,当温度降至低温(例如60℃左右)时,引物与单链按碱基互补配对原则结合又变为双链。因此,通过温度变化控制DNA的变性和复性,加入设计引物,就可以实现DNA的大量复制。PCR反应包括但不限于数字PCR(digital PCR,dPCR)、定量PCR、实时PCR。dPCR技术可以提供数字化DNA量化信息的定量分析技术,其与微流控技术相结合,可以提供更高的灵敏度和精确度。
如本文所使用的,术语“微流控芯片”是指具有微米尺度微通道的芯片,其可以将生物、化学和医学等领域中所涉及的样本制备、反应、分离、检测等基本操作单元集成到该微尺度芯片上,自动完成反应和分析的全过程。基于微流控芯片的分析检测装置可以具有下列优点:液体流动可控、样品消耗少、检测速度快、操作简便、多功能集成、体积小和便于携带等。
如本文所使用的,术语“XX的粒径”是指物质XX的大小,即物质XX在某个方向上的长度。物质XX可以是单个细胞或单个液滴。例如,当细胞或液滴的形状为球形时,则术语“单个细胞的粒径”是指单个细胞的直径,“单个液滴的粒径”是指单个液滴的直径。当细胞或液滴的形状为棒状时,则术语“单个细胞的粒径”是指单个细胞在较短边的方向上的长度,“单个液滴的粒径”是指单个液滴在较短边的方向上的长度。
本申请的发明人发现,在常规技术中,用于分选单细胞的方法主要分为两类:一类是使用荧光流式细胞分选仪(Fluorescence Activated  Cell Sorting,FACS)来自动分选单细胞,但是该荧光流式细胞分选仪价格昂贵且维护成本很高;另一类是通过专业操作人员来手动分选单细胞,但是该手动分选方法不仅依赖操作人员的技巧和熟练程度,而且也需要显微移液平台、光镊等大中型仪器。此外,单细胞分选过程极易受到环境中飘浮的气溶胶、微生物的污染,这种污染通常难以在后续的检测环节去除。因此,现有单细胞分选方法存在诸如成本昂贵、对操作人员技能要求高、所需仪器设备受场地限制、易受到环境污染等缺点。
有鉴于此,本公开的实施例提供了一种微流控芯片。该微流控芯片可以用来制备包含源自细胞悬液的单个细胞的液滴以及从所制备的液滴中分选出目标液滴。通过该微流控芯片可以实现单细胞的制备和分选,可以在有效提高自动化操作的同时降低使用成本,并且可以消除交叉污染,提高细胞存活率。
图1A示出了微流控芯片300的结构示意图,其中(a)是该微流控芯片300的前视图,(b)是该微流控芯片300的后视图,(c)是该微流控芯片300的左视图,(d)是该微流控芯片300的轴向图。如图1A所示,该微流控芯片300包括:第一容纳部301、第二容纳部302、输送流道303、分选流道305以及收集部306。第一容纳部301配置为容纳第一流体,第二容纳部302配置为容纳第二流体,该第二流体包括细胞悬液。输送流道303包括第一输送流道3031和第二输送流道3032,第一输送流道3031与第一容纳部301连通且第二输送流道3032与第二容纳部302连通,第一输送流道3031与第二输送流道3032在汇合点304处彼此交叉且连通。输送流道303的形状被设计为使得第一流体和第二流体在汇合点304处汇合。分选流道305位于输送流道303的下游,分选流道305包括第一分选流道3051和第二分选流道3052。收集部306位于分选流道305的下游且包括第一收集部3061和第二收集部3062,第一收集部3061与第一分选流道3051连通,第二收集部3062与第二分选流道3052连通。
在一些实施例中,第一分选流道3051可以配置为筛选第一液滴,第二分选流道3052可以配置为筛选第二液滴。在这样的情况下,第一收集部3061配置为收集第一液滴,第二收集部3062配置为收集第二液滴。
需要说明的是,在本文中,术语“第一液滴”可以指非目标液滴,术语“第二液滴”可以指目标液滴。非目标液滴指该液滴包括来自细胞悬液的非目标细胞,而目标液滴指该液滴包括来自细胞悬液的单个目标细胞。细胞悬液中包括大量的细胞,这些细胞中包括大部分的非目标细胞和少量的目标细胞(例如外周血样本中的循环肿瘤细胞、稀有细胞、癌细胞等)。在本文中,术语“第一液滴”和“非目标液滴”可互换地使用,术语“第二液滴”和“目标液滴”可互换地使用。
该微流控芯片300不仅可以从细胞悬液中制备得到包含单个细胞(单个目标细胞或单个非目标细胞)的液滴,同时还可以从该液滴中分选出包含单个目标细胞的目标液滴。因此,该微流控芯片300具有较高的集成度,可以自动完成包含单个细胞的液滴的制备以及包含单个目标细胞的液滴的分选,而无需操作人员的手动操作,因而可以有效提高操作的自动化程度。此外,由于第一流体和第二流体仅在输送流道303内流动,与外界环境完全隔离,因此可以避免受到环境中飘浮的气溶胶、微生物等的污染。而且,由于从细胞悬液中分离出的单个细胞被液滴包裹和保护,因此整个制备过程比较温和,进而可以有效提高细胞的存活率。
下面,具体描述如何通过该微流控芯片300制备包含单个细胞的液滴。
图1B是图1A的微流控芯片300的区域I的放大图。参考图1A和图1B,微流控芯片300的输送流道303包括第一输送流道3031和第二输送流道3032。第一输送流道3031与第一容纳部301连通且供第一流体在其内部流动。第一流体为连续相(例如油相)液体,其例如可以是矿物油、全氟化油等任意适当的流体。可选地,第一流体中可以混合有表面活性剂,表面活性剂有利于稳定所得的液滴,例如,抑制所得液滴的后续聚结。当第一流体为全氟化油时,表面活性剂可以是全氟化表面活性剂。第二输送流道3032与第二容纳部302连通且供第二流体在其内部流动。第二流体为水相液体。在图中的示例中,第二容纳部302包括第一子容纳部3021和第二子容纳部3022,第一子容纳部3021配置为容纳细胞悬液,第二子容纳部3022配置为容纳生化试剂。可以根据不同的生化反应来采取不同的生化试剂,本公开的实施例对生化试剂的化学成分不作具体限定。需要说明的是,虽然图1A中 示出了细胞悬液容纳在第一子容纳部3021内,生化试剂容纳在与第一子容纳部3021分离的第二子容纳部3022内,但是这仅是一个示例,本公开的实施例并不仅限于此。在替代的实施例中,细胞悬液和生化试剂可以预先混合并容纳在同一个容纳部内。第一输送流道3031和第二输送流道3032在汇合点304处相交且连通。
第一输送流道3031的一部分被汇合点304分割为第一区段和第二区段,在第一区段和第二区段中的每一个区段中,该区段的第一横截面的面积沿着远离汇合点304的第一方向逐渐增大,第一横截面垂直于第一方向,第一方向是图中的竖直方向。第二输送流道3032被汇合点304分割为第三区段和第四区段,在第三区段和第四区段中的每一个区段中,该区段的第二横截面的面积沿着远离汇合点304的第二方向逐渐增大,第二横截面垂直于第二方向,第二方向是指第二流体在第二输送流道3032内的流动方向。
具体而言,第一输送流道3031包括沿第一方向依次布置的第一子部分3031-1、第二子部分3031-2以及第三子部分3031-3,第二子部分3031-2位于第一子部分3031-1和第三子部分3031-3之间并且包括汇合点304。第一子部分3031-1属于前文描述的第一区段,第三子部分3031-3属于前文描述的第二区段,第二子部分3031-2跨越第一区段和第二区段。第一子部分3031-1和第三子部分3031-3的第一横截面的面积均大于第二子部分3031-2的第一横截面的面积,也即,沿着从第一子部分3031-1到第三子部分3031-3的方向,第一输送流道3031先逐渐变细后逐渐变粗,这样使得第一输送流道3031呈现上下(第一子部分3031-1和第三子部分3031-3)粗中间(第二子部分3031-2)细的形状。通过这样的形状设计,当第一输送流道3031内的第一流体从第一子部分3031-1流向第二子部分3031-2时或者从第三子部分3031-3流向第二子部分3031-2时,由于流道越来越细,因此第一流体在第一输送流道3031内的流速变大,从而可以增加第一流体的压力,促进第一子部分3031-1和第三子部分3031-3内的第一流体向第二子部分3031-2的汇合点304流动,并在汇合点304处汇集。这样可以提供充足的第一流体,以便于后续形成液滴。第一输送流道3031的第一子部分3031-1、第二子部分3031-2以及第三子部分3031-3的第一横截面的形状可以是圆形、正方形、矩形、规则多边形、不规则形状等,本公开 的实施例对此不做限定。
第一输送流道3031的第二子部分3031-2在汇合点304处的第一横截面的尺寸配置为允许具有特定粒径的第一流体在其内部流动,第一流体的特定粒径大于单个细胞(例如单个目标细胞)的粒径。也即,第一输送流道3031的第二子部分3031-2在汇合点304处的第一横截面的宽度大于单个细胞的粒径。在一个示例中,细胞悬液中的每个细胞的粒径大约为10μm,第一输送流道3031的第二子部分3031-2在汇合点304处的横截面的宽度大于10μm,例如略微大于10μm。这里的“略微大于10μm”是指第一输送流道3031的第二子部分3031-2在汇合点304处的第一横截面的宽度大于10μm,但是小于20μm,也即该宽度大于单个细胞的粒径但是小于两个细胞的粒径的和。需要说明的是,短句“第一输送流道3031的第二子部分3031-2在汇合点304处的第一横截面的宽度”可以理解为,当第一输送流道3031的第二子部分3031-2在汇合点304处的第一横截面的形状为圆形时,则该第一横截面的宽度为该圆形的直径;当第一输送流道3031的第二子部分3031-2在汇合点304处的第一横截面的形状为正方形时,则该第一横截面的宽度为该正方形的边长;当第一输送流道3031的第二子部分3031-2在汇合点304处的第一横截面的形状为矩形时,则该第一横截面的宽度为该矩形的短边的长度;当第一输送流道3031的第二子部分3031-2在汇合点304处的第一横截面的形状为规则多边形时,则该第一横截面的宽度为该规则多边形的最远两个顶点之间的距离。在一个示例中,当第一输送流道3031的第二子部分3031-2在汇合点304处的第一横截面为圆形且单个细胞的形状为圆球状时,则第一输送流道3031的第二子部分3031-2在汇合点304处的第一横截面的宽度大于单个细胞的粒径应被理解为第一输送流道3031的第二子部分3031-2在汇合点304处的直径大于单个细胞的直径。通过这种设计方式,当第一输送流道3031内的第一流体从第一子部分3031-1流向第二子部分3031-2时或者从第三子部分3031-3流向第二子部分3031-2时,可以使第一流体在汇合点304附近形成依次排列的单排流体颗粒,该单排流体颗粒中的每个颗粒的粒径大于单个细胞的1倍粒径且小于单个细胞的2倍粒径。这样,可以使由第一流体形成的每个颗粒的粒径略微大于单个细胞的粒径,从而可以更好地包裹单个细胞,起到更好的包封效果。而且这样的设计 还可以增大第一流体在汇合点304处的流速,有利于液滴的形成。
第二输送流道3032包括第一子流道3032-1、第二子流道3032-2以及第三子流道3032-3。第一子流道3032-1和第二子流道3032-2属于前文描述的第三区段,第三子流道3032-3属于前文描述的第四区段。第一子流道3032-1的第一端与第二容纳部302连通,第一子流道3032-1的第二端与第二子流道3032-2的第一端连通;第二子流道3032-2的第二端与第三子流道3032-3的第一端连通,且第二子流道3032-2的第二端与第三子流道3032-3的第一端均位于汇合点304处;第三子流道3032-3的第二端与分选流道305的始端连通。第一子流道3032-1包括第一分支和第二分支,第一分支与第二容纳部302的第一子容纳部3021连通并且配置为使细胞悬液在其内部流动,第二分支与第二容纳部302的第二子容纳部3022连通并且配置为使生化试剂在其内部流动。如图1B所示,第一分支与第二分支在一点处彼此相交且连通,并且第一分支与第二分支在该点处的夹角为锐角。在一个示例中,第一分支与第二分支在该点处的夹角约为60度。第一分支与第二分支这样的夹角设计,一方面可以保证第一分支内的细胞悬液和第二分支内的生化试剂有足够向前(朝向汇合点304的方向)的流速,缓冲压力;另一方面还可以保证细胞悬液和生化试剂能够在该点处充分混合;再一方面还可以减少混合溶液在该流道内的死体积,提高第一分支与第二分支的储液精度。
第二输送流道3032的第一子流道3032-1和第三子流道3032-3的第二横截面的面积均大于第二输送流道3032的第二子流道3032-2的第二横截面的面积。也即,第一子流道3032-1的第一分支和第二分支的第二横截面的面积均大于第二子流道3032-2的第二横截面的面积,并且第三子流道3032-3的第二横截面的面积大于第二子流道3032-2的第二横截面的面积。沿着从第一子流道3032-1到第三子流道3032-3的方向,第二输送流道3032由粗变细再变粗。与第一输送流道3031相似,第二输送流道3032的第一子流道3032-1、第二子流道3032-2以及第三子流道3032-3的第二横截面的形状可以是圆形、正方形、矩形、规则多边形、不规则形状等,本公开的实施例对此不做限定。
第二输送流道3032的第二子流道3032-2的第二横截面的尺寸配置为允许具有特定粒径的第二流体在其内部流动,第二流体的特定粒径 大于单个细胞的1倍粒径且小于单个细胞的2倍粒径。也就是说,第二子流道3032-2的第二横截面的宽度大于单个细胞的1倍粒径且小于单个细胞的2倍粒径。在一个示例中,当第二子流道3032-2的第二横截面为圆形且单个细胞的形状为圆球形时,则第二子流道3032-2的第二横截面的宽度大于单个细胞的1倍粒径且小于单个细胞的2倍粒径应被理解为第二子流道3032-2的直径大于单个细胞的1倍直径且小于单个细胞的2倍直径。在这种情况下,第二子流道3032-2的直径可以是单个细胞的直径的1.1倍、1.2倍、1.3倍、1.4倍、1.5倍、1.6倍、1.7倍、1.8倍、1.9倍等。当细胞悬液和生化试剂混合后并向前(朝向汇合点304)流动时,通过使第二子流道3032-2的第二横截面的宽度大于单个细胞的1倍粒径且小于2倍粒径,使得该混合溶液在第二子流道3032-2内排列成单排的单个细胞串,如图1B所示。也就是说,第二子流道3032-2的第二横截面的宽度仅允许在其宽度方向上容纳单个细胞,而无法容纳两个并排的细胞。当该单排的单个细胞串移动到汇合点304时,在第一输送流道3031内的第一流体的压力下,细胞串中最靠近汇合点304的一个细胞(也即细胞串中最靠前的一个细胞)与该细胞串分离,该分离的一个细胞与第一流体中的单个颗粒在汇合点304处结合,进而形成包含单个细胞的液滴。如前所述,第一流体是油相,第二流体(也即细胞悬液和生化试剂的混合溶液)是水相,因此,所形成的液滴具有油包水结构,即油相的第一流体将水相的第二流体包裹在内。
如图所示,第二输送流道3032的第三子流道3032-3的第二横截面的面积沿其第一端到第二端的方向逐渐增大,也即,第三子流道3032-3沿其第一端到第二端的方向逐渐变粗。这样设计的目的是使得所制备的液滴在沿着第三子流道3032-3向前移动时逐渐变大,从而便于液滴相稳定。第一输送流道3031的第二子部分3031-2在汇合点304处的第一横截面的面积大于或等于第二输送流道3032的第二子流道3032-2和第三子流道3032-3在汇合点304处的第二横截面的面积。在一个示例中,第一输送流道3031的第二子部分3031-2在汇合点304处的第一横截面的面积等于第二输送流道3032的第二子流道3032-2和第三子流道3032-3在汇合点304处的第二横截面的面积。通过这样的设计方式,可以使得在汇合点304处,第一流体中的单个油相颗粒的粒径与第二 流体的单个细胞的的粒径大致相等,从而可以精准控制所形成的液滴的大小。
以上详细描述了如何利用微流控芯片300制备包含单个细胞的液滴。下面,详细介绍如何利用微流控芯片300从所制备的液滴中分选出目标液滴,即包含单个目标细胞的液滴。
该微流控芯片300还可以包括光学识别装置和驱动电极装置(图中未示出),该光学识别装置和驱动电极装置可以设置在第二输送流道3032的第三子流道3032-3附近。汇合点304处生成的液滴沿着第三子流道3032-3向前流动,第三子流道3032-3与下游的分选流道305连通。如前所述,细胞悬液中含有众多数量的细胞,在这众多数量的细胞中,含有大量的非目标细胞和少量的目标细胞(例如外周血样本中的循环肿瘤细胞、稀有细胞、癌细胞等)。细胞悬液在被注入到第一子容纳部3021之前已经过染色处理,由于细胞悬液中的目标细胞与非目标细胞含有不同的抗体,因此经荧光染色后,这些目标细胞与非目标细胞在光学识别装置下会显示出不同的颜色。因此,液滴大致可以分为以下三类:(a)液滴内含有带有目标颜色的单个目标细胞;(b)液滴内含有非目标细胞(包括液滴内含有一个或多个非目标细胞以及液滴内含有多个目标细胞两种情况)或(c)液滴内不含细胞。当液滴沿着第三子流道3032-3向前移动时,光学识别装置对第三子流道3032-3内的液滴的光学信号(例如颜色)进行实时检测。当光学识别装置检测到液滴为上述情况(b)或(c)时,则不会通知电路系统,因此电路系统不会为驱动电极施加电压,非目标液滴在惯性力的作用下流入第一分选流道3051,然后流入第一收集部3061。在替换的实施例中,当光学识别装置检测到液滴为上述情况(b)或(c)时,也可以通知电路系统,电路系统在接到通知后向驱动电极施加一定的电压,非目标液滴在介电力的驱动下流入第一分选流道3051,然后流入第一收集部3061。当光学识别装置检测到液滴为上述情况(a)时,则立即通知电路系统向驱动电极施加适当的电压(例如800~1000V),含有单个目标细胞的目标液滴被极化,在电场作用下,目标液滴向上偏转流入第二分选流道3052,然后流入第二收集部3062内。于是,该微流控芯片300实现了对液滴的分选,非目标液滴被收集到第一收集部3061内,目标液滴被收集到第二收集部3062内。
需要说明的是,对细胞悬液的染色处理仅是本公开实施例的一个示例,对细胞悬液的处理方式并不仅限于此,只要能够将细胞悬液中的目标细胞与非目标细胞区分开的处理方式均在本公开的保护范围之内。
需要说明的是,虽然图1A示出了分选流道305包括两个流道3051和3052,但是本公开的实施例并不限于此。在替代的实施例中,分选流道305还可以包括更多个流道(例如三个流道、四个流道甚至更多),该多个流道中的一个流道配置为从液滴中筛选出非目标液滴,该多个流道中的其余流道配置为从液滴中筛选出目标液滴。相应地,收集部306可以包括多个收集部,多个收集部与分选流道305的多个流道一一对应,多个收集部中的一个与分选流道305的多个流道中的一个连通且配置为收集非目标液滴,多个收集部中的其余收集部与分选流道305的多个流道中的其余流道分别连通且配置为收集目标液滴。
继续参考图1A,第一分选流道3051的始端和第二分选流道3052的始端均与输送流道303的末端(即输送流道303的第三子流道3032-3的末端)连通,第一分选流道3051的末端与第一收集部3061连通,第二分选流道3052的末端与第二收集部3062连通。第一分选流道3051和第二分选流道3052从输送流道303的末端朝向汇合点304弯折,从而使得第一收集部3061和第二收集部3062位于汇合点304和输送流道303的末端之间。相比于第一分选流道3051和第二分选流道3052在水平方向上笔直地延伸(即第一分选流道3051和第二分选流道3052朝着图中的右方向笔直地延伸)使得第一收集部3061和第二收集部3062分别连接到它们的末端,通过使第一分选流道3051和第二分选流道3052从输送流道303的末端朝向汇合点304折回,可以减小微流控芯片300所占用的体积,使微流控芯片300更加小型化,节约生产成本。
需要说明的是,在本文中,术语“输送流道303的末端”是指输送流道303的第三子流道3032-3的末端,即输送流道303的第三子流道3032-3的端部,该端部直接连接到下游的分选流道305。术语“第一分选流道3051的始端和第二分选流道3052的始端”是指第一分选流道3051的第一端部和第二分选流道3052的第一端部,第一分选流道3051和第二分选流道3052的第一端部与上游的输送流道303的第 三子流道3032-3的所述端部直接相连,并且液滴从第三子流道3032-3的所述端部分别流入第一分选流道3051的第一端部和第二分选流道3052的第一端部。术语“第一分选流道3051的末端和第二分选流道3052的末端”是指第一分选流道3051的第二端部和第二分选流道3052的第二端部,第一分选流道3051的第二端部与第一收集部3061相连,第二分选流道3052的第二端部与第二收集部3062相连。非目标液滴从第一分选流道3051的第一端部流到第一分选流道3051的第二端部,然后流入第一收集部3061;目标液滴从第二分选流道3052的第一端部流到第二分选流道3052的第二端部,然后流入第二收集部3062。
在一些实施例中,输送流道303的内壁表面经过疏水处理,因此具有疏水性。如前所述,输送流道303包括配置为供第一流体在其内部流动的第一输送流道3031和配置为供第二流体在其内部流动的第二输送流道3032。经过疏水处理的第一输送流道3031可以有利于第一流体在其内部流动。经过疏水处理的第二输送流道3032可以促进细胞悬液在第二输送流道3032的第一子流道3032-1的第一分支内顺畅地流动而不粘附在内壁表面上,并且可以促进细胞悬液与生化试剂的混合溶液在第二输送流道3032的第二子流道3032-2和第三子流道3032-3内顺畅地流动而不粘附在内壁表面上。这样可以精准控制细胞悬液的用量,有利于细胞悬液与生化试剂的均匀混合,从而促进液滴的均匀生成。同时,这也可以提高细胞悬液的利用率,避免对细胞悬液的浪费。
在图1A所示的微流控芯片300中,第一容纳部301还包括进样口,外部设备(例如下文描述的盒体装置)与该进样口连接并通过该进样口将第一流体注入到第一容纳部301内。第二容纳部302的第一子容纳部3021包括进样口,外部设备(例如下文描述的盒体装置)与该进样口连接并通过该进样口将细胞悬液注入到第一子容纳部3021内。第二容纳部302的第二子容纳部3022包括进样口,外部设备(例如下文描述的盒体装置)与该进样口连接并通过该进样口将生化反应试剂注入到第二子容纳部3022内。第一收集部3061和第二收集部3062分别包括出样口,出样口用于与外部设备(例如下文描述的盒体装置)连接以将第一收集部3061和第二收集部3062内的液滴输送到该外部设备中。
图1C是图1A中的第一容纳部301、第二容纳部302的第一子容 纳部3021和第二子容纳部3022中的任意一个的放大示意图。如图1C所示,第一容纳部301、第二容纳部302的第一子容纳部3021和第二子容纳部3022的轮廓均包括四个倒角。四个倒角的形状可以是任意适当的形状,例如可以是圆弧状。应当理解,本公开的实施例对倒角的具体尺寸不做限定。以第二容纳部302的第一子容纳部3021为例,如图1C所示,第一子容纳部3021的轮廓包括四个倒角313,四个倒角313的形状为圆弧状。圆弧状的倒角设计,可以减少细胞悬液在第一子容纳部3021内的死体积,提高第一子容纳部3021的储液精度。这里的“死体积”指在试剂入样过程中不可控的体积。具体地,如果第一子容纳部3021的四个角为直角而非圆弧状的倒角,由于液滴表面张力的存在,细胞悬液在第一子容纳部3021的四个直角的位置处并不是直角形状,即细胞悬液不能与第一子容纳部3021的形状完美匹配,无法充满第一子容纳部3021的四个直角所占的空间。因而,细胞悬液的形状和体积会发生变化,并且这种形状和体积的变化存在一定的随机性,从而引入死体积。这可能导致微流控芯片300的第一子容纳部3021在每次操作时都可能与上次操作容纳不同体积的细胞悬液,从而导致无法精确控制细胞悬液的用量。而在本公开的实施例中,第一子容纳部3021的四个角313设计为圆弧状的倒角,可以使细胞悬液与第一子容纳部3021的形状完美匹配,尤其是可以使细胞悬液充满第一子容纳部3021的四个圆弧状倒角所占的空间,从而可以有效降低甚至避免第一子容纳部3021的容纳体积的差异,提高对细胞悬液的操控精度。
类似地,第一容纳部301的四个圆弧状的倒角可以减少第一流体在第一容纳部301内的死体积,提高第一容纳部301的储液精度。第二容纳部302的第二子容纳部3022的四个圆弧状的倒角可以减少生化试剂在第二子容纳部3022内的死体积,提高第二子容纳部3022的储液精度。
继续参考图1C,微流控芯片300的第一容纳部301和第二容纳部302的第一子容纳部3021和第二子容纳部3022中的任意一个均设置有过滤结构312。由于第一容纳部301、第一子容纳部3021、第二子容纳部3022的过滤结构312的构造完全相同,因此,下面以第一子容纳部3021内的过滤结构312为例,来详细描述过滤结构312的结构和功能。
如图1C所示,过滤结构312包括多个彼此间隔开的微结构,相邻 两个微结构312-1和312-2之间的间隙d大于单个细胞的1倍粒径且小于单个细胞的2倍粒径。在一些实施例中,源自细胞悬液的单个细胞的粒径大约为10μm左右,相应地,相邻两个微结构312-1和312-2之间的间隙d大于10μm且小于20μm。过滤结构312的多个微结构的高度可以完全相同,也可以完全不同,还可以仅部分地相同,具体的高度可以根据产品需求而灵活设计,本公开的实施例对此不做具体限定。在一些实施例中,每个微柱的高度约为100-200μm。在平行于第一子容纳部3021所在平面的方向上,每个微柱的横截面的形状可以是任意适当的形状,诸如菱形、正方形、矩形、圆形、椭圆形、正多边形、不规则形状等,本公开的实施例对此不做具体限定。
在微流控芯片300的操作期间,第一子容纳部3021内的细胞悬液在过滤结构312的相邻微结构之间的间隙流过,然后流入第二输送流道3032的第一子流道3032-1的第一分支中。由于相邻两个微结构之间的间隙d大于单个细胞的1倍粒径且小于单个细胞的2倍粒径,因此当细胞悬液从相邻微结构之间的间隙流过时,一方面可以阻挡细胞悬液中的过大杂物(例如粒径大于单个细胞2倍粒径的杂物,诸如灰尘、盐析物质等)流入后续的流道中,从而避免过大杂物堵塞流道,影响细胞悬液的正常流动;另一方面在相邻微结构对细胞悬液的作用力下以及相邻微结构之间的间隙对细胞悬液的尺寸的筛选下,细胞悬液中彼此粘连在一起的多个细胞(例如彼此粘连的两个细胞、三个细胞或更多个细胞)可以被分隔开而成为多个彼此分离的单个细胞,从而有利于制备包含单个细胞的液滴,降低单颗液滴内包含两个或更多个细胞的概率。
第一容纳部301和第二子容纳部3022内的过滤结构312的结构可以参考上面关于第一子容纳部3021内的过滤结构的描述,为了简洁起见,在此不再赘述。在微流控芯片300的操作期间,第一容纳部301内的第一流体在过滤结构312的相邻微结构之间的间隙流过,然后流入输送流道303的第一输送流道3031中。当第一流体从过滤结构312的相邻微结构之间的间隙流过时,可以阻挡第一流体中的过大杂物(例如粒径大于单个细胞2倍粒径的杂物,诸如灰尘、盐析物质等)流入第一输送流道3031中,从而避免过大杂物堵塞第一输送流道3031,影响第一流体的正常流动。在微流控芯片300的操作期间,第二子容纳 部3022内的生化试剂在过滤结构312的相邻微结构之间的间隙流过,然后流入第二输送流道3032的第一子流道3032-1的第二分支中。当生化试剂从过滤结构312的相邻微结构之间的间隙流过时,可以阻挡生化试剂中的过大杂物(例如粒径大于单个细胞2倍粒径的杂物,诸如灰尘、盐析物质等)流入第一子流道3032-1的第二分支中,从而避免过大杂物堵塞该第二分支,影响生化试剂的正常流动。
图2示出了微流控芯片400的结构示意图,其中(a)是该微流控芯片400的前视图,(b)是该微流控芯片400的左视图,(c)是该微流控芯片400的后视图,(d)是该微流控芯片400的轴向图。该微流控芯片400可以用来从液滴中分选出包括单个目标细胞的目标液滴。该微流控芯片400可以作为独立的部件单独使用以实现目标液滴的分选,也可以用来替换微流控芯片300的分选流道305和收集部306,从而可以实现包含单个细胞的液滴的制备以及目标液滴的分选。
如图2所示,该微流控芯片400包括分选流道403、连接流道404、以及收集部405和406。分选流道403包括第一分选流道4031和第二分选流道4032,第二分选流道4032包括级联的第一级分支4032A、第二级分支4032B以及第三级分支4032C。连接流道404包括第一连接流道4041、第二连接流道4042以及第三连接流道4043。收集部包括第一收集部405和第二收集部406,第二收集部406包括第一子收集部4061、第二子收集部4062、第三子收集部4063。可选地,微流控芯片400还可以包括两个第三容纳部401和一个第四容纳部402,每个第三容纳部401配置为容纳油相的第一流体,第四容纳部402配置为容纳大量液滴,该大量液滴中包括目标液滴和非目标液滴,其中每个目标液滴包括单个目标细胞。该液滴可以通过其他装置制备得到。如图所示,第一分选流道4031的始端与第四容纳部402连通,第一分选流道4031的末端与第一收集部405连通,并且第一分选流道4031与第二分选流道4032的第一级分支4032A经由第一连接流道4041连通。第二分选流道4032的第一级分支4032A的始端与第三容纳部401连通,第二分选流道4032的第一级分支4032A的末端与第一子收集部4061连通,并且第二分选流道4032的第一级分支4032A与第二级分支4032B经由第二连接流道4042连通。第二分选流道4032的第二级分支4032B的始端与第三容纳部401连通,第二分选流道4032的第二级分支4032B 的末端与第二子收集部4062连通,并且第二分选流道4032的第二级分支4032B与第三级分支4032C经由第三连接流道4043连通。第二分选流道4032的第三级分支4032C的始端与第三连接流道4043连通,并且第二分选流道4032的第三级分支4032C的末端与第三子收集部4063连通。该微流控芯片400还可以包括多个光学识别装置和多个驱动电极装置(图中未示出),以使该微流控芯片400实现对目标细胞的级联分选。
在细胞悬液中,可能只存在一种目标细胞,也可能存在多种不同类型的目标细胞。当存在多种不同类型的目标细胞时,需要将这几种不同类型的目标细胞分别筛选出来,并收集到不同的收集部中,以供后续检测使用。
利用该微流控芯片400进行目标液滴分选的过程大致如下:向第三容纳部401内加入第一流体,向第四容纳部402内加入利用其它设备(例如其它的微流控芯片)制备得到的液滴。该液滴包括目标液滴和非目标液滴,其中目标液滴包括单个目标细胞。假设液滴包括A、B、C、D四种不同类型的细胞,其中A、B、C型细胞均是目标细胞,D型细胞是非目标细胞。因此,目标液滴包括:(a)包含单个A型目标细胞的液滴、(b)包含单个B型目标细胞的液滴、以及(c)包含单个C型目标细胞的液滴;非目标液滴包括:(d)包含一个或多个D型非目标细胞的液滴。上述液滴在前期已经过染色处理。
第四容纳部402内的液滴流入到第一分选流道4031,在第一分选流道4031与第一连接流道4041的连接位置处,第一光学识别装置对液滴的光学信号(例如颜色)进行实时检测。当第一光学识别装置检测到液滴为上述情况(d)时,则不会通知电路系统,电路系统因而不会向与该第一光学识别装置关联的第一驱动电极装置施加电压。因此,非目标液滴沿着第一分选流道4031继续移动,直至流入第一收集部405。当第一光学识别装置检测到液滴为上述情况(a)-(c)中的任意一种时,则立即通知电路系统向第一驱动电极装置施加适当的电压,目标液滴被极化,在电场作用下,目标液滴向上偏转流入第一连接流道4041,然后经由第一连接流道4041流入第二分选流道4032的第一级分支4032A。在第一级分支4032A与第二连接流道4042的连接位置处,第二光学识别装置对目标液滴的光学信号进行实时检测。当第二 光学识别装置检测到目标液滴为上述情况(a)时,则不会通知电路系统,电路系统因而不会向与该第二光学识别装置关联的第二驱动电极装置施加电压。因此,目标液滴(a)沿着第一级分支4032A继续移动,直至流入第一子收集部4061,从而可以从液滴中筛选出包含单个A型目标细胞的目标液滴。当第二光学识别装置检测到目标液滴为上述情况(b)或(c)时,则立即通知电路系统向第二驱动电极装置施加适当的电压,目标液滴(b)或(c)被极化,在电场作用下,目标液滴(b)或(c)向上偏转流入第二连接流道4042,然后经由第二连接流道4042流入第二级分支4032B。在第二级分支4032B与第三连接流道4043的连接位置处,第三光学识别装置对目标液滴(b)或(c)的光学信号进行实时检测。当第三光学识别装置检测到目标液滴为上述情况(b)时,则不会通知电路系统,电路系统因而不会向与该第三光学识别装置关联的第三驱动电极装置施加电压。因此,目标液滴(b)沿着第二级分支4032B继续移动,直至流入第二子收集部4062,从而可以从液滴中筛选出包含单个B型目标细胞的目标液滴。当第三光学识别装置检测到目标液滴为上述情况(c)时,则立即通知电路系统向第三驱动电极装置施加适当的电压,目标液滴(c)被极化,在电场作用下,目标液滴(c)向上偏转流入第三连接流道4043,然后经由第三连接流道4043流入第三级分支4032C,最终流入第三子收集部4063,从而从液滴中筛选出包含单个C型目标细胞的目标液滴。
利用该微流控芯片400,通过一次分选过程,即可筛选出三种不同类型的目标细胞,这大大提升了细胞的分选速度和效率。而且,相比于利用三个不同的微流控芯片分别筛选三种不同类型的目标细胞,本公开的实施例仅利用一个微流控芯片400即可实现对三种不同类型的目标细胞的分选,这大大节约了所需的微流控芯片的数量,从而节约生产成本。
当利用该微流控芯片400替换微流控芯片300的分选流道305和收集部306时,可以省略第四容纳部402。替代地,将第一分选流道4031的始端连接到微流控芯片300的第三子流道3032-3的末端,微流控芯片400的其他设置可以保持不变。这样,在汇合点304处生成的液滴沿着第三子流道3032-3流入到第一分选流道4031,然后对该液滴执行如上所述的级联分选。通过这样的设计,利用一个微流控芯片, 不仅可以制备包含单个细胞的液滴,同时还可以对这样的液滴进行级联分选,从而分选出多种不同类型的目标细胞。
在实际操作时,可以使第三容纳部401内的油相第一流体预先充满微流控芯片400,这样,可以促进分选流道403内的液滴更加顺畅地流动。
如图2所示,第一连接流道4041的一端位于第一分选流道4031的始端和末端之间,第一连接流道4041的另一端位于第一级分支4032A的始端和末端之间;第二连接流道4042的一端位于第一级分支4032A的始端和末端之间,第二连接流道4042的另一端位于第二级分支4032B的始端和末端之间,并且第二连接流道4042相较于第一连接流道4041在第二方向(即图2中的横向方向)上更靠近收集部(即在图中,第二连接流道4042相较于第一连接流道4041向右偏移了一段距离);第三连接流道4043的一端位于第二级分支4032B的始端和末端之间,第三连接流道4043的另一端与第三级分支4032C的始端连通,并且第三连接流道4043相较于第二连接流道4042在横向方向上更靠近收集部(即在图中,第三连接流道4043相较于第二连接流道4042向右偏移了一段距离)。换句话说,在第二方向上,第一连接流道4041位于第二连接流道4042的左侧,且第二连接流道4042位于第三连接流道4043的左侧。通过这样的布置,液滴能够顺利地从第一分选流道4031相继地流入到第二分选流道4032的第一级分支4032A、第二级分支4032B以及第三级分支4032C,从而实现如上所述的级联分选。进一步地,分选流道403和连接流道404配置为使得液滴从第一分选流道4031经由连接流道404依次流入第二分选流道4032的第一级分支4032A、第二级分支4032B以及第三级分支4032C,并且液滴的流动方向不可逆。通过这样的布置,防止流入下一级分支内的液滴倒流回到上一级分支,从而避免不同类型目标细胞的串液。
需要说明的是,虽然图2示出的微流控芯片400的第二分选流道4032包括三个分支4032A、4032B、4032C,但这仅是一个示例,第二分选流道4032包括的分支数量依据所需分选的目标细胞的类型数量而定,本公开的实施例对此不作具体限定。例如,当需要从液滴中分选出N(N≥2)种不同类型的目标细胞时,微流控芯片400可以包括N个连接流道,第二分选流道4032可以包括N个级联的分支,该N个 级联的分支中的任意相邻两个分支之间设置有一个连接流道且任意相邻两个分支经由该连接流道连通。相应地,第二收集部406包括N个子收集部,第二分选流道4032的N个级联的分支与N个子收集部一一对应,并且N个级联的分支中的一个与N个子收集部中的相应一个连通。
图3示出了微流控芯片400的一种变型400’,其中(a)是该微流控芯片400’的前视图,(b)是该微流控芯片400’的左视图,(c)是该微流控芯片400’的后视图,(d)是该微流控芯片400’的轴向图。图3示出的微流控芯片400’与图2示出的微流控芯片400相比,除了分选流道403和收集部405’和406之外,两者具有相似的结构。相同的附图标记指代相同的部件,因此,出于简洁的目的,这些相同部件的功能和作用不再描述,可参考对微流控芯片400的描述,下面仅描述不同的部分。
该微流控芯片400’可以用来从液滴中分选出包括单个目标细胞的目标液滴。该微流控芯片400’可以作为独立的部件单独使用以实现目标液滴的分选,也可以用来替换微流控芯片300的分选流道305和收集部306,从而可以实现包含单个细胞的液滴的制备以及目标液滴的分选。
如图3所示,该微流控芯片400’包括分选流道403、连接流道404、以及收集部405’和406。分选流道403包括第一分选流道4031和第二分选流道4032,第一分选流道4031包括级联的第一级分支4031A、第二级分支4031B以及第三级分支4031C。连接流道404包括第一连接流道4041、第二连接流道4042以及第三连接流道4043。收集部包括第一收集部405’和第二收集部406。可选地,微流控芯片400’还可以包括两个第三容纳部401和一个第四容纳部402,每个第三容纳部401配置为容纳油相的第一流体,第四容纳部402配置为容纳大量液滴,该大量液滴中包括目标液滴和非目标液滴,其中每个目标液滴包括单个目标细胞。如图3所示,第一分选流道4031的第一级分支4031A的始端与第四容纳部402连通,第一分选流道4031的第一级分支4031A的末端与第一收集部405’连通,并且第一分选流道4031的第一级分支4031A与第二级分支4031B经由第一连接流道4041连通。第一分选流道4031的第二级分支4031B的始端与第三容纳部401连通,第一分选 流道4031的第二级分支4031B的末端与第一收集部405’连通,并且第一分选流道4031的第二级分支4031B与第三级分支4031C经由第二连接流道4042连通。第一分选流道4031的第三级分支4031C的始端与第三容纳部401连通,第一分选流道4031的第三级分支4031C的末端与第一收集部405’连通,并且第一分选流道4031的第三级分支4031C与第二分选流道4032经由第三连接流道4043连通。第二分选流道4032的始端与第三连接流道4043连通,并且第二分选流道4032的末端与第二收集部406连通。该微流控芯片400’还可以包括多个光学识别装置和多个驱动电极装置(图中未示出),以使该微流控芯片400’实现对目标细胞的级联分选。
在细胞悬液中存在一种类型的目标细胞时,可能存在一种情况:该种类型的目标细胞与细胞悬液中的非目标细胞非常相似,难以区分。因此,仅通过一次分选过程难以从细胞悬液中筛选出所需的目标细胞,或者通过一次分选过程从细胞悬液中筛选出所需目标细胞的成功率较低。因此,与微流控芯片400不同,该微流控芯片400’不是用来同时筛选出多种不同类型的目标细胞,而是用来提高分选出的目标细胞的纯净度。
利用该微流控芯片400’进行目标液滴分选的过程大致如下:向第三容纳部401内加入第一流体,向第四容纳部402内加入利用其它设备(例如其它的微流控芯片)制备得到的液滴。该液滴包括目标液滴和非目标液滴,其中目标液滴包括单个目标细胞。假设液滴包括E和F两种不同类型的细胞,其中E型细胞是目标细胞,F型细胞是非目标细胞,E型目标细胞与F型非目标细胞难以区分。因此,目标液滴包括:(e)包含单个E型目标细胞的液滴;非目标液滴包括:(f)包含一个或多个F型非目标细胞的液滴。上述液滴在前期已经过染色处理。第四容纳部402内的液滴流入到第一分选流道4031的第一级分支4031A,在第一级分支4031A与第一连接流道4041的连接位置处,第一光学识别装置对液滴的光学信号(例如颜色)进行实时检测。当第一光学识别装置检测到液滴为上述情况(f)时,则不会通知电路系统,电路系统因而不会向与该第一光学识别装置关联的第一驱动电极装置施加电压。因此,非目标液滴沿着第一级分支4031A继续移动,直至流入第一收集部405’。当第一光学识别装置判断液滴为上述情况(e)时,则 立即通知电路系统向第一驱动电极装置施加适当的电压,上述液滴(实际上仍然包括一部分非目标液滴)被极化,在电场作用下,上述液滴向上偏转流入第一连接流道4041,然后经由第一连接流道4041流入第二级分支4031B。在第二级分支4031B与第二连接流道4042的连接位置处,第二光学识别装置对液滴的光学信号进行实时检测。当第二光学识别装置检测到液滴中依然存在上述情况(f)时,则不会通知电路系统,电路系统因而不会向与该第二光学识别装置关联的第二驱动电极装置施加电压。因此,进一步被筛选出的非目标液滴(f)沿着第二级分支4031B继续移动,最终流入第一收集部405’。当第二光学识别装置判断液滴为上述情况(e)时,则立即通知电路系统向第二驱动电极装置施加适当的电压,液滴被极化,在电场作用下,液滴向上偏转流入第二连接流道4042,然后经由第二连接流道4042流入第三级分支4031C。在第三级分支4031C与第三连接流道4043的连接位置处,第三光学识别装置对液滴(实际上仍然包括少量的非目标液滴)的光学信号进行实时检测。当第三光学识别装置检测到液滴仍然存在上述情况(f)时,则不会通知电路系统,电路系统因而不会向与该第三光学识别装置关联的第三驱动电极装置施加电压。因此,非目标液滴沿着第三级分支4031C继续移动,然后流入第一收集部405’。当第三光学识别装置检测到液滴为上述情况(e)时,则立即通知电路系统向第三驱动电极装置施加适当的电压,目标液滴(e)被极化,在电场作用下,目标液滴(e)向上偏转流入第三连接流道4043,然后经由第三连接流道4043流入第二分选流道4032,最终流入第二收集部406,从而从液滴中筛选出包含单个E型目标细胞的目标液滴。
利用该微流控芯片400’,通过对液滴进行多次级联分选,可以将难以区分的目标液滴和非目标液滴进行区分,大大提高了最终收集到的目标液滴的纯度,降低了甚至排除了所收集的目标液滴中包含非目标液滴的可能性。
需要说明的是,虽然图3示出的微流控芯片400’的第一分选流道4031包括三个分支4031A、4031B、4031C,但这仅是一个示例,第一分选流道4031的分支的具体数量可以根据目标细胞与非目标细胞的区分难易程度而定,本公开的实施例对此不作具体限定。
当利用该微流控芯片400’替换微流控芯片300的分选流道305和 收集部306时,可以省略第四容纳部402,替代地,将第一分选流道4031的第一级分支4031A的始端连接到微流控芯片300的第三子流道3032-3的末端,微流控芯片400’的其他设置可以保持不变。这样,在汇合点304处生成的液滴沿着第三子流道3032-3流入到第一分选流道4031的第一级分支4031A,然后对该液滴执行如上所述的级联分选。通过这样的设计,利用一个微流控芯片,不仅可以制备包含单个细胞的液滴,同时还可以对这样的液滴进行级联分选,从而将难以区分的目标液滴和非目标液滴进行区分,大大提高了最终收集到的目标液滴的纯度。
图4示出了微流控芯片500的结构示意图,其中(a)是该微流控芯片500的前视图,(b)是该微流控芯片500的左视图,(c)是该微流控芯片500的后视图,(d)是该微流控芯片500的轴向图。该微流控芯片500可以用来从液滴中分选出具有不同粒径的两种液滴。该微流控芯片500可以作为独立的部件单独使用,也可以用来替换微流控芯片300的分选流道305和收集部306,从而可以实现包含单个细胞的液滴的制备以及目标液滴的分选。
如图4所示,该微流控芯片500包括分选流道502和收集部506,分选流道502包括主体流道503、第一分选流道504、以及第二分选流道505,收集部506包括第一收集部507和第二收集部508。主体流道503在微流控芯片500所在的平面内呈螺旋状,主体流道503的末端与第一分选流道504和第二分选流道505连通,并且第一分选流道504的末端与第一收集部507连通,第二分选流道505的末端与第二收集部508连通。可选地,该微流控芯片500还可以包括第三容纳部501,该第三容纳部501配置为容纳液滴,该液滴包括具有不同粒径的第一类液滴和第二类液滴。
细胞悬液中包括粒径较小的细胞和粒径较大的细胞,当这样的细胞悬液与第一流体混合并通过前述过程形成包含单个细胞的液滴时,所形成的液滴因而也具备不同的粒径。这里,将包括较小粒径的细胞的液滴称作第一类液滴,该第一类液滴具有较小的粒径;将包括较大粒径的细胞的液滴称作第二类液滴,该第二类液滴具有较大的粒径。当利用该微流控芯片500对液滴进行分选时,第三容纳部501内的液滴流入螺旋型主体流道503。由于液滴粒径的差异,其惯性力不同,在 主体流道503的末端分叉处,粒径较小的第一类液滴受惯性力较小,因而沿着主体流道503的延伸方向进入到第一分选流道504,然后流入第一收集部507。粒径较大的第二类液滴受惯性力较大,在惯性力的作用小甩出主体流道503而进入第二分选流道505,最终流入第二收集部508。
图4仅作为示例示出了主体流道503的一种可能的形状,但主体流道503的形状并不仅限于此,只要该主体流道503的形状可以使得具有不同粒径的液滴在不同惯性力的作用下可以进入不同的分选流道即可。
该微流控芯片500无需设置光学识别装置和驱动电极装置,仅依赖于主体流道503的形状,便可以将不同粒径的液滴区分开。由于无需光学识别装置和驱动电极装置,因此不仅可以减小该微流控芯片500的体积,还可以节约生产成本。
当利用该微流控芯片500替换微流控芯片300的分选流道305和收集部306时,可以省略第三容纳部501,替代地,将主体流道503的始端连接到微流控芯片300的第三子流道3032-3的末端,微流控芯片500的其他设置可以保持不变。这样,在汇合点304处生成的液滴沿着第三子流道3032-3流入到主体流道503,然后对该液滴执行如上所述的分选操作。通过这样的设计,利用一个微流控芯片,不仅可以制备包含单个细胞的液滴,同时还可以将不同粒径的液滴区分开。
本申请的发明人发现,在常规技术中,上面各个实施例中描述的第一流体和第二流体(包括细胞悬液和生化试剂)需要分别存储在独立于微流控芯片的外部装置中。在微流控芯片的操作期间,每次均需要手动操作利用挠性管道将外部装置与微流控芯片的进样口连接,从而将第一流体和第二流体实时地注入到微流控芯片中,然后经过微流控芯片的相应处理从而制备得到液滴和/或从液滴中分选出目标液滴。因此,实现液滴的制备和/或目标液滴的分选,至少需要存储流体的外部装置、挠性管道以及微流控芯片的存在。这使得该系统的体积庞大,不易于携带。另外,当更换微流控芯片以制备不同的试剂时,需要清洗外部装置以容纳适配该更换的微流控芯片所需的新试剂,但是通常无法保证外部装置能够被彻底清洗干净,因此之前剩余的试剂容易残留在外部装置中,从而造成对更换的新试剂的污染。
鉴于此,本公开的实施例提供了一种适配微流控芯片的盒体装置,每个微流控芯片均具有对应的一个盒体装置,该盒体装置可采用适当的结合方法与微流控芯片结合。该盒体装置可以存储试剂并将试剂释放到微流控芯片的进样口,以及可以接纳从微流控芯片的出样口流入到该盒体装置的试剂并将其存储。这种盒体装置可以提供无菌的环境,因为细胞悬液可以在细胞分选之前和之后被完全地限制在该密封的盒体装置内。
图5A示出了根据本公开一实施例的盒体装置1000的结构示意图,其中(a)是该盒体装置1000的前视图,(b)是该盒体装置1000的右视图,(c)是该盒体装置1000的俯视图,(d)是该盒体装置1000的轴向图。图5B示出了微流控芯片100的结构示意图,该微流控芯片100记载在优先权申请(NO.202180000922.0)中。盒体装置1000适配于微流控芯片100,两者结合可以用来制备包含单个细胞的液滴,液滴的具体制备过程可以参考优先权申请的记载。
参考图5A和5B,该盒体装置1000配置为与微流控芯片100搭配使用,微流控芯片100包括进样口1、2、3和出样口4。盒体装置1000包括:容纳腔,配置为容纳微流控芯片100;进样单元1001,与微流控芯片100的进样口1、2、3连通,进样单元1001配置为存储第一试剂并将第一试剂释放到微流控芯片100的进样口1、2、3;以及出样单元1002,与微流控芯片100的出样口4连通,出样单元1002配置为接纳和存储被微流控芯片100处理且从微流控芯片100的出样口4流入到出样单元1002的第二试剂,第二试剂包括目标液滴,每个目标液滴包括单个目标细胞。进样单元1001包括进样孔1003A/1004A/1005A和第一储存腔1003B/1004B/1005B,每个进样孔为通孔并与相应的第一储存腔连通,每个进样孔从盒体装置1000的表面向盒体装置1000的内部凹入,并且与该进样孔对应的第一储存腔位于该进样孔远离盒体装置1000的表面的一侧。
通过提供盒体装置1000,每个微流控芯片100都可以配置有单独的一个盒体装置1000,该盒体装置1000可以存储微流控芯片100所需的注入试剂(即第一试剂)和经过微流控芯片100处理的产出试剂(即第二试剂),因此无需再提供外部的存储装置,这样可以大大减小设备体积,易于携带。另外,由于每个微流控芯片100都配置有单独的盒 体装置1000,该盒体装置1000存储微流控芯片100所需的第一试剂和产出的第二试剂,因此,不会存在常规技术中由于更换微流控芯片所致的外部存储装置内的试剂交叉污染的风险。进一步地,进样单元1001包括进样孔和第一储存腔,这样的设计,可以更好地引导第一试剂从进样孔流入到第一储存腔,然后经由第一储存腔流入到微流控芯片100的进样口。
继续参考图5A和5B,盒体装置1000的进样单元1001包括第一进样单元1003、第二进样单元1004、第三进样单元1005,微流控芯片100的进样口包括第一进样1、第二进样口2、第三进样口3,第一试剂包括第一子试剂(即第一流体)、第二子试剂(即细胞悬液)、第三子试剂(即生化试剂)。盒体装置1000的第一进样单元1003与微流控芯片100的第一进样口1连通,第一进样单元1003配置为存储第一子试剂并将第一子试剂释放到微流控芯片100的第一进样口1;盒体装置1000的第二进样单元1004与微流控芯片100的第二进样口2连通,第二进样单元1004配置为存储第二子试剂并将第二子试剂释放到微流控芯片100的第二进样口2;盒体装置1000的第三进样单元1005与微流控芯片100的第三进样口3连通,第三进样单元1005配置为存储第三子试剂并将第三子试剂释放到微流控芯片100的第三进样口3。盒体装置1000的出样单元1002包括一个出样单元1006,该出样单元1006接纳和存储的第二试剂包括目标液滴和非目标液滴。
如图所示,第一进样单元1003包括进样孔1003A和第一储存腔1003B,第二进样单元1004包括进样孔1004A和第一储存腔1004B,第三进样单元1005包括进样孔1005A和第一储存腔1005B。第一进样单元1003、第二进样单元1004、以及第三进样单元1005具有相同的结构,下面以第一进样单元1003为例,描述每个进样单元的构造。由于第一进样单元1003、第二进样单元1004、以及第三进样单元1005具有相同的结构,因此,下面关于第一进样单元1003的结构的描述同样适用于第二进样单元1004和第三进样单元1005。
第一进样单元1003的第一储存腔1003B位于盒体装置1000的内部,并且进样孔1003A在盒体装置1000上的正投影落在第一储存腔1003B在盒体装置1000上的正投影之内。例如,如图5A所示,进样孔1003A在横向方向上的宽度小于第一储存腔1003B在横向方向上的 宽度。通过这样的布置方式,可以使第一子试剂在进样孔1003A内的流速变大,促进第一子试剂从进样孔1003A流入第一储存腔1003B,并最终流入到微流控芯片100的第一进样口1。
在一些实施例中,第一进样单元1003还可以包括第二储存腔1003C(类似地,第二进样单元1004还可以包括第二储存腔1004C,第三进样单元1005还可以包括第二储存腔1005C),第二储存腔1003C位于第一储存腔1003B远离进样孔1003A的一侧并与第一储存腔1003B连通。第二储存腔1003C包括与第一储存腔1003B连通的第一开口和与第一开口相对的第二开口,第二储存腔1003C的第二开口在盒体装置1000上的正投影落在第一开口在盒体装置1000上的正投影之内。在一个示例中,如图5A所示,第二储存腔1003C呈现碗状形状,即第二储存腔1003C呈现上粗下窄的形状。通过这样的布置,第二储存腔1003C可以很好地聚集从第一储存腔1003B流入其内的第一子试剂,并将该第一子试剂引导至微流控芯片100的第一进样口1。在一些实施例中,第二储存腔1003C的第二开口在盒体装置1000上的正投影落在进样孔1003A在盒体装置1000上的正投影之内。
继续参考图5A,盒体装置1000的出样单元1006包括出样孔1006A和第三储存腔1006B。出样孔1006A为通孔并与第三储存腔1006B连通,出样孔1006A从盒体装置1000的表面向盒体装置1000的内部凹入,并且第三储存腔1006B位于出样孔1006A远离盒体装置1000的表面的一侧。在一些实施例中,第三储存腔1006B位于盒体装置1000的内部,并且出样孔1006A在盒体装置1000上的正投影落在第三储存腔1006B在盒体装置1000上的正投影之内。例如,如图5A所示,出样孔1006A在横向方向上的宽度小于第三储存腔1006B在横向方向上的宽度。通过这样的布置方式,使得第三储存腔1006B主要起存储第二试剂的作用,而出样孔1006A可以更好地促进将第三储存腔1006B内的第二试剂传输至外部的设备(如果有必要的话)。
在一些实施例中,出样单元1006还可以包括第四储存腔1006C,第四储存腔1006C位于第三储存腔1006B远离出样孔1006A的一侧并与第三储存腔1006B连通。第四储存腔1006C可以用来衔接微流控芯片100的出样口4与盒体装置1000的出样单元1006,并将从微流控芯片100的出样口4流出的第二试剂引导至盒体装置1000的第三储存腔 1006B。在一些实施例中,第四储存腔1006C在盒体装置1000上的正投影与出样孔1006A在盒体装置1000上的正投影至多交叠一部分。
利用盒体装置1000和微流控芯片100制备包含单个细胞的液滴的大致过程可以描述如下:
(1)向第一进样单元1003、第二进样单元1004以及第三进样单元1005分别预先加入第一流体、细胞悬液以及生化试剂。第一流体为油相,其可以混合有表面活性剂。
(2)通过挠性管道将盒体装置1000的第一进样单元1003、第二进样单元1004以及第三进样单元1005的进样孔与流量泵相连,通过调节流量泵的压力控制流体注入到进样单元的流速。
(3)第一进样单元1003内的第一流体经由进样孔1003A、第一储存腔1003B以及第二储存腔1003C流入微流控芯片100的第一进样口1;第二进样单元1004内的细胞悬液经由进样孔1004A、第一储存腔1004B以及第二储存腔1004C流入微流控芯片100的第二进样口2;第三进样单元1005内的生化试剂经由进样孔1005A、第一储存腔1005B以及第二储存腔1005C流入微流控芯片100的第三进样口3。注意,可以先使油相的第一流体充满微流控芯片100,然后再注入细胞悬液和生化试剂。
(4)上述第一流体、细胞悬液、生化试剂在微流控芯片100的汇合点105处汇合并生成液滴(即上述第二试剂),该液滴包括目标液滴和非目标液滴,其中目标液滴包括单个目标细胞。液滴经由微流控芯片100的输送流道103流入第一收集部104,然后经由第一收集部104处的出样口4流入盒体装置的出样单元1006。出样单元1006可以存储该液滴或者可以根据需要将该液滴转移至其他设备中。
图6A示出了根据本公开另一实施例的盒体装置2000的结构示意图,其中(a)是该盒体装置2000的前视图,(b)是该盒体装置2000的右视图,(c)是该盒体装置2000的俯视图,(d)是该盒体装置2000的轴向图。图6B示出了微流控芯片200的结构示意图,该微流控芯片200记载在优先权申请(NO.202180000922.0)中。盒体装置2000适配于微流控芯片200,两者结合可以用来对液滴进行分选,以获得目标液滴。液滴的具体分选过程可以参考优先权申请的记载。
盒体装置2000包括进样单元2001和出样单元2002。进样单元2001 与微流控芯片200的进样口连通,并且配置为存储第一试剂并将第一试剂释放到微流控芯片200的进样口,第一试剂为大量液滴,大量液滴中的至少一部分包括单个细胞;出样单元2002与微流控芯片200的出样口连通,并且配置为接纳和存储被微流控芯片200处理且从微流控芯片200的出样口流入到出样单元2002的第二试剂,第二试剂包括目标液滴和非目标液滴,其中目标液滴包括单个目标细胞。进样单元2001包括第一进样单元2003和第二进样单元2004,出样单元2002包括第一出样单元2005、第二出样单元2006以及位于第一出样单元2005和第二出样单元2006之间的第三出样单元2007。微流控芯片200的进样口包括第一进样口5和第二进样口6。第一进样单元2003与微流控芯片200的第一进样口5连通,第一进样单元2003配置为存储第一子试剂(即第一流体)并将第一子试剂释放到微流控芯片200的第一进样口5;第二进样单元2004与微流控芯片200的第二进样口6连通,第二进样单元2004配置为存储第二子试剂(即包括单个细胞的液滴)并将第二子试剂释放到微流控芯片200的第二进样口6。出样单元2002的第三出样单元2007配置为接纳和存储非目标液滴,出样单元2002的第一出样单元2005和第二出样单元2006配置为接纳和存储目标液滴。
盒体装置2000的第一进样单元2003包括进样孔2003A、第一储存腔2003B、以及第二储存腔2003C;第二进样单元2004包括进样孔2004A、第一储存腔2004B、以及第二储存腔2004C。盒体装置2000的第一进样单元2003和第二进样单元2004的结构与盒体装置1000的第一进样单元1003的结构完全相同,因此盒体装置2000的第一进样单元2003和第二进样单元2004具有与盒体装置1000的第一进样单元1003相同的技术效果。出于简洁的目的,此处不再重复它们的结构和技术效果。盒体装置2000的第一出样单元2005包括出样孔2005A、第三储存腔2005B以及第四储存腔2005C,盒体装置2000的第二出样单元2006包括出样孔2006A、第三储存腔2006B以及第四储存腔2006C,盒体装置2000的第三出样单元2007包括出样孔2007A、第三储存腔2007B以及第四储存腔2007C。第一出样单元2005、第二出样单元2006以及第三出样单元2007具有完全相同的结构。除了第四储存腔和出样孔的相对位置之外,盒体装置2000的第一出样单元2005、 第二出样单元2006以及第三出样单元2007的结构与盒体装置1000的出样单元1006的结构基本相同,因此盒体装置2000的各个出样单元的结构和技术效果可参考盒体装置1000的出样单元1006的结构和技术效果。在盒体装置2000中,以第一出样单元2005为例,第四储存腔2005C在盒体装置2000上的正投影落在出样孔2005A在盒体装置2000上的正投影之内。
盒体装置2000还包括第一安装区域2008和第二安装区域2009,第一安装区域2008配置为安装光学识别装置,第二安装区域2009配置为安装驱动电极装置。光学识别装置和驱动电极装置用来与微流控芯片200配合共同实现对目标液滴的分选。
利用盒体装置2000和微流控芯片200对目标液滴进行分选的大致过程可以描述如下:
(1)向第一进样单元2003和第二进样单元2004分别预先加入第一流体和包括单个细胞的液滴,该液滴可以通过上述盒体装置1000和微流控芯片100制备得到。第一流体为油相,其可以混合有表面活性剂。
(2)通过挠性管道将盒体装置2000的第一进样单元2003的进样孔2003A和第二进样单元2004的进样孔2004A与对应的流量泵相连,通过调节流量泵的压力控制流体注入到进样单元的流速。
(3)第一进样单元2003内的第一流体经由进样孔2003A、第一储存腔2003B以及第二储存腔2003C流入微流控芯片200的第一进样口5;第二进样单元2004内的液滴经由进样孔2004A、第一储存腔2004B以及第二储存腔2004C流入微流控芯片200的第二进样口6。注意,可以先使油相的第一流体充满微流控芯片200,然后再注入液滴。
(4)上述液滴在微流控芯片200的分选流道203处被分选并进入相应的子收集部,目标液滴(包括单个目标细胞)被收集到第一子收集部2041和第二子收集部2042内,非目标液滴被收集到第三子收集部2043内。第一子收集部2041内的目标液滴经由出样口7A流入盒体装置2000的第一出样单元2005,第二子收集部2042内的目标液滴经由出样口7B流入盒体装置2000的第二出样单元2006,第三子收集部2043内的非目标液滴经由出样口7C流入盒体装置2000的第三出样单元2007。第一出样单元2005、第二出样单元2006以及第三出样单元 2007可以存储相应的液滴或者可以根据需要将这些液滴转移至其他设备中。
盒体装置2000与微流控芯片200适配,共同实现对目标液滴的分选。由于液滴在分选之前和之后被完全限制在该密封的盒体装置2000和微流控芯片200内,因此这种盒体装置2000提供了无菌操作的环境。而且盒体装置2000的存在,使得由盒体装置2000与微流控芯片200构成的系统更为简洁方便,易于携带。
图7示出了根据本公开又一实施例的盒体装置3000的结构示意图,其中(a)是该盒体装置3000的前视图,(b)是该盒体装置3000的右视图,(c)是该盒体装置3000的俯视图,(d)是该盒体装置3000的轴向图。盒体装置3000适配于本申请图1A示出的微流控芯片300,两者结合可以用来制备包括单个细胞的液滴以及对该液滴进行分选,以获得目标液滴。液滴的制备和分选过程可以参考关于微流控芯片300的描述。
盒体装置3000包括进样单元3001和出样单元3002。进样单元3001与微流控芯片300的进样口连通,并且配置为存储第一试剂并将第一试剂释放到微流控芯片300的进样口。出样单元3002与微流控芯片300的出样口连通,并且配置为接纳和存储被微流控芯片300处理且从微流控芯片300的出样口流入到出样单元3002的第二试剂,第二试剂包括目标液滴和非目标液滴,其中目标液滴包括单个目标细胞。进样单元3001包括第一进样单元3003、第二进样单元3004以及第三进样单元3005。出样单元3002包括第一出样单元3006和第二出样单元3007。微流控芯片300的进样口包括位于第一容纳部301处的第一进样口、位于第一子容纳部3021处的第二进样口以及位于第二子容纳部3022处的第三进样口。第一进样单元3003与微流控芯片300的第一进样口连通,第一进样单元3003配置为存储第一子试剂(即第一流体)并将第一子试剂释放到微流控芯片300的第一进样口;第二进样单元3004与微流控芯片300的第二进样口连通,第二进样单元3004配置为存储第二子试剂(即细胞悬液)并将第二子试剂释放到微流控芯片300的第二进样口;第三进样单元3005与微流控芯片300的第三进样口连通,第三进样单元3005配置为存储第三子试剂(即生化试剂)并将第三子试剂释放到微流控芯片300的第三进样口。出样单元3002的第一出样 单元3006配置为接纳和存储非目标液滴,出样单元3002的第二出样单元3007配置为接纳和存储目标液滴。
盒体装置3000的第一进样单元3003包括进样孔3003A、第一储存腔3003B、以及第二储存腔3003C;第二进样单元3004包括进样孔3004A、第一储存腔3004B、以及第二储存腔3004C;第三进样单元3005包括进样孔3005A、第一储存腔3005B、以及第二储存腔3005C。盒体装置3000的第一进样单元3003、第二进样单元3004以及第三进样单元3005的结构与盒体装置1000的第一进样单元1003的结构完全相同,因此盒体装置3000的第一进样单元3003、第二进样单元3004以及第三进样单元3005具有与盒体装置1000的第一进样单元1003相同的技术效果。出于简洁的目的,此处不再重复它们的结构和技术效果。盒体装置3000的第一出样单元3006包括出样孔3006A、第三储存腔3006B以及第四储存腔3006C,盒体装置3000的第二出样单元3007包括出样孔3007A、第三储存腔3007B以及第四储存腔3007C。第一出样单元3006和第二出样单元3007两者具有完全相同的结构。除了第四储存腔和出样孔的相对位置之外,盒体装置3000的第一出样单元3006和第二出样单元3007的结构与盒体装置1000的出样单元1006的结构基本相同,因此盒体装置3000的各个出样单元的结构和技术效果可参考盒体装置1000的出样单元1006的结构和技术效果。在盒体装置3000中,以第一出样单元3006为例,第四储存腔3006C在盒体装置3000上的正投影落在出样孔3006A在盒体装置3000上的正投影之内。
盒体装置3000还包括第一安装区域3008和第二安装区域3009,第一安装区域3008配置为安装光学识别装置,第二安装区域3009配置为安装驱动电极装置。光学识别装置和驱动电极装置用来与微流控芯片300配合共同实现对目标液滴的分选。第一出样单元3006和第二出样单元3007位于进样单元3001与第一安装区域3008和第二安装区域3009之间。与微流控芯片300相似,通过这样的布置,可以减小盒体装置3000的体积,使盒体装置3000更加小型化,且可以节约成本。
利用盒体装置3000和微流控芯片300来制备液滴且对目标液滴进行分选的大致过程可以描述如下:
(1)向第一进样单元3003、第二进样单元3004以及第三进样单 元3005分别预先加入第一流体、细胞悬液和生化试剂。第一流体为油相,其可以混合有表面活性剂。
(2)通过挠性管道将盒体装置3000的第一进样单元3003的进样孔3003A、第二进样单元3004的进样孔3004A以及第三进样单元3005的进样孔3005A与对应的流量泵相连,通过调节流量泵的压力控制流体注入到进样单元的流速。
(3)第一进样单元3003内的第一流体经由进样孔3003A、第一储存腔3003B以及第二储存腔3003C流入微流控芯片300的第一进样口;第二进样单元3004内的细胞悬液经由进样孔3004A、第一储存腔3004B以及第二储存腔3004C流入微流控芯片300的第二进样口;第三进样单元3005内的生化试剂经由进样孔3005A、第一储存腔3005B以及第二储存腔3005C流入微流控芯片300的第三进样口。注意,可以先使油相的第一流体充满微流控芯片300,然后再注入细胞悬液和生化试剂。
(4)第一流体、细胞悬液、生化试剂在微流控芯片300的汇合点304处汇合并生成包括单个细胞的液滴,然后液滴在分选流道305处被分选并进入相应的子收集部,非目标液滴被收集到第一子收集部3051内,目标液滴(包括单个目标细胞)被收集到第二子收集部3052内。第一子收集部3051内的非目标液滴经由出样口流入盒体装置3000的第一出样单元3006,第二子收集部3052内的目标液滴经由出样口流入盒体装置3000的第二出样单元3007。第一出样单元3006和第二出样单元3007可以存储相应的液滴或者可以根据需要将这些液滴转移至其他设备中。
盒体装置3000与微流控芯片300适配,共同实现包括单个细胞的液滴的制备以及对目标液滴的分选。由于液滴在分选之前和之后被完全限制在该密封的盒体装置3000和微流控芯片300内,因此这种盒体装置3000提供了无菌操作的环境。而且盒体装置3000的存在,使得由盒体装置3000与微流控芯片300构成的系统更为简洁方便,易于携带。
图8示出了根据本公开再一实施例的盒体装置4000的结构示意图,其中(a)是该盒体装置4000的前视图,(b)是该盒体装置4000的右视图,(c)是该盒体装置4000的俯视图,(d)是该盒体装置4000 的轴向图。盒体装置4000适配于本申请的图2示出的微流控芯片400,两者结合可以用来对目标液滴进行级联分选,以获得含有不同类型目标细胞的目标液滴。液滴的级联分选过程可以参考关于微流控芯片400的描述。
盒体装置4000包括进样单元4001和出样单元4002。进样单元4001与微流控芯片400的进样口连通,并且配置为存储第一试剂并将第一试剂释放到微流控芯片400的进样口。出样单元4002与微流控芯片400的出样口连通,并且配置为接纳和存储被微流控芯片400处理且从微流控芯片400的出样口流入到出样单元4002的第二试剂,第二试剂包括目标液滴和非目标液滴,其中目标液滴包括:包括单个A型目标细胞的目标液滴、包括单个B型目标细胞的目标液滴、以及包括单个C型目标细胞的目标液滴;非目标液滴为包括D型非目标细胞的液滴。进样单元4001包括第一进样单元4003、第二进样单元4004以及第三进样单元4005,出样单元4002包括第一出样单元4006和第二出样单元4007、4008、4009。微流控芯片400的进样口包括位于两个第三容纳部401处的第一进样口和第二进样口以及位于第四容纳部402处的第三进样口。第一进样单元4003与微流控芯片400的第一进样口连通,第一进样单元4003配置为存储第一子试剂(即第一流体)并将第一子试剂释放到微流控芯片400的第一进样口;第二进样单元4004与微流控芯片400的第二进样口连通,第二进样单元4004配置为存储第一子试剂(即第一流体)并将第一子试剂释放到微流控芯片400的第二进样口;第三进样单元4005与微流控芯片400的第三进样口连通,第三进样单元4005配置为存储第二子试剂(即包括单个细胞的液滴)并将第二子试剂释放到微流控芯片400的第三进样口。出样单元4002的第一出样单元4006配置为接纳和存储非目标液滴,出样单元4002的第二出样单元4007-4009配置为分别接纳和存储包括单个A型细胞的目标液滴、包括单个B型细胞的目标液滴、以及包括单个C型细胞的目标液滴。
盒体装置4000的第一进样单元4003包括进样孔4003A、第一储存腔4003B、以及第二储存腔4003C;第二进样单元4004包括进样孔4004A、第一储存腔4004B、以及第二储存腔4004C;第三进样单元4005包括进样孔4005A、第一储存腔4005B、以及第二储存腔4005C。盒体 装置4000的第一进样单元4003、第二进样单元4004以及第三进样单元4005的结构与盒体装置1000的第一进样单元1003的结构完全相同,因此盒体装置4000的第一进样单元4003、第二进样单元4004以及第三进样单元4005具有与盒体装置1000的第一进样单元1003相同的技术效果。出于简洁的目的,此处不再重复它们的结构和技术效果。盒体装置4000的第一出样单元4006包括出样孔4006A、第三储存腔4006B以及第四储存腔4006C;盒体装置4000的第二出样单元4007包括出样孔4007A、第三储存腔4007B以及第四储存腔4007C;盒体装置4000的第二出样单元4008包括出样孔4008A、第三储存腔4008B以及第四储存腔4008C;盒体装置4000的第二出样单元4009包括出样孔4009A、第三储存腔4009B以及第四储存腔4009C。第一出样单元4006和第二出样单元4007-4009具有完全相同的结构。除了第四储存腔和出样孔的相对位置之外,盒体装置4000的第一出样单元4006和第二出样单元4007-4009的结构与盒体装置1000的出样单元1006的结构基本相同,因此盒体装置4000的各个出样单元的结构和技术效果可参考盒体装置1000的出样单元1006的结构和技术效果。在盒体装置4000中,以第一出样单元4006为例,第四储存腔4006C在盒体装置4000上的正投影落在出样孔4006A在盒体装置4000上的正投影之内。
盒体装置4000还包括位于进样单元4001和出样单元4002之间的第一安装区域和第二安装区域。第一安装区域配置为安装多个光学识别装置,第二安装区域配置为安装多个驱动电极装置。光学识别装置和驱动电极装置用来与微流控芯片400配合共同实现对目标液滴的级联分选。具体而言,第一安装区域包括第一子安装单元4010、第二子安装单元4011、第三子安装单元4012,第二安装区域包括第四子安装单元4013、第五子安装单元4014、第六子安装单元4015。第一子安装单元4010和第四子安装单元4013关联,第二子安装单元4011和第五子安装单元4014关联,第三子安装单元4012和第六子安装单元4015关联。
利用盒体装置4000和微流控芯片400对目标液滴进行级联分选的大致过程可以描述如下:
(1)向第一进样单元4003和第二进样单元4004分别预先加入第一流体,向第三进样单元4005预先加入包括单个细胞的液滴,该液滴 可以通过上述盒体装置1000和微流控芯片100制备得到。第一流体为油相,其可以混合有表面活性剂。
(2)通过挠性管道将盒体装置4000的第一进样单元4003的进样孔4003A、第二进样单元4004的进样孔4004A以及第三进样单元4005的进样孔4005A分别与对应的流量泵相连,通过调节流量泵的压力控制流体注入到进样单元的流速。
(3)第一进样单元4003内的第一流体经由进样孔4003A、第一储存腔4003B以及第二储存腔4003C流入微流控芯片400的第一进样口;第二进样单元4004内的第一流体经由进样孔4004A、第一储存腔4004B以及第二储存腔4004C流入微流控芯片400的第二进样口;第三进样单元4005内的液滴经由进样孔4005A、第一储存腔4005B以及第二储存腔4005C流入微流控芯片400的第三进样口。注意,可以先使油相的第一流体充满微流控芯片400,然后再注入液滴。
(4)上述液滴在微流控芯片400的分选流道403处被分选并进入相应的子收集部,包括D型非目标细胞的非目标液滴被收集到第一收集部405,包括单个A型目标细胞的目标液滴被收集到第一子收集部4061,包括单个B型目标细胞的目标液滴被收集到第二子收集部4062,包括单个C型目标细胞的目标液滴被收集到第三子收集部4063。第一收集部405内的非目标液滴经由出样口流入盒体装置4000的第一出样单元4006,第一子收集部4061内的目标液滴经由出样口流入盒体装置4000的第二出样单元4007,第二子收集部4062内的目标液滴经由出样口流入盒体装置4000的第二出样单元4008,第三子收集部4063内的目标液滴经由出样口流入盒体装置4000的第二出样单元4009。第一出样单元4006和第二出样单元4007-4009可以存储相应的液滴或者可以根据需要将这些液滴转移至其他设备中。
盒体装置4000与微流控芯片400适配,共同实现对目标液滴的级联分选。利用该盒体装置4000和微流控芯片400,通过一次分选过程,即可筛选出三种不同类型的目标细胞,这大大提升了细胞的分选速度和效率。而且,相比于利用三个不同的微流控芯片分别筛选三种不同类型的目标细胞,本公开的实施例仅利用一个盒体装置4000和微流控芯片400即可实现对三种不同类型的目标细胞的分选,这大大节约了所需的微流控芯片和盒体装置的数量,从而节约生产成本。
可以使盒体装置4000稍作变型以得到盒体装置4000’,该变型的盒体装置4000’可以适配本申请图3示出的微流控芯片400’。变型的盒体装置4000’与盒体装置4000相比,仅需改变出样单元的数量即可,其他部件无需改变。在盒体装置4000中,第一出样单元4006的数量为一个,第二出样单元的数量为三个。在盒体装置4000’中,第一出样单元4006的数量为一个,第二出样单元的数量为一个。
利用盒体装置4000’和微流控芯片400’对目标液滴进行级联分选的前三个步骤与上面关于利用盒体装置4000和微流控芯片400对目标液滴进行级联分选的前三个步骤(1)-(3)完全相同。出于简洁的目的,此处不再重复描述。下面,从第四个步骤开始描述。
(4)液滴在微流控芯片400’的分选流道403处被分选并进入相应的子收集部,包括F型非目标细胞的非目标液滴经由第一分选流道4031A、4031B、4031C被收集到第一收集部405’,包括单个E型目标细胞的目标液滴被收集到第二收集部406。第一收集部405’内的非目标液滴经由出样口流入盒体装置4000’的第一出样单元,第二收集部406内的目标液滴经由出样口流入盒体装置4000’的第二出样单元。第一出样单元和第二出样单元可以存储相应的液滴或者可以根据需要将这些液滴转移至其他设备中。
盒体装置4000’与微流控芯片400’适配,共同实现对目标液滴的级联分选。利用该盒体装置4000’和微流控芯片400’,通过对液滴进行多次级联分选,可以将难以区分的目标液滴和非目标液滴进行区分,大大提高了最终收集到的目标液滴的纯度,降低甚至排除了所收集的目标液滴中包含非目标液滴的可能性。
图9示出了根据本公开又一实施例的盒体装置5000的结构示意图,其中(a)是该盒体装置5000的前视图,(b)是该盒体装置5000的右视图,(c)是该盒体装置5000的俯视图,(d)是该盒体装置5000的轴向图。盒体装置5000适配于本申请图4示出的微流控芯片500,两者结合可以用来分选具有不同粒径的液滴。液滴的具体分选过程可以参考关于微流控芯片500的描述。
盒体装置5000包括进样单元5001和出样单元5002。进样单元5001与微流控芯片500的进样口连通,并且配置为存储第一试剂并将第一试剂释放到微流控芯片500的进样口,第一试剂为大量液滴,大量液 滴中的至少一部分包括单个细胞;出样单元5002与微流控芯片500的出样口连通,并且配置为接纳和存储被微流控芯片500处理且从微流控芯片500的出样口流入到出样单元5002的第二试剂,第二试剂包括具有不同粒径的两种液滴。进样单元5001包括一个进样单元5003,出样单元5002包括第一出样单元5004以及第二出样单元5005。进样单元5003与微流控芯片500的进样口连通,进样单元5003配置为存储液滴并将液滴释放到微流控芯片500的进样口。出样单元5002的第一出样单元5004配置为接纳和存储具有较小粒径的液滴,出样单元5002的第二出样单元5005配置为接纳和存储具有较大粒径的液滴。
盒体装置5000的进样单元5003包括进样孔5003A、第一储存腔5003B、以及第二储存腔5003C。盒体装置5000的进样单元5003与盒体装置1000的第一进样单元1003的结构完全相同,因此盒体装置5000的进样单元5003具有与盒体装置1000的第一进样单元1003相同的技术效果。出于简洁的目的,此处不再重复它的结构和技术效果。盒体装置5000的第一出样单元5004包括出样孔5004A、第三储存腔5004B以及第四储存腔5004C;盒体装置5000的第二出样单元5005包括出样孔5005A、第三储存腔5005B以及第四储存腔5005C。第一出样单元5004和第二出样单元5005具有完全相同的结构。除了第四储存腔和出样孔的相对位置之外,盒体装置5000的第一出样单元5004和第二出样单元5005的结构与盒体装置1000的出样单元1006的结构基本相同,因此盒体装置5000的各个出样单元的结构和技术效果可参考盒体装置1000的出样单元1006的结构和技术效果。在盒体装置5000中,以第一出样单元5004为例,第四储存腔5004C在盒体装置5000上的正投影落在出样孔5004A在盒体装置5000上的正投影之内。
利用盒体装置5000和微流控芯片500对目标液滴进行分选的大致过程可以描述如下:
(1)向进样单元5003预先加入包括单个细胞的液滴,该液滴可以通过上述盒体装置1000和微流控芯片100制备得到。第一流体为油相,其可以混合有表面活性剂。
(2)通过挠性管道将盒体装置5000的进样单元5003的进样孔5003A与流量泵相连,通过调节流量泵的压力控制流体注入到进样单元的流速。
(3)进样单元5003内的液滴经由进样孔5003A、第一储存腔5003B以及第二储存腔5003C流入微流控芯片500的进样口。
(4)上述液滴在微流控芯片500的主体流道503内流动,并在惯性力的作用下被分选并进入相应的收集部。在主体流道503的末端分叉处,粒径较小的第一类液滴受惯性力较小,因而沿着主体流道503的延伸方向进入到第一分选流道504,然后流入第一收集部507。粒径较大的第二类液滴受惯性力较大,在惯性力的作用小甩出主体流道503而进入第二分选流道505,最终流入第二收集部508。第一收集部507内的第一类液滴经由出样口流入盒体装置5000的第一出样单元5004,第二收集部508内的第二类液滴经由出样口流入盒体装置5000的第二出样单元5005。第一出样单元5004和第二出样单元5005可以存储相应的液滴或者可以根据需要将这些液滴转移至其他设备中。
盒体装置5000与微流控芯片500适配,可以对不同粒径的液滴进行分选。该盒体装置5000无需留出用于安装光学识别装置的区域和用于安装驱动电极装置的区域,微流控芯片500也无需设置光学识别装置和驱动电极装置,而是仅依赖于主体流道503的形状,便可以将不同粒径的液滴区分开。由于无需光学识别装置和驱动电极装置,因此不仅可以减小盒体装置5000和微流控芯片500的体积,还可以节约生产成本。
根据本公开的又一方面,提供了一种微流控装置。图10示出了该微流控装置的框图。该微流控装置包括在前面任一个实施例中描述的微流控芯片和在前面任一个实施例中描述的盒体装置,微流控芯片与相应的盒体装置组装在一起。由于微流控装置可以与前面实施例描述的微流控芯片和盒体装置具有基本相同的技术效果,因此,出于简洁的目的,此处不再重复描述微流控装置的技术效果。
将理解的是,尽管术语第一、第二、第三等在本文中可以用来描述各种元件、部件、区、层和/或部分,但是这些元件、部件、区、层和/或部分不应当由这些术语限制。这些术语仅用来将一个元件、部件、区、层或部分与另一个区、层或部分相区分。因此,上面讨论的第一元件、部件、区、层或部分可以被称为第二元件、部件、区、层或部分而不偏离本公开的教导。
诸如“行”、“列”、“在...之下”、“在...之上”、“左”、 “右”等等之类的空间相对术语在本文中可以为了便于描述而用来描述如图中所图示的一个元件或特征与另一个(些)元件或特征的关系。将理解的是,这些空间相对术语意图涵盖除了图中描绘的取向之外在使用或操作中的器件的不同取向。例如,如果翻转图中的器件,那么被描述为“在其他元件或特征之下”的元件将取向为“在其他元件或特征之上”。因此,示例性术语“在...之下”可以涵盖在...之上和在...之下的取向两者。器件可以取向为其他方式(旋转90度或以其他取向)并且相应地解释本文中使用的空间相对描述符。另外,还将理解的是,当层被称为“在两个层之间”时,其可以是在该两个层之间的唯一的层,或者也可以存在一个或多个中间层。
本文中使用的术语仅出于描述特定实施例的目的并且不意图限制本公开。如本文中使用的,单数形式“一个”、“一”和“该”意图也包括复数形式,除非上下文清楚地另有指示。将进一步理解的是,术语“包括”和/或“包含”当在本说明书中使用时指定所述特征、整体、步骤、操作、元件和/或部件的存在,但不排除一个或多个其他特征、整体、步骤、操作、元件、部件和/或其群组的存在或添加一个或多个其他特征、整体、步骤、操作、元件、部件和/或其群组。如本文中使用的,术语“和/或”包括相关联的列出项目中的一个或多个的任意和全部组合。在本说明书的描述中,参考术语“一个实施例”、“另一个实施例”等的描述意指结合该实施例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
将理解的是,当元件或层被称为“在另一个元件或层上”、“连接到另一个元件或层”、“耦合到另一个元件或层”或“邻近另一个元件或层”时,其可以直接在另一个元件或层上、直接连接到另一个元件或层、直接耦合到另一个元件或层或者直接邻近另一个元件或层,或者可以存在中间元件或层。相反,当元件被称为“直接在另一个元件或层上”、“直接连接到另一个元件或层”、“直接耦合到另一个 元件或层”、“直接邻近另一个元件或层”时,没有中间元件或层存在。然而,在任何情况下“在...上”或“直接在...上”都不应当被解释为要求一个层完全覆盖下面的层。
本文中参考本公开的理想化实施例的示意性图示(以及中间结构)描述本公开的实施例。正因为如此,应预期例如作为制造技术和/或公差的结果而对于图示形状的变化。因此,本公开的实施例不应当被解释为限于本文中图示的区的特定形状,而应包括例如由于制造导致的形状偏差。因此,图中图示的区本质上是示意性的,并且其形状不意图图示器件的区的实际形状并且不意图限制本公开的范围。
除非另有定义,本文中使用的所有术语(包括技术术语和科学术语)具有与本公开所属领域的普通技术人员所通常理解的相同含义。将进一步理解的是,诸如那些在通常使用的字典中定义的之类的术语应当被解释为具有与其在相关领域和/或本说明书上下文中的含义相一致的含义,并且将不在理想化或过于正式的意义上进行解释,除非本文中明确地如此定义。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此。任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (39)

  1. 一种微流控芯片,包括:
    第一容纳部,配置为容纳第一流体;
    第二容纳部,配置为容纳第二流体,所述第二流体包括细胞悬液;
    输送流道,包括第一输送流道和第二输送流道,所述第一输送流道与所述第一容纳部连通且所述第二输送流道与所述第二容纳部连通,所述第一输送流道与所述第二输送流道在汇合点处彼此交叉且连通,所述输送流道的形状被设计为使得所述第一流体和所述第二流体在所述汇合点处汇合;
    分选流道,位于所述输送流道的下游,所述分选流道包括第一分选流道和第二分选流道;以及
    收集部,位于所述分选流道的下游且包括第一收集部和第二收集部,所述第一收集部与所述第一分选流道连通,所述第二收集部与所述第二分选流道连通。
  2. 根据权利要求1所述的微流控芯片,其中,
    所述第一输送流道的一部分被所述汇合点分割为第一区段和第二区段,在所述第一区段和所述第二区段中的每一个区段中,该区段的第一横截面的面积沿着远离所述汇合点的第一方向逐渐增大,所述第一横截面垂直于所述第一方向,并且,
    所述第二输送流道被所述汇合点分割为第三区段和第四区段,在所述第三区段和所述第四区段中的每一个区段中,该区段的第二横截面的面积沿着远离所述汇合点的第二方向逐渐增大,所述第二横截面垂直于所述第二方向。
  3. 根据权利要求1所述的微流控芯片,其中,所述第一分选流道的始端和所述第二分选流道的始端均与所述输送流道的末端连通,所述第一分选流道的末端与所述第一收集部连通且所述第二分选流道的末端与所述第二收集部连通,所述第一分选流道和所述第二分选流道从所述输送流道的末端朝向所述汇合点弯折,并且所述第一收集部和所述第二收集部位于所述汇合点和所述输送流道的末端之间。
  4. 根据权利要求1所述的微流控芯片,其中,所述分选流道还包括至少两个连接流道,
    所述第二分选流道包括至少两个级联的分支,所述至少两个级联的分支中的任意相邻两个分支之间设置有一个连接流道且所述任意相邻两个分支经由所述连接流道连通;
    所述第一分选流道的始端与所述输送流道的末端连通,所述第一分选流道的末端与所述第一收集部连通,所述第一分选流道与所述至少两个级联的分支中的第一级分支相邻,并且所述第一分选流道与所述第一级分支之间设置有一个所述连接流道且所述第一分选流道与所述第一级分支经由所述连接流道连通;并且
    所述第二收集部包括至少两个子收集部,所述级联的分支与所述子收集部一一对应,并且所述级联的分支中的一个与所述子收集部中的相应一个连通。
  5. 根据权利要求4所述的微流控芯片,其中,所述第二分选流道包括级联的第一级分支、第二级分支以及第三级分支,所述至少两个连接流道包括第一连接流道、第二连接流道、第三连接流道,所述第二收集部包括第一子收集部、第二子收集部、第三子收集部,
    所述第一分选流道与所述第一级分支经由所述第一连接流道连通,所述第一级分支与所述第二级分支经由所述第二连接流道连通,所述第二级分支与所述第三级分支经由所述第三连接流道连通;以及
    所述第一级分支的末端与所述第一子收集部连通,所述第二级分支的末端与所述第二子收集部连通,所述第三级分支的末端与所述第三子收集部连通。
  6. 根据权利要求5所述的微流控芯片,其中,所述第二连接流道相较于所述第一连接流道在第二方向上更靠近所述收集部,并且所述第三连接流道相较于所述第二连接流道在所述第二方向上更靠近所述收集部。
  7. 根据权利要求5所述的微流控芯片,还包括两个第三容纳部,其中,所述第一级分支的始端和所述第二级分支的始端分别与所述两个第三容纳部中的一个连通,所述第三容纳部配置为容纳所述第一流体。
  8. 根据权利要求1所述的微流控芯片,其中,所述分选流道还包括至少两个连接流道,
    所述第一分选流道包括至少两个级联的分支,所述至少两个级联 的分支中的任意相邻两个分支之间设置有一个所述连接流道且所述任意相邻两个分支经由所述连接流道连通,所述至少两个级联的分支的末端均与所述第一收集部连通;并且
    所述第二分选流道的始端经由一个所述连接流道与所述第一分选流道的最后一级分支连通,所述第二分选流道的末端与所述第二收集部连通。
  9. 根据权利要求1所述的微流控芯片,其中,所述分选流道还包括主体流道,所述主体流道在所述微流控芯片所在的平面内呈螺旋状,所述主体流道的末端与所述第一分选流道和所述第二分选流道连通,所述第一分选流道配置为筛选第一液滴,所述第二分选流道配置为筛选第二液滴,并且所述第一分选流道筛选的所述第一液滴和所述第二分选流道筛选的所述第二液滴具有不同的粒径。
  10. 根据权利要求2所述的微流控芯片,其中,所述第一输送流道的一部分包括第一子部分、包括所述汇合点的第二子部分、以及第三子部分,所述第一子部分属于所述第一区段,所述第三子部分属于所述第二区段,所述第二子部分跨越所述第一区段和所述第二区段并且位于所述第一子部分和所述第三子部分之间,所述第一子部分和所述第三子部分的所述第一横截面的面积均大于所述第二子部分的所述第一横截面的面积。
  11. 根据权利要求10所述的微流控芯片,其中,所述第一输送流道的第二子部分在所述汇合点处的所述第一横截面的尺寸配置为允许具有特定粒径的第一流体在其内部流动,所述第一流体的特定粒径大于所述细胞悬液中的单个细胞的粒径。
  12. 根据权利要求10所述的微流控芯片,
    其中,所述第二输送流道包括第一子流道、第二子流道以及第三子流道,所述第一子流道和所述第二子流道属于所述第三区段,所述第三子流道属于所述第四区段,
    其中,所述第一子流道的第一端与所述第二容纳部连通,所述第一子流道的第二端与所述第二子流道的第一端连通,所述第二子流道的第二端与所述第三子流道的第一端连通,且所述第二子流道的第二端与所述第三子流道的第一端均位于所述汇合点处,并且
    其中,所述第一子流道和所述第三子流道的所述第二横截面的面 积均大于所述第二子流道的所述第二横截面的面积。
  13. 根据权利要求12所述的微流控芯片,其中,所述第二子流道的所述第二横截面的尺寸配置为允许具有特定粒径的第二流体在其内部流动,所述第二流体的特定粒径大于所述细胞悬液中的单个细胞的1倍粒径且小于所述单个细胞的2倍粒径。
  14. 根据权利要求12所述的微流控芯片,其中,所述第三子流道的所述第二横截面的面积沿着从所述第三子流道的第一端到第二端的方向逐渐增大。
  15. 根据权利要求12所述的微流控芯片,其中,所述第一输送流道的第二子部分在所述汇合点处的所述第一横截面的面积大于或等于所述第二输送流道的第二子流道和第三子流道在所述汇合点处的所述第二横截面的面积。
  16. 根据权利要求1所述的微流控芯片,其中,所述输送流道的内壁表面具有疏水性。
  17. 根据权利要求1所述的微流控芯片,其中,所述第一容纳部和所述第二容纳部的轮廓包括四个倒角,所述倒角的形状包括圆弧状。
  18. 根据权利要求1所述的微流控芯片,其中,所述第一容纳部和所述第二容纳部均设置有过滤结构,所述过滤结构包括多个微结构,所述多个微结构中的相邻两个之间的间隙大于所述细胞悬液中的单个细胞的1倍粒径且小于所述单个细胞的2倍粒径。
  19. 根据权利要求1-18中任一项所述的微流控芯片,还包括进样口和出样口,其中,所述进样口布置在所述第一容纳部和所述第二容纳部中,所述出样口布置在所述收集部中。
  20. 一种盒体装置,配置为与权利要求1-19中的任一项所述的微流控芯片搭配使用,所述微流控芯片包括进样口和出样口,其中,所述盒体装置包括:
    容纳腔,配置为容纳权利要求1-19中的任一项所述的微流控芯片;
    进样单元,与所述微流控芯片的进样口连通,所述进样单元配置为存储第一试剂并将所述第一试剂释放到所述微流控芯片的进样口;以及
    出样单元,与所述微流控芯片的出样口连通,所述出样单元配置为接纳和存储被所述微流控芯片处理且从所述微流控芯片的出样口流 入到所述出样单元的第二试剂,
    其中,所述进样单元包括进样孔和第一储存腔,所述进样孔为通孔并与所述第一储存腔连通,所述进样孔从所述盒体装置的表面向所述盒体装置的内部凹入,并且所述第一储存腔位于所述进样孔远离所述盒体装置的表面的一侧。
  21. 根据权利要求20所述的盒体装置,其中,所述第一储存腔位于所述盒体装置的内部,并且所述进样孔在所述盒体装置上的正投影落在所述第一储存腔在所述盒体装置上的正投影之内。
  22. 根据权利要求20所述的盒体装置,其中,所述进样单元还包括第二储存腔,所述第二储存腔位于所述第一储存腔远离所述进样孔的一侧并与所述第一储存腔连通,所述第二储存腔包括与所述第一储存腔连通的第一开口和与所述第一开口相对的第二开口,所述第二开口在所述盒体装置上的正投影落在所述第一开口在所述盒体装置上的正投影之内。
  23. 根据权利要求22所述的盒体装置,其中,所述第二储存腔的第二开口在所述盒体装置上的正投影落在所述进样孔在所述盒体装置上的正投影之内。
  24. 根据权利要求20所述的盒体装置,其中,所述出样单元包括出样孔和第三储存腔,所述出样孔为通孔并与所述第三储存腔连通,所述出样孔从所述盒体装置的表面向所述盒体装置的内部凹入,并且所述第三储存腔位于所述出样孔远离所述盒体装置的表面的一侧。
  25. 根据权利要求24所述的盒体装置,其中,所述第三储存腔位于所述盒体装置的内部,并且所述出样孔在所述盒体装置上的正投影落在所述第三储存腔在所述盒体装置上的正投影之内。
  26. 根据权利要求24所述的盒体装置,其中,所述出样单元还包括第四储存腔,所述第四储存腔位于所述第三储存腔远离所述出样孔的一侧并与所述第三储存腔连通。
  27. 根据权利要求26所述的盒体装置,其中,所述第四储存腔在所述盒体装置上的正投影与所述出样孔在所述盒体装置上的正投影至多交叠一部分。
  28. 根据权利要求26所述的盒体装置,其中,所述第四储存腔在所述盒体装置上的正投影落在所述出样孔在所述盒体装置上的正投影 之内。
  29. 根据权利要求20-28中任一项所述的盒体装置,其中,所述进样单元包括第一进样单元、第二进样单元、第三进样单元,所述微流控芯片的进样口包括第一进样口、第二进样口、第三进样口,所述第一试剂包括第一流体、细胞悬液、生化试剂,
    其中,所述第一进样单元与所述微流控芯片的第一进样口连通,所述第一进样单元配置为存储所述第一流体并将所述第一流体释放到所述微流控芯片的第一进样口;所述第二进样单元与所述微流控芯片的第二进样口连通,所述第二进样单元配置为存储所述细胞悬液并将所述细胞悬液释放到所述微流控芯片的第二进样口;所述第三进样单元与所述微流控芯片的第三进样口连通,所述第三进样单元配置为存储所述生化试剂并将所述生化试剂释放到所述微流控芯片的第三进样口。
  30. 根据权利要求20-28中任一项所述的盒体装置,还包括第一安装区域和第二安装区域,其中,所述第一安装区域配置为安装光学识别装置,所述第二安装区域配置为安装驱动电极装置。
  31. 根据权利要求30所述的盒体装置,其中,所述进样单元包括第一进样单元和第二进样单元,所述微流控芯片的进样口包括第一进样口和第二进样口,所述第一试剂包括第一流体和包括单个细胞的液滴,
    其中,所述第一进样单元与所述微流控芯片的第一进样口连通,所述第一进样单元配置为存储所述第一流体并将所述第一流体释放到所述微流控芯片的第一进样口;所述第二进样单元与所述微流控芯片的第二进样口连通,所述第二进样单元配置为存储所述包括单个细胞的液滴并将所述包括单个细胞的液滴释放到所述微流控芯片的第二进样口;并且
    其中,所述出样单元包括第一出样单元、第二出样单元以及位于所述第一出样单元和所述第二出样单元之间的第三出样单元,所述第二试剂包括第一液滴和第二液滴,所述第三出样单元配置为接纳和存储所述第一液滴,所述第一出样单元和所述第二出样单元配置为接纳和存储所述第二液滴。
  32. 根据权利要求30所述的盒体装置,其中,所述进样单元包括 第一进样单元、第二进样单元、第三进样单元,所述微流控芯片的进样口包括第一进样口、第二进样口、第三进样口,所述第一试剂包括第一流体、细胞悬液、生化试剂,
    其中,所述第一进样单元与所述微流控芯片的第一进样口连通,所述第一进样单元配置为存储所述第一流体并将所述第一流体释放到所述微流控芯片的第一进样口;所述第二进样单元与所述微流控芯片的第二进样口连通,所述第二进样单元配置为存储所述细胞悬液并将所述细胞悬液释放到所述微流控芯片的第二进样口;所述第三进样单元与所述微流控芯片的第三进样口连通,所述第三进样单元配置为存储所述生化试剂并将所述生化试剂释放到所述微流控芯片的第三进样口;并且
    其中,所述出样单元包括第一出样单元和第二出样单元,所述第二试剂包括第一液滴和第二液滴,所述第一出样单元配置为接纳和存储所述第一液滴,所述第二出样单元配置为接纳和存储所述第二液滴。
  33. 根据权利要求32所述的盒体装置,其中,所述第一出样单元和所述第二出样单元位于所述进样单元与所述第一安装区域和第二安装区域之间。
  34. 根据权利要求30所述的盒体装置,其中,所述第一安装区域和所述第二安装区域位于所述进样单元和所述出样单元之间,所述第一安装区域包括第一子安装单元、第二子安装单元、第三子安装单元,所述第二安装区域包括第四子安装单元、第五子安装单元、第六子安装单元,所述第一子安装单元和所述第四子安装单元关联,所述第二子安装单元和所述第五子安装单元关联,所述第三子安装单元和所述第六子安装单元关联。
  35. 根据权利要求34所述的盒体装置,其中,所述进样单元包括第一进样单元、第二进样单元、第三进样单元,所述微流控芯片的进样口包括第一进样口、第二进样口、第三进样口,所述第一试剂包括第一流体和包括单个细胞的液滴,
    其中,所述第一进样单元与所述微流控芯片的第一进样口连通,所述第一进样单元配置为存储所述第一流体并将所述第一流体释放到所述微流控芯片的第一进样口;所述第二进样单元与所述微流控芯片的第二进样口连通,所述第二进样单元配置为存储所述第一流体并将 所述第一流体释放到所述微流控芯片的第二进样口;所述第三进样单元与所述微流控芯片的第三进样口连通,所述第三进样单元配置为存储所述包括单个细胞的液滴并将所述包括单个细胞的液滴释放到所述微流控芯片的第三进样口;并且
    其中,所述出样单元包括第一出样单元和第二出样单元,所述第二试剂包括第一液滴和第二液滴,所述第一出样单元配置为接纳和存储所述第一液滴,所述第二出样单元配置为接纳和存储所述第二液滴。
  36. 根据权利要求35所述的盒体装置,其中,所述第一出样单元的数量为一个,所述第二出样单元的数量为三个。
  37. 根据权利要求35所述的盒体装置,其中,所述第一出样单元的数量为一个,所述第二出样单元的数量为一个。
  38. 根据权利要求20-28中任一项所述的盒体装置,其中,所述盒体装置包括一个进样单元和两个出样单元,所述第二试剂包括第一液滴和第二液滴,所述第一液滴与所述第二液滴具有不同的粒径,所述两个出样单元中的一个配置为接纳和存储所述第一液滴,所述两个出样单元中的另一个配置为接纳和存储所述第二液滴。
  39. 一种微流控装置,包括如权利要求1-19中任一项所述的微流控芯片和如权利要求20-38中任一项所述的盒体装置,其中,所述微流控芯片与所述盒体装置组装在一起。
PCT/CN2022/078956 2021-04-27 2022-03-03 微流控芯片、盒体装置、微流控装置 WO2022227853A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/262,223 US20230405587A1 (en) 2021-04-27 2022-03-03 Microfluidic chip, box device, microfluidic device
GB2317811.4A GB2621756A (en) 2021-04-27 2022-03-03 Microfluidic chip, box body device, and microfluidic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/090291 WO2022226791A1 (zh) 2021-04-27 2021-04-27 芯片、微流控装置以及分选目标液滴的方法
CNPCT/CN2021/090291 2021-04-27
CN202210112214.2A CN115245846A (zh) 2021-04-27 2022-01-29 微流控芯片、盒体装置、微流控装置
CN202210112214.2 2022-01-29

Publications (1)

Publication Number Publication Date
WO2022227853A1 true WO2022227853A1 (zh) 2022-11-03

Family

ID=83693813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078956 WO2022227853A1 (zh) 2021-04-27 2022-03-03 微流控芯片、盒体装置、微流控装置

Country Status (3)

Country Link
US (2) US20230405587A1 (zh)
GB (1) GB2621756A (zh)
WO (1) WO2022227853A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090250347A1 (en) * 2008-04-03 2009-10-08 Protea Biosciences, Inc. Microfluidic devices & processes for electrokinetic transport
CN102068409A (zh) * 2011-01-13 2011-05-25 清华大学 一种基于微流控技术制备单分散性微乳、脂质体和微球的方法
CN103865795A (zh) * 2014-03-25 2014-06-18 武汉大学 一种电压控制分选细胞的微流控芯片
CN105944775A (zh) * 2016-06-22 2016-09-21 苏州汶颢芯片科技有限公司 单细胞分离微流控芯片
CN107008517A (zh) * 2017-05-22 2017-08-04 广东顺德工业设计研究院(广东顺德创新设计研究院) 微流控芯片及其微滴生成装置
CN107429426A (zh) * 2015-02-04 2017-12-01 加利福尼亚大学董事会 多重乳液核酸扩增
CN108485910A (zh) * 2018-03-21 2018-09-04 中国人民解放军陆军军医大学第附属医院 一种双螺旋形微流控芯片
CN109913352A (zh) * 2019-03-27 2019-06-21 中国科学院上海微系统与信息技术研究所 一种基于非接触式介电电泳力操控捕获微颗粒和细胞的微流控装置及方法
CN111676129A (zh) * 2020-07-09 2020-09-18 墨卓生物科技(上海)有限公司 一种dPCR集成微流控芯片
CN112275336A (zh) * 2020-10-20 2021-01-29 大连理工大学 一种多通道集成微流控芯片及其高通量制备单分散凝胶微球的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090250347A1 (en) * 2008-04-03 2009-10-08 Protea Biosciences, Inc. Microfluidic devices & processes for electrokinetic transport
CN102068409A (zh) * 2011-01-13 2011-05-25 清华大学 一种基于微流控技术制备单分散性微乳、脂质体和微球的方法
CN103865795A (zh) * 2014-03-25 2014-06-18 武汉大学 一种电压控制分选细胞的微流控芯片
CN107429426A (zh) * 2015-02-04 2017-12-01 加利福尼亚大学董事会 多重乳液核酸扩增
CN105944775A (zh) * 2016-06-22 2016-09-21 苏州汶颢芯片科技有限公司 单细胞分离微流控芯片
CN107008517A (zh) * 2017-05-22 2017-08-04 广东顺德工业设计研究院(广东顺德创新设计研究院) 微流控芯片及其微滴生成装置
CN108485910A (zh) * 2018-03-21 2018-09-04 中国人民解放军陆军军医大学第附属医院 一种双螺旋形微流控芯片
CN109913352A (zh) * 2019-03-27 2019-06-21 中国科学院上海微系统与信息技术研究所 一种基于非接触式介电电泳力操控捕获微颗粒和细胞的微流控装置及方法
CN111676129A (zh) * 2020-07-09 2020-09-18 墨卓生物科技(上海)有限公司 一种dPCR集成微流控芯片
CN112275336A (zh) * 2020-10-20 2021-01-29 大连理工大学 一种多通道集成微流控芯片及其高通量制备单分散凝胶微球的方法

Also Published As

Publication number Publication date
US20220339630A1 (en) 2022-10-27
US20230405587A1 (en) 2023-12-21
GB2621756A (en) 2024-02-21

Similar Documents

Publication Publication Date Title
US10227562B2 (en) Process for sorting motile particles from lesser-motile particles and apparatus suitable therefor
JP6316369B2 (ja) 微小流体デバイス
CN107012067B (zh) 一种高通量配对捕获单细胞/单颗粒的微流控芯片及其应用
EP2970849B1 (en) Methods and devices for analysis of defined multicellular combinations
US11369962B2 (en) Method and device for tracking and manipulation of droplets
ES2669870T3 (es) Células de líquido compuesto
US20100285975A1 (en) Microfabricated droplet generator for single molecule/cell genetic analysis in engineered monodispersed emulsions
CN104513787A (zh) 用于单细胞捕获、培养和给药的集成微流控芯片及系统
EP3215271A1 (en) Sorting particles in a microfluidic device
CN107583676A (zh) 一种微流控芯片及外泌体捕获和检测的研究方法
US20060270021A1 (en) Integrated microfluidic sperm isolation and insemination device
EP1641411A1 (en) Integrated microfluidic sperm isolation and insemination device
JP2023503157A (ja) マイクロ流体チップの使用方法およびマイクロ流体デバイス
WO2022227853A1 (zh) 微流控芯片、盒体装置、微流控装置
CN218281795U (zh) 微流控芯片、盒体装置、微流控装置
EP3978119A1 (en) Particle separator system, materials, and methods of use
Lan et al. Microfluidic based single cell or droplet manipulation: Methods and applications
Wolff et al. Chip-integrated microfluidic system for cell sorting and cell culturing
CN115337967B (zh) 分离芯片
WO2023284966A1 (en) Microfluidic device for manipulating a discrete element
Ke Microfluidic-based cell assay for biomedical application
CN117280019A (zh) 颗粒分离器系统、材料和使用方法
CN115178308A (zh) 一种生物颗粒的捕获系统及其控制方法
DK202001365A1 (en) System and method for sorting of particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794332

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202317811

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220303

NENP Non-entry into the national phase

Ref country code: DE