WO2022227088A1 - Integrated access and backhaul communication - Google Patents

Integrated access and backhaul communication Download PDF

Info

Publication number
WO2022227088A1
WO2022227088A1 PCT/CN2021/091750 CN2021091750W WO2022227088A1 WO 2022227088 A1 WO2022227088 A1 WO 2022227088A1 CN 2021091750 W CN2021091750 W CN 2021091750W WO 2022227088 A1 WO2022227088 A1 WO 2022227088A1
Authority
WO
WIPO (PCT)
Prior art keywords
operator
iab
identifier
integrated access
backhaul
Prior art date
Application number
PCT/CN2021/091750
Other languages
French (fr)
Inventor
Xiang Xu
Oliver Blume
Jens Gebert
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2021/091750 priority Critical patent/WO2022227088A1/en
Priority to CN202180006095.6A priority patent/CN115553046A/en
Publication of WO2022227088A1 publication Critical patent/WO2022227088A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15507Relay station based processing for cell extension or control of coverage area
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • Embodiments of the present disclosure generally relate to the field of telecommunications, and in particular, to devices, methods, apparatuses and computer readable media for integrated access and backhaul (IAB) communication.
  • IAB integrated access and backhaul
  • IAB has been introduced in Release 16 (Rel-16) of the 3rd Generation Partnership Project (3GPP) specifications as a key enabler for fast and cost-efficient deployments.
  • IAB nodes use the same or different spectrum and air interface for access and backhaul, creating a hierarchical wireless multi-hop (multiple backhaul links) network between sites. The hops eventually terminate at an IAB donor that is connected by means of a conventional fixed backhaul to the core network.
  • a key benefit of the IAB is to enable flexible and very dense deployment of cells without densifying the transport network proportionately.
  • a diverse range of deployment scenarios can be envisioned including support for outdoor small cell deployments, indoors (e.g., shopping centers) , or even mobile relays (e.g. on buses or trains) .
  • the users e.g., inside a shopping center, a bus or a train, typically have subscriptions to different network operators. Instead of deploying an IAB network for each operator, it is beneficial to share the network resources between multiple operators and provide an IAB-node providing services for the multiple operators.
  • example embodiments of the present disclosure provide devices, methods, apparatuses and computer readable media for IAB communication.
  • a first device comprising at least one processor; and at least one memory including computer program code; where the at least one memory and the computer program code are configured to, with the at least one processor, cause the first device from a first operator to obtain identification information concerning at least one of a second device from a second operator and shared for the first operator, and a third device from the second operator; determine an association of the second device with the third device based on the identification information; and transmit, to the third device based on the determined association, a request for configuring a radio channel towards the second device, and wherein the first device comprises a first integrated access and backhaul donor central unit, the second device comprises an integrated access and backhaul node, and the third device comprises a second integrated access and backhaul donor central unit.
  • a second device comprising at least one processor; and at least one memory including computer program code; where the at least one memory and the computer program code are configured to, with the at least one processor, cause the second device from a second operator to obtain a first identifier uniquely identifying a third device, the third device being from the second operator and providing a control plane connection to a core network for the second device; and transmit, to a first device from the first operator, the first identifier and a second identifier of the second device allocated by the third device, and wherein the first device comprises a first integrated access and backhaul donor central unit, the second device comprises an integrated access and backhaul node, and the third device comprises a second integrated access and backhaul donor central unit.
  • a third device comprises at least one processor; and at least one memory including computer program code; where the at least one memory and the computer program code are configured to, with the at least one processor, cause the third device from a second operator to provide, to a first device from a first operator, identification information concerning at least one of a second device and the third device, the second device being from the second operator and shared for the first operator; and receive, from the first device, a request for configuring a radio channel towards the second device, and herein the first device comprises a first integrated access and backhaul donor central unit, the second device comprises an integrated access and backhaul node, and the third device comprises a second integrated access and backhaul donor central unit.
  • a method comprises obtaining, at a first device from a first operator, identification information concerning at least one of a second device from a second operator and shared for the first operator, and a third device from the second operator; determining an association of the second device with the third device based on the identification information; and transmitting, to the third device based on the determined association, a request for configuring a radio channel towards the second device, and herein the first device comprises a first integrated access and backhaul donor central unit, the second device comprises an integrated access and backhaul node, and the third device comprises a second integrated access and backhaul donor central unit.
  • a method comprises obtaining, at a second device from a second operator, a first identifier uniquely identifying a third device, the third device being from the second operator and providing a control plane connection to a core network for the second device; and transmitting, to a first device from the first operator, the first identifier and a second identifier of the second device allocated by the third device, and wherein the first device comprises a first integrated access and backhaul donor central unit, the second device comprises an integrated access and backhaul node, and the third device comprises a second integrated access and backhaul donor central unit.
  • a method comprises providing, at a third device from a second operator and to a first device from a first operator, identification information concerning at least one of a second device and the third device, the second device being from the second operator and shared for the first operator; and receiving, from the first device, a request for configuring a radio channel towards the second device, and wherein the first device comprises a first integrated access and backhaul donor central unit, the second device comprises an integrated access and backhaul node, and the third device comprises a second integrated access and backhaul donor central unit.
  • a first apparatus comprising means for obtaining identification information concerning at least one of a second apparatus from a second operator and shared for the first operator, and a third apparatus from the second operator; means for determining an association of the second apparatus with the third apparatus based on the identification information; and means for transmitting, to the third apparatus based on the determined association, a request for configuring a radio channel towards the second apparatus, and wherein the first apparatus comprises a first integrated access and backhaul donor central unit, the second apparatus comprises an integrated access and backhaul node, and the third apparatus comprises a second integrated access and backhaul donor central unit.
  • a second apparatus comprising means for obtaining a first identifier uniquely identifying a third apparatus, the third apparatus being from the second operator and providing a control plane connection to a core network for the second apparatus; and means for transmitting, to a first apparatus from the first operator, the first identifier and a second identifier of the second apparatus allocated by the third apparatus, and wherein the first apparatus comprises a first integrated access and backhaul donor central unit, the second apparatus comprises an integrated access and backhaul node, and the third apparatus comprises a second integrated access and backhaul donor central unit.
  • a third apparatus comprising means for providing, to a first apparatus from a first operator, identification information concerning at least one of a second apparatus and the third apparatus, the second apparatus being from the second operator and shared for the first operator; and means for receiving, from the first apparatus, a request for configuring a radio channel towards the second apparatus, and wherein the first apparatus comprises a first integrated access and backhaul donor central unit, the second apparatus comprises an integrated access and backhaul node, and the third apparatus comprises a second integrated access and backhaul donor central unit.
  • a computer readable storage medium comprising program instructions stored thereon.
  • the instructions when executed by an apparatus, cause the apparatus to perform the method according to the above fourth, fifth or sixth aspect.
  • Fig. 1 illustrates a block diagram of a system for IAB communication
  • Fig. 2 illustrates a partial sharing scenario to which example embodiments of the present disclosure can be applied
  • FIG. 3a, Fig. 3b and Fig. 3c illustrate example IAB environments in which example embodiments of the present disclosure can be implemented;
  • Fig. 4a illustrates a flowchart illustrating an example process for sharing an IAB node according to some example embodiments of the present disclosure
  • Fig. 4b illustrates a flowchart illustrating an example process for a non-shared IAB node according to some example embodiments of the present disclosure
  • Fig. 5 illustrates a flowchart illustrating another example process for sharing an IAB node according to some example embodiments of the present disclosure
  • Fig. 6a illustrates an example protocol stack for support of an F1 user plane according to some example embodiments of the present disclosure
  • Fig. 6b illustrates an example protocol stack for support of an F1 control plane according to some example embodiments of the present disclosure
  • Fig. 7 illustrates a flowchart of an example method according to some example embodiments of the present disclosure
  • Fig. 8 illustrates a flowchart of an example method according to some example embodiments of the present disclosure
  • Fig. 9 illustrates a flowchart of an example method according to some example embodiments of the present disclosure.
  • Fig. 10 illustrates a simplified block diagram of an apparatus that is suitable for implementing embodiments of the present disclosure.
  • Fig. 11 illustrates a block diagram of an example computer readable medium in accordance with some example embodiments of the present disclosure.
  • references in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • first and second etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments.
  • the term “and/or” includes any and all combinations of one or more of the listed terms.
  • circuitry may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) , New Radio (NR) and so on.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • NB-IoT Narrow Band Internet of Things
  • NR New Radio
  • the communications between a terminal device and a network device or communications between network devices in the communication network may be performed according to any suitable communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • the first generation (1G) the second generation (2G) , 2.5G, 2.75G
  • the third generation (3G) the fourth generation (4G) , 4.5G
  • 5G fifth generation
  • Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
  • the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
  • BS base station
  • AP access point
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • NR NB also referred to as a gNB
  • RRU Remote Radio Unit
  • RH radio header
  • IAB-node an IAB-donor-central unit (IAB-donor-CU) or an IAB-donor-distributed unit (IAB-donor-DU) is an example of network device.
  • network device the terms “network device” , “BS” , and “node” may be used interchangeably.
  • terminal device refers to any end device that may be capable of wireless communication.
  • a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • UE user equipment
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • the terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/
  • the term “adevice from an operator” or a similar term means that the device is deployed by the operator and is associated with one or more Public Land Mobile Network (PLMN) identifier (ID) of the operator.
  • PLMN Public Land Mobile Network
  • ID Public Land Mobile Network
  • the term “adevice from a first operator and shared for a second operator” or a similar term means that the device is deployed by the first operator and is associated with one or more PLMN ID (s) of the first operator and another one or more PLMN ID (s) of the second operator.
  • Fig. 1 shows a block diagram of an example IAB system 100.
  • the IAB system 100 includes an IAB donor 110 and IAB nodes 120-11, 120-12, 120-21, 120-22, 120-31 underneath the IAB donor 110.
  • the IAB nodes 120-11, 120-12, 120-21, 120-22, 120-31 may be collectively referred to as “IAB nodes 120” or individually referred to as an “IAB node 120” .
  • the IAB donor 110 may be implemented as a gNB that terminates wireless backhaul radio interface from one or more IAB nodes.
  • the IAB donor 110 has wired/fiber connectivity with a core network.
  • the IAB donor 110 may include a CU 110-11 and one or more DUs.
  • Fig. 1 shows that the IAB donor 110 includes a DU 110-12 by way of example.
  • the CU of the IAB donor is also referred to as a Donor-CU or a donor central unit or an IAB-donor-CU; and the DU of the IAB donor is also referred to as a Donor-DU or a donor distributed unit or an IAB-donor-DU.
  • An IAB node for example, the IAB node 120, may include a DU (also referred to as an IAB-DU) , and a mobile terminal (MT, also referred to as an IAB-MT) that maintains connectivity with one or more upstream nodes (using for example, dual connectivity) .
  • the MT of an IAB node may use radio resource control (RRC) signaling to supply radio link measurements of alternative upstream nodes to its current serving gNB CU.
  • RRC radio resource control
  • a migration may be performed, for example, a handover is performed for the IAB-MT based on signal strength, signal quality and other factors.
  • the IAB topology such as the one shown in Fig. 1, may be non-static. The IAB topology may change over time as radio conditions fluctuate, and as IAB nodes move, are added or removed.
  • a CU (such as a Donor-CU) may be a logical node which may include the functions (for example, gNB functions) such as transfer of user data, mobility control, radio access network sharing, positioning, session management etc., except those functions allocated exclusively to DUs.
  • the CU may control the operation of the DUs over a front-haul (F1) interface.
  • a DU is a logical node which may include a subset of the functions (for example, gNB functions) .
  • One gNB-DU (for example, an IAB-DU, or an IAB-donor-DU) is connected to only one gNB-CU (for example, an IAB-donor-CU) via the F1 interface.
  • the IAB-DU or the IAB-donor-DU initiates the F1 setup with the Donor-CU.
  • the IAB donor 110 may serve directly connected IAB nodes such as the IAB node 120-11 and IAB node 120-12, and IAB nodes that are chained over multiple wireless backhaul hops such as IAB node 120-21, IAB node 120-22 and IAB node 120-31.
  • the IAB donor 110 may also serve directly connected terminal devices (not shown) .
  • the IAB node 120 may serve one or more terminal devices directly connected to the IAB node 120. For example, as shown in Fig.
  • the IAB node 120-11 may serve a terminal device 130 directly connected to the IAB node 120-11
  • the IAB node 120-21 may serve a terminal device 140 directly connected to the IAB node 120-21
  • the IAB node 120-31 may serve a terminal device 150 directly connected to the IAB node 120-31.
  • the Donor-CU 110-11 assigns a Backhaul Adaptation Protocol (BAP) address to the IAB-MT of the IAB node 120.
  • BAP Backhaul Adaptation Protocol
  • the backhaul (BH) radio link control (RLC) channel towards the IAB node 120 is setup via the RRC procedure.
  • Donor-CU 110-11 shall identify the collocation of the IAB-MT and the IAB-DU.
  • the IAB-DU of the IAB node 120 may provide its BAP address to the Donor-CU 110-11 during an F1 Setup procedure, so the Donor-CU 110-11 can know the collocation of the IAB-DU with a specific IAB-MT.
  • IAB nodes and terminal devices connected to the IAB nodes is only for the purpose of illustration without suggesting any limitations.
  • the IAB system may include any suitable number of IAB nodes and terminal devices adapted for implementing example embodiments of the present disclosure.
  • a vehicle relay network may be shared between multiple operators.
  • the donor gNB i.e. the Donor-DU and/or the Donor-CU
  • a relay mounted on a vehicle is also shared for the other operator.
  • network sharing for normal gNB may be considered.
  • sharing of the gNB including sharing the gNB-DU and the gNB-CU
  • a scheme of sharing the gNB-DU only but not sharing the gNB-CU may need to be supported.
  • IAB nodes including the IAB-node, the IAB-Donor-CU/DU
  • IAB nodes including the IAB-node, the IAB-Donor-CU/DU
  • multiple users may want services from multiple operators. This requires a lot of installation to run two or more IAB networks inside a building, which would result in high cost and difficulties in finding antenna spots. Therefore, it is desired to share the IAB network between operators.
  • Fig. 2 illustrates partial sharing of IAB nodes in an IAB network with multiple operators.
  • a donor gNB 121 comprising a Donor-CU and a Donor-DU is deployed by a second operator 101 and a Donor-CU 122 is deployed by a first operator 102.
  • the donor gNB 121 and the Donor-CU 122 communicate with each other, e.g., via an Internet Protocol (IP) connection 143 between a DU of donor gNB 121 and the Donor-CU 122, or an Xn interface between the CU of donor gNB 121 and the Donor-CU 122.
  • IP Internet Protocol
  • An IAB node 111 and an IAB node 112 are deployed by the second operator 101 in a building 150, for example a shopping mall.
  • the IAB node 112 is shared with the first operator 102.
  • a terminal device 130 subscripted to the first operator 102 can be served by the IAB node 112.
  • the transport path 150 between the IAB node 112 and the first operator 102 comprises a wireless backhaul link between the IAB node 112 and the IAB node 111, a wireless backhaul link between the IAB node 111 and the donor gNB 121, and the IP connection 143.
  • FIG. 3a and Fig. 3b illustrate example IAB environments 300 and 305 in which example embodiments of the present disclosure can be implemented. Deployment examples shown in Fig. 3a and Fig. 3b can be used in the example scenario 200 shown in Fig. 2.
  • the example IAB environments 300 and 305 involve Public Land Mobile Networks (PLMNs) of three operators.
  • the IAB environments 300 and 305 comprise a Donor-CU of an IAB-donor node from a first operator, which is also referred to as a “Donor1-CU 311” , a Donor-CU of another IAB-donor node from a second operator, which is also referred to as a “Donor2-CU 321” , and a Donor-CU of a further IAB-donor node from a third operator, which is also referred to as a “Donor3-CU 331” .
  • PLMNs Public Land Mobile Networks
  • an IP connection 351 is established between the Donor1-CU 311 and a Donor-DU of the IAB-donor node from the second operator, which is also referred to as a “Donor2-DU 322” .
  • An IAB node 323, an IAB node 324 and an IAB node 325 are deployed by the second operator and controlled by the Donor2-CU 321, which provides the control plane connection to a core network (not shown in Fig. 3a) for the IAB nodes deployed by the second operator.
  • Donor2-CU 321 is a termination point for the control plane connection to the core network for the IAB-MT in the IAB node 323, and for the IAB-MT in the IAB node 324.
  • the IAB node 324 is shared with the first operator. At least one cell of the IAB node 324 is shared for the first operator. It is possible that only one cell, or more than one cell, or all cells of the IAB node 324 is shared for the first operator. As a result, the IAB node 324 can serve a terminal device 315 subscripted to the first operator and the IAB node 312 deployed by the first operator.
  • the IAB node 312 in turn serves the IAB node 313 deployed by the first operator and a terminal device 314 subscripted to the first operator.
  • the shared cell (s) provided by the shared IAB node 324 may be considered as served cells by the Donor1-CU 311 and the Donor2-CU 321, for example, when the Donor1-CU 311 or the Donor2-CU 321 exchange the served cell information with neighboring gNB CU over the Xn interface.
  • Another IP connection 352 is established between the Donor1-CU 311 and a Donor-DU from the third operator, which is also referred to as a “Donor3-DU 332” .
  • An IAB node 333 and an IAB node 334 are deployed by the third operator and controlled by the Donor3-CU 331, which provides a control plane connection to a core network (not shown in Fig. 3a) for the IAB nodes deployed by the third operator.
  • Donor3-CU 331 is a termination point for the control plane connection to the core network for the IAB-MT in the IAB node 333, and for the IAB-MT in the IAB node 334.
  • the IAB node 333 is shared with the first operator.
  • the IAB node 333 can serve an IAB node 317 deployed by the first operator.
  • the shared cell (s) provided by the shared IAB node 333 may be considered as served cells by both the Donor1-CU 311 and the Donor3-CU 331, for example, when the Donor1-CU 311 or the Donor2-CU 331 exchange the served cell information with neighboring gNB CU over the Xn interface.
  • the IAB environment 300 of Fig. 3a also shows a Donor-DU from the first operator, which is also referred to as a “Donor1-DU 318” .
  • An IAB node 316 is deployed by the first operator and controlled by the Donor1-CU 311, which provides a control plane connection to a core network (not shown in Fig. 3a) for the IAB node deployed by the first operator.
  • Donor1-CU 311 is a termination point for the control plane connection to the core network for the IAB-MT in the IAB node 316.
  • an IP connection 353 is established between the Donor1-CU 311 and the Donor2-DU 322.
  • another IP connection 354 is established between the Donor3-CU 331 and the Donor2-DU 322.
  • the IAB node 324 deployed by the second operator is shared with both the first operator and the third operator. As a result, the IAB node 324 can serve a terminal device 335 subscripted to the third operator and the IAB node 312 deployed by the first operator.
  • the shared cell (s) provided by the shared IAB node 324 may be considered as served cells by the Donor1-CU 311, the Donor2-CU 321 and the Donor3-CU 331, for example, when the Donor1-CU 311 or the Donor2-CU 321 or the Donor3-CU 331 exchange the served cell information with neighboring gNB CU over the Xn interface.
  • the second operator is a hosting operator which has operational control of the shared IAB node, and the first operator is a participating operator which is authorized to access resources of the shared IAB node.
  • the second operator is a hosting operator, the first operator is a participating operator and the third operator is another participating operator.
  • the shared IAB node may comprise an IAB-DU for an F1 interface with a Donor-CU from the hosting operator, another IAB-DU for an F1 interface with a Donor-CU from a first participating operator, yet another IAB-DU for an F1 interface with a Donor-CU from a second participating operator, and so on.
  • the shared IAB node 324 may comprise an IAB-DUa (not shown in Fig. 3a) for an F1 interface with the Donor1-CU 311 from the first operator, and an IAB-DUb (not shown in Fig. 3a) for an F1 interface with the Donor2-CU 321 from the second operator.
  • IAB-DUa not shown in Fig. 3a
  • the shared IAB node 324 may comprise an IAB-DUa (not shown in Fig. 3b) for an F1 interface with the Donor1-CU 311 from the first operator, an IAB-DUb (not shown in Fig. 3b) for an F1 interface with the Donor2-CU 321 from the second operator, and an IAB-DUc (not shown in Fig. 3b) for an F1 interface with the Donor3-CU 331 from the third operator.
  • the third operator is the hosting operator and the first operator is the participating operator.
  • the shared IAB node 333 may comprise an IAB-DUa (not shown in Fig. 3a) for an F1 interface with the Donor1-CU 311 from the first operator, and an IAB-DUb (not shown in Fig. 3a) for an F1 interface with the Donor3-CU 331 from the third operator.
  • Figs. 3a and 3b are only for the purpose of illustration without suggesting any limitations.
  • the example embodiments of the present disclosure can be implemented in an IAB environment with any suitable deployment.
  • a complete tree or sub-tree of IAB nodes may be shared.
  • the second operator may share the IAB node 324, the IAB node 325, the IAB node 312 and the IAB node 313 with the first operator and the third operator.
  • an IAB node is shared between different operators without sharing the Donor-CUs and other intermediate nodes (for example, the Donor-DU, the intermediate IAB node) .
  • the Donor1-CU 311 from the participating operator shall identify the collocation of the IAB-MT and the IAB-DU of the shared IAB node.
  • no solution is available yet for the Donor1-CU 311 from the participating operator to know the collocation of the IAB-MT and the IAB-DU of the shared IAB node 324.
  • the BAP address (for example, BAP address #001) of the shared IAB node 324 is assigned by the Donor2-CU 321 from the hosting operator, and Donor-CUs from different operators may assign the same BAP address to different IAB nodes.
  • Donor1-CU 311 may already assign the same BAP address (for example, BAP address #001) to its own IAB node, for example, the IAB node 316.
  • Donor1-CU 311 cannot know the collocation of the IAB-MT and the IAB-DU of the shared IAB node 324.
  • the Donor1-CU 311 may incorrectly determine the IAB-DU is collocated with the IAB-MT in the IAB node 316, rather the IAB-MT in the IAB node 324.
  • the Donor1-CU cannot request to setup or modify the BH RLC channel towards the shared IAB node. Furthermore, the Donor1-CU does not know which Donor controls the IAB-MT of the shared IAB node, and the Donor1-CU does not know where to send a request, e.g., a request to setup the BH RLC channel towards the shared IAB node.
  • Fig. 3c illustrates another example IAB environment 306 in which some example embodiments of the present disclosure can be implemented.
  • the IAB environment 306 comprises a Donor-CU of a first IAB-donor node, which is also referred to as a “Donor1-CU 361” , and a Donor-CU of a second IAB-donor node, which is also referred to as a “Donor2-CU 371” .
  • the IAB environment 306 also comprises a Donor-DU of the first IAB-donor node, which is also referred to as a “Donor1-DU 368” , and a Donor-DU of the second IAB-donor node, which is also referred to as a “Donor2-DU 372” .
  • the IAB environment 306 further comprises IAB nodes 373, 374, 375, 366.
  • the IAB nodes 373, 374, 375, 366, the Donor2-CU 371, the Donor1-CU 361, the Donor2-DU 372 and the Donor1-DU 368 are deployed by the same operator.
  • An IP connection 355 is established between the Donor1-CU 361 and the Donor2-DU 372.
  • the IAB node 374 connects with the IAB node 373.
  • the RRC establishment procedure initiated by the IAB-MT of the IAB node 374 is terminated at the Donor2-CU 371, which provides the control plane connection to a core network (not shown in Fig. 3c) .
  • Donor2-CU 371 is a termination point for the control plane connection to the core network for the IAB-MT in the IAB node 374.
  • the Donor2-CU 371 allocates a BAP address (for example, #002) to the IAB-MT of the IAB node 374.
  • the IAB-DU in the IAB node 374 is configured to use the Donor1-CU 361 for F1 interface, for example, for load balancing reason when the Donor2-CU 371 is overloaded and cannot accept new F1 setup from the IAB-DU in the IAB node 374.
  • the Donor1-CU 361 shall identify the collocation of the IAB-MT and the IAB-DU of the IAB node 374. No solution is available yet for the Donor1-CU 361 to know the collocation of the IAB-MT and the IAB-DU of the IAB node 374.
  • the BAP address (for example, BAP address #002) of the IAB node 374 is assigned by the Donor2-CU 371, and the Donor1-CU 361 may assign the same BAP address to a different IAB node.
  • Donor1-CU 361 may already assign the same BAP address (for example, BAP address #002) to its own IAB node (for example, the IAB node 366) .
  • the Donor1-CU 361 when the Donor1-CU 361 receive the F1 SETUP REQUEST message including the BAP address (for example, #002) from the IAB-DU in the IAB node 374, the Donor1-CU 361 cannot know the collocation of the IAB-MT and the IAB-DU of the IAB node 374. Donor1-CU 361 may incorrectly determine that the IAB-DU is collocated with the IAB-MT in the IAB node 366, rather the IAB-MT in the IAB node 374.
  • Example embodiments of the present disclosure provide a solution for IAB communication.
  • the solution enables sharing an IAB node by different operators.
  • the solution enables load balancing for different donor CUs of same operator.
  • a first Donor-CU from a first operator obtains identification information concerning at least one of a second Donor-CU from a second operator (for example, a hosting operator) and an IAB node from the second operator and shared for the first operator.
  • the first Donor-CU may receive a unique identifier of the second Donor-CU from the shared IAB node, for example, from an IAB-DU of the shared IAB node.
  • the first Donor-CU may receive from the second Donor-CU an identifier (for example, the BAP address, or an IAB address) of the shared IAB node and at least another identifier of a cell served by the shared IAB node.
  • an identifier for example, the BAP address, or an IAB address
  • the first Donor-CU determines an association of the shared IAB node with the second Donor-CU based on the obtained identification information. For example, the first Donor-CU may identify, based on the obtained identification information, that the second Donor-DU controls the shared IAB node. Based on the determined association, the first Donor-CU may transmit to the second Donor-CU a request for configuring a radio channel towards to the shared IAB node when needed. For example, the first Donor-CU may transmit to the second Donor-CU a request to setup or modify the BH RCL channel towards the shared IAB node.
  • the shared IAB node and the Donor controlling the shared IAB node can be identified by the Donor from a participating operator.
  • IAB node sharing is enabled without sharing the Donor and intermediate IAB nodes. In this way, flexibility for IAB deployment can be achieved and capital expenditure of the participating operator can be reduced.
  • Fig. 4a illustrates a flowchart illustrating an example process 400 for sharing an IAB node according to some example embodiments of the present disclosure.
  • the process 400 at least involves the Donor1-CU 311 from the first operator, the Donor2-CU 321 from the second operator and the IAB node 324 shared between the first and second operators.
  • the IAB node 324 comprises an IAB-MT 401 and one or more IAB-DUs.
  • the IAB node 324 may comprise an IAB-DUa 403 for an F1 interface with the Donor1-CU 311 and an IAB-DUb 402 for an F1 interface with the Donor2-CU 321.
  • IAB-DUa 403 and the IAB-DUb 402 are shown separately, this is merely for the purpose of illustration without suggesting any limitation to the protection scope.
  • the IAB-DUa 403 and the IAB-DUb 402 may be implemented by a same device or apparatus.
  • the Donor2-CU 321 transmits 405 to the IAB node 324 an identifier of the IAB node 324 allocated by the Donor2-CU 321, which is also referred to as a “second identifier” in the following.
  • the second identifier may be any suitable identifier allocated by the Donor2-CU 321 to identify the IAB node 324.
  • the second identifier is a BAP address of the IAB node 324 allocated by the Donor2-CU 321.
  • the IAB-MT 401 may initiate establishment of a RRC connection with the Donor2-CU 321.
  • the Donor2-CU 321 may allocate the BAP address to the IAB node 324 and transmit a RRC reconfiguration message comprising the BAP address to the IAB-MT 401.
  • the UE initial access procedure for the IAB-MT also includes the connection setup with the core network (not shown in Fig. 4a) .
  • the Donor2-CU 321 terminates the control plane connection to the core network for the IAB-MT 401.
  • the IAB node 324 obtains 410 an identifier uniquely identifying the Donor2-CU 321.
  • Such an identifier is also referred to as a “first identifier” or a unique identifier.
  • the first identifier may be any identity which can uniquely identify the Donor2-CU 321 in the multi-operator deployment, for example, the example deployments as shown in Figs. 3a and 3b.
  • the first identifier may be a Global gNB ID of the Donor2-CU 321, which includes a PLMN ID of an operator (i.e., the second operator in this example) who deploys and controls the Donor2-CU, and a gNB ID of the Donor2-CU 321.
  • the IAB node 324 may receive the first identifier from the Donor2-CU 321.
  • the first identifier may be included in a F1 Application Protocol (F1AP) message provided from the Donor2-CU 321 to the IAB-DUb 402, for example, during the F1 setup procedure between the IAB-DUb 402 and the Donor2-CU 321.
  • F1AP F1 Application Protocol
  • the first identifier may be included in a RRC message provided from the Donor2-CU 321 to the collocated IAB-MT 401 during a RRC procedure, for example, during the RRC connection establishment procedure, or a RRC reconfiguration procedure, or at 405.
  • the IAB node 324 may receive the first identifier from an Operation Administration and Maintenance (OAM) entity (not shown) .
  • OAM Operation Administration and Maintenance
  • the OAM entity of the second operator may provide configuration information comprising the first identifier to the IAB-DUb 402 or the IAB-DUa 403.
  • the OAM entity configures other parameters related to the IAB-DU of the IAB node 324
  • the first identifier may also be provided by the OAM entity.
  • internal communication may be performed 415 within the IAB node 324 to transfer the identification information concerning the IAB node 324 and the Donor2-CU 321.
  • the IAB node 324 comprises the IAB-DUa 403 and the IAB-DUb 402
  • the BAP address allocated to the IAB-MT 401 may be shared among the IAB-MT 401, the collocated IAB-DUa 403 and the collocated IAB-DUb 402
  • the first identifier of the Donor2-CU may be shared among the IAB-MT 401, the collocated IAB-DUa 403 and the collocated IAB-DUb 402.
  • the BAP address received at 405 may be transmitted from the IAB-MT 401 to the IAB-DUb 402 and the IAB-DUa 403.
  • the first identifier of the Donor2-CU obtained at 410 may be transmitted from the IAB-DUb 402 (or the IAB-MT 401) to the IAB-DUa 403.
  • the IAB node 324 transmits 420 the identification information concerning the IAB node 324 and the Donor2-CU 321 to the Donor1-CU 311.
  • the IAB-DUa 403 provides the first identifier of the Donor2-CU 321 and the second identifier of the IAB node 324 to the Donor1-CU 311.
  • the first and second identifiers may be transmitted during a procedure for setting up an F1 interface between the IAB node 324 and the Donor1-CU 311.
  • the first and second identifiers may be included in an F1 SETUP REQUEST message from the IAB-DUa 403 to the Donor1-CU 311.
  • the first and second identifiers may be transmitted during a procedure for updating a configuration of the IAB-DU of the IAB node 324.
  • the IAB-DUa 403 may include the first and second identifiers in a message towards the Donor1-CU 311 during an F1 gNB-DU Configuration Update procedure.
  • the first and second identifiers may be transmitted during a procedure for updating a configuration of the Donor1-CU 311.
  • the IAB-DUa 403 may include the first and second identifiers in a message towards the Donor1-CU 311 during an F1 gNB-CU Configuration Update procedure.
  • the Donor1-CU 311 determines 425 an association of the IAB node 324 with the Donor2-CU 321. In other words, based on the first and second identifiers, the Donor1-CU 311 can identify the IAB-MT 401 is collocated with the IAB-DUa 403 and determine that the Donor2-CU 321 manages the IAB node 324. For example, the Donor1-CU 311 can identify the IAB-DUa 403 is collocated with an IAB-MT from the second operator, and the collocated IAB-MT 401 is managed by the Donor2-CU 321 which provides a control plane connection to the core network for the collocated IAB-MT 401.
  • the Donor1-CU 311 may transmit 430 to the Donor2-CU 321 a request for configuring a radio channel towards the IAB node 324 when needed.
  • the request comprises the second identifier of the IAB node 324 to identify the IAB-MT 401.
  • the request may comprise the BAP address of the IAB node 324 to identify the IAB-MT 401.
  • the Donor1-CU 311 may transmit to the Donor2-CU 321 an Xn request message to setup or modify the BH RLC channel towards the IAB-MT 401.
  • the Xn request comprises the BAP address to identify the IAB-MT 401.
  • the Donor2-CU 321 initiates 435 a procedure to configure the radio channel towards the IAB node 324.
  • the Donor2-CU 321 may initiate an F1AP procedure or an RRC procedure to setup or modify the BH RLC channel towards the IAB-MT 401.
  • the BH RLC channel is further used to convey the traffic, for example, the traffic for an F1 control plane (F1-C) or an F1 user plane (F1-U) between the IAB-DUa 403 and the Donor1-CU 311, and/or the traffic for an F1-C or an F1-U between the IAB-DUb 402 and the Donor2-CU 321.
  • the unique identifier of the Donor-CU from the hosting operator is provided by the shared IAB node to the Donor-CU from the participating operator.
  • the Donor-CU from the participating operator can identify the Donor-CU controlling the shared IAB node. Therefore, IAB node sharing is enabled without sharing the Donor and intermediate IAB nodes from the hosting operator.
  • the first operator and the second operator may be the same, and in this case, the second device (e.g., IAB node 324) is not a shared IAB node by different operators (and is referred to a non-shared IAB node hereafter) , but has connection with more than one Donor-CUs from the same operator.
  • the second device e.g., IAB node 324
  • IAB node 324 is not a shared IAB node by different operators (and is referred to a non-shared IAB node hereafter) , but has connection with more than one Donor-CUs from the same operator.
  • An example is shown in Fig. 4b.
  • Fig. 4b illustrates a flowchart illustrating an example process 450 for the non-shared IAB node according to some example embodiments of the present disclosure. For the purpose of discussion, the process 450 will be described with reference to Figs. 3c.
  • the process 450 at least involves the Donor1-CU 361, the Donor2-CU 371 and the IAB node 374, which may be deployed by same operator.
  • the IAB node 374 comprises an IAB-MT 451 and one IAB-DU 453.
  • the IAB-DU 453 may have an F1 interface with the Donor1-CU 361, but the Donor2-CU 371 is a termination point for the control plane connection to the core network for the IAB-MT 451.
  • the Donor2-CU 371 transmits 455 to the IAB node 374 an identifier of the IAB node 374 allocated by the Donor2-CU 371, which is also referred to as a “second identifier” in the following.
  • the second identifier may be any suitable identifier allocated by the Donor2-CU 371 to identify the IAB node 374.
  • the second identifier is a BAP address of the IAB node 374 allocated by the Donor2-CU 371.
  • the IAB-MT 451 may initiate establishment of a RRC connection with the Donor2-CU 371.
  • the Donor2-CU 371 may allocate the BAP address to the IAB node 374 and transmit a RRC reconfiguration message comprising the BAP address to the IAB-MT 451.
  • the UE initial access procedure for the IAB-MT also includes the connection setup with the core network (not shown in Fig. 4b) .
  • the IAB node 374 obtains 460 an identifier uniquely identifying the Donor2-CU 371.
  • Such an identifier is also referred to as a “first identifier” or a unique identifier.
  • the first identifier may be any identity which can uniquely identify the Donor2-CU 371 in an IAB network including multiple Donor-CUs, for example, the example deployments as shown in Figs. 3c.
  • the first identifier may be a Global gNB ID of the Donor2-CU 371 when the IAB network have other IABs from other operator, or a gNB ID of the Donor2-CU 371 without the PLMN ID when the IAB network only have IABs from a single operator.
  • the first identifier may be obtained in a way similar to that described with reference to Fig. 4a.
  • the IAB node 374 may receive the first identifier from the Donor2-CU 371.
  • the first identifier may be included in a RRC message provided from the Donor2-CU 371 to the collocated IAB-MT 451 during a RRC procedure, for example, during the RRC connection establishment procedure, or a RRC reconfiguration procedure, or at 455.
  • the IAB node 374 may receive the first identifier from an OAM entity (not shown) .
  • internal communication may be performed 465 within the IAB node 374 to transfer the identification information concerning the IAB node 374 and the Donor2-CU 371.
  • the IAB-MT 451 may share the first identifier and the BAP address allocated to the IAB-MT 451 with the collocated IAB-DU 453.
  • the IAB node 374 transmits 470 the identification information concerning the IAB node 374 and the Donor2-CU 371 to the Donor1-CU 361, in a way similar to, or same as, that described with reference to Fig. 4a and operation 420.
  • the Donor1-CU 361 determines 475 an association of the IAB node 374 with the Donor2-CU 371. In other words, based on the first and second identifiers, the Donor1-CU 361 can identify the IAB-MT 451 is collocated with the IAB-DU 453 and determine that the Donor2-CU 371 manages the IAB node 374. For example, the Donor1-CU 361 can identify the IAB-DU 453 is collocated with an IAB-MT in the IAB node 374, and the collocated IAB-MT 451 is managed by the Donor2-CU 371 which provides a control plane connection to the core network for the collocated IAB-MT 451.
  • the Donor1-CU 361 may transmit 480 to the Donor2-CU 371 a request for configuring a radio channel towards the IAB node 374 when needed.
  • the Donor2-CU 371 initiates 485 a procedure to configure the radio channel towards the IAB node 374.
  • the operations performed at 480 and 485 are similar to, or same as, that described with reference to 430 and 435 of FIG. 4a.
  • the unique identifier of the Donor1-CU 371 which provides the control plane connection to the core network for the IAB-MT 451 of the IAB node 324 is provided by the IAB-DU 453 in the IAB node 374 to the Donor-CU 361 which provides the F1 termination point for the IAB-DU 453 of the IAB node 374.
  • the first Donor-CU which terminates the F1 interface for an IAB-DU in an IAB node can identify the second Donor-CU which provides the control plane connection for the collocated IAB-MT of the IAB node.
  • the load balancing between Donor-CUs is enabled by using different Donor-CUs for providing the control plane connection to the core network for the IAB-MT in an IAB node, and for terminating the F1 interface with the IAB-DU in the IAB node.
  • Fig. 5 illustrates a flowchart illustrating an example process 500 for sharing an IAB node according to some example embodiments of the present disclosure.
  • the process 500 at least involves the Donor1-CU 311 from the first operator, the Donor2-CU 321 from the second operator and the IAB node 324 shared between the first and second operators. It is to be understood that acts with the same reference signs as in Fig. 4a are same as those described with reference to Fig. 4a and thus are not repeatedly described in detail here.
  • the Donor2-CU 321 transmits 405 to the IAB node 324 the second identifier of the IAB node 324 allocated by the Donor2-CU 321.
  • the Donor2-CU 321 may transmit a RRC reconfiguration message comprising the BAP address to the IAB-MT 401.
  • internal communication may be performed 515 within the IAB node 324 to transfer identification information concerning the IAB node 324.
  • the IAB node 324 comprises the IAB-DUa 403 and the IAB-DUb 402
  • the BAP address allocated to the IAB-MT 401 may be shared with the collocated IAB-DUa 403 and the collocated IAB-DUb 402.
  • the BAP address received at 405 may be transmitted from the IAB-MT 401 to the collocated IAB-DUb 402 and the IAB-DUa 403.
  • the IAB node 324 transmits 520 the identification information concerning the IAB node 324 to the Donor1-CU 311.
  • the IAB-DUa 403 provides the second identifier (for example, the BAP address) of the IAB node 324 to the Donor1-CU 311.
  • the IAB-DUa 403 may also provide information concerning its cell to the Donor1-CU 311 at 520 along with the identification information concerning the IAB node 324.
  • the Donor1-CU 311 may know the first identifier of Donor2-CU 321 via the interface (for example, an Xn interface) between the Donor1-CU 311 and the Donor2-CU 321.
  • the second identifier may be transmitted during a procedure for setting up an F1 interface between the IAB node 324 and the Donor1-CU 311.
  • the second identifier may be included in an F1 SETUP REQUEST message from the IAB-DUa 403 to the Donor1-CU 311.
  • the second identifier may be transmitted during a procedure for updating a configuration of the IAB-DU of the IAB node 324.
  • the IAB-DUa 403 may include the second identifier in a message towards the Donor1-CU 311 during an F1 gNB-DU Configuration Update procedure.
  • the second identifier may be transmitted during a procedure for updating a configuration of the Donor1-CU 311.
  • the IAB-DUa 403 may include the second identifier in a message towards the Donor1-CU 311 during an F1 gNB-CU Configuration Update procedure.
  • the second identifier is allocated by the Donor2-CU 321 to the IAB node 324, it is possible that an identifier same as the second identifier is allocated by the Donor1-CU 311 to an IAB node under the domain of the Donor1, for example, the IAB node 316 as shown in Figs. 3a and 3b.
  • the Donor2-CU 321 allocates a BAP address (e.g., #3) to the IAB node 324. It is possible that same BAP address (i.e., #3) is already allocated by Donor1-CU 311 to the IAB node 316.
  • the Donor1-CU 311 may incorrectly determine that the IAB-DUa 403 is collocated with the IAB-MT of the IAB node 316. Therefore, in some example embodiments, an indication may be transmitted along with the second identifier of the IAB node 324 to avoid incorrect determination of the collocation for the IAB-DUb 403 by the Donor1-CU 311.
  • the indication may be a flag informing the Donor1-CU 311 not to determine the collocated IAB-MT for the IAB-DU (or not to bind the IAB-DU with the collocated IAB-MT) based on the identification information transmitted at 520. Instead, the Donor1-CU 311 shall determine the collocated IAB-MT (or bind the IAB-DU with the collocated IAB-MT) later, for example, upon the reception of the other identity information from the Donor2-CU 321 at 525.
  • the F1 SETUP REQUEST message may further comprise the indication.
  • the indication may be the BAP address allocated to the IAB node 324 by the Donor2-CU 321, for example, at 405.
  • the Donor1-CU 311 may be preconfigured to determine the collocated IAB-MT based on the received second identifier and further information from the Donor2-CU 321, and then such indication (e.g., the flag) may be avoided.
  • the Donor2-CU 321 transmits 525 cell information to the Donor1-CU 311.
  • the cell information comprises the second identifier of the IAB node 324 and at least an identifier of a cell served by the IAB node 324, which is also referred to as a “third identifier” in the following.
  • the third identifier may comprise a cell ID of the cell served by the IAB node 324
  • the cell information includes the BAP address allocated by the Donor2-CU 321 to the shared IAB node 324, i.e., the BAP address allocated to the IAB-MT 401 of the shared IAB node 324.
  • the cell information includes the BAP address of the IAB node 324 for the one or more cells provided by the collocated IAB-DUa 403 of the shared IAB node 324.
  • the IAB node 324 is shared for multiple operators
  • multiple Donor-CUs from the multiple operators may report the same cells of the IAB node 324 as their served cells to the Donor1-CU 311.
  • Only the Donor-CU from the hosting operator (which is the Donor2-CU 321) provides the BAP address of the shared IAB node 324.
  • the IAB node 324 is shared with both the first and third operators as shown in Fig. 3b.
  • both the Donor2-CU 321 and the Donor3-CU 331 reports the cells of the IAB node 324 as the served cells to the Donor1-CU 331.
  • the Donor2-CU 321 provides the BAP address of the IAB node 324 along with the cell IDs, while the Donor3-CU 331 provides the cell IDs without the BAP address of the IAB node 324.
  • the cell information may be transmitted during a procedure for setting up an Xn interface between the Donor2-CU 321 and the Donor1-CU 311.
  • the Donor2-CU 321 may include the cell information in a message to the Donor1-CU 311 during an Xn setup procedure.
  • the cell information may be transmitted during a procedure for updating a configuration needed for the Donor2-CU 321 and the Donor1-CU 311 to interoperate over the Xn interface.
  • the Donor2-CU 321 may include the cell information in a message to the Donor1-CU 311 during an Xn NG-RAN Node Configuration Update procedure.
  • the Donor1-CU 311 can reuse the gNB ID in the Xn message to identify the Donor2-CU 321. Moreover, trigger for transmitting the cell information may be similar to normal gNB-DU sharing.
  • transmission of the cell information at 525 may be performed before transmission of the identification information concerning the IAB node 324 at 520. In this way, avoid incorrect determination of the collocation for the IAB-DUb 403 by the Donor1-CU 311 as mentioned above may be avoided.
  • the Donor1-CU 311 determines 530 an association of the IAB node 324 with the Donor2-CU 321 based on the cell information and the identification information concerning the IAB node 324. In other words, based on the cell information and the identification information received at 520 and 525, the Donor1-CU 311 can identify the IAB-MT 401 collocated with the IAB-DUa 403 and determine that the Donor2-CU 321 manages the collocated IAB-MT 401.
  • the Donor1-CU 311 receives the BAP address from the IAB-DUa 403.
  • the Donor1-CU 311 receives from the Donor2-CU 321 the cell information which also comprises the BAP address.
  • the Donor1-CU 311 receives 520 an indication (for example, a specific BAP address #3) and cell information (e.g. a cell ID #111) from the IAB-DUa 403, and receives 525 from the Donor2-CU 321 a cell ID #111 of a specific cell of the IAB node 324 and the specific BAP address (e.g., #3) for the specific cell.
  • the Donor1-CU 311 can determine the IAB-MT 401 collocated with the IAB-DUa 403 and determine that the Donor2-CU 321 manages the collocated IAB-MT. It is to be understood that the above values of the BAP address and cell ID are given for the purpose of illustration without any limitation to the protection scope.
  • the Donor1-CU 311 transmits 430 to the Donor2-CU 312 a request for configuring a radio channel towards the IAB node 324.
  • the request comprises the second identifier of the IAB node 324 to identify the IAB-MT 401.
  • the Donor2-CU 321 initiates 435 a procedure to configure the radio channel towards the IAB node 324.
  • the identifier of the shared IAB node along with the identifier of one or more cells of the shared IAB node is provided by the Donor-CU from the hosting operator to the Donor-CU from the participating operator. In this way, the Donor-CU from the participating operator can identify the Donor-CU controlling the shared IAB node. Therefore, IAB node sharing is supported without sharing the Donor and intermediate IAB nodes.
  • IAB-DUa 403 and the IAB-DUb 402 are shown separately in Figs. 4 and 5, this is merely for the purpose of illustration without suggesting any limitation to the protection scope.
  • the acts described with respect to the IAB-DUa 403 and the IAB-DUb 402 may be implemented by a same device or apparatus.
  • the example processes 400 and 500 are described separately, aspects of the two processes may be combined.
  • the first, second and third identifiers may be all provided to the Donor1-CU 311.
  • Fig. 6a illustrates an example protocol stack 610 for support of the F1-U plane according to some example embodiments of the present disclosure.
  • Fig. 6b illustrates an example protocol stack 650 for support of the F1-C plane according to some example embodiments of the present disclosure.
  • Figs. 6a and 6b are described with respect to Figs. 3a and 3b.
  • the IAB network comprises a network 601 managed by the first operator and a network 602 managed by the second operator.
  • the network 601 includes the Donor1-CU 311, the IAB node 312 from the first operator, and the IAB-DUa of the shared IAB node 324.
  • the network 602 includes the Donor2-DU 322, the IAB node 323, the IAB-MT of the shared IAB node 324 and the IAB-DUb of the shared IAB node 324.
  • the BH RLC channels can be set up between the IAB MT of the IAB node 312 and the IAB-DUa of the shared IAB node 324, between the IAB-MT of the shared IAB node 324 and IAB-DU of the IAB node 323, between the IAB-MT of the IAB node 323 and the Donor2-DU.
  • Protocol layers comprise a physical (PHY) layer, a media access control (MAC) layer, a radio link control (RLC) layer and a BAP layer from the bottom to the top.
  • the F1 plane traffic includes traffic of the F1-U plane (also referred to as “F1-U traffic” ) and the traffic of the F1-C plane (also referred to as “F1-C traffic” ) .
  • the F1-U traffic and the F1-C traffic are transported on top of the BAP layer.
  • protocol layers for the F1-U traffic comprise an IP layer, a User Datagram Protocol (UDP) layer and a General Packet Radio Service (GPRS) Tunneling Protocol-User (GTP-U) layer from the bottom to the top.
  • Protocol layers for the F1-C traffic comprise an IP layer, a Stream Control Transmission Protocol (SCTP) layer and an F1AP layer from the bottom to the top.
  • SCTP Stream Control Transmission Protocol
  • the F1-U traffic and the F1-C traffic between the Donor1-CU 311 from the first operator (which is the participating operator) and its IAB nodes (for example, the IAB node 312) in the shared backhaul network are IP-routed via the Donor2-DU 322 from the second operator (which is the hosting operator) and transported by the backhaul network 602 of the second operator.
  • the shared IAB node 324 uses the BAP address allocated by the second operator.
  • the first operator can fully configure and manage child IAB nodes under the shared IAB node 324, without sharing the child IAB nodes and without involving the second operator.
  • the shared IAB node 324 broadcasts the PLMN IDs of the second operator and the first operator.
  • the child IAB nodes of the first operator broadcast the PLMN ID of the first operator. For a terminal device subscripted to the first operator, it is transparent that a shared backhaul from the second operator is used.
  • the IAB node 312 and the IAB node 313 from the first operator are configured with BAP addresses from the first operator.
  • the shared IAB node 324 may be configured to perform BAP header translation. This BAP address translation may be similar to that used in inter-Donor routing in Inter-Donor Topology Redundancy for example.
  • Fig. 7 shows a flowchart of an example method 700 for configuring an IAB node in accordance with some example embodiments of the present disclosure.
  • the method 700 can be implemented at a first device.
  • the method 700 will be described with reference to Fig. 3a, Fig. 3b and Fig. 3c.
  • the first device from the first operator obtains identification information concerning at least one of a second device from a second operator, and a third device from the second operator.
  • the first operator and the second operator are different operators, and the second device is shared for the first operator.
  • the first device may comprise the Donor1-CU 311
  • the second device may comprise the IAB node 324
  • the third device may comprise the Donor2-CU 321.
  • the first device may receive, from the second device, a first identifier uniquely identifying the third device and a second identifier of the second device allocated by the third device.
  • the first identifier may comprise the Global gNB ID of the Donor2-CU 321 and the second identifier may comprise the BAP address of the IAB node 324.
  • the first and second identifiers may be received during a procedure for setting up an F1 interface between the first and second devices. Alternatively, or in addition, the first and second identifiers may be received during a procedure for updating a configuration of a distributed unit of the second device. Alternatively, or in addition, the first and second identifiers may be received during a procedure for updating a configuration of the first device.
  • the first device may receiving, from the third device, a second identifier of the second device allocated by the third device and at least a third identifier of a cell served by the second device.
  • the second identifier may comprise the BAP address of the IAB node 324.
  • the third identifier may comprise a cell ID of the cell.
  • the second and third identifiers may be received during a procedure for setting up an Xn interface between the first and third devices.
  • the second and third identifiers may be received during a procedure for updating a configuration needed for the first and third devices to interoperate over the Xn interface.
  • the first device determines an association of the second device with the third device based on the identification information.
  • the first device transmits, to the third device based on the determined association, a request for configuring a radio channel towards the second device.
  • the first operator and the second operator may be the same operator, and in this case, the second device is an IAB node which has connections with more than one Donor-CUs from the same operator.
  • the first device comprises a Donor-CU managing an interface (e.g., F1 interface) with the second device.
  • the third device comprises another Donor-CU providing a control plane connection to the core network for the second device.
  • the second device may comprise the IAB node 374
  • the first device may comprise the Donor1-CU 361
  • the third device may comprise the Donor2-CU 371.
  • Fig. 8 shows a flowchart of an example method 800 for configuring an IAB node in accordance with some example embodiments of the present disclosure.
  • the method 800 can be implemented at a second device.
  • the method 800 will be described with reference to Fig. 3a, Fig. 3b and Fig. 3c.
  • the second device from a second operator obtains a first identifier uniquely identifying a third device.
  • the third device is from the second operator and provides a control plane connection to a core network for the second device.
  • the first identifier may comprise the Global gNB ID of the Donor2-CU 321.
  • the first operator and the second operator are different operators, and the second device is shared for the first operator.
  • the first device may comprise the Donor1-CU 311
  • the second device may comprise the IAB node 324
  • the third device may comprise the Donor2-CU 321.
  • the second device may receive, from the third device, an F1 AP message comprising the first identifier.
  • the second device may receive, from the third device, a RRC message comprising the first identifier.
  • the second device may receive, from an OAM entity, configuration information comprising the first identifier.
  • the second device transmits, to a first device from the first operator, the first identifier and a second identifier of the second device allocated by the third device.
  • the second identifier may comprise the BAP address of the IAB node 324.
  • the first and second identifiers may be transmitted during a procedure for setting up an F1 interface between the first and second devices.
  • the first and second identifiers may be transmitted during a procedure for updating a configuration of a DU of the second device (for example, the IAB-DU of the IAB node 324) .
  • the first and second identifiers may be transmitted during a procedure for updating a configuration of the first device.
  • the first operator and the second operator may be the same operator, and in this case, the second device is an IAB node which has connections with more than one Donor-CUs from the same operator.
  • the first device comprises a Donor-CU managing an interface (e.g., F1 interface) with the second device.
  • the third device comprises another Donor-CU providing a control plane connection to the core network for the second device.
  • the second device may comprise the IAB node 374
  • the first device may comprise the Donor1-CU 361
  • the third device may comprise the Donor2-CU 371.
  • Fig. 9 shows a flowchart of an example method 900 for sharing an IAB node in accordance with some example embodiments of the present disclosure.
  • the method 900 can be implemented at a third device.
  • the method 900 will be described with reference to Fig. 3a, Fig. 3b and Fig. 3c.
  • the third device from a second operator provides, to a first device from a first operator, identification information concerning at least one of a second device and the third device.
  • the first operator and the second operator are different operators, and the second device is from the second operator and shared for the first operator.
  • the first device may comprise the Donor1-CU 311
  • the second device may comprise the IAB node 324
  • the third device may comprise the Donor2-CU 321.
  • the third device may transmit, via the second device, a first identifier uniquely identifying the third device to the first device.
  • the third device may transmit the first identifier to the second device, and then the second device forwards the first identifier to the first device.
  • the first identifier may comprise the Global gNB ID of the Donor2-CU 321.
  • the third device may transmit, to the second device, an F1AP message comprising the first identifier.
  • the first device may transmit to the second device, a RRC message comprising the first identifier.
  • the third device may transmit, to the first device, a second identifier of the second device allocated by the third device and at least a third identifier of a cell served by the second device.
  • the second identifier may comprise the BAP address of the IAB node 324.
  • the third identifier may comprise a cell ID of the cell.
  • the second and third identifiers may be transmitted during a procedure for setting up an Xn interface between the first and third devices.
  • the second and third identifiers may be transmitted during a procedure for updating a configuration needed for the first and third devices to interoperate over the Xn interface.
  • the third device receives, from the first device, a request for configuring a radio channel towards the second device.
  • the third device may initiate a procedure to configure the radio channel towards the IAB node 324.
  • the first operator and the second operator may be the same operator, and in this case, the second device is an IAB node which has connections with more than one Donor-CUs from the same operator.
  • the first device comprises a Donor-CU managing an interface (e.g., F1 interface) with the second device.
  • the third device comprises another Donor-CU providing a control plane connection to the core network for the second device.
  • the second device may comprise the IAB node 374
  • the first device may comprise the Donor1-CU 361
  • the third device may comprise the Donor2-CU 371.
  • the transmission of the identification information is not limited to any specific way. In other words, in some embodiments, these identifiers may be transmitted in a different procedure with a different signaling than that described in above examples.
  • a first apparatus capable of performing the method 700 may comprise means for performing the respective operations of the method 700.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the first apparatus may be implemented as or included in the Donor1-CU 311.
  • the first apparatus from a first operator comprises: means for obtaining identification information concerning at least one of a second apparatus from a second operator, and a third apparatus from the second operator; means for determining an association of the second apparatus with the third apparatus based on the identification information; and means for transmitting, to the third apparatus based on the determined association, a request for configuring a radio channel towards the second apparatus.
  • the first apparatus comprises a first integrated access and backhaul donor central unit
  • the second apparatus comprises an integrated access and backhaul node
  • the third apparatus comprises a second integrated access and backhaul donor central unit.
  • the first operator and the second operator may be different operators, and the second apparatus is shared for the first operator.
  • the first operator and the second operator may be the same operator, and the second apparatus is an IAB node which has connections with more than one Donor-CUs from the same operator.
  • the means for obtaining the identification information comprises: means for receiving, from the second apparatus, a first identifier uniquely identifying the third apparatus and a second identifier of the second apparatus allocated by the third apparatus.
  • the first and second identifiers are received during at least one of: a procedure for setting up an F1 interface between the first and second apparatuses, a procedure for updating a configuration of a distributed unit of the second apparatus, or a procedure for updating a configuration of the first apparatus.
  • the means for obtaining the identification information comprises: means for receiving, from the third apparatus, a second identifier of the second apparatus allocated by the third apparatus and at least a third identifier of a cell served by the second apparatus.
  • the second and third identifiers are received during at least one of: a procedure for setting up an Xn interface between the first and third apparatuses, or a procedure for updating a configuration needed for the first and third apparatuses to interoperate over the Xn interface.
  • the second identifier of the second apparatus comprises a Backhaul Adaptation Protocol address allocated by the third apparatus.
  • a second apparatus capable of performing the method 800 may comprise means for performing the respective operations of the method 800.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the second apparatus may be implemented as or included in the IAB node 324.
  • the second apparatus from a second operator comprising: means for obtaining a first identifier uniquely identifying a third apparatus, the third apparatus being from the second operator and provides a control plane connection to a core network for the second apparatus; and means for transmitting, to a first apparatus from the first operator, the first identifier and a second identifier of the second apparatus allocated by the third apparatus.
  • the first apparatus comprises a first integrated access and backhaul donor central unit
  • the second apparatus comprises an integrated access and backhaul node
  • the third apparatus comprises a second integrated access and backhaul donor central unit.
  • the first operator and the second operator may be different operators, and the second apparatus is shared for the first operator.
  • the first operator and the second operator may be the same operator, and the second apparatus is an IAB node which has connections with more than one Donor-CUs from the same operator.
  • the means for obtaining the first identifier comprises at least one of: means for receiving, from the third apparatus, an F1 Application Protocol message comprising the first identifier, means for receiving, from the third apparatus, a Radio Resource Control message comprising the first identifier, or means for receiving, from an Operation Administration and Maintenance entity, configuration information comprising the first identifier.
  • the first and second identifiers are transmitted during at least one of: a procedure for setting up an F1 interface between the first and second apparatuses, a procedure for updating a configuration of a distributed unit of the second apparatus, or a procedure for updating a configuration of the first apparatus.
  • a third apparatus capable of performing the method 900 may comprise means for performing the respective operations of the method 900.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the first apparatus may be implemented as or included in the Donor2-CU 321.
  • the third apparatus from a second operator comprises: means for providing, to a first apparatus from a first operator, identification information concerning at least one of a second apparatus and the third apparatus, the second apparatus being from the second operator; and means for receiving, from the first apparatus, a request for configuring a radio channel towards the second apparatus.
  • the first apparatus comprises a first integrated access and backhaul donor central unit
  • the second apparatus comprises an integrated access and backhaul node
  • the third apparatus comprises a second integrated access and backhaul donor central unit.
  • the first operator and the second operator may be different operators, and the second apparatus is shared for the first operator.
  • the first operator and the second operator may be the same operator, and the second apparatus is an IAB node which has connections with more than one Donor-CUs from the same operator.
  • the means for providing the identification information to the first apparatus comprises: means for transmitting, via the second apparatus, a first identifier uniquely identifying the third apparatus to the first apparatus.
  • the means for transmitting the first identifier comprises at least one of: means for transmitting, to the second apparatus, an F1 Application Protocol message comprising the first identifier, or means for transmitting, to the second apparatus, a Radio Resource Control message comprising the first identifier.
  • the means for providing the identification information to the first apparatus comprises: means for transmitting, to the first apparatus, a second identifier of the second apparatus allocated by the third apparatus and at least a third identifier of a cell served by the second apparatus.
  • the second and third identifiers are transmitted during at least one of: a procedure for setting up an Xn interface between the first and third apparatuses, or a procedure for updating a configuration needed for the first and third apparatuses to interoperate over the Xn interface.
  • the second identifier of the second apparatus comprises a Backhaul Adaptation Protocol address allocated by the third apparatus.
  • Fig. 10 is a simplified block diagram of a device 1000 that is suitable for implementing embodiments of the present disclosure.
  • the Donor1-CU 311, the Donor2-CU 322, the IAB node 324, etc., shown in Fig. 3a and/or Fig. 3b can be implemented by the device 1000.
  • the device 1000 includes one or more processors 1010, one or more memories 1020 coupled to the processor 1010, and one or more communication modules 1040 coupled to the processor 1010.
  • the communication module 1040 is for bidirectional communications.
  • the communication module 1040 has at least one antenna to facilitate communication.
  • the communication interface may represent any interface that is necessary for communication with other network elements.
  • the processor 1010 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 1000 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 1020 may include one or more non-volatile memories and one or more volatile memories.
  • the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 1024, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital versatile disc (DVD) , and other magnetic storage and/or optical storage.
  • ROM Read Only Memory
  • EPROM electrically programmable read only memory
  • flash memory a hard disk
  • CD compact disc
  • DVD digital versatile disc
  • RAM random access memory
  • a computer program 1030 includes computer executable instructions that are executed by the associated processor 1010.
  • the program 1030 may be stored in the ROM 1024.
  • the processor 1010 may perform any suitable actions and processing by loading the program 1030 into the RAM 1022.
  • the embodiments of the present disclosure may be implemented by means of the program 1030 so that the device 1000 may perform any process of the disclosure as discussed with reference to Figs. 4-5 and 7-9.
  • the embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • the program 1030 may be tangibly contained in a computer readable medium which may be included in the device 1000 (such as in the memory 1020) or other storage devices that are accessible by the device 1000.
  • the device 1000 may load the program 1030 from the computer readable medium to the RAM 1022 for execution.
  • the computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like.
  • Fig. 11 shows an example of the computer readable medium 1100 in form of CD or DVD.
  • the computer readable medium has the program 1030 stored thereon.
  • NFV network functions virtualization
  • a virtualized network function may comprise one or more virtual machines running computer program codes using standard or general type servers instead of customized hardware. Cloud computing or data storage may also be utilized.
  • radio communications this may mean node operations to be carried out, at least partly, in a central/centralized unit, CU, (e.g. server, host or node) operationally coupled to distributed unit, DU, (e.g. a radio head/node) . It is also possible that node operations will be distributed among a plurality of servers, nodes or hosts. It should also be understood that the distribution of labour between core network operations and base station operations may vary depending on implementation.
  • the server may generate a virtual network through which the server communicates with the distributed unit.
  • virtual networking may involve a process of combining hardware and software network resources and network functionality into a single, software-based administrative entity, a virtual network.
  • Such virtual network may provide flexible distribution of operations between the server and the radio head/node.
  • any digital signal processing task may be performed in either the CU or the DU and the boundary where the responsibility is shifted between the CU and the DU may be selected according to implementation.
  • a CU-DU architecture is implemented.
  • the device 1000 may be comprised in a central unit (e.g. a control unit, an edge cloud server, a server) operatively coupled (e.g. via a wireless or wired network) to a distributed unit (e.g. a remote radio head/node) .
  • the central unit e.g. an edge cloud server
  • the distributed unit may be stand-alone apparatuses communicating with each other via a radio path or via a wired connection. Alternatively, they may be in a same entity communicating via a wired connection, etc.
  • the edge cloud or edge cloud server may serve a plurality of distributed units or a radio access networks.
  • at least some of the described processes may be performed by the central unit.
  • the device 1000 may be instead comprised in the distributed unit, and at least some of the described processes may be performed by the distributed unit.
  • the execution of at least some of the functionalities of the device 1000 may be shared between two physically separate devices (DU and CU) forming one operational entity. Therefore, the apparatus may be seen to depict the operational entity comprising one or more physically separate devices for executing at least some of the described processes.
  • CU-DU architecture may provide flexible distribution of operations between the CU and the DU.
  • any digital signal processing task may be performed in either the CU or the DU and the boundary where the responsibility is shifted between the CU and the DU may be selected according to implementation.
  • the device 1000 controls the execution of the processes, regardless of the location of the apparatus and regardless of where the processes/functions are carried out.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the method 700 as described above with reference to Fig. 7, the method 800 as described above with reference to Fig. 8, and the method 900 as described above with reference to Fig. 9.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable medium, and the like.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure relate to devices, methods, apparatuses and computer readable storage media for integrated access and backhaul (IAB) communication. According to embodiments of the present disclosure, a first Donor-central unit (CU) from a first operator (which is a participating operator) obtains identification information concerning at least one of a second Donor-CU from a second operator (which is a hosting operator) and an IAB node from the second operator and shared for the first operator. The first Donor-CU determines an association of the shared IAB node to the second Donor-CU based on the obtained identification information. Based on the determined association, the first Donor-CU transmits to the second Donor-CU a request for configuring a channel towards to the shared IAB node. In this way, the IAB node of the second operator can be shared with the first operator and the first operator can operate cells and serve UEs via the IAB backhaul network of the second operator. This provides improved flexibility for sharing of IAB deployments and capital expenditure of the participating operator can be reduced.

Description

INTEGRATED ACCESS AND BACKHAUL COMMUNICATION TECHNICAL FIELD
Embodiments of the present disclosure generally relate to the field of telecommunications, and in particular, to devices, methods, apparatuses and computer readable media for integrated access and backhaul (IAB) communication.
BACKGROUND
IAB has been introduced in Release 16 (Rel-16) of the 3rd Generation Partnership Project (3GPP) specifications as a key enabler for fast and cost-efficient deployments. IAB nodes use the same or different spectrum and air interface for access and backhaul, creating a hierarchical wireless multi-hop (multiple backhaul links) network between sites. The hops eventually terminate at an IAB donor that is connected by means of a conventional fixed backhaul to the core network. A key benefit of the IAB is to enable flexible and very dense deployment of cells without densifying the transport network proportionately. A diverse range of deployment scenarios can be envisioned including support for outdoor small cell deployments, indoors (e.g., shopping centers) , or even mobile relays (e.g. on buses or trains) .
The users, e.g., inside a shopping center, a bus or a train, typically have subscriptions to different network operators. Instead of deploying an IAB network for each operator, it is beneficial to share the network resources between multiple operators and provide an IAB-node providing services for the multiple operators.
SUMMARY
In general, example embodiments of the present disclosure provide devices, methods, apparatuses and computer readable media for IAB communication.
In a first aspect, there is provided a first device. The first device comprises at least one processor; and at least one memory including computer program code; where the at least one memory and the computer program code are configured to, with the at least one processor, cause the first device from a first operator to obtain identification information concerning at least one of a second device from a second operator and shared for the first operator, and a third device from the second operator; determine an association of the  second device with the third device based on the identification information; and transmit, to the third device based on the determined association, a request for configuring a radio channel towards the second device, and wherein the first device comprises a first integrated access and backhaul donor central unit, the second device comprises an integrated access and backhaul node, and the third device comprises a second integrated access and backhaul donor central unit.
In a second aspect, there is provided a second device. The second device comprises at least one processor; and at least one memory including computer program code; where the at least one memory and the computer program code are configured to, with the at least one processor, cause the second device from a second operator to obtain a first identifier uniquely identifying a third device, the third device being from the second operator and providing a control plane connection to a core network for the second device; and transmit, to a first device from the first operator, the first identifier and a second identifier of the second device allocated by the third device, and wherein the first device comprises a first integrated access and backhaul donor central unit, the second device comprises an integrated access and backhaul node, and the third device comprises a second integrated access and backhaul donor central unit.
In a third aspect, there is provided a third device. The third device comprises at least one processor; and at least one memory including computer program code; where the at least one memory and the computer program code are configured to, with the at least one processor, cause the third device from a second operator to provide, to a first device from a first operator, identification information concerning at least one of a second device and the third device, the second device being from the second operator and shared for the first operator; and receive, from the first device, a request for configuring a radio channel towards the second device, and herein the first device comprises a first integrated access and backhaul donor central unit, the second device comprises an integrated access and backhaul node, and the third device comprises a second integrated access and backhaul donor central unit.
In a fourth aspect, there is provided a method. The method comprises obtaining, at a first device from a first operator, identification information concerning at least one of a second device from a second operator and shared for the first operator, and a third device from the second operator; determining an association of the second device with the third device based on the identification information; and transmitting, to the third device based  on the determined association, a request for configuring a radio channel towards the second device, and herein the first device comprises a first integrated access and backhaul donor central unit, the second device comprises an integrated access and backhaul node, and the third device comprises a second integrated access and backhaul donor central unit.
In a fifth aspect, there is provided a method. The method comprises obtaining, at a second device from a second operator, a first identifier uniquely identifying a third device, the third device being from the second operator and providing a control plane connection to a core network for the second device; and transmitting, to a first device from the first operator, the first identifier and a second identifier of the second device allocated by the third device, and wherein the first device comprises a first integrated access and backhaul donor central unit, the second device comprises an integrated access and backhaul node, and the third device comprises a second integrated access and backhaul donor central unit.
In a sixth aspect, there is provided a method. The method comprises providing, at a third device from a second operator and to a first device from a first operator, identification information concerning at least one of a second device and the third device, the second device being from the second operator and shared for the first operator; and receiving, from the first device, a request for configuring a radio channel towards the second device, and wherein the first device comprises a first integrated access and backhaul donor central unit, the second device comprises an integrated access and backhaul node, and the third device comprises a second integrated access and backhaul donor central unit.
In a seventh aspect, there is provided a first apparatus. The first apparatus from a first operator comprises means for obtaining identification information concerning at least one of a second apparatus from a second operator and shared for the first operator, and a third apparatus from the second operator; means for determining an association of the second apparatus with the third apparatus based on the identification information; and means for transmitting, to the third apparatus based on the determined association, a request for configuring a radio channel towards the second apparatus, and wherein the first apparatus comprises a first integrated access and backhaul donor central unit, the second apparatus comprises an integrated access and backhaul node, and the third apparatus comprises a second integrated access and backhaul donor central unit.
In an eighth aspect, there is provided a second apparatus. The second apparatus from a second operator comprises means for obtaining a first identifier uniquely identifying  a third apparatus, the third apparatus being from the second operator and providing a control plane connection to a core network for the second apparatus; and means for transmitting, to a first apparatus from the first operator, the first identifier and a second identifier of the second apparatus allocated by the third apparatus, and wherein the first apparatus comprises a first integrated access and backhaul donor central unit, the second apparatus comprises an integrated access and backhaul node, and the third apparatus comprises a second integrated access and backhaul donor central unit.
In a ninth aspect, there is provided a third apparatus. The third apparatus from a second operator comprises means for providing, to a first apparatus from a first operator, identification information concerning at least one of a second apparatus and the third apparatus, the second apparatus being from the second operator and shared for the first operator; and means for receiving, from the first apparatus, a request for configuring a radio channel towards the second apparatus, and wherein the first apparatus comprises a first integrated access and backhaul donor central unit, the second apparatus comprises an integrated access and backhaul node, and the third apparatus comprises a second integrated access and backhaul donor central unit.
In a tenth aspect, there is a computer readable storage medium comprising program instructions stored thereon. The instructions, when executed by an apparatus, cause the apparatus to perform the method according to the above fourth, fifth or sixth aspect.
It is to be understood that the summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Through the more detailed description of some example embodiments of the present disclosure in the accompanying drawings, the above and other objects, features and advantages of the present disclosure will become more apparent, wherein:
Fig. 1 illustrates a block diagram of a system for IAB communication;
Fig. 2 illustrates a partial sharing scenario to which example embodiments of the present disclosure can be applied;
Fig. 3a, Fig. 3b and Fig. 3c illustrate example IAB environments in which example embodiments of the present disclosure can be implemented;
Fig. 4a illustrates a flowchart illustrating an example process for sharing an IAB node according to some example embodiments of the present disclosure;
Fig. 4b illustrates a flowchart illustrating an example process for a non-shared IAB node according to some example embodiments of the present disclosure;
Fig. 5 illustrates a flowchart illustrating another example process for sharing an IAB node according to some example embodiments of the present disclosure;
Fig. 6a illustrates an example protocol stack for support of an F1 user plane according to some example embodiments of the present disclosure;
Fig. 6b illustrates an example protocol stack for support of an F1 control plane according to some example embodiments of the present disclosure;
Fig. 7 illustrates a flowchart of an example method according to some example embodiments of the present disclosure;
Fig. 8 illustrates a flowchart of an example method according to some example embodiments of the present disclosure;
Fig. 9 illustrates a flowchart of an example method according to some example embodiments of the present disclosure;
Fig. 10 illustrates a simplified block diagram of an apparatus that is suitable for implementing embodiments of the present disclosure; and
Fig. 11 illustrates a block diagram of an example computer readable medium in accordance with some example embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure.  The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
References in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first” and “second” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
As used in this application, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog  and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with software/firmware and
(ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) , New Radio (NR) and so on. Furthermore, the communications between a terminal device and a network device or communications between network devices in the communication network may be performed according to any suitable communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future. Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present  disclosure to only the aforementioned system.
As used herein, the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom. The network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology. Also, an IAB-node, an IAB-donor-central unit (IAB-donor-CU) or an IAB-donor-distributed unit (IAB-donor-DU) is an example of network device. In the following description, the terms “network device” , “BS” , and “node” may be used interchangeably.
The term “terminal device” refers to any end device that may be capable of wireless communication. By way of example rather than limitation, a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) . The terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like. In the following description, the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
As used herein, the term “adevice from an operator” or a similar term means that the device is deployed by the operator and is associated with one or more Public Land Mobile Network (PLMN) identifier (ID) of the operator. The term “adevice from a first operator and shared for a second operator” or a similar term means that the device is  deployed by the first operator and is associated with one or more PLMN ID (s) of the first operator and another one or more PLMN ID (s) of the second operator.
Example environments
Fig. 1 shows a block diagram of an example IAB system 100. The IAB system 100 includes an IAB donor 110 and IAB nodes 120-11, 120-12, 120-21, 120-22, 120-31 underneath the IAB donor 110. The IAB nodes 120-11, 120-12, 120-21, 120-22, 120-31 may be collectively referred to as “IAB nodes 120” or individually referred to as an “IAB node 120” .
The IAB donor 110 may be implemented as a gNB that terminates wireless backhaul radio interface from one or more IAB nodes. The IAB donor 110 has wired/fiber connectivity with a core network. The IAB donor 110 may include a CU 110-11 and one or more DUs. Fig. 1 shows that the IAB donor 110 includes a DU 110-12 by way of example. Hereinafter, the CU of the IAB donor is also referred to as a Donor-CU or a donor central unit or an IAB-donor-CU; and the DU of the IAB donor is also referred to as a Donor-DU or a donor distributed unit or an IAB-donor-DU.
An IAB node, for example, the IAB node 120, may include a DU (also referred to as an IAB-DU) , and a mobile terminal (MT, also referred to as an IAB-MT) that maintains connectivity with one or more upstream nodes (using for example, dual connectivity) . Similar to a conventional user equipment (i.e., a UE) , the MT of an IAB node may use radio resource control (RRC) signaling to supply radio link measurements of alternative upstream nodes to its current serving gNB CU. A migration may be performed, for example, a handover is performed for the IAB-MT based on signal strength, signal quality and other factors. Hence, the IAB topology, such as the one shown in Fig. 1, may be non-static. The IAB topology may change over time as radio conditions fluctuate, and as IAB nodes move, are added or removed.
A CU (such as a Donor-CU) may be a logical node which may include the functions (for example, gNB functions) such as transfer of user data, mobility control, radio access network sharing, positioning, session management etc., except those functions allocated exclusively to DUs. The CU may control the operation of the DUs over a front-haul (F1) interface. A DU is a logical node which may include a subset of the functions (for example, gNB functions) . One gNB-DU (for example, an IAB-DU, or an IAB-donor-DU) is connected to only one gNB-CU (for example, an IAB-donor-CU) via  the F1 interface. The IAB-DU or the IAB-donor-DU initiates the F1 setup with the Donor-CU.
The IAB donor 110 may serve directly connected IAB nodes such as the IAB node 120-11 and IAB node 120-12, and IAB nodes that are chained over multiple wireless backhaul hops such as IAB node 120-21, IAB node 120-22 and IAB node 120-31. The IAB donor 110 may also serve directly connected terminal devices (not shown) . The IAB node 120 may serve one or more terminal devices directly connected to the IAB node 120. For example, as shown in Fig. 1, the IAB node 120-11 may serve a terminal device 130 directly connected to the IAB node 120-11, the IAB node 120-21 may serve a terminal device 140 directly connected to the IAB node 120-21, and the IAB node 120-31 may serve a terminal device 150 directly connected to the IAB node 120-31.
During a RRC procedure, the Donor-CU 110-11 assigns a Backhaul Adaptation Protocol (BAP) address to the IAB-MT of the IAB node 120. The backhaul (BH) radio link control (RLC) channel towards the IAB node 120 is setup via the RRC procedure. To manage the BH RLC channel towards the IAB node 120, Donor-CU 110-11 shall identify the collocation of the IAB-MT and the IAB-DU. For example, the IAB-DU of the IAB node 120 may provide its BAP address to the Donor-CU 110-11 during an F1 Setup procedure, so the Donor-CU 110-11 can know the collocation of the IAB-DU with a specific IAB-MT.
It is to be understood that the number of IAB nodes and terminal devices connected to the IAB nodes is only for the purpose of illustration without suggesting any limitations. The IAB system may include any suitable number of IAB nodes and terminal devices adapted for implementing example embodiments of the present disclosure.
Instead of deploying an IAB network for each operator, it may be beneficial to share the network resources between multiple operators. For example, in a scenario, a vehicle relay network may be shared between multiple operators. The donor gNB (i.e. the Donor-DU and/or the Donor-CU) from an operator is shared for another operator. So a relay mounted on a vehicle is also shared for the other operator.
In some scenarios, network sharing for normal gNB may be considered. For example, sharing of the gNB (including sharing the gNB-DU and the gNB-CU) may need to be supported in some use cases. In some cases, a scheme of sharing the gNB-DU only but not sharing the gNB-CU may need to be supported.
In an IAB system, it is also necessary to support sharing the network of IAB nodes (including the IAB-node, the IAB-Donor-CU/DU) , and only sharing the IAB node but not sharing the Donor-CU and the Donor-DU. For example, in a shopping mall, an airport or a train, multiple users may want services from multiple operators. This requires a lot of installation to run two or more IAB networks inside a building, which would result in high cost and difficulties in finding antenna spots. Therefore, it is desired to share the IAB network between operators.
However, in the IAB system, it may not be necessary to share all of the IAB nodes. Rather, an operator of the donor gNB may want to share only a selected subset of its IAB nodes with another operator. Reference is now made to Fig. 2. Fig. 2 illustrates partial sharing of IAB nodes in an IAB network with multiple operators.
In the example partial sharing scenario 200, a donor gNB 121 comprising a Donor-CU and a Donor-DU is deployed by a second operator 101 and a Donor-CU 122 is deployed by a first operator 102. The donor gNB 121 and the Donor-CU 122 communicate with each other, e.g., via an Internet Protocol (IP) connection 143 between a DU of donor gNB 121 and the Donor-CU 122, or an Xn interface between the CU of donor gNB 121 and the Donor-CU 122.
An IAB node 111 and an IAB node 112 are deployed by the second operator 101 in a building 150, for example a shopping mall. The IAB node 112 is shared with the first operator 102. As such, a terminal device 130 subscripted to the first operator 102 can be served by the IAB node 112. As shown in Fig. 2, the transport path 150 between the IAB node 112 and the first operator 102 comprises a wireless backhaul link between the IAB node 112 and the IAB node 111, a wireless backhaul link between the IAB node 111 and the donor gNB 121, and the IP connection 143.
Reference is now made to Fig. 3a and Fig. 3b. Fig. 3a and Fig. 3b illustrate  example IAB environments  300 and 305 in which example embodiments of the present disclosure can be implemented. Deployment examples shown in Fig. 3a and Fig. 3b can be used in the example scenario 200 shown in Fig. 2.
The  example IAB environments  300 and 305 involve Public Land Mobile Networks (PLMNs) of three operators. Specifically, the  IAB environments  300 and 305 comprise a Donor-CU of an IAB-donor node from a first operator, which is also referred to as a “Donor1-CU 311” , a Donor-CU of another IAB-donor node from a second operator,  which is also referred to as a “Donor2-CU 321” , and a Donor-CU of a further IAB-donor node from a third operator, which is also referred to as a “Donor3-CU 331” .
In the IAB environment 300 of Fig. 3a, an IP connection 351 is established between the Donor1-CU 311 and a Donor-DU of the IAB-donor node from the second operator, which is also referred to as a “Donor2-DU 322” . An IAB node 323, an IAB node 324 and an IAB node 325 are deployed by the second operator and controlled by the Donor2-CU 321, which provides the control plane connection to a core network (not shown in Fig. 3a) for the IAB nodes deployed by the second operator. For example, Donor2-CU 321 is a termination point for the control plane connection to the core network for the IAB-MT in the IAB node 323, and for the IAB-MT in the IAB node 324. The IAB node 324 is shared with the first operator. At least one cell of the IAB node 324 is shared for the first operator. It is possible that only one cell, or more than one cell, or all cells of the IAB node 324 is shared for the first operator. As a result, the IAB node 324 can serve a terminal device 315 subscripted to the first operator and the IAB node 312 deployed by the first operator. The IAB node 312 in turn serves the IAB node 313 deployed by the first operator and a terminal device 314 subscripted to the first operator. In this case, the shared cell (s) provided by the shared IAB node 324 may be considered as served cells by the Donor1-CU 311 and the Donor2-CU 321, for example, when the Donor1-CU 311 or the Donor2-CU 321 exchange the served cell information with neighboring gNB CU over the Xn interface.
Another IP connection 352 is established between the Donor1-CU 311 and a Donor-DU from the third operator, which is also referred to as a “Donor3-DU 332” . An IAB node 333 and an IAB node 334 are deployed by the third operator and controlled by the Donor3-CU 331, which provides a control plane connection to a core network (not shown in Fig. 3a) for the IAB nodes deployed by the third operator. For example, Donor3-CU 331 is a termination point for the control plane connection to the core network for the IAB-MT in the IAB node 333, and for the IAB-MT in the IAB node 334. The IAB node 333 is shared with the first operator. As a result, the IAB node 333 can serve an IAB node 317 deployed by the first operator. In this case, the shared cell (s) provided by the shared IAB node 333 may be considered as served cells by both the Donor1-CU 311 and the Donor3-CU 331, for example, when the Donor1-CU 311 or the Donor2-CU 331 exchange the served cell information with neighboring gNB CU over the Xn interface.
The IAB environment 300 of Fig. 3a also shows a Donor-DU from the first  operator, which is also referred to as a “Donor1-DU 318” . An IAB node 316 is deployed by the first operator and controlled by the Donor1-CU 311, which provides a control plane connection to a core network (not shown in Fig. 3a) for the IAB node deployed by the first operator. For example, Donor1-CU 311 is a termination point for the control plane connection to the core network for the IAB-MT in the IAB node 316.
In the IAB environment 305, an IP connection 353 is established between the Donor1-CU 311 and the Donor2-DU 322. Similarly, another IP connection 354 is established between the Donor3-CU 331 and the Donor2-DU 322. The IAB node 324 deployed by the second operator is shared with both the first operator and the third operator. As a result, the IAB node 324 can serve a terminal device 335 subscripted to the third operator and the IAB node 312 deployed by the first operator. In this case, the shared cell (s) provided by the shared IAB node 324 may be considered as served cells by the Donor1-CU 311, the Donor2-CU 321 and the Donor3-CU 331, for example, when the Donor1-CU 311 or the Donor2-CU 321 or the Donor3-CU 331 exchange the served cell information with neighboring gNB CU over the Xn interface.
For the shared IAB node 324 as shown in Fig. 3a, the second operator is a hosting operator which has operational control of the shared IAB node, and the first operator is a participating operator which is authorized to access resources of the shared IAB node. Similarly, for the shared IAB node 324 as shown in Fig. 3b, the second operator is a hosting operator, the first operator is a participating operator and the third operator is another participating operator. In some example embodiments, the shared IAB node may comprise an IAB-DU for an F1 interface with a Donor-CU from the hosting operator, another IAB-DU for an F1 interface with a Donor-CU from a first participating operator, yet another IAB-DU for an F1 interface with a Donor-CU from a second participating operator, and so on. For example, in Fig. 3a, the shared IAB node 324 may comprise an IAB-DUa (not shown in Fig. 3a) for an F1 interface with the Donor1-CU 311 from the first operator, and an IAB-DUb (not shown in Fig. 3a) for an F1 interface with the Donor2-CU 321 from the second operator. As another example, in Fig. 3b, the shared IAB node 324 may comprise an IAB-DUa (not shown in Fig. 3b) for an F1 interface with the Donor1-CU 311 from the first operator, an IAB-DUb (not shown in Fig. 3b) for an F1 interface with the Donor2-CU 321 from the second operator, and an IAB-DUc (not shown in Fig. 3b) for an F1 interface with the Donor3-CU 331 from the third operator.
Similarly, for the shared IAB node 333 as shown in Fig. 3a, the third operator is the hosting operator and the first operator is the participating operator. In some example embodiments, the shared IAB node 333 may comprise an IAB-DUa (not shown in Fig. 3a) for an F1 interface with the Donor1-CU 311 from the first operator, and an IAB-DUb (not shown in Fig. 3a) for an F1 interface with the Donor3-CU 331 from the third operator.
It is to be understood that the deployment examples of Figs. 3a and 3b are only for the purpose of illustration without suggesting any limitations. The example embodiments of the present disclosure can be implemented in an IAB environment with any suitable deployment. As another deployment example, a complete tree or sub-tree of IAB nodes may be shared. For example, the second operator may share the IAB node 324, the IAB node 325, the IAB node 312 and the IAB node 313 with the first operator and the third operator.
In the partial sharing IAB environment, an IAB node is shared between different operators without sharing the Donor-CUs and other intermediate nodes (for example, the Donor-DU, the intermediate IAB node) . To manage the radio channel, for example, the BH RLC channel, towards the shared IAB node 324, the Donor1-CU 311 from the participating operator shall identify the collocation of the IAB-MT and the IAB-DU of the shared IAB node. However, no solution is available yet for the Donor1-CU 311 from the participating operator to know the collocation of the IAB-MT and the IAB-DU of the shared IAB node 324. That is because the BAP address (for example, BAP address #001) of the shared IAB node 324 is assigned by the Donor2-CU 321 from the hosting operator, and Donor-CUs from different operators may assign the same BAP address to different IAB nodes. For example, Donor1-CU 311 may already assign the same BAP address (for example, BAP address #001) to its own IAB node, for example, the IAB node 316. As a result, even if the IAB-DU of the shared IAB node 324 includes the BAP address in a F1 SETUP REQUEST message during the F1 setup procedure with Donor1-CU 311, Donor1-CU 311 cannot know the collocation of the IAB-MT and the IAB-DU of the shared IAB node 324. The Donor1-CU 311 may incorrectly determine the IAB-DU is collocated with the IAB-MT in the IAB node 316, rather the IAB-MT in the IAB node 324.
Without knowing the IAB-MT that is collocated with the IAB-DU of the shared IAB node, the Donor1-CU cannot request to setup or modify the BH RLC channel towards the shared IAB node. Furthermore, the Donor1-CU does not know which Donor controls  the IAB-MT of the shared IAB node, and the Donor1-CU does not know where to send a request, e.g., a request to setup the BH RLC channel towards the shared IAB node.
The similar issue may also exist in non-IAB sharing environment. Fig. 3c illustrates another example IAB environment 306 in which some example embodiments of the present disclosure can be implemented. Specifically, the IAB environment 306 comprises a Donor-CU of a first IAB-donor node, which is also referred to as a “Donor1-CU 361” , and a Donor-CU of a second IAB-donor node, which is also referred to as a “Donor2-CU 371” . The IAB environment 306 also comprises a Donor-DU of the first IAB-donor node, which is also referred to as a “Donor1-DU 368” , and a Donor-DU of the second IAB-donor node, which is also referred to as a “Donor2-DU 372” . The IAB environment 306 further comprises  IAB nodes  373, 374, 375, 366. The  IAB nodes  373, 374, 375, 366, the Donor2-CU 371, the Donor1-CU 361, the Donor2-DU 372 and the Donor1-DU 368 are deployed by the same operator. An IP connection 355 is established between the Donor1-CU 361 and the Donor2-DU 372. The IAB node 374 connects with the IAB node 373. The RRC establishment procedure initiated by the IAB-MT of the IAB node 374 is terminated at the Donor2-CU 371, which provides the control plane connection to a core network (not shown in Fig. 3c) . For example, Donor2-CU 371 is a termination point for the control plane connection to the core network for the IAB-MT in the IAB node 374. During the RRC establishment procedure, the Donor2-CU 371 allocates a BAP address (for example, #002) to the IAB-MT of the IAB node 374. However, the IAB-DU in the IAB node 374 is configured to use the Donor1-CU 361 for F1 interface, for example, for load balancing reason when the Donor2-CU 371 is overloaded and cannot accept new F1 setup from the IAB-DU in the IAB node 374. To manage the radio channel, for example, the BH RLC channel, towards the IAB node 374, the Donor1-CU 361 shall identify the collocation of the IAB-MT and the IAB-DU of the IAB node 374. No solution is available yet for the Donor1-CU 361 to know the collocation of the IAB-MT and the IAB-DU of the IAB node 374. That is because the BAP address (for example, BAP address #002) of the IAB node 374 is assigned by the Donor2-CU 371, and the Donor1-CU 361 may assign the same BAP address to a different IAB node. For example, Donor1-CU 361 may already assign the same BAP address (for example, BAP address #002) to its own IAB node (for example, the IAB node 366) . As a result, when the Donor1-CU 361 receive the F1 SETUP REQUEST message including the BAP address (for example, #002) from the IAB-DU in the IAB node 374, the Donor1-CU 361 cannot know the collocation of  the IAB-MT and the IAB-DU of the IAB node 374. Donor1-CU 361 may incorrectly determine that the IAB-DU is collocated with the IAB-MT in the IAB node 366, rather the IAB-MT in the IAB node 374.
Example embodiments of the present disclosure provide a solution for IAB communication. In some embodiments, the solution enables sharing an IAB node by different operators. In some embodiments, the solution enables load balancing for different donor CUs of same operator. Some example embodiments solve some problem mentioned above, and some example embodiments further solve one or more of other potential problems.
In some embodiments, a first Donor-CU from a first operator (for example, a participating operator) obtains identification information concerning at least one of a second Donor-CU from a second operator (for example, a hosting operator) and an IAB node from the second operator and shared for the first operator. In some example embodiments, the first Donor-CU may receive a unique identifier of the second Donor-CU from the shared IAB node, for example, from an IAB-DU of the shared IAB node. Alternatively, or in addition, in some example embodiments, the first Donor-CU may receive from the second Donor-CU an identifier (for example, the BAP address, or an IAB address) of the shared IAB node and at least another identifier of a cell served by the shared IAB node.
The first Donor-CU determines an association of the shared IAB node with the second Donor-CU based on the obtained identification information. For example, the first Donor-CU may identify, based on the obtained identification information, that the second Donor-DU controls the shared IAB node. Based on the determined association, the first Donor-CU may transmit to the second Donor-CU a request for configuring a radio channel towards to the shared IAB node when needed. For example, the first Donor-CU may transmit to the second Donor-CU a request to setup or modify the BH RCL channel towards the shared IAB node.
In the example embodiments, the shared IAB node and the Donor controlling the shared IAB node can be identified by the Donor from a participating operator. IAB node sharing is enabled without sharing the Donor and intermediate IAB nodes. In this way, flexibility for IAB deployment can be achieved and capital expenditure of the participating operator can be reduced.
Example processes
Some example embodiments are now detailed below. Fig. 4a illustrates a flowchart illustrating an example process 400 for sharing an IAB node according to some example embodiments of the present disclosure. For the purpose of discussion, the process 400 will be described with reference to Figs. 3a and 3b. The process 400 at least involves the Donor1-CU 311 from the first operator, the Donor2-CU 321 from the second operator and the IAB node 324 shared between the first and second operators. As shown in Fig. 4a, the IAB node 324 comprises an IAB-MT 401 and one or more IAB-DUs. For example, the IAB node 324 may comprise an IAB-DUa 403 for an F1 interface with the Donor1-CU 311 and an IAB-DUb 402 for an F1 interface with the Donor2-CU 321. It is to be understood that although the IAB-DUa 403 and the IAB-DUb 402 are shown separately, this is merely for the purpose of illustration without suggesting any limitation to the protection scope. The IAB-DUa 403 and the IAB-DUb 402 may be implemented by a same device or apparatus.
In the process 400, the Donor2-CU 321 transmits 405 to the IAB node 324 an identifier of the IAB node 324 allocated by the Donor2-CU 321, which is also referred to as a “second identifier” in the following. The second identifier may be any suitable identifier allocated by the Donor2-CU 321 to identify the IAB node 324.
In some example embodiments, the second identifier is a BAP address of the IAB node 324 allocated by the Donor2-CU 321. For example, during the UE initial access procedure for the IAB-MT 401, the IAB-MT 401 may initiate establishment of a RRC connection with the Donor2-CU 321. The Donor2-CU 321 may allocate the BAP address to the IAB node 324 and transmit a RRC reconfiguration message comprising the BAP address to the IAB-MT 401. The UE initial access procedure for the IAB-MT also includes the connection setup with the core network (not shown in Fig. 4a) . The Donor2-CU 321 terminates the control plane connection to the core network for the IAB-MT 401.
The IAB node 324 obtains 410 an identifier uniquely identifying the Donor2-CU 321. Such an identifier is also referred to as a “first identifier” or a unique identifier. The first identifier may be any identity which can uniquely identify the Donor2-CU 321 in the multi-operator deployment, for example, the example deployments as shown in Figs. 3a and 3b. As an example, the first identifier may be a Global gNB ID of the Donor2-CU  321, which includes a PLMN ID of an operator (i.e., the second operator in this example) who deploys and controls the Donor2-CU, and a gNB ID of the Donor2-CU 321.
In some example embodiments, the IAB node 324 may receive the first identifier from the Donor2-CU 321. As example, the first identifier may be included in a F1 Application Protocol (F1AP) message provided from the Donor2-CU 321 to the IAB-DUb 402, for example, during the F1 setup procedure between the IAB-DUb 402 and the Donor2-CU 321. As another example, the first identifier may be included in a RRC message provided from the Donor2-CU 321 to the collocated IAB-MT 401 during a RRC procedure, for example, during the RRC connection establishment procedure, or a RRC reconfiguration procedure, or at 405.
Alternatively, or in addition, in some example embodiments, the IAB node 324 may receive the first identifier from an Operation Administration and Maintenance (OAM) entity (not shown) . For example, the OAM entity of the second operator may provide configuration information comprising the first identifier to the IAB-DUb 402 or the IAB-DUa 403. When the OAM entity configures other parameters related to the IAB-DU of the IAB node 324, the first identifier may also be provided by the OAM entity.
In some example embodiments, internal communication may be performed 415 within the IAB node 324 to transfer the identification information concerning the IAB node 324 and the Donor2-CU 321. In the case where the IAB node 324 comprises the IAB-DUa 403 and the IAB-DUb 402, the BAP address allocated to the IAB-MT 401 may be shared among the IAB-MT 401, the collocated IAB-DUa 403 and the collocated IAB-DUb 402, and the first identifier of the Donor2-CU may be shared among the IAB-MT 401, the collocated IAB-DUa 403 and the collocated IAB-DUb 402. For example, the BAP address received at 405 may be transmitted from the IAB-MT 401 to the IAB-DUb 402 and the IAB-DUa 403. The first identifier of the Donor2-CU obtained at 410 may be transmitted from the IAB-DUb 402 (or the IAB-MT 401) to the IAB-DUa 403.
The IAB node 324 transmits 420 the identification information concerning the IAB node 324 and the Donor2-CU 321 to the Donor1-CU 311. For example, the IAB-DUa 403 provides the first identifier of the Donor2-CU 321 and the second identifier of the IAB node 324 to the Donor1-CU 311.
In some example embodiments, the first and second identifiers may be transmitted during a procedure for setting up an F1 interface between the IAB node 324 and the  Donor1-CU 311. For example, the first and second identifiers may be included in an F1 SETUP REQUEST message from the IAB-DUa 403 to the Donor1-CU 311.
Alternatively, or in addition, in some example embodiments, the first and second identifiers may be transmitted during a procedure for updating a configuration of the IAB-DU of the IAB node 324. For example, the IAB-DUa 403 may include the first and second identifiers in a message towards the Donor1-CU 311 during an F1 gNB-DU Configuration Update procedure.
Alternatively, or in addition, in some example embodiments, the first and second identifiers may be transmitted during a procedure for updating a configuration of the Donor1-CU 311. For example, the IAB-DUa 403 may include the first and second identifiers in a message towards the Donor1-CU 311 during an F1 gNB-CU Configuration Update procedure.
Upon receiving the identification information, the Donor1-CU 311 determines 425 an association of the IAB node 324 with the Donor2-CU 321. In other words, based on the first and second identifiers, the Donor1-CU 311 can identify the IAB-MT 401 is collocated with the IAB-DUa 403 and determine that the Donor2-CU 321 manages the IAB node 324. For example, the Donor1-CU 311 can identify the IAB-DUa 403 is collocated with an IAB-MT from the second operator, and the collocated IAB-MT 401 is managed by the Donor2-CU 321 which provides a control plane connection to the core network for the collocated IAB-MT 401.
Based on the determined association, the Donor1-CU 311 may transmit 430 to the Donor2-CU 321 a request for configuring a radio channel towards the IAB node 324 when needed. The request comprises the second identifier of the IAB node 324 to identify the IAB-MT 401. For example, the request may comprise the BAP address of the IAB node 324 to identify the IAB-MT 401.
As an example, when there is a need to setup or modify the BH RLC channel towards the IAB-MT 401, the Donor1-CU 311 may transmit to the Donor2-CU 321 an Xn request message to setup or modify the BH RLC channel towards the IAB-MT 401. The Xn request comprises the BAP address to identify the IAB-MT 401.
The Donor2-CU 321 initiates 435 a procedure to configure the radio channel towards the IAB node 324. For example, the Donor2-CU 321 may initiate an F1AP procedure or an RRC procedure to setup or modify the BH RLC channel towards the  IAB-MT 401. The BH RLC channel is further used to convey the traffic, for example, the traffic for an F1 control plane (F1-C) or an F1 user plane (F1-U) between the IAB-DUa 403 and the Donor1-CU 311, and/or the traffic for an F1-C or an F1-U between the IAB-DUb 402 and the Donor2-CU 321.
In the example process 400, the unique identifier of the Donor-CU from the hosting operator is provided by the shared IAB node to the Donor-CU from the participating operator. In this way, the Donor-CU from the participating operator can identify the Donor-CU controlling the shared IAB node. Therefore, IAB node sharing is enabled without sharing the Donor and intermediate IAB nodes from the hosting operator.
In some example embodiments, the first operator and the second operator may be the same, and in this case, the second device (e.g., IAB node 324) is not a shared IAB node by different operators (and is referred to a non-shared IAB node hereafter) , but has connection with more than one Donor-CUs from the same operator. An example is shown in Fig. 4b. Fig. 4b illustrates a flowchart illustrating an example process 450 for the non-shared IAB node according to some example embodiments of the present disclosure. For the purpose of discussion, the process 450 will be described with reference to Figs. 3c. The process 450 at least involves the Donor1-CU 361, the Donor2-CU 371 and the IAB node 374, which may be deployed by same operator. As shown in Fig. 4b, the IAB node 374 comprises an IAB-MT 451 and one IAB-DU 453. The IAB-DU 453 may have an F1 interface with the Donor1-CU 361, but the Donor2-CU 371 is a termination point for the control plane connection to the core network for the IAB-MT 451.
In the process 450, the Donor2-CU 371 transmits 455 to the IAB node 374 an identifier of the IAB node 374 allocated by the Donor2-CU 371, which is also referred to as a “second identifier” in the following. The second identifier may be any suitable identifier allocated by the Donor2-CU 371 to identify the IAB node 374.
In some example embodiments, the second identifier is a BAP address of the IAB node 374 allocated by the Donor2-CU 371. For example, during the UE initial access procedure for the IAB-MT 451, the IAB-MT 451 may initiate establishment of a RRC connection with the Donor2-CU 371. The Donor2-CU 371 may allocate the BAP address to the IAB node 374 and transmit a RRC reconfiguration message comprising the BAP address to the IAB-MT 451. The UE initial access procedure for the IAB-MT also includes the connection setup with the core network (not shown in Fig. 4b) .
The IAB node 374 obtains 460 an identifier uniquely identifying the Donor2-CU 371. Such an identifier is also referred to as a “first identifier” or a unique identifier. The first identifier may be any identity which can uniquely identify the Donor2-CU 371 in an IAB network including multiple Donor-CUs, for example, the example deployments as shown in Figs. 3c. As an example, the first identifier may be a Global gNB ID of the Donor2-CU 371 when the IAB network have other IABs from other operator, or a gNB ID of the Donor2-CU 371 without the PLMN ID when the IAB network only have IABs from a single operator.
The first identifier may be obtained in a way similar to that described with reference to Fig. 4a. For example, the IAB node 374 may receive the first identifier from the Donor2-CU 371. As example, the first identifier may be included in a RRC message provided from the Donor2-CU 371 to the collocated IAB-MT 451 during a RRC procedure, for example, during the RRC connection establishment procedure, or a RRC reconfiguration procedure, or at 455. Alternatively, or in addition, in some example embodiments, the IAB node 374 may receive the first identifier from an OAM entity (not shown) .
In some example embodiments, internal communication may be performed 465 within the IAB node 374 to transfer the identification information concerning the IAB node 374 and the Donor2-CU 371. In the case where the first identifier is provided to the IAB node 374 via RRC procedure, the IAB-MT 451 may share the first identifier and the BAP address allocated to the IAB-MT 451 with the collocated IAB-DU 453.
The IAB node 374 transmits 470 the identification information concerning the IAB node 374 and the Donor2-CU 371 to the Donor1-CU 361, in a way similar to, or same as, that described with reference to Fig. 4a and operation 420.
Upon receiving the identification information, the Donor1-CU 361 determines 475 an association of the IAB node 374 with the Donor2-CU 371. In other words, based on the first and second identifiers, the Donor1-CU 361 can identify the IAB-MT 451 is collocated with the IAB-DU 453 and determine that the Donor2-CU 371 manages the IAB node 374. For example, the Donor1-CU 361 can identify the IAB-DU 453 is collocated with an IAB-MT in the IAB node 374, and the collocated IAB-MT 451 is managed by the Donor2-CU 371 which provides a control plane connection to the core network for the collocated IAB-MT 451.
Based on the determined association, the Donor1-CU 361 may transmit 480 to the Donor2-CU 371 a request for configuring a radio channel towards the IAB node 374 when needed. The Donor2-CU 371 initiates 485 a procedure to configure the radio channel towards the IAB node 374. The operations performed at 480 and 485 are similar to, or same as, that described with reference to 430 and 435 of FIG. 4a.
In the example process 450, the unique identifier of the Donor1-CU 371 which provides the control plane connection to the core network for the IAB-MT 451 of the IAB node 324, is provided by the IAB-DU 453 in the IAB node 374 to the Donor-CU 361 which provides the F1 termination point for the IAB-DU 453 of the IAB node 374. In this way, the first Donor-CU which terminates the F1 interface for an IAB-DU in an IAB node can identify the second Donor-CU which provides the control plane connection for the collocated IAB-MT of the IAB node. Therefore, the load balancing between Donor-CUs is enabled by using different Donor-CUs for providing the control plane connection to the core network for the IAB-MT in an IAB node, and for terminating the F1 interface with the IAB-DU in the IAB node.
Reference is now made to Fig. 5. Fig. 5 illustrates a flowchart illustrating an example process 500 for sharing an IAB node according to some example embodiments of the present disclosure. For the purpose of discussion, the process 500 will be described with reference to Figs. 3a and 3b. The process 500 at least involves the Donor1-CU 311 from the first operator, the Donor2-CU 321 from the second operator and the IAB node 324 shared between the first and second operators. It is to be understood that acts with the same reference signs as in Fig. 4a are same as those described with reference to Fig. 4a and thus are not repeatedly described in detail here.
In the process 500, the Donor2-CU 321 transmits 405 to the IAB node 324 the second identifier of the IAB node 324 allocated by the Donor2-CU 321. For example, the Donor2-CU 321 may transmit a RRC reconfiguration message comprising the BAP address to the IAB-MT 401.
In some example embodiments, internal communication may be performed 515 within the IAB node 324 to transfer identification information concerning the IAB node 324. In the case where the IAB node 324 comprises the IAB-DUa 403 and the IAB-DUb 402, the BAP address allocated to the IAB-MT 401 may be shared with the collocated IAB-DUa 403 and the collocated IAB-DUb 402. For example, the BAP address received  at 405 may be transmitted from the IAB-MT 401 to the collocated IAB-DUb 402 and the IAB-DUa 403.
The IAB node 324 transmits 520 the identification information concerning the IAB node 324 to the Donor1-CU 311. For example, the IAB-DUa 403 provides the second identifier (for example, the BAP address) of the IAB node 324 to the Donor1-CU 311. The IAB-DUa 403 may also provide information concerning its cell to the Donor1-CU 311 at 520 along with the identification information concerning the IAB node 324. In this example embodiment, the Donor1-CU 311 may know the first identifier of Donor2-CU 321 via the interface (for example, an Xn interface) between the Donor1-CU 311 and the Donor2-CU 321.
In some example embodiments, the second identifier may be transmitted during a procedure for setting up an F1 interface between the IAB node 324 and the Donor1-CU 311. For example, the second identifier may be included in an F1 SETUP REQUEST message from the IAB-DUa 403 to the Donor1-CU 311.
Alternatively, or in addition, in some example embodiments, the second identifier may be transmitted during a procedure for updating a configuration of the IAB-DU of the IAB node 324. For example, the IAB-DUa 403 may include the second identifier in a message towards the Donor1-CU 311 during an F1 gNB-DU Configuration Update procedure.
Alternatively, or in addition, in some example embodiments, the second identifier may be transmitted during a procedure for updating a configuration of the Donor1-CU 311. For example, the IAB-DUa 403 may include the second identifier in a message towards the Donor1-CU 311 during an F1 gNB-CU Configuration Update procedure.
It is to be understood that since the second identifier is allocated by the Donor2-CU 321 to the IAB node 324, it is possible that an identifier same as the second identifier is allocated by the Donor1-CU 311 to an IAB node under the domain of the Donor1, for example, the IAB node 316 as shown in Figs. 3a and 3b. As an example, when the second identifier is a BAP address, the Donor2-CU 321 allocates a BAP address (e.g., #3) to the IAB node 324. It is possible that same BAP address (i.e., #3) is already allocated by Donor1-CU 311 to the IAB node 316.
In this situation, based on the received second identifier from the IAB-DUa 403 at 520, for example, the BAP address (e.g., #3) , the Donor1-CU 311 may incorrectly  determine that the IAB-DUa 403 is collocated with the IAB-MT of the IAB node 316. Therefore, in some example embodiments, an indication may be transmitted along with the second identifier of the IAB node 324 to avoid incorrect determination of the collocation for the IAB-DUb 403 by the Donor1-CU 311. For example, the indication may be a flag informing the Donor1-CU 311 not to determine the collocated IAB-MT for the IAB-DU (or not to bind the IAB-DU with the collocated IAB-MT) based on the identification information transmitted at 520. Instead, the Donor1-CU 311 shall determine the collocated IAB-MT (or bind the IAB-DU with the collocated IAB-MT) later, for example, upon the reception of the other identity information from the Donor2-CU 321 at 525. In the case where the second identifier is included in the F1 SETUP REQUEST message, the F1 SETUP REQUEST message may further comprise the indication. In one example embodiment, the indication may be the BAP address allocated to the IAB node 324 by the Donor2-CU 321, for example, at 405. In some example embodiments, the Donor1-CU 311 may be preconfigured to determine the collocated IAB-MT based on the received second identifier and further information from the Donor2-CU 321, and then such indication (e.g., the flag) may be avoided.
Continuing with the process 500, the Donor2-CU 321 transmits 525 cell information to the Donor1-CU 311. The cell information comprises the second identifier of the IAB node 324 and at least an identifier of a cell served by the IAB node 324, which is also referred to as a “third identifier” in the following. The third identifier may comprise a cell ID of the cell served by the IAB node 324
In other words, for one or more cells provided by the shared IAB 324 which is deployed by the second operator and shared with the first operator, the cell information includes the BAP address allocated by the Donor2-CU 321 to the shared IAB node 324, i.e., the BAP address allocated to the IAB-MT 401 of the shared IAB node 324. For example, the cell information includes the BAP address of the IAB node 324 for the one or more cells provided by the collocated IAB-DUa 403 of the shared IAB node 324.
In the case where the IAB node 324 is shared for multiple operators, multiple Donor-CUs from the multiple operators may report the same cells of the IAB node 324 as their served cells to the Donor1-CU 311. Only the Donor-CU from the hosting operator (which is the Donor2-CU 321) provides the BAP address of the shared IAB node 324. As an example, the IAB node 324 is shared with both the first and third operators as shown in Fig. 3b. In this case, both the Donor2-CU 321 and the Donor3-CU 331 reports the cells of  the IAB node 324 as the served cells to the Donor1-CU 331. The Donor2-CU 321 provides the BAP address of the IAB node 324 along with the cell IDs, while the Donor3-CU 331 provides the cell IDs without the BAP address of the IAB node 324.
In some example embodiments, the cell information may be transmitted during a procedure for setting up an Xn interface between the Donor2-CU 321 and the Donor1-CU 311. For example, the Donor2-CU 321 may include the cell information in a message to the Donor1-CU 311 during an Xn setup procedure.
Alternatively, or in addition, in some example embodiments, the cell information may be transmitted during a procedure for updating a configuration needed for the Donor2-CU 321 and the Donor1-CU 311 to interoperate over the Xn interface. For example, the Donor2-CU 321 may include the cell information in a message to the Donor1-CU 311 during an Xn NG-RAN Node Configuration Update procedure.
In the above example embodiments, the Donor1-CU 311 can reuse the gNB ID in the Xn message to identify the Donor2-CU 321. Moreover, trigger for transmitting the cell information may be similar to normal gNB-DU sharing.
In some example embodiments, transmission of the cell information at 525 may be performed before transmission of the identification information concerning the IAB node 324 at 520. In this way, avoid incorrect determination of the collocation for the IAB-DUb 403 by the Donor1-CU 311 as mentioned above may be avoided.
Continuing with the process 500, the Donor1-CU 311 determines 530 an association of the IAB node 324 with the Donor2-CU 321 based on the cell information and the identification information concerning the IAB node 324. In other words, based on the cell information and the identification information received at 520 and 525, the Donor1-CU 311 can identify the IAB-MT 401 collocated with the IAB-DUa 403 and determine that the Donor2-CU 321 manages the collocated IAB-MT 401.
In the example embodiments where the second identifier comprises the BAP address, the Donor1-CU 311 receives the BAP address from the IAB-DUa 403. The Donor1-CU 311 receives from the Donor2-CU 321 the cell information which also comprises the BAP address. For example, the Donor1-CU 311 receives 520 an indication (for example, a specific BAP address #3) and cell information (e.g. a cell ID #111) from the IAB-DUa 403, and receives 525 from the Donor2-CU 321 a cell ID #111 of a specific cell of the IAB node 324 and the specific BAP address (e.g., #3) for the specific cell. In this  situation, the Donor1-CU 311 can determine the IAB-MT 401 collocated with the IAB-DUa 403 and determine that the Donor2-CU 321 manages the collocated IAB-MT. It is to be understood that the above values of the BAP address and cell ID are given for the purpose of illustration without any limitation to the protection scope.
Then, based on the determined association, the Donor1-CU 311 transmits 430 to the Donor2-CU 312 a request for configuring a radio channel towards the IAB node 324. The request comprises the second identifier of the IAB node 324 to identify the IAB-MT 401. The Donor2-CU 321 initiates 435 a procedure to configure the radio channel towards the IAB node 324.
In the example process 400, the identifier of the shared IAB node along with the identifier of one or more cells of the shared IAB node is provided by the Donor-CU from the hosting operator to the Donor-CU from the participating operator. In this way, the Donor-CU from the participating operator can identify the Donor-CU controlling the shared IAB node. Therefore, IAB node sharing is supported without sharing the Donor and intermediate IAB nodes.
It is to be understood that although the IAB-DUa 403 and the IAB-DUb 402 are shown separately in Figs. 4 and 5, this is merely for the purpose of illustration without suggesting any limitation to the protection scope. In some example embodiments, the acts described with respect to the IAB-DUa 403 and the IAB-DUb 402 may be implemented by a same device or apparatus.
It is also to be understood that although the example processes 400 and 500 are described separately, aspects of the two processes may be combined. For example, in some embodiments, the first, second and third identifiers may be all provided to the Donor1-CU 311.
Example protocol stacks
Reference is now made to Figs. 6a and 6b. Fig. 6a illustrates an example protocol stack 610 for support of the F1-U plane according to some example embodiments of the present disclosure. Fig. 6b illustrates an example protocol stack 650 for support of the F1-C plane according to some example embodiments of the present disclosure. Figs. 6a and 6b are described with respect to Figs. 3a and 3b.
Generally, the IAB network comprises a network 601 managed by the first operator and a network 602 managed by the second operator. The network 601 includes  the Donor1-CU 311, the IAB node 312 from the first operator, and the IAB-DUa of the shared IAB node 324. The network 602 includes the Donor2-DU 322, the IAB node 323, the IAB-MT of the shared IAB node 324 and the IAB-DUb of the shared IAB node 324.
As shown in Figs. 6a and 6b, the BH RLC channels can be set up between the IAB MT of the IAB node 312 and the IAB-DUa of the shared IAB node 324, between the IAB-MT of the shared IAB node 324 and IAB-DU of the IAB node 323, between the IAB-MT of the IAB node 323 and the Donor2-DU. Protocol layers comprise a physical (PHY) layer, a media access control (MAC) layer, a radio link control (RLC) layer and a BAP layer from the bottom to the top.
The F1 plane traffic includes traffic of the F1-U plane (also referred to as “F1-U traffic” ) and the traffic of the F1-C plane (also referred to as “F1-C traffic” ) . The F1-U traffic and the F1-C traffic are transported on top of the BAP layer. Specifically, protocol layers for the F1-U traffic comprise an IP layer, a User Datagram Protocol (UDP) layer and a General Packet Radio Service (GPRS) Tunneling Protocol-User (GTP-U) layer from the bottom to the top. Protocol layers for the F1-C traffic comprise an IP layer, a Stream Control Transmission Protocol (SCTP) layer and an F1AP layer from the bottom to the top.
As shown in Figs. 6a and 6b, the F1-U traffic and the F1-C traffic between the Donor1-CU 311 from the first operator (which is the participating operator) and its IAB nodes (for example, the IAB node 312) in the shared backhaul network are IP-routed via the Donor2-DU 322 from the second operator (which is the hosting operator) and transported by the backhaul network 602 of the second operator. The shared IAB node 324 uses the BAP address allocated by the second operator. The first operator can fully configure and manage child IAB nodes under the shared IAB node 324, without sharing the child IAB nodes and without involving the second operator. The shared IAB node 324 broadcasts the PLMN IDs of the second operator and the first operator. The child IAB nodes of the first operator broadcast the PLMN ID of the first operator. For a terminal device subscripted to the first operator, it is transparent that a shared backhaul from the second operator is used.
Therefore, in the example environment of Fig. 3a, the IAB node 312 and the IAB node 313 from the first operator are configured with BAP addresses from the first operator. To route the BAP packets of the IAB node 312 and the IAB node 313 through the IAB network of the second operator to the Donor1-CU 311 of the first operator, the shared IAB  node 324 may be configured to perform BAP header translation. This BAP address translation may be similar to that used in inter-Donor routing in Inter-Donor Topology Redundancy for example.
Example methods and apparatuses
Fig. 7 shows a flowchart of an example method 700 for configuring an IAB node in accordance with some example embodiments of the present disclosure. The method 700 can be implemented at a first device. For the purpose of discussion, the method 700 will be described with reference to Fig. 3a, Fig. 3b and Fig. 3c.
At block 710, the first device from the first operator obtains identification information concerning at least one of a second device from a second operator, and a third device from the second operator. In some embodiments, the first operator and the second operator are different operators, and the second device is shared for the first operator. For example, the first device may comprise the Donor1-CU 311, the second device may comprise the IAB node 324 and the third device may comprise the Donor2-CU 321.
In some example embodiments, the first device may receive, from the second device, a first identifier uniquely identifying the third device and a second identifier of the second device allocated by the third device. For example, the first identifier may comprise the Global gNB ID of the Donor2-CU 321 and the second identifier may comprise the BAP address of the IAB node 324.
In some example embodiments, the first and second identifiers may be received during a procedure for setting up an F1 interface between the first and second devices. Alternatively, or in addition, the first and second identifiers may be received during a procedure for updating a configuration of a distributed unit of the second device. Alternatively, or in addition, the first and second identifiers may be received during a procedure for updating a configuration of the first device.
In some example embodiments, the first device may receiving, from the third device, a second identifier of the second device allocated by the third device and at least a third identifier of a cell served by the second device. In some example embodiments, the second identifier may comprise the BAP address of the IAB node 324. The third identifier may comprise a cell ID of the cell.
In some example embodiments, the second and third identifiers may be received during a procedure for setting up an Xn interface between the first and third devices.  Alternatively, or in addition, the second and third identifiers may be received during a procedure for updating a configuration needed for the first and third devices to interoperate over the Xn interface.
At block 720, the first device determines an association of the second device with the third device based on the identification information. At block 730, the first device transmits, to the third device based on the determined association, a request for configuring a radio channel towards the second device.
In some embodiments, the first operator and the second operator may be the same operator, and in this case, the second device is an IAB node which has connections with more than one Donor-CUs from the same operator. For example, the first device comprises a Donor-CU managing an interface (e.g., F1 interface) with the second device. The third device comprises another Donor-CU providing a control plane connection to the core network for the second device. For example, the second device may comprise the IAB node 374, the first device may comprise the Donor1-CU 361 and the third device may comprise the Donor2-CU 371.
Fig. 8 shows a flowchart of an example method 800 for configuring an IAB node in accordance with some example embodiments of the present disclosure. The method 800 can be implemented at a second device. For the purpose of discussion, the method 800 will be described with reference to Fig. 3a, Fig. 3b and Fig. 3c.
At block 810, the second device from a second operator obtains a first identifier uniquely identifying a third device. The third device is from the second operator and provides a control plane connection to a core network for the second device. For example, the first identifier may comprise the Global gNB ID of the Donor2-CU 321. In some example embodiments, the first operator and the second operator are different operators, and the second device is shared for the first operator. For example, the first device may comprise the Donor1-CU 311, the second device may comprise the IAB node 324 and the third device may comprise the Donor2-CU 321.
In some example embodiments, the second device may receive, from the third device, an F1 AP message comprising the first identifier. Alternatively, or in addition, the second device may receive, from the third device, a RRC message comprising the first identifier. Alternatively, or in addition, the second device may receive, from an OAM entity, configuration information comprising the first identifier.
At block 820, the second device transmits, to a first device from the first operator, the first identifier and a second identifier of the second device allocated by the third device. For example, the second identifier may comprise the BAP address of the IAB node 324.
In some example embodiments, the first and second identifiers may be transmitted during a procedure for setting up an F1 interface between the first and second devices. Alternatively, or in addition, the first and second identifiers may be transmitted during a procedure for updating a configuration of a DU of the second device (for example, the IAB-DU of the IAB node 324) . Alternatively, or in addition, the first and second identifiers may be transmitted during a procedure for updating a configuration of the first device.
In some embodiments, the first operator and the second operator may be the same operator, and in this case, the second device is an IAB node which has connections with more than one Donor-CUs from the same operator. For example, the first device comprises a Donor-CU managing an interface (e.g., F1 interface) with the second device. The third device comprises another Donor-CU providing a control plane connection to the core network for the second device. For example, the second device may comprise the IAB node 374, the first device may comprise the Donor1-CU 361 and the third device may comprise the Donor2-CU 371.
Fig. 9 shows a flowchart of an example method 900 for sharing an IAB node in accordance with some example embodiments of the present disclosure. The method 900 can be implemented at a third device. For the purpose of discussion, the method 900 will be described with reference to Fig. 3a, Fig. 3b and Fig. 3c.
At block 910, the third device from a second operator provides, to a first device from a first operator, identification information concerning at least one of a second device and the third device. In some embodiments, the first operator and the second operator are different operators, and the second device is from the second operator and shared for the first operator. For example, the first device may comprise the Donor1-CU 311, the second device may comprise the IAB node 324 and the third device may comprise the Donor2-CU 321.
In some example embodiments, the third device may transmit, via the second device, a first identifier uniquely identifying the third device to the first device. For example, the third device may transmit the first identifier to the second device, and then the  second device forwards the first identifier to the first device. The first identifier may comprise the Global gNB ID of the Donor2-CU 321.
In some example embodiments, the third device may transmit, to the second device, an F1AP message comprising the first identifier. Alternatively, or in addition, the first device may transmit to the second device, a RRC message comprising the first identifier.
In some example embodiments, the third device may transmit, to the first device, a second identifier of the second device allocated by the third device and at least a third identifier of a cell served by the second device. In some example embodiments, the second identifier may comprise the BAP address of the IAB node 324. The third identifier may comprise a cell ID of the cell.
In some example embodiments, the second and third identifiers may be transmitted during a procedure for setting up an Xn interface between the first and third devices. Alternatively, or in addition, the second and third identifiers may be transmitted during a procedure for updating a configuration needed for the first and third devices to interoperate over the Xn interface.
At block 920, the third device receives, from the first device, a request for configuring a radio channel towards the second device. The third device may initiate a procedure to configure the radio channel towards the IAB node 324.
In some embodiments, the first operator and the second operator may be the same operator, and in this case, the second device is an IAB node which has connections with more than one Donor-CUs from the same operator. For example, the first device comprises a Donor-CU managing an interface (e.g., F1 interface) with the second device. The third device comprises another Donor-CU providing a control plane connection to the core network for the second device. For example, the second device may comprise the IAB node 374, the first device may comprise the Donor1-CU 361 and the third device may comprise the Donor2-CU 371.
It should be appreciated that the transmission of the identification information (including the first identifier, the second identifier, the third identifier) is not limited to any specific way. In other words, in some embodiments, these identifiers may be transmitted in a different procedure with a different signaling than that described in above examples.
In some example embodiments, a first apparatus capable of performing the method  700 (for example, the Donor1-CU 311) may comprise means for performing the respective operations of the method 700. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module. The first apparatus may be implemented as or included in the Donor1-CU 311.
In some example embodiments, the first apparatus from a first operator comprises: means for obtaining identification information concerning at least one of a second apparatus from a second operator, and a third apparatus from the second operator; means for determining an association of the second apparatus with the third apparatus based on the identification information; and means for transmitting, to the third apparatus based on the determined association, a request for configuring a radio channel towards the second apparatus. The first apparatus comprises a first integrated access and backhaul donor central unit, the second apparatus comprises an integrated access and backhaul node, and the third apparatus comprises a second integrated access and backhaul donor central unit.
In some example embodiments, the first operator and the second operator may be different operators, and the second apparatus is shared for the first operator. In some example embodiments, the first operator and the second operator may be the same operator, and the second apparatus is an IAB node which has connections with more than one Donor-CUs from the same operator.
In some example embodiments, the means for obtaining the identification information comprises: means for receiving, from the second apparatus, a first identifier uniquely identifying the third apparatus and a second identifier of the second apparatus allocated by the third apparatus.
In some example embodiments, the first and second identifiers are received during at least one of: a procedure for setting up an F1 interface between the first and second apparatuses, a procedure for updating a configuration of a distributed unit of the second apparatus, or a procedure for updating a configuration of the first apparatus.
In some example embodiments, the means for obtaining the identification information comprises: means for receiving, from the third apparatus, a second identifier of the second apparatus allocated by the third apparatus and at least a third identifier of a cell served by the second apparatus.
In some example embodiments, the second and third identifiers are received during at least one of: a procedure for setting up an Xn interface between the first and third  apparatuses, or a procedure for updating a configuration needed for the first and third apparatuses to interoperate over the Xn interface.
In some example embodiments, the second identifier of the second apparatus comprises a Backhaul Adaptation Protocol address allocated by the third apparatus.
In some example embodiments, a second apparatus capable of performing the method 800 (for example, the IAB node 324) may comprise means for performing the respective operations of the method 800. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module. The second apparatus may be implemented as or included in the IAB node 324.
In some example embodiments, the second apparatus from a second operator comprising: means for obtaining a first identifier uniquely identifying a third apparatus, the third apparatus being from the second operator and provides a control plane connection to a core network for the second apparatus; and means for transmitting, to a first apparatus from the first operator, the first identifier and a second identifier of the second apparatus allocated by the third apparatus. The first apparatus comprises a first integrated access and backhaul donor central unit, the second apparatus comprises an integrated access and backhaul node, and the third apparatus comprises a second integrated access and backhaul donor central unit.
In some example embodiments, the first operator and the second operator may be different operators, and the second apparatus is shared for the first operator. In some example embodiments, the first operator and the second operator may be the same operator, and the second apparatus is an IAB node which has connections with more than one Donor-CUs from the same operator.
In some example embodiments, the means for obtaining the first identifier comprises at least one of: means for receiving, from the third apparatus, an F1 Application Protocol message comprising the first identifier, means for receiving, from the third apparatus, a Radio Resource Control message comprising the first identifier, or means for receiving, from an Operation Administration and Maintenance entity, configuration information comprising the first identifier.
In some example embodiments, the first and second identifiers are transmitted during at least one of: a procedure for setting up an F1 interface between the first and second apparatuses, a procedure for updating a configuration of a distributed unit of the  second apparatus, or a procedure for updating a configuration of the first apparatus.
In some example embodiments, a third apparatus capable of performing the method 900 (for example, the Donor2-CU 321) may comprise means for performing the respective operations of the method 900. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module. The first apparatus may be implemented as or included in the Donor2-CU 321.
In some example embodiments, the third apparatus from a second operator comprises: means for providing, to a first apparatus from a first operator, identification information concerning at least one of a second apparatus and the third apparatus, the second apparatus being from the second operator; and means for receiving, from the first apparatus, a request for configuring a radio channel towards the second apparatus. The first apparatus comprises a first integrated access and backhaul donor central unit, the second apparatus comprises an integrated access and backhaul node, and the third apparatus comprises a second integrated access and backhaul donor central unit.
In some example embodiments, the first operator and the second operator may be different operators, and the second apparatus is shared for the first operator. In some example embodiments, the first operator and the second operator may be the same operator, and the second apparatus is an IAB node which has connections with more than one Donor-CUs from the same operator.
In some example embodiments, the means for providing the identification information to the first apparatus comprises: means for transmitting, via the second apparatus, a first identifier uniquely identifying the third apparatus to the first apparatus.
In some example embodiments, the means for transmitting the first identifier comprises at least one of: means for transmitting, to the second apparatus, an F1 Application Protocol message comprising the first identifier, or means for transmitting, to the second apparatus, a Radio Resource Control message comprising the first identifier.
In some example embodiments, the means for providing the identification information to the first apparatus comprises: means for transmitting, to the first apparatus, a second identifier of the second apparatus allocated by the third apparatus and at least a third identifier of a cell served by the second apparatus.
In some example embodiments, the second and third identifiers are transmitted during at least one of: a procedure for setting up an Xn interface between the first and third  apparatuses, or a procedure for updating a configuration needed for the first and third apparatuses to interoperate over the Xn interface.
In some example embodiments, the second identifier of the second apparatus comprises a Backhaul Adaptation Protocol address allocated by the third apparatus.
Fig. 10 is a simplified block diagram of a device 1000 that is suitable for implementing embodiments of the present disclosure. For example, the Donor1-CU 311, the Donor2-CU 322, the IAB node 324, etc., shown in Fig. 3a and/or Fig. 3b can be implemented by the device 1000. As shown, the device 1000 includes one or more processors 1010, one or more memories 1020 coupled to the processor 1010, and one or more communication modules 1040 coupled to the processor 1010.
The communication module 1040 is for bidirectional communications. The communication module 1040 has at least one antenna to facilitate communication. The communication interface may represent any interface that is necessary for communication with other network elements.
The processor 1010 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 1000 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 1020 may include one or more non-volatile memories and one or more volatile memories. Examples of the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 1024, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital versatile disc (DVD) , and other magnetic storage and/or optical storage. Examples of the volatile memories include, but are not limited to, a random access memory (RAM) 1022 and other volatile memories that will not last in the power-down duration.
computer program 1030 includes computer executable instructions that are executed by the associated processor 1010. The program 1030 may be stored in the ROM 1024. The processor 1010 may perform any suitable actions and processing by loading the program 1030 into the RAM 1022.
The embodiments of the present disclosure may be implemented by means of the  program 1030 so that the device 1000 may perform any process of the disclosure as discussed with reference to Figs. 4-5 and 7-9. The embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
In some example embodiments, the program 1030 may be tangibly contained in a computer readable medium which may be included in the device 1000 (such as in the memory 1020) or other storage devices that are accessible by the device 1000. The device 1000 may load the program 1030 from the computer readable medium to the RAM 1022 for execution. The computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like. Fig. 11 shows an example of the computer readable medium 1100 in form of CD or DVD. The computer readable medium has the program 1030 stored thereon.
It should be appreciated that future networks may utilize network functions virtualization (NFV) which is a network architecture concept that proposes virtualizing network node functions into “building blocks” or entities that may be operationally connected or linked together to provide services. A virtualized network function (VNF) may comprise one or more virtual machines running computer program codes using standard or general type servers instead of customized hardware. Cloud computing or data storage may also be utilized. In radio communications, this may mean node operations to be carried out, at least partly, in a central/centralized unit, CU, (e.g. server, host or node) operationally coupled to distributed unit, DU, (e.g. a radio head/node) . It is also possible that node operations will be distributed among a plurality of servers, nodes or hosts. It should also be understood that the distribution of labour between core network operations and base station operations may vary depending on implementation.
In an embodiment, the server may generate a virtual network through which the server communicates with the distributed unit. In general, virtual networking may involve a process of combining hardware and software network resources and network functionality into a single, software-based administrative entity, a virtual network. Such virtual network may provide flexible distribution of operations between the server and the radio head/node. In practice, any digital signal processing task may be performed in either the CU or the DU and the boundary where the responsibility is shifted between the CU and the DU may be selected according to implementation.
Therefore, in an embodiment, a CU-DU architecture is implemented. In such  case the device 1000 may be comprised in a central unit (e.g. a control unit, an edge cloud server, a server) operatively coupled (e.g. via a wireless or wired network) to a distributed unit (e.g. a remote radio head/node) . That is, the central unit (e.g. an edge cloud server) and the distributed unit may be stand-alone apparatuses communicating with each other via a radio path or via a wired connection. Alternatively, they may be in a same entity communicating via a wired connection, etc. The edge cloud or edge cloud server may serve a plurality of distributed units or a radio access networks. In an embodiment, at least some of the described processes may be performed by the central unit. In another embodiment, the device 1000 may be instead comprised in the distributed unit, and at least some of the described processes may be performed by the distributed unit.
In an embodiment, the execution of at least some of the functionalities of the device 1000 may be shared between two physically separate devices (DU and CU) forming one operational entity. Therefore, the apparatus may be seen to depict the operational entity comprising one or more physically separate devices for executing at least some of the described processes. In an embodiment, such CU-DU architecture may provide flexible distribution of operations between the CU and the DU. In practice, any digital signal processing task may be performed in either the CU or the DU and the boundary where the responsibility is shifted between the CU and the DU may be selected according to implementation. In an embodiment, the device 1000 controls the execution of the processes, regardless of the location of the apparatus and regardless of where the processes/functions are carried out.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer  program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the method 700 as described above with reference to Fig. 7, the method 800 as described above with reference to Fig. 8, and the method 900 as described above with reference to Fig. 9. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable medium, and the like.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (22)

  1. A first device comprising:
    at least one processor; and
    at least one memory including computer program code;
    wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the first device from a first operator to:
    obtain identification information concerning at least one of a second device from a second operator and shared for the first operator, and a third device from the second operator;
    determine an association of the second device with the third device based on the identification information; and
    transmit, to the third device based on the determined association, a request for configuring a radio channel towards the second device, and
    wherein the first device comprises a first integrated access and backhaul donor central unit, the second device comprises an integrated access and backhaul node, and the third device comprises a second integrated access and backhaul donor central unit.
  2. The first device of claim 1, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the first device to obtain the identification information by:
    receiving, from the second device, a first identifier uniquely identifying the third device and a second identifier of the second device allocated by the third device.
  3. The first device of claim 2, wherein the first and second identifiers are received during at least one of:
    a procedure for setting up an F1 interface between the first and second devices,
    a procedure for updating a configuration of a distributed unit of the second device, or
    a procedure for updating a configuration of the first device.
  4. The first device of claim 1, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the first device to obtain the identification information by:
    receiving, from the third device, a second identifier of the second device allocated by the third device and at least a third identifier of a cell served by the second device.
  5. The first device of claim 4, wherein the second and third identifiers are received during at least one of:
    a procedure for setting up an Xn interface between the first and third devices, or
    a procedure for updating a configuration needed for the first and third devices to interoperate over the Xn interface.
  6. The first device any of claims 2-4, wherein the second identifier of the second device comprises a Backhaul Adaptation Protocol address allocated by the third device.
  7. A second device comprising:
    at least one processor; and
    at least one memory including computer program code;
    wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the second device from a second operator to:
    obtain a first identifier uniquely identifying a third device, the third device being from the second operator and providing a control plane connection to a core network for the second device; and
    transmit, to a first device from the first operator, the first identifier and a second identifier of the second device allocated by the third device, and
    wherein the first device comprises a first integrated access and backhaul donor central unit, the second device comprises an integrated access and backhaul node, and the third device comprises a second integrated access and backhaul donor central unit.
  8. The second device of claim 7, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the second device to obtain the first identifier by at least one of:
    receiving, from the third device, an F1 Application Protocol message comprising the first identifier,
    receiving, from the third device, a Radio Resource Control message comprising the first identifier, or
    receiving, from an Operation Administration and Maintenance entity, configuration  information comprising the first identifier.
  9. The second device of claim 7, wherein the first and second identifiers are transmitted during at least one of:
    a procedure for setting up an F1 interface between the first and second devices,
    a procedure for updating a configuration of a distributed unit of the second device, or
    a procedure for updating a configuration of the first device.
  10. A third device comprising:
    at least one processor; and
    at least one memory including computer program code;
    wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the third device from a second operator to:
    provide, to a first device from a first operator, identification information concerning at least one of a second device and the third device, the second device being from the second operator and shared for the first operator; and
    receive, from the first device, a request for configuring a radio channel towards the second device, and
    wherein the first device comprises a first integrated access and backhaul donor central unit, the second device comprises an integrated access and backhaul node, and the third device comprises a second integrated access and backhaul donor central unit.
  11. The third device of claim 10, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the third device to provide the identification information to the first device by:
    transmitting, via the second device, a first identifier uniquely identifying the third device to the first device.
  12. The third device of claim 11, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the third device to transmit the first identifier by at least one of:
    transmitting, to the second device, an F1 Application Protocol message comprising the first identifier, or
    transmitting, to the second device, a Radio Resource Control message comprising the first identifier.
  13. The third device of claim 10, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the third device to provide the identification information to the first device by:
    transmitting, to the first device, a second identifier of the second device allocated by the third device and at least a third identifier of a cell served by the second device.
  14. The third device of claim 13, wherein the second and third identifiers are transmitted during at least one of:
    a procedure for setting up an Xn interface between the first and third devices, or
    a procedure for updating a configuration needed for the first and third devices to interoperate over the Xn interface.
  15. The third device of claim 13, wherein the second identifier of the second device comprises a Backhaul Adaptation Protocol address allocated by the third device.
  16. A method comprising:
    obtaining, at a first device from a first operator, identification information concerning at least one of a second device from a second operator and shared for the first operator, and a third device from the second operator;
    determining an association of the second device with the third device based on the identification information; and
    transmitting, to the third device based on the determined association, a request for configuring a radio channel towards the second device, and
    wherein the first device comprises a first integrated access and backhaul donor central unit, the second device comprises an integrated access and backhaul node, and the third device comprises a second integrated access and backhaul donor central unit.
  17. A method comprising:
    obtaining, at a second device from a second operator, a first identifier uniquely identifying a third device, the third device being from the second operator and providing a control plane connection to a core network for the second device; and
    transmitting, to a first device from the first operator, the first identifier and a second identifier of the second device allocated by the third device, and
    wherein the first device comprises a first integrated access and backhaul donor central unit, the second device comprises an integrated access and backhaul node, and the third device comprises a second integrated access and backhaul donor central unit.
  18. A method comprising:
    providing, at a third device from a second operator and to a first device from a first operator, identification information concerning at least one of a second device and the third device, the second device being from the second operator and shared for the first operator; and
    receiving, from the first device, a request for configuring a radio channel towards the second device, and
    wherein the first device comprises a first integrated access and backhaul donor central unit, the second device comprises an integrated access and backhaul node, and the third device comprises a second integrated access and backhaul donor central unit.
  19. A first apparatus from a first operator, the first apparatus comprising:
    means for obtaining identification information concerning at least one of a second apparatus from a second operator and shared for the first operator, and a third apparatus from the second operator;
    means for determining an association of the second apparatus with the third apparatus based on the identification information; and
    means for transmitting, to the third apparatus based on the determined association, a request for configuring a radio channel towards the second apparatus, and
    wherein the first apparatus comprises a first integrated access and backhaul donor central unit, the second apparatus comprises an integrated access and backhaul node, and the third apparatus comprises a second integrated access and backhaul donor central unit.
  20. A second apparatus from a second operator, the second apparatus comprising:
    means for obtaining a first identifier uniquely identifying a third apparatus, the third apparatus being from the second operator and providing a control plane connection to a core network for the second apparatus; and
    means for transmitting, to a first apparatus from the first operator, the first identifier  and a second identifier of the second apparatus allocated by the third apparatus, and
    wherein the first apparatus comprises a first integrated access and backhaul donor central unit, the second apparatus comprises an integrated access and backhaul node, and the third apparatus comprises a second integrated access and backhaul donor central unit.
  21. A third apparatus from a second operator, the third apparatus comprising:
    means for providing, to a first apparatus from a first operator, identification information concerning at least one of a second apparatus and the third apparatus, the second apparatus being from the second operator and shared for the first operator; and
    means for receiving, from the first apparatus, a request for configuring a radio channel towards the second apparatus, and
    wherein the first apparatus comprises a first integrated access and backhaul donor central unit, the second apparatus comprises an integrated access and backhaul node, and the third apparatus comprises a second integrated access and backhaul donor central unit.
  22. A computer readable medium comprising program instructions for causing an apparatus to perform at least the method of any of claims 16 to 18.
PCT/CN2021/091750 2021-04-30 2021-04-30 Integrated access and backhaul communication WO2022227088A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/091750 WO2022227088A1 (en) 2021-04-30 2021-04-30 Integrated access and backhaul communication
CN202180006095.6A CN115553046A (en) 2021-04-30 2021-04-30 Integrated access and backhaul communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/091750 WO2022227088A1 (en) 2021-04-30 2021-04-30 Integrated access and backhaul communication

Publications (1)

Publication Number Publication Date
WO2022227088A1 true WO2022227088A1 (en) 2022-11-03

Family

ID=83847612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091750 WO2022227088A1 (en) 2021-04-30 2021-04-30 Integrated access and backhaul communication

Country Status (2)

Country Link
CN (1) CN115553046A (en)
WO (1) WO2022227088A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024156124A1 (en) * 2023-02-17 2024-08-02 Zte Corporation Method of inter-donor migration and apparatus thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019216717A1 (en) * 2018-05-10 2019-11-14 Samsung Electronics Co., Ltd. Method and apparatus for performing communication in wireless communication system
CN110536351A (en) * 2019-02-15 2019-12-03 中兴通讯股份有限公司 Information processing method, IAB and computer storage medium in IAB network
CN111556480A (en) * 2019-01-31 2020-08-18 王俊 Method and system for sharing distributed network elements by multiple operators

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019216717A1 (en) * 2018-05-10 2019-11-14 Samsung Electronics Co., Ltd. Method and apparatus for performing communication in wireless communication system
CN111556480A (en) * 2019-01-31 2020-08-18 王俊 Method and system for sharing distributed network elements by multiple operators
CN110536351A (en) * 2019-02-15 2019-12-03 中兴通讯股份有限公司 Information processing method, IAB and computer storage medium in IAB network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Establishment of F1 security association using Shared Key", 3GPP DRAFT; S3-192202-IABF1KEYSOL-V1, vol. SA WG3, 17 June 2019 (2019-06-17), Sapporo(Japan), pages 1 - 3, XP051753142 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024156124A1 (en) * 2023-02-17 2024-08-02 Zte Corporation Method of inter-donor migration and apparatus thereof

Also Published As

Publication number Publication date
CN115553046A (en) 2022-12-30

Similar Documents

Publication Publication Date Title
CN111557121B (en) Packet forwarding in integrated access backhaul (IAB) networks
CN107889080B (en) Method and device for supporting mobility of remote user equipment
US12021749B2 (en) IPV6 address management in iab system
WO2019240646A1 (en) Internet protocol (ip) address assignment in integrated access backhaul (iab) networks
WO2016203798A1 (en) Device and method
WO2019212543A1 (en) Direct user equipment to user equipment without data network access identifier
US9894699B2 (en) Methods and apparatuses for proximity-based service
WO2022047805A1 (en) Methods, apparatuses and computer readable media for integrated access and backhaul communication
CN113099556A (en) Apparatus, system and method for establishing a connection between a cellular node and a core network
JP2022530908A (en) Enable uplink routing to support multi-connectivity in an integrated access backhaul network
EP3513589B1 (en) Identification of neighboring network nodes in a wireless communication network
WO2022082671A1 (en) Transferring traffic in integrated access and backhaul communication
WO2022227088A1 (en) Integrated access and backhaul communication
US10462842B2 (en) Method and apparatus for transmitting S1AP signaling
WO2020061911A1 (en) Generation of tunnel endpoint identifier for packet tunneling
US20230284246A1 (en) Devices, methods, apparatuses and computer readable media for topology redundancy
US20230292191A1 (en) Mechanism for cell identity management
CN113453286B (en) Service migration in response to access device handoff
WO2022082540A1 (en) Devices, methods, apparatuses and computer readable media for establishing communicating link
WO2023230882A1 (en) Traffic offloading
WO2022056686A1 (en) Device, method, apparatus and computer readable medium for iab communication
WO2022094818A1 (en) Routing in integrated access and backhaul communication
WO2020227906A1 (en) Mapping of bearer identification into ipv6 architecture
CN114788392A (en) Operator network identification in network sharing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938561

Country of ref document: EP

Kind code of ref document: A1