WO2022227095A1 - 发射功率控制方法、终端设备和网络设备 - Google Patents

发射功率控制方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2022227095A1
WO2022227095A1 PCT/CN2021/091777 CN2021091777W WO2022227095A1 WO 2022227095 A1 WO2022227095 A1 WO 2022227095A1 CN 2021091777 W CN2021091777 W CN 2021091777W WO 2022227095 A1 WO2022227095 A1 WO 2022227095A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
terminal device
detection beam
time window
frequency band
Prior art date
Application number
PCT/CN2021/091777
Other languages
English (en)
French (fr)
Inventor
邢金强
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/091777 priority Critical patent/WO2022227095A1/zh
Priority to CN202180096836.4A priority patent/CN117121570A/zh
Publication of WO2022227095A1 publication Critical patent/WO2022227095A1/zh
Priority to US18/385,076 priority patent/US20240064658A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications, and in particular, to a transmission power control method, terminal device and network device.
  • Terminal equipment needs to transmit wireless signals during the communication process, and long-term exposure to wireless signals may affect human safety.
  • some terminal devices can use the onboard sensors to detect surrounding objects such as human bodies, and control the transmit power based on this.
  • the installation of the sensor will take up a certain space, it will bring a great challenge to the space of the terminal device, such as a mobile phone, which is originally very limited.
  • both space and hardware cost are non-negligible factors.
  • the embodiments of the present application provide a transmit power control method, a terminal device, and a network device, which can be used to improve a power control strategy of the terminal device.
  • An embodiment of the present application provides a transmit power control method, which is applied to a terminal device, including:
  • the terminal device sends first information to the network device, where the first information is used to instruct the network device to configure a detection time window for the terminal device;
  • the terminal device performs object detection within the detection time window configured by the network device;
  • the terminal device performs transmit power control according to the result of the object detection.
  • An embodiment of the present application provides a transmit power control method, which is applied to a terminal device, including:
  • Terminal equipment transmits communication beams on licensed frequency bands
  • the terminal device transmits a detection beam on an unlicensed frequency band for object detection
  • the terminal device performs transmit power control on the communication beam according to the object detection result.
  • An embodiment of the present application provides a transmit power control method, which is applied to a network device, including:
  • the network device receives the first information sent by the terminal device
  • the network device configures a detection time window for the terminal device according to the first information.
  • the embodiment of the present application also provides a terminal device, including:
  • a sending module configured to send first information to the network device, where the first information is used to instruct the network device to configure a detection time window for the terminal device;
  • a detection module configured to perform object detection within the detection time window configured by the network device
  • a power control module configured to control the transmit power according to the object detection result.
  • the embodiment of the present application also provides a terminal device, including:
  • a transmitter module for transmitting communication beams in licensed frequency bands
  • a detection module for transmitting detection beams on unlicensed frequency bands for object detection
  • a power control module configured to control the transmit power of the communication beam according to the object detection result.
  • the embodiment of the present application also provides a network device, including:
  • a receiving module configured to receive the first information sent by the terminal device
  • a configuration module configured to configure a detection time window for the terminal device according to the first information.
  • An embodiment of the present application further provides a terminal device, including: a processor and a memory, where the memory is used to store a computer program, and the processor invokes and executes the computer program stored in the memory to execute the above method.
  • An embodiment of the present application further provides a network device, including: a processor and a memory, where the memory is used to store a computer program, and the processor invokes and executes the computer program stored in the memory to execute the above method.
  • An embodiment of the present application further provides a chip, including: a processor, configured to call and run a computer program from a memory, so that a device on which the chip is installed executes the above method.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program, wherein the computer program causes a computer to execute the above method.
  • Embodiments of the present application further provide a computer program product, including computer program instructions, wherein the computer program instructions cause a computer to execute the above method.
  • the embodiments of the present application also provide a computer program, the computer program enables a computer to execute the above method.
  • the embodiments of the present application can detect objects such as human bodies without increasing hardware cost and space occupation, so as to control the transmit power of the terminal, which can effectively improve the power control mechanism of the communication system.
  • FIG. 1 is a schematic diagram of a communication system architecture according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of a signal modulation.
  • FIG. 3 is a schematic diagram of a signal modulation spectrum.
  • FIG. 4 is a schematic diagram of signal modulation of a terminal device.
  • FIG. 5 is a schematic diagram of secondary frequency conversion of a terminal device.
  • FIG. 6 is a schematic diagram of a secondary frequency conversion frequency relationship of a terminal device.
  • FIG. 7 is a schematic diagram of a state in which a user uses a terminal device.
  • FIG. 8 is a schematic diagram of transmitting a signal through a low frequency band and detecting a human body.
  • FIG. 9 is a schematic diagram of transmitting a signal through a high frequency band and detecting a human body.
  • FIG. 10 is a flowchart of a method for controlling transmit power on the terminal side according to an embodiment of the present application.
  • FIG. 11 is a flowchart of a method for controlling transmit power on the terminal side according to another embodiment of the present application.
  • FIG. 12 is a flowchart of a method for controlling transmission power on the network side according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a transmission structure of a terminal device.
  • FIG. 14 is a schematic diagram of human/object detection based on transmitting and receiving beams according to an embodiment of the present application.
  • FIG. 15 is another schematic diagram of human/object detection based on transmitting and receiving beams according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a human body detection time window according to an embodiment of the present application.
  • FIG. 17 is a schematic diagram of an interaction process of human body detection according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram of scanning a human body detection beam according to an embodiment of the present application.
  • FIG. 19 is a schematic diagram of a terminal architecture of a human body detection transceiver channel with an independent license-free frequency band according to an embodiment of the present application.
  • FIG. 20 is a schematic diagram of a terminal having a common-IF LO1 architecture according to an embodiment of the present application.
  • FIG. 21 is a schematic structural block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 22 is a schematic structural block diagram of a terminal device according to another embodiment of the present application.
  • FIG. 23 is a schematic structural block diagram of a network device according to an embodiment of the present application.
  • FIG. 24 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 25 is a schematic block diagram of a chip according to an embodiment of the present application.
  • FIG. 26 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • Wireless Fidelity Wireless Fidelity
  • WiFi fifth-generation communication
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • the communication system may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, and a standalone (Standalone, SA) network deployment scenario.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA standalone
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, where the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device may be a station (STAION, ST) in a WLAN, and may be a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a Wireless Local Loop (Wireless Local Loop, WLL) stations, Personal Digital Assistant (PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, next-generation communication systems such as NR networks
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • a mobile phone Mobile Phone
  • a tablet computer Pad
  • a computer with a wireless transceiver function a virtual reality (Virtual Reality, VR) terminal device
  • augmented reality (Augmented Reality, AR) terminal Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones. Use, such as all kinds of smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the network device may be a device for communicating with a mobile device, and the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA , it can also be a base station (NodeB, NB) in WCDMA, it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or in-vehicle equipment, wearable devices and NR networks
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a High Elliptical Orbit (HEO) ) satellite etc.
  • the network device may also be a base station set in a location such as land or water.
  • a network device may provide services for a cell, and a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (
  • the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • Pico cell Femto cell (Femto cell), etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • FIG. 1 schematically shows one network device 1100 and two terminal devices 1200.
  • the wireless communication system 1000 may include a plurality of network devices 1100, and the coverage of each network device 1100 may include other numbers terminal equipment, which is not limited in this embodiment of the present application.
  • the wireless communication system 1000 shown in FIG. 1 may also include other network entities such as a mobility management entity (Mobility Management Entity, MME), an access and mobility management function (Access and Mobility Management Function, AMF). This is not limited in the application examples.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • system and “network” are often used interchangeably herein.
  • the term “and/or” herein is used to describe the association relationship of associated objects, for example, it means that there can be three relationships between the associated objects before and after, for example, A and/or B can mean: A alone exists, A and B exist simultaneously, There are three cases of B alone.
  • the character "/” in this document generally indicates that the related objects are "or”.
  • the term “corresponding” may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • modulation is the main method to complete the signal spectrum transfer, that is, the input signal and the modulated carrier are nonlinearly operated by the mixer (intermediate device in Figure 2) to generate the sum/difference frequency signal of the two signals, and filter them from The required high-order frequency signal F2 is generated, that is, the frequency spectrum shift from low frequency to high frequency is completed.
  • the terminal For frequency bands with relatively low frequencies (such as frequency bands below 7.125 GHz), the terminal usually uses up-conversion once to realize spectrum relocation, that is, modulate the signal to a relatively high frequency band for transmission, as shown in Figure 4.
  • the terminal For frequency bands with higher frequencies (such as frequency bands above 24GHz), the terminal usually adopts secondary up-conversion to realize spectrum shifting, first modulate the signal to a relatively high intermediate frequency F01, and then further modulate the signal to a higher frequency band F02 for transmission , as shown in Figure 5 and Figure 6.
  • Terminals need to transmit wireless signals during the communication process, and long-term exposure to wireless signals will cause certain damage to human safety. Therefore, the regulations define the Specific Absorption Ratio (SAR) and the maximum power density to measure the electromagnetic radiation intensity of the terminal to the human body.
  • SAR Specific Absorption Ratio
  • the standard has strict requirements on the SAR value and maximum power density of mobile phone radiation, and the terminal cannot exceed the limit.
  • the terminal in order to avoid the impact on human safety, the terminal usually reduces the transmit power when a human body is detected.
  • the way to detect the human body is currently mainly realized through special sensors.
  • the sensor is usually installed in a specific part of the mobile phone and detects the human body.
  • the terminal in the case that it is impossible to know whether there is a human body approaching, the terminal usually uses a trigger to reduce power back-off when it enters a specific state (such as working in a certain frequency band). Transmit power in such a way that the radiation to the human body does not exceed the standard.
  • the transmit power of such a terminal is relatively conservative, and it is difficult to exert the optimal performance of the terminal.
  • the terminal needs to control the transmission power.
  • it detects that it is close to the human body, it needs to reduce the transmission power to avoid the impact on the human body caused by the excessive transmission power.
  • the current sensor-based processing method not only brings about the space requirements of the terminal.
  • the challenges also put pressure on costs.
  • one solution is to detect the human body based on the terminal's own ability to transmit and receive signals, and then complete the control of the transmit power. This needs to solve various problems, such as the feasibility of human detection or object detection in a broad sense, the acquisition of information such as distance and orientation of objects, and so on.
  • the signal radiated to the space by the terminal in the low frequency band through the antenna will have different intensities in all directions, as shown in Figure 8.
  • the terminal can detect the difference in the reflected signal, but in this case, it is difficult to know the exact position of the human body or the object and the signal strength that can be transmitted. Therefore, the error of human/object detection through the low frequency band is large.
  • the terminal In comparison, in a frequency band with a high frequency (such as a frequency band above 24 GHz), the terminal radiates signals into the space in the form of beams, as shown in Figure 9. Then, by emitting different beams, the position of the human body/object can be determined, and information such as the distance of the human body/object can be obtained by detecting the reflected signal of the beam. It can be seen that it is feasible to detect information such as human bodies through beams in high frequency bands.
  • a frequency band with a high frequency such as a frequency band above 24 GHz
  • the present application proposes to detect objects such as human bodies through beams in a high frequency band, and control the transmit power accordingly.
  • an embodiment of the present application provides a transmit power control method, which is applied to a terminal device.
  • the method includes:
  • a terminal device sends first information to a network device, where the first information is used to instruct the network device to configure a detection time window for the terminal device;
  • the terminal device performs object detection within a detection time window configured by the network device;
  • the terminal device performs transmit power control according to the object detection result.
  • the terminal device can send the indication information for configuring the time window to the network device, and the network device can configure the appropriate time window for the terminal device, so that the terminal device can transmit the sounding beam without affecting the service communication, and use the For object detection such as human body, the power control of the communication beam can be performed according to the detection result.
  • the detection of the human body and the control of the terminal transmit power can be realized without increasing the hardware cost and space occupation, which can effectively improve the power control mechanism of the terminal device.
  • an embodiment of the present application further provides a transmit power control method, which is applied to a network device.
  • the method includes:
  • the network device receives the first information sent by the terminal device
  • the network device configures a detection time window for the terminal device according to the first information.
  • the network device after receiving the indication information, can configure a detection time window for the terminal device, so that the terminal device can transmit the communication beam within the normal communication period and transmit the detection beam within the detection time window, so as to be able to Realize the power control of the communication beam according to the detection result.
  • the detection of the human body and the control of the terminal transmit power can be realized without increasing the hardware cost and space occupation, which can effectively improve the power control mechanism of the terminal device and the network device.
  • the content contained in the first information and the corresponding configuration mode of the network device optionally, it can be implemented in any of the following ways:
  • the first information includes detection capability information of the terminal device.
  • the network device configures the detection time window according to a predetermined length and period.
  • the first information includes the length or period of the periodic detection time window required by the terminal device.
  • the network device configures the detection time window according to the length or period in the first information and a predetermined period or length.
  • the first information may further include detection capability information of the terminal device.
  • the first information includes the length and period of the periodic detection time window required by the terminal device.
  • the network device configures the detection time window according to the length and period in the first information.
  • the first information may further include detection capability information of the terminal device.
  • the first information includes the length or the starting position of the aperiodic detection time window required by the terminal device.
  • the network device configures the detection time window according to the length or the starting position and the predetermined starting position or length in the first information.
  • the first information may further include detection capability information of the terminal device.
  • the first information includes the length and start position of the aperiodic detection time window required by the terminal device.
  • the network device configures the detection time window according to the length and starting position in the first information.
  • the first information may further include detection capability information of the terminal device.
  • the terminal device performs object detection within the detection time window configured by the network device, which may be implemented in the following manner: the terminal device performs object detection in the detection time window configured by the network device. A detection beam is internally transmitted, and a reflection signal of the detection beam is received; the terminal device determines the object detection result according to the strength of the detection beam and the strength of the reflection signal.
  • the terminal device determines that the object detection result is the detection There is no object in the direction of the beam; if the difference between the intensity of the detection beam and the intensity of the reflected signal is less than the first threshold, the terminal device determines that the object detection result is the direction of the detection beam objects exist on it.
  • the terminal device may transmit multiple detection beams with different directions within multiple periods of the detection time window configured by the network device.
  • the terminal device performs object detection within the detection time window configured by the network device, which may also be implemented in any of the following ways:
  • the terminal device controls the transmission power of the detection beam to gradually increase from the first power value, and stops transmitting the detection beam after determining that there is an object in the direction of the detection beam;
  • the terminal device controls the transmission power of the detection beam to gradually increase from the first power value, no object is detected in the direction of the detection beam, but the transmission power of the detection beam has reached the second power value Then stop transmitting the detection beam;
  • the terminal device determines a third power value according to the transmission power limit information, transmits the detection beam with the third power value, and stops transmitting the detection beam after determining that there is an object in the direction of the detection beam.
  • the terminal device transmits a communication beam outside the detection time window configured by the network device; wherein, the terminal device performs transmission power control according to the object detection result, and may Do it in any of the following ways:
  • the terminal device adjusts the transmit power of the communication beam in the direction of the detection beam to meet radiation requirements.
  • the terminal device only controls the power of the communication beam in the direction in which the object is detected, and transmits the communication beam in the direction in which there is no object at normal power, that is, for the detected object and the non-detected object.
  • Different control strategies can be adopted for the communication beam in the direction.
  • the terminal device adjusts the transmit power of a plurality of communication beams to meet radiation requirements, wherein the plurality of communication beams include communication beams in the direction of the detection beam.
  • the multiple communication beams may be all communication beams, that is, the terminal device may adopt the same control strategy for all communication beams.
  • the terminal device switches the transmission and reception path from the first frequency band to the second frequency band; and After object detection, the terminal device switches the transceiver path from the second frequency band back to the first frequency band; wherein, the first frequency band includes a licensed frequency band or an unlicensed frequency band, and the second frequency band includes a licensed frequency band or an unlicensed frequency band. Unlicensed bands.
  • the above embodiments of this application mainly discuss the realization of human/object detection based on the license frequency band. Due to the relevant limitations of the license frequency band, the transmission time and transmission power of the terminal equipment need to be configured by the network equipment before transmission. Different from this, this application can also consider the transmission and reception of sounding beams based on an un-license frequency band. Since there is no need for network equipment to allocate sounding time windows, the processing method can be relatively flexible. On the un-license frequency band, power control can be achieved through power transmission and reception.
  • an embodiment of the present application further provides a transmit power control method, which is applied to a terminal device.
  • the method includes:
  • the terminal device transmits a communication beam in the licensed frequency band
  • the terminal device transmits a detection beam on an unlicensed frequency band for object detection
  • the terminal device performs transmit power control on the communication beam according to the object detection result.
  • the terminal device transmits the communication beam in the licensed frequency band, and transmits the detection beam in the unlicensed frequency band to detect objects such as human body, and controls the transmission power of the communication beam according to the detection result of the detection beam .
  • the transmission and reception process of the detection beam has a greater degree of freedom, because the detection beam does not occupy the resources of the communication beam, and does not need to configure a dedicated detection window on the network side, and does not affect the communication beam.
  • the logic complexity of the processing process is low and the flexibility is high, which can effectively improve the power control mechanism of the terminal equipment.
  • the terminal device transmits the detection beam in the unlicensed frequency band to perform object detection, which may be realized by the following manner: the terminal device transmits the detection beam in the unlicensed frequency band, and transmits the detection beam in the unlicensed frequency band, The reflected signal of the detection beam is received on an unlicensed frequency band; the terminal device determines the object detection result according to the strength of the detection beam and the strength of the reflected signal.
  • the terminal device determines that the object detection result is the There is no object in the direction of the detection beam; if the difference between the intensity of the detection beam and the intensity of the reflected signal is less than the first threshold, the terminal device determines that the object detection result is the detection result of the detection beam. There is an object in the direction.
  • the terminal device transmits multiple detection beams with different directions in an unlicensed frequency band.
  • the terminal device transmits a detection beam on an unlicensed frequency band to perform object detection, which may also be implemented in any of the following ways:
  • the terminal device controls the transmission power of the detection beam to gradually increase from the first power value, and stops transmitting the detection beam after determining that there is an object in the direction of the detection beam;
  • the terminal device controls the transmission power of the detection beam to gradually increase from the first power value, no object is detected in the direction of the detection beam, but the transmission power of the detection beam has reached the second power value Then stop transmitting the detection beam;
  • the terminal device determines a third power value according to the transmission power limit information, transmits the detection beam with the third power value, and stops transmitting the detection beam after determining that there is an object in the direction of the detection beam.
  • the terminal device performs transmission power control on the communication beam according to the object detection result, which may be implemented in any of the following ways:
  • the terminal device adjusts the transmit power of the communication beam in the direction of the detection beam to meet radiation requirements.
  • the terminal device only controls the power of the communication beam in the direction in which the object is detected, and transmits the communication beam in the direction in which there is no object at normal power, that is, for the detected object and the non-detected object.
  • Different control strategies can be adopted for the communication beam in the direction.
  • the terminal device adjusts the transmit power of a plurality of communication beams to meet radiation requirements, wherein the plurality of communication beams include communication beams in the direction of the detection beam.
  • the multiple communication beams may be all communication beams, that is, the terminal device may adopt the same control strategy for all communication beams.
  • FIG. 13 schematically shows a schematic diagram of an internal transmission structure of a terminal device, in which the transmission of signal beams is completed by a transmission power control module and a beam transmission module.
  • FIG. 14 and FIG. 15 schematically show two kinds of human/object detection logic diagrams based on the transmitting and receiving beams of the terminal device.
  • the transmit power control module controls beam transmission, the terminal detects the reflected received signal at the same time, and inputs the transmitted and received signal strength information into the human body/object detection and judgment module, and then inputs the human body/object judgment information into the transmit power control module. , to adjust the transmission power of the communication signal.
  • the beam transmitting and receiving modules can reuse the existing high-frequency communication modules.
  • the transmit power control module controls the transmission of the communication beam and the human body/object detection beam
  • the terminal detects the reflected received signal at the same time, and inputs the transmitted and received signal strength information into the human body/object detection and judgment module, and then the human body/object The judgment information is input to the transmission power control module to adjust the communication transmission power.
  • the human body detection beam transmitting and receiving module and the communication beam transmitting module are independent of each other.
  • the terminal can detect the human body/object in the high frequency band, so the terminal needs to transmit signals into space.
  • the signal transmission of the terminal in the licensed frequency band (the licensed frequency band refers to the frequency spectrum that can be used only by the authorization of the regulator, such as the mobile communication network operated by the operator, etc. are all licensed frequency bands) is strictly controlled by the network.
  • the signal needs to be transmitted in the time slot that the network schedules or configures the terminal to transmit. Therefore, if the terminal wants to use the transmitted beam signal to detect the human body/object, the network needs to configure the corresponding transmission time slot to meet certain transmission power constraints.
  • the network needs to configure a certain human detection time in normal communication, the time length is t, and the period is T.
  • the human body detection transmit power allowed by the terminal may be relatively small, which limits the detection accuracy. Therefore, the terminal needs to accumulate multiple detection results to make joint judgments to determine information such as the existence and distance of the human body/object.
  • the terminal can report the capability information and/or the required detection time window information (such as the length of the window and/or the window) to the network through RRC signaling. period), where the capability information can be, for example, any of the following information, or other suitable forms:
  • Human/object detection capability window (proximity detection gap);
  • the network After receiving the human body detection capability information and/or the detection time window information of the terminal, the network configures the terminal with a corresponding detection time window through an RRC message. Among them, if the network has received the human body detection capability information of the terminal, but has not received the information of the detection time window (or, the network has received the length information of the detection time window without the period information), the network can follow the pre-agreed window length according to and/or cycles to configure. Within this window, the terminal and the base station do not transmit communication information. It should be noted that, for the resources within the detection time window, the base station may choose to configure it for use by other terminals, and certainly may choose not to provide it for use by other terminals.
  • the terminal scans beam 1, beam 2, and beam 3 in sequence, that is, transmits and receives signals beam by beam, and obtains the human body/object by comparing the intensity of the signals. Information.
  • the terminal may complete scanning of multiple or all beams within one detection time window.
  • scanning and detection of beams may be continued in the next detection time window.
  • the detection of human body/object is judged by comparing the difference between the intensity of the transmitted signal and the received reflected signal. For example, if the transmitted signal is P0 and the received reflected signal is P1, then the reflection loss of the human body/object is P0-P1, The smaller the value, the closer the human/object is to the terminal. In the embodiment of the present application, it can be judged and controlled as follows:
  • the difference is higher than a certain threshold, it can be considered that there is no human body/object, or the longer distance has less impact on human safety, so the communication beam of the terminal can be transmitted according to normal power requirements.
  • the control of the transmit power of the communication beams may be that all beams adopt the same power control strategy, for example, when the transmit power needs to be limited, multiple or all beams may be limited within the target transmit power; Different power control strategies can also be used for different beams. For example, the power of "Beam 3" in Figure 18 is limited, while “Beam 1" and "Beam 2" can be transmitted according to normal power requirements.
  • the terminal since the terminal radiates signals into space in the licensed frequency band, it is strictly limited to avoid interference to other users.
  • the terminal may use a lower power when performing initial detection beam transmission, and then gradually amplify the power, and when a human body/object is detected, the power transmission may be suspended to reduce the power as much as possible. Small interference problems.
  • the terminal in the case that the terminal already knows the limit on the detection power and the gain of the detection beam, the terminal can also directly use the corresponding maximum power to perform detection.
  • the terminal is subject to many restrictions, including the transmission time and transmission power, which need to be configured through the network.
  • the embodiment of the present application also provides a more flexible processing manner, which transmits and receives sounding beams based on an un-license frequency band (license-free frequency band).
  • the terminal may have more degrees of freedom to transmit and receive power in the un-license frequency band.
  • the embodiments of the present application further provide an implementation solution. Different from the sending and receiving paths shown in FIG. In normal communication, when the terminal needs to switch the working frequency band, the transceiver channel can be switched to the target frequency band.
  • Figure 20 shows a schematic diagram of a terminal architecture that shares an intermediate frequency link LO1.
  • the intermediate frequency link of the terminal does not support simultaneous transmission of high-frequency communication signals and detection signals. Therefore, it is necessary to configure certain The time window is to switch the intermediate frequency signal LO1 to the detection signal frequency band, which is used for the transmission and reception of the detection beam.
  • the terminal needs to request the network device to configure this switching time window for the terminal device for frequency band switching.
  • the detection time window can be multiplexed into a switching time window, that is, referring to FIG.
  • the terminal needs to switch the transceiver path from the current frequency band (eg, the first frequency band) to the target frequency band (eg, the second frequency band), and switch from the second frequency band back to the first frequency band after the detection is completed.
  • the first frequency band may be a licensed frequency band or an unlicensed frequency band
  • the second frequency band may also be a licensed frequency band or an unlicensed frequency band, both of which can achieve the solutions and purposes described in the embodiments of the present application.
  • Using at least one of the above embodiments of the present application to detect the human body/object can make full use of the existing hardware paths around the terminal to realize the detection of the human body/object, and adjust the transmission power based on this, so as to achieve the purpose of optimizing the transmission power of the terminal , to improve the use security of terminal equipment.
  • an embodiment of the present application further provides a terminal device 100, referring to FIG. 21, which includes:
  • a sending module 110 configured to send first information to the network device, where the first information is used to instruct the network device to configure a detection time window for the terminal device;
  • a detection module 120 configured to perform object detection within the detection time window configured by the network device
  • the power control module 130 is configured to control the transmit power according to the object detection result.
  • an embodiment of the present application further provides a terminal device 200, referring to FIG. 22, which includes:
  • a transmitting module 210 configured to transmit a communication beam in a licensed frequency band
  • a detection module 220 configured to transmit a detection beam on an unlicensed frequency band for object detection
  • the power control module 230 is configured to control the transmit power of the communication beam according to the object detection result.
  • an embodiment of the present application further provides a network device 300, referring to FIG. 23, which includes:
  • a receiving module 310 configured to receive the first information sent by the terminal device
  • the configuration module 320 is configured to configure a detection time window for the terminal device according to the first information.
  • the terminal devices 100 and 200 and the network device 300 in the embodiments of the present application can implement the corresponding functions of the devices in the foregoing method embodiments, and each module (submodule, unit or component, etc.) in the terminal devices 100 and 200 and the network device 300 ) corresponding processes, functions, implementations, and beneficial effects can be found in the corresponding descriptions in the above method embodiments, which will not be repeated here.
  • the functions described by the respective modules (submodules, units, or components, etc.) in the terminal devices 100 and 200 and the network device 300 in the embodiments of the present application may be described by different modules (submodules, units, or components, etc.) It can also be realized by the same module (sub-module, unit or component, etc.).
  • the first sending module and the second sending module can be different modules or the same module, both of which can realize the Corresponding functions in the embodiments of this application.
  • the sending module and the receiving module in the embodiments of the present application may be implemented by the transceiver of the device, and some or all of the other modules may be implemented by the processor of the device.
  • FIG. 24 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application, wherein the communication device 600 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may also include a memory 620 .
  • the processor 610 may call and run a computer program from the memory 620 to implement the methods in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices .
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 600 may be the network device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the communication device 600 may be a terminal device in this embodiment of the present application, and the communication device 600 may implement corresponding processes implemented by the terminal device in each method in the embodiment of the present application, which is not repeated here for brevity.
  • FIG. 25 is a schematic structural diagram of a chip 700 according to an embodiment of the present application, wherein the chip 700 includes a processor 710, and the processor 710 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • 710 may include at least one processor circuit.
  • the chip 700 may further include a memory 720 .
  • the processor 710 may call and run a computer program from the memory 720 to implement the methods in the embodiments of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may further include an input interface 730 .
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the processor mentioned above may be a general-purpose processor, a digital signal processor (DSP), a field programmable gate array (FPGA), an application specific integrated circuit (ASIC) or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • the general-purpose processor mentioned above may be a microprocessor or any conventional processor or the like.
  • the memory mentioned above may be either volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM).
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • FIG. 26 is a schematic block diagram of a communication system 800 according to an embodiment of the present application, where the communication system 800 includes a terminal device 810 and a network device 820 .
  • the terminal device 810 may be used to implement the corresponding functions implemented by the terminal device in the methods of the various embodiments of the present application
  • the network device 820 may be used to implement the corresponding functions implemented by the network device in the methods of the various embodiments of the present application. function. For brevity, details are not repeated here.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored on or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be transmitted over a wire from a website site, computer, server or data center (eg coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) means to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), among others.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种发射功率控制方法、终端设备和网络设备,该方法包括:终端设备向网络设备发送第一信息,所述第一信息用于指示网络设备为所述终端设备配置探测时间窗口;所述终端设备在所述网络设备配置的探测时间窗口内进行物体探测;所述终端设备根据所述物体探测的结果进行发射功率控制。利用本申请实施例能够改善终端设备的功率控制策略。

Description

发射功率控制方法、终端设备和网络设备 技术领域
本申请涉及通信领域,具体地,涉及一种发射功率控制方法、终端设备和网络设备。
背景技术
终端设备在通信过程中需要发射无线信号,长时间照射无线信号可能会对人体安全带来影响。目前为规避辐射影响,有些终端设备可利用搭载的传感器检测周围物体例如人体,基于此对发射功率进行控制。但是,由于传感器的安装会占用一定空间,这对原本就很局限的终端设备例如手机的空间带来很大挑战。当使用多个传感器时,无论是空间还是硬件成本,都是不可忽略的因素。此外,还有一些不依赖于传感器的解决方案,而是采用相对保守的处理方式,但整体上这种终端难以发挥最优性能,存在较大的改善空间。
发明内容
有鉴于此,本申请实施例提供一种发射功率控制方法、终端设备和网络设备,可用于改善终端设备的功率控制策略。
本申请实施例提供一种发射功率控制方法,应用于终端设备,包括:
终端设备向网络设备发送第一信息,所述第一信息用于指示网络设备为所述终端设备配置探测时间窗口;
所述终端设备在所述网络设备配置的探测时间窗口内进行物体探测;
所述终端设备根据所述物体探测的结果进行发射功率控制。
本申请实施例提供一种发射功率控制方法,应用于终端设备,包括:
终端设备在授权频段上发射通信波束;
所述终端设备在免授权频段上发射检测波束以进行物体探测;
所述终端设备根据所述物体探测的结果对所述通信波束进行发射功率控制。
本申请实施例提供一种发射功率控制方法,应用于网络设备,包括:
网络设备接收终端设备发送的第一信息;
所述网络设备根据所述第一信息为所述终端设备配置探测时间窗口。
本申请实施例还提供一种终端设备,包括:
发送模块,用于向网络设备发送第一信息,所述第一信息用于指示网络设备为所述终端设备配置探测时间窗口;
探测模块,用于在所述网络设备配置的探测时间窗口内进行物体探测;
功率控制模块,用于根据所述物体探测的结果进行发射功率控制。
本申请实施例还提供一种终端设备,包括:
发射模块,用于在授权频段上发射通信波束;
探测模块,用于在免授权频段上发射检测波束以进行物体探测;
功率控制模块,用于根据所述物体探测的结果对所述通信波束进行发射功率控制。
本申请实施例还提供一种网络设备,包括:
接收模块,用于接收终端设备发送的第一信息;
配置模块,用于根据所述第一信息为所述终端设备配置探测时间窗口。
本申请实施例还提供一种终端设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器调用并运行所述存储器中存储的计算机程序,执行如上所述的方法。
本申请实施例还提供一种网络设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器调用并运行所述存储器中存储的计算机程序,执行如上所述的方法。
本申请实施例还提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上所述的方法。
本申请实施例还提供一种计算机可读存储介质,用于存储计算机程序,其中,所述计算机程序使得计算机执行如上所述的方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序指令,其中,所述计算机程序指令使得计算机执行如上所述的方法。
本申请实施例还提供一种计算机程序,所述计算机程序使得计算机执行如上所述的方法。
利用本申请的实施例能够在不增加硬件成本及空间占用的情况下,实现对物体例如人体的检测,从而实现对终端发射功率的控制,可有效改善通信系统的功率控制机制。
附图说明
图1是本申请实施例的通信系统架构的示意图。
图2是一种信号调制示意图。
图3是一种信号调制频谱示意图。
图4是一种终端设备的信号调制示意图。
图5是一种终端设备的二次变频示意图。
图6是一种终端设备的二次变频频率关系示意图。
图7是一种用户使用终端设备的状态示意图。
图8是一种通过低频段发射信号及人体检测示意图。
图9是一种通过高频段发射信号及人体检测示意图。
图10是本申请一个实施例终端侧的发射功率控制方法的流程框图。
图11是本申请另一实施例终端侧的发射功率控制方法的流程框图。
图12是本申请实施例网络侧的发射功率控制方法的流程框图。
图13是一种终端设备的发射结构示意图。
图14是本申请实施例的一种基于发射与接收波束的人体/物体检测示意图。
图15是本申请实施例的另一种基于发射与接收波束的人体/物体检测示意图。
图16是本申请实施例的一种人体探测时间窗口示意图。
图17是本申请实施例的一种人体探测的交互过程示意图。
图18是本申请实施例的一种人体探测波束扫描示意图。
图19是本申请实施例的一种具备独立免授权频段的人体探测收发通路的终端架构示意图。
图20是本申请实施例的一种具备共中频LO1架构的终端示意图。
图21是本申请一个实施例的终端设备的示意性结构框图。
图22是本申请另一实施例的终端设备的示意性结构框图。
图23是本申请实施例的网络设备的示意性结构框图。
图24是本申请实施例的通信设备示意性框图。
图25是本申请实施例的芯片的示意性框图。
图26是本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限也易于实现,然而随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
在本申请实施例中,通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备 (User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
在本申请实施例中,终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
图1示意性地示出了一个网络设备1100和两个终端设备1200,可选地,该无线通信系统1000可以包括多个网络设备1100,并且每个网络设备1100的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。可选地,图1所示的无线通信系统1000还可以包括移动性管理实体(Mobility Management Entity,MME)、接入与移动性管理功能(Access and Mobility Management Function,AMF)等其他网络实体,本申请实施例对此不作限定。
应理解,本文中术语“系统”和“网络”在本文中常可互换使用。本文中术语“和/或”用来描述关联对象的关联关系,例如表示前后关联对象可存在三种关系,举例说明,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B这三种情况。本文中字符“/”一般表示前后关联对象是“或”的关系。在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为了清楚地阐述本申请实施例的思想,首先对终端设备功率控制的相关内容进行简要描述。
●信号调制及终端架构
在无线通信中,调制是完成信号频谱搬移的主要方法,也就是通过混频器(图2中间器件)将输入信号跟调制载波进行非线性操作产生两个信号的和/差频率信号,从中筛选出需要的高阶频率信号F2, 即完成了从低频到高频的频谱搬移。参考图3,频率关系为F2=F1+F0,其中F1为输入的低频信号,F2为输出的高频信号,F0为调制载波。
对于频率比较低的频段(如7.125GHz以下频段),终端通常采用一次上变频来实现频谱搬移,也即将信号调制到比较高的频段进行发射,如图4所示。
对于频率较高的频段(如24GHz以上频段),终端通常采用二次上变频来实现频谱搬移,将信号首先调制到比较高的中频F01,之后再进一步对信号调制到更高的频段F02进行发射,可参考图5及图6所示。
●关于信号照射
终端在通信过程中需要发射无线信号,而长时间照射无线信号会对人体安全造成一定损伤。因此,法规定义了比吸收率(Specific Absorption Ratio,SAR)及最大功率密度等来衡量终端对人体电磁辐射强度。为避免手机等电磁辐射设备对人体的影响,标准上对手机辐射的SAR值及最大功率密度有严格的指标要求,终端不能超过该限值。参考图7,为了规避对人体安全带来的影响,终端通常会在检测到人体时降低发射功率。检测人体的方式目前主要是通过特殊传感器来实现的,传感器通常安装在手机的特定部位,并对人体进行检测。另外,对于有些终端则不依赖于传感器,那么在无法得知是否有人体靠近的情况下,终端通常会采用在进入到一个特定状态(比如工作于某个频段)时触发进行功率回退减小发射功率以保持对人体辐射不超标的方式。这种终端其发射功率比较保守,难以发挥出终端的最优性能。
在描述本申请的实施例之前,首先对本申请实施例的发明构思进行简要介绍。
如前所述,终端需要对发射功率进行控制,当检测到靠近人体时需要降低发射功率以避免发射功率过大造成对人体的影响,而目前基于传感器的处理方式不仅对终端的空间要求带来挑战也对成本带来压力。鉴于此,一种解决思路是基于终端自身的发射与接收信号能力来检测人体,并进而完成对发射功率的控制。这需要解决多方面的问题,例如,人体检测或广义上的物体检测的可行性,物体的距离、方位等信息的获得,等等。
从终端发射信号的特性来看,在低频段终端经天线辐射到空间的信号,各方向都会有且强度不同,如图8所示。当有人体/物体靠近时,终端可以检测到反射信号差异,但是,此情况下其实难以知道人体或物体的确切位置及可发射的信号强度。因此,通过低频段进行人体/物体检测的误差较大。
比较而言,在频率很高的频段(如24GHz以上频段),终端以波束的形式向空间辐射信号,如图9所示。那么,通过发射不同的波束,可以确定人体/物体的位置,通过检测波束的反射信号可以得到人体/物体的距离等信息。可见,在高频段通过波束检测人体等信息具有一定的可行性。
鉴于此,本申请提出在高频段通过波束检测物体例如人体,并据此对发射功率进行控制。
具体来看,本申请实施例提供一种发射功率控制方法,应用于终端设备,参考图10,该方法包括:
S101,终端设备向网络设备发送第一信息,所述第一信息用于指示网络设备为所述终端设备配置探测时间窗口;
S102,所述终端设备在所述网络设备配置的探测时间窗口内进行物体探测;
S103,所述终端设备根据所述物体探测的结果进行发射功率控制。
根据本申请的实施例,终端设备可向网络设备发送配置时间窗口的指示信息,网络设备可为终端设备配置合适的时间窗口,使得终端设备可在不影响业务通信的情况下发射探测波束,用于物体例如人体探测,从而可根据探测结果对通信波束进行功率控制。利用本申请的实施例,能够在不增加硬件成本及空间占用的情况下,实现对人体的检测及终端发射功率的控制,可有效改善终端设备的功率控制机制。
相对应地,本申请实施例还提供一种发射功率控制方法,应用于网络设备,参考图11,该方法包括:
S201,网络设备接收终端设备发送的第一信息;
S202,所述网络设备根据所述第一信息为所述终端设备配置探测时间窗口。
根据本申请的实施例,网络设备收到指示信息后,可为终端设备配置探测时间窗口,使得终端设备可实现在正常通信时段内发射通信波束,并在探测时间窗口内发射探测波束,从而能够实现根据探测结果对通信波束进行功率控制。利用本申请的实施例,能够在不增加硬件成本及空间占用的情况下,实现对人体的检测及终端发射功率的控制,可有效改善终端设备与网络设备的功率控制机制。
以下对本申请实施例的多种实现方式分别进行描述。
关于第一信息包含的内容,以及网络设备相应的配置方式,可选地,可采取以下任一种方式实现:
(1)所述第一信息包括所述终端设备的探测能力信息。
在此情况下,所述网络设备按照预定的长度和周期配置所述探测时间窗口。
(2)所述第一信息包括所述终端设备需要的周期性探测时间窗口的长度或周期。
在此情况下,所述网络设备按照所述第一信息中的长度或周期以及预定的周期或长度,配置所述探测时间窗口。
可选地,在此情况下,所述第一信息中还可包括所述终端设备的探测能力信息。
(3)所述第一信息包括所述终端设备需要的周期性探测时间窗口的长度和周期。
在此情况下,所述网络设备按照所述第一信息中的长度和周期配置所述探测时间窗口。
可选地,在此情况下,所述第一信息中还可包括所述终端设备的探测能力信息。
(4)所述第一信息包括所述终端设备需要的非周期性探测时间窗口的长度或起始位置。
在此情况下,所述网络设备按照所述第一信息中的长度或起始位置以及预定的起始位置或长度,配置所述探测时间窗口。
可选地,在此情况下,所述第一信息中还可包括所述终端设备的探测能力信息。
(5)所述第一信息包括所述终端设备需要的非周期性探测时间窗口的长度和起始位置。
在此情况下,所述网络设备按照所述第一信息中的长度和起始位置配置所述探测时间窗口。
可选地,在此情况下,所述第一信息中还可包括所述终端设备的探测能力信息。
根据本申请的实施例,可选地,所述终端设备在所述网络设备配置的探测时间窗口内进行物体探测,可通过如下方式实现:所述终端设备在所述网络设备配置的探测时间窗口内发射检测波束,并接收所述检测波束的反射信号;所述终端设备根据所述检测波束的强度与所述反射信号的强度,确定所述物体探测的结果。
根据本申请的实施例,可选地,如果所述检测波束的强度与所述反射信号的强度之差大于或等于第一阈值,则所述终端设备确定所述物体探测的结果为所述检测波束的方向上不存在物体;如果所述检测波束的强度与所述反射信号的强度之差小于所述第一阈值,则所述终端设备确定所述物体探测的结果为所述检测波束的方向上存在物体。
根据本申请的实施例,可选地,所述终端设备可在所述网络设备配置的探测时间窗口的多个周期内发射方向不同的多个检测波束。
根据本申请的实施例,可选地,所述终端设备在所述网络设备配置的探测时间窗口内进行物体探测,还可通过如下任一种方式实现:
·所述终端设备在进行所述物体探测过程中,控制检测波束的发射功率从第一功率值逐渐增大,在确定检测波束的方向上存在物体后停止发射检测波束;
·所述终端设备在进行所述物体探测过程中,控制检测波束的发射功率从第一功率值逐渐增大,在检测波束方向上未检测到物体但检测波束的发射功率已达到第二功率值后停止发射检测波束;
·所述终端设备根据发射功率限制信息确定第三功率值,并以所述第三功率值发射检测波束,在确定检测波束的方向上存在物体后停止发射检测波束。
根据本申请的实施例,可选地,所述终端设备在所述网络设备配置的探测时间窗口之外发射通信波束;其中,所述终端设备根据所述物体探测的结果进行发射功率控制,可通过如下任一种方式实现:
·如果所述检测波束的方向上存在物体,所述终端设备对所述检测波束方向上的通信波束的发射功率进行调整以满足辐射要求。一种情况是,终端设备仅对检测到物体的方向上的通信波束进行功率控制,对其他不存在物体的方向上的通信波束仍按正常功率发射,也即对于检测到物体和未检测到物体的方向上的通信波束,可采取不同的控制策略。
·如果所述检测波束的方向上存在物体,所述终端设备对多个通信波束的发射功率进行调整以满足辐射要求,其中所述多个通信波束包括所述检测波束方向上的通信波束。举例来说,所述的多个通信波束可以是全部的通信波束,也就是终端设备可以对全部的通信波束采取相同的控制策略。
根据本申请的实施例,可选地,在所述终端设备在所述网络设备配置的探测时间窗口内进行物体探测之前,所述终端设备将收发通路由第一频段切换至第二频段;以及在物体探测之后,所述终端设备将收发通路由所述第二频段切回所述第一频段;其中,所述第一频段包括授权频段或免授权频段,所述第二频段包括授权频段或免授权频段。
本申请的上述实施例主要讨论了基于授权(license)频段实现人体/物体探测,由于license频段的相关限制,对于终端设备的发射时间、发射功率等需经过网络设备的配置方可进行发射。不同于此,本申请还可考虑基于免授权(un-license)频段进行探测波束的发射与接收,由于不需要网络设备分配探测时间窗口,因此处理方式可相对灵活,也就是说,终端设备在un-license频段上可通过功率的发射与接收实现功率控制。
基于此,本申请实施例还提供一种发射功率控制方法,应用于终端设备,参考图12,该方法包括:
S301,终端设备在授权频段上发射通信波束;
S302,所述终端设备在免授权频段上发射检测波束以进行物体探测;
S303,所述终端设备根据所述物体探测的结果对所述通信波束进行发射功率控制。
根据本申请的实施例,终端设备在授权频段上发射通信波束,并且在在免授权频段上发射检测波束以进行物体例如人体探测,并根据检测波束的探测结果,对通信波束的发射功率进行控制。在本实施例中,检测波束的发射与接收过程具有较大的自由度,这是因为检测波束并不会占用通信波束的资源,不需要网络侧配置专用的检测窗口,不对通信波束产生影响,处理过程的逻辑复杂度低,灵活度高,可有效改善终端设备的功率控制机制。
在本申请的实施例中,可选地,所述终端设备在免授权频段上发射检测波束以进行物体探测,可通过如下方式实现:所述终端设备在免授权频段上发射检测波束,并在免授权频段上接收所述检测波束的反射信号;所述终端设备根据所述检测波束的强度与所述反射信号的强度,确定所述物体探测的结果。
在本申请的实施例中,可选地,如果所述检测波束的强度与所述反射信号的强度之差大于或等于第一阈值,则所述终端设备确定所述物体探测的结果为所述检测波束的方向上不存在物体;如果所述检测波束的强度与所述反射信号的强度之差小于所述第一阈值,则所述终端设备确定所述物体探测的结果为所述检测波束的方向上存在物体。
在本申请的实施例中,可选地,所述终端设备在免授权频段上发射方向不同的多个检测波束。
在本申请的实施例中,可选地,所述终端设备在免授权频段上发射检测波束以进行物体探测,还可通过如下任一种方式实现:
·所述终端设备在进行所述物体探测过程中,控制检测波束的发射功率从第一功率值逐渐增大,在确定检测波束的方向上存在物体后停止发射检测波束;
·所述终端设备在进行所述物体探测过程中,控制检测波束的发射功率从第一功率值逐渐增大,在检测波束方向上未检测到物体但检测波束的发射功率已达到第二功率值后停止发射检测波束;
·所述终端设备根据发射功率限制信息确定第三功率值,并以所述第三功率值发射检测波束,在确定检测波束的方向上存在物体后停止发射检测波束。
在本申请的实施例中,可选地,所述终端设备根据所述物体探测的结果对所述通信波束进行发射功率控制,可通过如下任一种方式实现:
·如果所述检测波束的方向上存在物体,所述终端设备对所述检测波束方向上的通信波束的发射功率进行调整以满足辐射要求。一种情况是,终端设备仅对检测到物体的方向上的通信波束进行功率控制,对其他不存在物体的方向上的通信波束仍按正常功率发射,也即对于检测到物体和未检测到物体的方向上的通信波束,可采取不同的控制策略。
·如果所述检测波束的方向上存在物体,所述终端设备对多个通信波束的发射功率进行调整以满足辐射要求,其中所述多个通信波束包括所述检测波束方向上的通信波束。举例来说,所述的多个通信波束可以是全部的通信波束,也就是终端设备可以对全部的通信波束采取相同的控制策略。
利用本申请的以上至少一个实施例,基于高频段波束发射与接收,进行人体/物体探测,可以充分利用终端身边自身已有的硬件通路来实现对人体/物体的探测,并基于此进一步调整发射功率,从而达到优化终端的发射功率的目的,提高使用安全度。
以上通过实施例描述了本申请实施例的发射功率控制方法的实现方式,以下通过多个具体的例子,描述本申请实施例的具体实现过程中的各个方面。
图13示意性地示出一种终端设备内部发射结构示意图,其中通过发射功率控制模块和波束发射模块完成信号波束的发射。图14和图15示意性地示出两种基于终端设备发射与接收波束的人体/物体检测逻辑示意图。
参考图14,发射功率控制模块控制进行波束发射,终端同时检测反射回来的接收信号,并将发射与接收信号强度信息输入人体/物体检测判断模块,之后将人体/物体判断信息输入发射功率控制模块,对通信信号发射功率进行调整。其中,波束发射与接收模块可复用已有的高频段通信模块。
参考图15,发射功率控制模块控制通信波束以及人体/物体探测波束的发射,终端同时检测反射回来的接收信号,并将发射与接收信号强度信息输入人体/物体检测判断模块,之后将人体/物体判断信息输入发射功率控制模块,对通信发射功率进行调整。其中,人体探测波束发射与接收模块跟通信波束发射模块是相互独立的。
基于上述终端设备可执行本申请实施例的发射功率控制方法,以下对方案实施过程中涉及的具体内容分别进行详细描述。
I. 关于发射时间
如前文所述,终端可以在高频段对人体/物体进行检测,因此终端需要向空间发射信号。通常为避免对其他用户的干扰,终端在授权频段(授权频段是指需要监管机构授权才可以使用的频谱,比如运营商经营的移动通信网络等均为授权频段)的信号发射是受到网络严格控制的,需在网络调度或配置终端进行发射的时隙进行信号的发射。因此,如果终端要利用发射的波束信号进行人体/物体的探测,需要网络配置相应的发射时隙,满足一定的发射功率限制条件。
参考图16和17,网络需要在正常通信中配置一定的人体探测时间,时间长度为t,周期为T。通常终端允许的人体探测发射功率可能会比较小,使得探测的精度受到限制。因此终端需要积累多次的探测结果从而进行联合判断,以确定人体/物体的存在以及距离等信息。
为向网络通知终端具备人体探测的能力以及/或者终端需要进行人体探测的需求,终端可通过RRC信令向网络上报该能力信息和/或需要的探测时间窗口信息(如窗口的长度和/或周期),其中,能力信息可例如为如下任一种信息,或其他合适的形式:
·人体/物体检测能力窗口(proximity detection gap);
·功率管理窗口能力(power management gap)。
网络收到终端的人体探测能力信息和/或探测时间窗口的信息后,通过RRC消息给终端配置相应的探测时间窗口。其中,如果网络收到了终端的人体探测能力信息,但没有收到探测时间窗口的信息(或者,网络收到了探测时间窗口的长度信息,而没有周期信息),则网络可按照预先约定的窗口长度和/或周期进行配置。在该窗口内终端与基站不进行通信信息的传输。需要说明,对于该探测时间窗口内的资源,基站可以选择配置给其他终端使用,当然也可选择不提供给其他终端使用。
II. 关于波束扫描
如图18所示,在网络配置的人体探测时间窗口内,终端依次扫描波束1、波束2、波束3,也即逐个波束地进行信号的发射与接收,通过对比信号的强度来得到人体/物体的信息。可选地,终端可以在一个探测时间窗口内完成多个或所有波束的扫描。可选地,当一个窗口无法完成所有波束的扫描时,可在下一个探测时间窗口内继续进行波束的扫描及探测。
III. 关于功率控制
人体/物体的探测是通过对比发射信号与接收到的反射信号强度的差值来判断的,比如,发射信号为P0,接收到的反射信号为P1,则人体/物体反射损失为P0-P1,该值越小,则说明人体/物体越靠近终端。在本申请的实施例中,可按照如下方式判断和控制:
·当差值高于一定门限时,可以认为不存在人体/物体,或距离较远对人体安全的影响较小,因此终端的通信波束可以按照正常功率需求进行发射。
·当差值低于一定门限时,可以认为存在人体/物体,且距离较近对人体安全的影响较大,因此需要调整终端的通信波束发射功率以满足辐射要求。
在本申请的实施例中,对通信波束发射功率的控制可以是所有波束采用相同的功率控制策略,例如,当需要限制发射功率时,可对多个或全部波束都限制到目标发射功率以内;也可以对不同的波束采用不同的功率控制策略,例如,对于图18中的“波束3”进行功率的限制,而对“波束1”和“波束2”则可以按照正常功率需求进行发射。
另一方面,由于终端在授权频段上向空间辐射信号有严格限制,以避免对其他用户的干扰。鉴于此,在本申请的实施例中,可以终端在进行初始探测波束发射时采用较小的功率,之后逐步将功率进行放大,当检测到人体/物体后可以暂停功率的发射,以尽可能减小带来的干扰问题。当然,在终端已经知晓对探测功率的限制以及探测波束的增益的情况下,终端也可以直接采用相应的最大功率进行探测。
IV. 关于工作频段
以上描述了基于license频段来讨论的人体/物体探测,对于license频段来说终端受到的限制较多,包括发射时间及发射功率等需要经过网络的配置。
本申请实施例还提供一种更加灵活的处理方式,基于un-license频段(免授权频段)来进行探测波束的发射与接收。根据本申请实施例的方式,终端在un-license频段上可以有更多的自由度来进行功率的发射与接收。
参考图19,对于具备独立un-license收发通路的终端,工作于un-license频段的人体探测与正常通信业务可以同时进行,不需要网络分配人体/物体探测时间窗口。终端的探测波束不对通信波束产生影响。人体探测的结果反馈给通信通路从而终端可对发射功率进行调整。需要注意,以上处理方式需要独立的un-license探测通路,不需要网络配置,实现过程灵活,便捷。
相对于以上需具备独立un-license频段人体探测收发通路的终端,本申请实施例进一步还提供一种实现方案,与图19所示的收发通路不同,本方案的终端具备有限的收发通路用于正常通信,当终端需要转换工作频段时,可将收发通路切换到目标频段。
图20示出了一种共用中频链路LO1的终端架构示意图,在该架构中,终端的中频链路不支持高频通信信号与检测信号的同时发射,为此需要在正常通信过程中配置一定的时间窗口,以将中频信号LO1切换到检测信号频段,用于检测波束的发射与接收。为此,需要终端请求网络设备为终端设备配置这个切换时间窗口,用于频段切换。结合前文所述的网络设备为终端设备配置探测时间窗口的步骤和内容,可将探测时间窗口复用为切换时间窗口,也就是,参考图17,在终端开始在探测时间窗口内进行物体探测之前,终端需将收发通路由当前频段(例如第一频段)切换至目标频段(例如第二频段),并在探测完毕后再由第二频段切换回第一频段。其中,第一频段可为授权频段或免授权频段,第二频段也可为授权频段或免授权频段,均可实现本申请实施例描述的方案和目的。
利用本申请的以上至少一个实施例进行人体/物体探测,可以充分利用终端身边自身已有的硬件通路来实现对人体/物体的探测,并基于此调整发射功率,可达到优化终端发射功率的目的,提高终端设备的使用安全度。
以上通过多个实施例从不同角度描述了本申请实施例的具体设置和实现方式。与上述至少一个实施例的处理方法相对应地,本申请实施例还提供一种终端设备100,参考图21,其包括:
发送模块110,用于向网络设备发送第一信息,所述第一信息用于指示网络设备为所述终端设备配置探测时间窗口;
探测模块120,用于在所述网络设备配置的探测时间窗口内进行物体探测;
功率控制模块130,用于根据所述物体探测的结果进行发射功率控制。
与上述至少一个实施例的处理方法相对应地,本申请实施例还提供一种终端设备200,参考图22,其包括:
发射模块210,用于在授权频段上发射通信波束;
探测模块220,用于在免授权频段上发射检测波束以进行物体探测;
功率控制模块230,用于根据所述物体探测的结果对所述通信波束进行发射功率控制。
与上述至少一个实施例的处理方法相对应地,本申请实施例还提供一种网络设备300,参考图23,其包括:
接收模块310,用于接收终端设备发送的第一信息;
配置模块320,用于根据所述第一信息为所述终端设备配置探测时间窗口。
本申请实施例的终端设备100、200和网络设备300能够实现前述的方法实施例中的设备的对应功能,该终端设备100、200和网络设备300中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,此处不进行赘述。
需要说明,关于本申请实施例的终端设备100、200和网络设备300中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现,举例来说,第一发送模块与第二发送模块可以是不同的模块,也可以是同一个模块,均能够实现其在本申请实施例中的相应功能。此外,本申请实施例中的发送模块和接收模块,可通过设备的收发机实现,其余各模块中的部分或全部可通过设备的处理器实现。
图24是根据本申请实施例的通信设备600示意性结构图,其中通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施 例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图25是根据本申请实施例的芯片700的示意性结构图,其中芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法,处理器710可以包括至少一个处理器电路。
可选地,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图26是根据本申请实施例的通信系统800的示意性框图,该通信系统800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现本申请各个实施例的方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现本申请各个实施例的方法中由网络设备实现的相应的功能。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程 的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属技术领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (50)

  1. 一种发射功率控制方法,应用于终端设备,所述方法包括:
    终端设备向网络设备发送第一信息,所述第一信息用于指示网络设备为所述终端设备配置探测时间窗口;
    所述终端设备在所述网络设备配置的探测时间窗口内进行物体探测;
    所述终端设备根据所述物体探测的结果进行发射功率控制。
  2. 根据权利要求1所述的方法,其中,
    所述第一信息包括所述终端设备的探测能力信息。
  3. 根据权利要求1所述的方法,其中,
    所述第一信息包括所述终端设备需要的周期性探测时间窗口的长度或周期;
    或者,
    所述第一信息包括所述终端设备需要的周期性探测时间窗口的长度和周期。
  4. 根据权利要求1所述的方法,其中,
    所述第一信息包括所述终端设备需要的非周期性探测时间窗口的长度或起始位置;
    或者,
    所述第一信息包括所述终端设备需要的非周期性探测时间窗口的长度和起始位置。
  5. 根据权利要求3或4所述的方法,其中,
    所述第一信息中还包括所述终端设备的探测能力信息。
  6. 根据权利要求1-5中任一项所述的方法,其中,所述终端设备在所述网络设备配置的探测时间窗口内进行物体探测,包括:
    所述终端设备在所述网络设备配置的探测时间窗口内发射检测波束,并接收所述检测波束的反射信号;
    所述终端设备根据所述检测波束的强度与所述反射信号的强度,确定所述物体探测的结果。
  7. 根据权利要求6所述的方法,其中,
    如果所述检测波束的强度与所述反射信号的强度之差大于或等于第一阈值,则所述终端设备确定所述物体探测的结果为所述检测波束的方向上不存在物体;
    如果所述检测波束的强度与所述反射信号的强度之差小于所述第一阈值,则所述终端设备确定所述物体探测的结果为所述检测波束的方向上存在物体。
  8. 根据权利要求6或7所述的方法,其中,所述终端设备在所述网络设备配置的探测时间窗口内发射检测波束,包括:
    所述终端设备在所述网络设备配置的探测时间窗口的多个周期内发射方向不同的多个检测波束。
  9. 根据权利要求6-8中任一项所述的方法,其中,所述终端设备在所述网络设备配置的探测时间窗口内进行物体探测,还包括:
    所述终端设备在进行所述物体探测过程中,控制检测波束的发射功率从第一功率值逐渐增大,在确定检测波束的方向上存在物体后停止发射检测波束;
    或者,
    所述终端设备在进行所述物体探测过程中,控制检测波束的发射功率从第一功率值逐渐增大,在检测波束方向上未检测到物体但检测波束的发射功率已达到第二功率值后停止发射检测波束;
    或者,
    所述终端设备根据发射功率限制信息确定第三功率值,并以所述第三功率值发射检测波束,在确定检测波束的方向上存在物体后停止发射检测波束。
  10. 根据权利要求1-9中任一项所述的方法,还包括:所述终端设备在所述网络设备配置的探测时间窗口之外发射通信波束;其中,
    所述终端设备根据所述物体探测的结果进行发射功率控制,包括:
    如果所述检测波束的方向上存在物体,所述终端设备对所述检测波束方向上的通信波束的发射功率进行调整以满足辐射要求;
    或者,
    如果所述检测波束的方向上存在物体,所述终端设备对多个通信波束的发射功率进行调整以满足辐射要求,其中所述多个通信波束包括所述检测波束方向上的通信波束。
  11. 根据权利要求1-10中任一项所述的方法,其中,
    在所述终端设备在所述网络设备配置的探测时间窗口内进行物体探测之前,所述方法还包括;
    所述终端设备将收发通路由第一频段切换至第二频段;以及,
    在物体探测之后,所述终端设备将收发通路由所述第二频段切回所述第一频段;其中,
    所述第一频段包括授权频段或免授权频段,
    所述第二频段包括授权频段或免授权频段。
  12. 一种发射功率控制方法,应用于终端设备,所述方法包括:
    终端设备在授权频段上发射通信波束;
    所述终端设备在免授权频段上发射检测波束以进行物体探测;
    所述终端设备根据所述物体探测的结果对所述通信波束进行发射功率控制。
  13. 根据权利要求12所述的方法,其中,所述终端设备在免授权频段上发射检测波束以进行物体探测,包括:
    所述终端设备在免授权频段上发射检测波束,并在免授权频段上接收所述检测波束的反射信号;
    所述终端设备根据所述检测波束的强度与所述反射信号的强度,确定所述物体探测的结果。
  14. 根据权利要求13所述的方法,其中,
    如果所述检测波束的强度与所述反射信号的强度之差大于或等于第一阈值,则所述终端设备确定所述物体探测的结果为所述检测波束的方向上不存在物体;
    如果所述检测波束的强度与所述反射信号的强度之差小于所述第一阈值,则所述终端设备确定所述物体探测的结果为所述检测波束的方向上存在物体。
  15. 根据权利要求13或14所述的方法,其中,所述终端设备在免授权频段上发射检测波束,包括:
    所述终端设备在免授权频段上发射方向不同的多个检测波束。
  16. 根据权利要求13-15中任一项所述的方法,其中,所述终端设备在免授权频段上发射检测波束以进行物体探测,还包括:
    所述终端设备在进行所述物体探测过程中,控制检测波束的发射功率从第一功率值逐渐增大,在确定检测波束的方向上存在物体后停止发射检测波束;
    或者,
    所述终端设备在进行所述物体探测过程中,控制检测波束的发射功率从第一功率值逐渐增大,在检测波束方向上未检测到物体但检测波束的发射功率已达到第二功率值后停止发射检测波束;
    或者,
    所述终端设备根据发射功率限制信息确定第三功率值,并以所述第三功率值发射检测波束,在确定检测波束的方向上存在物体后停止发射检测波束。
  17. 根据权利要求12-16中任一项所述的方法,其中,所述终端设备根据所述物体探测的结果对所述通信波束进行发射功率控制,包括:
    如果所述检测波束的方向上存在物体,所述终端设备对所述检测波束方向上的通信波束的发射功率进行调整以满足辐射要求;
    或者,
    如果所述检测波束的方向上存在物体,所述终端设备对多个通信波束的发射功率进行调整以满足辐射要求,其中所述多个通信波束包括所述检测波束方向上的通信波束。
  18. 一种发射功率控制方法,应用于网络设备,所述方法包括:
    网络设备接收终端设备发送的第一信息;
    所述网络设备根据所述第一信息为所述终端设备配置探测时间窗口。
  19. 根据权利要求18所述的方法,其中,
    所述第一信息包括所述终端设备的探测能力信息,所述网络设备按照预定的长度和周期配置所述探测时间窗口。
  20. 根据权利要求18所述的方法,其中,
    所述第一信息包括所述终端设备需要的周期性探测时间窗口的长度或周期,所述网络设备按照所述第一信息中的长度或周期以及预定的周期或长度,配置所述探测时间窗口;
    或者,
    所述第一信息包括所述终端设备需要的周期性探测时间窗口的长度和周期,所述网络设备按照所述第一信息中的长度和周期配置所述探测时间窗口。
  21. 根据权利要求18所述的方法,其中,
    所述第一信息包括所述终端设备需要的非周期性探测时间窗口的长度或起始位置,所述网络设备按照所述第一信息中的长度或起始位置以及预定的起始位置或长度,配置所述探测时间窗口;
    或者,
    所述第一信息包括所述终端设备需要的非周期性探测时间窗口的长度和起始位置,所述网络设备按照所述第一信息中的长度和起始位置配置所述探测时间窗口。
  22. 根据权利要求20或21所述的方法,其中,
    所述第一信息中还包括所述终端设备的探测能力信息。
  23. 一种终端设备,包括:
    发送模块,用于向网络设备发送第一信息,所述第一信息用于指示网络设备为所述终端设备配置探测时间窗口;
    探测模块,用于在所述网络设备配置的探测时间窗口内进行物体探测;
    功率控制模块,用于根据所述物体探测的结果进行发射功率控制。
  24. 根据权利要求23所述的终端设备,其中,
    所述第一信息包括所述终端设备的探测能力信息。
  25. 根据权利要求23所述的终端设备,其中,
    所述第一信息包括所述终端设备需要的周期性探测时间窗口的长度或周期;
    或者,
    所述第一信息包括所述终端设备需要的周期性探测时间窗口的长度和周期。
  26. 根据权利要求23所述的终端设备,其中,
    所述第一信息包括所述终端设备需要的非周期性探测时间窗口的长度或起始位置;
    或者,
    所述第一信息包括所述终端设备需要的非周期性探测时间窗口的长度和起始位置。
  27. 根据权利要求25或26所述的终端设备,其中,
    所述第一信息中还包括所述终端设备的探测能力信息。
  28. 根据权利要求23-27中任一项所述的终端设备,其中,所述探测模块包括:
    波束发射与接收子模块,用于在所述网络设备配置的探测时间窗口内发射检测波束,并接收所述检测波束的反射信号;
    确定子模块,用于根据所述检测波束的强度与所述反射信号的强度,确定所述物体探测的结果。
  29. 根据权利要求28所述的终端设备,其中,
    如果所述检测波束的强度与所述反射信号的强度之差大于或等于第一阈值,则所述确定子模块确定所述物体探测的结果为所述检测波束的方向上不存在物体;
    如果所述检测波束的强度与所述反射信号的强度之差小于所述第一阈值,则所述确定子模块确定所述物体探测的结果为所述检测波束的方向上存在物体。
  30. 根据权利要求28或29所述的终端设备,其中,
    所述波束发射与接收子模块用于在所述网络设备配置的探测时间窗口的多个周期内发射方向不同的多个检测波束。
  31. 根据权利要求28-30中任一项所述的终端设备,其中,所述探测模块还包括:
    第一检测波束控制子模块,用于在进行所述物体探测过程中,控制检测波束的发射功率从第一功率值逐渐增大,在确定检测波束的方向上存在物体后停止发射检测波束;
    或者,
    第二检测波束控制子模块,用于所述终端设备在进行所述物体探测过程中,控制检测波束的发射功率从第一功率值逐渐增大,在检测波束方向上未检测到物体但检测波束的发射功率已达到第二功率值后停止发射检测波束;
    或者,
    第三检测波束控制子模块,用于根据发射功率限制信息确定第三功率值,并以所述第三功率值发射检测波束,在确定检测波束的方向上存在物体后停止发射检测波束。
  32. 根据权利要求23-31中任一项所述的终端设备,还包括:
    通信波束发射模块,用于在所述网络设备配置的探测时间窗口之外发射通信波束;其中,
    所述功率控制模块包括:
    第一通信波束控制子模块,用于在所述检测波束的方向上存在物体的情况下,对所述检测波束方向上的通信波束的发射功率进行调整以满足辐射要求;
    或者,
    第二通信波束控制子模块,用于在所述检测波束的方向上存在物体的情况下,对多个通信波束的发射功率进行调整以满足辐射要求,其中所述多个通信波束包括所述检测波束方向上的通信波束。
  33. 根据权利要求23-32中任一项所述的终端设备,还包括;
    切换模块,用于在所述探测模块进行物体探测之前,将收发通路由第一频段切换至第二频段,以及,用于在物体探测之后,将收发通路由所述第二频段切回所述第一频段;其中,
    所述第一频段包括授权频段或免授权频段,
    所述第二频段包括授权频段或免授权频段。
  34. 一种终端设备,包括:
    发射模块,用于在授权频段上发射通信波束;
    探测模块,用于在免授权频段上发射检测波束以进行物体探测;
    功率控制模块,用于根据所述物体探测的结果对所述通信波束进行发射功率控制。
  35. 根据权利要求34所述的终端设备,其中,所述探测模块包括:
    收发子模块,用于在免授权频段上发射检测波束,并在免授权频段上接收所述检测波束的反射信号;
    确定子模块,用于根据所述检测波束的强度与所述反射信号的强度,确定所述物体探测的结果。
  36. 根据权利要求35所述的终端设备,其中,
    所述确定子模块用于在所述检测波束的强度与所述反射信号的强度之差大于或等于第一阈值的情况下,确定所述物体探测的结果为所述检测波束的方向上不存在物体;
    所述确定子模块用于在所述检测波束的强度与所述反射信号的强度之差小于所述第一阈值的情况下,确定所述物体探测的结果为所述检测波束的方向上存在物体。
  37. 根据权利要求35或36所述的终端设备,其中,
    所述收发子模块在免授权频段上发射方向不同的多个检测波束。
  38. 根据权利要求35-37中任一项所述的终端设备,其中,所述探测模块还包括:
    第一检测波束控制子模块,用于在进行所述物体探测过程中,控制检测波束的发射功率从第一功率值逐渐增大,在确定检测波束的方向上存在物体后停止发射检测波束;
    或者,
    第二检测波束控制子模块,用于在进行所述物体探测过程中,控制检测波束的发射功率从第一功率值逐渐增大,在检测波束方向上未检测到物体但检测波束的发射功率已达到第二功率值后停止发射检测波束;
    或者,
    第三检测波束控制子模块,用于根据发射功率限制信息确定第三功率值,并以所述第三功率值发射检测波束,在确定检测波束的方向上存在物体后停止发射检测波束。
  39. 根据权利要求34-38中任一项所述的终端设备,其中,所述功率控制模块包括:
    第一通信波束控制子模块,用于在所述检测波束的方向上存在物体的情况下,对所述检测波束方向上的通信波束的发射功率进行调整以满足辐射要求;
    或者,
    第二通信波束控制子模块,用于在所述检测波束的方向上存在物体的情况下,对多个通信波束的发射功率进行调整以满足辐射要求,其中所述多个通信波束包括所述检测波束方向上的通信波束。
  40. 一种网络设备,包括:
    接收模块,用于接收终端设备发送的第一信息;
    配置模块,用于根据所述第一信息为所述终端设备配置探测时间窗口。
  41. 根据权利要求40所述的网络设备,其中,
    所述第一信息包括所述终端设备的探测能力信息,所述网络设备按照预定的长度和周期配置所述探测时间窗口。
  42. 根据权利要求40所述的网络设备,其中,
    所述第一信息包括所述终端设备需要的周期性探测时间窗口的长度或周期,所述网络设备按照所述第一信息中的长度或周期以及预定的周期或长度,配置所述探测时间窗口;
    或者,
    所述第一信息包括所述终端设备需要的周期性探测时间窗口的长度和周期,所述网络设备按照所述第一信息中的长度和周期配置所述探测时间窗口。
  43. 根据权利要求40所述的网络设备,其中,
    所述第一信息包括所述终端设备需要的非周期性探测时间窗口的长度或起始位置,所述网络设备按照所述第一信息中的长度或起始位置以及预定的起始位置或长度,配置所述探测时间窗口;
    或者,
    所述第一信息包括所述终端设备需要的非周期性探测时间窗口的长度和起始位置,所述网络设备按照所述第一信息中的长度和起始位置配置所述探测时间窗口。
  44. 根据权利要求42或43所述的网络设备,其中,
    所述第一信息中还包括所述终端设备的探测能力信息。
  45. 一种终端设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器调用并运行所述存储器中存储的计算机程序,执行如权利要求1至17中任一项所述的方法。
  46. 一种网络设备,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器调用并运行所述存储器中存储的计算机程序,执行如权利要求18至22中任一项所述的方法。
  47. 一种芯片,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至22中任一项所述的方法。
  48. 一种计算机可读存储介质,用于存储计算机程序,其中,
    所述计算机程序使得计算机执行如权利要求1至22中任一项所述的方法。
  49. 一种计算机程序产品,包括计算机程序指令,其中,
    所述计算机程序指令使得计算机执行如权利要求1至22中任一项所述的方法。
  50. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至22中任一项所述的方法。
PCT/CN2021/091777 2021-04-30 2021-04-30 发射功率控制方法、终端设备和网络设备 WO2022227095A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/091777 WO2022227095A1 (zh) 2021-04-30 2021-04-30 发射功率控制方法、终端设备和网络设备
CN202180096836.4A CN117121570A (zh) 2021-04-30 2021-04-30 发射功率控制方法、终端设备和网络设备
US18/385,076 US20240064658A1 (en) 2021-04-30 2023-10-30 Transmit power control method, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/091777 WO2022227095A1 (zh) 2021-04-30 2021-04-30 发射功率控制方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/385,076 Continuation US20240064658A1 (en) 2021-04-30 2023-10-30 Transmit power control method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2022227095A1 true WO2022227095A1 (zh) 2022-11-03

Family

ID=83847589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091777 WO2022227095A1 (zh) 2021-04-30 2021-04-30 发射功率控制方法、终端设备和网络设备

Country Status (3)

Country Link
US (1) US20240064658A1 (zh)
CN (1) CN117121570A (zh)
WO (1) WO2022227095A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140302865A1 (en) * 2011-10-26 2014-10-09 Broadcom Corporation Flexible Measurements in Unlicensed Band
CN107172592A (zh) * 2017-03-20 2017-09-15 联想(北京)有限公司 室内定位方法及移动设备
US20200107249A1 (en) * 2018-09-27 2020-04-02 Google Llc Controlling Radar Transmissions Within a Licensed Frequency Band
CN111480301A (zh) * 2017-12-22 2020-07-31 高通股份有限公司 毫米波系统中的照射量检测
CN111656709A (zh) * 2018-01-15 2020-09-11 高通股份有限公司 对于功率放大器表征化的调度和最大允许照射量测量
CN112005462A (zh) * 2018-02-20 2020-11-27 皇家飞利浦有限公司 无线功率传输系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140302865A1 (en) * 2011-10-26 2014-10-09 Broadcom Corporation Flexible Measurements in Unlicensed Band
CN107172592A (zh) * 2017-03-20 2017-09-15 联想(北京)有限公司 室内定位方法及移动设备
CN111480301A (zh) * 2017-12-22 2020-07-31 高通股份有限公司 毫米波系统中的照射量检测
CN111656709A (zh) * 2018-01-15 2020-09-11 高通股份有限公司 对于功率放大器表征化的调度和最大允许照射量测量
CN112005462A (zh) * 2018-02-20 2020-11-27 皇家飞利浦有限公司 无线功率传输系统
US20200107249A1 (en) * 2018-09-27 2020-04-02 Google Llc Controlling Radar Transmissions Within a Licensed Frequency Band

Also Published As

Publication number Publication date
CN117121570A (zh) 2023-11-24
US20240064658A1 (en) 2024-02-22

Similar Documents

Publication Publication Date Title
EP3624531A1 (en) Srs transmission method and related device
JP2020526077A (ja) 電子機器、無線通信装置、及び無線通信方法
EP4145925A1 (en) Multi-carrier communication method, terminal device, and network device
US20230090640A1 (en) Wireless communication method and terminal device
US20220329293A1 (en) Wireless communication method, terminal device and network device
WO2022227095A1 (zh) 发射功率控制方法、终端设备和网络设备
US20220394503A1 (en) Wireless communication method and device
WO2022001927A1 (zh) 减少雷达和上行频段之间的干扰的方法和通信装置
CN113498136B (zh) 测量方法及装置
WO2022133692A1 (zh) 状态切换的方法、终端设备和网络设备
WO2024065324A1 (zh) 通信方法和设备
US20230336974A1 (en) Method for radio communication, terminal device, and network device
WO2024026883A1 (zh) 无线通信的方法及设备
WO2024026839A1 (zh) 无线通信的方法和终端设备
WO2023077439A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023141823A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023044735A1 (zh) 无线通信的方法和终端设备
US20230224754A1 (en) Quality of service (qos) control method, terminal device, and network device
WO2022021293A1 (zh) 信道侦听的方法及设备
WO2023283776A1 (zh) 功率控制的方法、终端设备和网络设备
WO2023245492A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023004635A1 (zh) 资源选择方法和终端设备
WO2022027690A1 (zh) 功率控制的方法、终端设备和网络设备
WO2024098399A1 (zh) 无线感知的方法及设备
WO2023279258A1 (zh) 资源选取的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938568

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021938568

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021938568

Country of ref document: EP

Effective date: 20231129

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938568

Country of ref document: EP

Kind code of ref document: A1