WO2022227441A1 - 显示基板、其驱动方法及显示装置 - Google Patents

显示基板、其驱动方法及显示装置 Download PDF

Info

Publication number
WO2022227441A1
WO2022227441A1 PCT/CN2021/125988 CN2021125988W WO2022227441A1 WO 2022227441 A1 WO2022227441 A1 WO 2022227441A1 CN 2021125988 W CN2021125988 W CN 2021125988W WO 2022227441 A1 WO2022227441 A1 WO 2022227441A1
Authority
WO
WIPO (PCT)
Prior art keywords
ambient light
light sensor
column
signal line
emitting devices
Prior art date
Application number
PCT/CN2021/125988
Other languages
English (en)
French (fr)
Inventor
胡耀
李若湘
陈前
王非凡
罗广顺
孙阔
冉启福
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2022227441A1 publication Critical patent/WO2022227441A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display substrate, a driving method thereof, and a display device.
  • Embodiments of the present disclosure provide a display substrate, a driving method thereof, and a display device, and the specific solutions are as follows:
  • a display substrate provided by an embodiment of the present disclosure includes:
  • the base substrate includes a first display area and a second display area located at least on one side of the first display area, the first display area is configured to install a camera module;
  • a plurality of light-emitting devices are arranged in an array on the base substrate; the plurality of light-emitting devices include: a plurality of first light-emitting devices located in the first display area, and a plurality of light-emitting devices located in the second display area a plurality of second light-emitting devices, the density of the plurality of first light-emitting devices in the first display area is less than or equal to the density of the plurality of second light-emitting devices in the second display area;
  • a plurality of ambient light sensors located between the layers where the plurality of light-emitting devices are located and the base substrate, the plurality of ambient light sensors are arranged in the first display area, and the plurality of ambient light sensors
  • the device is located below at least part of the first light-emitting device, and the orthographic projection of the ambient light sensor on the base substrate covers and is larger than the orthographic projection of the corresponding first light-emitting device on the base substrate.
  • an orthographic projection boundary of the ambient light sensor on the base substrate corresponds to an orthographic projection of the first light-emitting device on the base substrate.
  • the distance between the projected boundaries is 2 ⁇ m-3 ⁇ m.
  • the above-mentioned display substrate provided in the embodiment of the present disclosure further includes: a color filter layer located on a side of the layer where the multiple light-emitting devices are located away from the base substrate, the color filter layer includes a plurality of color filter layers.
  • a color filter layer located on a side of the layer where the multiple light-emitting devices are located away from the base substrate, the color filter layer includes a plurality of color filter layers.
  • Each of the color resistors is disposed corresponding to one of the ambient light sensors, and the color of light transmission of the color resistors is the same as that of the first light emitting device corresponding to the ambient light sensor.
  • the orthographic projection of the color resist on the base substrate substantially coincides with the orthographic projection of the corresponding ambient light sensor on the base substrate .
  • the plurality of ambient light sensors are located below the first light emitting devices spaced at least one row apart and below the first light emitting devices spaced apart by at least one column.
  • the first light emitting devices in a row have the same emission color, and the first light emitting devices in adjacent rows have different emission colors.
  • each of the ambient light sensors includes a first transparent electrode and a second transparent electrode, and the layer where the first transparent electrode is located is located on the second transparent electrode between the layer and the base substrate;
  • the first transparent electrodes of the ambient light sensors in a single row are electrically connected, and the second transparent electrodes of the ambient light sensors in at least one row are electrically connected.
  • the above-mentioned display substrate provided in the embodiment of the present disclosure further includes: a high-level signal line and a transition part; the transition part and the first transparent electrode are of the same layer and material, and the high-level signal line is of the same layer and material.
  • the layer where the level signal line is located is located between the layer where the first transparent electrode is located and the base substrate;
  • the high-level signal line is electrically connected to the second transparent electrode through the adapter portion, the number of the adapter portion is equal to the number of the high-level signal line, and at least one row of the ambient light sensor has an electrical connection.
  • the second transparent electrode is electrically connected to one of the transfer parts.
  • the second transparent electrodes of the ambient light sensor in a single row are electrically connected to one of the adapter parts, and the number of the high-level signal lines is and the number of the switching parts are equal to the total number of rows of the ambient light sensor.
  • the second transparent electrodes of all the ambient light sensors are electrically connected to the same switching part, and the number of the high-level signal lines and all the The number of the transfer parts is 1.
  • the above-mentioned display substrate provided in the embodiment of the present disclosure further includes: a plurality of first switching transistors, a plurality of field effect transistors, a low-level signal line and a plurality of first control signal lines; wherein,
  • each of the first switching transistors is electrically connected to one of the first control signal lines, and the gate of the field effect transistor is configured to be loaded with a fixed voltage
  • Two of the first switching transistors and two of the field effect transistors are disposed between the ambient light sensor in the i-th column and the ambient light sensor in the (i+1)-th column.
  • a switching transistor is connected in series between the first transparent electrode of the ambient light sensor in the i-th column and the first transparent electrode of the ambient light sensor in the (i+1)-th column, one of which is
  • the field effect transistor is connected in series between the first transparent electrode of the ambient light sensor in the i-th column and the low-level signal line
  • the other field-effect transistor is connected in series in the (i+1)th column
  • i is an integer greater than or equal to 1 and less than m, where m is the total number of columns of the ambient light sensor.
  • the above-mentioned display substrate provided in the embodiment of the present disclosure further includes: a plurality of second switch transistors and a plurality of second control signal lines;
  • each of the second switching transistors is electrically connected to one of the second control signal lines, and each of the second switching transistors is connected in series between the high-level signal line and a row of the ambient light sensors. between.
  • the ambient light sensor further includes a stacked P-type semiconductor layer and an N-type semiconductor layer, or a stacked P-type semiconductor layer and an intrinsic semiconductor layer. and N-type semiconductor layer;
  • the N-type semiconductor layer is electrically connected to the first transparent electrode, and the P-type semiconductor layer is electrically connected to the second transparent electrode;
  • the low-level signal line is in the same layer as the P-type semiconductor layer, and the material of the low-level signal line is the material of the conductive P-type semiconductor layer.
  • the first control signal line, the second control signal line and the gate of the first switch transistor and the gate of the second switch transistor Same layer and same material as gate;
  • the high-level signal line is in the same layer as the source and drain of the first switching transistor and the source and drain of the second switching transistor, and the material of the high-level signal line is aluminum alloy or molybdenum metal, and the first
  • the material of the source and drain of a switching transistor and the source and drain of the second switching transistor includes a first titanium metal layer, an aluminum metal layer and a second titanium metal layer which are stacked.
  • the display substrate provided by the embodiment of the present disclosure, it further includes: a frame area adjacent to the first display area, the plurality of first switch transistors, the plurality of first control signal lines, the The plurality of second switch transistors, the plurality of field effect transistors, the low level signal lines and the plurality of second control signal lines are located in the frame area.
  • each of the ambient light sensors further includes: a connecting portion located under the N-type semiconductor layer, and adjacent ones of the ambient light sensors in each column are adjacent to each other.
  • the first transparent electrode is electrically connected through the connection portion.
  • the connecting portion is in the same layer as the source and drain of the first switching transistor and the source and drain of the second switching transistor, and the connecting portion is in the same layer.
  • the material is aluminum alloy or molybdenum metal.
  • the above-mentioned display substrate provided in the embodiment of the present disclosure further includes: a plurality of transparent wirings located between the base substrate and the layers where the plurality of light-emitting devices are located, and a plurality of transparent wirings located on the base substrate a plurality of pixel driving circuits between the layers where the plurality of transparent wires are located; wherein the plurality of transparent wires are connected between the plurality of pixel driving circuits and the plurality of first light emitting devices, and The plurality of transparent wirings are arranged in the same layer as the first transparent electrode and/or the second transparent electrode.
  • an embodiment of the present disclosure provides a display device including the above-mentioned display substrate.
  • an embodiment of the present disclosure provides a method for driving the above-mentioned display substrate, including:
  • the ambient light brightness is detected by the ambient light sensor
  • the light-emitting device In the light-emitting stage, the light-emitting device is driven to emit light for screen display.
  • the method further includes:
  • At least one of the second switch transistors is controlled to be in an on state through a second control signal line, the rest of the second switch transistors are in an off state, and the second switch transistors in the on state are electrically connected to each row of the environment
  • the light-emitting color of the light sensor corresponding to the first light-emitting device is the same.
  • the ambient light brightness is detected by an ambient light sensor, which specifically includes:
  • the two first switch transistors between the ambient light sensor in the i-th column and the ambient light sensor in the (i+1)-th column are controlled to be in a conducting state through the first control signal line, and the remaining first switches
  • the transistor is in the off state, and the low-level signal line is loaded with a low-level signal, which is the two fields between the ambient light sensor in the i-th column and the ambient light sensor in the (i+1)-th column
  • the grid of the effect transistor is loaded with a fixed voltage to read the electrical signal between the ambient light sensor in the i-th column and the ambient light sensor in the (i+1)-th column in a time-sharing manner;
  • FIG. 1 is a schematic structural diagram of a display device in the related art
  • FIG. 2 is a schematic structural diagram of a display device according to an embodiment of the present disclosure
  • Fig. 3 is a kind of enlarged structure schematic diagram of AA1 area in Fig. 2;
  • Fig. 4 is another kind of enlarged structure schematic diagram of AA1 area in Fig. 2;
  • Fig. 5 is a kind of sectional structure schematic diagram of D area in Fig. 3 and Fig. 4;
  • Fig. 6 is another kind of sectional structure schematic diagram of D area in Fig. 3 and Fig. 4;
  • Fig. 7 is a kind of enlarged structural schematic diagram of AA1 region and its adjacent BB region in Fig. 2;
  • Fig. 8 is the equivalent circuit diagram of collecting the electrical signal between the columns of the ambient light sensor in Fig. 7;
  • FIG. 9 is another enlarged structural schematic diagram of the AA1 area and its adjacent BB area in FIG. 2;
  • FIG. 10 is an enlarged schematic structural diagram of an implementation manner of the C region in FIG. 2 .
  • the display resolution of the camera area A in FIG. 1 is low, so that the transmittance of the camera area A is high, so as to ensure the camera effect;
  • the ambient light sensor area B has a separate hole, so that the ambient light The sensor can effectively discriminate the brightness of the ambient light to adjust the screen brightness according to the brightness of the ambient light, which can save power and improve the visual effect.
  • the ambient light sensor area B has a separate opening, which is not conducive to improving the screen ratio.
  • an embodiment of the present disclosure provides a display substrate, as shown in FIG. 2 to FIG. 5 , which may include:
  • a base substrate 101 includes a first display area AA1 and a second display area AA2 located at least on one side of the first display area AA1, and the first display area AA1 is configured to install a camera module;
  • a plurality of light-emitting devices are arranged in an array on the base substrate 101; the plurality of light-emitting devices include: a plurality of first light-emitting devices 102 located in the first display area AA1, and a plurality of second light-emitting devices located in the second display area AA2 device (not shown in the figure), the density of the plurality of first light-emitting devices 102 in the first display area AA1 is less than or equal to the density of the plurality of second light-emitting devices in the second display area AA2;
  • a plurality of ambient light sensors 103 are located between the layers where the plurality of first light emitting devices 102 are located and the base substrate 101, the plurality of ambient light sensors 103 are disposed in the first display area AA1, and the plurality of ambient light sensors 103 are located in the first display area AA1.
  • the orthographic projection of the ambient light sensor 103 on the base substrate 101 covers and is larger than the orthographic projection of the corresponding first light emitting device 102 on the base substrate 101 .
  • the ambient light sensor 103 is disposed below the first light emitting device 102, so that the ambient light sensor 103 will not block the outgoing light of the first light emitting device 102; in addition, since the orthographic projection of the ambient light sensor 103 is larger than the first light The orthographic projection of the device 102 ensures that the ambient light sensor 103 can receive ambient light through an area other than the first light emitting device 102, so as to adjust the screen brightness according to the brightness of the ambient light.
  • the positive position of the ambient light sensor 103 on the base substrate 101 may be 2 ⁇ m-3 ⁇ m.
  • the above-mentioned display substrate provided by the embodiments of the present disclosure, as shown in FIG. 3 , FIG. 4 , and FIG. 6 , it may further include: a layer where a plurality of light-emitting devices are located (equivalent to where the first light-emitting device 102 is located).
  • the color filter layer 104 includes a plurality of color resists (such as red color resists, green color resists and blue color resists), each color resist and an ambient light
  • the sensors 103 are correspondingly arranged, and the color of the light-transmitting color resistance is the same as the light-emitting color of the first light-emitting device 102 above the corresponding ambient light sensor 103 .
  • the first light emitting device 102 under the red color resist is a red light device R
  • the first light emitting device 102 under the green color resist is a green light device G
  • the first light emitting device 102 under the blue color resist is blue light.
  • the ambient light sensor 103 in the related art only supports perception of light intensity, and cannot identify ambient light of different colors.
  • the ambient light of a specific color is irradiated to the ambient light sensor 103 through the color resistance, so as to ensure that the ambient light sensor 103 can sense the ambient light intensity of a specific color, and then can adjust the brightness and color of the ambient light according to the brightness and color of the ambient light. to adjust the brightness and white balance of the screen to further improve the visual effect while saving power.
  • the light transmission color of the color resistance in the present disclosure is the same as the light emission color of the first light emitting device 102 below it, the color resistance hardly affects the light emitting effect of the first light emitting device 102 .
  • the color resistance will reduce the energy of the light received by the camera module to a certain extent. Therefore, considering the photosensitive effect of the ambient light sensor 103 and the camera module comprehensively, It can be set that the orthographic projection of the color resist on the base substrate 101 substantially coincides with the orthographic projection of the corresponding ambient light sensor 103 on the base substrate 101 .
  • orthographic projection of the color resist on the base substrate 101 and the corresponding projection of the ambient light sensor 103 on the base substrate 101 The orthographic projections may be exactly coincident or slightly deviated, so as long as they are overlapping relationships within the allowable error range, they all fall within the protection scope of the present disclosure.
  • a plurality of ambient light sensors 103 may be located under the first light emitting devices 102 spaced at least one row apart, and the first light emitting devices 102 spaced apart by at least one column. Below a light emitting device 102 .
  • the plurality of ambient light sensors 103 evenly distributed in this way can sense the intensity of ambient light of a specific color in a balanced manner, and can ensure that the camera module receives light in a balanced manner.
  • the positions of the plurality of ambient light sensors 103 may also be set in other manners, as long as the ambient light sensors 103 are uniformly distributed in the first display area AA1.
  • the emission colors of the first light emitting devices 102 in the same row may be the same, and the emission colors of the first light emitting devices 102 in adjacent rows may be the same. Can be different in order to identify the intensities of different colors of light.
  • each ambient light sensor 103 may include a first transparent electrode 1031 and a second transparent electrode 1032 .
  • the layer where the transparent electrode 1031 is located is located between the layer where the second transparent electrode 1032 is located and the base substrate 101;
  • the first transparent electrodes 1031 of the ambient light sensors 103 in a single row are electrically connected, and the second transparent electrodes 1032 of the ambient light sensors 103 in at least one row are electrically connected.
  • the first transparent electrodes 1031 and the second transparent electrodes 1032 of each ambient light sensor 103 are relatively independent, in the present disclosure, the first transparent electrodes 1031 of each column of ambient light sensors 103 are electrically connected, and at least one row of ambient light sensors 103 is electrically connected.
  • the second transparent electrodes 1032 of the light sensor 103 are electrically connected, which can simplify wiring on the one hand, and increase the amount of collected signals on the other hand, thereby improving the accuracy of ambient light recognition.
  • the light-emitting colors of the first light-emitting devices 102 in the same line are the same, the color-blocking light-transmitting colors above the first light-emitting devices 102 in the same line are the same, so that the ambient light sensor 103 under the first light-emitting devices 102 in the same line can perceive the same color
  • the intensity of the light, and then the brightness and white balance of the screen can be adjusted according to the brightness of the recognized light of the same color, which further improves the visual effect while saving power.
  • the second transparent electrode 1032 in order to facilitate the loading of a driving signal to the second transparent electrode 1032, as shown in FIG. 5 and FIG. 6, it may further include: high-level signal lines Vdd and The transfer part 1032'; the transfer part 1032' and the first transparent electrode 1031 are in the same layer and material, and the layer where the high-level signal line Vdd is located is located between the layer where the first transparent electrode 1031 is located and the base substrate 101;
  • the high-level signal line Vdd is electrically connected to the second transparent electrode 1032 through the transfer portion 1032 ′, the number of the transfer portion 1032 ′ is equal to the number of the high-level signal line Vdd, and at least one row of the second transparent electrodes of the ambient light sensor 103 1032 is electrically connected to an adapter 1032'.
  • the second transparent electrode 1032 of the single-row ambient light sensor 103 is electrically connected to a transition portion 1032 ′, and the number of the high-level signal lines Vdd is the same as the number of the transition portion 1032 ′. Both are equal to the total number of rows of ambient light sensors 103 , so that the second transparent electrodes 1032 of a single row of ambient light sensors 103 can share a high-level signal line Vdd for power supply through a switching portion 1032 ′.
  • the second transparent electrodes 1032 of all ambient light sensors 103 are electrically connected to the same switching portion 1032 ′, and the number of high-level signal lines Vdd and the number of switching portions 1032 ′ are equal to each other. It is 1, so that the second transparent electrodes 1032 of all the ambient light sensors 103 can share a high-level signal line Vdd for power supply through the same switching part 1032 ′, so as to simplify the wiring design.
  • the display substrate provided in the embodiments of the present disclosure may further include: a plurality of first switching transistors SW1, a plurality of field effect transistors MOS, a low-level signal line Vss, and a plurality of a first control signal line (not shown in the figure); wherein,
  • each first switch transistor SW1 is electrically connected to a corresponding first control signal line, and the gate of the field effect transistor MOS is configured to be loaded with a fixed voltage;
  • Two first switch transistors SW1 and two field effect transistors MOS are disposed between the ambient light sensor 103 in the i-th column and the (i+1)-th column ambient light sensor 103 , and the two first switch transistors SW1 are connected in series to the Between the first transparent electrode 1031 of the ambient light sensor 103 in the i column and the first transparent electrode 1031 of the ambient light sensor 103 in the (i+1) column, one of the MOSFETs is connected in series with the ambient light sensor in the i column Between the first transparent electrode 1031 of 103 and the low-level signal line Vss, another field effect transistor MOS is connected in series with the first transparent electrode 1031 of the (i+1)th column ambient light sensor 103 and the low-level signal line Vss In between, i is an integer greater than or equal to 1 and less than m, and m is the total number of columns of ambient light sensors 103 .
  • the ambient light sensor 103 In the process of sensing ambient light through the ambient light sensor 103, there may be background noise (for example, water droplets on the screen may cause inaccurate ambient light intensity sensing), and the existence of color resistance causes the ambient light sensor 103 to have a higher photoelectric sensing amount. Therefore, the acquired signal can be made measurable after noise reduction by the differential algorithm.
  • background noise for example, water droplets on the screen may cause inaccurate ambient light intensity sensing
  • color resistance causes the ambient light sensor 103 to have a higher photoelectric sensing amount. Therefore, the acquired signal can be made measurable after noise reduction by the differential algorithm.
  • the electrical signal of the ambient light sensor 103 in the first column or the ambient light sensor 103 in the m-th column can be stored in advance, and then the first switch transistor SW1 is controlled to time-divisionally collect the ambient light sensor 103 between two adjacent columns. Then compare the multiple electrical signals V1, V2, V3, V4, etc. collected by time-sharing, and eliminate the electrical signals with large fluctuations (such as V4), and according to the remaining Electrical signals (such as V1, V2, V3, etc.), and the pre-stored electrical signals of the ambient light sensor in the first column or the ambient light sensor in the mth column, determine the average value of the electrical signals of the ambient light sensors in each column, and the ambient light sensor in each column.
  • the average value of the electrical signal of the light sensor is the detected ambient light brightness.
  • , the electrical signal V2
  • between the ambient light sensor 103 of the second column and the ambient light sensor 103 of the third column
  • the electrical signal V3
  • between the sensor 103 and the ambient light sensor 103 in the fourth column, the electrical signal V4 between the ambient light sensor 103 in the fourth column and the ambient light sensor 103 in the fifth column
  • the collection of the ambient light sensor in the i-th column can be controlled through the first control signal line.
  • the first switch transistor SW1 between the sensor 103 and the (i+1)th column ambient light sensor 103 is in an on state, and the other first switch transistors SW1 are in an off state.
  • FIG. 8 When collecting the voltage Vi between the ambient light sensor 103 in the i-th column and the ambient light sensor 103 in the (i+1)-th column, the corresponding equivalent circuit is shown in FIG. 8 , wherein Z i and Z i+1 are respectively is the impedance of the ambient light sensor 103 in the i-th column and the (i+1)-th column; Z 0 is the field effect transistor MOS between the i-th column ambient light sensor 103 and the (i+1)-th column ambient light sensor 103 The impedance of ; according to the bridge principle, we can get: Since Z i+1 and Z i are small values, the existence of Vdd-Vss and Z 0 can make the collected voltage Vi more observable.
  • the difference between the fixed voltage loaded on the gate of the field effect transistor MOS and the low level signal provided by the low level signal line Vss should ensure that the field effect transistor MOS works in the linear region, so that the The impedance Z 0 is adjustable, and the MOSFET MOS is equivalent to a resistor with adjustable impedance at this time.
  • the above-mentioned display substrate provided by the embodiments of the present disclosure may further include: a plurality of second switch transistors SW2 and a plurality of second control signal lines (not shown in the figure) ;
  • each second switch transistor SW2 may be electrically connected to one of the second control signal lines, and each second switch transistor SW2 is connected in series between the high-level signal line Vdd and a row of ambient light sensors 103 .
  • part of the second switch transistors SW2 can be controlled to be in an on state through the second control signal line, and the rest of the second switch transistors SW2 are in an off state, and the second switch transistors SW2 in the on state are electrically connected to each row
  • the ambient light sensor 103 corresponds to the first light emitting device 102 with the same light emission color, so that the ambient light sensor 103 can identify the intensities of light of different colors in the ambient light.
  • the first second switch transistor SW2 and the third second switch transistor SW2 from top to bottom can be controlled to be in an on state through the second control signal line, and the remaining second switch transistors SW2 are in an off state , so that the high-level signal line Vdd provides a high-level signal for the ambient light sensor 103 under the blue light device B through the turned-on second switch transistor SW2, and the ambient light sensor 103 under the blue light device B can receive the blue color resistance
  • the transmitted blue light is converted into an electrical signal to identify the blue light intensity.
  • the ambient light sensor 103 may further include a P-type semiconductor layer and an N-type semiconductor layer arranged in layers, or include A P-type semiconductor layer, an intrinsic semiconductor layer I, and an N-type semiconductor layer are stacked (as shown in FIG. 4 ); wherein, the N-type semiconductor layer can be electrically connected to the first transparent electrode 1031, and the P-type semiconductor layer can be connected to the second The transparent electrode 1032 is electrically connected;
  • the low-level signal line Vss may be in the same layer as the P-type semiconductor layer, and the material of the low-level signal line Vss is the material of the conductive P-type semiconductor layer.
  • the low-level signal line Vss With the material of the conductive P-type semiconductor layer, it is avoided to separately set the film layer of the low-level signal line Vss, and one mask process is reduced, and one film layer is reduced, which is conducive to the realization of The product is thin and light design.
  • the first control signal line, the second control signal line and the gate of the first switch transistor SW1 and the first control signal line are of the same layer and of the same material;
  • the high-level signal line Vdd is in the same layer as the source and drain of the first switch transistor SW1 and the source and drain of the second switch transistor SW2, and the material of the high-level signal line Vdd can be a high temperature resistant material such as aluminum alloy or molybdenum metal,
  • Materials for the source and drain of the first switching transistor SW1 and the source and drain of the second switching transistor SW2 may include a first titanium metal layer, an aluminum metal layer and a second titanium metal layer that are stacked.
  • the first control signal line, the second control signal line and the gate of the first switch transistor SW1 and the gate of the second switch transistor SW2 are in the same layer and material, it is not necessary to separately set the first control signal line, the second control signal line and the gate of the second switch transistor SW2.
  • the film layers of the signal lines By controlling the film layers of the signal lines, the number of masks is reduced, the cost is saved, and the number of film layers is reduced, which is beneficial to realize the design of light and thin products.
  • the high-level signal line Vdd on the same layer as the source and drain of the first switching transistor SW1 and the source and drain of the second switching transistor SW2, the number of film layers can be reduced, which is beneficial to realize a light and thin product design.
  • the above-mentioned display substrate provided by the embodiments of the present disclosure may further include: a border area BB adjacent to the first display area AA1 , a plurality of first switches The transistor SW1, a plurality of first control signal lines, a plurality of second switching transistors SW2, a plurality of field effect transistors MOS, a low level signal line Vss and a plurality of second control signal lines may be disposed in the border area BB.
  • electronic components are arranged at the end of the whole machine, so as to drive the ambient light sensor 103 to work through the electronic components, and collect electrical signals output by the ambient light sensor 103 .
  • Other electronic components are arranged in the frame area BB, which increases the integration of the product.
  • each ambient light sensor 103 may further include: a connecting portion 1033 located under the N-type semiconductor layer, each The adjacent first transparent electrodes 1031 of the column ambient light sensors 103 can be electrically connected through the connecting parts 1033, so as to collect electrical signals of the ambient light sensors 103 in the same column.
  • connection portion 1033 may be in the same layer as the source and drain of the first switch transistor SW1 and the source and drain of the second switch transistor SW2, and the material of the connection portion 1033 may be aluminum alloy or molybdenum metal.
  • the related art generally adopts a laminated structure of the first titanium metal layer/aluminum metal layer/the second titanium metal layer including aluminum element
  • the source and drain are fabricated, and aluminum alone is not resistant to high temperature. Therefore, in the present disclosure, high temperature resistant materials such as aluminum alloy or molybdenum metal are used to fabricate the connection portion 1033 .
  • the impedance of aluminum alloy or molybdenum metal is relatively small, when high temperature resistant materials such as aluminum alloy or molybdenum metal are used to make the connecting portion 1033, the impedance on the path where each column of ambient light sensors 103 is located can be effectively reduced, thereby facilitating the The loss of the collected electrical signal Vi is reduced.
  • the organic insulating layer 105 may be provided to reduce the coupling capacitance between the first transparent electrode 1031 and the second transparent electrode 1032 .
  • the above-mentioned display substrate provided by the embodiments of the present disclosure may further include: a layer located on the base substrate 101 and the layers where the plurality of light-emitting devices are located (ie, the first A plurality of transparent wirings 106 between the layers where the light-emitting device 102 is located), and a plurality of pixel driving circuits 107 located between the base substrate 101 and the layer where the plurality of transparent wirings 106 are located; wherein the plurality of transparent wirings 106 are connected Between the plurality of pixel driving circuits 107 and the plurality of first light emitting devices 102 , the plurality of transparent wirings 106 may be disposed in the same layer as the first transparent electrodes 1031 and/or the second transparent electrodes 1032 .
  • FIG. 5 and FIG. 6 specifically show a plurality of transparent wirings 106 with a total of three layers of wiring, and the three layers of wiring are respectively located at the layer where the first transparent electrode 1031 is located, the layer where the second transparent electrode 1032 is located, and the second transparent electrode 1032.
  • the layer where the electrode 1032 is located is on the side away from the base substrate 101 .
  • the three-layer wiring makes it possible to provide more transparent wirings 106 within a certain size range to drive more first light-emitting devices 102 and ensure the display resolution (PPI) of the first display area AA1 and the second display area AA2.
  • the display resolution is the same, which improves the overall display effect.
  • an embodiment of the present disclosure further provides a display device including the above-mentioned display substrate provided by an embodiment of the present disclosure. Since the principle of solving the problem of the display device is similar to the principle of solving the problem of the above-mentioned display substrate, the implementation of the display device provided by the embodiment of the present disclosure may refer to the implementation of the above-mentioned display substrate provided by the embodiment of the present disclosure, and the repetition will not be repeated. Repeat.
  • the display device may be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, a smart watch, a fitness wristband, a personal digital assistant, etc. .
  • the display device includes but is not limited to: a radio frequency unit, a network module, an audio output unit, an input unit, a sensor, a display unit, a user input unit, an interface unit, a memory, a processor, and a power supply and other components.
  • an embodiment of the present disclosure also provides a method for driving the above-mentioned display substrate, which may include the following steps:
  • the ambient light brightness is detected by the ambient light sensor
  • the screen brightness is automatically adjusted
  • the light-emitting device In the light-emitting stage, the light-emitting device is driven to emit light for screen display.
  • the picture display process includes a data signal writing stage and a light-emitting stage: in the data signal writing stage, the light-emitting device is turned off to present a black screen; in the light-emitting stage, the light-emitting device is turned on and presents a black screen.
  • the non-light-emitting stage in the present disclosure may be a data signal writing stage.
  • a frame of black picture may also be inserted between two frames of normal display pictures, and one frame time of the black picture may be used as a non-light-emitting stage.
  • the following steps may also be performed:
  • At least one second switch transistor is controlled to be in an on state through the second control signal line, the other second switch transistors are in an off state, and each row of ambient light sensors electrically connected to the second switch transistors in the on state corresponds to the first light emitting device of the same color, to identify the intensity of a specific color of light through the ambient light sensor.
  • the above-mentioned step detecting the brightness of the ambient light by using an ambient light sensor, which can be specifically implemented in the following manner:
  • the two first switch transistors between the ambient light sensor in the i-th column and the ambient light sensor in the (i+1)-th column are controlled to be in an on state through the first control signal line, and the remaining first switch transistors are in an off state, and Load a low-level signal for the low-level signal line, and at the same time load a fixed voltage for the gates of the two FETs between the ambient light sensor in the i-th column and the ambient light sensor in the (i+1)-th column to divide the When reading the electrical signal between the ambient light sensor in the i-th column and the ambient light sensor in the (i+1)-th column;
  • the implementation of the driving method provided by the embodiment of the present disclosure may refer to the implementation of the above-mentioned display substrate provided by the embodiment of the present disclosure. The repetition will not be repeated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Control Of El Displays (AREA)

Abstract

本公开提供的显示基板、其驱动方法及显示装置,包括衬底基板,该衬底基板包括第一显示区和至少位于第一显示区一侧的第二显示区,第一显示区被配置为安装摄像模组;多个发光器件,在衬底基板上呈阵列排布;多个发光器件包括:位于第一显示区的多个第一发光器件,以及位于第二显示区的多个第二发光器件,多个第一发光器件在第一显示区的密度小于或等于多个第二发光器件在第二显示区的密度;多个环境光感应器,位于多个发光器件所在层与衬底基板之间,多个环境光感应器设置于第一显示区,且多个环境光感应器位于至少部分第一发光器件的下方,环境光感应器在衬底基板上的正投影覆盖且大于对应第一发光器件在衬底基板上的正投影。

Description

显示基板、其驱动方法及显示装置
相关申请的交叉引用
本申请要求在2021年04月28日提交中国专利局、申请号为202110464616.4、申请名称为“显示基板、其驱动方法及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示基板、其驱动方法及显示装置。
背景技术
随着智能手机的高速发展,不仅要求手机的外形美观,还需兼顾给手机使用者带来更出色的视觉体验。各大厂商开始在智能手机上提高屏占比,使得全面屏成为智能手机的一个新竞争点。
发明内容
本公开实施例提供了一种显示基板、其驱动方法及显示装置,具体方案如下:
一方面,本公开实施例提供的一种显示基板,包括:
衬底基板,所述衬底基板包括第一显示区和至少位于所述第一显示区一侧的第二显示区,所述第一显示区被配置为安装摄像模组;
多个发光器件,在所述衬底基板上呈阵列排布;所述多个发光器件包括:位于所述第一显示区的多个第一发光器件,以及位于所述第二显示区的多个第二发光器件,所述多个第一发光器件在所述第一显示区的密度小于或等于所述多个第二发光器件在所述第二显示区的密度;
多个环境光感应器,位于所述多个发光器件所在层与所述衬底基板之间,所述多个环境光感应器设置于所述第一显示区,且所述多个环境光感应器位于至少部分所述第一发光器件的下方,所述环境光感应器在所述衬底基板上的正投影覆盖且大于对应所述第一发光器件在所述衬底基板上的正投影。
可选地,在本公开实施例提供的上述显示基板中,所述环境光感应器在所述衬底基板上的正投影边界与对应所述第一发光器件在所述衬底基板上的正投影边界之间的距离为2μm-3μm。
可选地,在本公开实施例提供的上述显示基板中,还包括:位于所述多个发光器件所在层背离所述衬底基板一侧的彩膜层,所述彩膜层包括多个色阻,每个所述色阻与一个所述环境光感应器对应设置,且所述色阻的透光颜色与对应所述环境光感应器上方的所述第一发光器件的发光颜色相同。
可选地,在本公开实施例提供的上述显示基板中,所述色阻在所述衬底基板上的正投影与对应所述环境光感应器在所述衬底基板上的正投影大致重合。
可选地,在本公开实施例提供的上述显示基板中,所述多个环境光感应器位于间隔至少一行的所述第一发光器件下方、和间隔至少一列的所述第一发光器件下方。
可选地,在本公开实施例提供的上述显示基板中,同行所述第一发光器件的发光颜色相同,相邻行所述第一发光器件的发光颜色不同。
可选地,在本公开实施例提供的上述显示基板中,每个所述环境光感应器包括第一透明电极和第二透明电极,所述第一透明电极所在层位于所述第二透明电极所在层与所述衬底基板之间;
单列所述环境光感应器的所述第一透明电极电连接,至少一行所述环境光感应器的所述第二透明电极电连接。
可选地,在本公开实施例提供的上述显示基板中,还包括:高电平信号线和转接部;所述转接部与所述第一透明电极同层、同材料,所述高电平信号线所在层位于所述第一透明电极所在层与所述衬底基板之间;
所述高电平信号线通过所述转接部与所述第二透明电极电连接,所述转接部的数量等于所述高电平信号线的数量,至少一行所述环境光感应器的所述第二透明电极与一个所述转接部电连接。
可选地,在本公开实施例提供的上述显示基板中,单行所述环境光感应器的所述第二透明电极与一个所述转接部对应电连接,所述高电平信号线的数量和所述转接部的数量均等于所述环境光感应器的总行数。
可选地,在本公开实施例提供的上述显示基板中,全部所述环境光感应器的所述第二透明电极电连接同一所述转接部,所述高电平信号线的数量和所述转接部的数量均为1。
可选地,在本公开实施例提供的上述显示基板中,还包括:多个第一开关晶体管、多个场效应管、一条低电平信号线和多条第一控制信号线;其中,
每个所述第一开关晶体管的栅极与一条所述第一控制信号线对应电连接,所述场效应管的栅极被配置为加载固定电压;
第i列所述环境光感应器与第(i+1)列所述环境光感应器之间设置有两个所述第一开关晶体管和两个所述场效应管,两个所述第一开关晶体管串联在所述第i列所述环境光感应器的所述第一透明电极与所述第(i+1)列所述环境光感应器的所述第一透明电极之间,其中一个所述场效应管串联在第i列所述环境光感应器的所述第一透明电极与所述低电平信号线之间,另一个所述场效应管串联在第(i+1)列所述环境光感应器的所述第一透明电极与所述低电平信号线之间,i为大于或等于1且小于m的整数,m为所述环境光感应器的总列数。
可选地,在本公开实施例提供的上述显示基板中,还包括:多个第二开关晶体管和多条第二控制信号线;
每个所述第二开关晶体管的栅极与一条所述第二控制信号线对应电连接,每个所述第二开关晶体管串联在所述高电平信号线与一行所述环境光感应器之间。
可选地,在本公开实施例提供的上述显示基板中,所述环境光感应器还 包括层叠设置的P型半导体层和N型半导体层,或者层叠设置的P型半导体层、本征半导体层和N型半导体层;
所述N型半导体层与所述第一透明电极电连接,所述P型半导体层与所述第二透明电极电连接;
所述低电平信号线与所述P型半导体层同层、且所述低电平信号线的材料为导体化的所述P型半导体层的材料。
可选地,在本公开实施例提供的上述显示基板中,所述第一控制信号线、所述第二控制信号线与所述第一开关晶体管的栅极、以及所述第二开关晶体管的栅极同层、同材料;
所述高电平信号线与所述第一开关晶体管的源漏极、所述第二开关晶体管的源漏极同层、且所述高电平信号线的材料为铝合金或钼金属,第一开关晶体管的源漏极、所述第二开关晶体管的源漏极的材料包括叠层设置的第一钛金属层、铝金属层和第二钛金属层。
可选地,在本公开实施例提供的上述显示基板中,还包括:邻近所述第一显示区的边框区,所述多个第一开关晶体管、所述多条第一控制信号线、所述多个第二开关晶体管、所述多个场效应管、所述低电平信号线和所述多条第二控制信号线位于所述边框区。
可选地,在本公开实施例提供的上述显示基板中,每个所述环境光感应器还包括:位于所述N型半导体层下方的连接部,每列所述环境光感应器的相邻所述第一透明电极通过所述连接部电连接。
可选地,在本公开实施例提供的上述显示基板中,所述连接部与所述第一开关晶体管的源漏极、所述第二开关晶体管的源漏极同层、且所述连接部的材料为铝合金或钼金属。
可选地,在本公开实施例提供的上述显示基板中,还包括:位于所述衬底基板与所述多个发光器件所在层之间的多条透明走线,以及位于所述衬底基板与所述多条透明走线所在层之间的多个像素驱动电路;其中,所述多条透明走线连接于所述多个像素驱动电路与所述多个第一发光器件之间,且所 述多条透明走线与所述第一透明电极和/或所述第二透明电极同层设置。
另一方面,本公开实施例提供了一种显示装置,包括上述显示基板。
另一方面,本公开实施例提供了一种上述显示基板的驱动方法,包括:
在非发光阶段,通过环境光感应器检测环境光亮度;
根据检测到的所述环境光亮度、以及预设的环境光亮度与屏幕亮度之间的函数关系,自动调整屏幕亮度;
在发光阶段,驱动发光器件发光进行画面显示。
可选地,在本公开实施例提供的上述驱动方法中,在非发光阶段,通过环境光感应器检测环境光亮度之前,还包括:
通过第二控制信号线控制至少一个所述第二开关晶体管处于导通状态,其余所述第二开关晶体管处于截止状态,且处于导通状态的所述第二开关晶体管电连接的各行所述环境光感应器对应所述第一发光器件的发光颜色相同。
可选地,在本发明实施例提供的上述驱动方法中,通过环境光感应器检测环境光亮度,具体包括:
通过第一控制信号线控制第i列所述环境光感应器与第(i+1)列所述环境光感应器之间的两个第一开关晶体管处于导通状态,其余所述第一开关晶体管处于截止状态,并为低电平信号线加载低电平信号,为第i列所述环境光感应器与第(i+1)列所述环境光感应器之间的两个所述场效应管的栅极加载固定电压,以分时读取第i列所述环境光感应器与第(i+1)列所述环境光感应器之间的电信号;
将分时读取的多个所述电信号进行比较,剔除其中波动较大的所述电信号,并根据剩余的所述电信号、以及预存的第1列所述环境光感应器或第m列所述环境光感应器的电信号,确定各列所述环境光感应器的电信号平均值,各列所述环境光感应器的电信号平均值即为检测到的环境光亮度。
附图说明
图1为相关技术中显示装置的结构示意图;
图2为本公开实施例提供的显示装置的结构示意图;
图3为图2中AA1区域的一种放大结构示意图;
图4为图2中AA1区域的又一种放大结构示意图;
图5为图3和图4中D区域的一种剖面结构示意图;
图6为图3和图4中D区域的又一种剖面结构示意图;
图7为图2中AA1区域及其邻近BB区域的一种放大结构示意图;
图8为图7中采集环境光感应器的列间电信号的等效电路图;
图9为图2中AA1区域及其邻近BB区域的又一种放大结构示意图;
图10为图2中C区域的一种实现方式的放大结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本发明内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
随着用户对显示设备的屏占比的需求越来越高,越来越多的功能器件需要集成于屏幕内。相关产品中已有在显示区中集成摄像头(Camera)和环境光感应器(Ambient Sensor)的技术方案,如图1所示。具体地,图1中摄像 头区域A的显示分辨率较低,以使得摄像头区域A的透过率较高,从而保证摄像效果;图1中环境光感应器区域B单独开孔,从而使得环境光感应器可对环境光线亮度进行有效甄别,以根据所处环境光线的亮暗来调节屏幕亮度,这样可以达到省电的目的、并提高视觉效果。但是环境光感应器区域B单独开孔,不利于提高屏占比。
为了至少解决相关技术中存在的上述技术问题,本公开实施例提供了一种显示基板,如图2至图5所示,可以包括:
衬底基板101,该衬底基板101包括第一显示区AA1和至少位于第一显示区AA1一侧的第二显示区AA2,第一显示区AA1被配置为安装摄像模组;
多个发光器件,在衬底基板101上呈阵列排布;多个发光器件包括:位于第一显示区AA1的多个第一发光器件102,以及位于第二显示区AA2的多个第二发光器件(图中未示出),多个第一发光器件102在第一显示区AA1的密度小于或等于多个第二发光器件在第二显示区AA2的密度;
多个环境光感应器103,位于多个第一发光器件102所在层与衬底基板101之间,多个环境光感应器103设置于第一显示区AA1,且多个环境光感应器103位于至少部分第一发光器件102的下方,环境光感应器103在衬底基板101上的正投影覆盖且大于对应第一发光器件102在衬底基板101上的正投影。
在本公开实施例提供的上述显示基板中,通过在摄像模组所在第一显示区AA1内集成环境光感应器103,无需单独开孔设置环境光感应器103,因此,利于进一步提高屏占比。并且,环境光感应器103设置于第一发光器件102的下方,使得环境光感应器103不会遮挡第一发光器件102的出射光线;另外,由于环境光感应器103的正投影大于第一发光器件102的正投影,保证了环境光感应器103可以透过第一发光器件102之外的区域接收环境光线,从而根据环境光线的亮暗来调节屏幕亮度。
在一些实施例中,在本公开实施例提供的上述显示基板中,为了兼顾环境光感应器103的亮度调节效果和摄像模组的成像效果,环境光感应器103 在衬底基板101上的正投影边界与对应第一发光器件102在衬底基板101上的正投影边界之间的距离可以为2μm-3μm。
在一些实施例中,在本公开实施例提供的上述显示基板中,如图3、图4和图6所示,还可以包括:位于多个发光器件所在层(相当于第一发光器件102所在层)背离衬底基板101一侧的彩膜层104,该彩膜层104包括多个色阻(例如红光色阻、绿光色阻和蓝光色阻),每个色阻与一个环境光感应器103对应设置,且色阻的透光颜色与对应环境光感应器103上方的第一发光器件102的发光颜色相同。示例性地,红光色阻下方的第一发光器件102为红光器件R、绿光色阻下方的第一发光器件102为绿光器件G、蓝光色阻下方的第一发光器件102为蓝光器件B。
相关技术中的环境光感应器103仅支持感知光强,无法对不同颜色的环境光进行识别。本公开中通过设置色阻,使得特定颜色的环境光通过色阻照射至环境光感应器103,从而确保环境光感应器103可感应特定颜色的环境光强度,进而可以根据环境光的亮度、颜色来调整屏幕的亮度与白平衡,在节省电量的同时,进一步提高视觉效果。并且,由于本公开中色阻的透光颜色与其下方第一发光器件102的发光颜色相同,因此,色阻几乎不会影响第一发光器件102的出光效果。
在一些实施例中,在本公开实施例提供的上述显示基板中,色阻会在一定程度上减少摄像模组接收光线的能量,因此综合考虑环境光感应器103与摄像模组的感光效果,可以设置色阻在衬底基板101上的正投影与对应环境光感应器103在衬底基板101上的正投影大致重合。
应当理解的是,本公开中的“大致”具体指,受限于设备、制作工艺等因素,色阻在衬底基板101上的正投影与对应环境光感应器103在衬底基板101上的正投影可能恰好重合、也可能略有偏差,因此只要是在允许误差范围内的重叠关系,均属于本公开的保护范围。
在一些实施例中,在本公开实施例提供的上述显示基板中,如图3所示,多个环境光感应器103可以位于间隔至少一行的第一发光器件102下方、以 及间隔至少一列的第一发光器件102下方。这样均匀分布设置的多个环境光感应器103可以均衡感知特定颜色环境光的强度,并且可以保证摄像模组均衡接收光线。当然,在具体实施时,多个环境光感应器103的位置还可以为其他设置方式,只要使得环境光感应器103在第一显示区AA1内均匀分布即可。
在一些实施例中,在本公开实施例提供的上述显示基板中,如图3和图4所示,同行第一发光器件102的发光颜色可以相同,相邻行第一发光器件102的发光颜色可以不同,以便于识别不同颜色光的强度。
在一些实施例中,在本公开实施例提供的上述显示基板中,如图3至图6所示,每个环境光感应器103可以包括第一透明电极1031和第二透明电极1032,第一透明电极1031所在层位于第二透明电极1032所在层与衬底基板101之间;
单列环境光感应器103的第一透明电极1031电连接,至少一行环境光感应器103的第二透明电极1032电连接。
相较于每个环境光感应器103的第一透明电极1031和第二透明电极1032相对独立的方案,本公开中将每列环境光感应器103的第一透明电极1031电连接,至少一行环境光感应器103的第二透明电极1032电连接,一方面可以简化布线,另一方面可以增大采集信号量,从而提高环境光线识别的准确度。另外,由于同行第一发光器件102的发光颜色相同,因此,同行第一发光器件102上方的色阻透光颜色相同,使得同行第一发光器件102下方的环境光感应器103可以感知同种颜色光的强度,进而可根据识别出的同种颜色光的亮度来调整屏幕的亮度与白平衡,在节省电量的同时,进一步提高视觉效果。
在一些实施例中,在本公开实施例提供的上述显示基板中,为便于向第二透明电极1032加载驱动信号,如图5和图6所示,还可以包括:高电平信号线Vdd和转接部1032’;转接部1032’与第一透明电极1031同层、同材料,高电平信号线Vdd所在层位于第一透明电极1031所在层与衬底基板101之间;
高电平信号线Vdd通过转接部1032’与第二透明电极1032电连接,转接 部1032’的数量等于高电平信号线Vdd的数量,至少一行环境光感应器103的第二透明电极1032与一个转接部1032’电连接。
在一些实施例中,如图3所示,单行环境光感应器103的第二透明电极1032与一个转接部1032’电连接,高电平信号线Vdd的数量和转接部1032’的数量均等于环境光感应器103的总行数,使得单行环境光感应器103的第二透明电极1032可以经由一个转接部1032’共用一条高电平信号线Vdd供电。
在一些实施例中,如图4所示,全部环境光感应器103的第二透明电极1032电连接同一转接部1032’,高电平信号线Vdd的数量和转接部1032’的数量均为1,使得全部环境光感应器103的第二透明电极1032可以经由同一个转接部1032’共用一条高电平信号线Vdd供电,以简化布线设计。
在一些实施例中,在本公开实施例提供的显示基板,如图7所示,还可以包括:多个第一开关晶体管SW1、多个场效应管MOS、一条低电平信号线Vss和多条第一控制信号线(图中未示出);其中,
每个第一开关晶体管SW1的栅极与一条第一控制信号线对应电连接,场效应管MOS的栅极被配置为加载固定电压;
第i列环境光感应器103与第(i+1)列环境光感应器103之间设置有两个第一开关晶体管SW1和两个场效应管MOS,两个第一开关晶体管SW1串联在第i列环境光感应器103的第一透明电极1031与第(i+1)列环境光感应器103的第一透明电极1031之间,其中一个场效应管MOS串联在第i列环境光感应器103的第一透明电极1031与低电平信号线Vss之间,另一个场效应管MOS串联在第(i+1)列环境光感应器103的第一透明电极1031与低电平信号线Vss之间,i为大于或等于1且小于m的整数,m为环境光感应器103的总列数。
在通过环境光感应器103感应环境光的过程中可能存在背景噪声(例如屏幕上的水滴可能会造成环境光强度感应不准确),且色阻的存在,导致环境光感应器103光电感应量较小,因此,可通过对采集信号进行差分算法降噪后,使得采集信号可测量。
具体地,可预先存储第1列环境光感应器103或第m列环境光感应器103的电信号,然后通过控制第一开关晶体管SW1来分时采集相邻两列环境光感应器103之间的电信号V1、V2、V3、V4等,之后将分时采集的多个电信号V1、V2、V3、V4等进行比较,剔除其中波动较大的电信号(例如V4),并根据剩余的电信号(例如V1、V2、V3等)、以及预存的第1列环境光感应器或第m列环境光感应器的电信号,确定各列环境光感应器的电信号平均值,各列环境光感应器的电信号平均值即为检测到的环境光亮度。
以预先存储第1列环境光感应器103电信号V L1、共5列环境光感应器103为例,分时采集的第一列环境光感应器103与第二列环境光感应器103之间的电信号V1=|V L1-V L2|,第二列环境光感应器103与第三列环境光感应器103之间的电信号V2=|V L2-V L3|,第三列环境光感应器103与第四列环境光感应器103之间的电信号V3=|V L3-V L4|,第四列环境光感应器103与第五列环境光感应器103之间的电信号V4=|V L4-V L5|,由于同列环境光感受器103的数量相同、制作工艺相同、所处环境相同,因此理论上V1、V2、V3、V4大小相当,因此通过比较V1、V2、V3、V4,若发现V4波动较大,则表示与V4相关的第4列环境光感应器103与第5列环境光感应器103处存在噪声,则剔除V4,仅采用V1、V2、V3计算3列环境光感应器的电信号平均值,这3列环境光感应器的电信号平均值即可准确表征检测到的环境光亮度。通过上述过程,即可以有效识别出环境光的亮度。
需要说明的是,在采集第i列环境光感应器103与第(i+1)列环境光感应器103之间的电信号时,可以通过第一控制信号线控制采集第i列环境光感应器103与第(i+1)列环境光感应器103之间的第一开关晶体管SW1处于导通状态,其余第一开关晶体管SW1处于截止状态。
在采集第i列环境光感应器103与第(i+1)列环境光感应器103之间的电压Vi时,对应的等效电路如图8所示,其中Z i、Z i+1分别为第i列、第(i+1)列环境光感应器103的阻抗;Z 0是第i列环境光感应器103与第(i+1)列环境光感应器103之间场效应管MOS的阻抗;根据电桥原理可得:
Figure PCTCN2021125988-appb-000001
Figure PCTCN2021125988-appb-000002
由于Z i+1和Z i是较小的数值,因此Vdd-Vss、Z 0的存在,可使采集到的电压Vi更具有可观测性。
另外,场效应管MOS的栅极所加载的固定电压与低电平信号线Vss提供的低电平信号的差值,应可以保证场效应管MOS工作在线性区,从而使得场效应管MOS的阻抗Z 0可调,此时场效应管MOS相当于一个阻抗可调的电阻。
在一些实施例中,在本公开实施例提供的上述显示基板中,如图9所示,还可以包括:多个第二开关晶体管SW2和多条第二控制信号线(图中未示出);
每个第二开关晶体管SW2的栅极可以与一条第二控制信号线对应电连接,每个第二开关晶体管SW2串联在高电平信号线Vdd与一行环境光感应器103之间。
在具体实施时,通过第二控制信号线可以控制部分第二开关晶体管SW2处于导通状态,其余部分第二开关晶体管SW2处于截止状态,且处于导通状态的第二开关晶体管SW2电连接的各行环境光感应器103对应第一发光器件102的发光颜色相同,从而使得环境光感应器103可识别环境光中不同颜色光的强度。
例如,在图9中可以通过第二控制信号线控制自上而下的第1个第二开关晶体管SW2、第3个第二开关晶体管SW2处于导通状态,其余第二开关晶体管SW2处于截止状态,使得高电平信号线Vdd通过导通的第二开关晶体管SW2为蓝光器件B下方的环境光感应器103提供高电平信号,蓝光器件B下方的环境光感应器103即可接收蓝光色阻透射的蓝光,并将蓝光转换成电信号进行识别蓝光强度。通过上述过程,即可以有效识别出环境光中不同颜色光的亮度。
在一些实施例中,在本公开实施例提供的上述显示基板中,如图5和图6所示,环境光感应器103还可以包括层叠设置的P型半导体层和N型半导体层,或者包括层叠设置的P型半导体层、本征半导体层I和N型半导体层(如图4所示);其中,N型半导体层可以与第一透明电极1031电连接,P型半导 体层可以与第二透明电极1032电连接;
低电平信号线Vss可以与P型半导体层同层、且低电平信号线Vss的材料为导体化的P型半导体层的材料。
通过将低电平信号线Vss采用导体化的P型半导体层的材料制作,避免了单独设置低电平信号线Vss的膜层,减少了一道掩膜工艺,且减少了一个膜层、利于实现产品轻薄化设计。
在一些实施例中,在本公开实施例提供的上述显示基板中,如图5和图6所示,第一控制信号线、第二控制信号线与第一开关晶体管SW1的栅极、以及第二开关晶体管SW2的栅极同层、同材料;
高电平信号线Vdd与第一开关晶体管SW1的源漏极、第二开关晶体管SW2的源漏极同层、且高电平信号线Vdd的材料可以为铝合金或钼金属等耐高温材料,第一开关晶体管SW1的源漏极、第二开关晶体管SW2的源漏极的材料可以包括叠层设置的第一钛金属层、铝金属层和第二钛金属层。
通过设置第一控制信号线、第二控制信号线与第一开关晶体管SW1的栅极、以及第二开关晶体管SW2的栅极同层、同材料,便无需单独设置第一控制信号线、第二控制信号线的膜层,减少了掩膜次数,节约了成本,且减少了膜层数量,利于实现产品轻薄化设计。并且,通过将高电平信号线Vdd与第一开关晶体管SW1的源漏极、第二开关晶体管SW2的源漏极同层,可以减少膜层数量,利于实现产品轻薄化设计。
在一些实施例中,在本公开实施例提供的上述显示基板中,如图2、图7和图9所示,还可以包括:邻近第一显示区AA1的边框区BB,多个第一开关晶体管SW1、多条第一控制信号线、多个第二开关晶体管SW2、多个场效应管MOS、低电平信号线Vss和多条第二控制信号线可以设置于边框区BB。
相关技术中在整机端设置电子元器件,以通过电子元器件驱动环境光感应器103工作,并采集环境光感应器103输出的电信号。本公开中通过将多个第一开关晶体管SW1、多条第一控制信号线、多个第二开关晶体管SW2、多个场效应管MOS、低电平信号线Vss和多条第二控制信号线等电子元器件 设置在边框区BB,增大了产品的集成度。
在一些实施例中,在本公开实施例提供的上述显示基板中,如图5和图6所示,每个环境光感应器103还可以包括:位于N型半导体层下方的连接部1033,每列环境光感应器103的相邻第一透明电极1031可以通过连接部1033电连接,以便于采集同列环境光感应器103的电信号。
在一些实施例中,连接部1033可以与第一开关晶体管SW1的源漏极、第二开关晶体管SW2的源漏极同层、且连接部1033的材料可以为铝合金或钼金属。通过将连接部1033与第一开关晶体管SW1的源漏极、第二开关晶体管SW2的源漏极同层,可以减少膜层数量,利于实现产品轻薄化设计。另外,由于环境光感应器103中的PIN结构或PN结构的制作工艺温度较高,相关技术中一般采用包含铝单质的第一钛金属层/铝金属层/第二钛金属层的叠层结构制作源漏极,而铝单质不耐高温,因此,本公开中采用铝合金或钼金属等耐高温材料制作连接部1033。另外,由于铝合金或钼金属的阻抗较小,因此,在采用铝合金或钼金属等耐高温材料制作连接部1033时,可以有效降低每列环境光感应器103所在通路上的阻抗,从而利于降低所采集电信号Vi的损耗。
在一些实施例中,如图5和图6所示,可以设置有机绝缘层105来减小第一透明电极1031与第二透明电极1032之间的耦合电容。
在一些实施例中,在本公开实施例提供的上述显示基板中,如图5、图6和图10所示,还可以包括:位于衬底基板101与多个发光器件所在层(即第一发光器件102所在层)之间的多条透明走线106,以及位于衬底基板101与多条透明走线106所在层之间的多个像素驱动电路107;其中,多条透明走线106连接于多个像素驱动电路107与多个第一发光器件102之间,且多条透明走线106可以与第一透明电极1031和/或第二透明电极1032同层设置。
具体地,图5和图6中具体示出了多条透明走线106共三层布线,具体三层布线分别位于第一透明电极1031所在层、第二透明电极1032所在层、以及第二透明电极1032所在层背离衬底基板101的一侧。三层布线使得可以 在一定尺寸范围内提供更多的透明走线106,以驱动更多的第一发光器件102,保证第一显示区AA1的显示分辨率(PPI)与第二显示区AA2的显示分辨率相同,提高整体显示效果。
基于同一发明构思,本公开实施例还提供了一种显示装置,包括本公开实施例提供的上述显示基板。由于该显示装置解决问题的原理与上述显示基板解决问题的原理相似,因此,本公开实施例提供的该显示装置的实施可以参见本公开实施例提供的上述显示基板的实施,重复之处不再赘述。
在一些实施例中,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、智能手表、健身腕带、个人数字助理等任何具有显示功能的产品或部件。该显示装置包括但不限于:射频单元、网络模块、音频输出单元、输入单元、传感器、显示单元、用户输入单元、接口单元、存储器、处理器、以及电源等部件。本领域技术人员可以理解,上述显示装置的结构并不构成对显示装置的限定,显示装置可以包括上述更多或更少的部件,或者组合某些部件,或者不同的部件布置。
基于同一发明构思,本公开实施例还提供了一种上述显示基板的驱动方法,可以包括以下步骤:
在非发光阶段,通过环境光感应器检测环境光亮度;
根据检测到的环境光亮度、以及预设的环境光亮度与屏幕亮度之间的函数关系,自动调整屏幕亮度;
在发光阶段,驱动发光器件发光进行画面显示。
通过在非发光阶段检测环境光亮度,避免了屏幕自身亮度的干扰,提高了对环境光亮度检测的准确性。
通常情况下,画面显示过程包括数据信号写入阶段和发光阶段:在数据信号写入阶段,发光器件处于关闭的状态而呈现出黑画面;在发光阶段,发光器件处于点亮的状态而呈现出彩色画面。基于此,本公开中的非发光阶段可以为数据信号写入阶段。另外,在一些实施例中,还可以在两帧正常显示画面之间插入一帧黑色画面,并将该黑色画面的一帧时间作为非发光阶段。
在一些实施例中,在本公开实施例提供的上述驱动方法中,在执行步骤:在非发光阶段,通过环境光感应器检测环境光亮度之前,还可以执行以下步骤:
通过第二控制信号线控制至少一个第二开关晶体管处于导通状态,其余第二开关晶体管处于截止状态,且处于导通状态的第二开关晶体管电连接的各行环境光感应器对应第一发光器件的发光颜色相同,以通过环境光感应器识别特定颜色光的强度。
可选地,在本公开实施例提供的上述驱动方法中,上述步骤:通过环境光感应器检测环境光亮度,具体可以通过以下方式进行实现:
通过第一控制信号线控制第i列环境光感应器与第(i+1)列环境光感应器之间的两个第一开关晶体管处于导通状态,其余第一开关晶体管处于截止状态,并为低电平信号线加载低电平信号,同时为第i列环境光感应器与第(i+1)列环境光感应器之间的两个场效应管的栅极加载固定电压,以分时读取第i列环境光感应器与第(i+1)列环境光感应器之间的电信号;
将分时读取的多个电信号进行比较,剔除其中波动较大的电信号,并根据剩余的电信号、以及预存的第1列环境光感应器或第m列环境光感应器的电信号,确定各列环境光感应器的电信号平均值,各列环境光感应器的电信号平均值即为检测到的环境光亮度。
需要说明的是,由于该驱动方法解决问题的原理与上述显示基板解决问题的原理相似,因此,本公开实施例提供的该驱动方法的实施可以参见本公开实施例提供的上述显示基板的实施,重复之处不再赘述。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (22)

  1. 一种显示基板,其中,包括:
    衬底基板,包括第一显示区和至少位于所述第一显示区一侧的第二显示区,所述第一显示区被配置为安装摄像模组;
    多个发光器件,在所述衬底基板上呈阵列排布;所述多个发光器件包括:位于所述第一显示区的多个第一发光器件,以及位于所述第二显示区的多个第二发光器件,所述多个第一发光器件在所述第一显示区的密度小于或等于所述多个第二发光器件在所述第二显示区的密度;
    多个环境光感应器,位于所述多个发光器件所在层与所述衬底基板之间,所述多个环境光感应器设置于所述第一显示区,且所述多个环境光感应器位于至少部分所述第一发光器件的下方,所述环境光感应器在所述衬底基板上的正投影覆盖且大于对应所述第一发光器件在所述衬底基板上的正投影。
  2. 如权利要求1所述的显示基板,其中,所述环境光感应器在所述衬底基板上的正投影边界与对应所述第一发光器件在所述衬底基板上的正投影边界之间的距离为2μm-3μm。
  3. 如权利要求1所述的显示基板,其中,还包括:位于所述多个发光器件所在层背离所述衬底基板一侧的彩膜层,所述彩膜层包括多个色阻,每个所述色阻与一个所述环境光感应器对应设置,且所述色阻的透光颜色与对应所述环境光感应器上方的所述第一发光器件的发光颜色相同。
  4. 如权利要求3所述的显示基板,其中,所述色阻在所述衬底基板上的正投影与对应所述环境光感应器在所述衬底基板上的正投影大致重合。
  5. 如权利要求1-4任一项所述的显示基板,其中,所述多个环境光感应器位于间隔至少一行的所述第一发光器件下方,和间隔至少一列的所述第一发光器件下方。
  6. 如权利要求5所述的显示基板,其中,同行所述第一发光器件的发光颜色相同,相邻行所述第一发光器件的发光颜色不同。
  7. 如权利要求6所述的显示基板,其中,每个所述环境光感应器包括第一透明电极和第二透明电极,所述第一透明电极所在层位于所述第二透明电极所在层与所述衬底基板之间;
    单列所述环境光感应器的所述第一透明电极电连接,至少一行所述环境光感应器的所述第二透明电极电连接。
  8. 如权利要求7所述的显示基板,其中,还包括:高电平信号线和转接部;所述转接部与所述第一透明电极同层、同材料,所述高电平信号线所在层位于所述第一透明电极所在层与所述衬底基板之间;
    所述高电平信号线通过所述转接部与所述第二透明电极电连接,所述转接部的数量等于所述高电平信号线的数量,至少一行所述环境光感应器的所述第二透明电极与一个所述转接部电连接。
  9. 如权利要求8所述的显示基板,其中,单行所述环境光感应器的所述第二透明电极与一个所述转接部对应电连接,所述高电平信号线的数量和所述转接部的数量均等于所述环境光感应器的总行数。
  10. 如权利要求8所述的显示基板,其中,全部所述环境光感应器的所述第二透明电极电连接同一所述转接部,所述高电平信号线的数量和所述转接部的数量均为1。
  11. 如权利要求9或10所述的显示基板,其中,还包括:多个第一开关晶体管、多个场效应管、一条低电平信号线和多条第一控制信号线;
    每个所述第一开关晶体管的栅极与一条所述第一控制信号线对应电连接,所述场效应管的栅极被配置为加载固定电压;
    第i列所述环境光感应器与第(i+1)列所述环境光感应器之间设置有两个所述第一开关晶体管和两个所述场效应管,两个所述第一开关晶体管串联在所述第i列所述环境光感应器的所述第一透明电极与所述第(i+1)列所述环境光感应器的所述第一透明电极之间,其中一个所述场效应管串联在第i列所述环境光感应器的所述第一透明电极与所述低电平信号线之间,另一个所述场效应管串联在第(i+1)列所述环境光感应器的所述第一透明电极与所 述低电平信号线之间,i为大于或等于1且小于m的整数,m为所述环境光感应器的总列数。
  12. 如权利要求11所述的显示基板,其中,还包括:多个第二开关晶体管和多条第二控制信号线;
    每个所述第二开关晶体管的栅极与一条所述第二控制信号线对应电连接,每个所述第二开关晶体管串联在所述高电平信号线与一行所述环境光感应器之间。
  13. 如权利要求12所述的显示基板,其中,所述环境光感应器还包括层叠设置的P型半导体层和N型半导体层,或者层叠设置的P型半导体层、本征半导体层和N型半导体层;
    所述N型半导体层与所述第一透明电极电连接,所述P型半导体层与所述第二透明电极电连接;
    所述低电平信号线与所述P型半导体层同层、且所述低电平信号线的材料为导体化的所述P型半导体层的材料。
  14. 如权利要求12所述的显示基板,其中,所述第一控制信号线、所述第二控制信号线与所述第一开关晶体管的栅极、以及所述第二开关晶体管的栅极同层、同材料;
    所述高电平信号线与所述第一开关晶体管的源漏极、所述第二开关晶体管的源漏极同层、且所述高电平信号线的材料为铝合金或钼金属,第一开关晶体管的源漏极、所述第二开关晶体管的源漏极的材料包括叠层设置的第一钛金属层、铝金属层和第二钛金属层。
  15. 如权利要求12所述的显示基板,其中,还包括:邻近所述第一显示区的边框区,所述多个第一开关晶体管、所述多条第一控制信号线、所述多个第二开关晶体管、所述多个场效应管、所述低电平信号线和所述多条第二控制信号线位于所述边框区。
  16. 如权利要求13所述的显示基板,其中,每个所述环境光感应器还包括:位于所述N型半导体层下方的连接部,每列所述环境光感应器的相邻所 述第一透明电极通过所述连接部电连接。
  17. 如权利要求16所述的显示基板,其中,所述连接部与所述第一开关晶体管的源漏极、所述第二开关晶体管的源漏极同层、且所述连接部的材料为铝合金或钼金属。
  18. 如权利要求7所述的显示基板,其中,还包括:位于所述衬底基板与所述多个发光器件所在层之间的多条透明走线,以及位于所述衬底基板与所述多条透明走线所在层之间的多个像素驱动电路;其中,
    所述多条透明走线连接于所述多个像素驱动电路与所述多个第一发光器件之间,且所述多条透明走线与所述第一透明电极和/或所述第二透明电极同层设置。
  19. 一种显示装置,其中,包括如权利要求1-18任一项所述的显示基板。
  20. 一种如权利要求1-18任一项所述显示基板的驱动方法,其中,包括:
    在非发光阶段,通过环境光感应器检测环境光亮度;
    根据检测到的所述环境光亮度、以及预设的环境光亮度与屏幕亮度之间的函数关系,自动调整屏幕亮度;
    在发光阶段,驱动发光器件发光进行画面显示。
  21. 如权利要求20所述的驱动方法,其中,在非发光阶段,通过环境光感应器检测环境光亮度之前,还包括:
    通过第二控制信号线控制至少一个所述第二开关晶体管处于导通状态,其余所述第二开关晶体管处于截止状态,且处于导通状态的所述第二开关晶体管电连接的各行所述环境光感应器对应所述第一发光器件的发光颜色相同。
  22. 如权利要求20或21所述的驱动方法,其中,通过环境光感应器检测环境光亮度,具体包括:
    通过第一控制信号线控制第i列所述环境光感应器与第(i+1)列所述环境光感应器之间的两个第一开关晶体管处于导通状态,其余所述第一开关晶体管处于截止状态,并为低电平信号线加载低电平信号,为第i列所述环境光感应器与第(i+1)列所述环境光感应器之间的两个所述场效应管的栅极加载 固定电压,以分时读取第i列所述环境光感应器与第(i+1)列所述环境光感应器之间的电信号;
    将分时读取的多个所述电信号进行比较,剔除其中波动较大的所述电信号,并根据剩余的所述电信号、以及预存的第1列所述环境光感应器或第m列所述环境光感应器的电信号,确定各列所述环境光感应器的电信号平均值,各列所述环境光感应器的电信号平均值即为检测到的环境光亮度。
PCT/CN2021/125988 2021-04-28 2021-10-25 显示基板、其驱动方法及显示装置 WO2022227441A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110464616.4 2021-04-28
CN202110464616.4A CN113161407B (zh) 2021-04-28 2021-04-28 显示基板、其驱动方法及显示装置

Publications (1)

Publication Number Publication Date
WO2022227441A1 true WO2022227441A1 (zh) 2022-11-03

Family

ID=76871678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125988 WO2022227441A1 (zh) 2021-04-28 2021-10-25 显示基板、其驱动方法及显示装置

Country Status (2)

Country Link
CN (1) CN113161407B (zh)
WO (1) WO2022227441A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113161407B (zh) * 2021-04-28 2024-04-23 京东方科技集团股份有限公司 显示基板、其驱动方法及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130278576A1 (en) * 2012-04-18 2013-10-24 Apple Inc. Calibrated image-sensor-based ambient light sensor
CN110071164A (zh) * 2019-05-07 2019-07-30 京东方科技集团股份有限公司 一种显示基板及其亮度调节方法、显示装置
CN110164847A (zh) * 2019-05-28 2019-08-23 京东方科技集团股份有限公司 阵列基板、光检测方法及组件、显示装置
CN210515985U (zh) * 2019-11-21 2020-05-12 昆山国显光电有限公司 显示基板、显示面板及显示装置
CN112490266A (zh) * 2019-09-11 2021-03-12 北京小米移动软件有限公司 显示面板和终端设备
CN113161407A (zh) * 2021-04-28 2021-07-23 京东方科技集团股份有限公司 显示基板、其驱动方法及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130278576A1 (en) * 2012-04-18 2013-10-24 Apple Inc. Calibrated image-sensor-based ambient light sensor
CN110071164A (zh) * 2019-05-07 2019-07-30 京东方科技集团股份有限公司 一种显示基板及其亮度调节方法、显示装置
CN110164847A (zh) * 2019-05-28 2019-08-23 京东方科技集团股份有限公司 阵列基板、光检测方法及组件、显示装置
CN112490266A (zh) * 2019-09-11 2021-03-12 北京小米移动软件有限公司 显示面板和终端设备
CN210515985U (zh) * 2019-11-21 2020-05-12 昆山国显光电有限公司 显示基板、显示面板及显示装置
CN113161407A (zh) * 2021-04-28 2021-07-23 京东方科技集团股份有限公司 显示基板、其驱动方法及显示装置

Also Published As

Publication number Publication date
CN113161407A (zh) 2021-07-23
CN113161407B (zh) 2024-04-23

Similar Documents

Publication Publication Date Title
US10916599B2 (en) Array substrate, display apparatus and luminance calibration method therefor
US9715851B1 (en) Display panel, method of manufacturing the same, display device and method of controlling the display device
US10705648B2 (en) Pixel circuit, array substrate, display panel, display device and display driving method
US20220165827A1 (en) Display panel and display device
WO2020259548A1 (zh) 移动终端及其驱动方法、显示模组、驱动芯片
WO2020134914A1 (zh) 一种显示屏、移动终端及其控制方法
CN109147693B (zh) 具有红外识别的发光二极管显示装置
US11372302B2 (en) Display panel, display device, and control method thereof
US20220190084A1 (en) Display apparatus and electronic device
CN210955904U (zh) 显示基板、显示面板及显示装置
EP4102493A1 (en) Display device and operating method therefor
WO2018201806A1 (zh) Oled显示装置及其控制方法、制造方法
CN114253423B (zh) 显示面板及其控制方法及电子设备
CN114582949A (zh) 显示基板和显示装置
JP2005345286A (ja) 光センサ、光センサ出力処理方法、表示装置および電子機器
CN109031823B (zh) 显示屏、电子设备及其控制方法
US20240021148A1 (en) Display panel and display apparatus
WO2022227441A1 (zh) 显示基板、其驱动方法及显示装置
US20210224520A1 (en) In-cell facial recognition display panel, method and liquid crystal display
US10705646B2 (en) Touch display panel, method for driving the same, and display device
CN113380830B (zh) 阵列基板、显示面板及显示装置
US20230061540A1 (en) Display apparatus, photoelectric conversion apparatus, electric equipment, illumination apparatus, moving body, and wearable device
CN111161673B (zh) 电子设备及其显示屏
CN111833811B (zh) 显示面板及显示装置
US11562686B1 (en) Display panel, light sensing detection method thereof and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE