WO2022227353A1 - 一种海上风机支撑结构整体化降本优化设计方法 - Google Patents

一种海上风机支撑结构整体化降本优化设计方法 Download PDF

Info

Publication number
WO2022227353A1
WO2022227353A1 PCT/CN2021/114892 CN2021114892W WO2022227353A1 WO 2022227353 A1 WO2022227353 A1 WO 2022227353A1 CN 2021114892 W CN2021114892 W CN 2021114892W WO 2022227353 A1 WO2022227353 A1 WO 2022227353A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
design
support structure
integrated
offshore wind
Prior art date
Application number
PCT/CN2021/114892
Other languages
English (en)
French (fr)
Inventor
周昳鸣
刘鑫
郭小江
李卫东
闫姝
张波
Original Assignee
中国华能集团清洁能源技术研究院有限公司
华能海上风电科学技术研究有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 华能海上风电科学技术研究有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Priority to EP21938817.0A priority Critical patent/EP4332825A1/en
Publication of WO2022227353A1 publication Critical patent/WO2022227353A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/06Wind turbines or wind farms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/04Ageing analysis or optimisation against ageing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the invention belongs to the technical field of offshore wind turbine support structure design, and in particular relates to an integrated cost-reducing optimization design method for offshore wind turbine support structures.
  • the offshore wind power resources are rich in reserves, large-scale potential, and excellent in power quality. It is close to the load center.
  • the offshore water depth is 5-25m and the technical development volume of wind energy resources at a height of 100m in the sea area of 25-50m is 210 million kW and 190 million kW, respectively. It is one of the important strategic supports for the transformation of my country's energy structure.
  • the development of offshore wind power is facing pressure to reduce costs, which is far from parity. From the current point of view, it is difficult to achieve parity of existing offshore wind power products and technologies, the incremental increase in new tenders is limited, and the newly installed capacity has declined. This requires the entire industry to break down technical barriers, realize industrial chain collaboration, accelerate technological innovation with engineering experience from actual projects, and ultimately achieve the goal of grid parity for offshore wind.
  • the wind turbine support structure (including tower and foundation) accounts for about 22%. Reducing the cost of offshore wind power support structure can effectively reduce the cost of electricity.
  • the foundation top load and tower quality provided by the wind turbine manufacturer will be scored when bidding for the main engine, and the foundation quality provided by the design institute is rarely scored during the bidding design;
  • the wind turbine manufacturer and the design institute carried out the optimal design of the tower and foundation respectively.
  • the fan manufacturer and the design institute did not adopt the integrated test design method, so in the actual engineering project, the tower was very light, but the foundation was heavy; the lower limit of the overall support structure frequency was determined by non-1P and 3P frequencies. Applicable to frequency range control; the tower segments are all cone-section designs, so the design institute needs to thicken the diameter of the single pile to compensate for the phenomenon that the frequency reaches the lower limit. This has resulted in more unnecessary costs for owners to pay.
  • Zhao Xiangqian et al. proposed that in the integrated design of the unit and the foundation, work from the overall design, optimization of control strategies, optimization of blades and relaxation of frequency constraints is expected to achieve a 10% cost reduction.
  • Zhang Bo et al. studied the integrated load simulation method for offshore wind turbines, compared the differences between semi-integrated and integrated load simulation, and verified through design cases that the integrated load simulation method can effectively optimize the foundation design and reduce the cost of wind farms. .
  • the present invention provides an optimal design method for the support structure of an offshore wind turbine based on a proxy model, which meets and completes the requirements for cost-reduction innovation and achievement declaration of engineering projects, and breaks through the offshore wind turbine-tower-foundation
  • the integrated optimization design technology solves the problem of splitting and isolating the support structure.
  • the technical solution adopted in the present invention is: an integrated cost reduction optimization design method for a supporting structure of an offshore wind turbine, comprising the following steps:
  • Step 1 determine the environmental parameters of the aircraft site
  • Step 2 determine whether the water depth and foundation stiffness of the aircraft site have reached the preset position in the wind field or the partition where it is located, if not, go to step 3; if so, go to step 4;
  • Step 3 according to the construction sequence of the offshore wind turbine support structure, the water depth of the machine site and the geological condition information, perform 1 update the machine site and its environmental parameters and then return to step 1;
  • Step 4 analyze whether the ultimate strength, fatigue strength, deformation requirements, frequency requirements, diameter-thickness ratio and pile length in the current design of the offshore wind turbine support structure are less than the set values; if so, go to step 11, if not, go to step 5;
  • Step 5 determine whether the ultimate strength is a single control factor, if not, go to step 6; if so, use 2 the integrated load and/or 3 optimize the control strategy method to optimize, and go to step 10;
  • Step 6 judge whether the fatigue strength is a single control factor: if not, go to step 7; if so, adopt 2 integrated load, 3 optimize control strategy, 4 increase damping ratio, 5 damper and 6 adopt new nail-shooting process method optimization, perform step 10;
  • Step 7 determine whether the deformation requirement is a single control factor: if not, go to step 8; if so, use 2 integrated load, 3 optimal control strategy and 7 mud surface cumulative deformation algorithm to optimize, and go to step 10;
  • Step 8 judge whether the frequency requirement is a single control factor: if not, go to step 9; Release frequency range to 1P and 3P control and Optimize the method for the refinement of geological exploration parameters, and perform step 10;
  • Step 9 judge whether the diameter-thickness ratio and the pile length are the controlling factors: if not, go to step 11; if so, pass Increase diameter to thickness ratio and Optimize the method of shortening the pile length, and perform step 10;
  • Step 10 carry out the integrated design of load-control-tower-foundation
  • step 11 the design result is obtained, and the design ends.
  • Step 10 Load-Control-Tower-Foundation Iterative Design Process, including the following steps:
  • S2 give the initial design of the tower and the foundation, including segment, diameter, wall thickness and alignment, and the alignment is outer diameter alignment, inner diameter alignment or middle diameter alignment;
  • the convergence criteria mainly include: unit adaptability, including the limit and fatigue strength of blades, main bearings, pitch bearings, yaw bearings, generators and bases; Whether it is within 1%, and whether the difference in the quality of the support structure obtained between two adjacent times is within 1%;
  • [x 1 , x 2 , x 3 ...] are the tower wall thickness, single pile wall thickness, yaw, pitch and torque control strategy parameters;
  • m tower + single pile is the tower and single pile total mass;
  • the iterative design ends, and output response values, where the response values include tower mass, single pile mass, frequency, tower bottom limit, and fatigue load.
  • the integrated modeling includes the input of environmental conditions and the construction of the support structure model.
  • the input of environmental conditions includes wind resource parameters, marine hydrological parameters, engineering geological parameters and Other special conditions include sea ice, earthquake or typhoon;
  • the support structure model includes the nose, tower and foundation, where the foundation includes the part below the mud surface.
  • the integrated load is suitable for the service conditions of large water depth and large wave force
  • 9 the measures of adjusting the tower structure are suitable for all basic structures.
  • the measures to refine the geological exploration parameters are suitable for the working conditions where the structure is controlled by the frequency.
  • the measures of increasing the damping ratio are suitable for the scene where the structure is controlled by fatigue; (7) the measures of the cumulative deformation algorithm of the mud surface are suitable for the scene controlled by the angle of the mud surface.
  • the cumulative deformation algorithm of the mud surface is used to combine the ultimate strength and fatigue.
  • Strength load reduction; 8 The effect of large-diameter pile-soil is suitable for large-diameter single-pile foundations with a pile diameter greater than 5m.
  • the present invention has at least the following beneficial effects: compared with the existing domestic iterative design method for the distribution of offshore support structures, the present invention can process environmental parameters in a refined manner, and perform unit-control-tower based on finding a global optimal design.
  • the frame-foundation integrated design improving the standard specification parameters, and cooperating with multiple units to systematically give an overall design plan; it can effectively reduce the design load of the support structure, reduce the weight and cost of the support structure, and reduce the cost of offshore wind power;
  • it has broken through the integrated optimization design technology of offshore wind turbine-tower-foundation, and solved the problem of split and isolated design of support structures.
  • Figure 1a is a schematic diagram of an offshore support structure
  • Figure 1b is a schematic diagram of the tower coordinate system for offshore wind turbine load calculation
  • Figure 2 shows the process flow of the integrated cost reduction optimization design method for the support structure of the offshore wind turbine
  • Figure 3 is the overall iterative design process of load-control-tower-foundation
  • Figure 4 Schematic diagram of the progress control of the project implementation plan.
  • FIG. 3 is a general flow chart of the proxy model optimization algorithm, which generally includes the following steps:
  • the loads on the offshore support structure mainly come from wind, waves and currents.
  • integrated modeling and load calculation, tower and foundation structure design are the main contents.
  • the present invention is based on the use of GH-Bladed software to perform integrated modeling and load calculation of the wind turbine load, and the integrated modeling includes two aspects: environmental condition input and support structure model construction.
  • the environmental conditions include wind resource parameters, marine hydrological parameters, engineering geological parameters and other special conditions (sea ice, earthquake, typhoon); support structure model includes the nose, tower, foundation (including the part below the mud surface).
  • support structure model includes the nose, tower, foundation (including the part below the mud surface).
  • different environmental parameters, control parameters and operating conditions of the unit are combined, which can be divided into normal power generation, power generation + fault conditions, start-up conditions, shutdown conditions, emergency shutdown, idling, idling + fault, operation.
  • Dimensional combination of 8 categories of working conditions DLC, Design Load Case).
  • Figure 1b shows the tower coordinate system for offshore wind turbine load calculation, where: the origin is at the intersection of the tower axis and the foundation plane; XF is the horizontal direction; ZF is the vertical upward direction along the tower axis; YF is the horizontal pointing side square.
  • the influence of Mx and My in the fatigue calculation of offshore tower welding and single pile joints is considered.
  • the time-varying load time series of Mx and My are projected in the circumferential direction of the tower, and the projection angle is [0,2 ⁇ ], obtain the load time history components in different coordinate systems according to the method shown above, and then calculate the rain flow according to the traditional method to obtain the Markov matrix in each direction.
  • the present invention checks and optimizes the main structure of the tower and the single pile;
  • the main check of the tower structure mainly includes: the static strength of the tower wall, the stability of the tower and the fatigue strength of the tower welding seam. .
  • the static strength of the tower cylinder wall is determined according to the fourth strength theory, and the calculation method of the safety factor of the cylinder wall static strength is shown in formula (1).
  • NDT According to DIN 18800-1, the static strength of the joint of the weld that meets this requirement is determined by the base metal, and there is no need to calculate the static strength of the weld.
  • ⁇ M is the safety factor of the material
  • f y,k is the yield strength of the material
  • is the equivalent stress on each section of the tower.
  • the stability analysis of the tower adopts the standard DIN EN 1993-1-6, and the stability analysis of the steel tower is based on the thin shell theory. Calculation; calculation method of the cylindrical shell stability safety factor under the action of axial pressure, under the action of shear force, under the action of hoop pressure and the combined action of these three forces and the condition that the cylindrical shell does not suffer from axial instability As shown in formulas (2)-(5):
  • ⁇ x , Rd is the critical stress value of axial instability of cylindrical shell
  • ⁇ x , Ed is the calculated stress value of axial instability of cylindrical shell
  • ⁇ x ⁇ , Rd is the critical stress value of actual shear instability of cylindrical shell
  • ⁇ x ⁇ , Ed is the calculated stress value of the cylindrical shell shear instability
  • ⁇ ⁇ , Rd is the critical stress value of the cylindrical shell circumferential instability
  • ⁇ ⁇ , Ed is the calculated stress value of the cylindrical shell circumferential instability
  • kx, k ⁇ , k ⁇ , ki is a dimensionless parameter.
  • the fatigue calculation of tower welds adopts the nominal stress method; there are three types of tower welds, namely longitudinal welds, transverse welds and internal attachment welds.
  • the Markov matrix and the S-N curve can obtain the cumulative fatigue damage of the tower weld, and the fatigue safety factor of the tower weld must satisfy the conditions of formula (6):
  • the check of the main body of the single pile foundation structure mainly includes: the axial bearing capacity, the check of the UC value of the ultimate working condition node, the check of the fatigue strength and the angle of the soil surface.
  • Q d is the design value of the axial bearing capacity of the driven single pile
  • Q E is the calculated value of the axial bearing capacity of the driven single pile.
  • the fatigue analysis of the single pile foundation structure shall comply with the relevant provisions of the current national standard "Recommended Practice for Fatigue Strength Analysis of Offshore Steel Structures” (SY/T 10049). According to the Markov matrix and the S-N curve, the cumulative fatigue damage of the weld can be obtained.
  • the fatigue damage value of the single pile weld should meet the following conditions:
  • the total rotation angle at the soil surface of the single pile shall not exceed 0.5°, including the installation deviation angle of the single pile body at the soil surface, and the permanent cumulative corner deformation.
  • the verticality of the pile body after the pile driving is completed is controlled at 0.25° (that is, the installation deviation angle is 0.25°)
  • the allowable value ⁇ of the permanent cumulative soil surface rotation angle of the pile foundation is 0.25° during the calculation, namely:
  • Figure 1a shows the structure of a monopile foundation for offshore wind turbines, including units, towers, and monopile foundations, subject to constraints from wind, waves, currents, and geotechnical constraints. Based on the integrated design of load-control-tower-foundation, it includes the following steps:
  • S1 estimates loads based on tower configuration, tower bottom and monopile diameter.
  • S2 gives the initial design of the tower and foundation, including information on segments, diameters, and wall thicknesses.
  • S3 uses Bladed for integrated modeling and integrated load calculations.
  • S4 simultaneously performs tower structure design optimization and foundation structure design optimization.
  • the convergence criteria include: whether the frequency difference between the unit adaptability and the support structure of the previous round is within 1%; whether the quality difference with the support structure of the previous round is within 1%, and the unit adaptability includes blades, Ultimate and fatigue strength of main bearings, pitch bearings, yaw bearings, generators and bases.
  • [x 1 , x 2 , x 3 ...] are the tower wall thickness, single pile wall thickness, yaw, pitch and torque control strategy parameters; m tower + single pile is the tower and single pile total mass.
  • the method of the invention provides an integrated cost-reducing optimization design method for the support structure of an offshore wind turbine. Damping ratio, 5 Damper, 6 Adopt new type of nailing connection, 7 Cumulative deformation algorithm of mud surface, 8 Large diameter pile-soil effect, 9 Adjust tower structure, 10 Adjust tower, foundation diameter and root opening, Release frequency range to 1P and 3P control, Refinement of geological exploration parameters, Increase the diameter-thickness ratio, Various technical methods such as shortening the pile length are used for targeted improvement and iterative design.
  • step 4 Do the water depth and foundation stiffness of the selected camera site belong to a good position in the whole field (or in the area where it is located)? If no, go to step 4; if yes, go to step 5.
  • step 5 Analyze the rationality of the current design, whether the margins are small in the ultimate strength, fatigue strength, deformation requirements, frequency requirements, and local and global buckling of the structure. If yes, go to step 11, if not, go to step 5.
  • step 10 Judge whether the frequency requirement is a single control factor: if not, go to step 10; Release frequency range to 1P and 3P control, To optimize methods such as the refinement of geological exploration parameters, go to step 11.
  • step 11 Determine whether the local and global buckling of the structure is the controlling factor: if not, go to step 12; if so, pass Increase the diameter-thickness ratio, To optimize methods such as shortening the pile length, perform step 11.
  • Table 3 shows the comparison of the schemes before and after the optimized design. As can be seen from the table, the one before optimization is 1 section, and the optimized scheme is straight section 2; It is 0.235Hz. Due to the problem of construction period, the host manufacturer is not required to use it. Open up the frequency range to other technical methods such as 1P and 3P control.
  • the tower of a single unit is 2.3t heavier, the single pile is lighter by 64.5t, and the total mass of the single tower and foundation is reduced by 62.2t.
  • the material cost will be saved by a total of 53.9 million yuan if calculated at 13,000 yuan per ton of material.
  • At least 7 months should be reserved before hoisting for design, procurement, transportation and manufacturing.
  • the main engine factory and the design institute promise to provide customized design, mainly because the drawings of the accessories in the tower of the main engine factory need to be redrawn, which will take about 2-3 months.
  • the recommended use scenario of the integrated design technical scheme the single-pile foundation form with a water depth of about 10-20m, the weight reduction effect is expected to reach 10%.
  • the present invention provides the estimated time, and the precise design and procurement time need to be determined according to the supplier's ability, construction schedule, weather and other conditions.
  • the integrated design method of the present invention can find the lightest global optimal design of the overall support structure, which is an effective method to reduce the cost of offshore wind power; in the offshore wind power bidding stage, the rules for the bidding of wind turbine manufacturers with the basic engineering quantity plan will be formulated, and the In the detailed design stage, it is required to adopt an integrated experimental design scheme to find the global optimal design with the minimum total mass of the tower and single pile.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Wind Motors (AREA)
  • Foundations (AREA)

Abstract

本发明公开一种海上风机支撑结构整体化降本优化设计方法,在已给出全场设计的情况下,进行降本优化设计给出实施流程和技术手段,根据实际项目已有设计控制因素,采用①选用合适机位点及其风参、水深、地勘参数、②一体化载荷、③优化控制策略、④提高阻尼比、⑤阻尼器、⑥采用新型射钉连接、⑦泥面累积变形算法、⑧大直径桩土效应、⑨调整塔架构型、⑩调整塔架、基础直径和根开、⑪放开频率范围至1P和3P控制、⑫地勘参数精细化处理、⑬增大径厚比、⑭缩短桩长等多种技术手段进行针对性的改进和迭代设计,能站在寻找全局最优设计进行机组-控制-塔架-基础一体化设计,可以有效降低支撑结构设计载荷,减少支撑结构造价,降低海上风电度电成本。

Description

一种海上风机支撑结构整体化降本优化设计方法
本申请要求于2021年04月27日提交中国专利局、申请号为202110462452.1、发明名称为“一种海上风机支撑结构整体化降本优化设计方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于海上风力发电机组支撑结构设计技术领域,特别涉及一种海上风机支撑结构整体化降本优化设计方法。
背景技术
海上风电资源储量丰富,规模潜力大,电能品质较优,靠近负荷中心,近海水深5~25m和25~50m海域内100m高度风能资源技术开发量分别为2.1亿kW和1.9亿kW,可作为承载我国能源结构转型的重要战略支撑之一。然而,海上风电发展面临降本压力,距离平价有较大距离。从目前来看,现有海上风电产品及技术实现平价难度大,新增招标增量有限,新增装机量下降。这要求整个行业打破技术壁垒,实现产业链协同,将实际项目的工程经验加快技术创新,最终达到实现海上风电平价上网的目的。
海上风电投资总成本中,风机支撑结构(包括塔架和基础)约占22%左右,降低海上风电支撑结构成本能够有效降低度电成本。当前海上风电项目中,在招主机标时会对风机厂商提供的基础顶载荷和塔架质量进行评分,在招设计标时很少对设计院提供的基础质量进行评分;标后详细设计阶段时风机厂商和设计院依次分别对塔架和基础进行优化设计。在此过程中,风机厂商与设计院没有采用一体化试验设计方法,因此在实际工程项目中出现了塔架很轻,基础却很重;整体支撑结构频率下限由非1P、3P频率决定的载荷适用频率范围控制;塔架分段都是锥段设计,导致设计院需要加粗单桩直径来补偿频率达到下限要求等现象。这都造成了业主需要付出更多不必要的成本。
2012年,Rad Haghi等人对西门子海上SWT3.6-107机型的塔架和单桩基础的壁厚同时进行优化,以整体支撑结构的质量最小为目标函数,以结构的局 部和整体屈曲、频率和疲劳损伤为约束,最终达到了12.1%的减重成果。2012年,T.Fischer等人在德国北海某项目中以降低支撑结构气动载荷为目标函数,通过优化控制策略降低支撑结构疲劳载荷,使整体支撑结构减重9%。2017年,Theo Gentils等人采用有限元方法对支撑结构进行分析,研究结果表明疲劳和频率是主要的控制约束,通过遗传算法对支撑结构的几何参数进行优化可以达到减重19.8%的成果。
也有科研人员从结构角度更利于进行优化设计。2014年,赵向前等人提出在机组与基础一体化设计中,从整体设计、优化控制策略、优化叶片和放宽频率约束开展工作,有望实现10%的成本降低。2016年,张博等人研究了海上风机一体化载荷仿真方法,对比了半一体化和一体化载荷仿真的差异,通过设计案例验证了一体化载荷仿真方法可以有效优化基础设计,降低风电场造价。2019年,田德等人考虑基础对极限设计载荷的影响,在考虑基础柔性条件下以最小化结构重量为目标对某5MW近海单桩式风电机组支撑结构进行优化,总体重量降低了7.14%。2019年,周昳鸣等人对比了整体优化设计方法与分步迭代设计方法的流程和优化列式,把设计域扩大到整体支撑结构寻找全局最优的设计。
但是,以上研究工作没有针对国内海上风电行业的分工综合了环境参数精细化处理,机组-控制-塔架-基础一体化设计,标准规范参数改进形成系统性方案。
发明内容
为了解决现有技术中存在的问题,本发明提供一种基于代理模型的海上风机支撑结构优化设计方法,满足并完成对工程项目降本创新和成果申报的需求,突破海上风机-塔架-基础一体化优化设计技术,解决了支撑结构分割孤立设计的难题。
为了实现上述目的,本发明采用的技术方案是:一种海上风机支撑结构整体化降本优化设计方法,包括以下步骤:
步骤1,确定机位点环境参数;
步骤2,判断所述机位点的水深和地基刚度在其所处的风场或所在分区的位置是否达到预设点位,若否,执行步骤3;若是,执行步骤4;
步骤3,根据海上风机支撑结构的施工顺序、机位点的水深以及地质条件信息,执行①更新机位点及其环境参数后返回步骤1;
步骤4,分析海上风机支撑结构当前设计中极限强度、疲劳强度、变形要求、频率要求以及径厚比和桩长是否小于设定值;若是,则执行步骤11,若否,则执行步骤5;
步骤5,判断极限强度是否为单一控制因素,若否,则执行第6步;若是,则采用②一体化载荷和/或③优化控制策略方法优化,执行第10步;
步骤6,判断疲劳强度是否为单一控制因素:若否,则执行第7步;若是,则采用②一体化载荷、③优化控制策略、④提高阻尼比、⑤阻尼器和⑥采用新型射钉工艺的方法优化,执行第10步;
步骤7,判断变形要求是否为单一控制因素:若否,则执行第8步;若是,则采用②一体化载荷、③优化控制策略以及⑦泥面累积变形算法进行优化,执行第10步;
步骤8,判断频率要求是否为单一控制因素:若否,则执行第9步;若是,则采用⑧大直径桩土效应、⑨调整塔架构型、⑩调整塔架、基础直径和根开、
Figure PCTCN2021114892-appb-000001
放开频率范围至1P和3P控制以及
Figure PCTCN2021114892-appb-000002
地勘参数精细化处理的方法进行优化,执行第10步;
步骤9,判断径厚比和桩长是否为控制因素:若否,则执行第11步;若是,则通过
Figure PCTCN2021114892-appb-000003
增大径厚比和
Figure PCTCN2021114892-appb-000004
缩短桩长的方法进行优化,执行第10步;
步骤10,进行载荷-控制-塔架-基础整体化设计;
步骤11,得到设计结果,设计结束。
第10步载荷-控制-塔架-基础迭代设计流程,包括以下步骤:
S1,根据塔架构型、塔底和单桩直径预估载荷;
S2,给出塔架和基础的初始设计,包含分段、直径、壁厚以及对齐方式,所述对齐方式为外径对齐、内径对齐或中径对齐;
S3,使用Bladed进行一体化建模并进行一体化载荷计算;
S4,同步进行塔架结构设计优化和基础结构设计优化;
S5,检查是否满足收敛准则,收敛准则主要包括:机组适应性,包括叶片、主轴承、变桨轴承、偏航轴承、发电机以及底座的极限和疲劳强度;相邻两次所得支撑结构频率差是否在1%以内,相邻两次所得支撑结构质量差异是否在 1%以内;
S6,如果满足收敛准则,则迭代设计结束;如果不满足,则对控制策略、塔架和基础结构进行整体优化设计,并把优化后的结果返回S3,优化列式如下:
find:[x 1,x 2,x 3...]
min:m 塔架+单桩
subject to:SRF 1,2,3,4,5≥1
min(SRF 6(θ))≥1
Q E≤Q d
UC≤1
Damage≤1
Δ θ≤0.25°
其中,[x 1,x 2,x 3...]为塔架壁厚、单桩壁厚、偏航、变桨及转矩控制策略参数;m 塔架+单桩为塔架和单桩的总质量;
S7,迭代设计结束,输出响应值,所述响应值包括塔架质量、单桩质量、频率、塔底极限和疲劳载荷。
使用Bladed进行一体化建模并进行一体化载荷计算时,一体化建模时包括环境条件输入和支撑结构模型搭建两方面,其中,环境条件输入包括风资源参数、海洋水文参数、工程地质参数及其他特殊工况,特殊工况包括海冰、地震或台风;支撑结构模型包括机头、塔架以及基础,其中,基础包括泥面以下部分。
所述优化方法中:①更新机位点及其环境参数、③优化控制策略以及⑨调整塔架构型的措施适用于所有海上风机。
所述优化方法中:②一体化载荷适用于水深大、波浪力大的服役条件,⑨调整塔架构型措施适用于所有基础结构。
所述优化方法中:⑩调整塔架、基础直径和根开措施适用于水深较大、结构直径和刚度不均匀变化的工况,
Figure PCTCN2021114892-appb-000005
放开频率范围至1P和3P控制适用于控制因素为主机厂给出的频率范围,且比规范给出的[1P×110%,3P×90%]更窄的工况,
Figure PCTCN2021114892-appb-000006
地勘参数精细化处理的措施适用于结构受频率控制的工况。
所述优化方法中:⑤使用阻尼器适用于结构受到疲劳控制,采用一阶和二 阶阻尼器降载,⑥采用新型射钉连接的措施适用于塔架全部受到疲劳强度控制的工况,
Figure PCTCN2021114892-appb-000007
增大径厚比的措施适用于单桩的壁厚由构造要求控制,通过增加D/t减少壁厚,
Figure PCTCN2021114892-appb-000008
缩短桩长的措施适用于对桩长进行鲁棒性设计的工况。
所述优化方法中:④提高阻尼比的措施适用于结构由疲劳控制的场景,⑦泥面累积变形算法的措施适用于由泥面转角控制的场景,采用泥面累积变形算法结合极限强度和疲劳强度降载;⑧大直径桩土效应适用于桩径大于5m的大直径单桩基础。
与现有技术相比,本发明至少具有以下有益效果:本发明与现有国内海上支撑结构分布迭代设计方法相比,能够精细化处理环境参数,基于寻找全局最优设计进行机组-控制-塔架-基础一体化设计,改进标准规范参数,协同多单位合作系统性给出整体设计方案;能有效降低支撑结构设计载荷,减少支撑结构重量和造价,降低海上风电度电成本;满足并完成对工程项目降本创新和成果申报的需求,突破海上风机-塔架-基础一体化优化设计技术,解决了支撑结构分割孤立设计的难题。
附图说明
图1a是海上支撑结构示意图;
图1b是海上风机载荷计算的塔架坐标系示意图;
图2是海上风机支撑结构整体化降本优化设计方法流程;
图3是载荷-控制-塔架–基础整体迭代设计流程;
图4项目落地方案进度控制示意图。
具体实施方式
下面结合图2、图3、图4和具体实施方式对本发明作进一步详细说明。
一种基于代理模型的海上风机支撑结构优化设计方法,图3中为代理模型优化算法的一般流程图,一般包括以下步骤:海上支撑结构受到的载荷主要来自于风、浪、流。在支撑结构迭代计算中,一体化建模及载荷计算、塔架和基础结构设计是主要内容。
作为示例,本发明基于采用GH-Bladed软件对风机载荷进行一体化建模和载荷计算,一体化建模包含环境条件输入和支撑结构模型搭建两方面。其中, 环境条件包括风资源参数、海洋水文参数、工程地质参数及其他特殊工况(海冰、地震、台风);支撑结构模型包括机头、塔架、基础(包括泥面以下部分)。依据机组运行状态,将不同环境参数,控制参数以及机组运行情况进行组合,可分为正常发电,发电+故障工况,启机工况,停机工况,紧急停机,空转,空转+故障,运维8个类别的工况组合(DLC,Design Load Case)。
极限载荷的后处理根据IEC61400-3规范的要求,需要对极限工况进行分组统计:定常风工况和阵风工况,直接以单个工况参与最值统计;6个种子的湍流风工况,以同风速下不同种子的12个工况为一组,选取其中最接近本组平均结果的工况为目标工况,再参与最值统计;12个种子的湍流风工况,以同风速下不同种子的12个工况为一组,在每组中前6个工况中选取载荷选取其中最接近6个工况平均结果的工况为目标工况,再参与最值统计。表1中给出了极限载荷的安全系数。图1b给出了海上风机载荷计算的塔架坐标系,其中:原点位于塔架轴与基础平面交叉点处;XF为水平方向;ZF为沿塔架轴方向垂直向上方向;YF为水平指向侧方。
考虑风浪异向影响,对海上塔架焊和单桩缝疲劳计算时考虑Mx、My的影响,首先将Mx、My随时间变化的载荷时序在塔架圆周方向投影,投影角度为[0,2π],按照上面所示方式得到不同坐标系下的载荷时间历程分量,然后再按照传统方法进行雨流计算得到每个方向上的Markov矩阵。
表1 极限载荷的安全系数
Figure PCTCN2021114892-appb-000009
塔架主体结构设计
作为示例,本发明对塔架和单桩的主体结构进行校核和优化设计;塔架结构主体校核主要包括:塔架筒壁静强度,塔架稳定性和塔架焊缝疲劳强度校核。
塔架筒壁静强度根据第四强度理论进行判定,筒壁静强度安全系数计算方法如公式(1)所示;对于质量等级为一级的全熔透对接满焊塔架焊缝,需要进行无损探伤。根据DIN 18800-1,满足该要求焊缝的连接部位的静强度由母材决定,无须对焊缝静强度进行计算。
Figure PCTCN2021114892-appb-000010
其中:γ M为材料安全系数;f y,k为材料的屈服强度,σν为塔架各截面上的等效应力。
塔架稳定性分析采用标准DIN EN 1993-1-6,钢制塔架稳定性分析基于薄壳理论,针对轴向压力、剪切应力、环向压力及上述三种应力共同作用下的稳定性进行计算;轴压力作用下的、剪力作用下的、环向压力作用下的和这三种力综合作用下的圆柱壳稳定性安全系数及圆柱壳不发生轴向失稳的条件的计算方法如公式(2)-(5)所示:
Figure PCTCN2021114892-appb-000011
Figure PCTCN2021114892-appb-000012
Figure PCTCN2021114892-appb-000013
Figure PCTCN2021114892-appb-000014
其中:σ x,Rd为圆柱壳轴向失稳临界应力值;σ x,Ed为圆柱壳轴向失稳计算应力值;τ ,Rd为圆柱壳实际剪切失稳临界应力值;τ ,Ed为圆柱壳剪切失稳计算应力值;σ θ,Rd为圆柱壳环向失稳临界应力值;σ θ,Ed为圆柱壳环向失稳计算应力值;kx,kτ,kθ,ki为无量纲参数。
塔架焊缝疲劳计算采用名义应力法;塔架焊缝有三类,分别为纵向焊缝、横向焊缝和内附件焊缝,计算时选取三者之中最不利的疲劳设计等级,根据得到的Markov矩阵和S-N曲线可以得到塔架焊缝疲劳累计损伤,塔架焊缝的疲劳安全系数需满足式(6)条件:
SRF 6≥1      (6)
单桩主体结构设计
单桩基础结构主体校核主要包括:轴向承载力,极限工况节点UC值校核,疲劳强度强度和泥面转角校核。
单桩基础竖向承载力校核公式为:
Q E≤Q d        (7)
其中:Q d为打入桩单桩轴向承载力设计值;Q E为打入桩单桩轴向承载力计算值。
承受压缩和弯曲联合作用、拉伸和弯曲联合作用、轴向拉伸和环向压缩同时发生的圆柱形构件,在其全长的各点上均应满足下式(8):
UC≤1         (8)
单桩基础结构的疲劳分析,应符合国家现行标准《海上钢结构疲劳强度分析推荐作法》(SY/T 10049)的有关规定。根据Markov矩阵和S-N曲线可以得到焊缝疲劳累计损伤,单桩焊缝的疲劳损伤值Damage应满足下列条件:
Damage≤1      (9)
根据DNVGL-ST-0126规范,单桩泥面处总转角不超过0.5°,其中包括单桩桩体在泥面处的安装偏差角度,以及永久累计转角变形。通常桩体沉桩完成后的垂直度控制在0.25°(即安装偏差角度为0.25°),在计算时桩基的永久累计泥面转角允许值△θ为0.25°,即:
Δ θ≤0.25°        (10)
此外还需对单桩变形校核如下三个指标:
a)泥面水平位移不超过L/500(L为桩体入土深度);
b)桩端位移不超过允许值(通常取L/5000和10mm中的较小值作为允许值);
c)基础的最大沉降量不超过100mm。
载荷-控制-塔架-基础迭代设计流程
图1a给出了一种海上风机单桩基础的结构,包机组、塔架、单桩基础,收到来自风、浪、流的作用和岩土的约束。基于载荷-控制-塔架-基础一体化设计,包括以下步骤:
S1根据塔架构型、塔底和单桩直径预估载荷。
S2给出塔架和基础的初始设计,包含分段、直径、壁厚等信息。
S3使用Bladed进行一体化建模并进行一体化载荷计算。
S4同步进行塔架结构设计优化和基础结构设计优化。
S5检查是否满足收敛准则,收敛准则包括:机组适应性与上一轮的支撑结构频率差异是否在1%以内;与上一轮的支撑结构质量差异是否在1%以内,机组适应性包括叶片、主轴承、变桨轴承、偏航轴承、发电机以及底座的极限和疲劳强度。
S6如果满足收敛准则,则迭代设计结束;如果不满足,则对控制策略、塔架和基础结构进行整体优化设计,并把优化后的结果返回3),优化列式如下:
find:[x 1,x 2,x 3...]
min:m 塔架+单桩
subject to:SRF 1,2,3,4,5≥1
min(SRF 6(θ))≥1
Q E≤Q d
UC≤1
Damage≤1
Δ θ≤0.25°
其中,[x 1,x 2,x 3...]为塔架壁厚、单桩壁厚、偏航、变桨及转矩控制策略参数;m塔架+单桩为塔架和单桩的总质量。
本发明方法给出一种海上风机支撑结构整体化降本优化设计方法,分别采用①选用合适机位点及其风参、水深、地勘参数、②一体化载荷、③优化控制策略、④提高阻尼比、⑤阻尼器、⑥采用新型射钉连接、⑦泥面累积变形算法、⑧大直径桩土效应、⑨调整塔架构型、⑩调整塔架、基础直径和根开、
Figure PCTCN2021114892-appb-000015
放开频率范围至1P和3P控制、
Figure PCTCN2021114892-appb-000016
地勘参数精细化处理、
Figure PCTCN2021114892-appb-000017
增大径厚比、
Figure PCTCN2021114892-appb-000018
缩短桩长等多种技术方法进行针对性的改进和迭代设计。
图2给出了具体技术流程:
1)开始设计
2)确定更新机位点环境参数
3)选中机位点水深和地基刚度在全场(或所在分区)是否属于较好位置?若否,执行第4步;若是,执行第5步。
4)根据施工顺序、水深、地质条件等信息,①选用合适的机位点及其环境参数。回到第2步。
5)分析当前设计合理性,在极限强度、疲劳强度、变形要求、频率要求和结构的局部和整体屈曲中是否裕度都较小。若是,则执行步骤11,若否,则执行步骤5。
6)判断极限强度是否为单一控制因素:若否,则执行第7步;若是,则采用②一体化载荷、③优化控制策略等方法优化,执行第11步。
7)判断疲劳强度是否为单一控制因素:若否,则执行第8步;若是,则采用②一体化载荷、③优化控制策略、④提高阻尼比、⑤阻尼器、⑥采用新型射钉工艺等方法优化,执行第11步。
8)判断变形要求是否为单一控制因素:若否,则执行第9步;若是,则采用②一体化载荷、③优化控制策略、⑦泥面累积变形算法等方法,执行第11步。
9)判断频率要求是否为单一控制因素:若否,则执行第10步;若是,则采用⑧大直径桩土效应、⑨调整塔架构型、⑩调整塔架、基础直径和根开、
Figure PCTCN2021114892-appb-000019
放开频率范围至1P和3P控制、
Figure PCTCN2021114892-appb-000020
地勘参数精细化处理等方法优化,执行第11步。
10)判断结构的局部和整体屈曲是否为控制因素:若否,则执行第12步;若是,则通过
Figure PCTCN2021114892-appb-000021
增大径厚比、
Figure PCTCN2021114892-appb-000022
缩短桩长等方法优化,执行第11步。
11)进行载荷-控制-塔架-基础整体化设计。
12)设计结束。
本发明所述的一种海上风机支撑结构整体化降本优化设计方法,其中采用的14项技术方法的成熟度、适用场景及效果如下:
表2 各技术方法成熟度及应用场景
Figure PCTCN2021114892-appb-000023
Figure PCTCN2021114892-appb-000024
Figure PCTCN2021114892-appb-000025
具体的,在采用该方法对已有机位点结构进行降本优化设计时,需结合项目实际采购、备料、下料、制造、单桩施工、运输和吊装工期、船舶资源、主机厂和设计院人力资源、并网时间要求制定严格的项目实施落地计划。
该风场容量为300MW,采用4.5MW机组,基础顶高程13m,轮毂中心高度94m塔底直径5.5m,三段塔筒,底段高度15m,中间段高度33m,顶段高度33m。当前结构频率0.235Hz,主机商提出频率适用范围为0.235Hz-0.320Hz。
根据图2给出的流程图,实施方案操作如下:
1)开始设计
2)确定更新机位点环境参数
3)选中机位点水深和地基刚度在全场属于较好位置。
4)分析当前设计合理性:否。当前设计受到频率要求约束,其他极限强度、疲劳强度和变形要求都留有裕度。
5)判断极限强度是否为单一控制因素:否。
6)判断疲劳强度是否为单一控制因素:否。
7)判断变形要求是否为单一控制因素:否。
8)判断频率要求是否为单一控制因素:是。考虑当前已对单桩进行施工,且主体钢板已采购尚未开始制造,因此仅采用⑨调整塔架构型、⑩调整塔架、单桩直径两种方法进行优化。
9)采用载荷-控制-塔架-基础整体迭代设计。回到第4步。
10)分析当前设计合理性:是。
11)判断极限强度是否为单一控制因素:否。
12)判断疲劳强度是否为单一控制因素:否。
13)判断变形要求是否为单一控制因素:否。
14)判断频率要求是否为单一控制因素:否。
15)判断结构的局部和整体屈曲是否为控制因素:否。
16)设计结束。
表3给出了优化设计前后方案的对比。从表中可以看到,优化前的为1段,优化后的方案直段为2段;优化前的方案单桩直径为6.50m,优化后的方案单桩直径6.30m;优化后的频率仍为0.235Hz,由于工期的问题,没有要求主机厂家采用
Figure PCTCN2021114892-appb-000026
放开频率范围至1P和3P控制等其他技术方法。
通过优化,单台机组塔架重了2.3t,单桩轻了64.5t,单台塔架和基础总质量减重62.2t。以风场300MW共计60台机组,每吨材料1.3万元计算,共节约5390万元材料成本。
表3 优化前后方案对比
Figure PCTCN2021114892-appb-000027
所需时间条件
距吊装至少需留足7个月,用于设计、采购、运输、制造。
所需场景条件
主机厂和设计院承诺提供定制化设计,主要是主机厂的塔架内附件图纸需重新绘制,约需2-3个月。
考虑施工顺序和并网时间。考虑当前国补时间需全场机组全部并网,且目前在建项目已采购钢板、附件、法兰,直接实施会影响项目进度。
整体化设计技术方案推荐使用场景:水深10-20m左右的单桩基础形式,预计减重效果能达10%。
方案实施步骤
项目甘特图如图4所示,
确定最优设计方案(14天);
完成迭代设计,确定塔架和基础主体设计参数(21天);
完成塔架主体备料图(7天),单桩主体备料图(7天);
开展确定塔架-基础接口图(21天);
采购钢板及法兰(60天),采购单桩钢板(45天);
绘制塔架施工图(30天)和单桩施工图(30天);
塔架内附件拆图及采购(60天),单桩福建拆图及采购(45天)
陆上塔架制造拼装(21天);
单桩制造(14天)
塔架及机组安装(7天)。
本发明给出的是预估时间,精确的设计和采购时间需视供应商能力、工期安排、天气等情况确定。本发明整体化设计方法可以找到整体支撑结构最轻的全局最优设计,是降低海上风电度电成本的有效方法;在海上风电招标阶段将制定风机厂商带基础工程量方案投标的规则,并将在详设阶段要求采用整体化试验设计方案以找塔架和单桩总质量最小的全局最优设计。

Claims (8)

  1. 一种海上风机支撑结构整体化降本优化设计方法,其特征在于,包括以下步骤:
    步骤1,确定机位点环境参数;
    步骤2,判断所述机位点的水深和地基刚度在其所处的风场或所在分区的位置是否达到预设点位,若否,执行步骤3;若是,执行步骤4;
    步骤3,根据海上风机支撑结构的施工顺序、机位点的水深以及地质条件信息,执行①更新机位点及其环境参数后返回步骤1;
    步骤4,分析海上风机支撑结构当前设计中极限强度、疲劳强度、变形要求、频率要求以及径厚比和桩长是否小于设定值;若是,则执行步骤11,若否,则执行步骤5;
    步骤5,判断极限强度是否为单一控制因素,若否,则执行第6步;若是,则采用②一体化载荷和/或③优化控制策略方法优化,执行第10步;
    步骤6,判断疲劳强度是否为单一控制因素:若否,则执行第7步;若是,则采用②一体化载荷、③优化控制策略、④提高阻尼比、⑤阻尼器和⑥采用新型射钉工艺的方法优化,执行第10步;
    步骤7,判断变形要求是否为单一控制因素:若否,则执行第8步;若是,则采用②一体化载荷、③优化控制策略以及⑦泥面累积变形算法进行优化,执行第10步;
    步骤8,判断频率要求是否为单一控制因素:若否,则执行第9步;若是,则采用⑧大直径桩土效应、⑨调整塔架构型、⑩调整塔架、基础直径和根开、
    Figure PCTCN2021114892-appb-100001
    放开频率范围至1P和3P控制以及
    Figure PCTCN2021114892-appb-100002
    地勘参数精细化处理的方法进行优化,执行第10步;
    步骤9,判断径厚比和桩长是否为控制因素:若否,则执行第11步;若是,则通过
    Figure PCTCN2021114892-appb-100003
    增大径厚比和
    Figure PCTCN2021114892-appb-100004
    缩短桩长的方法进行优化,执行第10步;
    步骤10,进行载荷-控制-塔架-基础整体化设计;
    步骤11,得到设计结果,设计结束。
  2. 根据权利要求1所述的海上风机支撑结构整体化降本优化设计方法,其特征在于,第10步所述载荷-控制-塔架-基础迭代设计流程,包括以下步骤:
    S1,根据塔架构型、塔底和单桩直径预估载荷;
    S2,给出塔架和基础的初始设计,包含分段、直径、壁厚以及对齐方式,所述对齐方式为外径对齐、内径对齐或中径对齐;
    S3,使用Bladed进行一体化建模并进行一体化载荷计算;
    S4,同步进行塔架结构设计优化和基础结构设计优化;
    S5,检查是否满足收敛准则,收敛准则主要包括:机组适应性,包括叶片、主轴承、变桨轴承、偏航轴承、发电机以及底座的极限和疲劳强度;相邻两次所得支撑结构频率差是否在1%以内,相邻两次所得支撑结构质量差异是否在1%以内;
    S6,如果满足收敛准则,则迭代设计结束;如果不满足,则对控制策略、塔架和基础结构进行整体优化设计,并把优化后的结果返回S3,优化列式如下:
    find:[x 1,x 2,x 3...]
    min:m 塔架+单桩
    subject to:SRF 1,2,3,4,5≥1
    min(SRF 6(θ))≥1
    Q E≤Q d
    UC≤1
    Damage≤1
    Δ θ≤0.25°
    其中,[x 1,x 2,x 3...]为塔架壁厚、单桩壁厚、偏航、变桨及转矩控制策略参数;m 塔架+单桩为塔架和单桩的总质量;
    S7,迭代设计结束,输出响应值,所述响应值包括塔架质量、单桩质量、频率、塔底极限和疲劳载荷。
  3. 根据权利要求2所述的海上风机支撑结构整体化降本优化设计方法,其特征在于,使用Bladed进行一体化建模并进行一体化载荷计算时,一体化建模时包括环境条件输入和支撑结构模型搭建两方面,其中,环境条件输入包括风资源参数、海洋水文参数、工程地质参数及其他特殊工况,特殊工况包括海冰、地震或台风;支撑结构模型包括机头、塔架以及基础,其中,基础包括泥面以下部分。
  4. 根据权利要求1所述的海上风机支撑结构整体化降本优化设计方法,其特征在于,所述优化方法中:①更新机位点及其环境参数、③优化控制策略以及⑨调整塔架构型的措施适用于所有海上风机。
  5. 根据权利要求1所述的海上风机支撑结构整体化降本优化设计方法,其特征在于,所述优化方法中:②一体化载荷适用于水深大、波浪力大的服役条件,⑨调整塔架构型措施适用于所有基础结构。
  6. 根据权利要求1所述的海上风机支撑结构整体化降本优化设计方法,其特征在于,所述优化方法中:⑩调整塔架、基础直径和根开措施适用于水深较大、结构直径和刚度不均匀变化的工况,
    Figure PCTCN2021114892-appb-100005
    放开频率范围至1P和3P控制适用于控制因素为主机厂给出的频率范围,且比规范给出的[1P×110%,3P×90%]更窄的工况,
    Figure PCTCN2021114892-appb-100006
    地勘参数精细化处理的措施适用于结构受频率控制的工况。
  7. 根据权利要求1所述的海上风机支撑结构整体化降本优化设计方法,其特征在于,所述优化方法中:⑤使用阻尼器适用于结构受到疲劳控制,采用一阶和二阶阻尼器降载,⑥采用新型射钉连接的措施适用于塔架全部受到疲劳强度控制的工况,
    Figure PCTCN2021114892-appb-100007
    增大径厚比的措施适用于单桩的壁厚由构造要求控制,通过增加D/t减少壁厚,
    Figure PCTCN2021114892-appb-100008
    缩短桩长的措施适用于对桩长进行鲁棒性设计的工况。
  8. 根据权利要求1所述的海上风机支撑结构整体化降本优化设计方法,其特征在于,所述优化方法中:④提高阻尼比的措施适用于结构由疲劳控制的场景,⑦泥面累积变形算法的措施适用于由泥面转角控制的场景,采用泥面累积变形算法结合极限强度和疲劳强度降载;⑧大直径桩土效应适用于桩径大于5m的大直径单桩基础。
PCT/CN2021/114892 2021-04-27 2021-08-27 一种海上风机支撑结构整体化降本优化设计方法 WO2022227353A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21938817.0A EP4332825A1 (en) 2021-04-27 2021-08-27 Integrated cost-reducing optimization design method for support structure of offshore wind turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110462452.1A CN113239483B (zh) 2021-04-27 2021-04-27 一种海上风机支撑结构整体化降本优化设计方法
CN202110462452.1 2021-04-27

Publications (1)

Publication Number Publication Date
WO2022227353A1 true WO2022227353A1 (zh) 2022-11-03

Family

ID=77129577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114892 WO2022227353A1 (zh) 2021-04-27 2021-08-27 一种海上风机支撑结构整体化降本优化设计方法

Country Status (3)

Country Link
EP (1) EP4332825A1 (zh)
CN (1) CN113239483B (zh)
WO (1) WO2022227353A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113239483B (zh) * 2021-04-27 2022-12-13 中国华能集团清洁能源技术研究院有限公司 一种海上风机支撑结构整体化降本优化设计方法
CN114856939A (zh) * 2022-05-13 2022-08-05 中国华能集团清洁能源技术研究院有限公司 一种海上风机的降疲劳载荷控制方法、装置和主控制器
CN115059731B (zh) * 2022-05-19 2023-04-07 湖南大学 应用于风机的弹簧摆式碰撞调谐质量阻尼器及设计方法
CN115450820A (zh) * 2022-10-13 2022-12-09 上海能源科技发展有限公司 一种考虑尾流效应的海上风电桩基础防冲刷装置及方法
CN117188510B (zh) * 2023-09-07 2024-05-24 江苏科技大学 一种自振频率可调的海上风电单桩基础及其频率调控方法
CN117313465B (zh) * 2023-09-22 2024-04-19 中国能源建设集团广东省电力设计研究院有限公司 一种适用于大兆瓦海上风力机的阻尼器系统及其优化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101571100A (zh) * 2009-06-16 2009-11-04 中国海洋大学 一种整体桁架式海上风电机组支撑结构
CN102926399A (zh) * 2012-11-13 2013-02-13 国电联合动力技术有限公司 一种海上风机桩基础设计方法及应用
CN109918786A (zh) * 2019-03-07 2019-06-21 龙源(北京)风电工程设计咨询有限公司 一种海上风机基础结构自动分析系统及方法
EP3578809A1 (de) * 2018-06-07 2019-12-11 Innogy SE Anordnungsoptimierung von einer vielzahl von windenergieanlagen
CN113239483A (zh) * 2021-04-27 2021-08-10 中国华能集团清洁能源技术研究院有限公司 一种海上风机支撑结构整体化降本优化设计方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112199789A (zh) * 2020-09-29 2021-01-08 中国电建集团华东勘测设计研究院有限公司 一种中等水深海域桁架式风机基础结构的优化设计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101571100A (zh) * 2009-06-16 2009-11-04 中国海洋大学 一种整体桁架式海上风电机组支撑结构
CN102926399A (zh) * 2012-11-13 2013-02-13 国电联合动力技术有限公司 一种海上风机桩基础设计方法及应用
EP3578809A1 (de) * 2018-06-07 2019-12-11 Innogy SE Anordnungsoptimierung von einer vielzahl von windenergieanlagen
CN109918786A (zh) * 2019-03-07 2019-06-21 龙源(北京)风电工程设计咨询有限公司 一种海上风机基础结构自动分析系统及方法
CN113239483A (zh) * 2021-04-27 2021-08-10 中国华能集团清洁能源技术研究院有限公司 一种海上风机支撑结构整体化降本优化设计方法

Also Published As

Publication number Publication date
CN113239483B (zh) 2022-12-13
CN113239483A (zh) 2021-08-10
EP4332825A1 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
WO2022227353A1 (zh) 一种海上风机支撑结构整体化降本优化设计方法
Van Bussel et al. Reliability, availability and maintenance aspects of large-scale offshore wind farms, a concepts study
Jonkman et al. Offshore code comparison collaboration (OC3) for IEA Wind Task 23 offshore wind technology and deployment
Wen et al. Power fluctuation and power loss of wind turbines due to wind shear and tower shadow
Zahle et al. Aero-elastic optimization of a 10 MW wind turbine
Pavese et al. Aeroelastic multidisciplinary design optimization of a swept wind turbine blade
Ju et al. Fatigue design of offshore wind turbine jacket-type structures using a parallel scheme
Muskulus The full-height lattice tower concept
WO2022027827A1 (zh) 一种水平轴风力发电机组叶片扭转减振装置及方法
CN102840097A (zh) 用于与风力涡轮机一起使用的毂组件及其制造方法
Patryniak et al. Multidisciplinary design analysis and optimisation frameworks for floating offshore wind turbines: State of the art
Damiani Design of offshore wind turbine towers
Shan Load Reducing Control for Wind Turbines.: Load Estimation and Higher Level Controller Tuning based on Disturbance Spectra and Linear.
Brodersen et al. Hybrid damper with stroke amplification for damping of offshore wind turbines
Yang et al. A multi-objective optimization for HAWT blades design by considering structural strength
Koulatsou et al. Resonance investigation and its effects on weight optimization of tubular steel wind turbine towers
El-Baklish et al. Nonlinear model predictive pitch control of aero-elastic wind turbine blades
Ju Increasing the fatigue life of offshore wind turbine jacket structures using yaw stiffness and damping
Li et al. Failure criteria and wind-induced vibration analysis for an offshore platform jacking system
Yang et al. Individual pitch control for wind turbine load reduction including wake modeling
Michalopoulos et al. Simplified fatigue assessment of offshore wind support structures accounting for variations in a farm
Furlanetto et al. Design optimization of tapered steel wind turbine towers by QPSO algorithm
CN113047332B (zh) 一种海上风电单桩基础的塔架及其构型设计方法
CN113408072A (zh) 风力机柔塔系统固有振动特性快速建模及仿真方法
BELLINI Preliminary design of a 20 MW wind turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938817

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021938817

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021938817

Country of ref document: EP

Effective date: 20231127