WO2022027827A1 - 一种水平轴风力发电机组叶片扭转减振装置及方法 - Google Patents

一种水平轴风力发电机组叶片扭转减振装置及方法 Download PDF

Info

Publication number
WO2022027827A1
WO2022027827A1 PCT/CN2020/122262 CN2020122262W WO2022027827A1 WO 2022027827 A1 WO2022027827 A1 WO 2022027827A1 CN 2020122262 W CN2020122262 W CN 2020122262W WO 2022027827 A1 WO2022027827 A1 WO 2022027827A1
Authority
WO
WIPO (PCT)
Prior art keywords
torsional vibration
blade
bearing
vibration damping
main beam
Prior art date
Application number
PCT/CN2020/122262
Other languages
English (en)
French (fr)
Inventor
郑磊
任革学
许世森
郭小江
丁坤
王茂华
陈晓路
史绍平
屠劲林
梁思超
冯笑丹
Original Assignee
中国华能集团清洁能源技术研究院有限公司
华能集团技术创新中心有限公司
华能新能源股份有限公司
华能国际电力股份有限公司江苏清洁能源分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 华能集团技术创新中心有限公司, 华能新能源股份有限公司, 华能国际电力股份有限公司江苏清洁能源分公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2022027827A1 publication Critical patent/WO2022027827A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0296Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor to prevent, counteract or reduce noise emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/06Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to the vibration damping of wind turbine blades, in particular to a torsional vibration damping device and method for horizontal axis wind turbine blades.
  • the design and manufacturing technology of the units has progressed significantly. exhibit nonlinear properties.
  • the blade is generally more flexible, not only limited to the increase of deflection in the direction of swing and swing, but also the deformation in the direction of torsion can not be ignored.
  • the dynamic response of the blade in the flow field is a typical fluid-structure interaction problem.
  • the increase in flexibility makes the interaction between the wind load and its own deformation intensify, and it is possible to excite torsional vibration more easily.
  • the deflection in the swing direction increases, making the resultant force of the aerodynamic load on the airfoil section more likely to deviate from the blade rotation axis, forming a torsional moment; while the structural optimization method determines that the torsional stiffness is not significantly improved, resulting in an increase in torsional deformation and a decrease in torsional natural frequency.
  • aeroelastic instability is more likely to occur.
  • Flutter is a problem of aeroelastic dynamic instability, that is, in a short time (usually tens of seconds to tens of seconds), the amplitude of the blade increases cumulatively, causing the stress to exceed the allowable limit of the material, resulting in cracks, accelerated expansion or even fracture of the blade .
  • the aerodynamic reasons of flutter it can be divided into two categories: the first category is the aeroelastic instability caused by the blade lift system near the stall angle of attack, which is related to airflow separation and field vortex formation. It's called stall chatter.
  • the second type is the coupled self-excited unstable vibration generated by blade torsion and flapping direction, which is not obviously related to airflow separation and boundary layer effects, which is called classical flutter.
  • the deformations in the torsion and swing directions influence each other, so that the wind load and the elastic displacement of the structure form a regular periodic change and satisfy a specific phase relationship.
  • Flutter analysis generally involves the complex structural characteristics of elastic blades, the description of the unsteady flow field around the blade, and the analysis of the mutual coupling mechanism between the two. Therefore, it is very difficult to predict the blade flutter boundary and study the flutter characteristics. Work.
  • This patent attempts to describe a vibration damping device that can absorb the kinetic energy of the torsional vibration of the blades of the horizontal axis wind turbine and accelerate the attenuation of the vibration amplitude, thereby avoiding the occurrence of related aeroelastic instability problems.
  • the research and development of the device does not need to intervene in the design of the whole machine, and can be implemented independently in combination with the blade design, without affecting the safety of the blade itself.
  • the purpose of the present invention is to provide a torsional vibration damping device and method for blades of a horizontal axis wind turbine generator set, which solves the defect that the torsional vibration of the blades of the existing set is not easy to control.
  • the invention provides a torsional vibration damping device for horizontal axis wind turbine blades, which includes a plurality of torsional vibration mechanisms and torsion springs. in the section towards the position;
  • the torsional vibration mechanism includes a bearing and a bearing bracket, wherein the bearing is installed on the bearing bracket; the bearing bracket is fixed on the main beam on the windward side and the main beam on the leeward side;
  • the bearings of two adjacent torsional vibration mechanisms are connected by torsion springs.
  • the bearing bracket and the main beam on the windward side and the main beam on the leeward side of the blade are fixed by bonding.
  • the torsion spring is connected to the fixed part of the corresponding bearing; at other cross-sectional positions, the torsion spring is connected to the rotating part of the corresponding bearing.
  • all the bearing rotating parts and all the torsion springs constitute the torsional vibration system of the torsional vibration damping device, and the torsional natural frequency of the torsional vibration system is consistent with the frequency of the blade torsional vibration.
  • the bearing bracket is an I-shaped structure, an X-shaped structure or an H-shaped structure.
  • a torsional vibration damping method for blades of a horizontal axis wind turbine based on the torsional vibration damping device for a blade of a horizontal axis wind turbine, comprising the following steps:
  • the torsional vibration is transmitted to the torsional vibration system through the main beam of the blade, the bearing bracket, and the fixed part of the bearing in turn, so that the rotating part of the bearing rotates relative to the fixed part of the bearing, which is then damped by the bearing friction.
  • the effect realizes the dissipation of the torsional kinetic energy of the system.
  • the torsional natural frequency of the torsional vibration system of the torsional vibration damping device is consistent with the frequency of the blade torsional vibration.
  • the invention provides a torsional vibration damping device and method for a blade of a horizontal axis wind turbine generator set, which utilizes the characteristics of the blade torsional vibration of the horizontal axis wind turbine generator set, adopts the bearing rotating part-torsion spring system to dynamically absorb the blade torsional vibration kinetic energy, and damps the blade torsional vibration through the bearing friction.
  • the function realizes the dissipation of the kinetic energy of the torsional vibration of the system, thereby realizing the attenuation of the torsional vibration amplitude of the blade; the research and development of this device does not need to intervene in the design of the whole machine, and can be realized independently in combination with the blade design, without affecting the safety of the blade itself.
  • Fig. 1 is the connection schematic diagram of the torsional vibration damping device involved in the present invention
  • FIG. 2 is a schematic cross-sectional view of the torsional vibration mechanism involved in the present invention.
  • a horizontal axis wind turbine blade torsional vibration damping device provided by the present invention includes a plurality of torsional vibration mechanisms and torsion springs 5, and the multiple torsional vibration mechanisms are respectively arranged on the main beam 1 on the windward side and the leeward side. Between the main beams 2, located in the sections of different spanwise positions;
  • the torsional vibration mechanism includes a bearing 4 and a bearing bracket 3, wherein the bearing 4 is installed on the bearing bracket 3; the bearing bracket 3 is fixed on the main beam 1 on the windward side and the main beam 2 on the leeward side superior;
  • the bearings 4 of two adjacent torsional vibration mechanisms are connected by a torsion spring 5 .
  • the bearing bracket 3 is bonded and fixed with the main beam 1 on the windward side of the blade and the main beam 2 on the leeward side of the blade.
  • the torsion spring 5 is connected to the fixed part of the corresponding bearing 4, that is, the part where the bearing 4 is connected to the bearing bracket 3, so as to limit the relative torsional vibration of the torsional vibration damping device; for the remaining cross-sectional positions, the torsion spring 5 is connected to the rotating part of the corresponding bearing 4, that is, the part of the bearing 4 that is not connected to the bearing bracket 3, for releasing the relative torsional vibration of the torsional vibration damping device.
  • All the bearings (4) and all the torsion springs (5) in the torsional vibration damping device constitute a torsional vibration system of the torsional vibration damping device, and the torsional natural frequency of the torsional vibration system is consistent with the frequency of the blade torsional vibration.
  • the bearing bracket 3 is an I-shaped structure, an X-shaped structure or an H-shaped structure.
  • the working principle of the present invention is:
  • the torsional vibration is sequentially transmitted to the torsional vibration system of the torsional vibration damping device through the blade main beam, the bearing bracket, and the bearing fixed part, so that the rotating part of the bearing 4 is fixed relative to the bearing 4 . Part of the rotational movement occurs.
  • the forced vibration of the torsional vibration system is to absorb the torsional vibration kinetic energy from the blade system. Due to the difference in the inherent characteristics of the two systems, the mode shape and amplitude of the torsional vibration are different. The torsional vibration kinetic energy of the system is dissipated through the bearing friction damping effect. , so as to have the effect of attenuation of torsional vibration amplitude.
  • the blade is a slender and variable-section beam structure, and its high-order natural frequency vibration corresponds to higher structural damping and faster system kinetic energy dissipation. Therefore, the blade vibration response is usually formed by the superposition of low-order natural frequency vibration.
  • the excitation frequency is mainly expressed as the first-order torsional natural frequency, and a blade torsional vibration damping device should be designed for it.
  • the relative torsional vibration of the torsional vibration damping device is limited at the relative significant section position of the vibration amplitude, which provides displacement boundary conditions and torsional vibration excitation for the torsional vibration system.
  • the torsional natural frequency of the torsional vibration system is designed to be consistent with the frequency of the torsional vibration of the blade, which is conducive to absorbing the kinetic energy of the blade torsional vibration. .
  • the rotating part of the bearing is different from the first-order torsional mode of the blade, it is beneficial for the rotating part of the bearing to rotate relative to the fixed part of the bearing to form the friction damping effect of the bearing.
  • the main beam is the main load-bearing structure of the blade. It has high rigidity and is distributed along the spanwise direction of the entire blade. It forms a relatively stable structural form with the shear web, which is conducive to eliminating interference and capturing the torsional deformation signal of the section.
  • One or more torsional vibration damping devices can be formed inside the blade to realize the dissipation of torsional vibration kinetic energy of the same-order or multi-order system at the same time, thereby achieving the effect of attenuation of torsional vibration amplitude.
  • the device and the method effectively realize the torsional vibration damping of the blades of the horizontal axis wind turbine.
  • the invention utilizes the torsional vibration characteristics of the horizontal axis wind turbine blade, adopts the bearing rotating part-torsion spring system to dynamically absorb the blade torsional vibration kinetic energy, and realizes the dissipation of the system torsional vibration kinetic energy through the bearing friction damping effect, thereby realizing the blade torsional vibration amplitude.
  • the attenuation of has the following characteristics:
  • the device can effectively reduce the torsional vibration amplitude of the blade.
  • the application does not need to modify the control strategy of the whole machine or independently develop the control system.
  • the research and development does not need to intervene in the design of the whole machine, and it does not need to perform fluid-structure coupling calculations. It is simple to combine the design and test methods of the blade. Easy to do, save time and cost.
  • the device adopts the method of dynamically absorbing torsional vibration kinetic energy, and can achieve the effect of adjusting the blade torsional vibration amplitude reduction effect through the design and optimization of the torsional vibration system.
  • the device can reduce the torsional vibration amplitude of the blade, avoid the occurrence of related aeroelastic instability problems, and ensure the safety of the blade structure.
  • the device does not affect the safety of the blade itself, and at the same time helps to improve the buckling stability of the main beam and shear web of the blade.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Wind Motors (AREA)

Abstract

一种水平轴风力发电机组叶片扭转减振装置及方法,包括多个扭转振动机构和扭转弹簧(5),多个扭转振动机构分别布置在迎风面主梁(1)和背风面主梁(2)之间,位于不同展向位置的截面内;所述扭转振动机构包括轴承(4)和轴承支架(3),其中,所述轴承(4)安装在轴承支架(3)上;所述轴承支架(3)固定在迎风面主梁(1)和背风面主梁上(2);相邻的两个扭转振动机构的轴承(4)之间通过扭转弹簧(5)连接。该装置的研发,无需介入整机设计环节,可结合叶片设计独立实现,不影响叶片自身的安全性。

Description

一种水平轴风力发电机组叶片扭转减振装置及方法 技术领域
本发明涉及风力发电机组叶片减振,特别涉及水平轴风力发电机组叶片扭转减振装置及方法。
背景技术
随着水平轴风力发电机组单机容量大型化、轻量化的发展趋势不断推进,机组设计制造技术进展显著,叶片长度增加、机组功率增大、部件重量减轻、关键部位安全裕度降低,结构也逐渐展现出非线性特性。叶片作为捕获风能的重要工具,总体而言柔性在增加,不仅仅局限于挥舞、摆振方向的挠度增大,扭转方向的变形也变得不可忽略。
叶片在流场中的动力学响应属于典型的流固耦合问题,柔性增加使得承受风载与自身变形之间的相互影响加剧,存在更容易激励起扭转振动的可能——由于叶片长度增加,挥舞、摆振方向挠度增大,使得翼型截面气动载荷合力更容易偏离叶片旋转轴线,形成扭转力矩;而结构优化方法决定了扭转刚度并未显著提升,致使扭转变形增大、扭转固有频率降低。细长柔性叶片在运行过程中,更容易出现气动弹性失稳现象。
颤振属于气动弹性动态失稳问题,即在短时间内(一般十数秒到几十秒),叶片振幅累积增大,引发应力超过材料许用极限的情况,致使叶片出现裂纹、加速扩展甚至断裂。颤振出现时,除伴随有嗡鸣和尖啸声外,并无其它先兆,属突发性事故,对机组安全性影响巨大。根据颤振产生的空气动力学原因,又可将其分为两类:第一类,是叶片升力系统处于失速攻角附近而产生的气动弹性失稳现象,与气流分离和场涡形成有关,称为失速颤振。当来流攻角足够大,翼型附近流场附面层会出现分离、发展,截面升力下降(即失速现象),推动风轮旋转的动力载荷降低,对应微分方程表现出正阻尼情况,引发摆振方向大幅振动能量累积,也可能同时附带其它振动形式存在。第二类,是叶片扭转和挥舞方向产生的耦合自激不稳定振动,与气流分 离和边界层效应关系不明显,称为经典颤振。扭转、挥舞方向变形相互影响,使得结构所承受风载与弹性位移之间形成规律周期变化并满足特定相位关系,对应微分方程表现出正阻尼情况,引发扭转、挥舞方向大幅振动能量累积,也可能同时附带其它振动形式存在。目前,因为颤振而导致运行过程中风机失效和损坏的例子屡见不鲜。2003年9月,汕尾红海湾风电场因为台风“杜鹃”的袭击引发大多数风机叶片出现扭转颤振而受损,经济损失严重。因而,提高叶片气动弹性稳定性、避免颤振现象的发生,对经济性和安全性都具有非常重要的意义。
颤振分析一般涉及弹性叶片复杂结构特征、叶片周围非定常流场特征描述以及二者之间相互耦合机理的分析,因此,叶片颤振边界的预测和颤振特性的研究是一项非常困难的工作。
在实际工程中,为防止和解决叶片气动弹性失稳问题,大体有以下方法可以选择:
1)在设计过程中,判断气动弹性失稳临界点,调整叶片质量分布、刚度分布或控制机组运行状态,以维持足够安全余量,保证叶片气动弹性稳定。该类方法一般适用于气动弹性静态失稳问题。而对于气动弹性动态失稳问题的时域模拟,由于物理问题本身的敏感性,在计算方法、建模简化、边界定义、求解精度和收敛性等方面还有待探讨研究。
2)在运行过程中,发现叶片振动异常,针对振幅较大的区域进行局部加强,例如增添铺层、辅助腹板或增加黏结胶宽度,起到调整截面形心位置、增强结构刚度或阻尼的作用,降低载荷、减小振幅、加快振动衰减,保证叶片气动弹性稳定。或者,在叶片表面加装射流装置或涡流发生器,干扰翼型流场附面层分离,推迟失速情况发生,减弱激振效应影响、扩大运行攻角区间,保证叶片气动弹性稳定。该类方法基于试验开展,通过现象观察,推断颤振产生机理,结合理论分析选择技改方案,具有针对性强的优点。但在危险工况的搜索、复现以及确定技改效果方面都存在难点,很大程度上需要依靠设计、试验经验,通过尝试和修正来不断完善。而对于一些特殊极端情况,例如台风,其特征尚不能被完全认知和预测,类似的试验验证方法就很难开展。
无论是从内因着手,调整叶片质量/刚度分布、提高结构阻尼;还是从外因着手,控制机组运行状态、引入流场干扰,都需要对整机/叶片固有特性、流场演变发展、气动弹性规律具有较为准确的分析或捕捉,研发应用的周期较长,对于设计、试验工作的要求也比较高。除了上述方法以外,其实还可以通过动力学方法来吸收系统特定振动动能,加速相应振动幅值衰减,避免或缓解累积大幅振动引起的安全性问题。相比挥舞、摆振振动而言,扭转振动更难准确分析,而在与扭转振动相关的气动弹性失稳问题中,扭转振动都起到不可忽视的作用。
本专利试图描述一种减振装置,可以起到吸收水平轴风力发电机组叶片扭转振动动能的作用,加速其振动幅值衰减,从而避免相关气动弹性失稳问题的发生。该装置的研发,无需介入整机设计环节,可结合叶片设计独立实现,不影响叶片自身的安全性。
发明内容
本发明的目的在于提供一种水平轴风力发电机组叶片扭转减振装置及方法,解决了现有机组叶片扭转振动不易控制的缺陷。
为了达到上述目的,本发明采用的技术方案是:
本发明提供的一种水平轴风力发电机组叶片扭转减振装置,包括多个扭转振动机构和扭转弹簧,多个扭转振动机构分别布置在迎风面主梁和背风面主梁之间,位于不同展向位置的截面内;
所述扭转振动机构包括轴承和轴承支架,其中,所述轴承安装在轴承支架上;所述轴承支架固定在迎风面主梁和背风面主梁上;
相邻的两个扭转振动机构的轴承之间通过扭转弹簧连接。
优选地,所述轴承支架与叶片迎风面主梁和背风面主梁之间采用粘结连接固定。
优选地,对于叶片扭转振动显著的截面位置,扭转弹簧连接在对应轴承的固定部分;其余的截面位置,扭转弹簧连接在对应轴承的转动部分。
优选地,所有的轴承转动部分和所有的扭转弹簧组成该扭转减振装置的扭转振动系统,该扭转振动系统的扭转固有频率与叶片扭转振动的频率相一致。
优选地,所述轴承支架为工字型结构、X型结构或H型结构。
一种水平轴风力发电机组叶片扭转减振方法,基于所述的一种水平轴风力发电机组叶片扭转减振装置,包括以下步骤:
当叶片在运行过程中表现出扭转振动时,扭转振动依次通过叶片主梁、轴承支架、轴承固定部分传递到扭转振动系统,使得轴承转动部分相对于轴承固定部分发生旋转运动,进而通过轴承摩擦阻尼作用实现系统扭转动能的耗散。
优选地,所述扭转减振装置的扭转振动系统的扭转固有频率与叶片扭转振动的频率相一致。
与现有技术相比,本发明的有益效果是:
本发明提供的一种水平轴风力发电机组叶片扭转减振装置及方法,利用水平轴风力发电机组叶片扭转振动特点,采用轴承转动部分—扭转弹簧系统动力学吸收叶片扭转振动动能,通过轴承摩擦阻尼作用实现系统扭转振动动能的耗散,从而实现叶片扭转振动幅值的衰减;该装置的研发,无需介入整机设计环节,可结合叶片设计独立实现,不影响叶片自身的安全性。
附图说明
图1是本发明涉及的扭转减振装置连接示意图;
图2是本发明涉及的扭转振动机构所在截面示意图。
具体实施方式
下面结合附图,对本发明进一步详细说明。
如图1所示,本发明提供的一种水平轴风力发电机组叶片扭转减振装置,包括多个扭转振动机构和扭转弹簧5,多个扭转振动机构分别布置在迎风面主梁1和背风面主梁2之间,位于不同展向位置的截面内;
如图2所示,所述扭转振动机构包括轴承4和轴承支架3,其中,所述轴承4安装在轴承支架3上;所述轴承支架3固定在迎风面主梁1和背风面主梁2上;
如图1所示,相邻的两个扭转振动机构的轴承4之间通过扭转弹簧5连接。
所述轴承支架3与叶片迎风面主梁1和背风面主梁2之间采用粘结连接固定。
对于叶片扭转振动显著截面位置,扭转弹簧5连接在对应轴承4固定部分,即所述轴承4与轴承支架3连接的部分,用于限制扭转减振装置相对扭转振动;其余的截面位置,扭转弹簧5连接在对应轴承4转动部分,即所述轴承4未与轴承支架3连接的部分,用于释放扭转减振装置相对扭转振动。
该扭转减振装置中的所有的轴承(4)和所有的扭转弹簧(5)组成该扭转减振装置的扭转振动系统,该扭转振动系统的扭转固有频率与叶片扭转振动的频率相一致。
所述轴承支架3为工字型结构、X型结构或H型结构。
本发明的工作原理是:
当叶片在运行过程中表现出扭转振动时,扭转振动依次通过叶片主梁、轴承支架、轴承固定部分传递到该扭转减振装置的扭转振动系统,使得轴承4的转动部分相对于轴承4的固定部分发生旋转运动。
该扭转振动系统的受迫振动是从叶片系统吸收扭转振动动能,而两系统因固有特性差异,扭转振动的振型和幅值不尽相同,通过轴承摩擦阻尼作用实现系统扭转振动动能的耗散,从而起到扭转振动幅值衰减的效果。
本发明涉及的风力发电机组叶片扭转减振装置技术要求会影响叶片扭转振动幅值衰减的效果,因而需作为发明的一部分,描述如下:
叶片作为细长变截面梁结构,其高阶固有频率振动对应的结构阻尼较高、系统动能耗散较快,故通常叶片振动响应都是由低阶固有频率振动叠加而成的。与叶片扭转相关的颤振现象, 其激振频率主要表现为一阶扭转固有频率,应针对其设计叶片扭转减振装置。
根据叶片扭转振动幅值分布规律,在振动幅值相对显著截面位置限制扭转减振装置的相对扭转振动,为扭转振动系统提供位移边界条件和扭转振动激励。
通过选择轴承转动部分转动惯量、扭转弹簧弹性模量,通过调整轴承数量、轴承所在截面位置,将扭转振动系统的扭转固有频率设计为与叶片扭转振动的频率相一致,有利于吸收叶片扭转振动动能。
由于扭转振动系统的扭转振型与叶片一阶扭转振型不同,有利于轴承转动部分相对于轴承固定部分发生旋转运动,形成轴承摩擦阻尼作用。
主梁是叶片的主要承力结构,自身刚度大,沿全叶片展向分布,与抗剪腹板组成相对稳定的结构形式,有利于排除干扰、捕获截面扭转变形信号。
叶片内部可以组成一个或多个扭转减振装置,同时实现同阶或多阶系统扭转振动动能的耗散,从而起到扭转振动幅值衰减的效果。
该装置及方法有效实现了水平轴风力发电机组叶片扭转减振。
有益效果:
本发明利用水平轴风力发电机组叶片扭转振动特点,采用轴承转动部分—扭转弹簧系统动力学吸收叶片扭转振动动能,通过轴承摩擦阻尼作用实现系统扭转振动动能的耗散,从而实现叶片扭转振动幅值的衰减,具有如下特点:
1、该装置可有效实现叶片扭转振动幅值降低,应用无需修改整机控制策略或独立研发控制系统,研发无需介入整机设计环节,无需进行流固耦合计算,结合叶片的设计和试验方法简便易行,节约时间和成本。
2、该装置采用动力学吸收扭转振动动能方法,可通过扭转振动系统设计、优化,实现调节叶片扭转振动幅值降低效果的作用。
3、该装置可通过降低叶片扭转振动幅值,避免相关气动弹性失稳问题的发生,保证叶片结构安全。
4、该装置不影响叶片自身安全性,同时可有助于提高叶片主梁、抗剪腹板屈曲稳定性。

Claims (7)

  1. 一种水平轴风力发电机组叶片扭转减振装置,其特征在于,包括多个扭转振动机构和扭转弹簧(5),多个扭转振动机构分别布置在迎风面主梁(1)和背风面主梁(2)之间,位于不同展向位置的截面内;
    所述扭转振动机构包括轴承(4)和轴承支架(3),其中,所述轴承(4)安装在轴承支架(3)上;所述轴承支架(3)固定在迎风面主梁(1)和背风面主梁(2)上;
    相邻的两个扭转振动机构的轴承(4)之间通过扭转弹簧(5)连接。
  2. 根据权利要求1所述的一种水平轴风力发电机组叶片扭转减振装置,其特征在于,所述轴承支架(3)与叶片迎风面主梁(1)和背风面主梁(2)之间采用粘结连接固定。
  3. 根据权利要求1所述的一种水平轴风力发电机组叶片扭转减振装置,其特征在于,对于叶片扭转振动显著的截面位置,扭转弹簧(5)连接在对应轴承(4)的固定部分;其余的截面位置,扭转弹簧(5)连接在对应轴承(4)的转动部分。
  4. 根据权利要求1所述的一种水平轴风力发电机组叶片扭转减振装置,其特征在于,所有的轴承(4)转动部分和所有的扭转弹簧(5)组成该扭转减振装置的扭转振动系统,该扭转振动系统的扭转固有频率与叶片扭转振动的频率相一致。
  5. 根据权利要求1所述的一种水平轴风力发电机组叶片扭转减振装置,其特征在于,所述轴承支架(3)为工字型结构、X型结构或H型结构。
  6. 一种水平轴风力发电机组叶片扭转减振方法,其特征在于,基于权利要求1-5中任一项所述的一种水平轴风力发电机组叶片扭转减振装置,包括以下步骤:
    当叶片在运行过程中表现出扭转振动时,扭转振动依次通过叶片主梁、轴承支架、轴承固定部分传递到扭转振动系统,使得轴承转动部分相对于轴承固定部分发生旋转运动,进而通过轴承摩擦阻尼作用实现系统扭转动能的耗散。
  7. 根据权利要求6所述的一种水平轴风力发电机组叶片扭转减振方法,其特征在于,所 述扭转减振装置的扭转振动系统的扭转固有频率与叶片扭转振动的频率相一致。
PCT/CN2020/122262 2020-08-05 2020-10-20 一种水平轴风力发电机组叶片扭转减振装置及方法 WO2022027827A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010779882.1 2020-08-05
CN202010779882.1A CN111810355A (zh) 2020-08-05 2020-08-05 一种水平轴风力发电机组叶片扭转减振装置及方法

Publications (1)

Publication Number Publication Date
WO2022027827A1 true WO2022027827A1 (zh) 2022-02-10

Family

ID=72864547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122262 WO2022027827A1 (zh) 2020-08-05 2020-10-20 一种水平轴风力发电机组叶片扭转减振装置及方法

Country Status (2)

Country Link
CN (1) CN111810355A (zh)
WO (1) WO2022027827A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024028232A1 (en) * 2022-08-04 2024-02-08 Lm Wind Power A/S Wind turbine blade, wind turbine and method for operating a wind turbine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114687922B (zh) * 2020-12-25 2023-12-01 江苏金风科技有限公司 叶片的设计方法、叶片和叶片的制造方法
CN113090445B (zh) * 2021-04-29 2022-06-21 中国华能集团清洁能源技术研究院有限公司 一种水平轴风力发电机组叶片结构加阻装置及方法
CN113847212B (zh) * 2021-10-29 2023-05-02 中国华能集团清洁能源技术研究院有限公司 一种风电机组叶片固有频率监测方法
CN117365874A (zh) * 2022-06-30 2024-01-09 金风科技股份有限公司 陀螺组件、风机叶片、叶轮以及风力发电机组

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996038639A1 (en) * 1995-06-02 1996-12-05 Industrial Research Limited A damped element
WO2007140787A1 (en) * 2006-06-09 2007-12-13 Vestas Wind Systems A/S A wind turbine comprising a detuner
FR2926535A1 (fr) * 2008-01-23 2009-07-24 Eurocopter France Dispositif et procede d'equilibrage dynamique d'une pale
WO2014114281A1 (de) * 2013-01-23 2014-07-31 Schaeffler Technologies AG & Co. KG Schraubendruckfeder und drehschwingungsdämpfer
CN107143634A (zh) * 2016-03-01 2017-09-08 本田技研工业株式会社 扭矩传递装置
CN206582279U (zh) * 2017-03-28 2017-10-24 北京金风科创风电设备有限公司 动力吸振装置、用于风力发电机组的叶片及风力发电机组
CN109058049A (zh) * 2018-08-20 2018-12-21 兰州理工大学 一种大型风电叶片预应力索多向减振装置及连接方法
CN110073100A (zh) * 2016-12-21 2019-07-30 西门子歌美飒可再生能源公司 具有可变的与偏转有关的刚度的风力涡轮机叶片

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996038639A1 (en) * 1995-06-02 1996-12-05 Industrial Research Limited A damped element
WO2007140787A1 (en) * 2006-06-09 2007-12-13 Vestas Wind Systems A/S A wind turbine comprising a detuner
FR2926535A1 (fr) * 2008-01-23 2009-07-24 Eurocopter France Dispositif et procede d'equilibrage dynamique d'une pale
WO2014114281A1 (de) * 2013-01-23 2014-07-31 Schaeffler Technologies AG & Co. KG Schraubendruckfeder und drehschwingungsdämpfer
CN107143634A (zh) * 2016-03-01 2017-09-08 本田技研工业株式会社 扭矩传递装置
CN110073100A (zh) * 2016-12-21 2019-07-30 西门子歌美飒可再生能源公司 具有可变的与偏转有关的刚度的风力涡轮机叶片
CN206582279U (zh) * 2017-03-28 2017-10-24 北京金风科创风电设备有限公司 动力吸振装置、用于风力发电机组的叶片及风力发电机组
CN109058049A (zh) * 2018-08-20 2018-12-21 兰州理工大学 一种大型风电叶片预应力索多向减振装置及连接方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024028232A1 (en) * 2022-08-04 2024-02-08 Lm Wind Power A/S Wind turbine blade, wind turbine and method for operating a wind turbine

Also Published As

Publication number Publication date
CN111810355A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
WO2022027827A1 (zh) 一种水平轴风力发电机组叶片扭转减振装置及方法
Murtagh et al. Passive control of wind turbine vibrations including blade/tower interaction and rotationally sampled turbulence
Liu et al. Effects of aerodynamic damping on the tower load of offshore horizontal axis wind turbines
Zhang The active rotary inertia driver system for flutter vibration control of bridges and various promising applications
Zhang et al. Mitigation of edgewise vibrations in wind turbine blades by means of roller dampers
Riziotis et al. Aeroelastic stability of wind turbines: the problem, the methods and the issues
Van Wingerden et al. On the proof of concept of a ‘smart’wind turbine rotor blade for load alleviation
DK177924B1 (da) System og fremgangsmåde til passiv belastningsdæmpning i en vindturbine
Fitzgerald et al. Cable connected active tuned mass dampers for control of in-plane vibrations of wind turbine blades
US8070437B2 (en) Method for damping edgewise oscillations in one or more blades of a wind turbine, an active stall controlled wind turbine and use hereof
CN108035237A (zh) 一种抑制桥梁颤振及涡振的翼板系统及其控制方法
Zhao et al. Effects of second-order hydrodynamics on an ultra-large semi-submersible floating offshore wind turbine
CN102409775B (zh) 调谐质量阻尼器减振控制装置
CN107765722B (zh) 大跨度桥梁钢箱梁颤振主动吹气流动控制装置
Zhang et al. Optimal calibration of the rotational inertia double tuned mass damper (RIDTMD) for rotating wind turbine blades
Meng et al. Analytical and numerical study on centrifugal stiffening effect for large rotating wind turbine blade based on NREL 5 MW and WindPACT 1.5 MW models
Johnson et al. Investigation of innovative rotor concepts for the big adaptive rotor project
WO2020155644A1 (zh) 自适应机械驱动调节转动惯量式控制系统
CN212296705U (zh) 一种水平轴风力发电机组叶片扭转减振装置
Chen et al. Optimal calibration of a tuned liquid column damper (TLCD) for rotating wind turbine blades
Dixit et al. Towards pitch-scheduled drive train damping in variable-speed, horizontal-axis large wind turbines
Starossek et al. Passive control of bridge deck flutter using tuned mass dampers and control surfaces
CN215672536U (zh) 风力发电机组风轮叶片
US20040096329A1 (en) System for a turbine with a gaseous or liquideous working medium
Li et al. Vibration Control of Large Wind Turbine Blades with Unidirectional Cable Pendulum Damper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948342

Country of ref document: EP

Kind code of ref document: A1