WO2022047805A1 - Methods, apparatuses and computer readable media for integrated access and backhaul communication - Google Patents

Methods, apparatuses and computer readable media for integrated access and backhaul communication Download PDF

Info

Publication number
WO2022047805A1
WO2022047805A1 PCT/CN2020/113847 CN2020113847W WO2022047805A1 WO 2022047805 A1 WO2022047805 A1 WO 2022047805A1 CN 2020113847 W CN2020113847 W CN 2020113847W WO 2022047805 A1 WO2022047805 A1 WO 2022047805A1
Authority
WO
WIPO (PCT)
Prior art keywords
network slice
node
integrated access
iab
information
Prior art date
Application number
PCT/CN2020/113847
Other languages
French (fr)
Inventor
Ömer BULAKCI
Alessio Casati
Xiang Xu
Ilkka Keskitalo
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to CN202080106987.9A priority Critical patent/CN116569623A/en
Priority to PCT/CN2020/113847 priority patent/WO2022047805A1/en
Publication of WO2022047805A1 publication Critical patent/WO2022047805A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/80Ingress point selection by the source endpoint, e.g. selection of ISP or POP
    • H04L45/85Selection among different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • Embodiments of the present disclosure generally relate to the field of telecommunications, and in particular, to methods, apparatuses and computer readable media for integrated access and backhaul (IAB) communication.
  • IAB integrated access and backhaul
  • IAB has been introduced in Release 16 (Rel-16) of 3GPP specifications as a key enabler for fast and cost-efficient deployments.
  • IAB nodes use the same spectrum and air interface for access and backhaul, creating a hierarchical wireless multi-hop network between sites. The hops eventually terminate at an IAB donor node that is connected by means of a conventional fixed backhaul to the core network.
  • An IAB node contains a mobile termination (MT) part that acts as user equipment (UE) towards its parent IAB node or donor IAB node and a distributed unit (DU) part that acts as a base station towards a next-hop IAB node or UE.
  • MT mobile termination
  • UE user equipment
  • DU distributed unit
  • an IAB node can be installed on fixed infrastructure, e.g., a lamp post or street furniture. Such IAB node may be referred to as a fixed IAB node. Depending on the channel conditions on the wireless backhaul, a fixed IAB node may be migrated from one donor IAB node to a neighbor donor IAB node.
  • Another IAB node implementation can be the case where the IAB node is installed on a vehicle and the IAB node is active, (i.e., serving UEs) , when the IAB is static or slowly moving and serving UEs particularly outside the vehicle. For instance, the IAB node may serve the UEs outside the vehicle, when the vehicle is parked.
  • IAB nodes When the nomadic IAB is not active, i.e., operational, it may enter an idle mode, e.g., similar to RRC idle or RRC inactive. Such IAB nodes can be referred to as nomadic IAB nodes.
  • Nomadic IAB nodes can be integrated into the vehicles, e.g., of a car sharing fleet or a taxi fleet. Nomadic IAB nodes can be used to provide coverage and/or capacity enhancement.
  • Another concept of IAB namely mobile IAB, has been proposed recently.
  • a mobile IAB node is located on a moving object, e.g., vehicles or balloons or drones, and provides wireless access to UE (s) inside or outside the moving object.
  • a mobile IAB node may migrate from one IAB donor or parent IAB node to another donor IAB donor or parent IAB node, considering the mobility and/or wireless backhaul channel conditions. Such migration can be in the form of a handover.
  • Network slicing is a key 5G feature to support different services using the same underlying mobile network infrastructure.
  • the current network slicing mechanisms are developed either for UEs or for network devices/elements.
  • example embodiments of the present disclosure provide methods, apparatuses and computer readable media for IAB communication.
  • a method comprises transmitting, from an IAB node to an access and mobility management function, a registration request comprising information about the IAB node; and receiving, from the access and mobility management function, a message indicating a registration area and at least one allowed network slice for access by the IAB node, the registration area and the at least one allowed network slice determined based on the information about the IAB node.
  • an apparatus comprising at least one processor and at least one memory including computer program codes.
  • the at least one memory and the computer program codes are configured to, with the at least one processor, cause the apparatus to transmit, to an access and mobility management function, a registration request comprising information about the apparatus; and receive, from the access and mobility management function, a message indicating a registration area and at least one allowed network slice for access by the apparatus, the registration area and the at least one allowed network slice determined based on the information about the IAB node.
  • an apparatus comprising at least one processor and at least one memory including computer program codes.
  • the at least one memory and the computer program codes are configured to, with the at least one processor, cause the apparatus to receive, from an IAB node, a registration request comprising information about the IAB node; and transmit, to the IAB node, a message indicating a registration area and at least one allowed network slice for access by the IAB node, the registration area and the at least one allowed network slice determined based on the information about the IAB node.
  • an apparatus comprising means for transmitting, to an access and mobility management function, a registration request comprising information about the apparatus; and means for receiving, from the access and mobility management function, a message indicating a registration area and at least one allowed network slice for access by the apparatus, the registration area and the at least one allowed network slice determined based on the information about the apparatus.
  • an apparatus comprising means for receiving, from an IAB node, a registration request comprising information about the IAB node; and means for transmitting, to the IAB node, a message indicating a registration area and at least one allowed network slice for access by the IAB node, the registration area and the at least one allowed network slice determined based on the information about the IAB node.
  • a computer program product that is stored on a computer readable medium and includes machine-executable instructions.
  • the machine-executable instructions when being executed, cause a machine to perform the method according to the above first or second aspect.
  • a computer readable storage medium comprising program instructions stored thereon.
  • the instructions when executed by an apparatus, cause the apparatus to perform the method according to the above first or second aspect.
  • Fig. 1 illustrates a block diagram of an example environment in which embodiments of the present disclosure can be implemented
  • Fig. 2 illustrates a schematic diagram of interactions between devices according to some example embodiments of the present disclosure
  • Fig. 3 illustrates a schematic diagram of interactions between devices according to some example embodiments of the present disclosure
  • Fig. 4 illustrates a schematic diagram of interactions between devices according to some example embodiments of the present disclosure
  • Fig. 5 illustrates a flowchart of an example method for IAB communication according to some example embodiments of the present disclosure
  • Fig. 6 illustrates a flowchart of an example method for IAB communication according to some example embodiments of the present disclosure
  • Fig. 7 illustrates a simplified block diagram of an apparatus that is suitable for implementing embodiments of the present disclosure.
  • Fig. 8 illustrates a block diagram of an example computer readable medium in accordance with some example embodiments of the present disclosure.
  • references in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • first and second etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments.
  • the term “and/or” includes any and all combinations of one or more of the listed terms.
  • circuitry may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) , New Radio (NR) and so on.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • NB-IoT Narrow Band Internet of Things
  • NR New Radio
  • the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
  • the terms “network device” , “BS” , and “node” may be used interchangeably.
  • terminal device refers to any end device that may be capable of wireless communication.
  • a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • UE user equipment
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • the terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/
  • a user equipment apparatus such as a cell phone or tablet computer or laptop computer or desktop computer or mobile IOT device or fixed IOT device
  • This user equipment apparatus can, for example, be furnished with corresponding capabilities as described in connection with the fixed and/or the wireless network node (s) , as appropriate.
  • the user equipment apparatus may be the user equipment and/or or a control device, such as a chipset or processor, configured to control the user equipment when installed therein. Examples of such functionalities include the bootstrapping server function and/or the home subscriber server, which may be implemented in the user equipment apparatus by providing the user equipment apparatus with software configured to cause the user equipment apparatus to perform from the point of view of these functions/nodes.
  • IAB Integrated Access and Backhaul
  • Rel-16 Integrated Access and Backhaul
  • IAB nodes can use the same spectrum and air interface for access and backhaul, creating a hierarchical wireless multi-hop network between sites.
  • the hops eventually terminate at a donor node (also referred to as “IAB donor” ) that can be connected by means of a conventional fixed backhaul to the 5G core network (5GC) .
  • 5GC 5G core network
  • Fig. 1 illustrates a block diagram of an example environment 100 in which embodiments of the present disclosure can be implemented.
  • the environment 100 comprises a core network 110, an IAB donor node 120, IAB nodes 130-1 and 130-2 (collectively referred to as “IAB nodes 130” or individually referred to as “IAB node 130” ) , a network device 140 (such as, a gNB) , and UEs 150-1, 150-2 and 150-3 (collectively referred to as “UEs 150” or individually referred to as “UE 150” ) .
  • the terms “IAB node” and “IAB device” can be used interchangeably.
  • the terms “IAB donor node” , “IAB donor” and “IAB donor device” can be used interchangeably.
  • the core network 110 may comprise a lot of network entities that provide different network functions, for example, Network Slice Selection Function (NSSF) 111, Unified Data Repository (UDM) 112, Access and Mobility Management Function (AMF) 113, Operation Administration and Maintenance (OAM) 114, Network Function (NF) Repository Function (NRF) , Session Management Function (SMF) , Policy Control Function (PCF) , Network Exposure Function (NEF) and so on.
  • NSSF Network Slice Selection Function
  • UDM Unified Data Repository
  • AMF Access and Mobility Management Function
  • OFAM Operation Administration and Maintenance
  • NF Network Function
  • NRF Session Management Function
  • PCF Policy Control Function
  • NEF Network Exposure Function
  • the IAB donor node 120 may comprise a centralized unit (CU) 121 (also referred to as “IAB donor CU 121” ) and a distributed unit (DU) 122 (also referred to as “IAB donor DU 122” ) .
  • the IAB node 130-1 may comprise a MT part 131-1 and a DU 132-1.
  • the IAB node 130-2 may comprise a MT part 131-2 and a DU 132-2.
  • the MTs 131-1 and 131-2 are also collectively referred to as “IAB MTs 131” or individually referred to as “IAB MT 131” .
  • the DUs 132-1 and 132-2 are also collectively referred to as “IAB DUs 132” or individually referred to as “IAB DU 132” .
  • the IAB MT 131 of an IAB node 130 may act as a UE towards its parent node.
  • the IAB MT 131-1 may act as a UE towards the IAB donor node 120 (i.e., the IAB donor DU 122) and the IAB MT 131-2 may act as a UE towards the IAB node 130-1 (i.e., the IAB DU 132-1) .
  • the IAB DU 132 of an IAB node 130 may act as a network device (such as, gNB) towards its next-hop IAB node.
  • the IAB donor DU 122 may act as a gNB towards the IAB node 130-1 and the IAB DU 132-1 may act as a gNB towards the IAB node 130-2.
  • the IAB donor node 120 and the IAB nodes 130 may act as normal gNBs, providing radio interfaces for the UEs 150 in their coverage areas, as described above.
  • each IAB MT 132 may have a radio resource control (RRC) connection with the IAB donor CU 121 and a non-access stratum (NAS) connection with the AMF 113.
  • RRC radio resource control
  • NAS non-access stratum
  • Each IAB node 130 i.e., the IAB DU 132 maintains an F1 interface to the IAB donor node 120 (i.e., the IAB donor CU 121) .
  • Communications in the environment 100 may be implemented according to any proper communication protocol (s) , comprising, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • s cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • IEEE Institute for Electrical and Electronics Engineers
  • the communication may utilize any proper wireless communication technology, comprising but not limited to: Code Divided Multiple Address (CDMA) , Frequency Divided Multiple Address (FDMA) , Time Divided Multiple Address (TDMA) , Frequency Divided Duplexer (FDD) , Time Divided Duplexer (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Divided Multiple Access (OFDMA) and/or any other technologies currently known or to be developed in the future.
  • CDMA Code Divided Multiple Address
  • FDMA Frequency Divided Multiple Address
  • TDMA Time Divided Multiple Address
  • FDD Frequency Divided Duplexer
  • TDD Time Divided Duplexer
  • MIMO Multiple-Input Multiple-Output
  • OFDMA Orthogonal Frequency Divided Multiple Access
  • S-NSSAI Single-Network Slice Selection Assistance Information
  • S-NSSAI Single-Network Slice Selection Assistance Information
  • S-NSSAI may include both of a Slice Service Type (SST) field with a length of 8 bits and a Slice Differentiator (SD) field with a length of 24 bits, or include only the SST field in which case the total length of S-NSSAI is 8 bits.
  • SST Slice Service Type
  • SD Slice Differentiator
  • a registration area is a list of tracking areas (TAs) that support the same slices from a UE perspective, i.e., allowed slices for the UE.
  • TAs tracking areas
  • a slice and a network slice can be used interchangeably.
  • the UE may indicate network slices (for example, S-NSSAIs) that it requests to access.
  • the core network analyses the UE profile and subscription data to verify network slices that the UE can really have access to. As a result, the core network sends a list of allowed network slices to the UE.
  • the list of allowed network slices could be different or only a subset of the requested network slices from the registration request. If the allowed network slices contain at least one network slice, the core network also configures a registration area for the UE.
  • the registration area contains a list of TAs in which all of the allowed network slices are supported.
  • the core network knows the current TA of the UE from the registration request and knows slice support information of neighboring TAs (which indicates network slices supported in the neighboring TAs) .
  • the core network can configure, based on this information, the list of TAs for the UE in which the slice support is homogenous for the UE.
  • the slice support information of the neighboring TAs can be exchanged during Xn setup and NG-RAN Node configuration update procedures.
  • the slice support information of IAB DUs can be exchanged during F1 setup and gNB-DU configuration update procedures.
  • the slice support information can be provided per TA and in the form of a set of slice identities (i.e., S-NSSAIs) .
  • each IAB node 130 can be connected to the core network 110 via a number of parent IAB nodes.
  • Each IAB node 130 may serve a group of UEs, where the UEs may be associated to different network slices. For example, with respected to the UE 150-2 which is to be served by a given network slice, both the IAB node 130-1 and the IAB donor node 120 should support the network slice.
  • a mobile IAB node is located on a moving object and provides wireless access to UE inside or outside the moving object.
  • the IAB node may change, such as migrate or hand over, from one donor IAB node or parent IAB node to another donor IAB node or parent IAB node.
  • slice support needs to be enabled considering, e.g., inherent mobility or migration.
  • the network slicing mechanisms are primarily developed either for UEs or for network devices. Slice support for IAB shall be provided considering that an IAB node contains both MT and DU parts and neither UE-specific signaling nor access node/network device-specific signaling can be used to provide the slice support for an IAB node.
  • Embodiments of the present disclosure provide a solution for IAB communication, so as to solve the above problem and one or more of other potential problems.
  • This solution provides mechanisms of slice support information exchange and registration management for the IAB operation. These mechanisms can be handled by jointly considering that an IAB node has both UE and access node functionalities. These mechanisms can be applied to different implementations or mode of operations of one or more IAB nodes, such as fixed IAB node (s) , nomadic IAB node (s) and/or mobile IAB node (s) . It can be inferred that such mechanisms can be applied to a network comprising an IAB node or a network element that may function similarly to an IAB node, e.g., a wireless relay.
  • Fig. 2 illustrates a schematic diagram of interactions 200 between devices according to some example embodiments of the present disclosure.
  • the interactions 200 involve the IAB node 130 (such as, the IAB node 130-1 and/or 130-2) , the IAB donor node 120 and the AMF 113.
  • the IAB MT 131 transmits 201 a registration request to the AMF 113 via a NAS connection.
  • the registration request may comprise an indication of an operational mode of the IAB node 130 and information about network slices that the IAB node 130 requests to access.
  • the information about the network slices may be S-NSSAIs of these network slices, also referred to as “requested S-NSSAIs” .
  • the requested S-NSSAIs may be preconfigured at the IAB node 130 or configured to the IAB node 130 online.
  • the IAB donor CU 121 may select the AMF 113 based on the requested S-NSSAIs. For example, the number of the requested S-NSSAIs may exceed 8 considering the indication of the operational mode of the IAB node 130.
  • the indication of the operational mode of the IAB node 130 may be in different forms.
  • the indication of the operational mode may be an IAB indicator, which indicates whether the IAB node 130 is fixed, mobile or nomadic. That is, such indication may also imply the IAB implementation option or mode of operation, e.g., fixed IAB, nomadic IAB, or mobile IAB.
  • the indication of the operational mode may be a mobile IAB indicator, which indicates whether the IAB node 130 is a mobile IAB node or not.
  • different IAB nodes can be assigned with different identifiers (IDs) , where a predetermined range of IDs may indicate mobile IAB nodes and other IDs may indicate fixed IAB nodes or nomadic IAB nodes.
  • IDs identifiers
  • the indication of the operational mode may be the ID of the IAB node 130 which can be used to identify if the IAB node 130 is a mobile IAB node, fixed IAB node or nomadic IAB node.
  • the AMF 113 determines 202 network slices allowed to be access by the IAB node 130 and a registration area corresponding to the allowed network slices.
  • the AMF 113 may obtain subscription data from the UDM 112.
  • the subscription data may indicate network slices subscribed by the IAB node 130.
  • the AMF 113 may determine the allowed network slices based on the requested network slices indicated in the registration request, the subscribed network slices obtained from the UDM 112 and network slices supported by the IAB donor node 120 (for example, network slices supported by the IAB donor node 120 in the tracking area where the IAB node 130 locates) .
  • the AMF 113 may interrogate a network slice selection function (NSSF) for slice selection.
  • the NSSF may return a set of network slice instance (NSI) identifiers.
  • the AMF 113 may also determine a network slice for an IAB backhaul link and incorporate the network slice for the IAB backhaul link into the allowed network slices.
  • the registration request may not include information about the requested network slices.
  • the AMF 113 may obtain subscription data indicating the subscribed network slices from the UDM 112.
  • the AMF 113 may determine the allowed network slices as the subscribed network slices obtained from the UDM 112 if they are supported in the TA where the IAB node 130 locates. That is, the AMF 113 can determine the allowed network slices only based on the subscription data.
  • the AMF 113 transmits 203b a registration accept message indicating the registration area and the allowed network slices (such as, S-NSSAIs of these network slices, also referred to as “allowed S-NSSAIs” ) to the IAB MT 131 via the NAS connection.
  • the number of the allowed S-NSSAIs may exceed 8.
  • the AMF 113 may also transmit 203a the registration accept message to the IAB donor CU 121.
  • the IAB MT 131 forwards 204, to the IAB DU 132, information about the registration area and the allowed network slices.
  • the IAB DU 132 provides 205 information about the allowed network slices (such as, the allowed S-NSSAIs) and TAs to the IAB donor CU 121 during a F1-AP procedure.
  • the allowed S-NSSAIs can be the same as or different from the requested or configured S-NSSAIs.
  • the IAB donor CU 121 reports 206 information about at least one of the allowed network slices to the AMF 113 during a NG configuration update procedure, where the at least one of the allowed network slices is supported in a tracking area corresponding to Tracking Area Identity (TAI) of the IAB node 130.
  • TAI Tracking Area Identity
  • UE-specific signaling is used to provide information on an access node such that the requested NSSAI indeed corresponds to the slice support information of the mobile IAB. Since the IAB can support different UEs with diverse slice support capabilities, the network slices supported by an IAB node can be much more than eight. As opposed to a conventional UE, the AMF also considers the slice support information of the IAB donor CU, while assigning the allowed S-NSSAIs for the mobile IAB node. The slice support information in the F1-AP procedure matches with the allowed NSSAI provided by the AMF, which is also different to the conventional DU operation.
  • Fig. 3 illustrates a schematic diagram of interactions 300 between devices according to some example embodiments of the present disclosure.
  • the interactions 300 involve the IAB node 130 (such as, the IAB node 130-1 and/or 130-2) , the IAB donor node 120, the AMF 113 and the OAM 114.
  • the IAB MT 131 transmits 301 a registration request to the AMF 113 via a NAS connection.
  • the registration request may not comprise S-NSSAIs of network slices that the IAB node 130 requests to access.
  • the registration request may comprise user location information (ULI) of the IAB MT 131 and an indication of an operational mode of the IAB node 130.
  • the indication of the operational mode of the IAB node 130 may be in different forms.
  • the indication of the operational mode may be an IAB indicator, which indicates whether the IAB node 130 is fixed or mobile or nomadic. That is, such indication may also imply the IAB implementation option or mode of operation, e.g., fixed IAB, nomadic IAB, or mobile IAB.
  • the indication of the operational mode may be a mobile IAB indicator, which indicates whether the IAB node 130 is a mobile IAB node or not.
  • different IAB nodes can be assigned with different identifiers (IDs) , where a predetermined range of IDs may indicate mobile IAB nodes and other IDs may indicate fixed IAB nodes or nomadic IAB nodes.
  • IDs identifiers
  • the indication of the operational mode may be the ID of the IAB node 130 which can be used to identify if the IAB node 130 is a mobile IAB node, fixed IAB node or nomadic IAB node.
  • the registration request may comprise an indication of a mobile IAB slice (e.g., the network slice for the IAB backhaul link) which may implicitly indicate that the IAB node 130 is a mobile IAB node.
  • the AMF 113 determines 302 a registration area based on the ULI of the IAB MT 131 and the indication that the IAB node 130 is a mobile IAB node.
  • the AMF 113 transmits 303 a registration accept message indicating the registration area and the network slice for the IAB backhaul link (such as, S-NSSAI of the network slice) to the IAB MT 131 via the NAS connection.
  • the IAB MT 131 may establish a PDU session with the OAM 114, such that the OAM 114 obtains 304b the ULI from the IAB MT 131 via the PDU session.
  • the OAM 114 can obtain 304a the ULI of the IAB MT 131 from the AMF 113.
  • the OAM 114 provides 305 a configuration to the IAB MT 131 based on the ULI of the IAB MT 131.
  • the configuration may indicate network slices (such as, S-NSSAIs of the network slices) to be supported in the registration area, Tracking Area Identities (TAI) to be advertised and so on.
  • the IAB MT 131 forwards 306, to the IAB DU 132, information about the supported network slices and TAs.
  • the IAB DU 132 provides 307 information about the allowed network slices (such as, the allowed S-NSSAIs) and TAs to the IAB donor CU 121 during a F1-AP procedure.
  • the allowed S-NSSAIs can be the same as or different from the requested or configured S-NSSAIs.
  • the IAB donor CU 121 reports 308 information about the allowed network slices to the AMF 113 during a NG configuration update procedure.
  • NG-RAN can provide a mapping between Physical Cell Identity (PCI) /Tracking Area Identity (TAI) /Cell Global Identity (CGI) and an identifier of mobile IAB MT in the NG configuration update message.
  • PCI Physical Cell Identity
  • TAI Track Area Identity
  • CGI Cell Global Identity
  • the allowed S-NSSAIs are configured to the mobile IAB node at run time based on the location of the mobile IAB node.
  • the registration area is determined based on the optimal support of IAB nodes. For example, the registration area can only include the TA indicated by the ULI of the mobile IAB node.
  • Fig. 4 illustrates a schematic diagram of interactions 400 between devices according to some example embodiments of the present disclosure.
  • the interactions 400 involve the IAB node 130 (such as, the IAB node 130-1 or 130-2) , the IAB donor node 120 and the AMF 113.
  • the IAB MT 131 transmits 401 a registration request to the AMF 113 via a NAS connection.
  • the registration request may comprise identity information of the IAB node 130.
  • the identity information of the IAB node 130 may be an access node identity of the IAB node 130, such as, at least one of TAI, PCI and CGI of the IAB node 130.
  • the identity information of the IAB node 130 may comprise an indication of an operational mode of the IAB node 130. For example, such indication may also imply the IAB implementation option or mode of operation, e.g., fixed IAB, nomadic IAB, or mobile IAB.
  • the indication of the operational mode of the IAB node 130 may be in different forms.
  • the indication of the operational mode may be an IAB indicator, which indicates whether the IAB node 130 is fixed, mobile or nomadic. That is, such indication may also imply the IAB implementation option or mode of operation, e.g., fixed IAB, nomadic IAB, or mobile IAB.
  • the indication of the operational mode may be a mobile IAB indicator, which indicates whether the IAB node 130 is a mobile IAB node or not.
  • different IAB nodes can be assigned with different identifiers (IDs) , where a predetermined range of IDs may indicate mobile IAB nodes and other IDs may indicate fixed IAB nodes or nomadic IAB nodes.
  • IDs identifiers
  • the indication of the operational mode may be the ID of the IAB node 130 which can be used to identify if the IAB node 130 is a mobile IAB node, fixed IAB node or nomadic IAB node.
  • the AMF 113 obtains 402 subscription data from the UDM 112.
  • the subscription data may indicate network slices subscribed by the IAB node 130.
  • the AMF 113 transmits 403 a registration accept message to the IAB MT 131 via the NAS connection.
  • the registration accept message may not indicate a registration area or allowed network slices for the IAB node 130.
  • the IAB MT 131 forwards 404 the registration accept message to the IAB DU 132, indicating absence of the registration area and allowed network slices.
  • the AMF 113 may also transmit the registration accept message to the IAB donor CU 121 (not shown in Fig. 4) .
  • the IAB DU 132 provides 405, to the IAB donor CU 121, information about supported network slices (such as, S-NSSAIs of these network slices) during a F1-AP procedure.
  • the IAB donor CU 121 provides 406 slice support information per TA to the AMF 113 during a NG configuration update procedure.
  • the AMF 113 determines 407 network slices allowed to be accessed by the IAB node 130 and a registration area corresponding to the allowed network slices.
  • the AMF 113 may determine the allowed network slices based on the supported network slices provided in the F1-AP procedure, the subscribed network slices obtained from the UDM 112 and network slices supported by the IAB donor node 120 and/or the identity information of the IAB node 130 (such as, TAI/PCI/CGI) .
  • the AMF 113 transmits 408, to the IAB MT 131, a message indicating the registration area and the allowed network slices during a UE Configuration Update Procedure.
  • any deviation from the supported S-NSSAIs provided in the F1-AP procedure shall be communicated to the IAB donor CU 121 via a gNB-DU configuration update procedure (not shown in Fig. 4) .
  • non-UE associated signaling is used to provide slice support information of the mobile IAB node.
  • the IAB MT also provides access node identity information, e.g., TAI, PCI or CGI.
  • the requested S-NSSAIs are not included.
  • the AMF waits for the reception of the slice support information of the mobile IAB node from the IAB donor CU.
  • the slice support information is provided to the AMF by the IAB donor CU via NG application protocols.
  • the AMF can determine the slice support information (such as, the allowed S-NSSAIs) for the mobile IAB node and can determine the registration are for the mobile IAB node.
  • the IAB node may change the TA association, e.g., when the IAB node moves to a new TA or IAB node migrates to a new donor IAB node or parent IAB node in a different TA, which is not included in its registration area.
  • the AMF 113 may provide allowed S-NSSAIs to the mobile IAB node 130, based on the intersection of network slices subscribed by the mobile IAB node 130 and network slices supported by the IAB donor node 120, as advertised.
  • the IAB donor node 120 then can detect what network slices can be considered as being supported in the TAIs of the IAB node 130.
  • the IAB donor node 120 may confirm this information to the AMF by using NG application protocols once the IAB node 130 is up and running for use by UEs and after interacting with the IAB node 130 via the F1-AP procedure.
  • Fig. 5 shows a flowchart of an example method 500 for IAB communication in accordance with some example embodiments of the present disclosure.
  • the method 500 can be implemented at the IAB node 130 shown in Fig. 1. It is to be understood that the method 500 may include additional blocks not shown and/or may omit some shown blocks, and the scope of the present disclosure is not limited in this regard.
  • the IAB node 130 transmits, to an AMF (e.g., the AMF 113) , a registration request comprising information about the IAB node.
  • an AMF e.g., the AMF 113
  • the IAB node 130 receives, from the AMF, a message indicating a registration area and at least one allowed network slice for access by the IAB node, the registration area and the at least one allowed network slice determined based on the information about the IAB node.
  • the information about the IAB node may comprise information about at least one network slice requested by the IAB node.
  • the IAB node 130 may receive, from the AMF, a registration accept message indicating the registration area and the at least one allowed network slice, the registration area and the at least one allowed network slice determined based on the at least one network slice requested by the IAB node.
  • the IAB node 130 may provide information about the at least one allowed network slice to an IAB donor node (e.g., the IAB donor node 120) , such that the IAB donor node transmits information about one or more of the at least one allowed network slice to the AMF.
  • an IAB donor node e.g., the IAB donor node 120
  • the information about the IAB node may comprise user location information of the IAB node.
  • the IAB node 130 may receive, from the AMF, a registration accept message indicating the registration area and a network slice allowed for a backhaul link, the registration area and the network slice determined based on the user location information.
  • the IAB node 130 may obtain, from an OAM, a configuration about at least one network slice to be supported by the IAB node, the configuration determined based on the user location information by the OAM.
  • the OAM may obtain the user location information from the IAB node or the AMF.
  • the IAB node 130 may provide information about the at least one network slice to an IAB donor node (e.g., the IAB donor node 120) , such that the IAB donor node transmits information about one or more of the at least one network slice to the AMF.
  • an IAB donor node e.g., the IAB donor node 120
  • the information about the IAB node may comprise identity information of the IAB node.
  • the IAB node 130 may receive, from the AMF, the message indicating the registration area and the at least one allowed network slice, the registration area and the at least one allowed network slice determined based on at least one network slice supported by an IAB donor node and the identity information.
  • the identity information may comprise at least one of the following: an indication of an operational mode, Physical Cell Identity, Tracking Area Identity and Cell Global Identity of the IAB node.
  • the indication may indicate that the IAB node is a mobile, fixed or nomadic IAB node.
  • the IAB node 130 may provide information about the at least one allowed network slice to the IAB donor node, such that the IAB donor node transmits information about one or more of the at least one allowed network slice to the AMF.
  • the number of network slices requested by the IAB node and/or the number of network slices allowed for access by the IAB node may exceed 8.
  • Fig. 6 shows a flowchart of an example method 600 for IAB communication in accordance with some example embodiments of the present disclosure.
  • the method 600 can be implemented at the AMF 113 as shown in Fig. 1. It is to be understood that the method 600 may include additional blocks not shown and/or may omit some shown blocks, and the scope of the present disclosure is not limited in this regard.
  • the AMF 113 receives, from an IAB node (e.g., the IAB node 130) , a registration request comprising information about the IAB node.
  • an IAB node e.g., the IAB node 130
  • the AMF 113 transmits, to the IAB node, a message indicating a registration area and at least one allowed network slice for access by the IAB node, the registration area and the allowed network slices determined based on the information about the IAB node.
  • the information about the IAB node may comprise information about at least one network slice requested by the IAB node.
  • the AMF 113 may determine the at least one allowed network slice based on the at least one network slice requested by the IAB node, at least one network slice supported by an IAB donor node, and at least one network slice subscribed by the IAB node and obtained from a unified data repository.
  • the AMF 113 may determine the registration area based on the at least one allowed network slice.
  • the AMF 113 may determine a network slice allowed for a backhaul link based on the information, the network slice comprised in the at least one allowed network slice.
  • the AMF 113 may transmit a registration accept message indicating the registration area and the at least one allowed network slice to the IAB node.
  • the AMF 113 may provide information about the at least one allowed network slice to an IAB donor node (e.g., the IAB donor node 120) .
  • an IAB donor node e.g., the IAB donor node 120
  • the information about the IAB node may comprise user location information of the IAB node.
  • the AMF 113 may determine the registration area and a network slice allowed for a backhaul link based on the user location information.
  • the AMF 113 may transmit a registration accept message indicating the registration area and the network slice allowed for the backhaul link to the IAB node.
  • the AMF 113 may provide the user location information to an operation administration and maintenance function, such that the operation administration and maintenance function configures the IAB node with at least one network slice to be supported based on the user location information.
  • the information about the IAB node may comprise identity information of the IAB node.
  • the AMF 113 may determine the registration area and the at least one allowed network slice based on at least one network slice supported by an IAB donor node and the identity information.
  • the identity information may comprise at least one of the following: an indication of an operational mode, Physical Cell Identity, Tracking Area Identity and Cell Global Identity of the IAB node.
  • the indication may indicate that the IAB node is a mobile, fixed or nomadic IAB node.
  • the AMF 113 may transmit the message indicating the registration area and the at least one allowed network slice to the IAB node.
  • the registration area comprises a group of tracking areas in which the at least one allowed network slice is supported.
  • the AMF 113 may receive information about one or more of the at least one allowed network slice from an IAB donor node, the one or more of the at least one allowed network slice being supported in one of the tracking areas corresponding to Tracking Area Identity of the IAB node.
  • the number of network slices requested by the IAB node and/or the number of network slices allowed for access by the IAB node may exceed 8.
  • an apparatus capable of performing the method 500 may comprise means for performing the respective steps of the method 500.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus capable of performing the method 500 comprises: means for transmitting, to an AMF, a registration request comprising information about the apparatus; and means for receiving, from the AMF, a message indicating a registration area and at least one allowed network slice for access by the apparatus, the registration area and the at least one allowed network slice determined based on the information about the apparatus.
  • the information about the apparatus comprises information about at least one network slice requested by the apparatus
  • the mean for receiving a message comprises: means for receiving, from the AMF, a registration accept message indicating the registration area and the at least one allowed network slice, the registration area and the at least one allowed network slice determined based on the indication and the at least one network slice requested by the apparatus.
  • the apparatus capable of performing the method 500 further comprises: means for providing information about the at least one network slice to an IAB donor node, such that the IAB donor node transmits information about one or more of the at least one allowed network slice to the AMF.
  • the information about the apparatus comprises user location information of the apparatus
  • the means for receiving a message comprises: means for receiving, from the AMF, a registration accept message indicating the registration area and a network slice allowed for a backhaul link, the registration area and the network slice determined based on the user location information.
  • the apparatus capable of performing the method 500 further comprises: means for obtaining, from an OAM, a configuration about at least one network slice to be supported by the apparatus, the configuration determined based on the user location information by the OAM.
  • the OAM obtains the user location information from the apparatus or the AMF.
  • the apparatus capable of performing the method 500 further comprises: means for providing information about the at least one network slice to an IAB donor node, such that the IAB donor node transmits information about one or more of the at least one network slice to the AMF.
  • the information about the apparatus comprises identity information of the IAB node
  • the means for receiving a message comprises: means for receiving, from the AMF, the message indicating the registration area and the at least one allowed network slice, the registration area and the at least one allowed network slice determined based on at least one network slice supported by an IAB donor node and the identity information.
  • the identity information comprises at least one of the following: an indication of an operational mode, Physical Cell Identity, Tracking Area Identity, and Cell Global Identity.
  • the indication indicates that the apparatus is a mobile, fixed or nomadic IAB node.
  • the apparatus capable of performing the method 500 further comprises: means for providing information about the at least one allowed network slice to the IAB donor node, such that the IAB donor node transmits information about one or more of the at least one allowed network slice to the AMF.
  • the number of network slices requested by the apparatus and/or the number of network slices allowed for access by the apparatus exceeds 8.
  • an apparatus capable of performing the method 600 may comprise means for performing the respective steps of the method 600.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus capable of performing the method 600 comprises: means for receiving, from an IAB node, a registration request comprising information about the IAB node; and means for transmitting, to the IAB node, a message indicating a registration area and at least one allowed network slice for access by the IAB node, the registration area and the at least one allowed network slice determined based on the information about the IAB node.
  • the information about the IAB node comprises information about at least one network slice requested by the IAB node
  • the apparatus capable of performing the method 600 further comprises: means for determining the at least one allowed network slice based on the at least one network slice requested by the IAB node, at least one network slice supported by an IAB donor node, and at least one network slice subscribed by the IAB node and obtained from a unified data repository; and means for determining the registration area based on the at least one allowed network slice.
  • the apparatus capable of performing the method 600 further comprises: means for determining a network slice allowed for a backhaul link based on the information, the network slice comprised in the at least one allowed network slice.
  • the means for transmitting a message comprises: means for transmitting a registration accept message indicating the registration area and the at least one allowed network slice to the IAB node.
  • the apparatus capable of performing the method 600 further comprises: means for providing information about the at least one allowed network slice to an IAB donor node.
  • the information about the IAB node comprises user location information of the IAB node
  • the apparatus capable of performing the method 600 further comprises: means for determining the registration area and a network slice allowed for a backhaul link based on the user location information.
  • the means for transmitting a message comprises: means for transmitting a registration accept message indicating the registration area and the network slice allowed for the backhaul link to the IAB node.
  • the apparatus capable of performing the method 600 further comprises: means for providing the user location information to an operation administration and maintenance function, such that the operation administration and maintenance function configures the IAB node with at least one network slice to be supported based on the user location information.
  • the information about the IAB node comprises identity information of the IAB node
  • the apparatus capable of performing the method 600 further comprises: means for determining the registration area and the at least one allowed network slice based on at least one network slice supported by an IAB donor node and the identity information.
  • the identity information comprises at least one of the following: an indication of an operational mode, Physical Cell Identity, Tracking Area Identity, and Cell Global Identity.
  • the indication indicates that the IAB node is a mobile, fixed or nomadic IAB node.
  • the means for transmitting a message comprises: means for transmitting the message indicating the registration area and the at least one allowed network slice to the IAB node.
  • the registration area comprises a group of tracking areas in which the at least one allowed network slice is supported
  • the apparatus capable of performing the method 600 further comprises: means for receiving information about one or more of the at least one allowed network slice from an IAB donor node, the one or more of the at least one allowed network slice being supported in one of the tracking areas corresponding to Tracking Area Identity of the IAB node.
  • the number of network slices requested by the IAB node and/or the number of network slices allowed for access by the IAB node exceeds 8.
  • Fig. 7 is a simplified block diagram of a device 700 that is suitable for implementing embodiments of the present disclosure.
  • the IAB donor node 120, the IAB node 130, the terminal device 150 and/or the AMF 113 shown in Fig. 1 can be implemented by the device 700.
  • the device 700 includes one or more processors 710, one or more memories 720 coupled to the processor 710, and one or more communication modules 740 coupled to the processor 710.
  • the communication module 740 is for bidirectional communications.
  • the communication module 740 has at least one antenna to facilitate communication.
  • the communication interface may represent any interface that is necessary for communication with other network elements.
  • the processor 710 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 700 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 720 may include one or more non-volatile memories and one or more volatile memories.
  • the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 724, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage.
  • the volatile memories include, but are not limited to, a random access memory (RAM) 722 and other volatile memories that will not last in the power-down duration.
  • a computer program 730 includes computer executable instructions that are executed by the associated processor 710.
  • the program 730 may be stored in the ROM 724.
  • the processor 710 may perform any suitable actions and processing by loading the program 730 into the RAM 722.
  • the embodiments of the present disclosure may be implemented by means of the program 730 so that the device 700 may perform any process of the disclosure as discussed with reference to Figs. 2-6.
  • the embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • the program 730 may be tangibly contained in a computer readable medium which may be included in the device 700 (such as in the memory 720) or other storage devices that are accessible by the device 700.
  • the device 700 may load the program 730 from the computer readable medium to the RAM 722 for execution.
  • the computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like.
  • Fig. 8 shows an example of the computer readable medium 800 in form of CD or DVD.
  • the computer readable medium has the program 730 stored thereon.
  • NFV network functions virtualization
  • a virtualized network function may comprise one or more virtual machines running computer program codes using standard or general type servers instead of customized hardware. Cloud computing or data storage may also be utilized.
  • radio communications this may mean node operations to be carried out, at least partly, in a central/centralized unit, CU, (e.g. server, host or node) operationally coupled to distributed unit, DU, (e.g. a radio head/node) . It is also possible that node operations will be distributed among a plurality of servers, nodes or hosts. It should also be understood that the distribution of labour between core network operations and base station operations may vary depending on implementation.
  • the server may generate a virtual network through which the server communicates with the distributed unit.
  • virtual networking may involve a process of combining hardware and software network resources and network functionality into a single, software-based administrative entity, a virtual network.
  • Such virtual network may provide flexible distribution of operations between the server and the radio head/node.
  • any digital signal processing task may be performed in either the CU or the DU and the boundary where the responsibility is shifted between the CU and the DU may be selected according to implementation.
  • a CU-DU architecture is implemented.
  • the device 700 may be comprised in a central unit (e.g. a control unit, an edge cloud server, a server) operatively coupled (e.g. via a wireless or wired network) to a distributed unit (e.g. a remote radio head/node) .
  • the central unit e.g. an edge cloud server
  • the distributed unit may be stand-alone apparatuses communicating with each other via a radio path or via a wired connection. Alternatively, they may be in a same entity communicating via a wired connection, etc.
  • the edge cloud or edge cloud server may serve a plurality of distributed units or a radio access networks.
  • at least some of the described processes may be performed by the central unit.
  • the device 700 may be instead comprised in the distributed unit, and at least some of the described processes may be performed by the distributed unit.
  • the execution of at least some of the functionalities of the device 700 may be shared between two physically separate devices (DU and CU) forming one operational entity. Therefore, the apparatus may be seen to depict the operational entity comprising one or more physically separate devices for executing at least some of the described processes.
  • CU-DU architecture may provide flexible distribution of operations between the CU and the DU. In practice, any digital signal processing task may be performed in either the CU or the DU and the boundary where the responsibility is shifted between the CU and the DU may be selected according to implementation.
  • the device 700 controls the execution of the processes, regardless of the location of the apparatus and regardless of where the processes/functions are carried out.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the method 500 as described above with reference to Fig. 5 and/or the method 600 as described above with reference to Fig. 6.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable medium, and the like.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.

Abstract

Embodiments of the present disclosure relate to methods, apparatuses and computer readable storage media for integrated access and backhaul (IAB) communication. According to embodiments of the present disclosure, an IAB node transmits, to an access and mobility management function (AMF), a registration request comprising information about the IAB node. The AMF transmits, to the IAB node, a message indicating a registration area and at least one allowed network slice for access by the IAB node. The registration area and the at least one allowed network slice are determined based on the information about the IAB node. The solution enables slice support information exchange and registration management for mobile IAB.

Description

METHODS, APPARATUSES AND COMPUTER READABLE MEDIA FOR INTEGRATED ACCESS AND BACKHAUL COMMUNICATION TECHNICAL FIELD
Embodiments of the present disclosure generally relate to the field of telecommunications, and in particular, to methods, apparatuses and computer readable media for integrated access and backhaul (IAB) communication.
BACKGROUND
IAB has been introduced in Release 16 (Rel-16) of 3GPP specifications as a key enabler for fast and cost-efficient deployments. IAB nodes use the same spectrum and air interface for access and backhaul, creating a hierarchical wireless multi-hop network between sites. The hops eventually terminate at an IAB donor node that is connected by means of a conventional fixed backhaul to the core network. An IAB node contains a mobile termination (MT) part that acts as user equipment (UE) towards its parent IAB node or donor IAB node and a distributed unit (DU) part that acts as a base station towards a next-hop IAB node or UE. There can be different implementation options or mode of operations for the IAB nodes. For instance, an IAB node can be installed on fixed infrastructure, e.g., a lamp post or street furniture. Such IAB node may be referred to as a fixed IAB node. Depending on the channel conditions on the wireless backhaul, a fixed IAB node may be migrated from one donor IAB node to a neighbor donor IAB node. Another IAB node implementation can be the case where the IAB node is installed on a vehicle and the IAB node is active, (i.e., serving UEs) , when the IAB is static or slowly moving and serving UEs particularly outside the vehicle. For instance, the IAB node may serve the UEs outside the vehicle, when the vehicle is parked. When the nomadic IAB is not active, i.e., operational, it may enter an idle mode, e.g., similar to RRC idle or RRC inactive. Such IAB nodes can be referred to as nomadic IAB nodes. Nomadic IAB nodes can be integrated into the vehicles, e.g., of a car sharing fleet or a taxi fleet. Nomadic IAB nodes can be used to provide coverage and/or capacity enhancement. Another concept of IAB, namely mobile IAB, has been proposed recently. A mobile IAB node is located on a moving object, e.g., vehicles or balloons or drones, and provides wireless access to UE (s) inside or outside the moving object. A mobile IAB node may migrate from one IAB donor or parent IAB node to another donor IAB donor or parent IAB node, considering the  mobility and/or wireless backhaul channel conditions. Such migration can be in the form of a handover.
Network slicing is a key 5G feature to support different services using the same underlying mobile network infrastructure. The current network slicing mechanisms are developed either for UEs or for network devices/elements.
SUMMARY
In general, example embodiments of the present disclosure provide methods, apparatuses and computer readable media for IAB communication.
In a first aspect, there is provided a method. The method comprises transmitting, from an IAB node to an access and mobility management function, a registration request comprising information about the IAB node; and receiving, from the access and mobility management function, a message indicating a registration area and at least one allowed network slice for access by the IAB node, the registration area and the at least one allowed network slice determined based on the information about the IAB node.
In a second aspect, there is provided a method. The method receiving, at an access and mobility management function and from an IAB node, a registration request comprising information about the IAB node; and transmitting, to the IAB node, a message indicating a registration area and at least one allowed network slice for access by the IAB node, the registration area and the at least one allowed network slice determined based on the information about the IAB node.
In a third aspect, there is provided an apparatus. The apparatus comprises at least one processor and at least one memory including computer program codes. The at least one memory and the computer program codes are configured to, with the at least one processor, cause the apparatus to transmit, to an access and mobility management function, a registration request comprising information about the apparatus; and receive, from the access and mobility management function, a message indicating a registration area and at least one allowed network slice for access by the apparatus, the registration area and the at least one allowed network slice determined based on the information about the IAB node.
In a fourth aspect, there is provided an apparatus. The apparatus comprises at least one processor and at least one memory including computer program codes. The at least one memory and the computer program codes are configured to, with the at least one  processor, cause the apparatus to receive, from an IAB node, a registration request comprising information about the IAB node; and transmit, to the IAB node, a message indicating a registration area and at least one allowed network slice for access by the IAB node, the registration area and the at least one allowed network slice determined based on the information about the IAB node.
In a fifth aspect, there is provided an apparatus. The apparatus comprises means for transmitting, to an access and mobility management function, a registration request comprising information about the apparatus; and means for receiving, from the access and mobility management function, a message indicating a registration area and at least one allowed network slice for access by the apparatus, the registration area and the at least one allowed network slice determined based on the information about the apparatus.
In a sixth aspect, there is provided an apparatus. The apparatus comprises means for receiving, from an IAB node, a registration request comprising information about the IAB node; and means for transmitting, to the IAB node, a message indicating a registration area and at least one allowed network slice for access by the IAB node, the registration area and the at least one allowed network slice determined based on the information about the IAB node.
In a seventh aspect, there is provided a computer program product that is stored on a computer readable medium and includes machine-executable instructions. The machine-executable instructions, when being executed, cause a machine to perform the method according to the above first or second aspect.
In an eighth aspect, there is a computer readable storage medium comprising program instructions stored thereon. The instructions, when executed by an apparatus, cause the apparatus to perform the method according to the above first or second aspect.
It is to be understood that the summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Through the more detailed description of some example embodiments of the present disclosure in the accompanying drawings, the above and other objects, features and  advantages of the present disclosure will become more apparent, wherein:
Fig. 1 illustrates a block diagram of an example environment in which embodiments of the present disclosure can be implemented;
Fig. 2 illustrates a schematic diagram of interactions between devices according to some example embodiments of the present disclosure;
Fig. 3 illustrates a schematic diagram of interactions between devices according to some example embodiments of the present disclosure;
Fig. 4 illustrates a schematic diagram of interactions between devices according to some example embodiments of the present disclosure;
Fig. 5 illustrates a flowchart of an example method for IAB communication according to some example embodiments of the present disclosure;
Fig. 6 illustrates a flowchart of an example method for IAB communication according to some example embodiments of the present disclosure;
Fig. 7 illustrates a simplified block diagram of an apparatus that is suitable for implementing embodiments of the present disclosure; and
Fig. 8 illustrates a block diagram of an example computer readable medium in accordance with some example embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
References in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first” and “second” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
As used in this application, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with software/firmware and
(ii) any portions of hardware processor (s) with software (including digital  signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) , New Radio (NR) and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future. Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
As used herein, the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom. The network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as  a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology. In the following description, the terms “network device” , “BS” , and “node” may be used interchangeably.
The term “terminal device” refers to any end device that may be capable of wireless communication. By way of example rather than limitation, a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) . The terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like. In the following description, the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
Although functionalities described herein can be performed, in various example embodiments, in a fixed and/or a wireless network node may, in other example embodiments, functionalities may be implemented in a user equipment apparatus (such as a cell phone or tablet computer or laptop computer or desktop computer or mobile IOT device or fixed IOT device) . This user equipment apparatus can, for example, be furnished with corresponding capabilities as described in connection with the fixed and/or the wireless network node (s) , as appropriate. The user equipment apparatus may be the user equipment and/or or a control device, such as a chipset or processor, configured to control the user equipment when installed therein. Examples of such functionalities include the bootstrapping server function and/or the home subscriber server, which may be implemented in the user equipment apparatus by providing the user equipment apparatus  with software configured to cause the user equipment apparatus to perform from the point of view of these functions/nodes.
Integrated Access and Backhaul (IAB) has been introduced in Rel-16 as a key enabler for fast and cost-efficient deployments, e.g., targeting dense mmWave deployments outdoors. IAB nodes can use the same spectrum and air interface for access and backhaul, creating a hierarchical wireless multi-hop network between sites. The hops eventually terminate at a donor node (also referred to as “IAB donor” ) that can be connected by means of a conventional fixed backhaul to the 5G core network (5GC) .
Fig. 1 illustrates a block diagram of an example environment 100 in which embodiments of the present disclosure can be implemented. As shown in Fig. 1, the environment 100 comprises a core network 110, an IAB donor node 120, IAB nodes 130-1 and 130-2 (collectively referred to as “IAB nodes 130” or individually referred to as “IAB node 130” ) , a network device 140 (such as, a gNB) , and UEs 150-1, 150-2 and 150-3 (collectively referred to as “UEs 150” or individually referred to as “UE 150” ) . In this text, the terms “IAB node” and “IAB device” can be used interchangeably. The terms “IAB donor node” , “IAB donor” and “IAB donor device” can be used interchangeably.
The core network 110 may comprise a lot of network entities that provide different network functions, for example, Network Slice Selection Function (NSSF) 111, Unified Data Repository (UDM) 112, Access and Mobility Management Function (AMF) 113, Operation Administration and Maintenance (OAM) 114, Network Function (NF) Repository Function (NRF) , Session Management Function (SMF) , Policy Control Function (PCF) , Network Exposure Function (NEF) and so on.
The IAB donor node 120 may comprise a centralized unit (CU) 121 (also referred to as “IAB donor CU 121” ) and a distributed unit (DU) 122 (also referred to as “IAB donor DU 122” ) . The IAB node 130-1 may comprise a MT part 131-1 and a DU 132-1. The IAB node 130-2 may comprise a MT part 131-2 and a DU 132-2. The MTs 131-1 and 131-2 are also collectively referred to as “IAB MTs 131” or individually referred to as “IAB MT 131” . The DUs 132-1 and 132-2 are also collectively referred to as “IAB DUs 132” or individually referred to as “IAB DU 132” .
The IAB donor DU 122 or each IAB DU 132 can provide one or more cells to serve UEs. For example, a cell provided by a DU can broadcast normal control signals like Synchronization Signal Blocks (SSBs) for downlink synchronization and system  information. Therefore, the cell provided by a DU can be regarded as a normal cell from a UE perspective. For example, as shown in Fig. 1, the IAB donor DU 122 serves the UE 150-1, the IAB DU 132-1 serves the UE 150-2 and the IAB DU 132-2 serves the UE 150-3.
The IAB MT 131 of an IAB node 130 may act as a UE towards its parent node. For example, the IAB MT 131-1 may act as a UE towards the IAB donor node 120 (i.e., the IAB donor DU 122) and the IAB MT 131-2 may act as a UE towards the IAB node 130-1 (i.e., the IAB DU 132-1) . On the child links, the IAB DU 132 of an IAB node 130 may act as a network device (such as, gNB) towards its next-hop IAB node. For example, the IAB donor DU 122 may act as a gNB towards the IAB node 130-1 and the IAB DU 132-1 may act as a gNB towards the IAB node 130-2. On the access links, the IAB donor node 120 and the IAB nodes 130 may act as normal gNBs, providing radio interfaces for the UEs 150 in their coverage areas, as described above.
In the environment 100, each IAB MT 132 may have a radio resource control (RRC) connection with the IAB donor CU 121 and a non-access stratum (NAS) connection with the AMF 113. Each IAB node 130 (i.e., the IAB DU 132) maintains an F1 interface to the IAB donor node 120 (i.e., the IAB donor CU 121) . Accordingly, it can be inferred that the IAB node 130 has both an access node functionality (by means of the IAB DU 132 with an F1 interface to the IAB donor CU 121) and a UE functionality (by means of the IAB MT 131 with a RRC connection to the IAB donor CU 121 and a NAS connection to the AMF 113) .
Communications in the environment 100 may be implemented according to any proper communication protocol (s) , comprising, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future. Moreover, the communication may utilize any proper wireless communication technology, comprising but not limited to: Code Divided Multiple Address (CDMA) , Frequency Divided Multiple Address (FDMA) , Time Divided Multiple Address (TDMA) , Frequency Divided Duplexer (FDD) , Time Divided Duplexer (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Divided Multiple Access (OFDMA) and/or any other technologies currently known or to be developed in the future.
As described above, network slicing is a key 5G feature to support different services using the same underlying mobile network infrastructure. Network slices can differ either in their service requirements like URLLC and eMBB or the tenant that provides those services. A network slice is uniquely identified via Single-Network Slice Selection Assistance Information (S-NSSAI) . In current 3GPP specifications, a UE is allowed to be simultaneously connected to and served by at most eight network slices. On other hand, each cell may support a large number of network slices. S-NSSAI may include both of a Slice Service Type (SST) field with a length of 8 bits and a Slice Differentiator (SD) field with a length of 24 bits, or include only the SST field in which case the total length of S-NSSAI is 8 bits.
A registration area is a list of tracking areas (TAs) that support the same slices from a UE perspective, i.e., allowed slices for the UE. Herein, a slice and a network slice can be used interchangeably. When a UE registers to the core network, the UE may indicate network slices (for example, S-NSSAIs) that it requests to access. The core network analyses the UE profile and subscription data to verify network slices that the UE can really have access to. As a result, the core network sends a list of allowed network slices to the UE. The list of allowed network slices could be different or only a subset of the requested network slices from the registration request. If the allowed network slices contain at least one network slice, the core network also configures a registration area for the UE. The registration area contains a list of TAs in which all of the allowed network slices are supported. The core network knows the current TA of the UE from the registration request and knows slice support information of neighboring TAs (which indicates network slices supported in the neighboring TAs) . The core network can configure, based on this information, the list of TAs for the UE in which the slice support is homogenous for the UE. Once the UE goes outside of the TAs in the registration area, it needs to perform a registration area update, and the core network re-evaluates network slices requested by the UE and configures a new registration area for the UE.
The slice support information of the neighboring TAs can be exchanged during Xn setup and NG-RAN Node configuration update procedures. The slice support information of IAB DUs can be exchanged during F1 setup and gNB-DU configuration update procedures. For example, the slice support information can be provided per TA and in the form of a set of slice identities (i.e., S-NSSAIs) .
In the environment 100 as shown in Fig. 1, each IAB node 130 can be connected to  the core network 110 via a number of parent IAB nodes. Each IAB node 130 may serve a group of UEs, where the UEs may be associated to different network slices. For example, with respected to the UE 150-2 which is to be served by a given network slice, both the IAB node 130-1 and the IAB donor node 120 should support the network slice.
As described above, different IAB implementations or mode of operations are possible, e.g., fixed IAB, nomadic IAB or mobile IAB. For example, a mobile IAB node is located on a moving object and provides wireless access to UE inside or outside the moving object. As described above, in different implementations of an IAB node, the IAB node may change, such as migrate or hand over, from one donor IAB node or parent IAB node to another donor IAB node or parent IAB node. With respect to IAB communication, slice support needs to be enabled considering, e.g., inherent mobility or migration. In current 3GPP specification, the network slicing mechanisms are primarily developed either for UEs or for network devices. Slice support for IAB shall be provided considering that an IAB node contains both MT and DU parts and neither UE-specific signaling nor access node/network device-specific signaling can be used to provide the slice support for an IAB node.
Embodiments of the present disclosure provide a solution for IAB communication, so as to solve the above problem and one or more of other potential problems. This solution provides mechanisms of slice support information exchange and registration management for the IAB operation. These mechanisms can be handled by jointly considering that an IAB node has both UE and access node functionalities. These mechanisms can be applied to different implementations or mode of operations of one or more IAB nodes, such as fixed IAB node (s) , nomadic IAB node (s) and/or mobile IAB node (s) . It can be inferred that such mechanisms can be applied to a network comprising an IAB node or a network element that may function similarly to an IAB node, e.g., a wireless relay.
Fig. 2 illustrates a schematic diagram of interactions 200 between devices according to some example embodiments of the present disclosure. For example, the interactions 200 involve the IAB node 130 (such as, the IAB node 130-1 and/or 130-2) , the IAB donor node 120 and the AMF 113.
As shown in Fig. 2, the IAB MT 131 transmits 201 a registration request to the AMF 113 via a NAS connection.
In some example embodiments, the registration request may comprise an indication of an operational mode of the IAB node 130 and information about network slices that the IAB node 130 requests to access. For example, the information about the network slices may be S-NSSAIs of these network slices, also referred to as “requested S-NSSAIs” . The requested S-NSSAIs may be preconfigured at the IAB node 130 or configured to the IAB node 130 online. For example, the IAB donor CU 121 may select the AMF 113 based on the requested S-NSSAIs. For example, the number of the requested S-NSSAIs may exceed 8 considering the indication of the operational mode of the IAB node 130.
In some example embodiments, the indication of the operational mode of the IAB node 130 may be in different forms. For example, the indication of the operational mode may be an IAB indicator, which indicates whether the IAB node 130 is fixed, mobile or nomadic. That is, such indication may also imply the IAB implementation option or mode of operation, e.g., fixed IAB, nomadic IAB, or mobile IAB. For another example, the indication of the operational mode may be a mobile IAB indicator, which indicates whether the IAB node 130 is a mobile IAB node or not. In some cases, different IAB nodes can be assigned with different identifiers (IDs) , where a predetermined range of IDs may indicate mobile IAB nodes and other IDs may indicate fixed IAB nodes or nomadic IAB nodes. For example, in this event, the indication of the operational mode may be the ID of the IAB node 130 which can be used to identify if the IAB node 130 is a mobile IAB node, fixed IAB node or nomadic IAB node.
As shown in Fig. 2, the AMF 113 determines 202 network slices allowed to be access by the IAB node 130 and a registration area corresponding to the allowed network slices. In some example embodiments, the AMF 113 may obtain subscription data from the UDM 112. For example, the subscription data may indicate network slices subscribed by the IAB node 130. In some example embodiment, the AMF 113 may determine the allowed network slices based on the requested network slices indicated in the registration request, the subscribed network slices obtained from the UDM 112 and network slices supported by the IAB donor node 120 (for example, network slices supported by the IAB donor node 120 in the tracking area where the IAB node 130 locates) . In some example embodiments, the AMF 113 may interrogate a network slice selection function (NSSF) for slice selection. The NSSF may return a set of network slice instance (NSI) identifiers. In some example embodiments, the AMF 113 may also determine a network slice for an  IAB backhaul link and incorporate the network slice for the IAB backhaul link into the allowed network slices.
In some example embodiments, for example, the registration request may not include information about the requested network slices. In this case, the AMF 113 may obtain subscription data indicating the subscribed network slices from the UDM 112. The AMF 113 may determine the allowed network slices as the subscribed network slices obtained from the UDM 112 if they are supported in the TA where the IAB node 130 locates. That is, the AMF 113 can determine the allowed network slices only based on the subscription data.
As shown in Fig. 2, the AMF 113 transmits 203b a registration accept message indicating the registration area and the allowed network slices (such as, S-NSSAIs of these network slices, also referred to as “allowed S-NSSAIs” ) to the IAB MT 131 via the NAS connection. In some example embodiments, the number of the allowed S-NSSAIs may exceed 8. The AMF 113 may also transmit 203a the registration accept message to the IAB donor CU 121. The IAB MT 131 forwards 204, to the IAB DU 132, information about the registration area and the allowed network slices.
Subsequently, the IAB DU 132 provides 205 information about the allowed network slices (such as, the allowed S-NSSAIs) and TAs to the IAB donor CU 121 during a F1-AP procedure. The allowed S-NSSAIs can be the same as or different from the requested or configured S-NSSAIs. The IAB donor CU 121 reports 206 information about at least one of the allowed network slices to the AMF 113 during a NG configuration update procedure, where the at least one of the allowed network slices is supported in a tracking area corresponding to Tracking Area Identity (TAI) of the IAB node 130.
In the example as shown in Fig. 2, UE-specific signaling is used to provide information on an access node such that the requested NSSAI indeed corresponds to the slice support information of the mobile IAB. Since the IAB can support different UEs with diverse slice support capabilities, the network slices supported by an IAB node can be much more than eight. As opposed to a conventional UE, the AMF also considers the slice support information of the IAB donor CU, while assigning the allowed S-NSSAIs for the mobile IAB node. The slice support information in the F1-AP procedure matches with the allowed NSSAI provided by the AMF, which is also different to the conventional DU operation.
Fig. 3 illustrates a schematic diagram of interactions 300 between devices according to some example embodiments of the present disclosure. For example, the interactions 300 involve the IAB node 130 (such as, the IAB node 130-1 and/or 130-2) , the IAB donor node 120, the AMF 113 and the OAM 114.
As shown in Fig. 3, the IAB MT 131 transmits 301 a registration request to the AMF 113 via a NAS connection.
The registration request may not comprise S-NSSAIs of network slices that the IAB node 130 requests to access. In some example embodiments, the registration request may comprise user location information (ULI) of the IAB MT 131 and an indication of an operational mode of the IAB node 130. The indication of the operational mode of the IAB node 130 may be in different forms. For example, the indication of the operational mode may be an IAB indicator, which indicates whether the IAB node 130 is fixed or mobile or nomadic. That is, such indication may also imply the IAB implementation option or mode of operation, e.g., fixed IAB, nomadic IAB, or mobile IAB. For another example, the indication of the operational mode may be a mobile IAB indicator, which indicates whether the IAB node 130 is a mobile IAB node or not. In some cases, different IAB nodes can be assigned with different identifiers (IDs) , where a predetermined range of IDs may indicate mobile IAB nodes and other IDs may indicate fixed IAB nodes or nomadic IAB nodes. For example, in this event, the indication of the operational mode may be the ID of the IAB node 130 which can be used to identify if the IAB node 130 is a mobile IAB node, fixed IAB node or nomadic IAB node. Alternatively, in some example embodiments, the registration request may comprise an indication of a mobile IAB slice (e.g., the network slice for the IAB backhaul link) which may implicitly indicate that the IAB node 130 is a mobile IAB node.
As shown in Fig. 3, the AMF 113 determines 302 a registration area based on the ULI of the IAB MT 131 and the indication that the IAB node 130 is a mobile IAB node. The AMF 113 transmits 303 a registration accept message indicating the registration area and the network slice for the IAB backhaul link (such as, S-NSSAI of the network slice) to the IAB MT 131 via the NAS connection.
In some example embodiments, the IAB MT 131 may establish a PDU session with the OAM 114, such that the OAM 114 obtains 304b the ULI from the IAB MT 131 via the PDU session. Alternatively, the OAM 114 can obtain 304a the ULI of the IAB MT  131 from the AMF 113. The OAM 114 provides 305 a configuration to the IAB MT 131 based on the ULI of the IAB MT 131. For example, the configuration may indicate network slices (such as, S-NSSAIs of the network slices) to be supported in the registration area, Tracking Area Identities (TAI) to be advertised and so on. The IAB MT 131 forwards 306, to the IAB DU 132, information about the supported network slices and TAs.
Subsequently, the IAB DU 132 provides 307 information about the allowed network slices (such as, the allowed S-NSSAIs) and TAs to the IAB donor CU 121 during a F1-AP procedure. The allowed S-NSSAIs can be the same as or different from the requested or configured S-NSSAIs. The IAB donor CU 121 reports 308 information about the allowed network slices to the AMF 113 during a NG configuration update procedure. To this end, NG-RAN can provide a mapping between Physical Cell Identity (PCI) /Tracking Area Identity (TAI) /Cell Global Identity (CGI) and an identifier of mobile IAB MT in the NG configuration update message.
In the example as shown in Fig. 3, the allowed S-NSSAIs are configured to the mobile IAB node at run time based on the location of the mobile IAB node. The registration area is determined based on the optimal support of IAB nodes. For example, the registration area can only include the TA indicated by the ULI of the mobile IAB node.
Fig. 4 illustrates a schematic diagram of interactions 400 between devices according to some example embodiments of the present disclosure. For example, the interactions 400 involve the IAB node 130 (such as, the IAB node 130-1 or 130-2) , the IAB donor node 120 and the AMF 113.
As shown in Fig. 4, the IAB MT 131 transmits 401 a registration request to the AMF 113 via a NAS connection.
In some example embodiments, the registration request may comprise identity information of the IAB node 130. For example, the identity information of the IAB node 130 may be an access node identity of the IAB node 130, such as, at least one of TAI, PCI and CGI of the IAB node 130. In some example embodiments, the identity information of the IAB node 130 may comprise an indication of an operational mode of the IAB node 130. For example, such indication may also imply the IAB implementation option or mode of operation, e.g., fixed IAB, nomadic IAB, or mobile IAB.
In some example embodiments, the indication of the operational mode of the IAB node 130 may be in different forms. For example, the indication of the operational mode  may be an IAB indicator, which indicates whether the IAB node 130 is fixed, mobile or nomadic. That is, such indication may also imply the IAB implementation option or mode of operation, e.g., fixed IAB, nomadic IAB, or mobile IAB. For another example, the indication of the operational mode may be a mobile IAB indicator, which indicates whether the IAB node 130 is a mobile IAB node or not. In some cases, different IAB nodes can be assigned with different identifiers (IDs) , where a predetermined range of IDs may indicate mobile IAB nodes and other IDs may indicate fixed IAB nodes or nomadic IAB nodes. For example, in this event, the indication of the operational mode may be the ID of the IAB node 130 which can be used to identify if the IAB node 130 is a mobile IAB node, fixed IAB node or nomadic IAB node.
As shown in Fig. 4, the AMF 113 obtains 402 subscription data from the UDM 112. For example, the subscription data may indicate network slices subscribed by the IAB node 130. The AMF 113 transmits 403 a registration accept message to the IAB MT 131 via the NAS connection. For example, the registration accept message may not indicate a registration area or allowed network slices for the IAB node 130. The IAB MT 131 forwards 404 the registration accept message to the IAB DU 132, indicating absence of the registration area and allowed network slices. In some example embodiments, the AMF 113 may also transmit the registration accept message to the IAB donor CU 121 (not shown in Fig. 4) .
As shown in Fig. 4, the IAB DU 132 provides 405, to the IAB donor CU 121, information about supported network slices (such as, S-NSSAIs of these network slices) during a F1-AP procedure. The IAB donor CU 121 provides 406 slice support information per TA to the AMF 113 during a NG configuration update procedure. The AMF 113 determines 407 network slices allowed to be accessed by the IAB node 130 and a registration area corresponding to the allowed network slices. In some example embodiments, the AMF 113 may determine the allowed network slices based on the supported network slices provided in the F1-AP procedure, the subscribed network slices obtained from the UDM 112 and network slices supported by the IAB donor node 120 and/or the identity information of the IAB node 130 (such as, TAI/PCI/CGI) .
The AMF 113 transmits 408, to the IAB MT 131, a message indicating the registration area and the allowed network slices during a UE Configuration Update Procedure. In some example embodiments, any deviation from the supported S-NSSAIs provided in the F1-AP procedure shall be communicated to the IAB donor CU 121 via a  gNB-DU configuration update procedure (not shown in Fig. 4) .
In the example as shown in Fig. 4, non-UE associated signaling is used to provide slice support information of the mobile IAB node. For the UE associated signaling part, the IAB MT also provides access node identity information, e.g., TAI, PCI or CGI. However, the requested S-NSSAIs are not included. As opposed to a conventional UE, the AMF waits for the reception of the slice support information of the mobile IAB node from the IAB donor CU. The slice support information is provided to the AMF by the IAB donor CU via NG application protocols. Considering the access node identity information of the mobile IAB node, the AMF can determine the slice support information (such as, the allowed S-NSSAIs) for the mobile IAB node and can determine the registration are for the mobile IAB node.
In some example embodiments, the IAB node may change the TA association, e.g., when the IAB node moves to a new TA or IAB node migrates to a new donor IAB node or parent IAB node in a different TA, which is not included in its registration area. In this event, procedures similar to the above examples shown in Fig. 2, 3 or 4 can be applied. For example, the AMF 113 may provide allowed S-NSSAIs to the mobile IAB node 130, based on the intersection of network slices subscribed by the mobile IAB node 130 and network slices supported by the IAB donor node 120, as advertised. The IAB donor node 120 then can detect what network slices can be considered as being supported in the TAIs of the IAB node 130. The IAB donor node 120 may confirm this information to the AMF by using NG application protocols once the IAB node 130 is up and running for use by UEs and after interacting with the IAB node 130 via the F1-AP procedure.
Fig. 5 shows a flowchart of an example method 500 for IAB communication in accordance with some example embodiments of the present disclosure. The method 500 can be implemented at the IAB node 130 shown in Fig. 1. It is to be understood that the method 500 may include additional blocks not shown and/or may omit some shown blocks, and the scope of the present disclosure is not limited in this regard.
At block 510, the IAB node 130 transmits, to an AMF (e.g., the AMF 113) , a registration request comprising information about the IAB node.
At block 520, the IAB node 130 receives, from the AMF, a message indicating a registration area and at least one allowed network slice for access by the IAB node, the registration area and the at least one allowed network slice determined based on the  information about the IAB node.
In some example embodiments, the information about the IAB node may comprise information about at least one network slice requested by the IAB node. The IAB node 130 may receive, from the AMF, a registration accept message indicating the registration area and the at least one allowed network slice, the registration area and the at least one allowed network slice determined based on the at least one network slice requested by the IAB node.
In some example embodiments, the IAB node 130 may provide information about the at least one allowed network slice to an IAB donor node (e.g., the IAB donor node 120) , such that the IAB donor node transmits information about one or more of the at least one allowed network slice to the AMF.
In some example embodiments, the information about the IAB node may comprise user location information of the IAB node. The IAB node 130 may receive, from the AMF, a registration accept message indicating the registration area and a network slice allowed for a backhaul link, the registration area and the network slice determined based on the user location information.
In some example embodiments, the IAB node 130 may obtain, from an OAM, a configuration about at least one network slice to be supported by the IAB node, the configuration determined based on the user location information by the OAM.
In some example embodiments, the OAM may obtain the user location information from the IAB node or the AMF.
In some example embodiments, the IAB node 130 may provide information about the at least one network slice to an IAB donor node (e.g., the IAB donor node 120) , such that the IAB donor node transmits information about one or more of the at least one network slice to the AMF.
In some example embodiments, the information about the IAB node may comprise identity information of the IAB node. The IAB node 130 may receive, from the AMF, the message indicating the registration area and the at least one allowed network slice, the registration area and the at least one allowed network slice determined based on at least one network slice supported by an IAB donor node and the identity information.
In some example embodiments, the identity information may comprise at least one  of the following: an indication of an operational mode, Physical Cell Identity, Tracking Area Identity and Cell Global Identity of the IAB node.
In some example embodiments, the indication may indicate that the IAB node is a mobile, fixed or nomadic IAB node.
In some example embodiments, the IAB node 130 may provide information about the at least one allowed network slice to the IAB donor node, such that the IAB donor node transmits information about one or more of the at least one allowed network slice to the AMF.
In some example embodiments, the number of network slices requested by the IAB node and/or the number of network slices allowed for access by the IAB node may exceed 8.
Fig. 6 shows a flowchart of an example method 600 for IAB communication in accordance with some example embodiments of the present disclosure. The method 600 can be implemented at the AMF 113 as shown in Fig. 1. It is to be understood that the method 600 may include additional blocks not shown and/or may omit some shown blocks, and the scope of the present disclosure is not limited in this regard.
At block 610, the AMF 113 receives, from an IAB node (e.g., the IAB node 130) , a registration request comprising information about the IAB node.
At block 620, the AMF 113 transmits, to the IAB node, a message indicating a registration area and at least one allowed network slice for access by the IAB node, the registration area and the allowed network slices determined based on the information about the IAB node.
In some example embodiments, the information about the IAB node may comprise information about at least one network slice requested by the IAB node. The AMF 113 may determine the at least one allowed network slice based on the at least one network slice requested by the IAB node, at least one network slice supported by an IAB donor node, and at least one network slice subscribed by the IAB node and obtained from a unified data repository. The AMF 113 may determine the registration area based on the at least one allowed network slice.
In some example embodiments, the AMF 113 may determine a network slice allowed for a backhaul link based on the information, the network slice comprised in the at  least one allowed network slice.
In some example embodiments, the AMF 113 may transmit a registration accept message indicating the registration area and the at least one allowed network slice to the IAB node.
In some example embodiments, the AMF 113 may provide information about the at least one allowed network slice to an IAB donor node (e.g., the IAB donor node 120) .
In some example embodiments, the information about the IAB node may comprise user location information of the IAB node. The AMF 113 may determine the registration area and a network slice allowed for a backhaul link based on the user location information.
In some example embodiments, the AMF 113 may transmit a registration accept message indicating the registration area and the network slice allowed for the backhaul link to the IAB node.
In some example embodiments, the AMF 113 may provide the user location information to an operation administration and maintenance function, such that the operation administration and maintenance function configures the IAB node with at least one network slice to be supported based on the user location information.
In some example embodiments, the information about the IAB node may comprise identity information of the IAB node. The AMF 113 may determine the registration area and the at least one allowed network slice based on at least one network slice supported by an IAB donor node and the identity information.
In some example embodiments, the identity information may comprise at least one of the following: an indication of an operational mode, Physical Cell Identity, Tracking Area Identity and Cell Global Identity of the IAB node.
In some example embodiments, the indication may indicate that the IAB node is a mobile, fixed or nomadic IAB node.
In some example embodiments, the AMF 113 may transmit the message indicating the registration area and the at least one allowed network slice to the IAB node.
In some example embodiments, the registration area comprises a group of tracking areas in which the at least one allowed network slice is supported. The AMF 113 may receive information about one or more of the at least one allowed network slice from an IAB donor node, the one or more of the at least one allowed network slice being supported  in one of the tracking areas corresponding to Tracking Area Identity of the IAB node.
In some example embodiments, the number of network slices requested by the IAB node and/or the number of network slices allowed for access by the IAB node may exceed 8.
In some example embodiments, an apparatus capable of performing the method 500 may comprise means for performing the respective steps of the method 500. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some example embodiments, the apparatus capable of performing the method 500 (for example, the IAB node 130) comprises: means for transmitting, to an AMF, a registration request comprising information about the apparatus; and means for receiving, from the AMF, a message indicating a registration area and at least one allowed network slice for access by the apparatus, the registration area and the at least one allowed network slice determined based on the information about the apparatus.
In some example embodiments, the information about the apparatus comprises information about at least one network slice requested by the apparatus, and the mean for receiving a message comprises: means for receiving, from the AMF, a registration accept message indicating the registration area and the at least one allowed network slice, the registration area and the at least one allowed network slice determined based on the indication and the at least one network slice requested by the apparatus.
In some example embodiments, the apparatus capable of performing the method 500 further comprises: means for providing information about the at least one network slice to an IAB donor node, such that the IAB donor node transmits information about one or more of the at least one allowed network slice to the AMF.
In some example embodiments, the information about the apparatus comprises user location information of the apparatus, and the means for receiving a message comprises: means for receiving, from the AMF, a registration accept message indicating the registration area and a network slice allowed for a backhaul link, the registration area and the network slice determined based on the user location information.
In some example embodiments, the apparatus capable of performing the method 500 further comprises: means for obtaining, from an OAM, a configuration about at least one network slice to be supported by the apparatus, the configuration determined based on  the user location information by the OAM.
In some example embodiments, the OAM obtains the user location information from the apparatus or the AMF.
In some example embodiments, the apparatus capable of performing the method 500 further comprises: means for providing information about the at least one network slice to an IAB donor node, such that the IAB donor node transmits information about one or more of the at least one network slice to the AMF.
In some example embodiments, the information about the apparatus comprises identity information of the IAB node, and the means for receiving a message comprises: means for receiving, from the AMF, the message indicating the registration area and the at least one allowed network slice, the registration area and the at least one allowed network slice determined based on at least one network slice supported by an IAB donor node and the identity information.
In some example embodiments, the identity information comprises at least one of the following: an indication of an operational mode, Physical Cell Identity, Tracking Area Identity, and Cell Global Identity.
In some example embodiments, the indication indicates that the apparatus is a mobile, fixed or nomadic IAB node.
In some example embodiments, the apparatus capable of performing the method 500 further comprises: means for providing information about the at least one allowed network slice to the IAB donor node, such that the IAB donor node transmits information about one or more of the at least one allowed network slice to the AMF.
In some example embodiments, the number of network slices requested by the apparatus and/or the number of network slices allowed for access by the apparatus exceeds 8.
In some example embodiments, an apparatus capable of performing the method 600 may comprise means for performing the respective steps of the method 600. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some example embodiments, the apparatus capable of performing the method 600 (for example, the AMF 113) comprises: means for receiving, from an IAB node, a  registration request comprising information about the IAB node; and means for transmitting, to the IAB node, a message indicating a registration area and at least one allowed network slice for access by the IAB node, the registration area and the at least one allowed network slice determined based on the information about the IAB node.
In some example embodiments, the information about the IAB node comprises information about at least one network slice requested by the IAB node, and the apparatus capable of performing the method 600 further comprises: means for determining the at least one allowed network slice based on the at least one network slice requested by the IAB node, at least one network slice supported by an IAB donor node, and at least one network slice subscribed by the IAB node and obtained from a unified data repository; and means for determining the registration area based on the at least one allowed network slice.
In some example embodiments, the apparatus capable of performing the method 600 further comprises: means for determining a network slice allowed for a backhaul link based on the information, the network slice comprised in the at least one allowed network slice.
In some example embodiments, the means for transmitting a message comprises: means for transmitting a registration accept message indicating the registration area and the at least one allowed network slice to the IAB node.
In some example embodiments, the apparatus capable of performing the method 600 further comprises: means for providing information about the at least one allowed network slice to an IAB donor node.
In some example embodiments, the information about the IAB node comprises user location information of the IAB node, and the apparatus capable of performing the method 600 further comprises: means for determining the registration area and a network slice allowed for a backhaul link based on the user location information.
In some example embodiments, the means for transmitting a message comprises: means for transmitting a registration accept message indicating the registration area and the network slice allowed for the backhaul link to the IAB node.
In some example embodiments, the apparatus capable of performing the method 600 further comprises: means for providing the user location information to an operation administration and maintenance function, such that the operation administration and maintenance function configures the IAB node with at least one network slice to be  supported based on the user location information.
In some example embodiments, the information about the IAB node comprises identity information of the IAB node, and the apparatus capable of performing the method 600 further comprises: means for determining the registration area and the at least one allowed network slice based on at least one network slice supported by an IAB donor node and the identity information.
In some example embodiments, the identity information comprises at least one of the following: an indication of an operational mode, Physical Cell Identity, Tracking Area Identity, and Cell Global Identity.
In some example embodiments, the indication indicates that the IAB node is a mobile, fixed or nomadic IAB node.
In some example embodiments, the means for transmitting a message comprises: means for transmitting the message indicating the registration area and the at least one allowed network slice to the IAB node.
In some example embodiments, the registration area comprises a group of tracking areas in which the at least one allowed network slice is supported, and the apparatus capable of performing the method 600 further comprises: means for receiving information about one or more of the at least one allowed network slice from an IAB donor node, the one or more of the at least one allowed network slice being supported in one of the tracking areas corresponding to Tracking Area Identity of the IAB node.
In some example embodiments, the number of network slices requested by the IAB node and/or the number of network slices allowed for access by the IAB node exceeds 8.
Fig. 7 is a simplified block diagram of a device 700 that is suitable for implementing embodiments of the present disclosure. For example, the IAB donor node 120, the IAB node 130, the terminal device 150 and/or the AMF 113 shown in Fig. 1 can be implemented by the device 700. As shown, the device 700 includes one or more processors 710, one or more memories 720 coupled to the processor 710, and one or more communication modules 740 coupled to the processor 710.
The communication module 740 is for bidirectional communications. The communication module 740 has at least one antenna to facilitate communication. The  communication interface may represent any interface that is necessary for communication with other network elements.
The processor 710 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 700 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 720 may include one or more non-volatile memories and one or more volatile memories. Examples of the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 724, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage. Examples of the volatile memories include, but are not limited to, a random access memory (RAM) 722 and other volatile memories that will not last in the power-down duration.
computer program 730 includes computer executable instructions that are executed by the associated processor 710. The program 730 may be stored in the ROM 724. The processor 710 may perform any suitable actions and processing by loading the program 730 into the RAM 722.
The embodiments of the present disclosure may be implemented by means of the program 730 so that the device 700 may perform any process of the disclosure as discussed with reference to Figs. 2-6. The embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
In some example embodiments, the program 730 may be tangibly contained in a computer readable medium which may be included in the device 700 (such as in the memory 720) or other storage devices that are accessible by the device 700. The device 700 may load the program 730 from the computer readable medium to the RAM 722 for execution. The computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like. Fig. 8 shows an example of the computer readable medium 800 in form of CD or DVD. The computer readable medium has the program 730 stored thereon.
It should be appreciated that future networks may utilize network functions  virtualization (NFV) which is a network architecture concept that proposes virtualizing network node functions into “building blocks” or entities that may be operationally connected or linked together to provide services. A virtualized network function (VNF) may comprise one or more virtual machines running computer program codes using standard or general type servers instead of customized hardware. Cloud computing or data storage may also be utilized. In radio communications, this may mean node operations to be carried out, at least partly, in a central/centralized unit, CU, (e.g. server, host or node) operationally coupled to distributed unit, DU, (e.g. a radio head/node) . It is also possible that node operations will be distributed among a plurality of servers, nodes or hosts. It should also be understood that the distribution of labour between core network operations and base station operations may vary depending on implementation.
In an embodiment, the server may generate a virtual network through which the server communicates with the distributed unit. In general, virtual networking may involve a process of combining hardware and software network resources and network functionality into a single, software-based administrative entity, a virtual network. Such virtual network may provide flexible distribution of operations between the server and the radio head/node. In practice, any digital signal processing task may be performed in either the CU or the DU and the boundary where the responsibility is shifted between the CU and the DU may be selected according to implementation.
Therefore, in an embodiment, a CU-DU architecture is implemented. In such case the device 700 may be comprised in a central unit (e.g. a control unit, an edge cloud server, a server) operatively coupled (e.g. via a wireless or wired network) to a distributed unit (e.g. a remote radio head/node) . That is, the central unit (e.g. an edge cloud server) and the distributed unit may be stand-alone apparatuses communicating with each other via a radio path or via a wired connection. Alternatively, they may be in a same entity communicating via a wired connection, etc. The edge cloud or edge cloud server may serve a plurality of distributed units or a radio access networks. In an embodiment, at least some of the described processes may be performed by the central unit. In another embodiment, the device 700 may be instead comprised in the distributed unit, and at least some of the described processes may be performed by the distributed unit.
In an embodiment, the execution of at least some of the functionalities of the device 700 may be shared between two physically separate devices (DU and CU) forming one operational entity. Therefore, the apparatus may be seen to depict the operational  entity comprising one or more physically separate devices for executing at least some of the described processes. In an embodiment, such CU-DU architecture may provide flexible distribution of operations between the CU and the DU. In practice, any digital signal processing task may be performed in either the CU or the DU and the boundary where the responsibility is shifted between the CU and the DU may be selected according to implementation. In an embodiment, the device 700 controls the execution of the processes, regardless of the location of the apparatus and regardless of where the processes/functions are carried out.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the method 500 as described above with reference to Fig. 5 and/or the method 600 as described above with reference to Fig. 6. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose  computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable medium, and the like.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present  disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (32)

  1. A method comprising:
    transmitting, from an integrated access and backhaul node to an access and mobility management function, a registration request comprising information about the integrated access and backhaul node; and
    receiving, from the access and mobility management function, a message indicating a registration area and at least one allowed network slice for access by the integrated access and backhaul node, the registration area and the at least one allowed network slice determined based on the information about the integrated access and backhaul node.
  2. The method of claim 1, wherein the information about the integrated access and backhaul node comprises information about at least one network slice requested by the integrated access and backhaul node, and receiving a message comprises:
    receiving, from the access and mobility management function, a registration accept message indicating the registration area and the at least one allowed network slice, the registration area and the at least one allowed network slice determined based on the at least one network slice requested by the integrated access and backhaul node.
  3. The method of claim 2, further comprising:
    providing information about the at least one allowed network slice to an integrated access and backhaul donor node, such that the integrated access and backhaul donor node transmits information about one or more of the at least one allowed network slice to the access and mobility management function.
  4. The method of claim 1, wherein the information about the integrated access and backhaul node comprises user location information of the integrated access and backhaul node, and receiving a message comprises:
    receiving, from the access and mobility management function, a registration accept message indicating the registration area and a network slice allowed for a backhaul link, the registration area and the network slice determined based on the user location information.
  5. The method of claim 4, further comprising:
    obtaining, from an operation administration and maintenance function, a  configuration about at least one network slice to be supported by the integrated access and backhaul node, the configuration determined based on the user location information by the operation administration and maintenance function.
  6. The method of claim 5, wherein the operation administration and maintenance function obtains the user location information from the integrated access and backhaul node or the access and mobility management function.
  7. The method of claim 5, further comprising:
    providing information about the at least one network slice to an integrated access and backhaul donor node, such that the integrated access and backhaul donor node transmits information about one or more of the at least one network slice to the access and mobility management function.
  8. The method of claim 1, wherein the information about the integrated access and backhaul node comprises identity information of the integrated access and backhaul node, and receiving a message comprises:
    receiving, from the access and mobility management function, the message indicating the registration area and the at least one allowed network slice, the registration area and the at least one allowed network slice determined based on at least one network slice supported by an integrated access and backhaul donor node and the identity information.
  9. The method of claim 8, wherein the identity information comprises at least one of the following:
    an indication of an operational mode,
    Physical Cell Identity,
    Tracking Area Identity, and
    Cell Global Identity.
  10. The method of claim 9, wherein the indication indicates that the integrated access and backhaul node is a mobile, fixed or nomadic integrated access and backhaul node.
  11. The method of claim 8, further comprising:
    providing information about the at least one allowed network slice to the integrated access and backhaul donor node, such that the integrated access and backhaul donor node transmits information about one or more of the at least one allowed network slice to the access and mobility management function.
  12. The method of any of claims 1-11, wherein the number of network slices requested by the integrated access and backhaul node and/or the number of network slices allowed for access by the integrated access and backhaul node exceeds 8.
  13. A method comprising:
    receiving, at an access and mobility management function and from an integrated access and backhaul node, a registration request comprising information about the integrated access and backhaul node; and
    transmitting, to the integrated access and backhaul node, a message indicating a registration area and at least one allowed network slice for access by the integrated access and backhaul node, the registration area and the at least one allowed network slice determined based on the information about the integrated access and backhaul node.
  14. The method of claim 13, wherein the information about the integrated access and backhaul node comprises information about at least one network slice requested by the integrated access and backhaul node, and the method further comprises:
    determining the at least one allowed network slice based on the at least one network slice requested by the integrated access and backhaul node, at least one network slice supported by an integrated access and backhaul donor node, and at least one network slice subscribed by the integrated access and backhaul node and obtained from a unified data repository; and
    determining the registration area based on the at least one allowed network slice.
  15. The method of claim 14, further comprising:
    determining a network slice allowed for a backhaul link based on the information, the network slice comprised in the at least one allowed network slice.
  16. The method of claim 14, wherein transmitting a message comprises:
    transmitting a registration accept message indicating the registration area and the at least one allowed network slice to the integrated access and backhaul node.
  17. The method of claim 14, further comprising:
    providing information about the at least one allowed network slice to an integrated access and backhaul donor node.
  18. The method of claim 13, wherein the information about the integrated access and backhaul node comprises user location information of the integrated access and backhaul node, and the method further comprises:
    determining the registration area and a network slice allowed for a backhaul link based on the user location information.
  19. The method of claim 18, wherein transmitting a message comprises:
    transmitting a registration accept message indicating the registration area and the network slice allowed for the backhaul link to the integrated access and backhaul node.
  20. The method of claim 18, further comprising:
    providing the user location information to an operation administration and maintenance function, such that the operation administration and maintenance function configures the integrated access and backhaul node with at least one network slice to be supported based on the user location information.
  21. The method of claim 13, wherein the information about the integrated access and backhaul node comprises identity information of the integrated access and backhaul node, and the method further comprises:
    determining the registration area and the at least one allowed network slice based on at least one network slice supported by an integrated access and backhaul donor node and the identity information.
  22. The method of claim 21, wherein the identity information comprises at least one of the following:
    an indication of an operational mode,
    Physical Cell Identity,
    Tracking Area Identity, and
    Cell Global Identity.
  23. The method of claim 22, wherein the indication indicates that the integrated access and backhaul node is a mobile, fixed or nomadic integrated access and backhaul node.
  24. The method of claim 21, wherein transmitting a message comprises:
    transmitting the message indicating the registration area and the at least one allowed network slice to the integrated access and backhaul node.
  25. The method of claim 13, wherein the registration area comprises a group of tracking areas in which the at least one allowed network slice is supported, and the method further comprises:
    receiving information about one or more of the at least one allowed network slice from an integrated access and backhaul donor node, the one or more of the at least one allowed network slice being supported in one of the tracking areas corresponding to Tracking Area Identity of the integrated access and backhaul node.
  26. The method of any of claims 13-25, wherein the number of network slices requested by the integrated access and backhaul node and/or the number of network slices allowed for access by the integrated access and backhaul node exceeds 8.
  27. An apparatus comprising:
    at least one processor; and
    at least one memory including computer program codes;
    the at least one memory and the computer program codes are configured to, with the at least one processor, cause the apparatus to perform the method of any of claims 1-12.
  28. An apparatus comprising:
    at least one processor; and
    at least one memory including computer program codes;
    the at least one memory and the computer program codes are configured to, with the at least one processor, cause the apparatus to perform the method of any of claims 13-26.
  29. An apparatus comprising means for performing the method of any of claims 1-12.
  30. An apparatus comprising means for performing the method of any of claims 13-26.
  31. A computer program product that is stored on a computer readable medium and includes machine-executable instructions, wherein the machine-executable instructions, when being executed, cause a machine to perform the method of any of claims 1-26.
  32. A computer readable storage medium comprising program instructions stored thereon, the instructions, when executed by an apparatus, causing the apparatus to perform the method of any of claims 1-26.
PCT/CN2020/113847 2020-09-07 2020-09-07 Methods, apparatuses and computer readable media for integrated access and backhaul communication WO2022047805A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080106987.9A CN116569623A (en) 2020-09-07 2020-09-07 Methods, apparatus, and computer readable media for integrated access and backhaul communications
PCT/CN2020/113847 WO2022047805A1 (en) 2020-09-07 2020-09-07 Methods, apparatuses and computer readable media for integrated access and backhaul communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/113847 WO2022047805A1 (en) 2020-09-07 2020-09-07 Methods, apparatuses and computer readable media for integrated access and backhaul communication

Publications (1)

Publication Number Publication Date
WO2022047805A1 true WO2022047805A1 (en) 2022-03-10

Family

ID=80492199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113847 WO2022047805A1 (en) 2020-09-07 2020-09-07 Methods, apparatuses and computer readable media for integrated access and backhaul communication

Country Status (2)

Country Link
CN (1) CN116569623A (en)
WO (1) WO2022047805A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023237046A1 (en) * 2022-06-09 2023-12-14 华为技术有限公司 Mobility management method for iab node, and related device
WO2024031265A1 (en) * 2022-08-08 2024-02-15 Zte Corporation Integrated access and backhaul node migration method and apparatus
WO2024033396A1 (en) * 2022-08-09 2024-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Signalling for support of mobile integrated access and backhaul

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019192605A1 (en) * 2018-04-04 2019-10-10 中兴通讯股份有限公司 Topological information management method and apparatus, and system, storage medium and electronic apparatus
WO2020036585A1 (en) * 2018-08-13 2020-02-20 Cisco Technology, Inc. Centralized son assisted multi hop discovery and management
WO2020051588A1 (en) * 2018-09-08 2020-03-12 Kyungmin Park Backhaul link connection information
US20200221527A1 (en) * 2019-01-03 2020-07-09 Comcast Cable Communications, Llc Network Assisted Connection
WO2020168082A1 (en) * 2019-02-13 2020-08-20 Apple Inc. Broadcasting schemes of tdelta information in fifth generation (5g) new radio (nr) integrated access and backhaul (iab) network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019192605A1 (en) * 2018-04-04 2019-10-10 中兴通讯股份有限公司 Topological information management method and apparatus, and system, storage medium and electronic apparatus
WO2020036585A1 (en) * 2018-08-13 2020-02-20 Cisco Technology, Inc. Centralized son assisted multi hop discovery and management
WO2020051588A1 (en) * 2018-09-08 2020-03-12 Kyungmin Park Backhaul link connection information
US20200221527A1 (en) * 2019-01-03 2020-07-09 Comcast Cable Communications, Llc Network Assisted Connection
WO2020168082A1 (en) * 2019-02-13 2020-08-20 Apple Inc. Broadcasting schemes of tdelta information in fifth generation (5g) new radio (nr) integrated access and backhaul (iab) network

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "IAB node Registration procedure", 3GPP DRAFT; S2-1909350_23.502_IAB-NODE REGISTRATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Split Croatia; 20191014 - 20191018, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051795454 *
ERICSSON: "IAB terminology update", 3GPP DRAFT; S2-1909349_23.501_IAB TERMINOLOGY, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Split Croatia; 20191014 - 20191018, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051795453 *
QUALCOMM INCORPORATED, AT&T, ERICSSON, T-MOBILE USA, SAMSUNG, DEUTSCHE TELEKOM: "Introduction of the IAB support in 5GS", 3GPP DRAFT; S2-1908395 WAS 7204 TS 23.501 CR1522_INTRODUCTION OF IAB_R3, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Sapporo, Japan; 20190624 - 20190628, 28 June 2019 (2019-06-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051756930 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023237046A1 (en) * 2022-06-09 2023-12-14 华为技术有限公司 Mobility management method for iab node, and related device
WO2024031265A1 (en) * 2022-08-08 2024-02-15 Zte Corporation Integrated access and backhaul node migration method and apparatus
WO2024033396A1 (en) * 2022-08-09 2024-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Signalling for support of mobile integrated access and backhaul

Also Published As

Publication number Publication date
CN116569623A (en) 2023-08-08

Similar Documents

Publication Publication Date Title
WO2022047805A1 (en) Methods, apparatuses and computer readable media for integrated access and backhaul communication
WO2022061780A1 (en) Methods, apparatuses and computer readable media for integrated access and backhaul communication
JP2022547778A (en) Communication device and communication method
US20230032077A1 (en) Handover to dual connectivity
US20220232663A1 (en) Mechanism for Handling PDCCH Skipping and Wake Up Signal
WO2022027389A1 (en) Mechanism for cell identity management
US20230284246A1 (en) Devices, methods, apparatuses and computer readable media for topology redundancy
US20230388079A1 (en) Dedicated resource configuration for transmission of demodulation reference signal
CN115053464B (en) Beam selection at multiple transmission points
US20230145711A1 (en) Signaling Reduction at Handover of an IAB Node
WO2021030997A1 (en) Device, method, apparatus and computer readable medium for inter-cu topology adaptation
WO2020154855A1 (en) Mobility enhancement of terminal device
WO2023133873A1 (en) Configuration for in-x subnetworks
WO2022056686A1 (en) Device, method, apparatus and computer readable medium for iab communication
EP4346295A1 (en) Devices, methods and apparatuses for power headroom report
WO2022082540A1 (en) Devices, methods, apparatuses and computer readable media for establishing communicating link
WO2022227088A1 (en) Integrated access and backhaul communication
WO2022227039A1 (en) Measurement gap enhancement
CN115211174B (en) Measurement reporting in handover
WO2023272706A1 (en) Network repository function services access authorization
WO2024031457A1 (en) Resource reservation for a positioning reference signal
WO2022027380A1 (en) Device, method, apparatus and computer readable medium for iab communication
WO2022056689A1 (en) Serving cell change procedure utilizing multiple candidate target cells
WO2023070511A1 (en) Enhancement on integrated access and backhaul network
WO2022205282A1 (en) Methods, devices and computer storage media for communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 202080106987.9

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 20952047

Country of ref document: EP

Kind code of ref document: A1