WO2022227060A1 - 一种系统信息的传输方法及装置、终端设备 - Google Patents

一种系统信息的传输方法及装置、终端设备 Download PDF

Info

Publication number
WO2022227060A1
WO2022227060A1 PCT/CN2021/091656 CN2021091656W WO2022227060A1 WO 2022227060 A1 WO2022227060 A1 WO 2022227060A1 CN 2021091656 W CN2021091656 W CN 2021091656W WO 2022227060 A1 WO2022227060 A1 WO 2022227060A1
Authority
WO
WIPO (PCT)
Prior art keywords
rmsi
window
ssb
equal
pdcch
Prior art date
Application number
PCT/CN2021/091656
Other languages
English (en)
French (fr)
Inventor
王淑坤
徐伟杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180082890.3A priority Critical patent/CN116636174A/zh
Priority to PCT/CN2021/091656 priority patent/WO2022227060A1/zh
Publication of WO2022227060A1 publication Critical patent/WO2022227060A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of mobile communication technologies, and in particular, to a method and apparatus for transmitting system information, and a terminal device.
  • BWP Band Width Part
  • RMSI Remaining Minimum System Information
  • RMSI PDCCH Physical downlink control channel
  • Embodiments of the present application provide a system information transmission method and apparatus, and a terminal device.
  • the terminal device determines the correspondence between the RMSI PDCCH opportunity and the synchronization signal block (SS/PBCH Block, SSB) index, where the RMSI PDCCH opportunity is used to transmit the RMSI PDCCH;
  • SS/PBCH Block, SSB synchronization signal block
  • the terminal device receives the RMSI PDCCH in the first search space on the dedicated BWP based on the correspondence between the RMSI PDCCH opportunity and the SSB index; 0 common search space, the RMSI PDCCH timing is determined based on the configuration information of the first search space.
  • the system information transmission apparatus provided by the embodiment of the present application is applied to terminal equipment, and the apparatus includes:
  • a determining unit configured to determine the correspondence between the RMSI PDCCH occasion and the SSB index, where the RMSI PDCCH occasion is used to transmit the RMSI PDCCH;
  • a receiving unit configured to receive the RMSI PDCCH in the first search space on the dedicated BWP based on the correspondence between the RMSI PDCCH opportunity and the SSB index; wherein the first search space is configured on the dedicated BWP Non-zero common search space, the RMSI PDCCH timing is determined based on the configuration information of the first search space.
  • the terminal device provided by the embodiments of the present application includes a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory to execute the above-mentioned transmission method of system information.
  • the chip provided by the embodiment of the present application is used to implement the above-mentioned method for transmitting system information.
  • the chip includes: a processor for calling and running a computer program from the memory, so that the device installed with the chip executes the above-mentioned method for transmitting system information.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program, and the computer program enables a computer to execute the above-mentioned method for transmitting system information.
  • the computer program product provided by the embodiments of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the above-mentioned method for transmitting system information.
  • the computer program provided by the embodiment of the present application when it runs on a computer, causes the computer to execute the above-mentioned method for transmitting system information.
  • the terminal device can specify the corresponding relationship between the RMSI PDCCH timing and the SSB index. There is an association relationship between beams, so the terminal device can determine the corresponding relationship between the RMSI PDCCH timing and the beam, so as to receive the RMSI PDCCH in the non-zero public search space on the dedicated BWP based on the corresponding relationship, ensuring that the terminal device is in the correct
  • the RMSI PDCCH is received at the location (that is, through the correct beam), which provides a guarantee for the subsequent correct reception of the RMSI and the services provided by the cell.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is the schematic diagram of the Beam sweeping that the embodiment of this application provides;
  • FIG. 3 is a schematic diagram of an SSB provided by an embodiment of the present application.
  • Fig. 4 is the schematic diagram of the SSB burst set cycle that the embodiment of this application provides;
  • FIG. 5 is a schematic flowchart of a method for transmitting system information provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram 1 of the correspondence between the index of the RMSI PDCCH opportunity and the SSB index provided by the embodiment of the present application;
  • FIG. 7 is a schematic diagram 2 of the correspondence between the index of the RMSI PDCCH opportunity and the SSB index provided by the embodiment of the present application;
  • FIG. 8 is a schematic diagram 3 of a correspondence between an index of an RMSI PDCCH opportunity and an SSB index provided by an embodiment of the present application;
  • FIG. 9 is a schematic diagram 4 of the correspondence between the index of the RMSI PDCCH opportunity and the SSB index provided by the embodiment of the present application;
  • FIG. 10 is a schematic structural diagram of a system information transmission apparatus provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G communication systems or future communication systems etc.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or referred to as a communication terminal, a terminal).
  • the network device 110 may provide communication coverage for a particular geographic area and may communicate with terminals located within the coverage area.
  • the network device 110 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the
  • the network device can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, a wearable device, a hub, a switch, a bridge, a router, a network-side device in a 5G network, or a network device in a future communication system.
  • the communication system 100 also includes at least one terminal 120 located within the coverage of the network device 110 .
  • Terminal includes, but is not limited to, connections via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connections; and/or another data connection/network; and/or via a wireless interface, e.g. for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter; and/or a device of another terminal configured to receive/transmit a communication signal; and/or an Internet of Things (IoT) device.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • WLAN Wireless Local Area Networks
  • digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter
  • IoT Internet of Things
  • a terminal arranged to communicate through a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal” or “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular telephones; Personal Communications System (PCS) terminals that may combine cellular radio telephones with data processing, facsimile, and data communications capabilities; may include radio telephones, pagers, Internet/Intranet PDAs with networking access, web browsers, memo pads, calendars, and/or Global Positioning System (GPS) receivers; and conventional laptop and/or palmtop receivers or others including radiotelephone transceivers electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • a terminal may refer to an access terminal, user equipment (UE), subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks or terminals in future evolved PLMNs, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal (Device to Device, D2D) communication may be performed between the terminals 120 .
  • the 5G communication system or the 5G network may also be referred to as a new radio (New Radio, NR) system or an NR network.
  • New Radio NR
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminals. This embodiment of the present application This is not limited.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal 120 with a communication function, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here;
  • the device may further include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • 5G 3rd Generation Partnership Project
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra-Reliable Low-Latency Communications
  • mMTC Massive Machine-Type Communications
  • eMBB still aims at users' access to multimedia content, services and data, and its demand is growing rapidly.
  • eMBB since eMBB may be deployed in different scenarios, such as indoor, urban, rural, etc., its capabilities and requirements are also quite different, so it cannot be generalized and must be analyzed in detail in combination with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, power automation, telemedicine operations (surgery), traffic safety assurance, etc.
  • Typical features of mMTC include: high connection density, small data volume, latency-insensitive services, low cost and long service life of the module.
  • the synchronization signal of 5G is given in the form of SSB, including the primary synchronization signal (Primary Synchronisation Signal, PSS) and the secondary synchronization signal (Secondary Synchronisation Signal, SSS) , and a physical broadcast channel (Physical Broadcast Channel, PBCH), as shown in Figure 3.
  • PSS Primary Synchronisation Signal
  • SSS Secondary Synchronisation Signal
  • PBCH Physical Broadcast Channel
  • the actual number of beams transmitted in each cell is determined by the configuration on the network side, but the frequency point where the cell is located determines the maximum number of beams that can be configured, as shown in Table 1 below.
  • Frequency Range L (maximum number of beams) up to 3(2.4)GHz 4 3(2.4)GHz—6GHz 8 6GHz—52.6GHz 64
  • the maximum channel bandwidth can be 400MHZ (called a wideband carrier), which is very large compared to the maximum 20M bandwidth of LTE. If the terminal device remains operating on the broadband carrier, the power consumption of the terminal device is very large. Therefore, it is suggested that the radio frequency (RF) bandwidth of the terminal device can be adjusted according to the actual throughput of the terminal device.
  • the concept of BWP is introduced, and the motivation of BWP is to optimize the power consumption of terminal equipment. For example, if the rate of the terminal device is very low, a smaller BWP can be configured for the terminal device. If the rate requirement of the terminal device is very high, a larger BWP can be configured for the terminal device. If the terminal device supports a high rate, or works in a carrier aggregation (Carrier Aggregation, CA) mode, multiple BWPs can be configured for the terminal device.
  • Carrier Aggregation, CA Carrier Aggregation
  • the terminal device in the RRC idle state or the RRC inactive state resides on the initial BWP (initial BWP). This initial BWP is visible to the terminal device in the RRC idle state or the RRC inactive state.
  • the terminal device can obtain the system on the initial BWP. information, paging, etc.
  • a terminal can be configured with a maximum of 4 uplink BWPs and a maximum of 4 downlink BWPs through the dedicated signaling of Radio Resource Control (RRC), but only one uplink BWP and downlink BWP can be configured at the same time.
  • BWP is activated.
  • the first activated BWP among the configured BWPs may be indicated.
  • the terminal device when the terminal device is in the connected state, it can also switch between different BWPs through downlink control information (Downlink Control Information, DCI).
  • DCI Downlink Control Information
  • the terminal device needs to receive system information and paging within the common search space on the dedicated BWP.
  • the system information note includes a master information block (Master Information Block, MIB), a system information block (System Information Block) SIB1, and other SIBs (Other System Information, OSI).
  • MIB Master Information Block
  • SIB1 System Information Block
  • RMSI Remote System Information
  • SIB2 SIB3, SIB4, SIB5, SIB6, SIB7, SIB8, SIB9.
  • Table 2 presents the main contents of the information carried by each system.
  • MIB is transmitted on PBCH and forms SSB with PSS and SSS.
  • SIB1 that is, RMSI
  • OSI are transmitted through a Physical Downlink Shared Channel (PDSCH) in a dynamic scheduling manner.
  • the scheduled search space of the RMSI is generally configured through the MIB, that is, the common search space #0 (which may also be referred to as search space #0 for short).
  • the search space of OSI scheduling is configured through SIB1. If it is not configured, the same search space as RMSI is used by default, that is, search space #0.
  • the PDCCH of RMSI is referred to as RMSI PDCCH for short.
  • the configuration information of RMSI PDCCH is configured in MIB.
  • the multiplexing relationship between RMSI PDCCH and SSB includes multiplexing pattern 1 (multiplexing pattern 1), multiplexing pattern 2 (multiplexing pattern 2), Multiplexing pattern 3 (multiplexing pattern 3). So there is a one-to-one correspondence between RMSI PDCCH timing and SSB.
  • SI PDCCH The PDCCH of the OSI is abbreviated as SI PDCCH, and the configuration information of the SI PDCCH is configured in SIB1.
  • SIB1 if searchSpaceOtherSystemInformation is equal to 0 or not configured, the SI PDCCH uses the configuration information of the RMSI PDCCH by default.
  • SIB1 if searchSpaceOtherSystemInformation is not equal to 0, then:
  • SI PDCCH occasions are numbered consecutively from 1 within the SI window.
  • X the total number of SI PDCCH occasions in the SI window/N); wherein, CEIL is an upward rounding operation.
  • the search space of RMSI is the common search space #0
  • the mapping relationship between the RMSI PDCCH occasion and the SSB is specified.
  • the public search space is configured on the dedicated BWP
  • the search space of the RMSI is not the public search space #0, it is not clear how to receive the RMSI PDCCH on the dedicated BWP.
  • the technical solutions of the embodiments of the present application aim to determine the correspondence between the RMSI PDCCH timing and the SSB in the scenario where the public search space is configured on the dedicated BWP, and the RMSI search space is configured as a non-zero public search space, and based on The correspondence receives the RMSI PDCCH.
  • FIG. 5 is a schematic flowchart of a method for transmitting system information provided by an embodiment of the present application. As shown in FIG. 5 , the method for transmitting system information includes the following steps:
  • Step 501 The terminal device determines the correspondence between the RMSI PDCCH occasion and the SSB index, where the RMSI PDCCH occasion is used to transmit the RMSI PDCCH.
  • Step 502 The terminal device receives the RMSI PDCCH in the first search space on the dedicated BWP based on the correspondence between the RMSI PDCCH timing and the SSB index; wherein the first search space is on the dedicated BWP The configured non-zero common search space, the RMSI PDCCH timing is determined based on the configuration information of the first search space.
  • the RMSI PDCCH opportunity refers to the RMSI PDCCH opportunity
  • the RMSI PDCCH opportunity is used to transmit the RMSI PDCCH
  • the RMSI PDCCH is used to schedule the RMSI transmission
  • the RMSI PDCCH is used to carry the scheduling information of the RMSI.
  • the RMSI PDCCH occasion in the embodiment of the present application may also be referred to as an RMSI PDCCH monitoring occasion (PDCCH monitor occasion).
  • PDCCH monitor occasion RMSI PDCCH monitoring occasion
  • the RMSI transmission adopts the beam sweep mode transmission, in order to ensure that the terminal equipment correctly receives the RMSI, it needs to correctly receive the RMSI PDCCH that schedules the RMSI transmission. Therefore, it is necessary to determine the correspondence between the RMSI PDCCH timing and the SSB.
  • the concept of the RMSI window is introduced.
  • the terminal device acquires second configuration information, where the second configuration information is used to determine the RMSI window.
  • M the length corresponding to the RMSI window Number of SFNs.
  • the value of M is 16, and accordingly, the length of the RMSI window is the length of 16 consecutive SFNs.
  • the terminal device determines that the length of the RMSI window is an integer multiple of the RMSI repetition period.
  • the start boundary of the RMSI window is the start boundary of the first RMSI repetition period in the RMSI window, and all RMSI repetition periods in the RMSI window are arranged consecutively .
  • the length of the RMSI window is the RMSI period. In one example, the length of the RMSI window is 160ms. In one example, the RMSI repetition period is 20ms.
  • the following describes how to determine the correspondence between the RMSI PDCCH timing and the SSB in different situations.
  • the RMSI PDCCH occasions are numbered from 0.
  • the terminal device determines that the k-1 th RMSI PDCCH opportunity index in the RMSI window corresponds to the k th actual transmitted SSB; wherein, k is a positive integer greater than or equal to 1 and less than or equal to S; S is the actual transmitted SSB The actual transmitted SSBs are numbered from 1 in ascending order of the SSB index.
  • the terminal device determines that the S*n+k-1 th RMSI PDCCH opportunity index in the RMSI window corresponds to the kth actual kth of the n+1th repeated transmission.
  • the transmitted SSB where n is a positive integer greater than or equal to 0 and less than or equal to N-1, k is a positive integer greater than or equal to 1 and less than or equal to S; S is the number of SSBs actually transmitted, and the actual transmitted SSBs are based on SSBs
  • the indices are numbered from 1 in ascending order, and N is the number of times of repeated transmission of RMSI within the RMSI window.
  • the number corresponding to the Xth RMSI PDCCH opportunity index is X, in other words, the RMSI PDCCH opportunity index numbered X is the Xth RMSI PDCCH opportunity index.
  • the RMSI repetition period is 20ms.
  • the RMSI PDCCH occasions are numbered sequentially from 0.
  • the correspondence between the RMSI PDCCH occasion and the actually transmitted SSB is: the k-1 th RMSI PDCCH occasion index corresponds to the k th actual transmitted SSB; the S*n+k-1 th RMSI PDCCH occasion index corresponds to the n th +1 The k-th SSB of repeated transmission corresponds to the SSB actually transmitted.
  • the actually transmitted SSBs are numbered from 1 in ascending order of the SSB indices.
  • the first RMSI PDCCH opportunity index corresponds to the second actually transmitted SSB, or in other words, the RMSI PDCCH opportunity index numbered 1 corresponds to the SSB numbered 2.
  • the fifth RMSI PDCCH opportunity index corresponds to the second actually transmitted SSB, or in other words, the RMSI PDCCH opportunity index numbered 5 corresponds to the RMSI PDCCH opportunity index numbered 2.
  • SSB corresponds.
  • the RMSI PDCCH occasions are numbered from 1.
  • the terminal device determines that the kth RMSI PDCCH opportunity index in the RMSI repetition period corresponds to the kth actual transmitted SSB; wherein, k is a positive integer greater than or equal to 1 and less than or equal to S; S is the actual transmitted SSB The number of actually transmitted SSBs is numbered from 1 in ascending order of the SSB index.
  • the terminal device determines that the S*n+k th RMSI PDCCH opportunity index in the RMSI window corresponds to the kth actual transmission of the n+1th repeated transmission.
  • SSB where n is a positive integer greater than or equal to 0 and less than or equal to N-1, k is a positive integer greater than or equal to 1 and less than or equal to S; S is the number of SSBs actually transmitted, and the actual transmitted SSBs are in ascending order of SSB index Numbering starts from 1, and N is the number of times of repeated transmission of RMSI within the RMSI window.
  • the number corresponding to the Xth RMSI PDCCH opportunity index is X, in other words, the RMSI PDCCH opportunity index numbered X is the Xth RMSI PDCCH opportunity index.
  • the RMSI repetition period is 20ms.
  • the RMSI PDCCH occasions are numbered sequentially from 1.
  • the correspondence between the RMSI PDCCH opportunity and the actually transmitted SSB is: the kth RMSI PDCCH opportunity index corresponds to the kth actual transmitted SSB; the S*n+kth RMSI PDCCH opportunity index corresponds to the n+1th repetition
  • the transmitted kth SSB corresponds to the actual transmitted SSB.
  • the actually transmitted SSBs are numbered from 1 in ascending order of the SSB indices.
  • the second RMSI PDCCH opportunity index corresponds to the second actually transmitted SSB, or in other words, the RMSI PDCCH opportunity index numbered 2 corresponds to the SSB numbered 2.
  • the sixth RMSI PDCCH opportunity index corresponds to the second actually transmitted SSB, or in other words, the RMSI PDCCH opportunity index numbered 6 corresponds to the RMSI PDCCH opportunity index numbered 2 SSB corresponds.
  • the RMSI PDCCH occasions are numbered from 0 within each RMSI repetition period within the RMSI window.
  • the terminal device determines that the k-1 th RMSI PDCCH opportunity index in the RMSI repetition period corresponds to the k th actual transmitted SSB; wherein, k is a positive integer greater than or equal to 1 and less than or equal to S; S is the actual transmitted SSB; The number of SSBs.
  • the actually transmitted SSBs are numbered from 1 in ascending order of the SSB index.
  • the number corresponding to the Xth RMSI PDCCH opportunity index is X, in other words, the RMSI PDCCH opportunity index numbered X is the Xth RMSI PDCCH opportunity index.
  • the RMSI repetition period is 20ms.
  • the RMSI PDCCH occasions are numbered sequentially from 0.
  • the correspondence between the RMSI PDCCH opportunity and the actually transmitted SSB is: the k-1 th RMSI PDCCH opportunity index corresponds to the k th actual transmitted SSB, wherein the actual transmitted SSB is based on the SSB index Ascending numbers start at 1.
  • the second RMSI PDCCH opportunity index corresponds to the third actually transmitted SSB, or in other words, the RMSI PDCCH opportunity index numbered 2 corresponds to the SSB numbered 3.
  • the RMSI PDCCH occasions are numbered from 1 in each RMSI repetition period within the RMSI window.
  • the terminal device determines that the kth RMSI PDCCH opportunity index in the RMSI repetition period corresponds to the kth actual transmitted SSB; wherein, k is a positive integer greater than or equal to 1 and less than or equal to S; S is the actual transmitted SSB The number of actually transmitted SSBs is numbered from 1 in ascending order of the SSB index.
  • the number corresponding to the Xth RMSI PDCCH opportunity index is X, in other words, the RMSI PDCCH opportunity index numbered X is the Xth RMSI PDCCH opportunity index.
  • the RMSI repetition period is 20ms.
  • the RMSI PDCCH occasions are numbered sequentially from 1.
  • the corresponding relationship between the RMSI PDCCH opportunity and the actually transmitted SSB is: the kth RMSI PDCCH opportunity index corresponds to the kth actual transmitted SSB, wherein the actually transmitted SSBs are in ascending order from the SSB index. 1 to start numbering.
  • the second RMSI PDCCH opportunity index corresponds to the second actually transmitted SSB, or in other words, the RMSI PDCCH opportunity index numbered 2 corresponds to the SSB numbered 2.
  • the terminal device acquires first configuration information, where the first configuration information is used to determine the RMSI repetition period, wherein the first configuration information is determined based on a protocol or through a network device configuration.
  • the RMSI repetition period may be 20ms.
  • the above-mentioned solution of "determining the correspondence between the RMSI PDCCH timing and the SSB index" in the embodiment of the present application can also be applied to the network device side (such as the base station side), so that the network device can send the RMSI PDCCH according to the corresponding relationship. .
  • FIG. 10 is a schematic structural diagram of a system information transmission apparatus provided by an embodiment of the present application, which is applied to terminal equipment. As shown in FIG. 10 , the system information transmission apparatus includes:
  • a determining unit 1001 configured to determine the correspondence between the RMSI PDCCH occasion and the SSB index, where the RMSI PDCCH occasion is used to transmit the RMSI PDCCH;
  • a receiving unit 1002 configured to receive an RMSI PDCCH in a first search space on a dedicated BWP based on the correspondence between the RMSI PDCCH opportunity and the SSB index; wherein the first search space is configured on the dedicated BWP The non-zero common search space, the RMSI PDCCH timing is determined based on the configuration information of the first search space.
  • the RMSI PDCCH occasions are numbered from 0.
  • the determining unit 1001 is configured to determine the k-1 th RMSI PDCCH opportunity index in the RMSI window corresponds to the k th actual transmitted SSB;
  • k is a positive integer greater than or equal to 1 and less than or equal to S;
  • S is the number of SSBs actually transmitted, and the SSBs actually transmitted are numbered from 1 in ascending order of SSB indices.
  • the determining unit 1001 is configured to determine that the S*n+k-1 th RMSI PDCCH opportunity index in the RMSI window corresponds to the k th of the n+1 th repeated transmission The actual transmitted SSB;
  • n is a positive integer greater than or equal to 0 and less than or equal to N-1
  • k is a positive integer greater than or equal to 1 and less than or equal to S
  • S is the number of SSBs actually transmitted, and the actually transmitted SSBs are in ascending order of SSB index from 1 Start number
  • N is the number of times of repeated transmission of RMSI within the RMSI window.
  • the RMSI PDCCH occasions are numbered from 1.
  • the determining unit 1001 is configured to determine that the kth RMSI PDCCH opportunity index in the RMSI window corresponds to the kth actually transmitted SSB;
  • k is a positive integer greater than or equal to 1 and less than or equal to S;
  • S is the number of actually transmitted SSBs, and the actually transmitted SSBs are numbered from 1 in ascending order of SSB indices.
  • the determining unit 1001 is configured to determine the kth actual transmission of the S*n+kth RMSI PDCCH opportunity index corresponding to the n+1th repeated transmission in the RMSI window SSB;
  • n is a positive integer greater than or equal to 0 and less than or equal to N-1
  • k is a positive integer greater than or equal to 1 and less than or equal to S
  • S is the number of SSBs actually transmitted, and the actually transmitted SSBs are in ascending order of SSB index from 1 Start number
  • N is the number of times of repeated transmission of RMSI within the RMSI window.
  • the value of N satisfies the following formula:
  • N CEIL (the total number of RMSI PDCCH occasions in the RMSI window/S); wherein, CEIL is a round-up operation.
  • the RMSI PDCCH occasions are numbered from 0.
  • the determining unit 1001 is configured to determine the k-1 th RMSI PDCCH opportunity index in the RMSI repetition period corresponds to the k th actual transmitted SSB;
  • k is a positive integer greater than or equal to 1 and less than or equal to S;
  • S is the number of SSBs actually transmitted, and the SSBs actually transmitted are numbered from 1 in ascending order of SSB indices.
  • the RMSI PDCCH occasions are numbered from 1.
  • the determining unit 1001 is configured to determine that the kth RMSI PDCCH opportunity index in the RMSI repetition period corresponds to the kth actually transmitted SSB;
  • k is a positive integer greater than or equal to 1 and less than or equal to S;
  • S is the number of SSBs actually transmitted, and the SSBs actually transmitted are numbered from 1 in ascending order of SSB indices.
  • the device further includes:
  • An acquiring unit configured to acquire first configuration information, where the first configuration information is used to determine the RMSI repetition period, wherein the first configuration information is determined based on a protocol or configured through a network device.
  • the device further includes:
  • an obtaining unit configured to obtain second configuration information, where the second configuration information is used to determine the RMSI window.
  • the determining unit 1001 is further configured to determine that the starting SFN of the RMSI window is an SFN that satisfies the following formula:
  • SFN mod M 0; where mod is the remainder operation, and M is the number of SFNs corresponding to the length of the RMSI window.
  • the value of M is 16, and correspondingly, the length of the RMSI window is the length of 16 consecutive SFNs.
  • the determining unit 1001 is further configured to determine that the length of the RMSI window is an integer multiple of the RMSI repetition period.
  • the start boundary of the RMSI window is the start boundary of the first RMSI repetition period in the RMSI window, and all RMSI repetition periods in the RMSI window are arranged consecutively .
  • FIG. 11 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 1100 shown in FIG. 11 includes a processor 1110, and the processor 1110 can call and run a computer program from a memory to implement the methods in the embodiments of the present application.
  • the communication device 1100 may further include a memory 1120 .
  • the processor 1110 may call and run a computer program from the memory 1120 to implement the methods in the embodiments of the present application.
  • the memory 1120 may be a separate device independent of the processor 1110, or may be integrated in the processor 1110.
  • the communication device 1100 may further include a transceiver 1130, and the processor 1110 may control the transceiver 1130 to communicate with other devices, specifically, may send information or data to other devices, or receive other devices Information or data sent by the device.
  • the processor 1110 may control the transceiver 1130 to communicate with other devices, specifically, may send information or data to other devices, or receive other devices Information or data sent by the device.
  • the transceiver 1130 may include a transmitter and a receiver.
  • the transceiver 1130 may further include an antenna, and the number of the antenna may be one or more.
  • the communication device 1100 may specifically be a network device in this embodiment of the present application, and the communication device 1100 may implement the corresponding processes implemented by the network device in each method in the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 1100 may specifically be the mobile terminal/terminal device of the embodiments of the present application, and the communication device 1100 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and will not be repeated here.
  • FIG. 12 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1200 shown in FIG. 12 includes a processor 1210, and the processor 1210 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 1200 may further include a memory 1220 .
  • the processor 1210 may call and run a computer program from the memory 1220 to implement the methods in the embodiments of the present application.
  • the memory 1220 may be a separate device independent of the processor 1210, or may be integrated in the processor 1210.
  • the chip 1200 may further include an input interface 1230 .
  • the processor 1210 can control the input interface 1230 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1200 may further include an output interface 1240 .
  • the processor 1210 may control the output interface 1240 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • FIG. 13 is a schematic block diagram of a communication system 1300 provided by an embodiment of the present application. As shown in FIG. 13 , the communication system 1300 includes a terminal device 1310 and a network device 1320 .
  • the terminal device 1310 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 1320 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here. .
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , for brevity, will not be repeated here.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • the computer program may be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program is run on the computer, the mobile terminal/terminal device implements the various methods of the computer program in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种系统信息的传输方法及装置、终端设备,该方法包括:终端设备确定RMSI PDCCH时机和SSB索引之间的对应关系,所述RMSI PDCCH时机用于传输RMSI PDCCH;所述终端设备基于所述RMSI PDCCH时机和SSB索引之间的对应关系,在专用BWP上的第一搜索空间内接收RMSI PDCCH;其中,所述第一搜索空间为所述专用BWP上配置的非0公共搜索空间,所述RMSI PDCCH时机基于所述第一搜索空间的配置信息确定。

Description

一种系统信息的传输方法及装置、终端设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种系统信息的传输方法及装置、终端设备。
背景技术
目前,如果专用带宽部分(Band Width Part,BWP)上配置了公共搜索空间,则终端设备需要在公共搜索空间内接收系统信息。
一个比较重要的系统信息是剩余最小系统信息(Remaining Minimum System Information,RMSI)。对于RMSI来说,规定了搜索空间为0公共搜索空间(公共搜索空间#0)的时候,如何接收RMSI的物理下行控制信道(Physical Downlink Control Channel,PDCCH),简称为RMSI PDCCH。而对于专用BWP上配置了公共搜索空间,且RMSI的搜索空间不是0公共搜索空间的场景下,如何在该专用BWP上接收RMSI PDCCH是不明确的。
发明内容
本申请实施例提供一种系统信息的传输方法及装置、终端设备。
本申请实施例提供的系统信息的传输方法,包括:
终端设备确定RMSI PDCCH时机和同步信号块(SS/PBCH Block,SSB)索引之间的对应关系,所述RMSI PDCCH时机用于传输RMSI PDCCH;
所述终端设备基于所述RMSI PDCCH时机和SSB索引之间的对应关系,在专用BWP上的第一搜索空间内接收RMSI PDCCH;其中,所述第一搜索空间为所述专用BWP上配置的非0公共搜索空间,所述RMSI PDCCH时机基于所述第一搜索空间的配置信息确定。
本申请实施例提供的系统信息的传输装置,应用于终端设备,所述装置包括:
确定单元,用于确定RMSI PDCCH时机和SSB索引之间的对应关系,所述RMSI PDCCH时机用于传输RMSI PDCCH;
接收单元,用于基于所述RMSI PDCCH时机和SSB索引之间的对应关系,在专用BWP上的第一搜索空间内接收RMSI PDCCH;其中,所述第一搜索空间为所述专用BWP上配置的非0公共搜索空间,所述RMSI PDCCH时机基于所述第一搜索空间的配置信息确定。
本申请实施例提供的终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的系统信息的传输方法。
本申请实施例提供的芯片,用于实现上述的系统信息的传输方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的系统信息的传输方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的系统信息的传输方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的系统信息的传输方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的系统信息的传输方法。
通过上述技术方案,在专用BWP上配置了公共搜索空间,且RMSI的搜索空间为非0公共搜索空间的情况下,终端设备可以明确RMSI PDCCH时机和SSB索引之间的对应关系,由于SSB索引与波束之间具有关联关系,因而终端设备可以确定出RMSI PDCCH时机和波束之间的对应关系,从而基于该对应关系在专用BWP上的非0公共搜索空间内接收RMSI PDCCH,确保了终端设备在正确的位置(即通过正确的波束)接收RMSI PDCCH,为后续正确接收RMSI以及获得小区提供的服务提供了保障。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2为本申请实施例提供的Beam sweeping的示意图;
图3为本申请实施例提供的SSB的示意图;
图4为本申请实施例提供的SSB burst set周期的示意图;
图5是本申请实施例提供的系统信息的传输方法的流程示意图;
图6是本申请实施例提供的RMSI PDCCH时机的索引和SSB索引之间的对应关系示意图一;
图7是本申请实施例提供的RMSI PDCCH时机的索引和SSB索引之间的对应关系示意图二;
图8是本申请实施例提供的RMSI PDCCH时机的索引和SSB索引之间的对应关系示意图三;
图9是本申请实施例提供的RMSI PDCCH时机的索引和SSB索引之间的对应关系示意图四;
图10是本申请实施例提供的系统信息的传输装置的结构组成示意图;
图11是本申请实施例提供的一种通信设备示意性结构图;
图12是本申请实施例的芯片的示意性结构图;
图13是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、系统、5G通信系统或未来的通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信系统中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户 设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G通信系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例相关的技术方案进行说明。
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此第三代合作伙伴计划(3 rd Generation Partnership Project,3GPP)国际标准组织开始研发5G。5G的主要应用场景为:增强移动超宽带(enhanced Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable Low-Latency Communications,URLLC)、大规模机器类通信(massive Machine-Type Communications,mMTC)。
一方面,eMBB仍然以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。另一方面,由于eMBB可能部署在不同的场景中,例如室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而 论,必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
在NR早期部署时,完整的NR覆盖很难获取,所以典型的网络覆盖是广域的LTE覆盖和NR的孤岛覆盖模式。而且大量的LTE部署在6GHz以下,可用于5G的6GHz以下频谱很少。所以NR必须研究6GHz以上的频谱应用,而高频段覆盖有限、信号衰落快。同时为了保护移动运营商前期在LTE投资,提出了LTE和NR之间紧耦合(tight interworking)的工作模式。
NR将来会部署在高频上,为了提高覆盖,在5G中,通过引入波束扫描(beam sweeping)的机制来满足覆盖的需求(用空间换覆盖,用时间换空间),如图2所示。在引入beam sweeping后,每个波束方向上都需要发送同步信号,5G的同步信号以SSB的形式给出,包含主同步信号(Primary Synchronisation Signal,PSS)、辅同步信号(Secondary Synchronisation Signal,SSS)、和物理广播信道(Physical Broadcast Channel,PBCH),如图3所示。5G的同步信号以同步信号突发组(SS burst set)的形式在时域上周期性出现,如图4所示。
每个小区的实际传输的beam个数通过网络侧配置来确定,但是小区所在的频点决定了可以配置最多的beam个数,如下表1所示。
频率范围 L(最多的beam个数)
up to 3(2.4)GHz 4
3(2.4)GHz—6GHz 8
6GHz—52.6GHz 64
表1
在5G中,最大的信道带宽可以是400MHZ(称为宽带载波(wideband carrier)),相比于LTE最大20M带宽来说,宽带载波的带宽很大。如果终端设备保持工作在宽带载波上,则终端设备的功率消耗非常大。所以建议终端设备的射频(Radio Frequency,RF)带宽可以根据终端设备实际的吞吐量来调整。为此,引入BWP的概念,BWP的动机是优化终端设备的功率消耗。例如终端设备的速率很低,可以给终端设备配置小一点的BWP,如果终端设备的速率要求很高,则可以给终端设备配置大一点的BWP。如果终端设备支持高速率,或者工作在载波聚合(Carrier Aggregation,CA)模式下,可以给终端设备配置多个BWP。
RRC空闲状态或者RRC非激活状态的终端设备驻留在初始BWP(initial BWP)上,这个初始BWP对于RRC空闲状态或者RRC非激活状 态的终端设备是可见的,终端设备可以在初始BWP上获取系统信息、寻呼(paging)等信息。
对于RRC连接状态的终端设备,通过无线资源控制(Radio Resource Control,RRC)专用信令可以给一个终端配置最多4个上行BWP和最多4个下行BWP,但同一时刻只能有一个上行BWP和下行BWP被激活。在RRC专用信令中,可以指示所配置的BWP中第一个激活的BWP。同时在终端设备处于连接态过程中,也可以通过下行控制信息(Downlink Control Information,DCI)在不同的BWP之间切换。当处于非激活状态的载波进入激活状态后,第一个激活的BWP为RRC专用信令中配置的第一个激活的BWP。
如果在专用BWP上配置了公共搜索空间,则终端设备需要在该专用BWP上的公共搜索空间内接收系统信息和寻呼。
在NR中,系统信息注意包括主信息块(Master Information Block,MIB)、系统信息块(System Information Block)SIB1以及其他SIB(Other System Information,OSI)。其中,MIB也称为最小系统信息(Minimum System Information,MSI),SIB1也称为RMSI。进一步,其他SIB包括:SIB2、SIB3、SIB4、SIB5、SIB6、SIB7、SIB8、SIB9。以下表2给出了各个系统信息承载的主要内容。
Figure PCTCN2021091656-appb-000001
表2
MIB在PBCH上传输,与PSS和SSS组成SSB。SIB1(即RMSI)和OSI采用动态调度的方式通过物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输。RMSI的调度的搜索空间一般通过MIB配置,即公共搜索空间#0(也可以简称为搜索空间#0)。OSI的调度的搜索空间通过SIB1配置,如果没有配置则默认使用和RMSI相同的搜索空间,即搜索空间#0。
由于NR中采用波束扫描方式传输。所以RMSI和OSI也是采用波束扫描方式传输,需要说明的是,终端设备假定SSB和RMSI PDCCH,OSI  PDCCH是准供址(QCL)的。
RMSI的PDCCH,简称为RMSI PDCCH,RMSI PDCCH的配置信息在MIB中配置,RMSI PDCCH和SSB之间的复用关系有复用图样1(multiplexing pattern 1),复用图样2(multiplexing pattern 2),复用图样3(multiplexing pattern 3)。所以RMSI PDCCH时机和SSB之间有一对一的对应关系。
OSI的PDCCH,简称为SI PDCCH,SI PDCCH的配置信息在SIB1中配置。1)在SIB1中如果searchSpaceOtherSystemInformation等于0或者不配置,则SI PDCCH默认使用RMSI PDCCH的配置信息。2)在SIB1中如果searchSpaceOtherSystemInformation不等于0,则:
I)SI PDCCH时机在SI窗口内从1连续编号。
II)第[x*N+K]个SI PDCCH时机对应第K个实际传输的SSB;其中,x=0,1,...X-1,K=1,2,…N;X为SI窗口内重复传输的SI的次数,N是实际传输的SSB的个数。
这里,X的取值满足以下公式:X=CEIL(SI窗口内的SI PDCCH时机的总数/N);其中,CEIL为向上取整运算。
目前,只规定了RMSI的搜索空间为公共搜索空间#0的时候,RMSI PDCCH时机和SSB之间的映射关系。而对于专用BWP上配置了公共搜索空间,且RMSI的搜索空间不是公共搜索空间#0的场景下,如何在该专用BWP上接收RMSI PDCCH是不明确的。
为此,提出了本申请实施例的以下技术方案。本申请实施例的技术方案旨在对于专用BWP上配置了公共搜索空间,且RMSI的搜索空间被配置为非0公共搜索空间的场景下,确定RMSI PDCCH时机和SSB之间的对应关系,并基于该对应关系接收RMSI PDCCH。
图5是本申请实施例提供的系统信息的传输方法的流程示意图,如图5所示,所述系统信息的传输方法包括以下步骤:
步骤501:终端设备确定RMSI PDCCH时机和SSB索引之间的对应关系,所述RMSI PDCCH时机用于传输RMSI PDCCH。
步骤502:所述终端设备基于所述RMSI PDCCH时机和SSB索引之间的对应关系,在专用BWP上的第一搜索空间内接收RMSI PDCCH;其中,所述第一搜索空间为所述专用BWP上配置的非0公共搜索空间,所述RMSI PDCCH时机基于所述第一搜索空间的配置信息确定。
本申请实施例中,RMSI PDCCH时机是指RMSI PDCCH时机,RMSI PDCCH时机用于传输RMSI PDCCH,RMSI PDCCH用于调度RMSI传输,或者说RMSI PDCCH用于承载RMSI的调度信息。
需要说明的是,本申请实施例中的RMSI PDCCH时机也可以称为RMSI PDCCH监听时机(PDCCH monitor occasion)。
本申请实施例中,RMSI传输采用beam sweep方式传输,为了保证终 端设备正确接收RMSI,需要正确接收调度RMSI传输的RMSI PDCCH,因此,需要确定RMSI PDCCH时机与SSB之间的对应关系。这里,在确定RMSI PDCCH时机与SSB之间的对应关系之前,引入RMSI窗口的概念。
在本申请一些可选实施方式中,所述终端设备获取第二配置信息,所述第二配置信息用于确定所述RMSI窗口。
在本申请一些可选实施方式中,所述终端设备确定RMSI窗口的起始SFN为满足以下公式的SFN:SFN mod M=0;其中,mod为取余运算,M为RMSI窗口的长度对应的SFN个数。作为示例,所述M的取值为16,相应地,RMSI窗口的长度为16个连续SFN的长度。
在本申请一些可选实施方式中,所述终端设备确定所述RMSI窗口的长度是RMSI重复周期的整数倍。
在本申请一些可选实施方式中,在一个所述RMSI窗口内,RMSI窗口的起始边界为该RMSI窗口内第一个RMSI重复周期的起始边界,RMSI窗口内的所有RMSI重复周期连续排列。
需要说明的是,RMSI窗口的长度,也即是RMSI周期。在一个示例中,RMSI窗口的长度为160ms。在一个示例中,RMSI重复周期为20ms。
以下分情况对如何确定RMSI PDCCH时机与SSB之间的对应关系进行说明。
情况一
在RMSI窗口内,所述RMSI PDCCH时机从0开始编号。所述终端设备确定所述RMSI窗口内的第k-1个RMSI PDCCH时机索引对应第k个实际传输的SSB;其中,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号。
进一步,对于RMSI窗口内有RMSI重复传输的情况,所述终端设备确定所述RMSI窗口内的第S*n+k-1个RMSI PDCCH时机索引对应第n+1次重复传输的第k个实际传输的SSB;其中,n为大于等于0且小于等于N-1的正整数,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号,N为所述RMSI窗口内重复传输的RMSI的次数。
在一些可选实施方式中,所述N的取值满足以下公式:N=CEIL(RMSI窗口内的RMSI PDCCH时机的总数/S);其中,CEIL为向上取整运算。举个例子:RMSI窗口内的RMSI PDCCH时机的总数为12,S为4,那么,N的取值为3。
需要说明的是,第X个RMSI PDCCH时机索引对应的编号为X,换句话说,编号为X的RMSI PDCCH时机索引为第X个RMSI PDCCH时机索引。
举个例子:参照图6,RMSI窗口的长度为160ms,即16个连续SFN 的长度,RMSI窗口的起始SFN为满足公式SFN mod 16=0的SFN。RMSI重复周期为20ms。对于RMSI窗口内,RMSI PDCCH时机从0开始顺序编号。RMSI PDCCH时机和实际传输的SSB之间的对应关系为:第k-1个RMSI PDCCH时机索引和第k个实际传输的SSB对应;第S*n+k-1个RMSI PDCCH时机索引和第n+1次重复传输的第k个SSB实际传输的SSB对应。其中,实际传输的SSB按照SSB索引升序从1开始编号。
例如:k=2,那么,第1个RMSI PDCCH时机索引和第2个实际传输的SSB对应,或者说,编号为1的RMSI PDCCH时机索引和编号为2的SSB对应。
再例如:n=1,S=4,k=2,那么,第5个RMSI PDCCH时机索引和第2个实际传输的SSB对应,或者说,编号为5的RMSI PDCCH时机索引和编号为2的SSB对应。
情况二
在RMSI窗口内,所述RMSI PDCCH时机从1开始编号。所述终端设备确定所述RMSI重复周期内的第k个RMSI PDCCH时机索引对应第k个实际传输的SSB;其中,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号。
进一步,对于RMSI窗口内有RMSI重复传输的情况,所述终端设备确定所述RMSI窗口内的第S*n+k个RMSI PDCCH时机索引对应第n+1次重复传输的第k个实际传输的SSB;其中,n为大于等于0且小于等于N-1的正整数,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号,N为所述RMSI窗口内重复传输的RMSI的次数。
在一些可选实施方式中,所述N的取值满足以下公式:N=CEIL(RMSI窗口内的RMSI PDCCH时机的总数/S);其中,CEIL为向上取整运算。举个例子:RMSI窗口内的RMSI PDCCH时机的总数为12,S为4,那么,N的取值为3。
需要说明的是,第X个RMSI PDCCH时机索引对应的编号为X,换句话说,编号为X的RMSI PDCCH时机索引为第X个RMSI PDCCH时机索引。
举个例子:参照图7,RMSI窗口的长度为160ms,即16个连续SFN的长度,RMSI窗口的起始SFN为满足公式SFN mod 16=0的SFN。RMSI重复周期为20ms。对于RMSI窗口内,RMSI PDCCH时机从1开始顺序编号。RMSI PDCCH时机和实际传输的SSB之间的对应关系为:第k个RMSI PDCCH时机索引和第k个实际传输的SSB对应;第S*n+k个RMSI PDCCH时机索引和第n+1次重复传输的第k个SSB实际传输的SSB对应。其中,实际传输的SSB按照SSB索引升序从1开始编号。
例如:k=2,那么,第2个RMSI PDCCH时机索引和第2个实际传输的SSB对应,或者说,编号为2的RMSI PDCCH时机索引和编号为2的SSB对应。
再例如:n=1,S=4,k=2,那么,第6个RMSI PDCCH时机索引和第2个实际传输的SSB对应,或者说,编号为6的RMSI PDCCH时机索引和编号为2的SSB对应。
情况三
在RMSI窗口内的每个RMSI重复周期内,所述RMSI PDCCH时机从0开始编号。所述终端设备确定所述RMSI重复周期内的第k-1个RMSI PDCCH时机索引对应第k个实际传输的SSB;其中,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号。
需要说明的是,第X个RMSI PDCCH时机索引对应的编号为X,换句话说,编号为X的RMSI PDCCH时机索引为第X个RMSI PDCCH时机索引。
举个例子:参照图8,RMSI窗口的长度为160ms,即16个连续SFN的长度,RMSI窗口的起始SFN为满足公式SFN mod 16=0的SFN。RMSI重复周期为20ms。对于RMSI窗口内的每个RMSI重复周期内,RMSI PDCCH时机从0开始顺序编号。每个RMSI重复周期内,RMSI PDCCH时机和实际传输的SSB之间的对应关系为:第k-1个RMSI PDCCH时机索引和第k个实际传输的SSB对应,其中,实际传输的SSB按照SSB索引升序从1开始编号。
例如:k=2,那么,第2个RMSI PDCCH时机索引和第3个实际传输的SSB对应,或者说,编号为2的RMSI PDCCH时机索引和编号为3的SSB对应。
情况四
在RMSI窗口内的每个RMSI重复周期内,所述RMSI PDCCH时机从1开始编号。所述终端设备确定所述RMSI重复周期内的第k个RMSI PDCCH时机索引对应第k个实际传输的SSB;其中,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号。
需要说明的是,第X个RMSI PDCCH时机索引对应的编号为X,换句话说,编号为X的RMSI PDCCH时机索引为第X个RMSI PDCCH时机索引。
举个例子:参照图9,RMSI窗口的长度为160ms,即16个连续SFN的长度,RMSI窗口的起始SFN为满足公式SFN mod 16=0的SFN。RMSI重复周期为20ms。对于RMSI窗口内的每个RMSI重复周期内,RMSI PDCCH时机从1开始顺序编号。每个RMSI重复周期内,RMSI PDCCH时 机和实际传输的SSB之间的对应关系为:第k个RMSI PDCCH时机索引和第k个实际传输的SSB对应,其中,实际传输的SSB按照SSB索引升序从1开始编号。
例如:k=2,那么,第2个RMSI PDCCH时机索引和第2个实际传输的SSB对应,或者说,编号为2的RMSI PDCCH时机索引和编号为2的SSB对应。
在本申请一些可选实施方式中,所述终端设备获取第一配置信息,所述第一配置信息用于确定所述RMSI重复周期,其中,所述第一配置信息基于协议确定或者通过网络设备配置。作为示例,所述RMSI重复周期可以是20ms。
需要说明的是,本申请实施例上述“确定RMSI PDCCH时机和SSB索引之间的对应关系”的方案也可以应用于网络设备侧(如基站侧),从而网络设备可以根据该对应关系发送RMSI PDCCH。
图10是本申请实施例提供的系统信息的传输装置的结构组成示意图,应用于终端设备,如图10所示,所述系统信息的传输装置包括:
确定单元1001,用于确定RMSI PDCCH时机和SSB索引之间的对应关系,所述RMSI PDCCH时机用于传输RMSI PDCCH;
接收单元1002,用于基于所述RMSI PDCCH时机和SSB索引之间的对应关系,在专用BWP上的第一搜索空间内接收RMSI PDCCH;其中,所述第一搜索空间为所述专用BWP上配置的非0公共搜索空间,所述RMSI PDCCH时机基于所述第一搜索空间的配置信息确定。
在本申请一些可选实施方式中,在RMSI窗口内,所述RMSI PDCCH时机从0开始编号。
在本申请一些可选实施方式中,所述确定单元1001,用于确定所述RMSI窗口内的第k-1个RMSI PDCCH时机索引对应第k个实际传输的SSB;
其中,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号。
在本申请一些可选实施方式中,所述确定单元1001,用于确定所述RMSI窗口内的第S*n+k-1个RMSI PDCCH时机索引对应第n+1次重复传输的第k个实际传输的SSB;
其中,n为大于等于0且小于等于N-1的正整数,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号,N为所述RMSI窗口内重复传输的RMSI的次数。
在本申请一些可选实施方式中,在RMSI窗口内,所述RMSI PDCCH时机从1开始编号。
在本申请一些可选实施方式中,所述确定单元1001,用于确定所述 RMSI窗口内的第k个RMSI PDCCH时机索引对应第k个实际传输的SSB;
其中,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号。
在本申请一些可选实施方式中,所述确定单元1001,用于确定所述RMSI窗口内的第S*n+k个RMSI PDCCH时机索引对应第n+1次重复传输的第k个实际传输的SSB;
其中,n为大于等于0且小于等于N-1的正整数,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号,N为所述RMSI窗口内重复传输的RMSI的次数。
在本申请一些可选实施方式中,所述N的取值满足以下公式:
N=CEIL(RMSI窗口内的RMSI PDCCH时机的总数/S);其中,CEIL为向上取整运算。
在本申请一些可选实施方式中,在RMSI窗口内的每个RMSI重复周期内,所述RMSI PDCCH时机从0开始编号。
在本申请一些可选实施方式中,所述确定单元1001,用于确定所述RMSI重复周期内的第k-1个RMSI PDCCH时机索引对应第k个实际传输的SSB;
其中,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号。
在本申请一些可选实施方式中,在RMSI窗口内的每个RMSI重复周期内,所述RMSI PDCCH时机从1开始编号。
在本申请一些可选实施方式中,所述确定单元1001,用于确定所述RMSI重复周期内的第k个RMSI PDCCH时机索引对应第k个实际传输的SSB;
其中,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号。
在本申请一些可选实施方式中,所述装置还包括:
获取单元,用于获取第一配置信息,所述第一配置信息用于确定所述RMSI重复周期,其中,所述第一配置信息基于协议确定或者通过网络设备配置。
在本申请一些可选实施方式中,所述装置还包括:
获取单元,用于获取第二配置信息,所述第二配置信息用于确定所述RMSI窗口。
在本申请一些可选实施方式中,所述确定单元1001,还用于确定RMSI窗口的起始SFN为满足以下公式的SFN:
SFN mod M=0;其中,mod为取余运算,M为RMSI窗口的长度对 应的SFN个数。
在本申请一些可选实施方式中,所述M的取值为16,相应地,RMSI窗口的长度为16个连续SFN的长度。
在本申请一些可选实施方式中,所述确定单元1001,还用于确定所述RMSI窗口的长度是RMSI重复周期的整数倍。
在本申请一些可选实施方式中,在一个所述RMSI窗口内,RMSI窗口的起始边界为该RMSI窗口内第一个RMSI重复周期的起始边界,RMSI窗口内的所有RMSI重复周期连续排列。
本领域技术人员应当理解,本申请实施例的上述系统信息的传输装置的相关描述可以参照本申请实施例的系统信息的传输方法的相关描述进行理解。
图11是本申请实施例提供的一种通信设备600示意性结构图。该通信设备可以是终端设备,也可以是网络设备,图11所示的通信设备1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,通信设备1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
可选地,如图11所示,通信设备1100还可以包括收发器1130,处理器1110可以控制该收发器1130与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1130可以包括发射机和接收机。收发器1130还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1100具体可为本申请实施例的网络设备,并且该通信设备1100可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1100具体可为本申请实施例的移动终端/终端设备,并且该通信设备1100可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例的芯片的示意性结构图。图12所示的芯片1200包括处理器1210,处理器1210可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,芯片1200还可以包括存储器1220。其中,处理器1210可以从存储器1220中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1220可以是独立于处理器1210的一个单独的器件,也 可以集成在处理器1210中。
可选地,该芯片1200还可以包括输入接口1230。其中,处理器1210可以控制该输入接口1230与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1200还可以包括输出接口1240。其中,处理器1210可以控制该输出接口1240与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图13是本申请实施例提供的一种通信系统1300的示意性框图。如图13所示,该通信系统1300包括终端设备1310和网络设备1320。
其中,该终端设备1310可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1320可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM, EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中 由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (41)

  1. 一种系统信息的传输方法,所述方法包括:
    终端设备确定剩余最小系统信息RMSI物理下行控制信道PDCCH时机和同步信号块SSB索引之间的对应关系,所述RMSI PDCCH时机用于传输RMSI PDCCH;
    所述终端设备基于所述RMSI PDCCH时机和SSB索引之间的对应关系,在专用带宽部分BWP上的第一搜索空间内接收RMSI PDCCH;其中,所述第一搜索空间为所述专用BWP上配置的非0公共搜索空间,所述RMSI PDCCH时机基于所述第一搜索空间的配置信息确定。
  2. 根据权利要求1所述的方法,其中,在RMSI窗口内,所述RMSI PDCCH时机从0开始编号。
  3. 根据权利要求2所述的方法,其中,所述终端设备确定RMSI PDCCH时机和SSB索引之间的对应关系,包括:
    所述终端设备确定所述RMSI窗口内的第k-1个RMSI PDCCH时机索引对应第k个实际传输的SSB;
    其中,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号。
  4. 根据权利要求2或3所述的方法,其中,所述终端设备确定RMSI PDCCH时机和SSB索引之间的对应关系,包括:
    所述终端设备确定所述RMSI窗口内的第S*n+k-1个RMSI PDCCH时机索引对应第n+1次重复传输的第k个实际传输的SSB;
    其中,n为大于等于0且小于等于N-1的正整数,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号,N为所述RMSI窗口内重复传输的RMSI的次数。
  5. 根据权利要求1所述的方法,其中,在RMSI窗口内,所述RMSI PDCCH时机从1开始编号。
  6. 根据权利要求5所述的方法,其中,所述终端设备确定RMSI PDCCH时机和SSB索引之间的对应关系,包括:
    所述终端设备确定所述RMSI窗口内的第k个RMSI PDCCH时机索引对应第k个实际传输的SSB;
    其中,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号。
  7. 根据权利要求5或6所述的方法,其中,所述终端设备确定RMSI PDCCH时机和SSB索引之间的对应关系,包括:
    所述终端设备确定所述RMSI窗口内的第S*n+k个RMSI PDCCH时 机索引对应第n+1次重复传输的第k个实际传输的SSB;
    其中,n为大于等于0且小于等于N-1的正整数,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号,N为所述RMSI窗口内重复传输的RMSI的次数。
  8. 根据权利要求4或7所述的方法,其中,所述N的取值满足以下公式:
    N=CEIL(RMSI窗口内的RMSI PDCCH时机的总数/S);其中,CEIL为向上取整运算。
  9. 根据权利要求1所述的方法,其中,在RMSI窗口内的每个RMSI重复周期内,所述RMSI PDCCH时机从0开始编号。
  10. 根据权利要求9所述的方法,其中,所述终端设备确定RMSI PDCCH时机和SSB索引之间的对应关系,包括:
    所述终端设备确定所述RMSI重复周期内的第k-1个RMSI PDCCH时机索引对应第k个实际传输的SSB;
    其中,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号。
  11. 根据权利要求1所述的方法,其中,在RMSI窗口内的每个RMSI重复周期内,所述RMSI PDCCH时机从1开始编号。
  12. 根据权利要求11所述的方法,其中,所述终端设备确定RMSI PDCCH时机和SSB索引之间的对应关系,包括:
    所述终端设备确定所述RMSI重复周期内的第k个RMSI PDCCH时机索引对应第k个实际传输的SSB;
    其中,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号。
  13. 根据权利要求9至12中任一项所述的方法,其中,所述方法还包括:
    所述终端设备获取第一配置信息,所述第一配置信息用于确定所述RMSI重复周期,其中,所述第一配置信息基于协议确定或者通过网络设备配置。
  14. 根据权利要求2至13中任一项所述的方法,其中,所述方法还包括:
    所述终端设备获取第二配置信息,所述第二配置信息用于确定所述RMSI窗口。
  15. 根据权利要求2至14中任一项所述的方法,其中,所述方法还包括:
    所述终端设备确定RMSI窗口的起始SFN为满足以下公式的SFN:
    SFN mod M=0;其中,mod为取余运算,M为RMSI窗口的长度对 应的SFN个数。
  16. 根据权利要求15所述的方法,其中,所述M的取值为16,相应地,RMSI窗口的长度为16个连续SFN的长度。
  17. 根据权利要求2至16中任一项所述的方法,其中,所述方法还包括:
    所述终端设备确定所述RMSI窗口的长度是RMSI重复周期的整数倍。
  18. 根据权利要求17所述的方法,其中,在一个所述RMSI窗口内,RMSI窗口的起始边界为该RMSI窗口内第一个RMSI重复周期的起始边界,RMSI窗口内的所有RMSI重复周期连续排列。
  19. 一种系统信息的传输装置,应用于终端设备,所述装置包括:
    确定单元,用于确定RMSI PDCCH时机和SSB索引之间的对应关系,所述RMSI PDCCH时机用于传输RMSI PDCCH;
    接收单元,用于基于所述RMSI PDCCH时机和SSB索引之间的对应关系,在专用BWP上的第一搜索空间内接收RMSI PDCCH;其中,所述第一搜索空间为所述专用BWP上配置的非0公共搜索空间,所述RMSI PDCCH时机基于所述第一搜索空间的配置信息确定。
  20. 根据权利要求19所述的装置,其中,在RMSI窗口内,所述RMSI PDCCH时机从0开始编号。
  21. 根据权利要求20所述的装置,其中,所述确定单元,用于确定所述RMSI窗口内的第k-1个RMSI PDCCH时机索引对应第k个实际传输的SSB;
    其中,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号。
  22. 根据权利要求20或21所述的装置,其中,所述确定单元,用于确定所述RMSI窗口内的第S*n+k-1个RMSI PDCCH时机索引对应第n+1次重复传输的第k个实际传输的SSB;
    其中,n为大于等于0且小于等于N-1的正整数,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号,N为所述RMSI窗口内重复传输的RMSI的次数。
  23. 根据权利要求19所述的装置,其中,在RMSI窗口内,所述RMSI PDCCH时机从1开始编号。
  24. 根据权利要求23所述的装置,其中,所述确定单元,用于确定所述RMSI窗口内的第k个RMSI PDCCH时机索引对应第k个实际传输的SSB;
    其中,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号。
  25. 根据权利要求23或24所述的装置,其中,所述确定单元,用于确定所述RMSI窗口内的第S*n+k个RMSI PDCCH时机索引对应第n+1次重复传输的第k个实际传输的SSB;
    其中,n为大于等于0且小于等于N-1的正整数,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号,N为所述RMSI窗口内重复传输的RMSI的次数。
  26. 根据权利要求22或25所述的装置,其中,所述N的取值满足以下公式:
    N=CEIL(RMSI窗口内的RMSI PDCCH时机的总数/S);其中,CEIL为向上取整运算。
  27. 根据权利要求19所述的装置,其中,在RMSI窗口内的每个RMSI重复周期内,所述RMSI PDCCH时机从0开始编号。
  28. 根据权利要求27所述的装置,其中,所述确定单元,用于确定所述RMSI重复周期内的第k-1个RMSI PDCCH时机索引对应第k个实际传输的SSB;
    其中,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号。
  29. 根据权利要求19所述的装置,其中,在RMSI窗口内的每个RMSI重复周期内,所述RMSI PDCCH时机从1开始编号。
  30. 根据权利要求29所述的装置,其中,所述确定单元,用于确定所述RMSI重复周期内的第k个RMSI PDCCH时机索引对应第k个实际传输的SSB;
    其中,k为大于等于1且小于等于S的正整数;S为实际传输的SSB的个数,实际传输的SSB按照SSB索引升序从1开始编号。
  31. 根据权利要求27至30中任一项所述的装置,其中,所述装置还包括:
    获取单元,用于获取第一配置信息,所述第一配置信息用于确定所述RMSI重复周期,其中,所述第一配置信息基于协议确定或者通过网络设备配置。
  32. 根据权利要求20至31中任一项所述的装置,其中,所述装置还包括:
    获取单元,用于获取第二配置信息,所述第二配置信息用于确定所述RMSI窗口。
  33. 根据权利要求20至32中任一项所述的装置,其中,所述确定单元,还用于确定RMSI窗口的起始SFN为满足以下公式的SFN:
    SFN mod M=0;其中,mod为取余运算,M为RMSI窗口的长度对应的SFN个数。
  34. 根据权利要求33所述的装置,其中,所述M的取值为16,相应地,RMSI窗口的长度为16个连续SFN的长度。
  35. 根据权利要求20至34中任一项所述的装置,其中,所述确定单元,还用于确定所述RMSI窗口的长度是RMSI重复周期的整数倍。
  36. 根据权利要求35所述的装置,其中,在一个所述RMSI窗口内,RMSI窗口的起始边界为该RMSI窗口内第一个RMSI重复周期的起始边界,RMSI窗口内的所有RMSI重复周期连续排列。
  37. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至18中任一项所述的方法。
  38. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至18中任一项所述的方法。
  39. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至18中任一项所述的方法。
  40. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至18中任一项所述的方法。
  41. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至18中任一项所述的方法。
PCT/CN2021/091656 2021-04-30 2021-04-30 一种系统信息的传输方法及装置、终端设备 WO2022227060A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180082890.3A CN116636174A (zh) 2021-04-30 2021-04-30 一种系统信息的传输方法及装置、终端设备
PCT/CN2021/091656 WO2022227060A1 (zh) 2021-04-30 2021-04-30 一种系统信息的传输方法及装置、终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/091656 WO2022227060A1 (zh) 2021-04-30 2021-04-30 一种系统信息的传输方法及装置、终端设备

Publications (1)

Publication Number Publication Date
WO2022227060A1 true WO2022227060A1 (zh) 2022-11-03

Family

ID=83847548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091656 WO2022227060A1 (zh) 2021-04-30 2021-04-30 一种系统信息的传输方法及装置、终端设备

Country Status (2)

Country Link
CN (1) CN116636174A (zh)
WO (1) WO2022227060A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110692275A (zh) * 2017-11-17 2020-01-14 联发科技(新加坡)私人有限公司 5g无线通信系统中的剩余最小系统信息接收
WO2020032867A1 (en) * 2018-08-09 2020-02-13 Telefonaktiebolaget Lm Ericsson (Publ) Multiplexing pdcch paging occasion and ss burst
CN110830187A (zh) * 2018-08-07 2020-02-21 维沃移动通信有限公司 信息的传输指示方法、网络设备及终端
CN112314022A (zh) * 2018-06-21 2021-02-02 高通股份有限公司 波束成形无线通信中的寻呼配置
CN112690036A (zh) * 2018-09-18 2021-04-20 三星电子株式会社 用于车辆对一切通信的资源分配和带宽部分非活动定时器处理的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110692275A (zh) * 2017-11-17 2020-01-14 联发科技(新加坡)私人有限公司 5g无线通信系统中的剩余最小系统信息接收
CN112314022A (zh) * 2018-06-21 2021-02-02 高通股份有限公司 波束成形无线通信中的寻呼配置
CN110830187A (zh) * 2018-08-07 2020-02-21 维沃移动通信有限公司 信息的传输指示方法、网络设备及终端
WO2020032867A1 (en) * 2018-08-09 2020-02-13 Telefonaktiebolaget Lm Ericsson (Publ) Multiplexing pdcch paging occasion and ss burst
CN112690036A (zh) * 2018-09-18 2021-04-20 三星电子株式会社 用于车辆对一切通信的资源分配和带宽部分非活动定时器处理的方法和装置

Also Published As

Publication number Publication date
CN116636174A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
US20220264393A1 (en) Cell configuration method and apparatus, terminal device, and network device
WO2020077621A1 (zh) 接收信息、发送信息的方法和设备
WO2019237241A1 (zh) 一种下行信号的传输方法及终端设备
WO2020061958A1 (zh) 接收信息、发送信息的方法和设备
WO2020103160A1 (zh) 无线通信方法、网络设备和终端设备
WO2020150957A1 (zh) 用于非授权频谱的无线通信方法和设备
WO2020001582A1 (zh) 一种配置pdcch检测的方法及相关设备
US20230362842A1 (en) Wireless communication method, network device and terminal device
TW202002695A (zh) 一種下行控制通道的檢測方法及裝置、終端設備
US20220007398A1 (en) Method for cross-carrier transmission and terminal device
WO2020168575A1 (zh) 无线通信方法、终端设备和网络设备
WO2020077667A1 (zh) 一种启动定时器的方法及装置、终端
US11979766B2 (en) Measurement gap configuration method and apparatus, and terminal device and network device
CN114467326B (zh) 一种测量配置方法及装置、终端设备、网络设备
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
US20230116565A1 (en) Bwp configuration method and apparatus, terminal device, and network device
WO2020061954A1 (zh) 区分寻呼消息的方法、网络设备和终端设备
US20220329984A1 (en) Resource configuration method, terminal device, and non-transitory computer readable storage medium
WO2020087306A1 (zh) 一种窗口配置方法及装置、终端、网络设备
US11856539B2 (en) Method and device for transmitting downlink control information
WO2022227060A1 (zh) 一种系统信息的传输方法及装置、终端设备
WO2021168814A1 (zh) 控制信道的确定方法、装置、存储介质和处理器
WO2020087311A1 (zh) 一种数据传输方法及装置、网络设备、终端
WO2019237310A1 (zh) 一种信息传输方法及装置、终端设备、网络设备
WO2020019188A1 (zh) 一种信号传输方法及装置、网络设备、终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938534

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180082890.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938534

Country of ref document: EP

Kind code of ref document: A1