WO2022227850A1 - 光学防抖弹性支撑机构、防抖和透镜驱动装置及摄像装置、电子设备 - Google Patents

光学防抖弹性支撑机构、防抖和透镜驱动装置及摄像装置、电子设备 Download PDF

Info

Publication number
WO2022227850A1
WO2022227850A1 PCT/CN2022/078914 CN2022078914W WO2022227850A1 WO 2022227850 A1 WO2022227850 A1 WO 2022227850A1 CN 2022078914 W CN2022078914 W CN 2022078914W WO 2022227850 A1 WO2022227850 A1 WO 2022227850A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
shake
axis
motor assembly
frame
Prior art date
Application number
PCT/CN2022/078914
Other languages
English (en)
French (fr)
Inventor
王在伟
Original Assignee
新思考电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新思考电机有限公司 filed Critical 新思考电机有限公司
Priority to US17/721,792 priority Critical patent/US11988848B2/en
Publication of WO2022227850A1 publication Critical patent/WO2022227850A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction

Definitions

  • the invention belongs to the technical field of optical component driving, and in particular relates to an optical anti-shake elastic support mechanism, an anti-shake and lens driving device, a camera device and electronic equipment.
  • the existing anti-shake mechanism uses two L-shaped diagonal shrapnel to perform anti-shake in the X and Y directions.
  • the simultaneous anti-shake of the X-axis and the Y-axis easily affects each other, and the anti-shake compensation has poor anti-shake performance. Meanwhile, the production process is complicated and the cost is high.
  • the purpose of the present invention is to solve the above problems, and provide an optical anti-shake elastic support mechanism, anti-shake and lens driving device, camera device, and electronic equipment that can solve the above technical problems.
  • the optical anti-shake elastic support mechanism is elastically supported on the focusing motor assembly and the base, and elastically supported on the focusing motor assembly and the optical anti-shake frame;
  • the optical anti-shake elastic support mechanism includes:
  • the two X-direction shrapnel are used to connect the focus motor assembly and the optical image stabilization frame or to connect the base and the optical image stabilization frame;
  • the Y-direction shrapnel has two pieces and the optical axes of the optical components are relatively distributed.
  • the two Y-direction shrapnel are used to connect the base and the optical image stabilization frame or to connect the focus motor assembly and the optical image stabilization frame;
  • the two Y-direction shrapnel are used to connect the focus motor assembly and the optical anti-shake frame;
  • the focus motor assembly Under the X-axis drive, the focus motor assembly is unidirectionally translated along the X-axis in a horizontal plane perpendicular to the optical axis; or under the Y-axis drive, the focus motor assembly is caused to unidirectionally translate along the Y-axis in a horizontal plane perpendicular to the optical axis.
  • the structure of the X-direction elastic piece is the same as that of the Y-direction elastic piece, including a middle fixing part, two end fixing parts, and two wrist parts, which are respectively connected at both ends of the middle fixing part There is a wrist part, and one end part of each wrist part is connected with one end part fixed part away from the middle fixed part.
  • each X-direction elastic piece are respectively fixed on the optical anti-shake frame, and the middle fixed part of each X-direction elastic piece is fixed on the focusing motor assembly;
  • the two end fixing parts of the Y-direction elastic pieces are respectively fixed on the base, and the middle fixing part of each Y-direction elastic piece is fixed on the optical anti-shake frame.
  • the two end fixing parts of each X-direction elastic piece are respectively fixed on the base, and the middle fixing part of each X-direction elastic piece is fixed on the optical anti-shake frame;
  • the two end fixing parts of the shrapnel are respectively fixed on the optical anti-shake frame, and the middle fixing part of each Y-direction shrapnel is fixed on the focusing motor assembly.
  • the four corners of the base are respectively provided with first elastic piece fixing parts, and the two first elastic piece fixing parts are a group;
  • each X-direction elastic piece is respectively fixed on the two first elastic piece fixing parts of the same group;
  • each Y-direction elastic sheet is respectively fixed on the two first elastic sheet fixing portions of the same group.
  • the four corners of the optical anti-shake frame are respectively provided with second elastic piece fixing parts, and the two second elastic piece fixing parts are a group;
  • each X-direction elastic piece is respectively fixed on the two second elastic piece fixing parts of the same group;
  • each Y-direction elastic sheet is respectively fixed on the two second elastic sheet fixing portions of the same group.
  • a third elastic piece fixing portion is respectively connected to the middle of two opposite sides of the four outer sides of the outer frame in the peripheral direction of the focusing motor assembly, and two opposite sides of the optical anti-shake frame are opposite to each other.
  • the middle part of the side edge is respectively connected with a fourth fixing part, and the two third elastic piece fixing parts and the two fourth fixing parts are arranged at the corresponding ends of the "cross" shape;
  • the middle fixing parts of the two X-direction elastic pieces are respectively fixed on the third elastic piece fixing part;
  • the middle fixing parts of the two Y-direction elastic pieces are respectively fixed on the fourth fixing part;
  • the middle fixing parts of the two Y-direction elastic pieces are respectively fixed on the third elastic piece fixing part.
  • the X-direction elastic pieces and the Y-direction elastic pieces are located on the lower inner side of the peripheral side of the optical anti-shake frame, and the peripheral side of the optical anti-shake frame is provided with a The wrists of the X-direction shrapnel and the avoidance grooves of the wrists of the Y-direction shrapnel are avoided, and the wrists are located in the avoidance grooves.
  • Optical image stabilization drive includes:
  • Focus motor assembly for carrying optical components
  • Optical Image Stabilizer frame for attaching the focus motor assembly and base
  • optical anti-shake elastic support mechanism makes the focusing motor assembly suspended on the base
  • the driving mechanism includes an X-axis driving mechanism and a Y-axis driving mechanism.
  • the X-axis driving mechanism drives the focusing motor assembly to translate unidirectionally along the X-axis in a horizontal plane perpendicular to the optical axis;
  • the Y-axis driving mechanism drives the focusing motor assembly in a horizontal plane perpendicular to the optical axis.
  • the X-axis driving mechanism includes two X-axis driving coils fixed on the base, and two opposite sides of the lower end of the outer frame of the focusing motor assembly are respectively provided with the The X-axis drive coil is opposite to the X-axis drive magnet.
  • the Y-axis driving mechanism includes two Y-axis driving coils fixed on the base, and the other two opposite sides of the lower end of the outer frame of the focusing motor assembly are respectively provided with the The Y-axis drive coil is opposite to the Y-axis drive magnet.
  • the X-axis drive magnet is any one of a single magnet and a double magnet; the Y axis drive magnet is any one of a single magnet and a double magnet kind.
  • the optical anti-shake frame is sleeved on the outer side of the upper end of the outer frame of the focusing motor assembly, and a gap is left between the optical anti-shake frame and the outer frame.
  • the present application proposes a lens driving device having the optical anti-shake driving device.
  • the present application proposes an imaging device having the above-mentioned lens driving device.
  • the present application proposes an electronic device having the above-mentioned camera device.
  • X-axis one-way translation and Y-axis one-way translation are one-way translation in one direction, that is, the X-Y shrapnel suspended by the optical anti-shake frame can obtain better one-way performance than other optical anti-shake mechanisms, and can greatly simplify production process to reduce costs.
  • the optical component is arranged on the focusing motor assembly, and the optical anti-shake drive drives the focusing motor assembly to realize the translational movement of the vertical optical axis, so as to achieve the purpose of optical anti-shake of the translational movement of the optical component.
  • the X-direction shrapnel and the Y-direction shrapnel are respectively suspended by the optical image stabilization frame.
  • the focusing motor assembly moves in the X-direction, only the X-direction shrapnel acts against the opposite force, and the Y-direction shrapnel acts zero, ensuring that the X-direction can achieve high-precision movement; the same
  • the Y-direction can also achieve high-precision movement.
  • the focus motor assembly thus achieved moves with high precision in the X-Y compound.
  • FIG. 1 is a schematic diagram of an explosion structure of an anti-shake driving device provided by the present invention.
  • FIG. 2 is a schematic structural diagram of an X-direction elastic piece provided by the present invention.
  • FIG. 3 is a schematic structural diagram of a Y-direction spring piece provided by the present invention.
  • FIG. 4 is a schematic structural diagram of an outer frame provided by the present invention.
  • FIG. 5 is a schematic diagram of the X-axis drive structure provided by the present invention.
  • FIG. 6 is a schematic diagram of the Y-axis drive structure provided by the present invention.
  • FIG. 7 is a schematic diagram of a lens driving structure provided by the present invention.
  • FIG. 8 is a schematic cross-sectional structural diagram taken along the line B-B in FIG. 7 .
  • FIG. 9 is a schematic diagram of the explosion structure of FIG. 7 .
  • FIG. 10 is a schematic structural diagram of a lens driving solid angle provided by the present invention.
  • FIG. 11 is a schematic structural diagram of Embodiment 2 provided by the present invention.
  • FIG. 12 is a schematic structural diagram of Embodiment 3 provided by the present invention.
  • FIG. 13 is a schematic structural diagram of Embodiment 4 provided by the present invention.
  • FIG. 14 is a schematic structural diagram of Embodiment 6 provided by the present invention.
  • FIG. 15 is a schematic structural diagram of Embodiment 7 provided by the present invention.
  • the Z axis is distributed along the optical axis
  • the first direction perpendicular to the Z axis is the X axis
  • the second direction perpendicular to the Z axis is the Y axis
  • the X axis and the Y axis are in the A vertical connection within a horizontal plane.
  • the base 1 is used to carry the focusing motor assembly 3 .
  • an optical anti-shake frame 2 is also designed in this embodiment.
  • elastic support is designed to achieve the purpose of image stabilization.
  • the optical anti-shake elastic support mechanism of the present application is elastically supported on the focusing motor assembly 3 and the base 1 , and elastically supported on the focusing motor assembly 3 and the optical anti-shake frame 2 .
  • the optical anti-shake elastic support mechanism of this embodiment includes:
  • the X-direction shrapnel 4 has two pieces and the optical axis a1 of the optical component a is relatively distributed, and the two X-direction shrapnel 4 are used to connect the focusing motor assembly 3 and the optical image stabilization frame 2;
  • the X-direction elastic pieces 4 are vertically distributed along the direction of the optical axis a1, and the X-direction elastic pieces 4 are parallel to the optical axis a1.
  • Relative distribution is at the same level to ensure symmetrical distribution.
  • the Y-direction elastic pieces 5 have two pieces and the optical axis a1 of the optical component a is relatively distributed, and the two Y-direction elastic pieces 5 are used to connect the base 1 and the optical anti-shake frame 2;
  • the Y-direction elastic pieces 5 are vertically distributed along the direction of the optical axis a1, and the Y-direction elastic pieces 5 are parallel to the optical axis a1.
  • Relative distribution is at the same level to ensure symmetrical distribution.
  • the two X-direction elastic pieces 4 and the two Y-direction elastic pieces 5 are distributed in a circle.
  • the two X-direction springs 4 are used to connect the focus motor assembly 3 and the optical image stabilization frame 2
  • the two Y-direction springs 5 are used to connect the base 1 and the optical image stabilization frame 2
  • the focus motor is driven by the X axis
  • the assembly 3 translates unidirectionally along the X-axis in the horizontal plane perpendicular to the optical axis a1; or the focus motor assembly 3 is driven to make the unidirectional translation along the Y-axis in the horizontal plane perpendicular to the optical axis a1 under the driving of the Y-axis.
  • the one-way translation of the X-axis and the one-way translation of the Y-axis are one-way translation in one direction, that is, the X-Y shrapnel suspended by the optical anti-shake frame can obtain better one-way performance than other optical anti-shake mechanisms, and can be extremely It greatly simplifies the production process and reduces the cost.
  • the optical component for example, the lens
  • the optical component is arranged on the focusing motor assembly, and the X-axis drive mechanism 6 and the Y-axis drive mechanism 7 drive the focusing motor assembly to realize the translational movement perpendicular to the optical axis, so as to achieve optical Optical image stabilization for the translational movement of the part.
  • the X-direction shrapnel and the Y-direction shrapnel are respectively suspended by the optical image stabilization frame.
  • the focusing motor assembly moves in the X-direction, only the X-direction shrapnel acts against the opposite force, and the Y-direction shrapnel acts zero, ensuring that the X-direction can achieve high-precision movement; the same
  • the Y-direction can also achieve high-precision movement.
  • the focus motor assembly thus achieved moves with high precision in the X-Y compound.
  • the adjacent X-direction elastic pieces 4 and Y-direction elastic pieces 5 are vertically distributed.
  • the structure of the X-direction elastic piece 4 and the Y-direction elastic piece 5 in this embodiment are the same, and both include a middle fixing part 40 , two end fixing parts 41 , and two wrist parts 42 A wrist portion 42 is respectively connected to both ends of the middle fixing portion 40 , and an end portion fixing portion 41 is connected to one end of each wrist portion 42 away from the middle fixing portion 40 .
  • the width of the middle fixing portion 40 is greater than the width of the wrist portion 42;
  • the width of the end fixing portion 41 is also greater than the width of the wrist portion 42;
  • the width of the middle fixing portion 40 and the width of the wrist portion 42 tend to be equal; or the width of the middle fixing portion 40 is larger than the width of the wrist portion 42 to ensure the fixing firmness and stability of the fixing portion.
  • the wrist portion 42 of this embodiment includes a transverse portion 400 connected with the middle fixing portion 40, and an inverted T-shaped portion 401 connected with an end of the transverse portion 400 away from the middle fixing portion 40, and the inverted T-shaped portion 401 has an inverted T-shape
  • the elastic space 402 the opening of the inverted T-shaped elastic space 402 faces downward, and a T-shaped portion 403 is connected to the end of the inverted T-shaped portion 401 away from the transverse portion 400.
  • the T-shaped portion 403 has a T-shaped elastic space 404, and the T-shaped elastic space 404
  • the opening of the T-shaped portion 403 and the inverted T-shaped elastic space 402 are distributed up and down, and the end of the T-shaped portion 403 away from the inverted T-shaped elastic space 402 is connected to the corresponding end fixing portion 41 .
  • the two end fixing portions 41 of the X-direction elastic piece 4 face the T-shaped portion 403 side, while the two end fixing portions 41 of the Y-direction elastic sheet 5 face the inverted T-shaped portion 401 side to meet the installation requirements.
  • the two end fixing portions 41 of each X-direction spring piece 4 are respectively fixed on the optical image stabilization frame 2, and the middle fixing portion 40 of each X-direction spring piece 4 is fixed on the focusing motor assembly 3;
  • the two end fixing portions 41 of the Y-direction elastic pieces 5 are respectively fixed on the base 1 , and the middle fixing portion 40 of each Y-direction elastic piece 5 is fixed on the optical image stabilization frame 2 .
  • first elastic piece fixing parts 10 four corners of the base 1 are respectively provided with first elastic piece fixing parts 10 , and two first elastic piece fixing parts 10 are a group.
  • the two end fixing portions 41 of each Y-direction elastic piece 5 are respectively fixed on the two first elastic piece fixing portions 10 of the same group.
  • the first elastic piece fixing portion 10 has a first vertical positioning surface, and a first transverse pin disposed on the first vertical positioning surface, and the end fixing portion 41 is provided with a first positioning pin hole.
  • the fixing portion 41 is fitted on the first vertical positioning surface and the first transverse pin is inserted into the first positioning pin hole.
  • the number of the first transverse pin and the first positioning pin hole can be matched with each other according to the actual fixing strength, for example, the number of 1-3 intervals.
  • the four corners of the optical anti-shake frame 2 are respectively provided with second elastic piece fixing parts 20 , and two second elastic piece fixing parts 20 are a group;
  • the end fixing parts 41 are respectively fixed on the two second elastic piece fixing parts 20 of the same group.
  • the structure of the second elastic piece fixing portion 20 is the same as or similar to the structure of the first elastic piece fixing portion 10 described above, and will not be further described in this embodiment.
  • a third elastic piece fixing portion 31 is respectively connected to the middle of two opposite sides of the four outer sides of the outer frame 30 in the circumferential direction of the focusing motor assembly 3 .
  • the middle parts of two opposite sides are respectively connected with the fourth fixing part 22, and the two third elastic piece fixing parts 31 and the two fourth fixing parts 22 are distributed at the corresponding ends of the "cross" shape;
  • the middle fixing portions 40 of the two X-direction elastic pieces 4 are respectively fixed to the third elastic piece fixing portion 31
  • the middle fixing portions 40 of the two Y-direction elastic pieces 5 are respectively fixed to the fourth fixing portion 22 .
  • the structures of the third elastic piece fixing portion 31 and the fourth fixing portion 22 are the same as or similar to the above-mentioned first elastic piece fixing portion 10 , and will not be further described in this embodiment.
  • the thickness of the fourth fixing portion 22 is smaller than the thickness of the lateral cross-section of the optical image stabilization frame 2
  • the outer surface of the third elastic sheet fixing portion 31 is located on the inner side below the circumferential surface of the optical image stabilization frame 2 .
  • the It can facilitate the installation of the X-direction spring piece 4 and the Y-direction spring piece 5, and can reduce the outer diameter of the optical anti-shake frame 2 and the outer frame 30, making the volume smaller and more compact.
  • the X-direction elastic piece 4 and the Y-direction elastic piece 5 can be located below and inside the circumferential side of the optical image stabilization frame 2 .
  • an escape groove 21 for avoiding the wrist 42 of the X-direction elastic piece 4 and the wrist 42 of the Y-direction elastic piece 5 . 42 is located in the escape groove 21 .
  • the above-mentioned structure can improve the compactness of the overall structure, and can ensure the smoothness of translation of the optical component, so as to prevent the optical component from being unable to perform translational movement due to blocking interference.
  • the third elastic piece fixing portion 31 is located below the lower end of the optical image stabilization frame 2 , and the fourth fixing portion 22 is connected to a corresponding position at the lower end of the optical image stabilization frame 2 .
  • the inner wall of the fourth fixing portion 22 is flush with the inner wall of the optical image stabilization frame 2 .
  • an optical anti-shake driving device is manufactured using the above-mentioned optical anti-shake elastic support mechanism, which includes a focusing motor assembly 3 for carrying the optical component a;
  • Optical image stabilization frame 2 for connecting the focus motor assembly 3 and the base 1;
  • the optical anti-shake elastic support mechanism makes the focusing motor assembly 3 suspended on the base 1;
  • the drive mechanism includes an X-axis drive mechanism 6 and a Y-axis drive mechanism 7.
  • the X-axis drive mechanism 6 drives the focusing motor assembly 3 to translate unidirectionally along the X-axis in a horizontal plane perpendicular to the optical axis a1;
  • the Y-axis drive mechanism 7 drives the focusing motor
  • the assembly 3 translates unidirectionally along the Y-axis in a horizontal plane perpendicular to the optical axis a1.
  • the X-axis drive mechanism 6 includes two X-axis drive coils 60 fixed on the base 1 , and two opposite sides of the lower end of the outer frame 30 of the focus motor assembly 3 are respectively provided with
  • the X-axis driving coils 60 are opposite to the X-axis driving magnets 61 one by one.
  • the X-axis driving magnet 61 in this embodiment is a double magnet, that is, the two magnets are on the same horizontal plane perpendicular to the optical axis, so as to improve the magnetic driving force.
  • the X-axis drive magnet 61 is located above the X-axis drive coil 60 .
  • the Y-axis drive mechanism 7 includes two Y-axis drive coils 70 fixed on the base 1 , and the other two opposite sides of the lower end of the outer frame 30 of the focus motor assembly 3 are respectively provided with the Y-axis drive coils 70 one-to-one opposite.
  • the Y-axis drives the magnet 71.
  • the Y-axis driving magnet 71 in this embodiment is a double magnet, that is, the two magnets are on the same horizontal plane perpendicular to the optical axis, so as to improve the magnetic driving force.
  • the Y-axis drive magnet 71 is positioned above the Y-axis drive coil 70 .
  • the above-mentioned X-axis driving magnet 61 and Y-axis driving magnet 71 are on the same horizontal plane perpendicular to the optical axis. This structure is convenient for processing, design and assembly, and ensures the balance of the center of gravity.
  • magnet positioning grooves 300 are respectively provided on the four walls of the inner wall of the outer frame 30 , an X-axis driving magnet 61 on the inner side of the double magnets extends into the corresponding magnet positioning groove 300 , and the double magnets One of the Y-axis driving magnets 71 on the inner side extends into the corresponding magnet positioning groove 300 , and the two ends of each outer wall surface on the four outer wall surfaces of the outer frame 30 are respectively provided with outer protrusions 301 , and the two outer A magnet fixing space is formed between the convex parts 301, and the other X-axis driving magnet 61 of the two magnets is fixed in the corresponding magnet fixing space, and is arranged on the four end surfaces of the lower end of the outer frame 30 and communicates with the magnet fixing space.
  • the groove body 302, the other Y-axis driving magnet 71 of the dual magnets is fixed in the corresponding positioning groove body and the magnet fixing space, and the lower surfaces of the two Y-axi
  • the optical anti-shake frame 2 of this embodiment is sleeved on the outside of the upper end of the outer frame 30 of the focus motor assembly 3, and the optical anti-shake frame 2 is A gap is left between the frame shaker 2 and the outer frame 30 . It is avoided that the optical image stabilization frame 2 is located above the outer frame 30 to increase the thickness dimension, that is, the structure of this embodiment can be applied to a smaller installation space.
  • a casing 8 is connected to the base 1 , and the focusing motor assembly 3 , the optical anti-shake frame 2 and the optical anti-shake elastic support mechanism are built into the cavity formed by the base 1 and the casing 8 .
  • the four corners of the outer frame 30 are respectively provided with avoidance notches 303 for the inner protrusions opposite to the avoidance grooves to avoid to avoid interference.
  • the drive circuit After the drive circuit is powered on, for example, the drive circuit sends a drive signal to the Y-axis drive mechanism 7, that is, the synergistic action of the Y-axis drive coil 70 and the Y-axis drive magnet 71 makes the focus motor assembly 3 loaded with the optical component a perpendicular to the The Y axis of the optical axis is translated in one direction.
  • the cooperation of the X-axis drive coil 60 and the X-axis drive magnet 61 enables the focusing motor assembly 3 loaded with the optical component a to translate unidirectionally along the X-axis perpendicular to the optical axis. .
  • the structure and principle of this embodiment are basically the same as those of the first embodiment, and the different structures are: two X-direction elastic pieces 4 are used to connect the base 1 and the optical anti-shake frame 2; two Y-direction elastic pieces 5 are used for It is used to connect the focus motor assembly 3 and the optical image stabilization frame 2 . That is, when the two X-direction elastic pieces 4 are used to connect the base 1 and the optical anti-shake frame 2 , the two Y-direction elastic pieces 5 are used to connect the focus motor assembly 3 and the optical anti-shake frame 2 .
  • each X-direction elastic piece 4 are respectively fixed on the base 1, and the middle fixing portion 40 of each X-direction elastic piece 4 is fixed on the optical image stabilization frame 2; each Y-direction elastic piece 5
  • the two end fixing parts 41 are respectively fixed on the optical image stabilization frame 2
  • the middle fixing part 40 of each Y-direction elastic piece 5 is fixed on the focusing motor assembly 3 .
  • middle fixing portions 40 of the two X-direction elastic pieces 4 are respectively fixed on the fourth fixing portion 22;
  • the middle fixing portions 40 of the two Y-direction elastic pieces 5 are respectively fixed to the third elastic piece fixing portion 31 .
  • the structure and principle of this embodiment are basically the same as those of the first embodiment, and the difference is that the X-axis driving magnet 61 is a single magnet.
  • the structure and principle of this embodiment are basically the same as those of the first embodiment, and the difference is that the Y-axis driving magnet 71 is a single magnet.
  • this embodiment provides a lens driving device, which has the optical anti-shake driving device described in the first to fourth embodiments. That is, it includes a focus motor assembly 3, which is an AF motor, and includes an outer frame 30, a carrier, an upper elastic sheet and a lower elastic sheet. The upper elastic sheet and the lower elastic sheet work together so that the carrier is built into the outer frame 30. At the same time, the outer frame 30 The lower part of the AF motor is provided with an anti-collision protrusion to prevent the focus motor assembly 3 from hitting the base 1 downward, and an optical component a, such as a lens, is installed on the AF motor.
  • a focus motor assembly 3 which is an AF motor
  • an outer frame 30 The lower part of the AF motor is provided with an anti-collision protrusion to prevent the focus motor assembly 3 from hitting the base 1 downward, and an optical component a, such as a lens, is installed on the AF motor.
  • this embodiment provides an imaging device, which has the lens driving device described in the fifth embodiment.
  • the camera device is, for example, a camera module.
  • this embodiment provides an electronic device having the camera device described in the sixth embodiment.
  • Electronic devices such as cell phones, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

一种光学防抖弹性支撑机构、光学防抖驱动装置、透镜驱动装置及摄像装置、电子设备,解决了现有技术成本高的技术问题。光学防抖弹性支撑机构包括X方向弹片(4),有两片并且以光学部件的光轴(a1)呈相对分布,两片X方向弹片(4)用于连接对焦马达组件(3)和光学防抖框(2)或者用于连接底座(1)与光学防抖框(2);Y方向弹片(5),有两片并且以光学部件的光轴(a1)呈相对分布,两片Y方向弹片(5)用于连接底座(1)和光学防抖框(2)或者用于连接对焦马达组件(3)与光学防抖框(2)。由此使得X轴单向平移和Y轴单向平移是择一方向单向平移,即,通过光学防抖框(2)悬挂的X-Y弹片(4,5),得到更优的单向性能,且能极大简化生产工艺,降低成本。

Description

光学防抖弹性支撑机构、防抖和透镜驱动装置及摄像装置、电子设备 技术领域
本发明属于光学部件驱动技术领域,尤其涉及一种光学防抖弹性支撑机构、防抖和透镜驱动装置及摄像装置、电子设备。
背景技术
照相机在拍照时,为了提升高像素图像质量,在对焦同时还要防止手抖,所以防止光学防抖机构在高级相机中被普遍应用。手机中微型摄像头的光学防抖机构也开始普及。
现有的防抖机构其利用两个L形对角的弹片进行X方向和Y方向上防抖,这种X轴和Y轴同时防抖容易相互影响,防抖补偿其防抖性能较差,同时,生产工艺复杂并且成本较高。
发明内容
本发明的目的是针对上述问题,提供一种可以解决上述技术问题的光学防抖弹性支撑机构、防抖和透镜驱动装置及摄像装置、电子设备。
为达到上述目的,本发明采用了下列技术方案:
光学防抖弹性支撑机构其弹性支撑于对焦马达组件和底座,以及弹性支撑于对焦马达组件与光学防抖框;
具体地,本光学防抖弹性支撑机构包括:
X方向弹片,有两片并且以光学部件其光轴呈相对分布,两片X方向弹片用于连接对焦马达组件和光学防抖框或者用于连接底座与光学防抖框;
Y方向弹片,有两片并且以光学部件其光轴呈相对分布,两片Y方向弹片用于连接底座和光学防抖框或者用于连接对焦马达组件与光学防抖框;
当两片X方向弹片用于连接对焦马达组件和光学防抖框时所述两片Y方向弹片用于连接底座与光学防抖框;
当两片X方向弹片用于连接底座与光学防抖框时所述两片Y方向弹片用于连接对焦马达组件和光学防抖框;
在X轴驱动下使得对焦马达组件在垂直于光轴的水平面内沿X轴单向平移;或者在Y轴驱动下使得对焦马达组件在垂直于光轴的水平面内沿Y轴单向平移。
在上述的光学防抖弹性支撑机构中,X方向弹片结构和Y方向弹片的结构相同,包括中间固定部和两个端部固定部,以及两个腕部,在中间固定部的两端分别连接有一腕部,在每个腕部远离中间固定部的一端连接有一端部固定部。
在上述的光学防抖弹性支撑机构中,每片X方向弹片的两个端部固定部分别固定在光学防抖框上,每片X方向弹片的中间固定部固定在对焦马达组件上;每片Y方向弹片的两个端部固定部分别固定在底座上,每片Y方向弹片的中间固定部固定在光学防抖框上。
在上述的光学防抖弹性支撑机构中,每片X方向弹片的两个端部固定部分别固定在底座上,每片X方向弹片的中间固定部固定在光学防抖框上;每片Y方向弹片的两个端部固定部分别固定在光学防抖框上,每片Y方向弹片的中间固定部固定在对焦马达组件上。
在上述的光学防抖弹性支撑机构中,在底座的四个角部分别设有第一弹片固定部,两个第一弹片固定部为一组;
每片X方向弹片的两个端部固定部分别固定在同一组的两个第一弹片固定部上;
或者每片Y方向弹片的两个端部固定部分别固定在同一组的两个第一弹片固定部上。
在上述的光学防抖弹性支撑机构中,在光学防抖框的四个角部分别设有第二弹片固定部,两个第二弹片固定部为一组;
每片X方向弹片的两个端部固定部分别固定在同一组的两个第二弹片固定部上;
或者每片Y方向弹片的两个端部固定部分别固定在同一组的两个第二弹片固定部上。
在上述的光学防抖弹性支撑机构中,在对焦马达组件的外框周向四外侧边中的其中两相对侧边中部分别连接有第三弹片固定部,在光学防抖框的其中两相对侧边中部分别连接有第四固定部,两个第三弹片固定部和两个第四固定部分布在“十”字形的相应端部;
两片X方向弹片的中间固定部分别固定所述的第三弹片固定部上;
两片Y方向弹片的中间固定部分别固定所述的第四固定部上;
或者两片X方向弹片的中间固定部分别固定所述的第四固定部上;
两片Y方向弹片的中间固定部分别固定所述的第三弹片固定部上。
在上述的光学防抖弹性支撑机构中,所述的X方向弹片和Y方向弹片位于光学防抖框周向侧边的下方内侧,在光学防抖框的周向侧边设有上设有用于避让X方向弹片其腕部以及Y方向弹片其腕部的避让槽,所述腕部位于避让槽中。
光学防抖驱动装置包括:
对焦马达组件,用于承载光学部件;
底座,用于承载所述的对焦马达组件;
光学防抖框,用于连接对焦马达组件和底座;以及
上述的光学防抖弹性支撑机构,光学防抖弹性支撑机构使得对焦马达组件悬空在底座上;
驱动机构,包括X轴驱动机构和Y轴驱动机构,X轴驱动机构驱动对焦马达组件在垂直于光轴的水平面内沿X轴单向平移;Y轴驱动机构驱动对焦马达组件在垂直于光轴的水平面内沿Y轴单向平移。
在上述的光学防抖驱动装置中,所述的X轴驱动机构包括固定在底座上的两个X轴驱动线圈,在对焦马达组件的外框下端其中两个相对侧分别设有与所述的X轴驱动线圈一一相对的X轴驱动磁石。
在上述的光学防抖驱动装置中,所述的Y轴驱动机构包括固定在底座上的两个Y轴驱动线圈,在对焦马达组件的外框下端另外两个相对侧分别设有与所述的Y轴驱动线圈一一相对的Y轴驱动磁石。
在上述的光学防抖驱动装置中,所述的X轴驱动磁石为单块磁石和双块磁石中的任意一种;所述的Y轴驱动磁石为单块磁石和双块磁石中的任意一种。
在上述的光学防抖驱动装置中,所述的光学防抖框套在对焦马达组件的外框上端外侧,并且光学防抖框和外框之间留有间隙。
本申请提出了透镜驱动装置,具有所述的光学防抖驱动装置。
本申请提出了摄像装置,具有所述的透镜驱动装置。
本申请提出了电子设备,具有所述的摄像装置。
与现有的技术相比,本发明的优点在于:
X轴单向平移和Y轴单向平移是择一方向单向平移,即,通过光学防抖框架悬挂的X-Y弹片,得到更优于其它光学防抖机构的单向性能,且能极大简化生产工艺,降低成本。
实现光学部件垂直光轴的平移运动,光学部件配置在对焦马达组件上,光学防抖驱动驱动对焦马达组件实现垂直光轴的平移运动,达到光学部件平移运动的光学防抖目的。
通过光学防抖框,分别悬挂X方向弹片和Y方向弹片,当对焦马达组件在X向运动时,仅X方向弹片作用相反力,Y方向弹片零作用,保证了X向实现高精度运动;同理,Y向也能实现高精度运动。如此实现的对焦马达组件在X-Y复合的高精度运动。
附图说明
图1是本发明提供的防抖驱动装置爆炸结构示意图。
图2是本发明提供的X方向弹片结构示意图。
图3是本发明提供的Y方向弹片结构示意图。
图4是本发明提供的外框结构示意图。
图5是本发明提供的X轴驱动结构示意图。
图6是本发明提供的Y轴驱动结构示意图。
图7是本发明提供的透镜驱动结构示意图。
图8是图7中的B-B沿线剖视结构示意图。
图9是图7爆炸结构示意图。
图10是本发明提供的透镜驱动立体角度结构示意图。
图11是本发明提供的实施例二结构示意图。
图12是本发明提供的实施例三结构示意图。
图13是本发明提供的实施例四结构示意图。
图14是本发明提供的实施例六结构示意图。
图15是本发明提供的实施例七结构示意图。
图中,底座1、第一弹片固定部10、光学防抖框2、第二弹片固定部20、 避让槽21、第四固定部22、对焦马达组件3、外框30、磁石定位槽300、外凸部301、定位槽体302、避让缺口303、第三弹片固定部31、X方向弹片4、中间固定部40、横向部400、倒置T形部401、倒置T形弹性空间402、T形部403、T形弹性空间404、端部固定部41、腕部42、Y方向弹片5、X轴驱动机构6、X轴驱动线圈60、X轴驱动磁石61、Y轴驱动机构7、Y轴驱动线圈70、Y轴驱动磁石71、外壳8、光学部件a、光轴a1。
具体实施方式
以下是发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
以附图中的三坐标为例,沿着光轴分布的为Z轴,与Z轴垂直的第一方向为X轴,与Z轴垂直的第二方向为Y轴,X轴和Y轴在一个水平面内垂直连接。
实施例一
如图1所示,底座1用于承载对焦马达组件3,为了提高防抖补偿性能,本实施例还设计了光学防抖框2,在底座1和光学防抖框2,以及对焦马达组件3和光学防抖框2之间,设计弹性支撑,以达到防抖目的。
即,如图1和图8所示,本申请的光学防抖弹性支撑机构弹性支撑于对焦马达组件3和底座1,以及弹性支撑于对焦马达组件3与光学防抖框2。
具体地,本实施例的光学防抖弹性支撑机构包括:
X方向弹片4,有两片并且以光学部件a其光轴a1呈相对分布,两片X方向弹片4用于连接对焦马达组件3和光学防抖框2;
X方向弹片4沿着光轴a1方向竖直分布,并且X方向弹片4与光轴a1平行。
相对分布即在同一个水平高度位置上,以确保对称分布。
Y方向弹片5,有两片并且以光学部件a其光轴a1呈相对分布,两片Y方向弹片5用于连接底座1和光学防抖框2;
Y方向弹片5沿着光轴a1方向竖直分布,并且Y方向弹片5与光轴a1平行。
相对分布即在同一个水平高度位置上,以确保对称分布。
两片X方向弹片4和两片Y方向弹片5呈一圈分布。
当两片X方向弹片4用于连接对焦马达组件3和光学防抖框2时所述两片Y 方向弹片5用于连接底座1与光学防抖框2;并且在X轴驱动下使得对焦马达组件3在垂直于光轴a1的水平面内沿X轴单向平移;或者在Y轴驱动下使得对焦马达组件3在垂直于光轴a1的水平面内沿Y轴单向平移。
即,X轴单向平移和Y轴单向平移是择一方向单向平移,即,通过光学防抖框架悬挂的X-Y弹片,得到更优于其它光学防抖机构的单向性能,且能极大简化生产工艺,降低成本。
其次,实现光学部件(例如透镜)垂直光轴的平移运动,光学部件配置在对焦马达组件上,X轴驱动机构6和Y轴驱动机构7驱动对焦马达组件实现垂直光轴的平移运动,达到光学部件平移运动的光学防抖目的。
通过光学防抖框,分别悬挂X方向弹片和Y方向弹片,当对焦马达组件在X向运动时,仅X方向弹片作用相反力,Y方向弹片零作用,保证了X向实现高精度运动;同理,Y向也能实现高精度运动。如此实现的对焦马达组件在X-Y复合的高精度运动。
相邻的X方向弹片4和Y方向弹片5呈垂直分布。
具体地,如图1-3所示,本实施例的X方向弹片4结构和Y方向弹片5的结构相同,均包括中间固定部40和两个端部固定部41,以及两个腕部42,在中间固定部40的两端分别连接有一腕部42,在每个腕部42远离中间固定部40的一端连接有一端部固定部41。
中间固定部40的宽度大于腕部42的宽度;
端部固定部41的宽度也大于腕部42的宽度;
中间固定部40的宽度和腕部42的宽度趋向于相等;或者中间固定部40的宽度大于腕部42的宽度,以确保固定部的固定牢固度和稳定性。
其次,本实施例的腕部42包括与中间固定部40连接的横向部400,以及与横向部400远离中间固定部40一端连接的倒置T形部401,并且倒置T形部401具有倒置T形弹性空间402,倒置T形弹性空间402的开口朝下,在倒置T形部401远离横向部400的一端连接有T形部403,T形部403具有T形弹性空间404,T形弹性空间404的开口朝上,T形部403和倒置T形弹性空间402呈上下错位分布,T形部403远离倒置T形弹性空间402的一端与相应端部固定部41连接。利用腕部起到X方向或Y方向的弹性平移支撑,以起到防抖功能。
进一步地,X方向弹片4的两个端部固定部41其朝向T形部403侧,而Y方向弹片5的两个端部固定部41其朝向倒置T形部401侧,以满足安装要求。
优选地,本实施例每片X方向弹片4的两个端部固定部41分别固定在光学防抖框2上,每片X方向弹片4的中间固定部40固定在对焦马达组件3上;每片Y方向弹片5的两个端部固定部41分别固定在底座1上,每片Y方向弹片5的中间固定部40固定在光学防抖框2上。
利用中部和两端的固定连接,同时协同腕部的构造,其可以确保光学部件在X方向或Y轴单向平移的稳定性,以X轴单向平移为例:当X方向的两片X方向弹片其腕部受到X轴驱动力时,由于是相对分布,此时其可以确保承载光学部件的对焦马达组件3在垂直于光轴的X轴单向平移。
具体地,如图1所示,在底座1的四个角部分别设有第一弹片固定部10,两个第一弹片固定部10为一组。每片Y方向弹片5的两个端部固定部41分别固定在同一组的两个第一弹片固定部10上。
优选地,第一弹片固定部10具有第一竖向定位面,以及设置在第一竖向定位面上的第一横向销,在上述端部固定部41上设有第一定位销孔,端部固定部41服帖在第一竖向定位面上并且第一横向销插入第一定位销孔。
第一横向销和第一定位销孔的数量可以实际的固定强度进行相互配对设计,例如:1-3区间数量。
其次,如图1所示,在光学防抖框2的四个角部分别设有第二弹片固定部20,两个第二弹片固定部20为一组;每片X方向弹片4的两个端部固定部41分别固定在同一组的两个第二弹片固定部20上。
同理,第二弹片固定部20的结构与上述的第一弹片固定部10结构相同或者类似,本实施例就不做进一步陈述。
另外,如图1和图4所示,在对焦马达组件3的外框30周向四外侧边中的其中两相对侧边中部分别连接有第三弹片固定部31,在光学防抖框2的其中两相对侧边中部分别连接有第四固定部22,两个第三弹片固定部31和两个第四固定部22分布在“十”字形的相应端部;
两片X方向弹片4的中间固定部40分别固定所述的第三弹片固定部31上,两片Y方向弹片5的中间固定部40分别固定所述的第四固定部22上。
同理,第三弹片固定部31和第四固定部22的结构与上述的第一弹片固定部10结构相同或者类似,本实施例就不做进一步陈述。
其次,第四固定部22的厚度小于光学防抖框2的单侧横向截面厚度,以及第三弹片固定部31的外表面位于光学防抖框2的周向表面下方内侧,上述的设计,其可以便于X方向弹片4和Y方向弹片5的安装,以及可以缩小光学防抖框2以及外框30的外径,体积更小以及紧凑。如图8-9所示,因为所述的结构其可以使得X方向弹片4和Y方向弹片5位于光学防抖框2的周向侧边的下方内侧。
如图1所示,在光学防抖框2的周向侧边设有上设有用于避让X方向弹片4其腕部42以及Y方向弹片5其腕部42的避让槽21,所述腕部42位于避让槽21中。上述的结构其可以提高整体结构的紧凑性,以及可以确保光学部件平移的平顺性,避免了阻挡干涉导致光学部件无法进行平移运动。
优选地,第三弹片固定部31位于光学防抖框2下端下方,以及第四固定部22连接在光学防抖框2的下端相应位置。第四固定部22的内壁与光学防抖框2的内壁齐平。
如图1-4和图9所示,利用上述光学防抖弹性支撑机构制造光学防抖驱动装置,其包括对焦马达组件3,用于承载光学部件a;
底座1,用于承载所述的对焦马达组件3;
光学防抖框2,用于连接对焦马达组件3和底座1;以及
光学防抖弹性支撑机构,光学防抖弹性支撑机构使得对焦马达组件3悬空在底座1上;
如图1和图5-6所示,
驱动机构,包括X轴驱动机构6和Y轴驱动机构7,X轴驱动机构6驱动对焦马达组件3在垂直于光轴a1的水平面内沿X轴单向平移;Y轴驱动机构7驱动对焦马达组件3在垂直于光轴a1的水平面内沿Y轴单向平移。
具体地,如图4-6所示,X轴驱动机构6包括固定在底座1上的两个X轴驱动线圈60,在对焦马达组件3的外框30下端其中两个相对侧分别设有与所述的X轴驱动线圈60一一相对的X轴驱动磁石61。本实施例的X轴驱动磁石61为双块磁石,即,两块磁石处于同一个与光轴垂直的水平面上,以提高磁力驱动 力。
X轴驱动磁石61位于X轴驱动线圈60上方。
Y轴驱动机构7包括固定在底座1上的两个Y轴驱动线圈70,在对焦马达组件3的外框30下端另外两个相对侧分别设有与所述的Y轴驱动线圈70一一相对的Y轴驱动磁石71。本实施例的Y轴驱动磁石71为双块磁石,即,两块磁石处于同一个与光轴垂直的水平面上,以提高磁力驱动力。
Y轴驱动磁石71位于Y轴驱动线圈70上方。
优选地,上述的X轴驱动磁石61和Y轴驱动磁石71处于同一个与光轴垂直的水平面上,这种结构其便于加工设计组装,以及确保重心平衡。
优选方案,如图4所示,在外框30内壁的四壁面上分别设有磁石定位槽300,双块磁石其中内侧的一块X轴驱动磁石61伸入相应的磁石定位槽300,以及双块磁石其中内侧的一块Y轴驱动磁石71伸入相应的磁石定位槽300,在外框30外壁的四外壁面上的每一外壁面两端分别设有外凸部301,同一外壁面上的两根外凸部301之间形成磁石固定空间,所述双块磁石另外一块X轴驱动磁石61固定在相应的磁石固定空间中,以及设置在外框30下端四端面上并且与所述磁石固定空间连通的定位槽体302,所述双块磁石另外一块Y轴驱动磁石71固定在相应的定位槽体和磁石固定空间中,并且双块磁石的两块Y轴驱动磁石71其下表面齐平。
其次,如图8-9所示,为了能够进一步减薄装置沿着光轴方向上的厚度,本实施例的光学防抖框2套在对焦马达组件3的外框30上端外侧,并且光学防抖框2和外框30之间留有间隙。避免了光学防抖框2位于外框30上方而增大厚度尺寸,即,本实施例的这种结构其可以被应用于更小的安装空间。
另外,在底座1上连接有外壳8,所述的对焦马达组件3、光学防抖框2和光学防抖弹性支撑机构内置于底座1与外壳8形成的腔室中。在外框30的四个角部分别设有避让缺口303,以供与避让槽相对的内凸起避让,避免干涉。
本实施例的工作原理如下:
在驱动电路得电后,例如,驱动电路给Y轴驱动机构7驱动信号,即,Y轴驱动线圈70和Y轴驱动磁石71的协同作用使得装载有光学部件a的对焦马达组件3在垂直于光轴的Y轴单向平移。
同理,当X轴驱动机构6得到驱动信号后,X轴驱动线圈60和X轴驱动磁石61的协同配合使得装载有光学部件a的对焦马达组件3在垂直于光轴的X轴单向平移。
实施例二
如图11所示,本实施例的结构和原理与实施例一基本相同,不同的结构在于:两片X方向弹片4用于连接底座1与光学防抖框2;两片Y方向弹片5用于连接对焦马达组件3与光学防抖框2。即,当两片X方向弹片4用于连接底座1与光学防抖框2时所述两片Y方向弹片5用于连接对焦马达组件3和光学防抖框2。
进一步地,每片X方向弹片4的两个端部固定部41分别固定在底座1上,每片X方向弹片4的中间固定部40固定在光学防抖框2上;每片Y方向弹片5的两个端部固定部41分别固定在光学防抖框2上,每片Y方向弹片5的中间固定部40固定在对焦马达组件3上。
进一步地,两片X方向弹片4的中间固定部40分别固定所述的第四固定部22上;
两片Y方向弹片5的中间固定部40分别固定所述的第三弹片固定部31上。
实施例三
如图12所示,本实施例的结构和原理与实施例一基本相同,不同的结构在于:X轴驱动磁石61为单块磁石。
实施例四
如图13所示,本实施例的结构和原理与实施例一基本相同,不同的结构在于:Y轴驱动磁石71为单块磁石。
实施例五
基于实施例一至四,如图7-10所示,本实施例提供了一种透镜驱动装置,具有实施例一至四所述的光学防抖驱动装置。即,包括对焦马达组件3,对焦马达组件3为AF马达,包括外框30、载体、上弹片和下弹片,上弹片和下弹片共同作用使得载体内置于外框30内,同时,在外框30的下部设有由防撞凸起,以防止对焦马达组件3向下撞击底座1,AF马达上安装有光学部件a,例如透镜。
实施例六
基于实施例五,如图14所示,本实施例提供了一种摄像装置,具有实施例五所述的透镜驱动装置。摄像装置例如摄像模组。
实施例七
基于实施例六,如图15所示,本实施例提供了一种电子设备,具有实施例六所述的摄像装置。电子设备例如手机等等。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (16)

  1. 光学防抖弹性支撑机构,其特征在于,本机构弹性支撑于对焦马达组件(3)和底座(1),以及弹性支撑于对焦马达组件(3)与光学防抖框(2),包括:
    X方向弹片(4),有两片并且以光学部件(a)其光轴(a1)呈相对分布,两片X方向弹片(4)用于连接对焦马达组件(3)和光学防抖框(2)或者用于连接底座(1)与光学防抖框(2);
    Y方向弹片(5),有两片并且以光学部件(a)其光轴(a1)呈相对分布,两片Y方向弹片(5)用于连接底座(1)和光学防抖框(2)或者用于连接对焦马达组件(3)与光学防抖框(2);
    在X轴驱动下使得对焦马达组件(3)在垂直于光轴(a1)的水平面内沿X轴单向平移;或者在Y轴驱动下使得对焦马达组件(3)在垂直于光轴(a1)的水平面内沿Y轴单向平移。
  2. 根据权利要求1所述的光学防抖弹性支撑机构,其特征在于,X方向弹片(4)结构和Y方向弹片(5)的结构相同,包括中间固定部(40)和两个端部固定部(41),以及两个腕部(42),在中间固定部(40)的两端分别连接有一腕部(42),在每个腕部(42)远离中间固定部(40)的一端连接有一端部固定部(41)。
  3. 根据权利要求2所述的光学防抖弹性支撑机构,其特征在于,每片X方向弹片(4)的两个端部固定部(41)分别固定在光学防抖框(2)上,每片X方向弹片(4)的中间固定部(40)固定在对焦马达组件(3)上;每片Y方向弹片(5)的两个端部固定部(41)分别固定在底座(1)上,每片Y方向弹片(5)的中间固定部(40)固定在光学防抖框(2)上。
  4. 根据权利要求2所述的光学防抖弹性支撑机构,其特征在于,每片X方向弹片(4)的两个端部固定部(41)分别固定在底座(1)上,每片X方向弹片(4)的中间固定部(40)固定在光学防抖框(2)上;每片Y方向弹片(5)的两个端部固定部(41)分别固定在光学防抖框(2)上,每片Y方向弹片(5)的中间固定部(40)固定在对焦马达组件(3)上。
  5. 根据权利要求2-4任意一项所述的光学防抖弹性支撑机构,其特征在于,在底座(1)的四个角部分别设有第一弹片固定部(10),两个第一弹片固定部 (10)为一组;
    每片X方向弹片(4)的两个端部固定部(41)分别固定在同一组的两个第一弹片固定部(10)上;
    或者每片Y方向弹片(5)的两个端部固定部(41)分别固定在同一组的两个第一弹片固定部(10)上。
  6. 根据权利要求5所述的光学防抖弹性支撑机构,其特征在于,在光学防抖框(2)的四个角部分别设有第二弹片固定部(20),两个第二弹片固定部(20)为一组;
    每片X方向弹片(4)的两个端部固定部(41)分别固定在同一组的两个第二弹片固定部(20)上;
    或者每片Y方向弹片(5)的两个端部固定部(41)分别固定在同一组的两个第二弹片固定部(20)上。
  7. 根据权利要求6所述的光学防抖弹性支撑机构,其特征在于,在对焦马达组件(3)的外框(30)周向四外侧边中的其中两相对侧边中部分别连接有第三弹片固定部(31),在光学防抖框(2)的其中两相对侧边中部分别连接有第四固定部(22),两个第三弹片固定部(31)和两个第四固定部(22)分布在“十”字形的相应端部;
    两片X方向弹片(4)的中间固定部(40)分别固定所述的第三弹片固定部(31)上;
    两片Y方向弹片(5)的中间固定部(40)分别固定所述的第四固定部(22)上;
    或者两片X方向弹片(4)的中间固定部(40)分别固定所述的第四固定部(22)上;
    两片Y方向弹片(5)的中间固定部(40)分别固定所述的第三弹片固定部(31)上。
  8. 根据权利要求2所述的光学防抖弹性支撑机构,其特征在于,所述的X方向弹片(4)和Y方向弹片(5)位于光学防抖框(2)周向侧边的下方内侧,在光学防抖框(2)的周向侧边设有上设有用于避让X方向弹片(4)其腕部(42)以及Y方向弹片(5)其腕部(42)的避让槽(21),所述腕部(42)位于避让 槽(21)中。
  9. 光学防抖驱动装置,其特征在于,本装置包括:
    对焦马达组件(3),用于承载光学部件(a);
    底座(1),用于承载所述的对焦马达组件(3);
    光学防抖框(2),用于连接对焦马达组件(3)和底座(1)底座(1);以及权利要求1-8任意一项所述的光学防抖弹性支撑机构,光学防抖弹性支撑机构使得对焦马达组件(3)悬空在底座(1)上;
    驱动机构,包括X轴驱动机构(6)和Y轴驱动机构(7),X轴驱动机构(6)驱动对焦马达组件(3)在垂直于光轴(a1)的水平面内沿X轴单向平移;Y轴驱动机构(7)驱动对焦马达组件(3)在垂直于光轴(a1)的水平面内沿Y轴单向平移。
  10. 根据权利要求9所述的光学防抖驱动装置,其特征在于,所述的X轴驱动机构(6)包括固定在底座(1)上的两个X轴驱动线圈(60),在对焦马达组件(3)的外框(30)下端其中两个相对侧分别设有与所述的X轴驱动线圈(60)一一相对的X轴驱动磁石(61)。
  11. 根据权利要求10所述的光学防抖驱动装置,其特征在于,所述的Y轴驱动机构(7)包括固定在底座(1)上的两个Y轴驱动线圈(70),在对焦马达组件(3)的外框(30)下端另外两个相对侧分别设有与所述的Y轴驱动线圈(70)一一相对的Y轴驱动磁石(71)。
  12. 根据权利要求11所述的光学防抖驱动装置,其特征在于,所述的X轴驱动磁石(61)为单块磁石和双块磁石中的任意一种;所述的Y轴驱动磁石(71)为单块磁石和双块磁石中的任意一种。
  13. 根据权利要求9所述的光学防抖驱动装置,其特征在于,所述的光学防抖框(2)套在对焦马达组件(3)的外框(30)上端外侧,并且光学防抖框(2)和外框(30)之间留有间隙。
  14. 透镜驱动装置,其特征在于,具有权利要求9-13任意一项所述的光学防抖驱动装置。
  15. 摄像装置,其特征在于,具有权利要求14所述的透镜驱动装置。
  16. 电子设备,其特征在于,具有权利要求15所述的摄像装置。
PCT/CN2022/078914 2021-04-28 2022-03-03 光学防抖弹性支撑机构、防抖和透镜驱动装置及摄像装置、电子设备 WO2022227850A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/721,792 US11988848B2 (en) 2021-04-28 2022-04-15 Optical anti-shake resilient support mechanism, anti-shake driving device, lens driving fitting, imaging equipment and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110470286.X 2021-04-28
CN202110470286.XA CN113109950B (zh) 2021-04-28 2021-04-28 光学防抖弹性支撑机构、防抖和透镜驱动装置及摄像装置、电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/721,792 Continuation US11988848B2 (en) 2021-04-28 2022-04-15 Optical anti-shake resilient support mechanism, anti-shake driving device, lens driving fitting, imaging equipment and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2022227850A1 true WO2022227850A1 (zh) 2022-11-03

Family

ID=76720672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078914 WO2022227850A1 (zh) 2021-04-28 2022-03-03 光学防抖弹性支撑机构、防抖和透镜驱动装置及摄像装置、电子设备

Country Status (2)

Country Link
CN (2) CN113109950B (zh)
WO (1) WO2022227850A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113109950B (zh) * 2021-04-28 2023-12-01 新思考电机有限公司 光学防抖弹性支撑机构、防抖和透镜驱动装置及摄像装置、电子设备
CN113985563B (zh) * 2021-10-28 2023-04-14 新思考电机有限公司 双支架弹片式防抖系统、透镜驱动装置和摄像设备
CN217404602U (zh) * 2022-05-30 2022-09-09 新思考电机有限公司 透镜驱动用底座、防抖驱动机构、装置及摄像设备
CN114810888B (zh) * 2022-05-30 2024-06-04 成都易迅吉正科技有限公司 一种3d弹簧结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070014555A1 (en) * 2005-07-15 2007-01-18 Pentax Corporation Stage apparatus and camera shake correction apparatus using the stage apparatus
US20080292296A1 (en) * 2007-05-25 2008-11-27 Jae Wook Ryu Vibration compensation for image capturing device
CN206378669U (zh) * 2017-01-13 2017-08-04 信利光电股份有限公司 一种光学防抖音圈马达
CN208922030U (zh) * 2018-10-25 2019-05-31 信利光电股份有限公司 潜望式防抖模组及潜望式摄像模组
CN209055735U (zh) * 2018-10-19 2019-07-02 河南省皓泽电子有限公司 一种记忆合金光学防抖反射台
CN211698526U (zh) * 2020-02-10 2020-10-16 睿恩光电有限责任公司 Sma线光学防抖透镜驱动装置、相机装置及电子设备
CN113109950A (zh) * 2021-04-28 2021-07-13 新思考电机有限公司 光学防抖弹性支撑机构、防抖和透镜驱动装置及摄像装置、电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4811358B2 (ja) * 2007-06-14 2011-11-09 ソニー株式会社 撮像装置
CN108319093B (zh) * 2017-01-18 2021-08-06 三美电机株式会社 透镜驱动装置、摄像机模块以及摄像机搭载装置
CN111273501A (zh) * 2020-03-26 2020-06-12 新思考电机有限公司 一种带抖动修正的光学单元

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070014555A1 (en) * 2005-07-15 2007-01-18 Pentax Corporation Stage apparatus and camera shake correction apparatus using the stage apparatus
US20080292296A1 (en) * 2007-05-25 2008-11-27 Jae Wook Ryu Vibration compensation for image capturing device
CN206378669U (zh) * 2017-01-13 2017-08-04 信利光电股份有限公司 一种光学防抖音圈马达
CN209055735U (zh) * 2018-10-19 2019-07-02 河南省皓泽电子有限公司 一种记忆合金光学防抖反射台
CN208922030U (zh) * 2018-10-25 2019-05-31 信利光电股份有限公司 潜望式防抖模组及潜望式摄像模组
CN211698526U (zh) * 2020-02-10 2020-10-16 睿恩光电有限责任公司 Sma线光学防抖透镜驱动装置、相机装置及电子设备
CN113109950A (zh) * 2021-04-28 2021-07-13 新思考电机有限公司 光学防抖弹性支撑机构、防抖和透镜驱动装置及摄像装置、电子设备

Also Published As

Publication number Publication date
CN117389062A (zh) 2024-01-12
CN113109950B (zh) 2023-12-01
CN113109950A (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
WO2022227850A1 (zh) 光学防抖弹性支撑机构、防抖和透镜驱动装置及摄像装置、电子设备
WO2022227851A1 (zh) 光学防抖机构、透镜驱动装置和摄像装置及电子设备
US9910291B2 (en) Camera lens module having auto-focusing and optical image stabilizing functions
US20210109367A1 (en) Lens Module
WO2020243853A1 (zh) 一种镜头透镜模组
CN113467042B (zh) 防抖机构、棱镜驱动、摄像装置及电子设备
KR20170141523A (ko) 일체형 요크가 구비된 ois 액추에이터
CN112799206B (zh) 棱镜驱动装置、照相装置及电子设备
WO2022142682A1 (zh) 防抖结构、防抖系统及摄像装置
WO2022142679A1 (zh) 一种用于移动图像传感器视线变焦功能的驱动装置
US11988848B2 (en) Optical anti-shake resilient support mechanism, anti-shake driving device, lens driving fitting, imaging equipment and electronic apparatus
US12010429B2 (en) Camera module and mobile terminal
WO2023005040A1 (zh) 一种防抖马达
US20220353415A1 (en) Optic anti-shaking mechanism, lens driving device, and imaging equipment
CN113126231B (zh) 光学防抖驱动机构、驱动和摄像装置及电子设备
US20230400751A1 (en) Shooting apparatus, camera, and electronic device
JP2021524929A (ja) ペリスコープレンズモジュールに適用されるプリズム装置及びペリスコープレンズモジュール
US20230323998A1 (en) Electronic device and photographic apparatus thereof
CN217157031U (zh) 内对焦兼防抖的驱动装置、摄像装置和电子设备
CN112637486A (zh) 防抖驱动装置、摄像模组以及电子设备
CN114755872B (zh) 内对焦兼防抖的驱动装置、摄像装置和电子设备
CN113109919B (zh) 单载体、光学部件驱动机构和摄像装置及电子设备
CN217821037U (zh) 一种镜头驱动机构的底座及镜头驱动机构
CN112799207B (zh) 两段式弹片、棱镜驱动装置、照相装置及电子设备
CN214409421U (zh) 底座、光学部件驱动机构和摄像装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794329

Country of ref document: EP

Kind code of ref document: A1