WO2022227601A1 - 一种商用车多功能电动循环球转向系统及其控制方法 - Google Patents

一种商用车多功能电动循环球转向系统及其控制方法 Download PDF

Info

Publication number
WO2022227601A1
WO2022227601A1 PCT/CN2021/138214 CN2021138214W WO2022227601A1 WO 2022227601 A1 WO2022227601 A1 WO 2022227601A1 CN 2021138214 W CN2021138214 W CN 2021138214W WO 2022227601 A1 WO2022227601 A1 WO 2022227601A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
rotor
assist
motor
torque
Prior art date
Application number
PCT/CN2021/138214
Other languages
English (en)
French (fr)
Inventor
赵万忠
张自宇
王春燕
周小川
吴刚
栾众楷
叶宇林
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Priority to US17/924,332 priority Critical patent/US11753066B2/en
Publication of WO2022227601A1 publication Critical patent/WO2022227601A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D3/00Steering gears
    • B62D3/02Steering gears mechanical
    • B62D3/04Steering gears mechanical of worm type
    • B62D3/06Steering gears mechanical of worm type with screw and nut
    • B62D3/08Steering gears mechanical of worm type with screw and nut using intermediate balls or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/001Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
    • B62D5/003Backup systems, e.g. for manual steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0409Electric motor acting on the steering column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0409Electric motor acting on the steering column
    • B62D5/0412Electric motor acting on the steering column the axes of motor and steering column being parallel
    • B62D5/0415Electric motor acting on the steering column the axes of motor and steering column being parallel the axes being coaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0421Electric motor acting on or near steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the invention belongs to the technical field of automobile mechanical steering, and specifically refers to a multifunctional electric recirculating ball steering system for commercial vehicles and a control method thereof.
  • the hydraulic power steering (HPS) system is the commonly used steering system design for existing commercial vehicles. Compared with the pure mechanical steering system, the HPS system has the advantages of mature and reliable technology, low cost, and can effectively improve the problem of heavy steering. Problems such as poor steering stability at vehicle speed, turning around in place, etc. at low speed, the steering feels heavy.
  • ECHPS electronically controlled hydraulic power steering
  • EHPS electrohydraulic power steering
  • the new technology has improved the existing problems of the original steering system to a certain extent.
  • the ECHPS system and EHPS system are still based on hydraulic transmission technology, their energy consumption is still high;
  • Electric Power Steering is a power steering system that directly relies on the motor to provide auxiliary torque.
  • HPS Hydraulic Power Steering System
  • the EPS system has the advantages of low energy consumption, good road feel adjustability and compact structure. , easy maintenance, fast response, good system matching and other advantages. Its appearance perfectly complies with all the requirements of people for the steering system.
  • the wire-controlled power steering after the removal of the mechanical connection should represent the ultimate form of the steering system, but it is still in the primary research stage, and there is still a huge research space.
  • the purpose of the present invention is to provide a multifunctional electric recirculating ball steering system for commercial vehicles and a control method thereof, so as to solve the problem that the electric power steering of commercial vehicles in the prior art has less power assist and reliable wire-controlled steering.
  • the present invention combines the dual-rotor motor and a set of common booster motors to act on the input end of the recirculating ball steering gear, and the dual-rotor motor has high redundancy, High output torque, good wire control reliability, and it is equipped with a shift fork assembly to perform synchronous and asynchronous rotation of dual rotors to achieve wire-controlled steering and electric power steering functions, giving full play to the recirculating ball steering gear.
  • the high reduction ratio capability maximizes the system assist torque, realizes the electric assist function, simplifies the system, and provides the wire control function while ensuring the system reliability.
  • a multifunctional electric recirculating ball steering system for commercial vehicles comprising: an electric power assist module, a mechanical transmission module and a control module;
  • the electric booster module includes: a dual-rotor motor module and a booster motor;
  • the dual-rotor motor module includes: rotor A, upper end cover, stator, stator winding A, stator winding B, permanent magnet, bearing, bearing seat, rotor B, synchronizing ring, fork nut, fork screw, and fork drive motor and lower end cap;
  • the upper end cover and the lower end cover are respectively installed on both ends of the stator
  • stator winding A and stator winding B are wound inside the stator
  • the permanent magnets are respectively installed on the rotor A and the rotor B;
  • the rotor A is located in the inner cavity of the stator, and both ends of the rotor A are sheathed with bearings, one end is supported in the upper end cover, and the other end is supported on the bearing seat;
  • the rotor B is located in the inner cavity of the stator, and both ends of the rotor B are sheathed with bearings, one end is supported in the lower end cover, and the other end is supported on the bearing seat;
  • Two ends of the synchronizing ring are respectively floatingly connected to the rotor A and the rotor B;
  • the fork nut is screwed on the fork screw, and its free end acts on the annular surface of the synchronizing ring;
  • the fork drive motor is fixed outside the stator, and its output end is fixedly connected with the input end of the fork screw;
  • the mechanical transmission module includes: steering wheel, steering shaft, coupling, recirculating ball steering gear, gear sector, gear sector shaft, steering straight rod, steering cross rod, steering knuckle arm, left trapezoidal arm, right trapezoidal arm, left steering knuckle, right steering knuckle, left wheel and right wheel;
  • the recirculating ball diverter includes: a steering screw, a steering nut, a conduit, and a recirculating ball;
  • the conduit is installed in the steering nut, and a plurality of the circulating balls are placed in the conduit;
  • the steering nut is screwed on the steering screw, and the two transmit power through the circulating ball; the steering nut is engaged with the tooth sector;
  • the input end of the steering shaft is connected with the steering wheel, and the output end of the steering shaft is connected with the output end of the rotor A through the coupling;
  • One input end of the steering screw is connected with the output end of the rotor B through a coupling, and the other input end is connected with the output end of the booster motor through a coupling;
  • the gear sector is fixed on the gear sector shaft for transmitting the power output by the steering nut;
  • the input end of the steering straight pull rod is connected with the gear sector shaft, and the output end thereof is connected with the steering knuckle arm;
  • the left steering knuckle is connected with the left wheel, and the steering knuckle arm and the left trapezoidal arm are fixed on it;
  • Both ends of the steering tie rod are respectively connected with the left trapezoidal arm and the right trapezoidal arm;
  • the right steering knuckle is connected with the right wheel, and the right trapezoidal arm is fixed thereon;
  • the control module includes: an electronic control unit, a torque sensor, a vehicle speed sensor, a rotation angle sensor and a current sensor;
  • the input ends of the electronic control unit are respectively electrically connected to the torque sensor, vehicle speed sensor, rotation angle sensor and current sensor, and the output ends thereof are respectively electrically connected to the booster motor and the dual-rotor motor module.
  • the obtained vehicle and system state parameters are used to select the steering function and assist control;
  • the torque sensor is respectively installed on the output end of the steering shaft, the rotor A, the rotor B and the booster motor, obtains the torque signal, and transmits the torque signal to the electronic control unit;
  • the vehicle speed sensor is installed on the vehicle and is used for transmitting the obtained vehicle speed signal to the electronic control unit;
  • the rotation angle sensor is installed on the steering wheel, and is used to obtain the steering wheel rotation angle signal when the vehicle is turning, and transmit the rotation angle signal to the electronic control unit;
  • the current sensors are respectively installed in the stator winding A, the stator winding B and the booster motor, and are used to acquire the current signal in the installation circuit and transmit the current signal to the electronic control unit.
  • the coil turns and lengths of the stator winding A and the stator winding B in the dual-rotor motor module are different, that is, the output torques of the rotor A and the rotor B are different, and the torque that the rotor A can output is smaller than that of the rotor.
  • the torque that B can output is smaller than that of the rotor.
  • synchronizing ring and the rotor A and the rotor B are connected floatingly through splines.
  • the fork drive motor is selected as a low-power DC motor.
  • the output end surface of the steering nut is processed into a rack shape, and is engaged with the tooth sector.
  • the steering screw in the recirculating ball steering gear should be completely symmetrical during manufacture, and its size should be longer than the original size, so as to be connected to the rotor B and the booster motor at its two ends respectively.
  • the default function selection of the steering system is electric power steering, that is, the initial state of the system is that the synchronization ring is connected to the rotor A and the rotor B at the same time, and the rotor A and the rotor B are equivalent to a part of the steering shaft.
  • the function selection of the steering system is divided into active selection and passive selection; active selection can be realized by setting function selection buttons on the steering wheel, and passive selection is a passive safety selection performed by the advanced assisted driving algorithm layer according to the vehicle state. .
  • the present application also provides a control method of a commercial vehicle multifunctional electric recirculating ball steering system, based on the above system, including the following steps:
  • the electronic control unit controls the fork drive motor to work according to the selected function, and performs function switching;
  • step (3) According to the functional state of the steering system selected in step (2), combined with the steering assist characteristic curve and ideal variable transmission ratio curve under different steering functional states designed in step (1), the electronic control unit performs real-time steering control;
  • the electronic control unit performs real-time fault diagnosis, and performs fault-tolerant control of the steering system according to the type of system fault;
  • the electronic control unit controls the fork drive motor to drive the synchronizing ring to immediately separate from the rotor A, disconnect the mechanical connection, and complete the active intervention. intervention operation.
  • the steering assist characteristic curve designed in the step (1) is a multi-segment assist characteristic curve, and the specific expression is:
  • M is the assist torque
  • v is the vehicle speed
  • T i is the driver's input torque
  • W is the influence factor of the vehicle speed
  • e is the natural logarithm.
  • id is the ideal steering transmission ratio
  • f is the transmission ratio adjustment function
  • ⁇ w is the steering wheel angle, and counterclockwise is positive
  • ⁇ w1 and ⁇ w2 are the steering wheel angle adjustment thresholds.
  • the electronic control unit controls the fork drive motor to rotate counterclockwise to drive the fork screw to rotate, and the fork nut produces linear motion and applies the power to On the end face of the synchronizing ring, at this time the synchronizing ring is separated from the rotor A and is only connected to the rotor B.
  • the mechanical connection of the system is disconnected, and it is turned into a wire-controlled steering state; the rotor A is used to simulate the road feel, and the rotor B and the booster motor are used perform driver steering operations;
  • the electronic control unit controls the fork motor to rotate clockwise to drive the fork screw to rotate, the fork nut produces linear motion, and the power is applied to the synchronization
  • a part of the synchronizing ring gradually transitions from the rotor B to the rotor A, the rotor A and the rotor B are connected to the synchronizing ring at the same time, and the steering system returns to the electric assist state;
  • the output torque is also used for steering assistance, and the system steering assistance is the largest at this time.
  • the sensor collects the torque signal, the rotation angle signal and the vehicle speed signal
  • the electronic control unit receives the signal collected in step (311), and calculates the required assist torque in real time according to the steering assist characteristic curve;
  • the electronic control unit controls the dual-rotor motor to perform steering assist, and when the required assist torque exceeds the optimal load range of the dual-rotor motor module, control the assist The motor starts to assist; when the required assist torque exceeds the optimal load range of the assist motor, the assist motor is prioritized to enter the overload state to ensure that the dual-rotor motor module can cope with the steering operation after the function switching and ensure advanced assisted driving.
  • the sensor collects the torque signal, the rotation angle signal, the vehicle speed signal and the current signal
  • the electronic control unit calculates the ideal variable transmission ratio and the required output assist torque of the assist motor in real time in combination with the ideal variable transmission ratio curve and the steering assist characteristic curve;
  • step (323) Combined with the ideal variable transmission ratio obtained in step (322) and the assist torque required by the assist motor, after calculating the required output angle of the rotor B, the electronic control unit controls the rotor B to track the angle and control the assist motor respectively.
  • the assist torque is tracked, and the electronic control unit controls the rotor A to generate a real-time driving feeling according to the real-time feedback torque of the rotor B returned by the torque sensor.
  • step (4) concrete steps in described step (4) are:
  • the electronic control unit detects the current signal and the torque signal in real time, and performs fault diagnosis in real time according to the signal state. If a fault is diagnosed, it performs fault-tolerant control, and at the same time sets the advanced assisted driving algorithm to a state of no active intervention;
  • step (42) If the fault diagnosis result in step (41) is that the rotor A is faulty, the electronic control unit controls the fork to drive the motor to rotate, drives the synchronizing ring to move closer to the rotor A, and performs progressive control, that is, according to the signal of the rotation angle sensor Judging the position of the steering wheel, if it is in the middle position, the synchronization ring will be driven to synchronize immediately; if the steering wheel is not in the middle position, only the synchronization ring will be pressed against the rotor A to ensure a certain road feeling and at the same time give the steering wheel back to the middle position. time;
  • step (43) If the fault diagnosis result in step (41) is that the rotor B is faulty, the electronic control unit controls the booster motor to perform high torque overload output, tracks the required rotation angle, and controls the shift fork drive motor to drive the synchronous ring to press against the On the rotor A, perform progressive control until the steering wheel returns to the middle position, and the synchronizing ring is synchronized immediately;
  • step (44) If the diagnosis result in step (41) is that the power assist motor is faulty, the electronic control unit controls the rotor B to perform high torque overload output, tracks the required rotation angle, and controls the fork drive motor to drive the synchronous ring to press against the rotor. On A, perform progressive control until the steering wheel returns to the middle position, and the synchronization ring is synchronized immediately;
  • step (41) If the diagnosis result in step (41) is other types of faults, the electronic control unit controls the fork drive motor to drive the synchronizing ring to synchronize immediately, connects the mechanical structure, and controls the trouble-free power assist mechanism to assist, if the required assist If the torque exceeds the maximum assist torque that the faultless power assist mechanism can provide, only the faultless power assist mechanism is controlled to output the maximum assist torque.
  • the fault diagnosis method in the step (41) is: judging the signal state in the current sensor, and comparing the signal with the signal at the previous moment, if there is no signal or the signal fluctuates abnormally several times in a row, it is considered to be the rotor.
  • the rotor B or the booster motor is faulty.
  • the embodiments of the present application integrate the steering-by-wire technology and the electric power-assisted steering technology by adopting a combined power assist method of a dual-rotor motor and a common motor;
  • FIG. 1 is a structural diagram of a multifunctional electric recirculating ball steering system for a commercial vehicle according to an embodiment of the application;
  • FIG. 2 is a structural diagram of a dual-rotor motor module in a steering system according to an embodiment of the present application
  • FIG. 3 is a front view of a synchronization ring in an embodiment of the application.
  • FIG. 5 is a schematic diagram of the connection and cooperation of the rotor A, the rotor B and the synchronizing ring according to the embodiment of the application;
  • FIG. 6 is a flowchart of a steering system control method according to an embodiment of the present application.
  • a multifunctional electric recirculating ball steering system for commercial vehicles of the present invention includes: an electric power assist module, a mechanical transmission module and a control module;
  • the electric power assist module includes: a dual rotor motor module 14 and a power assist motor 22;
  • the dual-rotor motor module includes: rotor A13, upper end cover 36, stator 34, stator winding A35, stator winding B39, permanent magnet 37, bearing 29, bearing seat 38, rotor B15, synchronizing ring 31, fork nut 30, dial Fork screw 32, fork drive motor 33 and lower end cover 40;
  • the upper end cover 36 and the lower end cover 40 are respectively installed on both ends of the stator 34;
  • stator winding A35 and stator winding B39 are wound inside the stator 34;
  • the permanent magnets 37 are respectively installed on the rotor A13 and the rotor B15;
  • the rotor A13 is located in the inner cavity of the stator 34, and both ends of the rotor A13 are sheathed with bearings 29, one end is supported in the upper end cover 36, and the other end is supported on the bearing seat 38;
  • the rotor B15 is located in the inner cavity of the stator 34, and both ends of the rotor B15 are sheathed with bearings 29, one end is supported in the lower end cover 40, and the other end is supported on the bearing seat 38;
  • Both ends of the synchronizing ring 31 are respectively floatingly connected to the rotor A13 and the rotor B15;
  • the fork nut 30 is screwed on the fork screw 32, and its free end acts on the annular surface of the synchronizing ring 31;
  • the fork drive motor 33 is fixed outside the stator 34, and its output end is fixedly connected to the input end of the fork screw 32;
  • the mechanical transmission module includes: steering wheel 1, steering shaft 4, coupling 5, recirculating ball steering gear 16, gear sector 19, gear sector shaft 6, steering straight rod 7, steering tie rod 12, steering knuckle arm 8, left Trapezoidal arm 11, right trapezoidal arm 26, left steering knuckle 10, right steering knuckle 25, left wheel 9 and right wheel 24;
  • the recirculating ball diverter 16 includes: a steering screw 17, a steering nut 18, a conduit 27, and a recirculating ball 28;
  • the conduit 27 is installed in the steering nut 18, and a plurality of the circulating balls 28 are placed in the conduit 27;
  • the steering nut 18 is screwed on the steering screw 17, and the two transmit power through the circulating ball 28; the steering nut 18 is engaged with the tooth sector 19;
  • the input end of the steering shaft 4 is connected with the steering wheel 1, and the output end thereof is connected with the output end of the rotor A13 through the coupling 5;
  • One input end of the steering screw 17 is connected with the output end of the rotor B15 through the coupling 5, and the other input end thereof is connected with the output end of the booster motor 22 through the coupling 5;
  • the gear sector 19 is fixed on the gear sector shaft 6 for transmitting the power output by the steering nut 18;
  • the input end of the steering straight pull rod 7 is connected with the gear sector shaft 6, and the output end thereof is connected with the steering knuckle arm 8;
  • the left steering knuckle 10 is connected with the left wheel 9, on which the steering knuckle arm 8 and the left trapezoidal arm 11 are fixed;
  • Both ends of the steering tie rod 12 are respectively connected with the left trapezoidal arm 11 and the right trapezoidal arm 26;
  • the right steering knuckle 25 is connected to the right wheel 24, and the right trapezoidal arm 26 is fixed thereon;
  • the control module includes: an electronic control unit (ECU) 21 , a torque sensor 3 , a vehicle speed sensor 20 , a rotational angle sensor 2 and a current sensor 23 ;
  • ECU electronice control unit
  • the input ends of the electronic control unit 21 are respectively electrically connected to the torque sensor 3 , the vehicle speed sensor 20 , the rotational angle sensor 2 and the current sensor 23 , and the output ends thereof are respectively electrically connected to the booster motor 22 and the dual-rotor motor module 14 . , according to the vehicle and system state parameters obtained from each sensor during steering, the selection of steering function and power assist control are performed;
  • the torque sensor 3 is respectively installed on the output end of the steering shaft 4, the rotor A13, the rotor B15 and the booster motor 22, obtains the torque signal, and transmits the torque signal to the electronic control unit 21;
  • the vehicle speed sensor 20 is installed on the vehicle for transmitting the obtained vehicle speed signal to the electronic control unit 21;
  • the rotation angle sensor 2 is installed on the steering wheel 1, and is used to obtain the steering wheel rotation angle signal when the vehicle is turning, and transmit the rotation angle signal to the electronic control unit 21;
  • the current sensors 23 are respectively installed in the stator winding A35 , the stator winding B39 and the booster motor 22 , and are used to acquire the current signal in the installation circuit and transmit the current signal to the electronic control unit 21 .
  • the coil turns and lengths of the stator winding A35 and the stator winding B39 in the dual-rotor motor module are different, that is, the output torques of the rotor A13 and the rotor B15 are different, and the torque that the rotor A13 can output is less than The torque that the rotor B15 can output.
  • the synchronizing ring 31 is floatingly connected to the rotor A13 and the rotor B15 through splines.
  • the fork drive motor 33 is a low-power DC motor to reduce cost and size.
  • the output end surface of the steering nut 18 is processed into a rack shape, which meshes with the tooth sector.
  • the steering screw 17 in the recirculating ball steering gear 16 should be completely symmetrical during manufacture, and its size should be longer than the original size, so as to be connected to the rotor B15 and the booster motor 22 at both ends respectively.
  • the default function of the steering system is electric power steering, that is, the initial state of the system is that the synchronization ring 31 is connected to the rotor A13 and the rotor B15 at the same time, and the rotor A and the rotor B are equivalent to a part of the steering shaft.
  • the function selection of the steering system is divided into active selection and passive selection; active selection can be realized by setting function selection buttons on the steering wheel, and passive selection is a passive safety type of advanced assisted driving algorithm layer according to the vehicle state. choose.
  • the present invention also provides a control method for a commercial vehicle multifunctional electric recirculating ball steering system, based on the above system, including the following steps:
  • the designed steering assist characteristic curve is a multi-segment assist characteristic curve, and the specific expression is:
  • M is the assist torque
  • v is the vehicle speed
  • T i is the driver's input torque
  • W is the influence factor of the vehicle speed
  • e is the natural logarithm.
  • id is the ideal steering transmission ratio
  • f is the transmission ratio adjustment function
  • ⁇ w is the steering wheel angle, and counterclockwise is positive
  • ⁇ w1 and ⁇ w2 are the steering wheel angle adjustment thresholds.
  • the electronic control unit controls the fork drive motor to rotate counterclockwise to drive the fork screw to rotate, and the fork nut produces linear motion and applies the power to On the end face of the synchronizing ring, at this time the synchronizing ring is separated from the rotor A and is only connected to the rotor B.
  • the mechanical connection of the system is disconnected, and it is turned into a wire-controlled steering state; the rotor A is used to simulate the road feel, and the rotor B and the booster motor are used perform driver steering operations;
  • the electronic control unit controls the fork motor to rotate clockwise to drive the fork screw to rotate, the fork nut produces linear motion, and the power is applied to the synchronization
  • a part of the synchronizing ring gradually transitions from the rotor B to the rotor A, the rotor A and the rotor B are connected to the synchronizing ring at the same time, and the steering system returns to the electric assist state;
  • the output torque is also used for steering assistance, and the system steering assistance is the largest at this time.
  • step (3) According to the functional state of the steering system selected in step (2), combined with the steering assist characteristic curve and ideal variable transmission ratio curve under different steering functional states designed in step (1), the electronic control unit performs real-time steering control;
  • the sensor collects the torque signal, the rotation angle signal and the vehicle speed signal
  • the electronic control unit receives the signal collected in step (311), and calculates the required assist torque in real time according to the steering assist characteristic curve;
  • the electronic control unit controls the dual-rotor motor to perform steering assist, and when the required assist torque exceeds the optimal load range of the dual-rotor motor module, control the assist The motor starts to assist; when the required assist torque exceeds the optimal load range of the assist motor, the assist motor is prioritized to enter the overload state to ensure that the dual-rotor motor module can cope with the steering operation after the function switching and ensure advanced assisted driving.
  • the sensor collects the torque signal, the rotation angle signal, the vehicle speed signal and the current signal
  • the electronic control unit calculates the ideal variable transmission ratio and the required output assist torque of the assist motor in real time in combination with the ideal variable transmission ratio curve and the steering assist characteristic curve;
  • step (323) Combined with the ideal variable transmission ratio obtained in step (322) and the assist torque required by the assist motor, after calculating the required output angle of the rotor B, the electronic control unit controls the rotor B to track the angle and control the assist motor respectively.
  • the assist torque is tracked, and the electronic control unit controls the rotor A to generate a real-time driving feeling according to the real-time feedback torque of the rotor B returned by the torque sensor.
  • the electronic control unit performs real-time fault diagnosis, and performs fault-tolerant control of the steering system according to the system fault type; the specific steps are:
  • the electronic control unit detects the current signal and the torque signal in real time, and performs fault diagnosis in real time according to the signal state. If a fault is diagnosed, it performs fault-tolerant control, and at the same time sets the advanced assisted driving algorithm to a state of no active intervention;
  • step (42) If the fault diagnosis result in step (41) is that the rotor A is faulty, the electronic control unit controls the fork to drive the motor to rotate, drives the synchronizing ring to move closer to the rotor A, and performs progressive control, that is, according to the signal of the rotation angle sensor Judging the position of the steering wheel, if it is in the middle position, the synchronization ring will be driven to synchronize immediately; if the steering wheel is not in the middle position, only the synchronization ring will be pressed against the rotor A to ensure a certain road feeling and at the same time give the steering wheel back to the middle position. time;
  • step (43) If the fault diagnosis result in step (41) is that the rotor B is faulty, the electronic control unit controls the booster motor to perform high torque overload output, tracks the required rotation angle, and controls the shift fork drive motor to drive the synchronous ring to press against the On the rotor A, perform progressive control until the steering wheel returns to the middle position, and the synchronizing ring is synchronized immediately;
  • step (44) If the diagnosis result in step (41) is that the power assist motor is faulty, the electronic control unit controls the rotor B to perform high torque overload output, tracks the required rotation angle, and controls the fork drive motor to drive the synchronous ring to press against the rotor. On A, perform progressive control until the steering wheel returns to the middle position, and the synchronization ring is synchronized immediately;
  • step (41) If the diagnosis result in step (41) is other types of faults, the electronic control unit controls the fork drive motor to drive the synchronizing ring to synchronize immediately, connects the mechanical structure, and controls the trouble-free power assist mechanism to assist, if the required assist If the torque exceeds the maximum assist torque that the faultless power assist mechanism can provide, only the faultless power assist mechanism is controlled to output the maximum assist torque.
  • the fault diagnosis method in the step (41) is: judging the signal state in the current sensor, and comparing the signal with the signal at the previous moment, if there is no signal or the signal fluctuates abnormally several times in a row, it is considered that the rotor A, the rotor B or the booster motor is faulty.
  • the electronic control unit controls the fork drive motor to drive the synchronizing ring to immediately separate from the rotor A, disconnect the mechanical connection, and complete the active intervention. intervention operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

一种商用车多功能电动循环球转向系统及其控制方法,包括:电动助力模块、机械传动模块和控制模块;电动助力模块包括:双转子电机模块(14)和助力电机(22);机械传动模块包括:方向盘(1)、转向轴(4)、联轴器(5)、循环球转向器(16)、齿扇(19)、齿扇轴(6)、转向直拉杆(7)、转向横拉杆(12)、转向节臂(8)、左梯形臂(11)、右梯形臂(26)、左转向节(10)、右转向节(25)、左车轮(9)和右车轮(24);控制模块包括:电子控制单元(21)、转矩传感器(3)、车速传感器(20)、转角传感器(2)和电流传感器(23)。该系统充分发挥了循环球转向器(16)的高减速比能力,最大化了系统助力转矩,实现了电动助力功能,简化了系统,在提供线控功能的同时保证了系统可靠性。

Description

一种商用车多功能电动循环球转向系统及其控制方法 技术领域
本发明属于汽车机械转向技术领域,具体指代一种商用车多功能电动循环球转向系统及其控制方法。
背景技术
现有商用车普遍采用的转向系统设计形式为液压助力转向(HPS)系统,相比纯机械转向系统,HPS系统优点在于技术成熟可靠,成本低廉,能有效改善转向沉重的问题,但是其存在高车速时转向稳定性较差、原地掉头等低车速时转向感觉沉重等问题。为解决这些问题,国内外专家学者在HPS系统的基础之上,提出改进型的电控液压助力转向(ECHPS)系统和电动液压助力转向(EHPS)系统。虽然新的技术一定程度上改善了原有转向系统存在的问题。但由于ECHPS系统和EHPS系统仍基于液压传动技术,一方面其能耗仍然较高;另一方面其电气化程度有限,不易实现精准的跟踪控制,难以满足未来汽车智能化、网联化的需求。
电动助力转向系统(EPS)是一种直接依靠电机提供辅助扭矩的动力转向系统,与传统的液压助力转向系统(HPS)相比,EPS系统具有能耗低、路感可调性好、结构紧凑、易于维护、响应快、系统匹配性好等优点。它的出现完美契合了人们对于转向系的所有要求。而取消机械连接之后的线控助力转向应该是代表着转向系的终极形态,但目前尚处于初级研究阶段,尚有巨大研究空间。
由此可见,为满足现有车辆智能化和节能化的发展趋势,商用车转向系统必将向着电动化和线控化的趋势发展。然而由于商用车质量较大,目前的研究多采用高功率电机或多电机助力的模式来实现商用车转向系统电动化的技术落地。此外,为了满足商用车智能化的发展也有些研究进行了商用车线控转向技术的研发。但现有商用车电动助力转向技术的研究存在结构复杂、转向助力仍然较小,线控转向技术可靠性不足。而且,目前的研究多是针对单一对象,未考虑技术更替时驾驶员的适应性,将导致商用车转向技术发展不连续,驾驶员难以很快适应新兴技术,可见目前缺少一种集成线控转向和电动助力转向功能于一体且适用于商用车的多功能电动助力转向系统。
发明内容
针对于上述现有技术的不足,本发明的目的在于提供一种商用车多功能电动循环球转向系统及其控制方法,以解决现有技术中商用车电动助力转向助力较小、线控转向可靠性较差以及转向系统功能单一难以适应车辆未来发展等问题;本发明结合双转子电机 和一套普通的助力电机共同作用在循环球转向器的输入端上,利用双转子电机冗余度高,输出转矩高、线控可靠性好的特性,并对其加装了拨叉组件进行双转子的同步和异步旋转,以实现线控转向和电动助力转向功能,充分发挥了循环球转向器的高减速比能力,最大化了系统助力转矩、实现了电动助力功能、简化了系统、提供线控功能的同时保证了系统可靠性。
为达到上述目的,本申请采用的技术方案如下:
一种商用车多功能电动循环球转向系统,包括:电动助力模块、机械传动模块和控制模块;
所述电动助力模块包括:双转子电机模块和助力电机;
所述双转子电机模块包括:转子A、上端盖、定子、定子绕组A、定子绕组B、永磁铁、轴承、轴承座、转子B、同步环、拨叉螺母、拨叉螺杆、拨叉驱动电机和下端盖;
所述上端盖和下端盖分别安装在所述定子的两端;
所述定子绕组A和定子绕组B均缠绕在所述定子内部;
所述永磁铁分别安装在所述转子A和转子B上;
所述转子A位于所述定子的内腔中,其两端均套装有轴承,一端支撑于所述上端盖中,另一端支撑于所述轴承座上;
所述转子B位于所述定子的内腔中,其两端均套装有轴承,一端支撑于所述下端盖中,另一端支撑于所述轴承座上;
所述同步环的两端分别与所述转子A和转子B浮动连接;
所述拨叉螺母旋装在所述拨叉螺杆上,其自由端作用在所述同步环的环面上;
所述拨叉驱动电机固定在所述定子的外部,其输出端与所述拨叉螺杆的输入端固定连接;
所述机械传动模块包括:方向盘、转向轴、联轴器、循环球转向器、齿扇、齿扇轴、转向直拉杆、转向横拉杆、转向节臂、左梯形臂、右梯形臂、左转向节、右转向节、左车轮和右车轮;
所述循环球转向器包括:转向螺杆、转向螺母、导管、循环球;
所述导管安装在所述转向螺母内,导管内放置有若干所述循环球;
所述转向螺母旋装在所述转向螺杆上,两者通过所述循环球传递动力;所述转向螺母与所述齿扇啮合;
所述转向轴的输入端与所述方向盘相连,其输出端与所述转子A的输出端通过所述 联轴器连接;
所述转向螺杆的一个输入端与所述转子B的输出端通过联轴器连接,其另一个输入端与所述助力电机的输出端通过联轴器连接;
所述齿扇固定在所述齿扇轴上,用于传输转向螺母输出的动力;
所述转向直拉杆的输入端与所述齿扇轴相连,其输出端与所述转向节臂相连;
所述左转向节与所述左车轮相连,其上固定有所述转向节臂和所述左梯形臂;
所述转向横拉杆的两端分别与所述左梯形臂和右梯形臂相连;
所述右转向节与所述右车轮相连,其上固定有所述右梯形臂;
所述控制模块包括:电子控制单元、转矩传感器、车速传感器、转角传感器和电流传感器;
所述电子控制单元的输入端分别与所述转矩传感器、车速传感器、转角传感器和电流传感器电气相连,其输出端分别与所述助力电机和双转子电机模块电气相连,转向时根据从各传感器得到的车辆及系统状态参数,进行转向功能的选择和助力控制;
所述转矩传感器分别安装在所述转向轴、转子A、转子B和助力电机的输出端上,获取转矩信号,并将转矩信号传递给所述电子控制单元;
所述车速传感器安装在车辆上,用于将获得的车速信号传递到所述电子控制单元;
所述转角传感器安装在所述方向盘上,用于获得车辆转向时的方向盘转角信号,并将转角信号传递到所述电子控制单元;
所述电流传感器分别安装在定子绕组A、定子绕组B和助力电机中,用于获取安装电路中的电流信号,并将电流信号传递到所述电子控制单元。
进一步地,所述双转子电机模块中的定子绕组A和定子绕组B中的线圈匝数和长度不同,即转子A和转子B的输出转矩不同,且转子A所能输出的转矩小于转子B所能输出的转矩。
进一步地,所述同步环与所述转子A和转子B通过花键实现浮动连接。
进一步地,所述拨叉驱动电机选用小功率直流电机。
进一步地,所述转向螺母的输出端面上加工成了齿条状,与所述齿扇啮合。
进一步地,所述循环球转向器中的转向螺杆在制造时要保证完全对称,且尺寸较原尺寸要有所加长,以便在其两端分别与转子B和助力电机连接。
进一步地,所述转向系统默认功能选择为电动助力转向,即系统初始状态为同步环同时与转子A和转子B连接,转子A和转子B相当于转向轴的一部分。
进一步地,所述转向系统的功能选择分为主动选择和被动选择;主动选择可通过在方向盘上设置功能选择按键实现,被动选择则是高级辅助驾驶算法层根据车辆状态进行的被动安全式的选择。
其次,本申请还提供了一种商用车多功能电动循环球转向系统的控制方法,基于上述系统,包含以下步骤:
(1)设计所述转向系统处于电动助力转向状态时的转向助力特性曲线,及处于线控转向状态时的理想变传动比曲线;
(2)进行转向系统的功能选择,电子控制单元根据选择的功能控制拨叉驱动电机进行工作,执行功能切换;
(3)根据步骤(2)中选择的转向系统功能状态,结合步骤(1)中设计的不同转向功能状态下的转向助力特性曲线和理想变传动比曲线,电子控制单元进行实时的转向控制;
(4)若转向系统处于线控转向状态下,则电子控制单元进行实时的故障诊断,并根据系统故障类型进行转向系统的容错控制;
(5)若转向系统处于电动助力状态下,检测到车辆处于危险状态,需要进行主动干预操作,则电子控制单元控制拨叉驱动电机带动同步环即刻脱离转子A,断开机械连接,并完成主动干预操作。
进一步地,所述步骤(1)中设计的转向助力特性曲线为多段式助力特性曲线,具体表达式为:
Figure PCTCN2021138214-appb-000001
式中,M为助力转矩;v为车速;T i为驾驶员输入转矩;W为车速影响因子;e为自然对数。
进一步地,所述步骤(1)中设计的理想变传动比曲线的具体表达式为:
Figure PCTCN2021138214-appb-000002
Figure PCTCN2021138214-appb-000003
式中,i d为理想转向传动比;f为传动比调整函数;δ w为方向盘转角,逆时针为正;δ w1和δ w2为方向盘转角调整阈值。
进一步地,所述步骤(2)中具体步骤为:
(21)若功能选择为线控转向,且转向系统处于电动助力转向状态,则电子控制单元控制拨叉驱动电机逆时针旋转带动拨叉螺杆转动,拨叉螺母产生直线运动,并将动力作用到同步环的端面上,此时同步环从转子A上脱离,只与转子B连接,系统机械连接断开,转为线控转向状态;转子A用于模拟路感,转子B与助力电机用于执行驾驶员转向操作;
(22)若功能选择为电动助力转向,且转向系统处于线控转向状态,则电子控制单元控制拨叉电机顺时针旋转带动拨叉螺杆转动,拨叉螺母产生直线运动,并将动力作用到同步环的端面上,此时同步环的一部分从转子B上逐渐过渡至转子A上,转子A和转子B同时与同步环连接,转向系统恢复至电动助力状态;转子A、转子B与助力电机的输出转矩同时用于转向助力,此时系统转向助力最大。
进一步地,所述步骤(3)中不同转向功能状态下的转向控制步骤为:
(31)转向系统处于电动助力状态:
(311)传感器采集转矩信号、转角信号和车速信号;
(312)电子控制单元接收步骤(311)采集到的信号,根据转向助力特性曲线,实时计算出所需的助力转矩;
(313)结合步骤(312)中计算得到的所需的助力转矩,电子控制单元控制双转子电机进行转向助力,当所需的助力转矩超出双转子电机模块最佳负载区间时,控制助力电机启动进行助力;当所需的助力转矩超出助力电机的最佳负载区间时,优先控制助力电机进入超负荷状态,以保证双转子电机模块能够应对功能切换后的转向操作,保证高 级辅助驾驶算法的主动干预的可行性,提高车辆行驶安全;
(32)转向系统处于线控转向状态:
(321)传感器采集转矩信号、转角信号、车速信号和电流信号;
(322)电子控制单元根据采集到的传感器信号,结合理想变传动比曲线和转向助力特性曲线,实时计算出理想的变传动比以及助力电机所需输出的助力转矩;
(323)结合步骤(322)中得到的理想的变传动比和助力电机所需的助力转矩,计算出转子B所需输出的转角后,电子控制单元分别控制转子B跟踪转角和控制助力电机跟踪助力转矩,同时电子控制单元根据转矩传感器返回的转子B的实时反馈转矩,控制转子A实时的产生驾驶路感。
进一步地,所述步骤(4)中的具体步骤为:
(41)电子控制单元实时检测电流信号和转矩信号,并根据信号状态实时进行故障诊断,若诊断出故障,则进行容错控制,同时将高级辅助驾驶算法设为不可主动干预状态;
(42)若步骤(41)中故障诊断结果为转子A故障,则电子控制单元控制拨叉驱动电机转动,带动同步环向转子A靠拢,并进行递进式的控制,即根据转角传感器的信号判断方向盘位置,若其处于中间位置则带动同步环立即同步;若方向盘不处于中间位置则仅让同步环压靠在转子A上,保证有一定的路感的同时又给予方向盘回至中间位置的时间;
(43)若步骤(41)中故障诊断结果为转子B故障,则电子控制单元控制助力电机进行高转矩超负荷输出,跟踪所需的转角,同时控制拨叉驱动电机带动同步环压靠在转子A上,进行递进式的控制,直至方向盘回至中间位置,同步环即刻同步;
(44)若步骤(41)中诊断结果为助力电机故障,则电子控制单元控制转子B进行高转矩超负荷输出,跟踪所需的转角,同时控制拨叉驱动电机带动同步环压靠在转子A上,进行递进式的控制,直至方向盘回至中间位置,同步环即刻同步;
(45)若步骤(41)中诊断结果为其他类型的故障,则电子控制单元控制拨叉驱动电机带动同步环立即同步,连接机械结构,并控制无故障的助力机构进行助力,若所需助力转矩超出无故障的助力机构所能提供的最大助力转矩,则仅控制无故障的助力机构输出最大助力转矩。
进一步地,所述步骤(41)中故障诊断方式为:判断电流传感器中的信号状态,并 将信号与前一时刻的信号进行对比,若无信号或信号连续几次波动异常,则认为是转子A、转子B或助力电机出现故障。
本申请的有益效果:本申请的实施例采用双转子电机和普通电机联合助力的方式,将线控转向技术和电动助力转向技术集成为一体;
1、采用循环球输入端双电机助力的形式,最大化了助力转矩,可实现商用车转向系统的电动化,同时拨叉电机至同步环的机构设计使得不同转向功能的切换更加流畅和智能;
2、可提供线控转向功能,驾驶员可提前适应线控转向技术,进一步推进了线控转向技术的落地;
3、本申请的实施例提出的转向系统提供的线控转向功能的存在使得主动干预驾驶员的操作成为了可能,可实现主动防侧翻和主动避撞功能,进一步提高商用车的安全性;最后,由于系统中采用的双电机助力形式和双转子电机的存在使得转向系统冗余度极高,进一步保障了转向系统的可靠性。
附图说明
图1为本申请实施例商用车多功能电动循环球转向系统的结构图;
图2为本申请实施例转向系统中双转子电机模块的结构图;
图3为本申请实施例中同步环的主视图;
图4为本申请实施例中同步环A-A方向的剖视图;
图5为本申请实施例转子A、转子B和同步环连接配合示意图;
图6为本申请实施例转向系统控制方法的流程图;
图中,1-方向盘,2-转角传感器,3-转矩传感器,4-转向轴,5-联轴器,6-齿扇轴,7-转向直拉杆,8-转向节臂,9-左车轮,10-左转向节,11-左梯形臂,12-转向直拉杆,13-转子A,14-双转子电机模块,15-转子B,16-循环球转向器,17-转向螺杆,18-转向螺母,19-齿扇,20-车速传感器,21-电子控制单元(ECU),22-助力电机,23-电流传感器,24-右车轮,25-右转向节,26-右梯形臂,27-导管,28-循环球,29-轴承,30-拨叉螺母,31-同步环,32-拨叉螺杆,33-拨叉驱动电机,34-定子,35-定子绕组A,36-上端盖,37-永磁铁,38-轴承座,39-定子绕组B,40-下端盖。
具体实施方式
为了便于本领域技术人员的理解,下面结合实施例与附图对本发明作进一步的说明,实施方式提及的内容并非对本发明的限定。
参照图1-图5所示,本发明的一种商用车多功能电动循环球转向系统,包括:电动助力模块、机械传动模块和控制模块;
所述电动助力模块包括:双转子电机模块14和助力电机22;
所述双转子电机模块包括:转子A13、上端盖36、定子34、定子绕组A35、定子绕组B39、永磁铁37、轴承29、轴承座38、转子B15、同步环31、拨叉螺母30、拨叉螺杆32、拨叉驱动电机33和下端盖40;
所述上端盖36和下端盖40分别安装在所述定子34的两端;
所述定子绕组A35和定子绕组B39均缠绕在所述定子34内部;
所述永磁铁37分别安装在所述转子A13和转子B15上;
所述转子A13位于所述定子34的内腔中,其两端均套装有轴承29,一端支撑于所述上端盖36中,另一端支撑于所述轴承座38上;
所述转子B15位于所述定子34的内腔中,其两端均套装有轴承29,一端支撑于所述下端盖40中,另一端支撑于所述轴承座38上;
所述同步环31的两端分别与所述转子A13和转子B15浮动连接;
所述拨叉螺母30旋装在所述拨叉螺杆32上,其自由端作用在所述同步环31的环面上;
所述拨叉驱动电机33固定在所述定子34的外部,其输出端与所述拨叉螺杆32的输入端固定连接;
所述机械传动模块包括:方向盘1、转向轴4、联轴器5、循环球转向器16、齿扇19、齿扇轴6、转向直拉杆7、转向横拉杆12、转向节臂8、左梯形臂11、右梯形臂26、左转向节10、右转向节25、左车轮9和右车轮24;
所述循环球转向器16包括:转向螺杆17、转向螺母18、导管27、循环球28;
所述导管27安装在所述转向螺母18内,导管27内放置有若干所述循环球28;
所述转向螺母18旋装在所述转向螺杆17上,两者通过所述循环球28传递动力;所述转向螺母18与所述齿扇19啮合;
所述转向轴4的输入端与所述方向盘1相连,其输出端与所述转子A13的输出端通过所述联轴器5连接;
所述转向螺杆17的一个输入端与所述转子B15的输出端通过联轴器5连接,其另一个输入端与所述助力电机22的输出端通过联轴器5连接;
所述齿扇19固定在所述齿扇轴6上,用于传输转向螺母18输出的动力;
所述转向直拉杆7的输入端与所述齿扇轴6相连,其输出端与所述转向节臂8相连;
所述左转向节10与所述左车轮9相连,其上固定有所述转向节臂8和所述左梯形臂11;
所述转向横拉杆12的两端分别与所述左梯形臂11和右梯形臂26相连;
所述右转向节25与所述右车轮24相连,其上固定有所述右梯形臂26;
所述控制模块包括:电子控制单元(ECU)21、转矩传感器3、车速传感器20、转角传感器2和电流传感器23;
所述电子控制单元21的输入端分别与所述转矩传感器3、车速传感器20、转角传感器2和电流传感器23电气相连,其输出端分别与所述助力电机22和双转子电机模块14电气相连,转向时根据从各传感器得到的车辆及系统状态参数,进行转向功能的选择和助力控制;
所述转矩传感器3分别安装在所述转向轴4、转子A13、转子B15和助力电机22的输出端上,获取转矩信号,并将转矩信号传递给所述电子控制单元21;
所述车速传感器20安装在车辆上,用于将获得的车速信号传递到所述电子控制单元21;
所述转角传感器2安装在所述方向盘1上,用于获得车辆转向时的方向盘转角信号,并将转角信号传递到所述电子控制单元21;
所述电流传感器23分别安装在定子绕组A35、定子绕组B39和助力电机22中,用于获取安装电路中的电流信号,并将电流信号传递到所述电子控制单元21。
优选实例中,所述双转子电机模块中的定子绕组A35和定子绕组B39中的线圈匝数和长度不同,即转子A13和转子B15的输出转矩不同,且转子A13所能输出的转矩小于转子B15所能输出的转矩。
优选实例中,所述同步环31与所述转子A13和转子B15通过花键实现浮动连接。
优选实例中,所述拨叉驱动电机33选用小功率直流电机,以降低成本、减小尺寸。
优选实例中,所述转向螺母18的输出端面上加工成了齿条状,与所述齿扇啮合。
优选实例中,所述循环球转向器16中的转向螺杆17在制造时要保证完全对称,且尺寸较原尺寸要有所加长,以便在其两端分别与转子B15和助力电机22连接。
优选实例中,所述转向系统默认功能选择为电动助力转向,即系统初始状态为同步环31同时与转子A13和转子B15连接,转子A和转子B相当于转向轴的一部分。
优选实例中,所述转向系统的功能选择分为主动选择和被动选择;主动选择可通过 在方向盘上设置功能选择按键实现,被动选择则是高级辅助驾驶算法层根据车辆状态进行的被动安全式的选择。
参照图6所示,本发明还提供了一种商用车多功能电动循环球转向系统的控制方法,基于上述系统,包含以下步骤:
(1)设计所述转向系统处于电动助力转向状态时的转向助力特性曲线,及处于线控转向状态时的理想变传动比曲线;
所述设计的转向助力特性曲线为多段式助力特性曲线,具体表达式为:
Figure PCTCN2021138214-appb-000004
式中,M为助力转矩;v为车速;T i为驾驶员输入转矩;W为车速影响因子;e为自然对数。
所述设计的理想变传动比曲线的具体表达式为:
Figure PCTCN2021138214-appb-000005
Figure PCTCN2021138214-appb-000006
式中,i d为理想转向传动比;f为传动比调整函数;δ w为方向盘转角,逆时针为正;δ w1和δ w2为方向盘转角调整阈值。
(2)进行转向系统的功能选择,电子控制单元根据选择的功能控制拨叉驱动电机进行工作,执行功能切换;具体步骤为:
(21)若功能选择为线控转向,且转向系统处于电动助力转向状态,则电子控制单元控制拨叉驱动电机逆时针旋转带动拨叉螺杆转动,拨叉螺母产生直线运动,并将动力作用到同步环的端面上,此时同步环从转子A上脱离,只与转子B连接,系统机械连 接断开,转为线控转向状态;转子A用于模拟路感,转子B与助力电机用于执行驾驶员转向操作;
(22)若功能选择为电动助力转向,且转向系统处于线控转向状态,则电子控制单元控制拨叉电机顺时针旋转带动拨叉螺杆转动,拨叉螺母产生直线运动,并将动力作用到同步环的端面上,此时同步环的一部分从转子B上逐渐过渡至转子A上,转子A和转子B同时与同步环连接,转向系统恢复至电动助力状态;转子A、转子B与助力电机的输出转矩同时用于转向助力,此时系统转向助力最大。
(3)根据步骤(2)中选择的转向系统功能状态,结合步骤(1)中设计的不同转向功能状态下的转向助力特性曲线和理想变传动比曲线,电子控制单元进行实时的转向控制;
所述不同转向功能状态下的转向控制步骤为:
(31)转向系统处于电动助力状态:
(311)传感器采集转矩信号、转角信号和车速信号;
(312)电子控制单元接收步骤(311)采集到的信号,根据转向助力特性曲线,实时计算出所需的助力转矩;
(313)结合步骤(312)中计算得到的所需的助力转矩,电子控制单元控制双转子电机进行转向助力,当所需的助力转矩超出双转子电机模块最佳负载区间时,控制助力电机启动进行助力;当所需的助力转矩超出助力电机的最佳负载区间时,优先控制助力电机进入超负荷状态,以保证双转子电机模块能够应对功能切换后的转向操作,保证高级辅助驾驶算法的主动干预的可行性,提高车辆行驶安全;
(32)转向系统处于线控转向状态:
(321)传感器采集转矩信号、转角信号、车速信号和电流信号;
(322)电子控制单元根据采集到的传感器信号,结合理想变传动比曲线和转向助力特性曲线,实时计算出理想的变传动比以及助力电机所需输出的助力转矩;
(323)结合步骤(322)中得到的理想的变传动比和助力电机所需的助力转矩,计算出转子B所需输出的转角后,电子控制单元分别控制转子B跟踪转角和控制助力电机跟踪助力转矩,同时电子控制单元根据转矩传感器返回的转子B的实时反馈转矩,控制转子A实时的产生驾驶路感。
(4)若转向系统处于线控转向状态下,则电子控制单元进行实时的故障诊断,并 根据系统故障类型进行转向系统的容错控制;具体步骤为:
(41)电子控制单元实时检测电流信号和转矩信号,并根据信号状态实时进行故障诊断,若诊断出故障,则进行容错控制,同时将高级辅助驾驶算法设为不可主动干预状态;
(42)若步骤(41)中故障诊断结果为转子A故障,则电子控制单元控制拨叉驱动电机转动,带动同步环向转子A靠拢,并进行递进式的控制,即根据转角传感器的信号判断方向盘位置,若其处于中间位置则带动同步环立即同步;若方向盘不处于中间位置则仅让同步环压靠在转子A上,保证有一定的路感的同时又给予方向盘回至中间位置的时间;
(43)若步骤(41)中故障诊断结果为转子B故障,则电子控制单元控制助力电机进行高转矩超负荷输出,跟踪所需的转角,同时控制拨叉驱动电机带动同步环压靠在转子A上,进行递进式的控制,直至方向盘回至中间位置,同步环即刻同步;
(44)若步骤(41)中诊断结果为助力电机故障,则电子控制单元控制转子B进行高转矩超负荷输出,跟踪所需的转角,同时控制拨叉驱动电机带动同步环压靠在转子A上,进行递进式的控制,直至方向盘回至中间位置,同步环即刻同步;
(45)若步骤(41)中诊断结果为其他类型的故障,则电子控制单元控制拨叉驱动电机带动同步环立即同步,连接机械结构,并控制无故障的助力机构进行助力,若所需助力转矩超出无故障的助力机构所能提供的最大助力转矩,则仅控制无故障的助力机构输出最大助力转矩。
所述步骤(41)中故障诊断方式为:判断电流传感器中的信号状态,并将信号与前一时刻的信号进行对比,若无信号或信号连续几次波动异常,则认为是转子A、转子B或助力电机出现故障。
(5)若转向系统处于电动助力状态下,检测到车辆处于危险状态,需要进行主动干预操作,则电子控制单元控制拨叉驱动电机带动同步环即刻脱离转子A,断开机械连接,并完成主动干预操作。
本发明具体应用途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (10)

  1. 一种商用车多功能电动循环球转向系统,其特征在于,包括:电动助力模块、机械传动模块和控制模块;
    所述电动助力模块包括:双转子电机模块(14)和助力电机(22);
    所述双转子电机模块包括:转子A(13)、上端盖(36)、定子(34)、定子绕组A(35)、定子绕组B(39)、永磁铁(37)、轴承(29)、轴承座(38)、转子B(15)、同步环(31)、拨叉螺母(30)、拨叉螺杆(32)、拨叉驱动电机(33)和下端盖(40);
    所述上端盖(36)和下端盖(40)分别安装在所述定子(34)的两端;
    所述定子绕组A(35)和定子绕组B(39)均缠绕在所述定子(34)内部;
    所述永磁铁(37)分别安装在所述转子A(13)和转子B(15)上;
    所述转子A(13)位于所述定子(34)的内腔中,其两端均套装有轴承(29),一端支撑于所述上端盖(36)中,另一端支撑于所述轴承座(38)上;
    所述转子B(15)位于所述定子(34)的内腔中,其两端均套装有轴承(29),一端支撑于所述下端盖(40)中,另一端支撑于所述轴承座(38)上;
    所述同步环(31)的两端分别与所述转子A(13)和转子B(15)浮动连接;
    所述拨叉螺母(30)旋装在所述拨叉螺杆(32)上,其自由端作用在所述同步环(31)的环面上;
    所述拨叉驱动电机(33)固定在所述定子(34)的外部,其输出端与所述拨叉螺杆(32)的输入端固定连接;
    所述机械传动模块包括:方向盘(1)、转向轴(4)、联轴器(5)、循环球转向器(16)、齿扇(19)、齿扇轴(6)、转向直拉杆(7)、转向横拉杆(12)、转向节臂(8)、左梯形臂(11)、右梯形臂(26)、左转向节(10)、右转向节(25)、左车轮(9)和右车轮(24);
    所述循环球转向器(16)包括:转向螺杆(17)、转向螺母(18)、导管(27)、循环球(28);
    所述导管(27)安装在所述转向螺母(18)内,导管(27)内放置有若干所述循环球(28);
    所述转向螺母(18)旋装在所述转向螺杆(17)上,两者通过所述循环球(28)传递动力;所述转向螺母(18)与所述齿扇(19)啮合;
    所述转向轴(4)的输入端与所述方向盘(1)相连,其输出端与所述转子A(13)的输出端通过所述联轴器(5)连接;
    所述转向螺杆(17)的一个输入端与所述转子B(15)的输出端通过联轴器(5) 连接,其另一个输入端与所述助力电机(22)的输出端通过联轴器(5)连接;
    所述齿扇(19)固定在所述齿扇轴(6)上,用于传输转向螺母(18)输出的动力;
    所述转向直拉杆(7)的输入端与所述齿扇轴(6)相连,其输出端与所述转向节臂(8)相连;
    所述左转向节(10)与所述左车轮(9)相连,其上固定有所述转向节臂(8)和所述左梯形臂(11);
    所述转向横拉杆(12)的两端分别与所述左梯形臂(11)和右梯形臂(26)相连;
    所述右转向节(25)与所述右车轮(24)相连,其上固定有所述右梯形臂(26);
    所述控制模块包括:电子控制单元(21)、转矩传感器(3)、车速传感器(20)、转角传感器(2)和电流传感器(23);
    所述电子控制单元(21)的输入端分别与所述转矩传感器(3)、车速传感器(20)、转角传感器(2)和电流传感器(23)电气相连,其输出端分别与所述助力电机(22)和双转子电机模块(14)电气相连,转向时根据从各传感器得到的车辆及系统状态参数,进行转向功能的选择和助力控制;
    所述转矩传感器(3)分别安装在所述转向轴(4)、转子A(13)、转子B(15)和助力电机(22)的输出端上,获取转矩信号,并将转矩信号传递给所述电子控制单元(21);
    所述车速传感器(20)安装在车辆上,用于将获得的车速信号传递到所述电子控制单元(21);
    所述转角传感器(2)安装在所述方向盘(1)上,用于获得车辆转向时的方向盘转角信号,并将转角信号传递到所述电子控制单元(21);
    所述电流传感器(23)分别安装在定子绕组A(35)、定子绕组B(39)和助力电机(22)中,用于获取安装电路中的电流信号,并将电流信号传递到所述电子控制单元(21)。
  2. 根据权利要求1所述的商用车多功能电动循环球转向系统,其特征在于,所述双转子电机模块中的定子绕组A(35)和定子绕组B(39)中的线圈匝数和长度不同,即转子A(13)和转子B(15)的输出转矩不同,且转子A(13)所能输出的转矩小于转子B(15)所能输出的转矩。
  3. 根据权利要求1所述的商用车多功能电动循环球转向系统,其特征在于,所述同步环(31)与所述转子A(13)和转子B(15)通过花键实现浮动连接。
  4. 根据权利要求1所述的商用车多功能电动循环球转向系统,其特征在于,所述转向螺母(18)的输出端面上加工成了齿条状,与所述齿扇(19)啮合。
  5. 根据权利要求1所述的商用车多功能电动循环球转向系统,其特征在于,所述转向系统默认功能选择为电动助力转向,即系统初始状态为同步环同时与转子A(13)和转子B(15)连接,转子A(13)和转子B(15)相当于转向轴的一部分。
  6. 一种商用车多功能电动循环球转向系统的控制方法,基于权利要求1-5中任意一项所述的系统,其特征在于,包含以下步骤:
    (1)设计所述转向系统处于电动助力转向状态时的转向助力特性曲线,及处于线控转向状态时的理想变传动比曲线;
    (2)进行转向系统的功能选择,电子控制单元根据选择的功能控制拨叉驱动电机进行工作,执行功能切换;
    (3)根据步骤(2)中选择的转向系统功能状态,结合步骤(1)中设计的不同转向功能状态下的转向助力特性曲线和理想变传动比曲线,电子控制单元进行实时的转向控制;
    (4)若转向系统处于线控转向状态下,则电子控制单元进行实时的故障诊断,并根据系统故障类型进行转向系统的容错控制;
    (5)若转向系统处于电动助力状态下,检测到车辆处于危险状态,需要进行主动干预操作,则电子控制单元控制拨叉驱动电机带动同步环即刻脱离转子A,断开机械连接,并完成主动干预操作。
  7. 根据权利要求6所述的商用车多功能电动循环球转向系统的控制方法,其特征在于,所述步骤(1)中设计的转向助力特性曲线为多段式助力特性曲线,具体表达式为:
    Figure PCTCN2021138214-appb-100001
    式中,M为助力转矩;v为车速;T i为驾驶员输入转矩;W为车速影响因子;e为自然对数。
  8. 根据权利要求6所述的商用车多功能电动循环球转向系统的控制方法,其特征在于,所述步骤(1)中设计的理想变传动比曲线的具体表达式为:
    Figure PCTCN2021138214-appb-100002
    Figure PCTCN2021138214-appb-100003
    式中,i d为理想转向传动比;f为传动比调整函数;δ w为方向盘转角,逆时针为正;δ w1和δ w2为方向盘转角调整阈值。
  9. 根据权利要求6所述的商用车多功能电动循环球转向系统的控制方法,其特征在于,所述步骤(2)中具体步骤为:
    (21)若功能选择为线控转向,且转向系统处于电动助力转向状态,则电子控制单元控制拨叉驱动电机逆时针旋转带动拨叉螺杆转动,拨叉螺母产生直线运动,并将动力作用到同步环的端面上,此时同步环从转子A上脱离,只与转子B连接,系统机械连接断开,转为线控转向状态;转子A用于模拟路感,转子B与助力电机用于执行驾驶员转向操作;
    (22)若功能选择为电动助力转向,且转向系统处于线控转向状态,则电子控制单元控制拨叉电机顺时针旋转带动拨叉螺杆转动,拨叉螺母产生直线运动,并将动力作用到同步环的端面上,此时同步环的一部分从转子B上逐渐过渡至转子A上,转子A和转子B同时与同步环连接,转向系统恢复至电动助力状态;转子A、转子B与助力电机的输出转矩同时用于转向助力,此时系统转向助力最大。
  10. 根据权利要求6所述的商用车多功能电动循环球转向系统的控制方法,其特征在于,所述步骤(3)中不同转向功能状态下的转向控制步骤为:
    (31)转向系统处于电动助力状态:
    (311)传感器采集转矩信号、转角信号和车速信号;
    (312)电子控制单元接收步骤(311)采集到的信号,根据转向助力特性曲线,实时计算出所需的助力转矩;
    (313)结合步骤(312)中计算得到的所需的助力转矩,电子控制单元控制双转子电机进行转向助力,当所需的助力转矩超出双转子电机模块最佳负载区间时,控制助力 电机启动进行助力;当所需的助力转矩超出助力电机的最佳负载区间时,优先控制助力电机进入超负荷状态,以保证双转子电机模块能够应对功能切换后的转向操作,保证高级辅助驾驶算法的主动干预的可行性,提高车辆行驶安全;
    (32)转向系统处于线控转向状态:
    (321)传感器采集转矩信号、转角信号、车速信号和电流信号;
    (322)电子控制单元根据采集到的传感器信号,结合理想变传动比曲线和转向助力特性曲线,实时计算出理想的变传动比以及助力电机所需输出的助力转矩;
    (323)结合步骤(322)中得到的理想的变传动比和助力电机所需的助力转矩,计算出转子B所需输出的转角后,电子控制单元分别控制转子B跟踪转角和控制助力电机跟踪助力转矩,同时电子控制单元根据转矩传感器返回的转子B的实时反馈转矩,控制转子A实时的产生驾驶路感。
PCT/CN2021/138214 2021-06-30 2021-12-15 一种商用车多功能电动循环球转向系统及其控制方法 WO2022227601A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/924,332 US11753066B2 (en) 2021-06-30 2021-12-15 Multifunctional electric recirculating ball steering system for commercial vehicles and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110735013.3 2021-06-30
CN202110735013.3A CN113335371B (zh) 2021-06-30 2021-06-30 一种商用车多功能电动循环球转向系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2022227601A1 true WO2022227601A1 (zh) 2022-11-03

Family

ID=77481650

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/138214 WO2022227601A1 (zh) 2021-06-30 2021-12-15 一种商用车多功能电动循环球转向系统及其控制方法
PCT/CN2022/092940 WO2023273643A1 (zh) 2021-06-30 2022-05-16 一种商用车多功能电动循环球转向系统及其控制方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092940 WO2023273643A1 (zh) 2021-06-30 2022-05-16 一种商用车多功能电动循环球转向系统及其控制方法

Country Status (3)

Country Link
US (1) US11753066B2 (zh)
CN (1) CN113335371B (zh)
WO (2) WO2022227601A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113335371B (zh) * 2021-06-30 2022-04-08 南京航空航天大学 一种商用车多功能电动循环球转向系统及其控制方法
CN113895511B (zh) * 2021-10-09 2022-09-16 南京航空航天大学 一种电液集成式转向系统及其多参数耦合优化方法
CN114454954A (zh) * 2022-03-07 2022-05-10 安徽理工大学 一种重型商用车双电机循环球式转向系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102717827A (zh) * 2012-07-11 2012-10-10 曾忠敏 一种主动式电动助力循环球式转向系统
CN106741139A (zh) * 2016-12-16 2017-05-31 吉林大学 双转子电机线控转向系统及其失效防护装置和控制方法
CN106741127A (zh) * 2017-01-16 2017-05-31 南京航空航天大学 一种双助力循环球式转向系统及其控制方法
CN107310623A (zh) * 2017-06-30 2017-11-03 长安大学 一种并联结构的双电机电动助力转向系统及助力转向方法
CN107901979A (zh) * 2017-11-10 2018-04-13 南京双环电器股份有限公司 一种汽车电液主动转向路感控制系统及其控制方法
CN109017974A (zh) * 2018-07-02 2018-12-18 南京航空航天大学 具有主动转向功能的辅助转向系统及其控制方法
CN109969255A (zh) * 2018-12-28 2019-07-05 南京航空航天大学 一种基于磁流变液的循环球式电液转向系统及其优化方法
CN110949496A (zh) * 2019-11-15 2020-04-03 江苏大学 一种双油泵式混合动力电控转向系统及其控制方法
WO2020111997A1 (en) * 2018-11-28 2020-06-04 Sentient Ip Ab A power assisted steering system arrangement
CN113335371A (zh) * 2021-06-30 2021-09-03 南京航空航天大学 一种商用车多功能电动循环球转向系统及其控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6845309B2 (en) * 2002-01-30 2005-01-18 Visteon Global Technologies, Inc. Electric power assist torque check
JP4039317B2 (ja) * 2003-06-12 2008-01-30 株式会社ジェイテクト 電動パワーステアリング装置
DE102006008911A1 (de) * 2006-02-27 2007-08-30 Zf Lenksysteme Gmbh Lenkung mit Hohlwellen-Elektromotor und Zwischengetriebe
DE102008059745A1 (de) * 2008-12-01 2010-06-02 Thyssenkrupp Presta Ag Elektromechanische Servolenkung mit Kugelgewindetrieb
CN102673637A (zh) * 2012-05-10 2012-09-19 清华大学 一种用于商用车的电动助力转向系统
CN104309684B (zh) * 2014-10-20 2016-05-25 浙江万达汽车方向机股份有限公司 一种循环球式磁流体电控液压助力转向装置及控制方法
CN204452578U (zh) * 2015-03-02 2015-07-08 西安航空学院 一种纯电动汽车助力转向系统
CN107140007B (zh) * 2016-10-09 2019-04-30 中国北方车辆研究所 一种电动动力转向装置的壳体总成及其装置
JP2019099111A (ja) * 2017-12-08 2019-06-24 株式会社ジェイテクト ステアリング装置
CN209617252U (zh) * 2018-12-28 2019-11-12 南京航空航天大学 一种基于磁流变液的循环球式电液转向系统
CN111284556A (zh) * 2020-04-03 2020-06-16 山东先河汽车转向器有限公司 一种循环球式电动助力转向器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102717827A (zh) * 2012-07-11 2012-10-10 曾忠敏 一种主动式电动助力循环球式转向系统
CN106741139A (zh) * 2016-12-16 2017-05-31 吉林大学 双转子电机线控转向系统及其失效防护装置和控制方法
CN106741127A (zh) * 2017-01-16 2017-05-31 南京航空航天大学 一种双助力循环球式转向系统及其控制方法
CN107310623A (zh) * 2017-06-30 2017-11-03 长安大学 一种并联结构的双电机电动助力转向系统及助力转向方法
CN107901979A (zh) * 2017-11-10 2018-04-13 南京双环电器股份有限公司 一种汽车电液主动转向路感控制系统及其控制方法
CN109017974A (zh) * 2018-07-02 2018-12-18 南京航空航天大学 具有主动转向功能的辅助转向系统及其控制方法
WO2020111997A1 (en) * 2018-11-28 2020-06-04 Sentient Ip Ab A power assisted steering system arrangement
CN109969255A (zh) * 2018-12-28 2019-07-05 南京航空航天大学 一种基于磁流变液的循环球式电液转向系统及其优化方法
CN110949496A (zh) * 2019-11-15 2020-04-03 江苏大学 一种双油泵式混合动力电控转向系统及其控制方法
CN113335371A (zh) * 2021-06-30 2021-09-03 南京航空航天大学 一种商用车多功能电动循环球转向系统及其控制方法

Also Published As

Publication number Publication date
CN113335371A (zh) 2021-09-03
CN113335371B (zh) 2022-04-08
US20230120929A1 (en) 2023-04-20
WO2023273643A1 (zh) 2023-01-05
US11753066B2 (en) 2023-09-12

Similar Documents

Publication Publication Date Title
WO2022227601A1 (zh) 一种商用车多功能电动循环球转向系统及其控制方法
CN111055918B (zh) 一种基于双绕组电机的双电机线控转向系统及其控制方法
WO2021022863A1 (zh) 一种基于双绕组电机的线控电液转向系统及混杂控制方法
CN107792168B (zh) 一种套筒电机线控转向装置及控制方法
CN103303361B (zh) 用于车辆的电动助力转向装置
CN111017010B (zh) 一种双电机智能线控转向系统及同步控制方法
CN101229819B (zh) 用于汽车上的线控转向系统
CN100455470C (zh) 转向控制器
CN111038578B (zh) 一种双源双绕组电机线控转向系统及其容错控制方法
CN103754256B (zh) 一种具有可调转向模式的电动汽车转向系统及控制方法
CN108749916B (zh) 一种多模式线控转向装置及其控制方法
CN104401388A (zh) 一种智能电液转向系统
CN114524019A (zh) 一种商用车双绕组双电机线控转向系统及其控制方法
CN110949496B (zh) 一种双油泵式混合动力电控转向系统及其控制方法
CN102673637A (zh) 一种用于商用车的电动助力转向系统
CN113212543B (zh) 一种变传动比循环球式电液转向系统及其控制方法
CN113212542A (zh) 一种电液耦合的智能循环球式线控转向系统及其控制方法
CN113212547B (zh) 一种商用车可变传动比电动转向系统及其控制方法
CN106364669A (zh) 一种丝杠拨叉式机电伺服机构
CN216185449U (zh) 一种用于重型商用车的线控转向系统
CN217672811U (zh) 一种冗余电动转向执行机构
JP3899739B2 (ja) 車両用操舵装置
CN113815721A (zh) 一种用于重型商用车的线控转向系统
JP3952796B2 (ja) 車両用操舵装置
CN211765842U (zh) 一种双电机智能线控转向系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE