WO2022227803A1 - 远端单元、多频段分布式系统以及信号处理方法 - Google Patents

远端单元、多频段分布式系统以及信号处理方法 Download PDF

Info

Publication number
WO2022227803A1
WO2022227803A1 PCT/CN2022/076746 CN2022076746W WO2022227803A1 WO 2022227803 A1 WO2022227803 A1 WO 2022227803A1 CN 2022076746 W CN2022076746 W CN 2022076746W WO 2022227803 A1 WO2022227803 A1 WO 2022227803A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
signal
module
power amplifier
remote unit
Prior art date
Application number
PCT/CN2022/076746
Other languages
English (en)
French (fr)
Inventor
何耀光
朱斌
闵海军
Original Assignee
罗森伯格技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110471978.6A external-priority patent/CN113014275A/zh
Application filed by 罗森伯格技术有限公司 filed Critical 罗森伯格技术有限公司
Priority to KR1020237040284A priority Critical patent/KR20230170973A/ko
Publication of WO2022227803A1 publication Critical patent/WO2022227803A1/zh
Priority to US18/327,703 priority patent/US20230308184A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25753Distribution optical network, e.g. between a base station and a plurality of remote units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools

Definitions

  • the present disclosure relates to the field of communications, and more particularly, to a remote unit, a multi-band distributed system including the remote unit, and a signal processing method used in the multi-band distributed system.
  • CN109495902A discloses a remote device for a multi-band distributed system, a multi-band distributed system and a method for processing uplink/downlink signals.
  • the above literature introduces a multi-band distributed system, the near-end receives the multi-band base station signal, and transmits it to the remote device through the optical fiber.
  • the remote device includes a master remote unit and at least one slave remote unit.
  • the master remote unit and the slave remote respectively correspond to and process signals of one frequency band.
  • the main remote unit is used to process the received signal and generate the signal output that is adapted to the channels of different frequency bands.
  • the master remote unit and the slave remote unit are connected by radio frequency lines to transmit signals.
  • the above system has the following shortcomings:
  • the traditional analog 2G/3G/4G system remote power amplifier adopts APD (analog predistortion) technology to ensure the system linearity index and avoid channel interference.
  • APD Analog Pre-Distortion
  • APD Analog Pre-Distortion
  • 5G applications due to the operating bandwidth of more than 100M, the existing APD technology cannot realize the linear compensation of the power amplifier for 100M signals, and the interference between channels is serious.
  • the traditional digital 2G/3G/4G system uses digital serial optical signals to realize the relay transmission between the access unit and the remote unit.
  • 5G applications due to the radio frequency bandwidth reaching more than 100 megabytes and the application of 5G MIMO, the rate of optical fiber links will reach tens to hundreds of gigabytes or more, which places great demands on optical modules and optical fiber resources, and operators are unacceptable. of.
  • the remote unit includes:
  • an optical module configured to receive signals from an access unit communicatively coupled to the remote unit
  • a power distribution module connected to the optical module and configured to divide a signal received from the optical module into a first component and a second component that is different from an operating frequency band of the first component
  • a first power amplifier low noise amplifier module connected to the power distribution module and configured to process the first component
  • a second power amplifier low noise amplifier module is connected to the power distribution module and is configured to process the second component.
  • the remote unit disclosed according to the present disclosure uses two independent power amplifier low-noise amplifier modules to process the input signal, and the input signal itself includes multi-band signals, that is to say, the input signal includes both operating
  • the first component of a frequency band also includes the second component operating in a second frequency band different from the first frequency band of the first component.
  • the first component and the second The components are processed, and different processing can be performed for the first frequency band of the first component and the second frequency band of the second component, for example, based on the frequency band width thereof, so that the remote unit according to the present disclosure can simultaneously process the frequency band including different frequency band widths.
  • the signals of the first component and the second component enhance the application scenarios of the remote unit according to the present disclosure.
  • the second power amplifier low noise amplifier module is configured to process the second component using a digital predistortion technique.
  • DPD digital predistortion
  • the optical module receives an analog signal output from the access unit.
  • the remote unit according to the present disclosure can get rid of the need for expensive equipment. Therefore, the remote unit according to the present disclosure is suitable for the requirements of the next generation mobile communication technology.
  • the first component includes at least one of a 2G signal, a 3G signal and/or a 4G signal.
  • the second component includes a 5G signal and/or a 6G signal.
  • the second power amplifier low-noise amplifier module includes:
  • a driver amplifier configured to amplify the second component
  • a digital processing module configured to denoise, filter and pre-distort the amplified second component
  • a power amplifier configured to power amplify the second component processed by the digital processing module
  • a circulator configured to isolate the second component amplified by the power amplifier
  • a filter configured to filter the second component isolated by the circulator.
  • the digital processing module is further configured to obtain the second component amplified by the power amplifier and the second component amplified by the driving amplifier.
  • the digital predistortion technology is used for the second component amplified by the power amplifier and the second component amplified by the driving amplifier to realize predistortion compensation for the signal input to the power amplifier.
  • the second power amplifier low-noise amplifier module further includes a low-noise amplifier module, a second drive amplifier and a radio frequency switch, wherein the filter is further configured It is used to filter the received uplink signal.
  • the filtered uplink signal is amplified by the low-noise amplifier module after passing through the circulator and the radio frequency switch, and then fed into the digital processing module for noise reduction and filtering. processing, and then output after being amplified by the second driving amplifier.
  • the power amplifier is made of gallium nitride material.
  • a second aspect of the present disclosure relates to a multi-band distributed system, characterized in that the multi-band distributed system includes:
  • a remote unit according to the first aspect of the present disclosure.
  • the access unit includes a radio frequency card module for receiving and/or transmitting the second component, the radio frequency card module being configured to receive and/or transmit information from the base station with the said second component.
  • the radio frequency signal of the frequency band associated with the second component is configured to receive and/or transmit information from the base station with the said second component.
  • the multi-band distributed system further includes:
  • At least one base station At least one base station
  • the combiner is configured to combine multiple signals received from the remote unit and output to the antenna, or to divide the signals received from the antenna into multiple signals and output to the antenna.
  • the remote unit, and the antenna is configured to radiate a signal processed by the combiner or to receive and output a signal to the combiner.
  • a third aspect of the present disclosure relates to a signal processing method, the signal processing method comprising:
  • the downlink signal received from the optical module is divided into a first component and a second component different from the working frequency band of the first component;
  • the second component is processed through the second power amplifier low noise amplifier module.
  • step S4 further includes:
  • the second component is processed using a digital pre-distortion technique via the second power amplifier low noise amplifier module.
  • step S1 further includes:
  • the optical module receives the analog signal output from the access unit.
  • the first component further includes at least one of a 2G signal, a 3G signal and/or a 4G signal, and/or the second component includes a 5G signal signal and/or 6G signal.
  • step S4 further includes:
  • the second component isolated by the circulator is filtered via a filter.
  • step S4 further includes:
  • the digital predistortion technology is used for the second component amplified by the power amplifier and the second component amplified by the driving amplifier to realize predistortion compensation for the signal input to the power amplifier.
  • the remote unit disclosed in the present disclosure uses two independent power amplifier and low-noise amplifier modules to process the input signal, and the input signal itself includes multi-band signals, that is to say, the input signal It includes both the first component working in the first frequency band and the second component working in the second frequency band different from the first frequency band of the first component.
  • the A component and a second component can be processed differently, and the first frequency band of the first component and the second frequency band of the second component can be processed differently, for example, based on their frequency band widths, so that the remote unit according to the present disclosure can simultaneously process
  • the signal including the first component and the second component with different frequency band widths improves the application scenario of the remote unit according to the present disclosure.
  • FIG. 1 shows a schematic diagram of a communication relay system according to the prior art
  • FIG. 2 shows a schematic diagram of a first power amplifier and low noise amplifier module 150 of a remote unit used in a communication relay system according to the prior art
  • Figure 3 shows a schematic diagram of a remote unit in accordance with one embodiment of the present disclosure
  • FIG. 4 shows a schematic diagram of the second power amplifier LNA module 250 used in the remote unit shown in FIG. 3 according to the present disclosure
  • FIG. 5 shows a schematic diagram of a multi-band distributed system 200 according to one embodiment of the present disclosure
  • FIG. 6 shows a schematic diagram of a multi-band distributed system 300 according to another embodiment of the present disclosure.
  • FIG. 7 shows a flowchart of a signal processing method 400 according to one embodiment of the present disclosure.
  • FIG. 1 shows a schematic diagram of a communication relay system according to the prior art
  • FIG. 2 shows a schematic diagram of a first power amplifier low noise amplifier module 150 of a remote unit used in the communication relay system according to the prior art.
  • the access unit 120 of the traditional analog 2G/3G/4G system 100 uses the two receiving modules 122 to connect to the base station respectively. 110 receives the downlink signal, and then transmits it to the optical module 130 through optical fiber transmission, and then distributes the signal to the corresponding remote power amplifier 150 through the power distribution module 140.
  • the power distribution module 140 only plays the role of distributing power, and Subsequent remote power amplifiers 150 have the same structure, and all use APD (analog predistortion) technology to ensure system linearity and avoid channel interference.
  • the signals amplified by multiple remote power amplifiers 150 are processed by the combiner 160. Radiated out by means of the antenna 170 . It can be further seen from FIG.
  • the signal is first processed by the delay line 151 and then output to the power amplifier 152, where the APD chip 153 will collect the remote power amplifier
  • 155 outputs to the next stage.
  • the uplink signal will be output through the action of the duplexer 155 and the low noise amplifier 154 .
  • Figure 3 shows a schematic diagram of a remote unit in accordance with one embodiment of the present disclosure. As can be seen in FIG.
  • the inventors of the present disclosure propose a remote unit in this case, the remote unit comprising an optical module 230 configured to communicate with the remote
  • the access unit eg, the access unit 220 in FIG. 5
  • the optical module 230 also converts received optical signals in the form of analog signals into electrical signals.
  • the remote unit according to the present disclosure can be freed from the The need for expensive and even unrealizable high-speed digital optical modules makes the remote units according to the present disclosure suitable for the requirements of next-generation mobile communication technologies.
  • the remote unit in accordance with the present disclosure further includes a power distribution module 240 connected to the optical module 230 and configured for signals received from the optical module 230 It is divided into a first component and a second component different from the operating frequency band of the first component.
  • the remote unit according to the present disclosure further includes a first power amplifier low noise amplifier module 250 ′ and a second power amplifier low noise amplifier module 250 .
  • the first power amplifier low noise amplifier module 250' is connected to the power distribution module 240 and is configured to process the first component
  • the second power amplifier low noise amplifier module 250 is connected to the power distribution module 240 is connected and configured to process the second component.
  • the remote unit disclosed according to the present disclosure adopts two independent power amplifier low-noise amplifier modules 250' and 250 to process the input signal, and the input signal itself includes multi-band signals, that is to say, the input signal has both It includes a first component working in the first frequency band, and also includes a second component working in a second frequency band different from the first frequency band of the first component.
  • the first component and the second component are processed separately, and the first frequency band of the first component and the second frequency band of the second component can be processed differently, for example, based on their frequency band widths, so that the remote unit according to the present disclosure Signals including the first component and the second component with different frequency band widths can be processed simultaneously, which improves the application scenario of the remote unit according to the present disclosure.
  • the second power amplifier low noise amplifier module 250 is configured to use digital pre-distortion technology to process the second component.
  • the second component whose frequency band width of the operating frequency band is much larger than the first component can be efficiently processed, thereby improving the performance of the second component according to the present disclosure.
  • the first component can be, for example, a communication signal component of a standard before 4G and 4G
  • the second component can be, for example, a communication signal of a standard of 5G and after 5G weight.
  • the first component further includes at least one of a 2G signal, a 3G signal and/or a 4G signal.
  • the second component includes a 5G signal and/or a 6G signal and possibly a higher bandwidth signal.
  • FIG. 4 shows a schematic diagram of the second power amplifier LNA module 250 used in the remote unit shown in FIG. 3 according to the present disclosure.
  • the second power amplifier low-noise amplifier module 250 includes the following components:
  • a driver amplifier 251 configured to amplify the second component
  • a digital processing module 253 configured to perform noise reduction, filtering and predistortion processing on the amplified second component
  • the power amplifier 252 is configured to power-amplify the second component processed by the digital processing module 253;
  • a circulator 255 configured to isolate the second component amplified by the power amplifier 252
  • a filter 256 is designed to filter the second component isolated by the circulator 255 .
  • the digital processing module 253 is further configured to obtain the second component amplified by the power amplifier 252 and the second component amplified by the drive amplifier 251
  • the second component amplified by the power amplifier 252 and the second component amplified by the drive amplifier 251 are digitally predistorted to realize predistortion compensation for the signal input to the power amplifier 252 .
  • the second power amplifier low-noise amplifier module 250 further includes a low-noise amplifier module 254 , a second drive amplifier 258 and a radio frequency switch 257 , wherein the filter 256 is also configured to filter the received uplink signal, and the filtered uplink signal passes through the circulator 255 and the radio frequency switch 257 and is amplified by the low noise amplifier module 254 and fed into the digital signal.
  • the processing module 253 performs noise reduction and filtering processing.
  • the circulator 255 also performs combining and/or branching processing on the uplink signal fed by the antenna, and then amplified by the second driver amplifier 258 and output. Since the operation mechanism of the lower half of the embodiment shown in FIG.
  • the power amplifier 252 can be made of, for example, a gallium nitride material.
  • the digital processing module 253 uses an integrated TRX chip to improve the single-board integration
  • the power amplifier 252 using GaN supports ultra-wideband amplification
  • the digital pre-distortion technology is used to realize the linear amplification of ultra-wideband signals under the condition of lower energy consumption.
  • the 5G 2T2R power amplifier low-noise amplifier module compatible design is realized under the condition of compatibility with the original 4G power amplifier low-noise amplifier structure and size.
  • FIG. 5 shows a schematic diagram of a multi-band distributed system 200 in accordance with one embodiment of the present disclosure.
  • the multi-band distributed system 200 includes:
  • a remote unit according to the first aspect of the present disclosure.
  • the access unit includes a radio frequency card module 222 for receiving and/or transmitting the second component (for example, the radio frequency card in the lower left corner of the access unit 220 in FIG. 5 ) module 222), the radio frequency card module 222 is configured to receive the radio frequency signal of the frequency band associated with the second component from the base station 210.
  • the remote unit proposed according to the present disclosure, two independent power amplifier low-noise amplifier modules 250' and 250 are used to process the input signal, and the input signal itself includes multi-band signals, that is, the input signal The signal includes both a first component operating in the first frequency band and a second component operating in a second frequency band different from the first frequency band of the first component.
  • two independent power amplifier low noise amplifier modules 250' and 250 respectively process the first component and the second component, and can perform different processing on the first frequency band of the first component and the second frequency band of the second component, for example, based on their frequency band widths, so that the remote control according to the present disclosure can perform different processing.
  • the end unit can simultaneously process signals including the first component and the second component with different frequency band widths, thereby improving the application scenario of the remote unit according to the present disclosure.
  • the multi-band distributed system further includes:
  • At least one base station can be two base stations in FIG. 5 , that is, the two base stations 210 shown, additionally or alternatively, the two base stations 210 include multiple standards corresponding to one or more operators.
  • Base station here, those skilled in the art should understand that the two base stations here are only exemplary rather than limiting, and the multi-band distributed system according to the present disclosure can include only one base station, or can Including a plurality of two base stations. If only one base station is included, the base station will support multiple communication modes, for example, the one base station supports 2G, 3G, 4G and 5G wireless communication at the same time.
  • multi-band distributed system can also include the following parts:
  • At least one optical fiber which is shown as a connection between the access unit 220 and the optical module 230, the at least one optical fiber connecting the access unit and the remote unit;
  • the combiner 260 is configured to combine multiple signals received from the remote unit and output to the antenna 270, or to divide the signals received from the antenna 270 into multiple signals output to the remote unit, and the antenna 270 is configured to radiate the signal processed by the combiner 260 or to receive and output the signal to the combiner 260 .
  • FIG. 6 shows a schematic diagram of a multi-band distributed system 300 according to another embodiment of the present disclosure.
  • the multi-band distributed system 300 includes:
  • a remote unit according to the first aspect of the present disclosure.
  • the access unit includes a radio frequency card module 322 for receiving and/or transmitting the second component (for example, the radio frequency card in the lower left corner of the access unit 320 in FIG. 6 ) module 322), the radio frequency card module 322 is configured to receive the radio frequency signal of the frequency band associated with the second component from the base station 310 or transmit the radio frequency signal of the frequency band associated with the second component to the base station 310.
  • the remote unit proposed in accordance with the present disclosure, two independent power amplifier low noise amplifier modules 352 and 354 are used to process the input signal, and in the example shown in FIG. 6, another additional power amplifier low noise amplifier module is also included 356, the structure of the power amplifier low noise amplifier module 356 is similar to the power amplifier low noise amplifier module 352.
  • the power amplifier low-noise amplifier module 354 can include, for example, two groups of power amplifier and low-noise amplifier sub-modules.
  • the LNA sub-modules can share the same digital processing module.
  • the analog signal input to the optical module 332 or the optical module 334 itself includes a multi-band signal, that is to say, the input signal includes not only the first component operating in the first frequency band, but also the first component operating in the first frequency band.
  • the first frequency band and the second component of the first component can be processed for the first frequency band and
  • the second frequency band of the second component is processed differently based on, for example, its frequency band width, so that the remote unit according to the present disclosure can simultaneously process signals including the first component and the second component with different frequency band widths, thereby improving the performance according to the present disclosure.
  • the multi-band distributed system 300 further includes:
  • Multiple base stations such as multiple base stations 310 shown in FIG. 6 , additionally or alternatively, the multiple base stations 310 include base stations of multiple standards corresponding to one or more operators;
  • At least one optical fiber including two optical fibers in the example shown in FIG. 6, the two optical fibers being shown as connecting lines between the access unit 320 and the optical modules 332 and 334, respectively, the two optical fibers connecting the optical modules 332 and 334 in the access unit 320 and the remote unit;
  • the combiners 362 and 364 are configured to combine multiple signals received from the remote units and output to the antennas 372 and 374 or receive from the antennas 372 and 374
  • the signal is divided into a plurality of signals for output to the remote unit, and the antennas 372 and 374 are configured to radiate the signals processed by the combiners 362 and 364 or receive signals and output them to the Combiners 362 and 364.
  • FIG. 7 shows a flowchart of a signal processing method 400 according to one embodiment of the present disclosure.
  • the signal processing method 400 involved in the third aspect of the present disclosure includes at least the following four steps, namely:
  • Step S1 receiving a downlink signal from an access unit communicatively connected to the remote unit via an optical module
  • Step S2 via the power distribution module, the downlink signal received from the optical module is divided into a first component and a second component that is different from the working frequency band of the first component;
  • Step S3 processing the first component through the first power amplifier and low noise amplifier module
  • Step S4 processing the second component through the second power amplifier low noise amplifier module.
  • step S4 further includes:
  • the second component is processed using a digital pre-distortion technique via the second power amplifier low noise amplifier module.
  • step S1 further includes:
  • the optical module receives the analog signal output from the access unit.
  • the first component further includes at least one of a 2G signal, a 3G signal and/or a 4G signal, and/or the second component includes a 5G signal signal and/or 6G signal.
  • step S4 further includes:
  • the second component isolated by the circulator is filtered via a filter.
  • step S4 further includes:
  • the digital predistortion technology is used for the second component amplified by the power amplifier and the second component amplified by the driving amplifier to realize predistortion compensation for the signal input to the power amplifier.
  • the inventive concept of the inventors of the present disclosure is to propose an innovative analog remote plus digital distribution system, the high-power remote unit adopts DPD (digital predistortion) technology and analog fiber remote technology, which overcomes the The impact of analog pre-distortion technology of high-power remote power amplifiers in analog distributed systems on the predistortion correction of 5G ultra-wideband signals cannot be realized, which solves the problems of linearization of ultra-wideband power amplifiers and limited transmission bandwidth of the system, and also overcomes the The bottleneck and limitation of the relay transmission bandwidth of a single digital system meets the requirements of 5G MIMO applications and realizes the coverage requirements of 2G/3G/4G/5G. For 2G/3G/4G to add 5G coverage, there is no need to add optical fiber resources and site resources. The network construction cost is low, the engineering connection is simple, and the system is smoothly upgraded.
  • DPD digital predistortion

Abstract

本公开内容涉及一种远端单元,所述远端单元包括:光模块,所述光模块被构造用于从与所述远端单元通信连接的接入单元接收信号;功率分配模块,所述功率分配模块与所述光模块连接并且被构造用于将从所述光模块接收的信号分为第一分量和与所述第一分量的工作频段不同的第二分量;第一功放低噪放模块,所述第一功放低噪放模块与所述功率分配模块相连接并且被构造为对所述第一分量进行处理;以及第二功放低噪放模块,所述第二功放低噪放模块与所述功率分配模块相连接并且被构造为对所述第二分量进行处理。此外,本公开内容还涉及一种多频段分布式系统以及一种在该多频段分布式系统中使用的信号处理方法。

Description

远端单元、多频段分布式系统以及信号处理方法 技术领域
本公开内容涉及通信领域,更为具体地涉及一种远端单元、一种包括该远端单元的多频段分布式系统以及一种在该多频段分布式系统中使用的信号处理方法。
背景技术
随着5G及后续通信体制的发展,由于信号处理带宽的增加及MIMO(多入多出)的应用给系统传输及处理带来了极大的压力与挑战,常规方案难以实现;而且另一方面原有2G、3G、4G系统短时间内不可能淘汰,多系统共存成为必然。
CN109495902A公开了一种用于多频段分布式系统的远端装置以及多频段分布式系统及对上行/下行信号处理方法。上述文献介绍了一种多频段分布式系统,近端接收多频段基站信号,通过光纤传到远端装置。远端装置包含主远端单元及至少一个从远端单元。主远端单元及从远端分别对应及处理一个频段的信号。主远端单元用于对接收到的信号进行处理,生成适配与不同频段通道的信号输出。主远端单元与从远端单元之间通过射频线连接以传送信号。
上述系统存在以下不足:
传统模拟2G/3G/4G系统远端功率放大器采用APD(模拟预失真)技术保证系统线性指标,避免信道干扰。APD(模拟预失真)能够实现几十兆信号带宽的功率放大器线性补偿,能够满足2G/3G/4G功率放大的线性需求。对于5G应用,由于工作带宽达到百兆以上,现有APD技术无法实现对百兆信号的功率放大器线性补偿,信道间干扰严重。
而传统的数字2G/3G/4G系统采用数字串行光信号实现接入单元与远端单元的中继传输。对于5G应用,由于射频带宽达到百兆以上,以及5G MIMO的应用,光纤链路的速率将达到几十到百G以上,这对光模块及光 纤资源提出了极大要求,运营商是难以接受的。
上述远端系统实现复杂,尤其在支持的频段较多时尤为明显。各从远端单元与主远端单元存在电源、数据及射频电缆的连接,工程连线杂乱,占地面积大,造价高,不适合大规模推广。因此,单一的模拟或数字2G/3G/4G分布系统均不能实现对5G信号处理的要求。
发明内容
有鉴于对于背景技术中所存在的问题的深刻理解,本公开内容的发明人在本案中提出一种远端单元,所述远端单元包括:
光模块,所述光模块被构造用于从与所述远端单元通信连接的接入单元接收信号;
功率分配模块,所述功率分配模块与所述光模块连接并且被构造用于将从所述光模块接收的信号分为第一分量和与所述第一分量的工作频段不同的第二分量;
第一功放低噪放模块,所述第一功放低噪放模块与所述功率分配模块相连接并且被构造为对所述第一分量进行处理;以及
第二功放低噪放模块,所述第二功放低噪放模块与所述功率分配模块相连接并且被构造为对所述第二分量进行处理。
依据本公开内容所公开的远端单元采用两个独立的功放低噪放模块对输入信号进行处理,而所输入的信号本身包括多频段的信号,也就是说所输入的信号既包含工作在第一频段的第一分量,也包括工作在与所述第一分量的第一频段不同的第二频段的第二分量,通过采用两个独立的功放低噪放模块分别对第一分量和第二分量进行处理,能够针对所述第一分量的第一频段和第二分量的第二频段例如基于其频段宽度进行不同的处理,使得依据本公开内容的远端单元能够同时处理包括频段宽度不同的第一分量和第二分量的信号,提高依据本公开内容的远端单元的应用场景。
在依据本公开内容的一个实施例之中,所述第二功放低噪放模块被构造为采用数字预失真技术对所述第二分量进行处理。以这样的方式,通过引入数字预失真(DPD)技术对所述第二分量进行处理,能够使得工作频段的频段宽度远大于第一分量的第二分量能够得到高效的处理,提高依据 本公开内容的远端单元的可处理的信号的工作频段范围。
在依据本公开内容的一个实施例之中,所述光模块接收来自接入单元输出的模拟信号。相较于传统的数字2G/3G/4G系统采用数字串行光信号实现接入单元与远端单元的中继传输而言,以这样的方式能够使得依据本公开内容的远端单元摆脱对昂贵的乃至无法实现的高速数字光模块需求,从而使得依据本公开内容的远端单元适用于下一代移动通信技术的要求。
在依据本公开内容的一个实施例之中,所述第一分量包括2G信号、3G信号和/或4G信号中的至少一种信号。优选地,在依据本公开内容的一个实施例之中,所述第二分量包括5G信号和/或6G信号。
在依据本公开内容的一个实施例之中,所述第二功放低噪放模块包括:
驱动放大器,所述驱动放大器被构造用于对所述第二分量进行放大;
数字处理模块,所述数字处理模块被构造用于将经放大的第二分量进行降噪和、滤波和预失真处理;
功率放大器,所述功率放大器被构造用于将经所述数字处理模块处理后的第二分量进行功率放大;
环形器,所述环形器被构造用于对经所述功率放大器放大的第二分量进行隔离;以及
滤波器,所述滤波器被构造用于对经所述环形器隔离的第二分量进行滤波处理。
优选地,在依据本公开内容的一个实施例之中,所述数字处理模块还被构造用于获取经所述功率放大器放大后的第二分量以及经所述驱动放大器放大后的第二分量,并对功率放大器放大后的第二分量和驱动放大器放大后的第二分量采用数字预失真技术实现对输入所述功率放大器的信号进行预失真补偿。
更为优选地,在依据本公开内容的一个实施例之中,所述第二功放低噪放模块还包括低噪放模块、第二驱动放大器以及射频开关,其中,所述滤波器还被构造用于对接收到的上行信号进行滤波处理,经滤波处理的上行信号经过所述环形器和所述射频开关后经过所述低噪放模块放大后馈入所述数字处理模块进行降噪和滤波处理,之后经过所述第二驱动放大器放大后输出。
更为优选地,在依据本公开内容的一个实施例之中,所述功率放大器采用氮化镓材料制成。
本公开内容的第二方面涉及一种多频段分布式系统,其特征在于,所述多频段分布式系统包括:
接入单元;以及
根据本公开内容的第一方面所述的远端单元。
在依据本公开内容的一个实施例之中,所述接入单元包括用于接收和/或发射所述第二分量的射频卡模块,所述射频卡模块被构造用于从基站接收与所述第二分量相关联的频段的射频信号。
在依据本公开内容的一个实施例之中,所述多频段分布式系统还包括:
至少一个基站;
至少一根光纤,所述至少一根光纤连接所述接入单元和所述远端单元;
合路器;以及
天线,
其中,所述合路器被构造用于将从所述远端单元接收的多个信号进行合路处理并输出至所述天线,或者将从所述天线接收的信号分成多个信号输出至所述远端单元,并且所述天线被构造用于将经所述合路器处理的信号辐射出去或者接收信号并将其输出至所述合路器。
再者,本公开内容的第三方面涉及一种信号处理方法,所述信号处理方法包括:
S1,经由光模块从与所述远端单元通信连接的接入单元接收下行信号;
S2,经由功率分配模块将从所述光模块接收的下行信号分为第一分量和与所述第一分量的工作频段不同的第二分量;
S3,经由第一功放低噪放模块对所述第一分量进行处理;以及
S4,经由第二功放低噪放模块为对所述第二分量进行处理。
优选地,在依据本公开内容的一个实施例之中,步骤S4进一步包括:
经由所述第二功放低噪放模块采用数字预失真技术对所述第二分量进行处理。
优选地,在依据本公开内容的一个实施例之中,步骤S1进一步包括:
所述光模块接收来自接入单元输出的模拟信号。
可选地,在依据本公开内容的一个实施例之中,所述第一分量还包括2G信号、3G信号和/或4G信号中的至少一种信号,和/或所述第二分量包括5G信号和/或6G信号。
优选地,在依据本公开内容的一个实施例之中,步骤S4进一步包括:
经由驱动放大器对所述第二分量进行放大;
经由数字处理模块将经放大的第二分量进行降噪和、滤波和预失真处理;
经由功率放大器将经所述数字处理模块处理后的第二分量进行功率放大;
经由环形器对经所述功率放大器放大的第二分量进行隔离;以及
经由滤波器对经所述环形器隔离的第二分量进行滤波处理。
优选地,在依据本公开内容的一个实施例之中,步骤S4进一步还包括:
经由数字处理模块获取经所述功率放大器放大后的第二分量以及经所述驱动放大器放大后的第二分量;以及
对功率放大器放大后的第二分量和驱动放大器放大后的第二分量采用数字预失真技术实现对输入所述功率放大器的信号进行预失真补偿。
综上所述,依据本公开内容所公开的远端单元采用两个独立的功放低噪放模块对输入信号进行处理,而所输入的信号本身包括多频段的信号,也就是说所输入的信号既包含工作在第一频段的第一分量,也包括工作在与所述第一分量的第一频段不同的第二频段的第二分量,通过采用两个独立的功放低噪放模块分别对第一分量和第二分量进行处理,能够针对所述第一分量的第一频段和第二分量的第二频段例如基于其频段宽度进行不同的处理,使得依据本公开内容的远端单元能够同时处理包括频段宽度不同的第一分量和第二分量的信号,提高依据本公开内容的远端单元的应用场景。
附图说明
参考附图示出并阐明实施例。这些附图用于阐明基本原理,从而仅仅示出了对于理解基本原理必要的方面。这些附图不是按比例的。在附图中,相同的附图标记表示相似的特征。
图1示出了依据现有技术的通信中继系统的示意图;
图2示出了依据现有技术的通信中继系统中使用的远端单元的第一功放低噪放模块150的示意图;
图3示出了依据本公开内容的一个实施例的远端单元的示意图;
图4示出了依据本公开内容的图3所示出的远端单元中所使用的第二功放低噪放模块250的示意图;
图5示出了依据本公开内容的一个实施例的多频段分布式系统200的示意图;
图6示出了依据本公开内容的另一个实施例的多频段分布式系统300的示意图;以及
图7示出了依据本公开内容的一个实施例的信号处理方法400的流程图。
本公开内容的其它特征、特点、优点和益处通过以下结合附图的详细描述将变得更加显而易见。
具体实施方式
在以下优选的实施例的具体描述中,将参考构成本公开内容一部分的所附的附图。所附的附图通过示例的方式示出了能够实现本公开内容的特定的实施例。示例的实施例并不旨在穷尽根据本公开内容的所有实施例。可以理解,在不偏离本公开内容的范围的前提下,可以利用其他实施例,也可以进行结构性或者逻辑性的修改。因此,以下的具体描述并非限制性的,且本公开内容的范围由所附的权利要求所限定。
图1示出了依据现有技术的通信中继系统的示意图,而图2示出了依据现有技术的通信中继系统中使用的远端单元的第一功放低噪放模块150的示意图。从图1和图2之中可以看出,在传统的通信中继系统100之中,亦即传统的模拟2G/3G/4G系统100的接入单元120借助于两个接收模块122分别从基站110接收下行信号,然后经过光纤的传输传输至光模块130,然后再经由功率分配模块140将信号分配至对应的远端功率放大器150,此时功率分配模块140仅仅起到分配功率的作用,而且后续的远端功率放大器150的结构均相同,而且均采用APD(模拟预失真)技术保证系统线性 指标,避免信道干扰,多个远端功率放大器150放大后的信号经过合路器160的处理之后借助于天线170辐射出去。进一步从图2之中可以看出,此处的远端功率放大器150之中,信号首先经过延迟线151的处理,然后输出至功率放大器152,在此,APD芯片153将会采集远端功率放大器150所输入的信号和功率放大器152放大后的信号,然后基于这几个信号采用APD模拟预失真技术对输入功率放大器152的信号进行调节,使得功率放大器152实现线性放大的作用,然后经由双工器155输出至下一级。而对于上行信号将会经过双工器155和低噪放154的作用输出。
对于5G应用,由于工作带宽达到百兆以上,现有APD技术无法实现对百兆信号的功率放大器线性补偿,信道间干扰严重。而如果采用传统的数字2G/3G/4G系统,由于这样的数字2G/3G/4G系统采用数字串行光信号实现接入单元与远端单元的中继传输。对于5G应用,光纤链路的速率将达到几十到百G以上,这对光模块及光纤资源提出了极大要求,运营商难以接受。
针对上述技术问题,本公开内容的发明人创新地想到改造远端单元的结构来实现针对5G的应用。通过引入数字处理技术与算法、以及对于模拟光模块降噪等技术,满足了在系统星行组网多远端应用条件下ACLR(邻信道泄露功率比),EVM(误差矢量幅度)等指标的严苛要求,解决了单一模拟系统在一拖多条件下系统性能急剧下降的问题,实现了2G/3G/4G/5G多运营商基站信号的同时覆盖。具体而言,图3示出了依据本公开内容的一个实施例的远端单元的示意图。从图3之中可以看出,本公开内容的发明人在本案中提出一种远端单元,所述远端单元包括光模块230,所述光模块230被构造用于从与所述远端单元通信连接的接入单元(例如图5中的接入单元220)接收信号;在此优选地,所述光模块230接收来自接入单元220输出的模拟信号。附加地或替代地,所述光模块230也将所接收的模拟信号形式的光信号转换为电信号。相较于传统的数字2G/3G/4G系统采用数字串行光信号实现接入单元110与远端单元的中继传输而言,以这样的方式能够使得依据本公开内容的远端单元摆脱对昂贵的乃至无法实现的高速数字光模块需求,从而使得依据本公开内容的远端单元适用于下一代移动通信技术的要求。
除此之外,依据本公开内容的所述远端单元还包括功率分配模块240,所述功率分配模块240与所述光模块230连接并且被构造用于将从所述光模块230接收的信号分为第一分量和与所述第一分量的工作频段不同的第二分量。再者,依据本公开内容的所述远端单元还包括第一功放低噪放模块250'和第二功放低噪放模块250。其中,所述第一功放低噪放模块250'与所述功率分配模块240相连接并且被构造为对所述第一分量进行处理,而第二功放低噪放模块250与所述功率分配模块240相连接并且被构造为对所述第二分量进行处理。依据本公开内容所公开的远端单元采用两个独立的功放低噪放模块250'和250对输入信号进行处理,而所输入的信号本身包括多频段的信号,也就是说所输入的信号既包含工作在第一频段的第一分量,也包括工作在与所述第一分量的第一频段不同的第二频段的第二分量,通过采用两个独立的功放低噪放模块250'和250分别对第一分量和第二分量进行处理,能够针对所述第一分量的第一频段和第二分量的第二频段例如基于其频段宽度进行不同的处理,使得依据本公开内容的远端单元能够同时处理包括频段宽度不同的第一分量和第二分量的信号,提高依据本公开内容的远端单元的应用场景。在此,优选地,所述第二功放低噪放模块250被构造为采用数字预失真技术对所述第二分量进行处理。以这样的方式,通过引入数字预失真(DPD)技术对所述第二分量进行处理,能够使得工作频段的频段宽度远大于第一分量的第二分量能够得到高效的处理,提高依据本公开内容的远端单元的可处理的信号的工作频段范围。
在此,为了适应新的移动通信技术的发展,所述第一分量例如能够是4G以及4G之前的制式的通信信号分量,而所述第二分量例如能够是5G以及5G之后的制式的通信信号分量。优选地,在依据本公开内容的一个实施例之中,所述第一分量还包括2G信号、3G信号和/或4G信号中的至少一种信号。优选地,在依据本公开内容的一个实施例之中,所述第二分量包括5G信号和/或6G信号以及可能出现的更高带宽信号。
以下借助于图4来详细描述依据本公开内容的第二功放低噪放模块250的各个组成部件。图4示出了依据本公开内容的图3所示出的远端单元中所使用的第二功放低噪放模块250的示意图。从图4可以看出,所述第二功放低噪放模块250包括以下组成部分:
驱动放大器251,所述驱动放大器251被构造用于对所述第二分量进行放大;
数字处理模块253,所述数字处理模块253被构造用于将经放大的第二分量进行降噪和、滤波和预失真处理;
功率放大器252,所述功率放大器252被构造用于将经所述数字处理模块253处理后的第二分量进行功率放大;
环形器255,所述环形器255被构造用于对经所述功率放大器252放大的第二分量进行隔离;以及
滤波器256,所述滤波器256被构造用于对经所述环形器255隔离的第二分量进行滤波处理。
在此,优选地,在图4所示的实施例之中,所述数字处理模块253还被构造用于获取经所述功率放大器252放大后的第二分量以及经所述驱动放大器251放大后的第二分量,并对功率放大器252放大后的第二分量和驱动放大器251放大后的第二分量采用数字预失真技术实现对输入所述功率放大器252的信号进行预失真补偿。
更为优选地,在图4所示的实施例之中,所述第二功放低噪放模块250还包括低噪放模块254、第二驱动放大器258以及射频开关257,其中,所述滤波器256还被构造用于对接收到的上行信号进行滤波处理,经滤波处理的上行信号经过所述环形器255和所述射频开关257后经过所述低噪放模块254放大后馈入所述数字处理模块253进行降噪和滤波处理,在此,所述环形器255还会对天线馈入的上行信号进行合路和/或分路处理,之后经过所述第二驱动放大器258放大后输出。图4所示出的实施例的下半部分由于和上半部分的运行机理一样,在此不再赘述。但是从图4之中本领域的技术人员应当意识到,上下两组相同的模块共用一个数字处理模块253,这是由于采用DPD数字预失真技术的数字处理模块253的处理能力和处理效率相较于APD模拟预失真技术得到较大幅度的提高,从而使得两组甚至更多组的相同的模块共用一个数字处理模块253。这种共用将在接下来的图6之中进一步予以阐述。
更为优选地,为了实现针对诸如5G的移动通信技术的超高带宽放大功能,在依据本公开内容的一个实施例之中,所述功率放大器252例如能够 采用氮化镓材料制成。本方案中的数字处理模块253采用集成TRX芯片提高单板集成度,采用GaN的功率放大器252支持超宽带放大,采用数字预失真技术实现在较低的能耗条件下实现超宽带信号线性放大,在与原4G功放低噪放结构尺寸兼容条件下实现了5G 2T2R功放低噪放模块兼容设计。通过在一套高功率远端单元中同时配置2G/3G/4G/5G功放低噪放模块,满足了运营商2G/3G/4G/5G同时覆盖的需求,对于5G,无需新增光纤资源,节省CAPEX支出。5G功放低噪放模块效率较2G/3G/4G模块提升约50%,这样就提升了产品密度,在一套远端系统中能够支持5G 4T4R的应用需求。
以上介绍了依据本公开内容所提出的远端单元的结构,以下将结合图5和图6介绍使用该远端单元的多频段分布式系统。图5示出了依据本公开内容的一个实施例的多频段分布式系统200的示意图。从图5之中可以看出,所述多频段分布式系统200包括:
接入单元220;以及
根据本公开内容的第一方面所述的远端单元。
在依据本公开内容的一个实施例之中,所述接入单元包括用于接收和/或发射所述第二分量的射频卡模块222(例如图5中接入单元220的左下角的射频卡模块222),所述射频卡模块222被构造用于从基站210接收与所述第二分量相关联的频段的射频信号。在依据本公开内容所提出的远端单元中采用两个独立的功放低噪放模块250'和250对输入信号进行处理,而所输入的信号本身包括多频段的信号,也就是说所输入的信号既包含工作在第一频段的第一分量,也包括工作在与所述第一分量的第一频段不同的第二频段的第二分量,通过采用两个独立的功放低噪放模块250'和250分别对第一分量和第二分量进行处理,能够针对所述第一分量的第一频段和第二分量的第二频段例如基于其频段宽度进行不同的处理,使得依据本公开内容的远端单元能够同时处理包括频段宽度不同的第一分量和第二分量的信号,提高依据本公开内容的远端单元的应用场景。
在依据本公开内容的一个实施例之中,所述多频段分布式系统还包括:
至少一个基站,例如图5中能够为两个基站,即所示出的两个基站210,附加地或者替代地,所述两个基站210包括对应于一个或者多个运营商的多个制式的基站;在此,本领域的技术人员应当了解,此处的两个基站仅 仅是示例性的,而非限制性的,依据本公开内容的多频段分布式系统既能够只包括一个基站,也能够包括多个两个基站。如果只包括一个基站,那么该基站将会支持多种制式的通信方式,例如该一个基站同时支持2G、3G、4G以及5G无线通信。
此外,依据本公开内容的多频段分布式系统还能够包括以下部分:
至少一根光纤,该光纤示出为接入单元220和光模块230之间的连线,所述至少一根光纤连接所述接入单元和所述远端单元;
合路器260;以及
天线270,
其中,所述合路器260被构造用于将从所述远端单元接收的多个信号进行合路处理并输出至所述天线270,或者将从所述天线270接收的信号分成多个信号输出至所述远端单元,并且所述天线270被构造用于将经所述合路器260处理的信号辐射出去或者接收信号并将其输出至所述合路器260。
图6示出了依据本公开内容的另一个实施例的多频段分布式系统300的示意图。从图6之中能够看出,所述多频段分布式系统300包括:
接入单元320;以及
根据本公开内容的第一方面所述的远端单元。
在依据本公开内容的一个实施例之中,所述接入单元包括用于接收和/或发射所述第二分量的射频卡模块322(例如图6中接入单元320的左下角的射频卡模块322),所述射频卡模块322被构造用于从基站310接收与所述第二分量相关联的频段的射频信号或者向基站310发射与所述第二分量相关联的频段的射频信号。在依据本公开内容所提出的远端单元中采用两个独立的功放低噪放模块352和354对输入信号进行处理,在图6所示的示例中还包括另外一个额外的功放低噪放模块356,该功放低噪放模块356的结构和功放低噪放模块352相似,之所以示出了两个功放低噪放模块352和356,仅示出了另一个功放低噪放模块354,这是由于功放低噪放模块354可以实现多路信号的复用,如之前参照图4所阐述的那样,该功放低噪放模块354例如能够包括两组功放低噪放子模块,这两组功放低噪放子模块能够共用同一个数字处理模块。而输入光模块332或者光模块334的模拟 信号本身包括多频段的信号,也就是说所输入的信号既包含工作在第一频段的第一分量,也包括工作在与所述第一分量的第一频段不同的第二频段的第二分量,通过采用两个独立的功放低噪放模块352和354分别对第一分量和第二分量进行处理,能够针对所述第一分量的第一频段和第二分量的第二频段例如基于其频段宽度进行不同的处理,使得依据本公开内容的远端单元能够同时处理包括频段宽度不同的第一分量和第二分量的信号,提高依据本公开内容的远端单元的应用场景。
在依据本公开内容的一个实施例之中,所述多频段分布式系统300还包括:
多个基站,例如图6中所示出的多个基站310,附加地或替代地,所述多个基站310包括对应于一个或者多个运营商的多个制式的基站;
至少一根光纤,在图6所示出的示例之中包括两根光纤,该两根光纤示出为分别在接入单元320和光模块332和334之间的连线,所述两根光纤连接所述接入单元320和所述远端单元中的光模块332和334;
合路器362和364;以及
天线372和374,
其中,所述合路器362和364被构造用于将从所述远端单元接收的多个信号进行合路处理并输出至所述天线372和374,或者将从所述天线372和374接收的信号分成多个信号输出至所述远端单元,并且所述天线372和374被构造用于将经所述合路器362和364处理的信号辐射出去或者接收信号并将其输出至所述合路器362和364。
图7示出了依据本公开内容的一个实施例的信号处理方法400的流程图。从图7之中可以看出,本公开内容的第三方面涉及的信号处理方法400至少包括以下四个步骤,即:
步骤S1,经由光模块从与所述远端单元通信连接的接入单元接收下行信号;
步骤S2,经由功率分配模块将从所述光模块接收的下行信号分为第一分量和与所述第一分量的工作频段不同的第二分量;
步骤S3,经由第一功放低噪放模块对所述第一分量进行处理;以及
步骤S4,经由第二功放低噪放模块为对所述第二分量进行处理。
优选地,在依据本公开内容的一个实施例之中,步骤S4进一步包括:
经由所述第二功放低噪放模块采用数字预失真技术对所述第二分量进行处理。
优选地,在依据本公开内容的一个实施例之中,步骤S1进一步包括:
所述光模块接收来自接入单元输出的模拟信号。
可选地,在依据本公开内容的一个实施例之中,所述第一分量还包括2G信号、3G信号和/或4G信号中的至少一种信号,和/或所述第二分量包括5G信号和/或6G信号。
优选地,在依据本公开内容的一个实施例之中,步骤S4进一步包括:
经由驱动放大器对所述第二分量进行放大;
经由数字处理模块将经放大的第二分量进行降噪和、滤波和预失真处理;
经由功率放大器将经所述数字处理模块处理后的第二分量进行功率放大;
经由环形器对经所述功率放大器放大的第二分量进行隔离;以及
经由滤波器对经所述环形器隔离的第二分量进行滤波处理。
优选地,在依据本公开内容的一个实施例之中,步骤S4进一步还包括:
经由数字处理模块获取经所述功率放大器放大后的第二分量以及经所述驱动放大器放大后的第二分量;以及
对功率放大器放大后的第二分量和驱动放大器放大后的第二分量采用数字预失真技术实现对输入所述功率放大器的信号进行预失真补偿。
概括地讲,本公开内容的发明人的发明构思在于提出一种创新的模拟拉远加上数字分布系统,高功率远端单元采用DPD(数字预失真)技术和模拟光纤拉远技术,克服了模拟分布式系统高功率远端功率放大器模拟预失真技术对不能实现对5G超宽带信号预失真矫正的影响,解决了超宽带功率放大器线性化及系统传输带宽受限的问题,而且同时也克服了单一数字系统中继传输带宽的瓶颈与限制,满足了5G MIMO应用的需求,实现了对2G/3G/4G/5G的覆盖需求。对于2G/3G/4G新增5G覆盖,无需新增光纤资源及场地资源,组网造价低,工程连线简单,系统平滑升级。
尽管已经描述了本公开内容的不同示例性的实施例,但对于本领域技 术人员而言显而易见的是,能够进行不同的改变和修改,其能够在并未背离本公开内容的精神和范畴的情况下实现本公开内容的优点中的一个或一些优点。对于那些在本领域技术中相当熟练的技术人员来说,执行相同功能的其他部件可以适当地被替换。应当了解,在此参考特定的附图解释的特征可以与其他附图的特征组合,即使是在那些没有明确提及此的情况中。此外,可以或者在所有使用恰当的处理器指令的软件实现方式中或者在利用硬件逻辑和软件逻辑组合来获得同样结果的混合实现方式中实现本公开内容的方法。这样的对根据本公开内容的方案的修改旨在被所附权利要求所覆盖。

Claims (18)

  1. 一种远端单元,其特征在于,所述远端单元包括:
    光模块,所述光模块被构造用于从与所述远端单元通信连接的接入单元接收信号;
    功率分配模块,所述功率分配模块与所述光模块连接并且被构造用于将从所述光模块接收的信号分为第一分量和与所述第一分量的工作频段不同的第二分量;
    第一功放低噪放模块,所述第一功放低噪放模块与所述功率分配模块相连接并且被构造为对所述第一分量进行处理;以及
    第二功放低噪放模块,所述第二功放低噪放模块与所述功率分配模块相连接并且被构造为对所述第二分量进行处理。
  2. 根据权利要求1所述的远端单元,其特征在于,所述第二功放低噪放模块被构造为采用数字预失真技术对所述第二分量进行处理。
  3. 根据权利要求1或2所述的远端单元,其特征在于,所述光模块接收来自所述接入单元输出的模拟信号。
  4. 根据权利要求1所述的远端单元,其特征在于,所述第一分量包括2G信号、3G信号和/或4G信号中的至少一种信号。
  5. 根据权利要求1或4所述的远端单元,其特征在于,所述第二分量包括5G信号和/或6G信号。
  6. 根据权利要求1所述的远端单元,其特征在于,所述第二功放低噪放模块包括:
    驱动放大器,所述驱动放大器被构造用于对所述第二分量进行放大;
    数字处理模块,所述数字处理模块被构造用于将经放大的第二分量进行降噪、滤波和预失真处理;
    功率放大器,所述功率放大器被构造用于将经所述数字处理模块处理后的第二分量进行功率放大;
    环形器,所述环形器被构造用于对经所述功率放大器放大的第二分量进行隔离;以及
    滤波器,所述滤波器被构造用于对经所述环形器隔离的第二分量进行滤波处理。
  7. 根据权利要求6所述的远端单元,其特征在于,所述数字处理模块还被构造用于获取经所述功率放大器放大后的第二分量以及经所述驱动放大器放大后的第二分量,并对功率放大器放大后的第二分量和驱动放大器放大后的第二分量采用数字预失真技术实现对输入所述功率放大器的信号进行预失真补偿。
  8. 根据权利要求6所述的远端单元,其特征在于,所述第二功放低噪放模块还包括低噪放模块、第二驱动放大器以及射频开关,其中,所述滤波器还被构造用于对接收到的上行信号进行滤波处理,经滤波处理的上行信号经过所述环形器和所述射频开关后经过所述低噪放模块放大后馈入所述数字处理模块进行降噪和滤波处理,之后经过所述第二驱动放大器放大后输出。
  9. 根据权利要求6所述的远端单元,其特征在于,所述功率放大器采用氮化镓材料制成。
  10. 一种多频段分布式系统,其特征在于,所述多频段分布式系统包括:
    接入单元;以及
    根据权利要求1至9中任一项所述的远端单元。
  11. 根据权利要求10所述的多频段分布式系统,其特征在于,所述接入单元包括用于接收和/或发射所述第二分量的射频卡模块,所述射频卡模 块被构造用于从基站接收与所述第二分量相关联的频段的射频信号。
  12. 根据权利要求10所述的多频段分布式系统,其特征在于,所述多频段分布式系统还包括:
    至少一个基站;
    至少一根光纤,所述至少一根光纤连接所述接入单元和所述远端单元;
    合路器;以及
    天线,
    其中,所述合路器被构造用于将从所述远端单元接收的多个信号进行合路处理并输出至所述天线,或者将从所述天线接收的信号分成多个信号输出至所述远端单元,并且所述天线被构造用于将经所述合路器处理的信号辐射出去或者接收信号并将其输出至所述合路器。
  13. 一种信号处理方法,其特征在于,所述信号处理方法包括:
    S1,经由光模块从与所述远端单元通信连接的接入单元接收下行信号;
    S2,经由功率分配模块将从所述光模块接收的下行信号分为第一分量和与所述第一分量的工作频段不同的第二分量;
    S3,经由第一功放低噪放模块对所述第一分量进行处理;以及
    S4,经由第二功放低噪放模块为对所述第二分量进行处理。
  14. 根据权利要求13所述的信号处理方法,其特征在于,步骤S4进一步包括:
    经由所述第二功放低噪放模块采用数字预失真技术对所述第二分量进行处理。
  15. 根据权利要求13或14所述的信号处理方法,其特征在于,步骤S1进一步包括:
    所述光模块接收来自接入单元输出的模拟信号。
  16. 根据权利要求13所述的信号处理方法,其特征在于,所述第一分 量包括2G信号、3G信号和/或4G信号中的至少一种信号,和/或所述第二分量包括5G信号和/或6G信号。
  17. 根据权利要求13所述的信号处理方法,其特征在于,步骤S4进一步包括:
    经由驱动放大器对所述第二分量进行放大;
    经由数字处理模块将经放大的第二分量进行降噪和、滤波和预失真处理;
    经由功率放大器将经所述数字处理模块处理后的第二分量进行功率放大;
    经由环形器对经所述功率放大器放大的第二分量进行隔离;以及
    经由滤波器对经所述环形器隔离的第二分量进行滤波处理。
  18. 根据权利要求17所述的信号处理方法,其特征在于,步骤S4进一步还包括:
    经由数字处理模块获取经所述功率放大器放大后的第二分量以及经所述驱动放大器放大后的第二分量;以及
    对功率放大器放大后的第二分量和驱动放大器放大后的第二分量采用数字预失真技术实现对输入所述功率放大器的信号进行预失真补偿。
PCT/CN2022/076746 2021-04-29 2022-02-18 远端单元、多频段分布式系统以及信号处理方法 WO2022227803A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237040284A KR20230170973A (ko) 2021-04-29 2022-02-18 원격 유닛, 다중 주파수 대역 분산 시스템 및 신호 처리 방법
US18/327,703 US20230308184A1 (en) 2021-04-29 2023-06-01 Remote unit, multi-band distributed system and signal processing method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202110471978.6A CN113014275A (zh) 2021-04-29 2021-04-29 远端单元、多频段分布式系统以及信号处理方法
CN202120919537 2021-04-29
CN202120919537.3 2021-04-29
CN202110471978.6 2021-04-29
CN202110734993.5A CN113541699A (zh) 2021-04-29 2021-06-30 远端单元、多频段分布式系统以及信号处理方法
CN202110734993.5 2021-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/327,703 Continuation US20230308184A1 (en) 2021-04-29 2023-06-01 Remote unit, multi-band distributed system and signal processing method

Publications (1)

Publication Number Publication Date
WO2022227803A1 true WO2022227803A1 (zh) 2022-11-03

Family

ID=78097325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076746 WO2022227803A1 (zh) 2021-04-29 2022-02-18 远端单元、多频段分布式系统以及信号处理方法

Country Status (2)

Country Link
CN (2) CN215186707U (zh)
WO (1) WO2022227803A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215186707U (zh) * 2021-04-29 2021-12-14 罗森伯格技术有限公司 远端单元以及多频段分布式系统
CN113992245A (zh) * 2021-11-23 2022-01-28 罗森伯格技术有限公司 分布式天线系统的监控方法、控制模块和计算机介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664683A (zh) * 2012-04-27 2012-09-12 北京汉铭通信有限公司 一种用于光纤拉远式无线分布系统的远端信号处理方法及远端机
CN103067041A (zh) * 2012-12-14 2013-04-24 大唐移动通信设备有限公司 终端及其通信方法
CN204886973U (zh) * 2015-06-25 2015-12-16 南京泰通科技股份有限公司 一种400MHz铁路平调数字光纤直放站远端机
CN109639356A (zh) * 2018-12-28 2019-04-16 深圳市菲尔康通讯有限公司 光纤分布系统
CN110912580A (zh) * 2019-11-29 2020-03-24 三维通信股份有限公司 一种适用于5g的零中频的硬件平台系统和射频拉远单元
CN113014275A (zh) * 2021-04-29 2021-06-22 凌敦通讯科技(上海)有限公司 远端单元、多频段分布式系统以及信号处理方法
CN113541699A (zh) * 2021-04-29 2021-10-22 罗森伯格技术有限公司 远端单元、多频段分布式系统以及信号处理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664683A (zh) * 2012-04-27 2012-09-12 北京汉铭通信有限公司 一种用于光纤拉远式无线分布系统的远端信号处理方法及远端机
CN103067041A (zh) * 2012-12-14 2013-04-24 大唐移动通信设备有限公司 终端及其通信方法
CN204886973U (zh) * 2015-06-25 2015-12-16 南京泰通科技股份有限公司 一种400MHz铁路平调数字光纤直放站远端机
CN109639356A (zh) * 2018-12-28 2019-04-16 深圳市菲尔康通讯有限公司 光纤分布系统
CN110912580A (zh) * 2019-11-29 2020-03-24 三维通信股份有限公司 一种适用于5g的零中频的硬件平台系统和射频拉远单元
CN113014275A (zh) * 2021-04-29 2021-06-22 凌敦通讯科技(上海)有限公司 远端单元、多频段分布式系统以及信号处理方法
CN113541699A (zh) * 2021-04-29 2021-10-22 罗森伯格技术有限公司 远端单元、多频段分布式系统以及信号处理方法

Also Published As

Publication number Publication date
CN113541699A (zh) 2021-10-22
CN215186707U (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
US10601378B2 (en) Distributed antenna system architectures
WO2022227803A1 (zh) 远端单元、多频段分布式系统以及信号处理方法
US8423028B2 (en) Active antenna array with multiple amplifiers for a mobile communications network and method of providing DC voltage to at least one processing element
US10727896B2 (en) Tower top device and passive intermodulation cancellation method
CN108322413B (zh) 5g毫米波有源天线阵列的空口数字预失真方法及其系统
CN102457458A (zh) 一种基站数字预失真的实现方法和装置
KR20100040497A (ko) 다중대역 중계기
KR20110132558A (ko) 셀 사이트들의 증폭기 시스템 및 다른 적합한 애플리케이션들
US10063308B2 (en) Radio frequency transmitter
EP3665880A1 (en) Methods and apparatuses for digital pre-distortion
EP2775681B1 (en) Method, device and base station system for transceiving and processing radio frequency signal
US20200366254A1 (en) Communication device and operating method thereof
CN101272155B (zh) 时分双工模式数字预失真功放装置
US8731616B2 (en) Active antenna array and method for relaying first and second protocol radio signals in a mobile communications network
CN113014275A (zh) 远端单元、多频段分布式系统以及信号处理方法
EP2161841B1 (en) Predistortion of a radio frequency signal
EP4113864A1 (en) Remote unit, multi-band distributed system and signal processing method
CN101286962B (zh) 一种载波抵消射频预失真功放实现装置和方法
US20230308184A1 (en) Remote unit, multi-band distributed system and signal processing method
CN108574497B (zh) 带有线性化技术的宽带发射方法、装置和系统
US20210297110A1 (en) Single-chip digital pre-distortion (dpd) device implemented using radio frequency transceiver integrated circuit with integrated dpd function
KR101168015B1 (ko) Iss 필터 모듈을 응용한 유무선통신장치
EP2178203A1 (en) Active antenna element for mobile radio communications
KR100957028B1 (ko) 이동통신 중계기의 양방향 신호의 경로 단일화 회로장치
JP2003115793A (ja) Cdma無線基地局装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237040284

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237040284

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22794283

Country of ref document: EP

Kind code of ref document: A1