WO2022225200A1 - Heterometallic catalyst for non-oxidative direct conversion of methane and method for preparing same - Google Patents

Heterometallic catalyst for non-oxidative direct conversion of methane and method for preparing same Download PDF

Info

Publication number
WO2022225200A1
WO2022225200A1 PCT/KR2022/003984 KR2022003984W WO2022225200A1 WO 2022225200 A1 WO2022225200 A1 WO 2022225200A1 KR 2022003984 W KR2022003984 W KR 2022003984W WO 2022225200 A1 WO2022225200 A1 WO 2022225200A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
methane
direct conversion
oxidative
oxidative direct
Prior art date
Application number
PCT/KR2022/003984
Other languages
French (fr)
Korean (ko)
Inventor
한승주
게브레키단 게브레요하네스세가이
김용태
김석기
김현우
신정호
이성우
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2022225200A1 publication Critical patent/WO2022225200A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0081Preparation by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/24Catalytic processes with metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/02Aliphatic saturated hydrocarbons with one to four carbon atoms
    • C07C9/06Ethane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a heterometallic catalyst for non-oxidative direct conversion of methane and a method for preparing the same, and more particularly, to a catalyst for non-oxidative direct conversion of methane useful for non-oxidative direct conversion of methane to produce hydrocarbons, and a method for preparing the same is about
  • Non-Patent Documents 0001 and 0002 a technology for producing ethylene and aromatic compounds by direct conversion of methane under anaerobic or anoxic conditions. It is essential.
  • the problem of a sudden decrease in catalytic activity due to carbon (coke) deposition in the catalyst under conditions of high temperature and high pressure has emerged as a key issue (refer to Non-Patent Documents 0001 and 0002).
  • the catalyst disclosed in the above document simply shows the result of suppressing coke production and improving the catalytic reaction rate compared to the conventional catalyst for non-oxidative direct conversion of methane prepared by sol-gel or impregnation method, and is suitable for non-oxidative direct conversion of methane. No method for preparing an optimized catalyst or manufacturing conditions are presented.
  • the main object of the present invention is to solve the above-mentioned problems, in the non-oxidative direct conversion of methane, by optimizing the active phase and carrier properties of the heterogeneous metal catalyst to maximize the catalytic reaction rate and at the same time suppress side reactions to produce coke
  • An object of the present invention is to provide a catalyst for non-oxidative direct conversion of methane capable of minimizing (cokes) production and improving the deactivation rate of the catalyst, and a methane conversion method using the same.
  • an embodiment of the present invention provides a method for preparing a catalyst for non-oxidative direct conversion of methane, comprising the steps of: (a) impregnating a catalyst carrier compound with a platinum (Pt) precursor; (b) drying and calcining the impregnated material; (c) mixing the calcined impregnated material with fayalite, followed by pulverization in an inert atmosphere using a ball mill; (d) introducing the pulverized mixture into a reactor and then melting to obtain a melt; And (e) provides a method for preparing a catalyst for non-oxidative direct conversion of methane comprising the step of solidifying the obtained melt.
  • step (a) may be characterized in that 0.1 to 2 parts by weight of a platinum (Pt) precursor is impregnated with respect to 100 parts by weight of the catalyst carrier compound.
  • the sintering in step (b) may be characterized in that it is heated to 300 °C to 900 °C at a temperature increase rate of 1 °C/min or more.
  • step (c) may be characterized in that 0.1 to 4 parts by weight of fayalite is impregnated with respect to 100 parts by weight of the catalyst carrier compound.
  • the step (c) may be characterized in that the grinding is performed at a speed of 100 rpm to 300 rpm for 4 to 18 hours using a ball mill.
  • the melting of step (d) may be characterized in that it is performed by heating from 1,200 °C to 2,000 °C at a temperature increase rate of 6 °C/min or more.
  • the catalyst carrier compound may be at least one selected from the group consisting of silica, alumina, titania, zirconia and silicon carbide.
  • another embodiment of the present invention is prepared by the method for preparing the catalyst for non-oxidative direct conversion of methane, and includes a catalyst carrier including the catalyst carrier compound, and has a specific surface area of 5 m 2 /g or less. It provides a catalyst for non-oxidative direct conversion of methane, characterized in that it has a highly crystalline structure.
  • the amount of iron supported may be 0.1 to 2.0 wt% based on the total weight of the catalyst.
  • the supported amount of platinum (Pt) may be 0.1 to 2.0 wt% based on the total weight of the catalyst.
  • the catalyst carrier may be characterized in that it is in a molten crystalline state.
  • 1 is a schematic diagram of a method for preparing a catalyst for non-oxidative direct conversion of methane according to the present invention.
  • FIG. 2 is a flowchart of a method for preparing a catalyst for non-oxidative direct conversion of methane according to the present invention.
  • 3 is a graph showing the correlation of coke selectivity with respect to methane conversion in a catalyst for methane conversion reaction.
  • the present invention in one aspect, (a) impregnating a platinum (Pt) precursor in a catalyst carrier compound; (b) drying and calcining the impregnated material; (c) mixing the calcined impregnated material with fayalite, followed by pulverization in an inert atmosphere using a ball mill; (d) introducing the pulverized mixture into a reactor and then melting to obtain a melt; and (e) solidifying the obtained melt. It relates to a method for preparing a catalyst for non-oxidative direct conversion of methane.
  • the method for preparing a catalyst for non-oxidative direct conversion of methane maximizes the catalytic reaction rate by including a heterogeneous metal catalyst, and at the same time increases the uniformity and dispersibility of the catalyst through atomization before the melting step, The catalyst is reduced due to the heat generated during the atomization process and the catalyst is sintered to prevent deterioration of the activity of the prepared catalyst.
  • the catalyst reaction rate into the product is maximized and coke (coke) ) production and can easily provide a catalyst for non-oxidative direct conversion of methane having stable catalytic performance even in long-term operation.
  • 1 and 2 are schematic diagrams and flow charts of a method for preparing a catalyst for non-oxidative direct conversion of methane according to the present invention, respectively.
  • a platinum (Pt) precursor is first impregnated with a catalyst carrier compound [step (a)].
  • step (a) the platinum precursor is dissolved in distilled water to prepare a platinum precursor solution, and then the catalyst carrier compound is dispersed to prepare an impregnated material.
  • a polar organic solvent such as alcohol or acetone may be used instead of distilled water, or a mixed solvent including distilled water and one or more polar organic solvents may be used.
  • the weight of the platinum precursor is preferably 0.05 to 0.2 g.
  • the catalyst carrier compound for forming the catalyst carrier is silica (SiO 2 ), alumina (Al 2 O 3 ), ceria (CeO 2 ), titania (TiO 2 ), zirconia (ZrO 2 ), activated carbon (Activated carbon) , AC), silicon carbide (SiC), and may include at least one selected from the group consisting of silicon nitride (SiN), preferably silica, alumina, titania, zirconia or silicon carbide may be used, and more Preferably, it may be silica.
  • the catalyst carrier compound is silica, specifically, it is preferably quartz.
  • the platinum precursor is platinum hexachloride (H 2 PtCl 6 ), platinum ammonium chloride (Pt(NH 3 ) 4 Cl 2 ) or platinum ammonium nitrate (Pt(NH 3 ) 4 ( NO 3 ) 2 ) may be used, and preferably platinum ammonium nitrate (Pt(NH 3 ) 4 (NO 3 ) 2 ) may be used.
  • 0.1 to 2 parts by weight of a platinum (Pt) precursor may be included with respect to 100 parts by weight of the catalyst carrier compound.
  • the impregnation concentration of the supported platinum precursor is an important variable in the activity of the catalyst, and when the content of the platinum precursor is less than 0.1 parts by weight, the catalytic reaction rate is low due to low catalytic activity, stable catalytic performance cannot be exhibited, and more than 2 parts by weight In this case, there is a problem that the reactivity is rather low compared to expensive precious metals.
  • step (b) the catalyst carrier compound impregnated with the platinum precursor prepared in step (a) is dried and calcined [step (b)].
  • the drying process is carried out for 3 to 10 hours at a temperature of 80 to 200 °C in air or an inert atmosphere in the impregnated material prepared in step (a).
  • the calcination process of the impregnated material that has undergone the drying process may be performed by heating in air or an inert atmosphere to a temperature of 350 to 900 °C at a temperature increase rate of 1 °C/min or more. Moisture and impurities are removed, and thermal durability and catalytic activity are improved.
  • step (b) the impregnated material dried and calcined in step (b) is mixed with fayalite, and then pulverized in an inert atmosphere using a ball mill [step (c)].
  • the fayalite is a silicate containing an iron component, and may be prepared using a silicon precursor and an iron precursor, or a commercially available one may be used without limitation.
  • the method for preparing the payelite may be obtained by dispersing a silicon precursor and an iron precursor in a solvent such as water or alcohol, and performing a sol-gel reaction such as hydrolysis and/or condensation.
  • the solvent is not particularly limited, but water, alcohol, benzene, toluene, xylene, and mixtures thereof may be used, and the amount of the solvent corresponds to 5 to 20 times the weight of the silicon precursor and iron precursor used. It is preferable to use an amount of If the amount is less than 5 times, the dispersion effect is lowered, and if it is 20 times or more, the gelation process may be delayed.
  • the silicon precursor a gaseous, liquid, and solid silicon precursor may be used, and the liquid silicon precursor may be tetraethyl silicate, silicon tetrachloride, organosilane, or the like, and the solid silicon precursor may be silica, silicon carbide, silicon nitride, etc.
  • the liquid silicon precursor may be tetraethyl silicate, silicon tetrachloride, organosilane, or the like
  • the solid silicon precursor may be silica, silicon carbide, silicon nitride, etc.
  • iron precursor examples include iron chlorides such as FeCl2 and FeCl3; iron oxides such as FeO, Fe2O3, and Fe3O4; iron carbides such as Fe5C2 and Fe3C; iron nitrides such as Fe2N, Fe4N, and Fe7N3; iron silicides such as Fe2SiO4 and Fe2O3 ⁇ SiO2; and iron silicate.
  • the sol-gel reaction of the reactant in which the silicon precursor and the iron precursor are dissolved may be performed at room temperature to 150° C. for 1 to 15 hours. If the reaction temperature is less than room temperature, the gelation time is long, and if it exceeds 150 °C, gelation may be excessive and the structure may be collapsed.
  • the reactant thus obtained can be dried and calcined to produce fayalite (Fe2SiO4). After drying for a while, it can be calcined for 1 hour to 5 hours at 500 ° C. to 1,000 ° C. in an inert atmosphere.
  • the drying efficiency is not good, if it exceeds 80 ° C. or 24 hours, it may adversely affect the catalyst performance, and if the calcination is 500 ° C. or less than 1 hour, it is difficult to remove the reaction impurities, If it exceeds 5 hours, it may adversely affect catalyst performance, and if it exceeds 1,000° C., it is difficult to atomize, which will be described later, and sintering may occur.
  • fayalite Fe2SiO4
  • Fe2SiO4 may be obtained by physically mixing an iron precursor such as Fe2O3 or Fe and a silicon precursor such as SiO2, and performing a mechanical synthesis method such as heating it at a high temperature.
  • FeO may be stably formed in an Fe-O system at a temperature of 570° C. or higher, which may react with a silicon precursor to form fayerite.
  • the payelite is mixed with the impregnated material containing the platinum and catalyst carrier dried and calcined in step (b), and then pulverized using a ball mill in an inert atmosphere such as Ar and He to prevent reduction of the reactants. do.
  • Fayelite With respect to 100 parts by weight of the catalyst carrier compound, 0.1 to 4 parts by weight of Fayelite may be mixed.
  • the catalyst reaction rate cannot be maximized because the active component of the catalyst is small, and the density of the catalyst is low, so that stable catalytic performance cannot be exhibited.
  • it exceeds 4 parts by weight the particle size of the iron particles, which are the active points of methane activation, increases and the amount thereof increases, which may cause a problem in that the coke generation rate is increased.
  • the amount of the payelite is preferably 150 to 300 parts by weight based on 100 parts by weight of the platinum precursor.
  • the mixture in which the payelite and the platinum-supported catalyst are mixed is atomized using a ball mill.
  • a ball mill apparatus used for atomizing the mixture in which the payelite and the platinum-supported catalyst are mixed, and a general ball mill apparatus may be used.
  • the impregnated material dried and calcined in step (b) is mixed with fayalite, and then pulverized for 4 to 18 hours at a speed of 100 rpm to 300 rpm in an inert atmosphere using a ball mill. can do.
  • the ball mill is pulverized at a speed of 100 rpm to 300 rpm in an inert atmosphere for 4 to 18 hours in an inert atmosphere to prevent the reduction of paylite and to increase the effect of atomization and uniform mixing.
  • the proximity of the catalyst supported by fayellite and platinum through the ball mill is increased, there is an effect of increasing the uniformity and density of the catalyst.
  • the rotation speed and time of the ball mill are less than 100 rpm or less than 4 hours, respectively, there is a limit to controlling the particle size and adjusting the proximity between the particles during atomization of the catalyst on which the payelite and platinum are supported, and it exceeds 300 rpm or 18 hours, respectively. In this case, there may be a problem of lowering the activity of the product due to the sintering of the catalyst carrier and the active metal.
  • the atomized mixture may have an average diameter of 60 ⁇ m or less, preferably 50 nm to 50 ⁇ m. If the average diameter of the atomized mixture exceeds 60 ⁇ m, there is a limit in controlling the proximity between the particles when the catalyst supported with fayllite and platinum is melted. Problems may arise in controlling the particle size of the particles.
  • step (d) the atomized mixture through a ball mill is put into a reactor, and then melted to obtain a melt [step (d)], and the obtained melt is solidified [step (e)].
  • the reactor can be used without limitation as long as it is a material having thermal stability at the melting temperature. It is difficult, and when the height-to-diameter ratio of the reactor exceeds 3, the reduction rate of the active metal of the catalyst increases during melting, and the uniformity and density of the catalyst particles tend to decrease when the melt is solidified through cooling.
  • the mixture introduced into the reactor may be melted at a temperature at which all of the mixture can be melted, and the melting is performed at 1,200 °C to 2,000 °C in air or an inert atmosphere at 6 °C/min or more, preferably at 6 °C/min to 15 °C It can be carried out by heating at a temperature increase rate of °C/min.
  • the melting temperature is less than 1,200 °C, it is difficult to melt both the catalyst carrier and the catalytically active component, which may cause problems in preparing a uniform catalyst, and when it exceeds 2,000 °C, the catalyst carrier and the catalytically active component are vaporized A loss may occur, which may cause a problem in preparing a uniform catalyst.
  • the melting time may be sufficiently melted so as to be sufficiently melted, and preferably may be about 3 to 9 hours.
  • the phase change of the catalyst is promoted according to the melting rate, and as a result, a high-density catalyst having high crystallinity can be prepared. There may be problems in promoting the catalyst and lowering the uniformity and density of the catalyst.
  • the solidification step may be performed by rapid cooling or natural cooling.
  • the rapid cooling may be performed by gas cooling, water cooling, oil cooling, liquid nitrogen cooling, etc., and preferably rapid cooling may be performed in the range of 0.2 °C/s to 150 °C/s.
  • rapid cooling is performed within the above range, the uniformity of the catalyst can be improved by suppressing non-uniformity due to the difference in the melting points of the active metal and the carrier component.
  • the gas may be at least one selected from the group consisting of an inert gas and air, and in the oil cooling cooling, the oil may be mineral oil, rapeseed oil, silicone oil, or the like.
  • the catalyst for non-oxidative direct conversion of methane of the present invention can further reduce the pore volume of the catalyst by repeatedly performing the above-described melting step and solidification step.
  • the number of repetitions of the melting step and the solidification step may be two or more, preferably 2 to 5 times.
  • the catalyst for non-oxidative direct conversion of methane prepared in this way is uniformly mixed with an inorganic binder, organic binder, water, etc. to obtain a catalyst mixture, which is then molded to prepare a catalyst molded body.
  • the organic binder may be used in the art, and is not particularly limited, but it is preferable to use at least one selected from methyl cellulose, ethylene glycol, polyol, food oil or organic fatty acid. For a specific example, it is preferable to use hydroxy methyl cellulose or polyvinyl alcohol as the organic binder.
  • the inorganic binder may be used in the art, and is not particularly limited, but it is preferable to use at least one selected from solid silica, solid alumina, solid silica-alumina, silica sol, alumina sol, and water glass. For a specific example, it is preferable to use fumed silica, silica solution, boehmite, or alumina solution as the inorganic binder.
  • the catalyst mixture is typically prepared into a catalyst molded body by coating the catalyst mixture on a catalyst structure such as a honeycomb structure or a monolith structure, or by directly extruding the catalyst component of the catalyst mixture. At this time, coating and extrusion molding of the catalyst mixture can be easily prepared by methods used in the art, and detailed descriptions will be omitted.
  • the catalyst compact may be charged at least one according to the shape of the catalyst compact prepared in the catalyst packing part inside the reactor for non-oxidative direct conversion of methane.
  • the filling method of the catalyst molded body can also be easily filled by a method used in the art.
  • the present invention is prepared by the above-described production method, includes a catalyst carrier comprising a catalyst carrier compound, and has a high crystalline structure with a specific surface area of 5 m 2 /g or less, characterized in that the ratio of methane It relates to a catalyst for direct oxidation conversion.
  • a catalyst carrier comprising a catalyst carrier compound
  • iron and platinum components which are heterogeneous active metals, are present on the catalyst carrier in the form of nanoparticles, and include a form in which iron as an active material is dispersed with each other in atomic units on the carrier.
  • the catalyst for non-oxidative direct conversion of methane may exist in the form of doped iron, which is a catalytically active component, in the lattice of a catalyst carrier compound supported on platinum in a crystalline molten state.
  • the average diameter of the platinum or iron particles dispersedly supported on the catalyst carrier may be 5 nm, in this case, the micro stress of the carrier is adjusted to increase the density of the carrier, and defects present in the carrier It is preferable because the number is lowered to allow the methane reaction to proceed smoothly.
  • the catalyst for non-oxidative direct conversion of methane may have a structure in which two C atoms and one Si atom are bonded to a single Fe atom and embedded in the silica base when the catalyst carrier compound is made of silica, at this time,
  • the crystal structure of the catalyst carrier is ⁇ -crystobalite, and it is characterized in that it is reversibly converted to ⁇ -crystobalite when heated to 200 °C ⁇ 300 °C.
  • the catalytically active component, platinum (Pt) may be 0.1 to 2.0% by weight based on the total weight of the catalyst, and when the amount of platinum supported is less than 0.1% by weight based on the total weight of the catalyst, the catalytic activity is small, so non-oxidative direct conversion of methane Efficiency may be lowered, and when it exceeds 2.0 wt %, there is a problem in that the reactivity is rather lowered compared to expensive noble metals.
  • the catalytically active component of iron may be 0.1 to 2.0 wt% based on the total weight of the catalyst.
  • the non-oxidative direct conversion efficiency of the methane may be lowered, and when it exceeds 2.0 wt%, the amount of iron particles, which are the active points of methane activation, may increase, resulting in a problem in that the coke generation rate is increased.
  • the content ratio of platinum and iron, which is an active component in the catalyst is preferably 1:1.5 to 1:3.
  • the catalyst for non-oxidative direct conversion of methane according to the present invention described above prepares an olefin and an aromatic compound by reacting an inert and/or inert gas with methane at a high temperature in the presence of a catalyst.
  • the catalyst according to the present invention is molded, the molded catalyst molded body is placed in the catalyst packing of the reactor, and then methane, an inert gas and/or an inert gas are introduced.
  • the methane may be 80 to 100% (v/v), more preferably 90 to 100% (v/v), based on the volume of the total gas introduced into the reactor, and an inert gas and/or an inert gas may be 20% (v/v) or less, more preferably 10% (v/v) or less, based on the volume of the total gas.
  • the inert gas and the inert gas serve to stably generate and maintain a reaction state
  • the inert gas may be nitrogen, helium, neon, argon, or krypton
  • the inert gas is air, carbon monoxide, hydrogen, carbon dioxide , water, monohydric alcohols (1 to 5 carbon atoms), dihydric alcohols (2 to 5 carbons), alkanes (2 to 8 carbons), and preferably, the inert gas and inert gas may be nitrogen or air.
  • the reaction temperature may be 900 °C to 1,150 °C, specifically 1,000 °C to 1,100 °C, and the pressure may be 0.1 bar to 10 bar, preferably 0.1 bar to 5 bar.
  • the radical generation rate due to methane activation is low, so energy efficiency is low. can occur.
  • the product produced by the direct conversion of methane may be a hydrocarbon including paraffin, olefin, alkyne, such as ethane, ethylene, acetylene, propylene, butylene, benzene, toluene, xylene, ethylbenzene, naphthalene aromatic compound may include
  • the methane conversion method according to the present invention has the effect of inducing methane activity without precise control of reaction conditions, minimizing coke production, and maintaining a stable yield of hydrocarbon compounds even during long-term operation.
  • 0.5Me1.0Fe@CRS 0.5Me1.0Fe@CRS
  • a non-oxidative direct conversion reaction of methane was carried out at atmospheric pressure and 1020° C. for 10 hours to confirm the conversion rate and selectivity.
  • a quartz material having an inner diameter of 0.4 cm was used as a 1/4 inch fixed-bed reactor.
  • the catalysts prepared in Examples and Comparative Examples were pulverized to have an average particle size of 630 ⁇ m, and 0.6 g of the pulverized catalyst was fixed with quartz wool in the center of the reactor. A quartz rod was inserted under the catalyst bed in the reactor to minimize the remaining space. He gas was injected at a flow rate of 40 ml/min while the reactor temperature was raised to 1020 ° C. Then, the reactant containing methane was 990 mlg cat -1 hr -1 using a mass flow controller (reactant composition: 90% CH 4 , 10% Ar) was injected. Ar gas was used as an internal standard.
  • the gaseous hydrocarbons of the obtained product were analyzed using a GC of Series 6100 of YL Instrument, and the gaseous product was analyzed using a thermal conductivity detector (TCD) connected to a ShinCarbon ST column and a flame ionization detector ( FID) detector was used for analysis.
  • TCD thermal conductivity detector
  • FID flame ionization detector
  • H 2 , CH 4 , and CO were separated on a ShinCarbon ST column and detected by TCD, and the conversion rate was calculated as the area of methane compared to the area of Ar, which is an internal standard.
  • Hydrocarbons in the range of C 1 to C 10 were separated by Rt-alumina BOND column and detected by FID. All gases were quantified using standard samples.
  • the CRS catalyst and the Fe@CRS catalyst showed relatively low selectivity to aromatic compounds and high coke selectivity compared to the blank experiment. Therefore, it can be seen that, after initial activation of methane, it is advantageous in terms of selectivity to induce the reaction for the C2 product into a gas phase reaction.
  • the 0.5Pt-1,0Fe@CRS catalyst prepared in Example 1 showed a high methane conversion rate, a high yield of aromatic compounds, and low coke selectivity compared to the Fe@CRS catalyst. It was confirmed that the gas phase C2 oligomerization reaction can be induced through the catalyst.
  • the 0.5Pt-1.0Fe@CRS catalyst which showed a relatively high conversion of methane, showed the lowest I D1 /I G peak ratio. This shows that disordered coke originating from aromatic compounds during the reaction was not well produced in the 0.5Pt-1.0Fe@CRS catalyst.
  • the catalyst for non-oxidative direct conversion of methane according to the present invention can maximize the catalytic reaction rate and at the same time minimize coke generation and provide a high yield of aromatic compounds in the production of hydrocarbons. there was.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a heterometallic catalyst for non-oxidative direct conversion of methane and a method for preparing same and, more specifically, to a catalyst for non-oxidative direct conversion of methane and a method for preparing same, in which, in the preparation of hydrocarbon through non-oxidative direct conversion of methane, by using a highly crystalline catalyst which is optimized for direct conversion of methane and includes iron (Fe) and platinum (Pt) components, the formation of cokes on the surface of the catalyst is minimized, and methane conversion reactivity can be maximized.

Description

메탄의 비산화 직접전환용 이종금속 촉매 및 이의 제조방법Dissimilar metal catalyst for non-oxidative direct conversion of methane and method for preparing same
본 발명은 메탄의 비산화 직접전환용 이종금속 촉매 및 이의 제조방법에 관한 것으로, 보다 상세하게는 메탄을 비산화 직접전환하여 탄화수소를 제조하는데 유용한 메탄의 비산화 직접전환용 촉매 및 이를 제조하는 방법에 관한 것이다.The present invention relates to a heterometallic catalyst for non-oxidative direct conversion of methane and a method for preparing the same, and more particularly, to a catalyst for non-oxidative direct conversion of methane useful for non-oxidative direct conversion of methane to produce hydrocarbons, and a method for preparing the same is about
최근 들어 천연가스, 세일가스 등으로부터 얻을 수 있는 메탄(CH4)을 수송용 연료 또는 화학원료와 같은 고부가 산물로 전환하기 위한 노력이 꾸준히 이루어지고 있다. 메탄으로부터 얻을 수 있는 고부가 산물의 대표적인 예로는 경질 올레핀(에틸렌, 프로필렌, 부틸렌 등)을 들 수 있으며, 메탄 개질을 통해 얻어진 합성가스(H2 + CO)를 메탄올을 경유해 경질 올레핀을 제조하는 MTO(Methanol to Olefins) 기술과 합성가스로부터 경질 올레핀을 직접 생산하는 FTO(Fischer-Tropsch to Olefins) 기술이 가장 실현 가능한 기술로 알려져 있다. 그러나 이와 같이 합성가스를 경유하여 고부가 산물을 생산하는 기술의 경우에는 CO로부터 O 원자를 제거하기 위해 H2 또는 CO가 부가적으로 필요하게 되며, 이는 전체 공정에서 H 또는 C 원자의 활용효율을 저하시키는 결과를 초래한다.Recently, efforts to convert methane (CH 4 ) obtainable from natural gas, sail gas, etc. into high value-added products such as transportation fuels or chemical raw materials have been steadily made. A representative example of the high value-added product that can be obtained from methane is light olefin (ethylene, propylene, butylene, etc.) (Methanol to Olefins) technology and FTO (Fischer-Tropsch to Olefins) technology, which directly produces light olefins from syngas, are known as the most feasible technologies. However, in the case of this technology for producing high value-added products via synthesis gas, H2 or CO is additionally required to remove O atoms from CO, which reduces the utilization efficiency of H or C atoms in the entire process. results in
따라서 합성가스를 경유하지 않고 메탄을 직접 고부가 산물로 전환할 수 있는 새로운 기술이 요구되고 있다. 메탄을 직접 고부가 산물로 전환하기 위해서는 메탄 내에 강하게 형성되어 있는 C-H 결합(434 kJ/mol)을 절단하여 메탄을 활성화시키는 것이 우선적으로 수행되어야 하는데, 이러한 관점에서 산소를 이용해서 메탄을 활성화시키는 메탄 이량화 반응(Oxidative Coupling of Methane; OCM) 기술에 대한 연구가 활발히 이루어져 왔다. 그러나 OCM 반응에서도 O2의 격렬한 반응성 때문에 열역학적으로 안정한 H2O 및 CO2가 다량 형성되어 H 또는 C 원자의 활용효율이 저하되는 것이 여전히 문제점으로 지적되고 있다.Therefore, a new technology capable of directly converting methane into a high value-added product without going through syngas is required. In order to directly convert methane into a high-addition product, it is necessary to first activate methane by cleaving the CH bond (434 kJ/mol) that is strongly formed in methane. Oxidative Coupling of Methane (OCM) technology has been actively studied. However, in the OCM reaction, thermodynamically stable H 2 O and CO 2 are formed in large amounts due to the intense reactivity of O 2 , and thus, the utilization efficiency of H or C atoms is still pointed out as a problem.
이러한 문제점을 해결하기 위해 최근 혐기성 또는 무산소 조건에서 메탄의 직접 전환에 의한 에틸렌, 방향족 화합물 등을 제조하는 기술이 개발되고 있으나, 메탄의 낮은 반응성으로 인해 고온, 고압에서 진행되고 있으며, 촉매의 개발이 필수적이다. 그러나 지금까지의 연구결과 의하면 고온, 고압의 조건에서 촉매의 탄소(코크스) 침적에 의한 급격한 촉매 활성의 저하 문제가 핵심이슈로 부각되고 있다(비특허문헌 0001 및 0002 참조).In order to solve this problem, a technology for producing ethylene and aromatic compounds by direct conversion of methane under anaerobic or anoxic conditions has recently been developed. It is essential. However, according to the research results so far, the problem of a sudden decrease in catalytic activity due to carbon (coke) deposition in the catalyst under conditions of high temperature and high pressure has emerged as a key issue (refer to Non-Patent Documents 0001 and 0002).
이에, 미국공개특허 제2014-0336432호에서는 메탄 함유 원료를 반응시키는 메탄의 비산화 전환 방법에 있어서, 고온/고압의 조건에서 촉매의 탄소(코크스) 침적을 억제하기 위해 C, N 및 O의 1개 이상과 Si이 결합하여 형성된 비정질 용융상태의 재료 격자내에 금속원소가 도핑된 촉매를 사용하였고, 미국공개특허 제2016-0362351호에서는 C, N 및 O의 1개 이상과 B, Al, Si, Ti, Zr 및 Ge 중 1개 이상이 결합하여 형성된 비정질 용융상태의 재료 격자내에 화학적 활성 금속이 도핑된 촉매를 적용하는 메탄의 비산화성 커플링 방법을 개시한 바 있다.Accordingly, in US Patent Publication No. 2014-0336432, in the non-oxidative conversion method of methane in which a methane-containing raw material is reacted, one of C, N and O to suppress carbon (coke) deposition of the catalyst under high temperature/high pressure conditions. A catalyst doped with a metal element was used in the material lattice of an amorphous molten state formed by bonding with Si or more, and in US Patent Publication No. 2016-0362351, at least one of C, N and O and B, Al, Si, A non-oxidative coupling method of methane has been disclosed in which a catalyst doped with a chemically active metal is applied to an amorphous molten material lattice formed by bonding at least one of Ti, Zr, and Ge.
그러나 상기 문헌에서 개시된 촉매는 단순히 종래 졸겔이나 함침법에 의해 제조된 메탄의 비산화성 직접전환용 촉매에 비해 코크스 생성이 억제되고 촉매 반응 속도가 개선된 결과를 나타낼 뿐이며, 메탄의 비산화성 직접전환에 최적화된 촉매의 제조 방법이나 제조 조건 등이 제시되어 있지 않는다.However, the catalyst disclosed in the above document simply shows the result of suppressing coke production and improving the catalytic reaction rate compared to the conventional catalyst for non-oxidative direct conversion of methane prepared by sol-gel or impregnation method, and is suitable for non-oxidative direct conversion of methane. No method for preparing an optimized catalyst or manufacturing conditions are presented.
한편, 메탄의 비산화적 전환 반응에서의 반응 조건이 적절하지 않을 경우에는 메탄의 전환율이 증가할수록 코크스의 선택성 또한 높아 탄화수소 화합물의 선택도, 생성 속도 등이 떨어지는 문제점이 있었다. 따라서, 높은 촉매 반응 속도를 극대화하는 동시에 코크스(coke) 생성을 최소화하기 위해서는 추가적으로 라디칼 반응이 일어날 수 있는 촉매를 포함하는 반응기를 구성해야 하는 과제가 남아있다.On the other hand, when the reaction conditions in the non-oxidative conversion reaction of methane are not appropriate, as the conversion rate of methane increases, the selectivity of the coke is also high, and there is a problem in that the selectivity of hydrocarbon compounds, the production rate, etc. are deteriorated. Therefore, in order to maximize a high catalytic reaction rate and at the same time minimize coke generation, there remains a task of configuring a reactor including a catalyst capable of additionally radical reaction.
본 발명의 주된 목적은 상술한 문제점을 해결하기 위한 것으로서, 메탄의 비산화적 직접 전환반응에 있어서, 이종 금속 촉매의 활성상 및 담체 특성을 최적화하여 촉매 반응 속도를 극대화하는 동시에, 부반응을 억제시켜 코크스 (cokes) 생성을 최소화하고, 촉매의 비활성화 속도를 개선할 수 있는 메탄의 비산화 직접 전환용 촉매 및 이를 이용한 메탄전환방법을 제공하는데 있다.The main object of the present invention is to solve the above-mentioned problems, in the non-oxidative direct conversion of methane, by optimizing the active phase and carrier properties of the heterogeneous metal catalyst to maximize the catalytic reaction rate and at the same time suppress side reactions to produce coke An object of the present invention is to provide a catalyst for non-oxidative direct conversion of methane capable of minimizing (cokes) production and improving the deactivation rate of the catalyst, and a methane conversion method using the same.
상기와 같은 목적을 달성하기 위하여, 본 발명의 일 구현예는 메탄의 비산화적 직접 전환용 촉매의 제조방법에 있어서, (a) 촉매 담체 화합물에 백금(Pt) 전구체를 함침시키는 단계; (b) 함침물을 건조 및 소성시키는 단계; (c) 소성된 함침물을 페이얼라이트(fayalite)와 혼합한 다음, 볼밀을 이용하여 불활성 분위기에서 분쇄하는 단계; (d) 상기 분쇄된 혼합물을 반응로에 투입한 다음, 용융시켜 용융물을 수득하는 단계; 및 (e) 상기 수득된 용융물을 고화시키는 단계를 포함하는 메탄의 비산화 직접 전환용 촉매의 제조방법을 제공한다.In order to achieve the above object, an embodiment of the present invention provides a method for preparing a catalyst for non-oxidative direct conversion of methane, comprising the steps of: (a) impregnating a catalyst carrier compound with a platinum (Pt) precursor; (b) drying and calcining the impregnated material; (c) mixing the calcined impregnated material with fayalite, followed by pulverization in an inert atmosphere using a ball mill; (d) introducing the pulverized mixture into a reactor and then melting to obtain a melt; And (e) provides a method for preparing a catalyst for non-oxidative direct conversion of methane comprising the step of solidifying the obtained melt.
본 발명의 바람직한 일 구현예에서, 상기 (a) 단계는 촉매 담체 화합물 100 중량부에 대하여, 백금(Pt) 전구체 0.1 내지 2 중량부를 함침하는 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, step (a) may be characterized in that 0.1 to 2 parts by weight of a platinum (Pt) precursor is impregnated with respect to 100 parts by weight of the catalyst carrier compound.
본 발명의 바람직한 일 구현예에서, 상기 (b) 단계의 소성은 300 ℃ 내지 900 ℃까지 1 ℃/min 이상의 승온 속도로 가열하여 수행하는 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the sintering in step (b) may be characterized in that it is heated to 300 °C to 900 °C at a temperature increase rate of 1 °C/min or more.
본 발명의 바람직한 일 구현예에서, 상기 (c) 단계는 촉매 담체 화합물 100 중량부에 대하여, 페이얼라이트(fayalite) 0.1 내지 4 중량부를 함침하는 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, step (c) may be characterized in that 0.1 to 4 parts by weight of fayalite is impregnated with respect to 100 parts by weight of the catalyst carrier compound.
본 발명의 바람직한 일 구현예에서, 상기 (c) 단계는 볼밀을 이용하여 100 rpm 내지 300 rpm 속도로 4시간 내지 18시간 동안 분쇄하는 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the step (c) may be characterized in that the grinding is performed at a speed of 100 rpm to 300 rpm for 4 to 18 hours using a ball mill.
본 발명의 바람직한 일 구현예에서, 상기 (d) 단계의 용융은 1,200 ℃ 내지 2,000 ℃까지 6 ℃/min 이상의 승온 속도로 가열하여 수행하는 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the melting of step (d) may be characterized in that it is performed by heating from 1,200 °C to 2,000 °C at a temperature increase rate of 6 °C/min or more.
본 발명의 바람직한 일 구현예에서, 상기 촉매 담체 화합물은 실리카, 알루미나, 타이타니아, 지르코니아 및 탄화규소로 구성된 군에서 선택되는 1종 이상인 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the catalyst carrier compound may be at least one selected from the group consisting of silica, alumina, titania, zirconia and silicon carbide.
또한, 본 발명의 다른 일 구현예는 상기 메탄의 비산화 직접전환용 촉매의 제조방법에 의해 제조되고, 상기 촉매 담체 화합물을 포함하는 촉매 담체를 포함하고, 비표면적이 5 m2/g 이하의 고결정성 구조를 갖는 것을 특징으로 하는 메탄의 비산화 직접전환용 촉매를 제공한다.In addition, another embodiment of the present invention is prepared by the method for preparing the catalyst for non-oxidative direct conversion of methane, and includes a catalyst carrier including the catalyst carrier compound, and has a specific surface area of 5 m 2 /g or less. It provides a catalyst for non-oxidative direct conversion of methane, characterized in that it has a highly crystalline structure.
본 발명의 바람직한 일 구현예에서, 상기 철의 담지량은 촉매 총 중량에 대하여, 0.1 ~ 2.0 중량%인 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the amount of iron supported may be 0.1 to 2.0 wt% based on the total weight of the catalyst.
본 발명의 바람직한 일 구현예에서, 상기 백금(Pt)의 담지량은 촉매 총 중량에 대하여, 0.1 ~ 2.0 중량%인 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the supported amount of platinum (Pt) may be 0.1 to 2.0 wt% based on the total weight of the catalyst.
본 발명의 바람직한 일 구현예에서, 상기 촉매 담체는 용융된 결정성 상태인 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the catalyst carrier may be characterized in that it is in a molten crystalline state.
본 발명에 따르면 메탄의 비산화적 직접 전환반응에 있어서 메탄에 대한 활성을 극대화하는 동시에 코크(coke) 생성을 최소화하고, 방향족 탄화수소 생성물에 대한 높은 수율을 제공할 수 있다.According to the present invention, it is possible to maximize the activity for methane in the non-oxidative direct conversion reaction of methane and at the same time minimize the coke generation and provide a high yield for the aromatic hydrocarbon product.
도 1은 본 발명에 따른 메탄의 비산화 직접전환용 촉매의 제조방법의 모식도이다. 1 is a schematic diagram of a method for preparing a catalyst for non-oxidative direct conversion of methane according to the present invention.
도 2는 본 발명에 따른 메탄의 비산화 직접전환용 촉매의 제조방법의 흐름도이다. 2 is a flowchart of a method for preparing a catalyst for non-oxidative direct conversion of methane according to the present invention.
도 3은 메탄 전환반응용 촉매 상에서 메탄 전환율에 대한 코크 선택도의 상관관계를 나타낸 그래프이다.3 is a graph showing the correlation of coke selectivity with respect to methane conversion in a catalyst for methane conversion reaction.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법 은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is those well known and commonly used in the art.
본원 명세서 전체에서 어떤 부분이 어떤 구성 요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. In the present specification, when a part "includes" a certain component, it means that other components may be further included, rather than excluding other components, unless otherwise stated.
본 발명은 일 관점에서, (a) 촉매 담체 화합물에 백금(Pt) 전구체를 함침시키는 단계; (b) 함침물을 건조 및 소성시키는 단계; (c) 소성된 함침물을 페이얼라이트(fayalite)와 혼합한 다음, 볼밀을 이용하여 불활성 분위기에서 분쇄하는 단계; (d) 상기 분쇄된 혼합물을 반응로에 투입한 다음, 용융시켜 용융물을 수득하는 단계; 및 (e) 상기 수득된 용융물을 고화시키는 단계를 포함하는 메탄의 비산화 직접 전환용 촉매의 제조방법에 관한 것이다.The present invention in one aspect, (a) impregnating a platinum (Pt) precursor in a catalyst carrier compound; (b) drying and calcining the impregnated material; (c) mixing the calcined impregnated material with fayalite, followed by pulverization in an inert atmosphere using a ball mill; (d) introducing the pulverized mixture into a reactor and then melting to obtain a melt; and (e) solidifying the obtained melt. It relates to a method for preparing a catalyst for non-oxidative direct conversion of methane.
보다 구체적으로, 본 발명에 따른 메탄의 비산화 직접전환용 촉매의 제조방법은 이종 금속 촉매을 포함함으로써 촉매 반응 속도를 극대화하는 동시에, 용융 단계 이전에 미립화를 통해 촉매의 균일도와 분산성을 증가시키되, 미립화 과정에서 발생되는 열로 인해 촉매가 환원되고 촉매가 소결되어 제조된 촉매의 활성 저하를 방지하기 위해 특정 조건의 미립화 단계와 용융 단계를 포함함으로써, 생성물로의 촉매 반응 속도를 극대화하는 동시에 코크스(coke) 생성을 최소화하고, 장기간 운전에서도 안정적인 촉매 성능을 가지는 메탄의 비산화 직접전환용 촉매를 용이하게 제공할 수 있다.More specifically, the method for preparing a catalyst for non-oxidative direct conversion of methane according to the present invention maximizes the catalytic reaction rate by including a heterogeneous metal catalyst, and at the same time increases the uniformity and dispersibility of the catalyst through atomization before the melting step, The catalyst is reduced due to the heat generated during the atomization process and the catalyst is sintered to prevent deterioration of the activity of the prepared catalyst. By including the atomization step and the melting step under certain conditions, the catalyst reaction rate into the product is maximized and coke (coke) ) production and can easily provide a catalyst for non-oxidative direct conversion of methane having stable catalytic performance even in long-term operation.
이하 본 발명에 따른 메탄의 비산화 직접전환용 촉매의 제조방법을 첨부된 도면을 참조하여 보다 상세하게 설명하면 다음과 같다.Hereinafter, a method for preparing a catalyst for non-oxidative direct conversion of methane according to the present invention will be described in more detail with reference to the accompanying drawings.
도 1 및 도 2는 각각 본 발명에 따른 메탄의 비산화 직접전환용 촉매의 제조방법의 모식도와 흐름도이다.1 and 2 are schematic diagrams and flow charts of a method for preparing a catalyst for non-oxidative direct conversion of methane according to the present invention, respectively.
본 발명에 따른 메탄의 비산화 직접전환용 촉매의 제조방법은 먼저 촉매 담체 화합물에 백금(Pt) 전구체를 함침시킨다[(a) 단계].In the method for preparing a catalyst for non-oxidative direct conversion of methane according to the present invention, a platinum (Pt) precursor is first impregnated with a catalyst carrier compound [step (a)].
일예로서, 상기 (a) 단계는 백금 전구체를 증류수에 용해시킨 후 백금 전구체 용액을 제조한 후, 촉매 담체 화합물을 분산시켜 함침물을 제조한다. As an example, in step (a), the platinum precursor is dissolved in distilled water to prepare a platinum precursor solution, and then the catalyst carrier compound is dispersed to prepare an impregnated material.
이때, 백금 전구체 용액을 제조하기 위한 용매로서, 증류수 대신에 알콜, 아세톤 등의 극성 유기 용매를 사용할 수 있으며, 또는 증류수와 1 종 이상의 극성 유기 용매를 포함한 혼합 용매를 사용할 수 있다.In this case, as a solvent for preparing the platinum precursor solution, a polar organic solvent such as alcohol or acetone may be used instead of distilled water, or a mixed solvent including distilled water and one or more polar organic solvents may be used.
일예로서, 상기 용매 30~60 ml 사용하여 백금 전구체 용액을 제조할 때, 백금 전구체의 중량은 0.05 ~ 0.2 g을 사용하는 것이 바람직하다.As an example, when preparing a platinum precursor solution using 30 to 60 ml of the solvent, the weight of the platinum precursor is preferably 0.05 to 0.2 g.
또한, 촉매 담체를 형성하기 위한 상기 촉매 담체 화합물은 실리카(SiO2), 알루미나(Al2O3), 세리아(CeO2), 타이타니아(TiO2), 지르코니아(ZrO2), 활성탄소(Activated carbon, AC), 탄화규소(SiC), 및 질화실리콘(SiN)으로 구성된 군에서 선택되는 1종 이상을 포함할 수 있으며, 바람직하게는 실리카, 알루미나, 타이타니아, 지르코니아 또는 탄화규소를 사용할 수 있고, 더욱 바람직하게는 실리카일 수 있다. In addition, the catalyst carrier compound for forming the catalyst carrier is silica (SiO 2 ), alumina (Al 2 O 3 ), ceria (CeO 2 ), titania (TiO 2 ), zirconia (ZrO 2 ), activated carbon (Activated carbon) , AC), silicon carbide (SiC), and may include at least one selected from the group consisting of silicon nitride (SiN), preferably silica, alumina, titania, zirconia or silicon carbide may be used, and more Preferably, it may be silica.
또한, 상기 촉매 담체 화합물이 실리카인 경우에, 구체적으로 석영(Quartz)인 것이 바람직하다.In addition, when the catalyst carrier compound is silica, specifically, it is preferably quartz.
본 발명에 따른 제조방법에 있어서, 상기 백금 전구체로는 백금 헥사클로라이드(H2PtCl6), 백금 암모늄 클로라이드(Pt(NH3)4Cl2) 또는 백금 암모늄나이트레이트(Pt(NH3)4(NO3)2)를 사용할 수 있으며, 바람직하게는 백금 암모늄나이트레이트(Pt(NH3)4(NO3)2)를 사용할 수 있다.In the manufacturing method according to the present invention, the platinum precursor is platinum hexachloride (H 2 PtCl 6 ), platinum ammonium chloride (Pt(NH 3 ) 4 Cl 2 ) or platinum ammonium nitrate (Pt(NH 3 ) 4 ( NO 3 ) 2 ) may be used, and preferably platinum ammonium nitrate (Pt(NH 3 ) 4 (NO 3 ) 2 ) may be used.
여기서, 촉매 담체 화합물 100 중량부에 대하여, 백금(Pt) 전구체 0.1 내지 2 중량부를 포함하는 할 수 있다.Here, 0.1 to 2 parts by weight of a platinum (Pt) precursor may be included with respect to 100 parts by weight of the catalyst carrier compound.
촉매의 활성에 있어서 담지된 백금 전구체의 함침 농도가 중요한 변수이며, 백금 전구체의 함량이 0.1 중량부 미만인 경우에는 촉매 활성이 적어 촉매 반응 속도가 떨어지며, 안정적인 촉매 성능을 나타낼 수 없고, 2 중량부를 초과할 경우에는 값비싼 귀금속 대비 반응성이 오히려 낮아지는 문제점이 발생한다.The impregnation concentration of the supported platinum precursor is an important variable in the activity of the catalyst, and when the content of the platinum precursor is less than 0.1 parts by weight, the catalytic reaction rate is low due to low catalytic activity, stable catalytic performance cannot be exhibited, and more than 2 parts by weight In this case, there is a problem that the reactivity is rather low compared to expensive precious metals.
이후, 상기 (a) 단계에서 제조된 백금 전구체가 함침된 촉매 담체 화합물을 건조킨 후 소성한다[(b) 단계].Thereafter, the catalyst carrier compound impregnated with the platinum precursor prepared in step (a) is dried and calcined [step (b)].
상기 건조 공정은 상기 (a) 단계에서 제조된 함침물을 공기 또는 불활성 분위기에서 80 내지 200℃의 온도에서 3 내지 10시간 동안 수행한다.The drying process is carried out for 3 to 10 hours at a temperature of 80 to 200 ℃ in air or an inert atmosphere in the impregnated material prepared in step (a).
이어서, 상기 건조 공정을 거친 함침물의 소성 공정은 공기 또는 불활성 분위기에서 350 내지 900℃의 온도까지 1 ℃/min 이상의 승온 속도로 가열하여 수행할 수 있는데, 이러한 건조 및 소성 공정를 통해 촉매 담체에 함유된 수분 및 불순물이 제거되고, 열적 내구성 및 촉매 활성이 향상된다.Subsequently, the calcination process of the impregnated material that has undergone the drying process may be performed by heating in air or an inert atmosphere to a temperature of 350 to 900 °C at a temperature increase rate of 1 °C/min or more. Moisture and impurities are removed, and thermal durability and catalytic activity are improved.
그 다음, 상기 (b) 단계에서 건조 및 소성한 함침물을 페이얼라이트(fayalite)와 혼합한 다음, 볼밀을 이용하여 불활성 분위기에서 분쇄한다[(c) 단계].Then, the impregnated material dried and calcined in step (b) is mixed with fayalite, and then pulverized in an inert atmosphere using a ball mill [step (c)].
상기 페이얼라이트(fayalite, Fe2SiO4)는 철 성분을 함유하는 규산염으로, 규소 전구체 및 철 전구체를 이용하여 제조하거나, 또는 상용화된 것을 제한 없이 사용할 수 있다.The fayalite (Fe2SiO4) is a silicate containing an iron component, and may be prepared using a silicon precursor and an iron precursor, or a commercially available one may be used without limitation.
상기 페이얼라이트 제조방법으로는 일 예로 규소 전구체 및 철 전구체를 물, 알코올 등의 용매에 분산시키고, 가수분해 및/또는 축합 등의 졸겔 반응을 수행하여 수득될 수 있다.As an example of the method for preparing the payelite, it may be obtained by dispersing a silicon precursor and an iron precursor in a solvent such as water or alcohol, and performing a sol-gel reaction such as hydrolysis and/or condensation.
이때, 상기 용매로는 특별히 제한되지 않으나, 물, 알코올, 벤젠, 톨루엔, 자일렌 및 이들의 혼합물 등을 사용할 수 있으며, 상기 용매의 양은 사용된 규소 전구체 및 철 전구체 무게의 5 ~ 20배에 해당하는 양을 사용하는 것이 바람직하다. 그 양이 5배 미만이면 분산효과가 떨어지고 20배 이상인 경우에는 겔화 공정이 지연될 수 있다.In this case, the solvent is not particularly limited, but water, alcohol, benzene, toluene, xylene, and mixtures thereof may be used, and the amount of the solvent corresponds to 5 to 20 times the weight of the silicon precursor and iron precursor used. It is preferable to use an amount of If the amount is less than 5 times, the dispersion effect is lowered, and if it is 20 times or more, the gelation process may be delayed.
상기 규소 전구체로는 기상, 액상 및 고상의 규소 전구체를 사용할 수 있고, 상기 액상 규소 전구체로는 규산테트라에틸, 4염화 규소, 유기 실란 등일 수 있으며, 고상 규소 전구체로는 실리카, 탄화규소, 질화규소 등일 수 있다.As the silicon precursor, a gaseous, liquid, and solid silicon precursor may be used, and the liquid silicon precursor may be tetraethyl silicate, silicon tetrachloride, organosilane, or the like, and the solid silicon precursor may be silica, silicon carbide, silicon nitride, etc. can
또한, 상기 철 전구체로는 FeCl2, FeCl3 등의 철 염화물; FeO, Fe2O3, Fe3O4 등의 철 산화물; Fe5C2, Fe3C 등의 철탄화물; Fe2N, Fe4N, Fe7N3 등의 철 질화물; Fe2SiO4, Fe2O3·SiO2 등의 철 규화물; 및 철 규산염 등일 수 있다.In addition, examples of the iron precursor include iron chlorides such as FeCl2 and FeCl3; iron oxides such as FeO, Fe2O3, and Fe3O4; iron carbides such as Fe5C2 and Fe3C; iron nitrides such as Fe2N, Fe4N, and Fe7N3; iron silicides such as Fe2SiO4 and Fe2O3·SiO2; and iron silicate.
상기 규소 전구체 및 철 전구체가 용해된 반응물의 졸겔 반응은 상온 ~ 150 ℃에서 1 ~ 15시간 동안 수행할 수 있다. 만일 반응 온도가 상온 미만일 경우에는 겔화 시간이 길어지고, 150 ℃를 초과할 경우에는 겔화가 지나쳐 구조가 붕괴될 수 있다.The sol-gel reaction of the reactant in which the silicon precursor and the iron precursor are dissolved may be performed at room temperature to 150° C. for 1 to 15 hours. If the reaction temperature is less than room temperature, the gelation time is long, and if it exceeds 150 °C, gelation may be excessive and the structure may be collapsed.
이와 같이 수득된 반응물은 건조 소성하여 페이얼라이트(fayalite, Fe2SiO4)를 제조할 수 있으며, 상기 반응물의 환원을 방지하기 위해 Ar, He 등의 불활성 분위기에서 20 ℃ ~ 80 ℃에서 1시간 ~ 24시간 동안 건조시킨 다음, 불활성 분위기에서 500 ℃ ~ 1,000 ℃에서 1 시간 ~ 5시간 동안 소성시킬 수 있다.The reactant thus obtained can be dried and calcined to produce fayalite (Fe2SiO4). After drying for a while, it can be calcined for 1 hour to 5 hours at 500 ° C. to 1,000 ° C. in an inert atmosphere.
만일 상기 건조가 20 ℃ 또는 1 시간 미만이면 건조 효율이 좋지 못하고, 80 ℃ 또는 24 시간을 초과하면 촉매 성능에 악영향을 미칠 수 있으며, 소성이 500 ℃ 또는 1 시간 미만이면 반응 불순물을 제거하기 어렵고, 5 시간을 초과하면 촉매 성능에 악영향을 미칠 수 있으며, 1,000 ℃를 초과하면 후술되는 미립화가 어려우며, 소결 현상이 발생될 수 있다.If the drying is at 20 ° C. or less than 1 hour, the drying efficiency is not good, if it exceeds 80 ° C. or 24 hours, it may adversely affect the catalyst performance, and if the calcination is 500 ° C. or less than 1 hour, it is difficult to remove the reaction impurities, If it exceeds 5 hours, it may adversely affect catalyst performance, and if it exceeds 1,000° C., it is difficult to atomize, which will be described later, and sintering may occur.
이외에도 페이얼라이트(fayalite, Fe2SiO4)는 Fe2O3, Fe 등의 철 전구체와 SiO2 등의 규소 전구체를 물리적으로 혼합하고, 이를 고온에서 가열하는 등의 기계적 합성 방법을 수행하여 수득될 수 있다. 열역학적으로 570 ℃ 이상의 온도의 Fe-O 시스템에서는 안정하게 FeO가 형성될 수 있고, 이는 규소 전구체와 반응하여 페이얼라이트를 형성할 수 있다.In addition, fayalite (Fe2SiO4) may be obtained by physically mixing an iron precursor such as Fe2O3 or Fe and a silicon precursor such as SiO2, and performing a mechanical synthesis method such as heating it at a high temperature. Thermodynamically, FeO may be stably formed in an Fe-O system at a temperature of 570° C. or higher, which may react with a silicon precursor to form fayerite.
이후, 상기 페이얼라이트는 상기 (b) 단계에서 건조·소성된 백금 및 촉매 담체를 포함하는 함침물에 혼합한 다음, 반응물의 환원 방지를 위해 Ar, He 등의 불활성 분위기에서 볼밀을 이용하여 분쇄한다.Thereafter, the payelite is mixed with the impregnated material containing the platinum and catalyst carrier dried and calcined in step (b), and then pulverized using a ball mill in an inert atmosphere such as Ar and He to prevent reduction of the reactants. do.
상기 촉매 담체 화합물 100 중량부에 대하여, 페이얼라이트 0.1 내지 4 중량부를 혼합할 수 있다.With respect to 100 parts by weight of the catalyst carrier compound, 0.1 to 4 parts by weight of Fayelite may be mixed.
이때, 상기 촉매 담체 화합물 100 중량부에 대하여, 페이얼라이트가 0.1 중량부 미만인 경우에는 촉매의 활성 성분이 적어 촉매 반응 속도를 극대화할 수 없을 뿐만 아니라 촉매의 밀도가 낮아 안정적인 촉매 성능을 나타낼 수 없고, 4 중량부를 초과할 경우에는 메탄 활성화의 활성점인 철 입자의 입자크기가 커지고 그 양이 많아져코크스의 생성 속도가 높아지는 문제점이 발생될 수 있다.In this case, when the amount of payelite is less than 0.1 parts by weight based on 100 parts by weight of the catalyst carrier compound, the catalyst reaction rate cannot be maximized because the active component of the catalyst is small, and the density of the catalyst is low, so that stable catalytic performance cannot be exhibited. , when it exceeds 4 parts by weight, the particle size of the iron particles, which are the active points of methane activation, increases and the amount thereof increases, which may cause a problem in that the coke generation rate is increased.
또한, 바람직한 일 실시예로서, 상기 페이얼라이트는 상기 백금 전구체 100 중량부에 대하여, 150 내지 300 중량부인 것이 바람직하다.In addition, as a preferred embodiment, the amount of the payelite is preferably 150 to 300 parts by weight based on 100 parts by weight of the platinum precursor.
이와 같이 페이얼라이트와 백금 담지된 촉매가 혼합된 혼합물은 볼밀(ball mill)을 이용하여 미립화를 수행한다. 상기 페이얼라이트와 백금 담지된 촉매가 혼합된 혼합물을 미립화하는데 있어 사용하는 볼밀 장치에는 특별한 제한은 없고 일반적인 볼밀 장치를 사용할 수 있다.As such, the mixture in which the payelite and the platinum-supported catalyst are mixed is atomized using a ball mill. There is no particular limitation on the ball mill apparatus used for atomizing the mixture in which the payelite and the platinum-supported catalyst are mixed, and a general ball mill apparatus may be used.
일 실시예로서, 상기 (b) 단계에서 건조 및 소성한 함침물을 페이얼라이트(fayalite)와 혼합한 다음, 볼밀을 이용하여 불활성 분위기에서 100 rpm 내지 300 rpm 속도로 4시간 내지 18시간 동안 분쇄할 수 있다.As an embodiment, the impregnated material dried and calcined in step (b) is mixed with fayalite, and then pulverized for 4 to 18 hours at a speed of 100 rpm to 300 rpm in an inert atmosphere using a ball mill. can do.
상기 볼밀은 페이얼라이트의 환원을 방지하면서 미립화 및 균일한 혼합 효과를 증대시키기 위해 불활성 분위기에서 100 rpm 내지 300 rpm 속도로 4시간 내지 18시간 동안 분쇄한다. 볼밀을 통해 페이얼라이트 및 백금 담지된 촉매의 근접성이 증가되면 촉매의 균일도 및 밀도가 증가하는 효과가 있다. 만일 볼밀의 회전속도와 시간이 각각 100 rpm 미만 또는 4 시간 미만일 경우에는 페이얼라이트와 백금 담지된 촉매 의 미립화시 입자 크기 조절 및 입자 사이의 근접성 조절에 한계가 있고, 300 rpm 또는 18 시간을 초과할 경우에는 촉매 담체 및 활성 금속의 소결로 인한 생성물로의 활성저하 문제점이 발생될 수 있다.The ball mill is pulverized at a speed of 100 rpm to 300 rpm in an inert atmosphere for 4 to 18 hours in an inert atmosphere to prevent the reduction of paylite and to increase the effect of atomization and uniform mixing. When the proximity of the catalyst supported by fayellite and platinum through the ball mill is increased, there is an effect of increasing the uniformity and density of the catalyst. If the rotation speed and time of the ball mill are less than 100 rpm or less than 4 hours, respectively, there is a limit to controlling the particle size and adjusting the proximity between the particles during atomization of the catalyst on which the payelite and platinum are supported, and it exceeds 300 rpm or 18 hours, respectively. In this case, there may be a problem of lowering the activity of the product due to the sintering of the catalyst carrier and the active metal.
이와 같이 미립화된 혼합물은 평균 직경이 60 ㎛ 이하, 바람직하게는 50 nm ~ 50 ㎛일 수 있다. 만일, 미립화된 혼합물의 평균 직경이 60 ㎛를 초과할 경우에는 페이얼라이트와 백금 담지된 촉매가 용융시 입자 사이의 근접성 조절에 한계가 있어 결과적으로 페이얼라이트 내 철입자의 선택적인 환원 및 철입자의 입자크기 조절에 문제가 발생될 수 있다.The atomized mixture may have an average diameter of 60 μm or less, preferably 50 nm to 50 μm. If the average diameter of the atomized mixture exceeds 60 μm, there is a limit in controlling the proximity between the particles when the catalyst supported with fayllite and platinum is melted. Problems may arise in controlling the particle size of the particles.
이후, 볼밀을 통해 미립화된 혼합물은 반응로에 투입한 다음, 용융시켜 용융물을 수득하고[(d) 단계], 상기 수득된 용융물은 고화시킨다[(e) 단계].Thereafter, the atomized mixture through a ball mill is put into a reactor, and then melted to obtain a melt [step (d)], and the obtained melt is solidified [step (e)].
이때, 반응로는 용융온도에 열적 안정성을 갖는 재질이면 제한 없이 사용 가능하고, 반응로의 직경에 대한 높이비가 0.2 미만일 경우에는 촉매 담체와 촉매 활성 성분을 균일하게 용융하기 어려워 균일한 촉매를 제조하기 어렵고, 반응로의 직경에 대한 높이비가 3을 초과할 경우에는 용융시 촉매의 활성 금속의 환원율이 증가하며, 냉각을 통한 용융물 고체화시 촉매입자의 균일도 및 밀도가 감소하는 경향을 나타낸다.At this time, the reactor can be used without limitation as long as it is a material having thermal stability at the melting temperature. It is difficult, and when the height-to-diameter ratio of the reactor exceeds 3, the reduction rate of the active metal of the catalyst increases during melting, and the uniformity and density of the catalyst particles tend to decrease when the melt is solidified through cooling.
상기 반응로에 투입된 혼합물은 혼합물이 모두 용융될 수 있는 온도로 용융시킬 수 있으며, 상기 용융은 공기 또는 불활성 분위기에서 1,200 ℃ 내지 2,000 ℃까지 6 ℃/min 이상, 바람직하게는 6 ℃/min ~ 15 ℃/min의 승온 속도로 가열하여 수행할 수 있다.The mixture introduced into the reactor may be melted at a temperature at which all of the mixture can be melted, and the melting is performed at 1,200 °C to 2,000 °C in air or an inert atmosphere at 6 °C/min or more, preferably at 6 °C/min to 15 °C It can be carried out by heating at a temperature increase rate of °C/min.
상기 용융 온도가 1,200 ℃ 미만일 경우에는, 촉매 담체와 촉매 활성성분을 모두 용융하기 어려워 균일한 촉매를 제조하는데 문제점이 발생될 수 있고, 2,000 ℃를 초과할 경우에는 촉매 담체와 촉매 활성성분이 기화하여 손실이 생길 수 있어 균일한 촉매를 제조하는데 문제점이 발생될 수 있다. 이때, 용융시간은 충분히 융융될 수 있도록 충분한 시간으로 용융시킬 수 있고, 바람직하게는 3시간 ~ 9시간 정도일 수 있다.When the melting temperature is less than 1,200 ℃, it is difficult to melt both the catalyst carrier and the catalytically active component, which may cause problems in preparing a uniform catalyst, and when it exceeds 2,000 ℃, the catalyst carrier and the catalytically active component are vaporized A loss may occur, which may cause a problem in preparing a uniform catalyst. At this time, the melting time may be sufficiently melted so as to be sufficiently melted, and preferably may be about 3 to 9 hours.
이때, 촉매는 용융속도에 따라 상변이가 촉진되고 결과적으로 고 결정성을 갖는 높은 밀도의 촉매를 제조할 수 있어, 상기 용융 승온속도가 6 ℃/min 미만인 경우에는 페이얼라이트의 금속으로의 환원을 촉진시키고 촉매의 균일도 및 밀도를 낮추는 문제점이 발생될 수 있다.At this time, the phase change of the catalyst is promoted according to the melting rate, and as a result, a high-density catalyst having high crystallinity can be prepared. There may be problems in promoting the catalyst and lowering the uniformity and density of the catalyst.
또한, 용융 후, 고화 단계는 급속 냉각 또는 자연 냉각을 수행할 수 있다. 상기 급속 냉각은 가스 냉각, 수냉, 유냉, 액체 질소 냉각 등으로 수행할 수 있으며, 바람직하게는 급속 냉각을 0.2 ℃/s ~ 150 ℃/s 조건 범위로 수행할 수 있다. 상기 급속 냉각을 상기 범위로 수행할 경우에는 활성 금속 및 담체 성분의 녹는점 차이로 인한 불균일화를 억제하여 촉매의 균일도를 증진시킬 수 있다.Further, after melting, the solidification step may be performed by rapid cooling or natural cooling. The rapid cooling may be performed by gas cooling, water cooling, oil cooling, liquid nitrogen cooling, etc., and preferably rapid cooling may be performed in the range of 0.2 °C/s to 150 °C/s. When the rapid cooling is performed within the above range, the uniformity of the catalyst can be improved by suppressing non-uniformity due to the difference in the melting points of the active metal and the carrier component.
상기 가스 냉각에서의 가스는 불활성 가스 및 공기로 구성된 군에서 선택되는 1종 이상일 수 있으며, 유냉 냉각에서 오일은 광유, 유채유, 실리콘유 등일 수 있다.In the gas cooling, the gas may be at least one selected from the group consisting of an inert gas and air, and in the oil cooling cooling, the oil may be mineral oil, rapeseed oil, silicone oil, or the like.
또한, 본 발명의 메탄의 비산화 직접전환용 촉매는 전술된 용융 단계 및 고화 단계를 반복 수행함으로써, 촉매의 기공부피를 더욱 감소시킬 수 있다. 이때, 상기 용융 단계 및 고화 단계의 반복 횟수는 2회 이상일 수 있으며, 바람직하게는 2회 ~ 5회일 수 있다.In addition, the catalyst for non-oxidative direct conversion of methane of the present invention can further reduce the pore volume of the catalyst by repeatedly performing the above-described melting step and solidification step. In this case, the number of repetitions of the melting step and the solidification step may be two or more, preferably 2 to 5 times.
이와 같이 제조된 메탄의 비산화 직접전환용 촉매는 입상화하기 위해 무기바인더, 유기바인더, 물 등에 균일하게 혼합하여 촉매혼합물을 수득하고, 이를 성형하여 촉매성형체를 제조한다.The catalyst for non-oxidative direct conversion of methane prepared in this way is uniformly mixed with an inorganic binder, organic binder, water, etc. to obtain a catalyst mixture, which is then molded to prepare a catalyst molded body.
상기 유기바인더는 당 업계에서 사용하는 것을 사용할 수 있으며, 특별히 한정하지는 않으나, 메틸셀룰로오스, 에틸렌글리콜, 폴리올, 푸드 오일 또는 유기 지방산 중에서 선택된 하나 이상을 사용하는 것이 바람직하다. 구체적인 예를 들면 유기 바인더로는 하이드록시 메틸셀룰로오스 (Hydroxy methyl cellulose) 또는 폴리비닐알콜(Polyvinyl alcohol)을 사용하는 것이 바람직하다. 또한, 무기 바인더는 당 업계에서 사용하는 것을 사용할 수 있으며, 특별히 한정하지는 않으나, 고상 실리카, 고상 알루미나, 고상 실리카-알루미나, 실리카 졸, 알루미나졸, 물유리 중에서 선택된 하나 이상을 사용하는 것이 바람직하다. 구체적인 예를 들면 무기바인더로는 퓸드 실리카(Fumed silica), 실리카 졸(Silica solution), 보헤마이트 (Boehmite) 또는 알루미나 졸(Alumina solution)을 사용하는 것이 바람직하다.The organic binder may be used in the art, and is not particularly limited, but it is preferable to use at least one selected from methyl cellulose, ethylene glycol, polyol, food oil or organic fatty acid. For a specific example, it is preferable to use hydroxy methyl cellulose or polyvinyl alcohol as the organic binder. In addition, the inorganic binder may be used in the art, and is not particularly limited, but it is preferable to use at least one selected from solid silica, solid alumina, solid silica-alumina, silica sol, alumina sol, and water glass. For a specific example, it is preferable to use fumed silica, silica solution, boehmite, or alumina solution as the inorganic binder.
상기 촉매 혼합물은 전형적으로 허니컴 구조체, 모노리스 구조체 등의 촉매 구조체에 상기 촉매 혼합물을 코팅시키거나, 상기 촉매 혼합물의 촉매성분을 직접 압출 성형하여 촉매성형체로 제조된다. 이때, 상기 촉매 혼합물의 코팅 및 압출성형은 당 업계에서 사용하는 방법으로 용이하게 제조할 수 있으며, 구체적인 설명은 생략하기로 한다.The catalyst mixture is typically prepared into a catalyst molded body by coating the catalyst mixture on a catalyst structure such as a honeycomb structure or a monolith structure, or by directly extruding the catalyst component of the catalyst mixture. At this time, coating and extrusion molding of the catalyst mixture can be easily prepared by methods used in the art, and detailed descriptions will be omitted.
상기 촉매성형체는 메탄의 비산화 직접전환용 반응기 내부의 촉매 충전부에 제조된 촉매성형체의 형태에 따라 하나 이상 충전될 수 있다. 상기 촉매성형체의 충전방법 역시 당 업계에서 사용하는 방법으로 용이하게 충전시킬 수 있다.The catalyst compact may be charged at least one according to the shape of the catalyst compact prepared in the catalyst packing part inside the reactor for non-oxidative direct conversion of methane. The filling method of the catalyst molded body can also be easily filled by a method used in the art.
본 발명은 다른 관점에서, 전술된 제조방법에 의해 제조되고, 촉매 담체 화합물을 포함하는 촉매 담체를 포함하고, 비표면적이 5 m2/g 이하의 고결정성 구조를 갖는 것을 특징으로 하는 메탄의 비산화 직접전환용 촉매에 관한 것이다. 이때, 이종 활성금속인 철과 백금 성분은 나노입자 형태로 촉매 담체 상에 존재하며, 활성 물질인 철이 담체상에 원자 단위로 서로 분산된 형태를 포함하고 있다.In another aspect, the present invention is prepared by the above-described production method, includes a catalyst carrier comprising a catalyst carrier compound, and has a high crystalline structure with a specific surface area of 5 m 2 /g or less, characterized in that the ratio of methane It relates to a catalyst for direct oxidation conversion. At this time, iron and platinum components, which are heterogeneous active metals, are present on the catalyst carrier in the form of nanoparticles, and include a form in which iron as an active material is dispersed with each other in atomic units on the carrier.
즉, 상기 메탄의 비산화 직접전환용 촉매는 결정질 용융 상태의 백금 담지된 촉매 담체 화합물 격자내에 촉매 활성 성분인 철이 도핑된 형태로 존재할 수 있다.That is, the catalyst for non-oxidative direct conversion of methane may exist in the form of doped iron, which is a catalytically active component, in the lattice of a catalyst carrier compound supported on platinum in a crystalline molten state.
이때, 상기 촉매 담체상에 분산 담지된 백금 또는 철 입자의 평균 직경은 5 nm 일 수 있으며, 이 경우 담체의 미세 응력을 조절하게하여 담체의 밀도를 증가시키고, 담체에 존재하는 결점(defect site) 수를 낮춰 메탄 반응이 원활하게 진행될 수 있게 하므로 바람직하다.At this time, the average diameter of the platinum or iron particles dispersedly supported on the catalyst carrier may be 5 nm, in this case, the micro stress of the carrier is adjusted to increase the density of the carrier, and defects present in the carrier It is preferable because the number is lowered to allow the methane reaction to proceed smoothly.
일 예로, 상기 메탄의 비산화 직접전환용 촉매는 촉매 담체 화합물이 실리카로 이루진 경우, Fe 단일원자에 C원자 2개 및 Si 원자 1개가 결합되어 실리카 기저에 박혀 있는 구조일 수 있으며, 이때, 상기 촉매 담체의 결정구조는 α-crystobalite이며, 200 ℃ ~ 300 ℃로 가열 시 가역적으로 β-crystobalite로 변환되는 것을 특징으로 한다.As an example, the catalyst for non-oxidative direct conversion of methane may have a structure in which two C atoms and one Si atom are bonded to a single Fe atom and embedded in the silica base when the catalyst carrier compound is made of silica, at this time, The crystal structure of the catalyst carrier is α-crystobalite, and it is characterized in that it is reversibly converted to β-crystobalite when heated to 200 °C ~ 300 °C.
상기 촉매 활성 성분인 백금(Pt)은 촉매 총 중량에 대하여, 0.1 ~ 2.0 중량%일 수 있으며, 백금의 담지량이 촉매 총 중량에 대하여 0.1 중량% 미만일 경우에는 촉매 활성이 작아 메탄의 비산화 직접전환 효율이 저하될 수 있고, 2.0 중량%를 초과할 경우에는 값비싼 귀금속 대비 반응성이 오히려 낮아지는 문제점이 발생한다.The catalytically active component, platinum (Pt), may be 0.1 to 2.0% by weight based on the total weight of the catalyst, and when the amount of platinum supported is less than 0.1% by weight based on the total weight of the catalyst, the catalytic activity is small, so non-oxidative direct conversion of methane Efficiency may be lowered, and when it exceeds 2.0 wt %, there is a problem in that the reactivity is rather lowered compared to expensive noble metals.
또한, 상기 촉매 활성 성분인 철은 촉매 총 중량에 대하여, 0.1 ~ 2.0 중량%일 수 있으며, 철의 담지량이 촉매 총 중량에 대하여 0.1 중량% 미만일 경우에는 도판트로 작용할 수 있는 철의 함량이 작아 메탄의 비산화 직접전환 효율이 저하될 수 있고, 2.0 중량%를 초과할 경우에는 메탄 활성화의 활성점인 철 입자의 양이 많아져 코크스의 생성속도가 높아지는 문제가 발생될 수 있다.In addition, the catalytically active component of iron may be 0.1 to 2.0 wt% based on the total weight of the catalyst. The non-oxidative direct conversion efficiency of the methane may be lowered, and when it exceeds 2.0 wt%, the amount of iron particles, which are the active points of methane activation, may increase, resulting in a problem in that the coke generation rate is increased.
또한, 바람직한 일 실시예로서, 상기 촉매내 활성 성분인 백금과 철 성분의 함량비는 1:1.5 ~ 1:3인 것이 바람직하다.In addition, as a preferred embodiment, the content ratio of platinum and iron, which is an active component in the catalyst, is preferably 1:1.5 to 1:3.
전술된 본 발명에 따른 메탄의 비산화 직접전환용 촉매는 불활성 및/또는 비불활성 가스와 메탄을 촉매 존재하에 고온에서 반응시켜 올레핀, 방향족 화합물을 제조한다.The catalyst for non-oxidative direct conversion of methane according to the present invention described above prepares an olefin and an aromatic compound by reacting an inert and/or inert gas with methane at a high temperature in the presence of a catalyst.
구체적으로, 본 발명에 따른 촉매를 성형하고, 성형된 촉매성형체를 반응기의 촉매 충전부 내에 위치시킨 다음, 메탄, 불활성 가스 및/또는 비불활성 가스를 도입하게 된다.Specifically, the catalyst according to the present invention is molded, the molded catalyst molded body is placed in the catalyst packing of the reactor, and then methane, an inert gas and/or an inert gas are introduced.
상기 메탄은 반응기 내부로 도입되는 전체 가스의 부피를 기준으로 80 내지 100 %(v/v), 보다 바람직하게는 90 내지 100 %(v/v)일 수 있으며, 불활성 가스 및/또는 비불활성 가스는 전체 가스의 부피를 기준으로 20 %(v/v) 이하, 보다 바람직하게는 10 %(v/v) 이하일 수 있다.The methane may be 80 to 100% (v/v), more preferably 90 to 100% (v/v), based on the volume of the total gas introduced into the reactor, and an inert gas and/or an inert gas may be 20% (v/v) or less, more preferably 10% (v/v) or less, based on the volume of the total gas.
상기 불활성 가스 및 비불활성 가스는 반응상태를 안정적으로 발생 및 유지시키는 역할을 하는 것으로, 상기 불활성 가스로는 질소, 헬륨, 네온, 아르곤, 크립톤일 수 있으며, 비불활성 가스는 공기, 일산화탄소, 수소, 이산화탄소, 물, 일가 알코올(탄소수 1 ~ 5), 이가 알코올(탄소수 2 ~ 5), 알칸류(탄소수 2 ~ 8)일 수 있으며, 바람직하게는 불활성 가스 및 비불활성 가스가 질소 또는 공기일 수 있다.The inert gas and the inert gas serve to stably generate and maintain a reaction state, and the inert gas may be nitrogen, helium, neon, argon, or krypton, and the inert gas is air, carbon monoxide, hydrogen, carbon dioxide , water, monohydric alcohols (1 to 5 carbon atoms), dihydric alcohols (2 to 5 carbons), alkanes (2 to 8 carbons), and preferably, the inert gas and inert gas may be nitrogen or air.
상기 반응온도는 900 ℃ ~ 1,150 ℃, 구체적으로 1,000 ℃ ~ 1,100 ℃일 수 있으며, 압력은 0.1 bar ~ 10 bar, 바람직하게는 0.1 bar ~ 5 bar일 수 있다. 이는 탄화수소의 선택도 및 수율을 고려한 것으로, 메탄의 탄화수소로의 선택성을 극대화하는 장점이 있다. 즉, 상기 조건에서 코크스 생성이 최소화되어 반응 중 코크스 생성으로 인한 압력강하 및 코크스 생성으로 인한 탄소효율을 최소화할 수 있다.The reaction temperature may be 900 °C to 1,150 °C, specifically 1,000 °C to 1,100 °C, and the pressure may be 0.1 bar to 10 bar, preferably 0.1 bar to 5 bar. This considers the selectivity and yield of hydrocarbons, and has the advantage of maximizing the selectivity of methane to hydrocarbons. That is, under the above conditions, coke generation is minimized, so that pressure drop due to coke generation during the reaction and carbon efficiency due to coke generation can be minimized.
상기 반응온도가 900 ℃ 미만일 경우에는 메탄 활성화로 인한 라디칼 생성속도가 낮아 에너지 효율이 낮고, 1150 ℃를 초과할 경우에는 코크스 생성을 억제하기 위하여 메탄이 반응기 내에서의 체류시간을 최소화해야 하는 문제점이 발생될 수 있다.When the reaction temperature is less than 900 ℃, the radical generation rate due to methane activation is low, so energy efficiency is low. can occur.
이와 같이 메탄의 직접변환에 의해 생성된 생성물은 에탄, 에틸렌, 아세틸렌, 프로필렌, 부틸렌 등의 파라핀, 올레핀, 알킨을 포함하는 탄화수소일 수 있고, 벤젠, 톨루엔, 자일렌, 에틸벤젠, 나프탈렌 방향족 화합물을 포함할 수 있다.As such, the product produced by the direct conversion of methane may be a hydrocarbon including paraffin, olefin, alkyne, such as ethane, ethylene, acetylene, propylene, butylene, benzene, toluene, xylene, ethylbenzene, naphthalene aromatic compound may include
본 발명에 따른 메탄의 전환방법은 반응 조건의 정밀한 제어 없이 메탄의 활성 유도가 가능하며 코크스(coke) 생성을 최소화하고, 장기간 운전에서도 안정적인 탄화수소 화합물의 수율을 유지시킬 수 있는 효과가 있다.The methane conversion method according to the present invention has the effect of inducing methane activity without precise control of reaction conditions, minimizing coke production, and maintaining a stable yield of hydrocarbon compounds even during long-term operation.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through specific examples. The following examples are only examples to help the understanding of the present invention, and the scope of the present invention is not limited thereto.
제조예 1: CRS 촉매Preparation Example 1: CRS catalyst
규소 전구체인 석영(quartz) 6 g을 반응로에 투입하고, 공기 중에서 1700 ℃까지 8 ℃/min로 4 시간 동안 용융시켜 높은 결정성의 cristobalite 구조를 갖는 용융촉매(CRS)를 수득하였다.6 g of quartz, which is a silicon precursor, was put into a reactor, and melted in air to 1700° C. at 8° C./min for 4 hours to obtain a molten catalyst (CRS) having a highly crystalline cristobalite structure.
제조예 2: Fe@CRS 촉매Preparation Example 2: Fe@CRS catalyst
규소 전구체인 석영(quartz) 6 g과 페이얼라이트(fayalite) 0.056 및 0.112 g을 Ar 분위기에서 5 시간 동안 볼밀링(ball milling, 250 rpm) 시킨 다음, 상기 볼밀링된 혼합물을 반응로에 투입하고, 공기 중에서 1700 ℃까지 8 ℃/min로 4 시간 동안 용융시켜 철 담지량이 0.5 wt%, 1.0 wt%인 용융촉매(0.5Fe@CRS, 1.0Fe@CRS)를 수득하였다.6 g of quartz, a silicon precursor, and 0.056 and 0.112 g of fayalite were ball milled in an Ar atmosphere for 5 hours (ball milling, 250 rpm), and then the ball milled mixture was put into a reactor and , was melted in air to 1700 °C at 8 °C/min for 4 hours to obtain a molten catalyst (0.5Fe@CRS, 1.0Fe@CRS) having an iron loading of 0.5 wt% and 1.0 wt%.
제조예 3-6: Me/Fe@CRS 촉매Preparation 3-6: Me/Fe@CRS catalyst
코발트 전구체인 코발트 나이트레이트 헥사하이드레이트(cobalt nitrate hexahydrate) 0.296 g을 50 ml의 증류수에 용해시킨 뒤 규소 전구체인 석영(quartz) 6 g을 분산시켰다. 상기 혼합물은 100 ℃에서 4 시간동안 교반 증발시킨 뒤, 120 ℃의 오븐에서 밤새 건조시켰다. 이후, 건조된 함침물은 공기분위기에서 400 ℃로 소성하여 0.5 wt% 담지량을 갖는 Co/SiO2 촉매를 제조하였다. 0.296 g of cobalt nitrate hexahydrate, a cobalt precursor, was dissolved in 50 ml of distilled water, and then 6 g of quartz, a silicon precursor, was dispersed. The mixture was stirred and evaporated at 100 °C for 4 hours, and then dried in an oven at 120 °C overnight. Thereafter, the dried impregnated material was calcined at 400° C. in an air atmosphere to prepare a Co/SiO 2 catalyst having a loading amount of 0.5 wt%.
제조된 Co/SiO2 촉매 6 g과 페이얼라이트(fayalite) 0.112 g을 Ar 분위기에서 5 시간 동안 볼밀링(ball milling, 250 rpm) 시킨 다음, 상기 볼밀링된 혼합물을 반응로에 투입하고, 공기 중에서 1700 ℃까지 8 ℃/min로 4 시간 동안 용융시켜 철 담지량이 1.0 wt%, 코발트 담지량이 0.5 wt%인 용융촉매(0.5Co1.0Fe@CRS)를 수득하였다. 이와 동일한 방법으로 촉매를 제조하였다.6 g of the prepared Co/SiO2 catalyst and 0.112 g of fayalite were ball milled in an Ar atmosphere for 5 hours (ball milling, 250 rpm), and then the ball milled mixture was put into a reactor, and in air. It was melted to 1700 °C at 8 °C/min for 4 hours to obtain a molten catalyst (0.5Co1.0Fe@CRS) having an iron loading of 1.0 wt% and a cobalt loading of 0.5 wt%. A catalyst was prepared in the same manner as described above.
이어서, 하기 표 1에 기재된 조건으로 촉매를 제조하되 페이얼라이트 0.112 g을 0.5 wt% Me/SiO2(Me=Ni, Pd, Pt) 6 g과 Ar 분위기에서 5 시간 동안 볼밀링(ball milling, 250 rpm) 시킨 다음, 상기 볼밀링된 혼합물을 반응로에 투입하고, 공기 중에서 1700 ℃까지 8 ℃/min로 4 시간 동안 용융시켜 철 담지량이 1.0 wt%, 다른 금속 담지량이 0.5 wt%이고 비표면적이 2 m2/g 이하인 용융촉매(0.5Me1.0Fe@CRS)를 수득하였다.Then, a catalyst was prepared under the conditions shown in Table 1 below, but 0.112 g of fayalite was mixed with 6 g of 0.5 wt% Me/SiO 2 (Me=Ni, Pd, Pt) and ball milling for 5 hours in an Ar atmosphere. 250 rpm), the ball-milled mixture was put into a reactor and melted in air at 8 °C/min at 8 °C/min for 4 hours to obtain an iron loading of 1.0 wt% and other metal loadings of 0.5 wt%, and a specific surface area A molten catalyst (0.5Me1.0Fe@CRS) of 2 m 2 /g or less was obtained.
[표 1][Table 1]
Figure PCTKR2022003984-appb-img-000001
Figure PCTKR2022003984-appb-img-000001
[실험예 1] : 메탄 비산화적 직접전환 반응[Experimental Example 1]: Methane non-oxidative direct conversion reaction
상기 실시예 및 비교예에서 제조된 촉매를 이용하여 메탄의 비산화적 직접전환 반응을 상압, 1020 ℃ 반응조건에서 10 시간동안 실시하여 전환율 및 선택도를 확인하였다. 반응 실험에는 1/4 인치 충진층 반응기(fixed-bed reactor)로서, 내부 지름이 0.4 cm인 quartz 재질의 반응기를 사용하였다. 실시예 및 비교예에서 제조된 촉매는 평균 입도가 630 ㎛로 입자크기로 분쇄하였고, 분쇄된 촉매 0.6 g을 반응기 중앙에 quartz wool로 고정하였다. 반응기 내 촉매충진 층 아래는 quartz rod를 삽입해 잔여 공간을 최소화하였다. 반응기 온도가 1020 ℃로 승온되는 동안 He 가스를 40 ml/min 유량으로 주입하였으며, 이후 메탄이 함유된 반응물을 mass flow controller를 사용하여 990 mlgcat -1hr-1(반응물 조성: 90% CH4, 10% Ar) 조건으로 주입하였다. Ar 가스는 internal standard로 사용하였다.Using the catalysts prepared in Examples and Comparative Examples, a non-oxidative direct conversion reaction of methane was carried out at atmospheric pressure and 1020° C. for 10 hours to confirm the conversion rate and selectivity. In the reaction experiment, a quartz material having an inner diameter of 0.4 cm was used as a 1/4 inch fixed-bed reactor. The catalysts prepared in Examples and Comparative Examples were pulverized to have an average particle size of 630 μm, and 0.6 g of the pulverized catalyst was fixed with quartz wool in the center of the reactor. A quartz rod was inserted under the catalyst bed in the reactor to minimize the remaining space. He gas was injected at a flow rate of 40 ml/min while the reactor temperature was raised to 1020 ° C. Then, the reactant containing methane was 990 mlg cat -1 hr -1 using a mass flow controller (reactant composition: 90% CH 4 , 10% Ar) was injected. Ar gas was used as an internal standard.
이후 수득된 생성물의 기상의 탄화수소는 YL Instrument 사의 Series 6100의 GC를 사용하여 분석하였고, 기체 상태의 생성물은 ShinCarbon ST 컬럼에 연결된 Thermal conductivity detector(TCD)와 Rt-alumina BOND 컬럼이 연결된 Flame ionization detector(FID) detector로 분석하였다. H2, CH4, CO는 ShinCarbon ST 컬럼에서 분리되어 TCD로 검출하였으며, internal standard인 Ar 넓이 대비 메탄의 넓이로 전환율을 계산하였다. C1 내지 C10 범위의 hydrocarbon은 Rt-alumina BOND 컬럼으로 분리하여 FID로 검출하였다. 모든 가스는 표준시료를 사용하여 정량을 진행하였다. 코크스 선택도는 [Scoke = 100 - Σ생성물 선택도]를 통하여 계산하였다. 이와 같이 측정된 결과를 표 2에 나타내었다.The gaseous hydrocarbons of the obtained product were analyzed using a GC of Series 6100 of YL Instrument, and the gaseous product was analyzed using a thermal conductivity detector (TCD) connected to a ShinCarbon ST column and a flame ionization detector ( FID) detector was used for analysis. H 2 , CH 4 , and CO were separated on a ShinCarbon ST column and detected by TCD, and the conversion rate was calculated as the area of methane compared to the area of Ar, which is an internal standard. Hydrocarbons in the range of C 1 to C 10 were separated by Rt-alumina BOND column and detected by FID. All gases were quantified using standard samples. The coke selectivity was calculated through [Scoke = 100 - Σ product selectivity]. Table 2 shows the results measured in this way.
[표 2][Table 2]
Figure PCTKR2022003984-appb-img-000002
Figure PCTKR2022003984-appb-img-000002
상기 표 2에 나타난 바와 같이, CRS 촉매 및 Fe@CRS 촉매는 Blank 실험에 비해 상대적으로 방향족 화합물에 대한 선택도가 낮고, 코크 선택도는 높은 결과를 나타내었다. 따라서, 메탄을 초기 활성화 시킨 이후, C2 생성물에 대한 반응을 가스 상 반응으로 유도하는 것이 선택도 측면에서 유리함을 알 수 있다. 한편, 실시예 1에서 제조된 0.5Pt-1,0Fe@CRS 촉매는 Fe@CRS 촉매 대비 높은 메탄 전환율, 방향족 화합물의 높은 수율 및 낮은 코크 선택도를 나타내었으며, 이를 통해 적절한 비율과 조성의 이종금속 촉매를 통해 가스 상 C2 올리고머화 반응을 유도할 수 있음을 확인하였다.As shown in Table 2, the CRS catalyst and the Fe@CRS catalyst showed relatively low selectivity to aromatic compounds and high coke selectivity compared to the blank experiment. Therefore, it can be seen that, after initial activation of methane, it is advantageous in terms of selectivity to induce the reaction for the C2 product into a gas phase reaction. On the other hand, the 0.5Pt-1,0Fe@CRS catalyst prepared in Example 1 showed a high methane conversion rate, a high yield of aromatic compounds, and low coke selectivity compared to the Fe@CRS catalyst. It was confirmed that the gas phase C2 oligomerization reaction can be induced through the catalyst.
이종금속 촉매의 효과를 보다 잘 보여주기 위해 하기 도 3과 같이 메탄 전환 반응 상에서 메탄 전환율에 대한 코크 선택도를 도시하였다. 그 결과, 0.5Fe@CRS 촉매의 경우 이종금속의 첨가가 메탄 전환율에 대한 코크 선택도 상관관계를 크게 벗어나지 않는 것을 확인하였다. In order to better show the effect of the heterometal catalyst, the coke selectivity for the methane conversion rate in the methane conversion reaction is shown as shown in FIG. 3 below. As a result, in the case of the 0.5Fe@CRS catalyst, it was confirmed that the addition of dissimilar metals did not significantly deviate from the coke selectivity correlation with the methane conversion rate.
하지만 0.5Pt-1.0Fe@CRS 촉매의 경우 Fe@CRS 촉매 상에서 메탄 전환율에 대한 코크 선택도 상관관계에서 코크 선택도가 낮은 쪽으로 이동하는 것을 볼 수 있었고, Blank-CRS 영역에 가까운 것으로부터, C2 생성물의 가스 상 올리고머화반응 유도를 통한 코크 형성 억제가 일어나는 것을 확인하였다.However, in the case of the 0.5Pt-1.0Fe@CRS catalyst, it was found that the coke selectivity was shifted to the lower side in the correlation of the coke selectivity to the methane conversion over the Fe@CRS catalyst, and from those close to the Blank-CRS region, the C2 product It was confirmed that coke formation was suppressed through induction of gas phase oligomerization of
[실험예 2] : 메탄 직접 전환 반응 후 촉매에 대한 라만 분석[Experimental Example 2]: Raman analysis of catalyst after methane direct conversion reaction
메탄의 비산화 직접 전환 반응 후 촉매에 대한 라만 분석을 수행하여 그 결과를 하기 표 3에 나타내었다. After the non-oxidative direct conversion reaction of methane, Raman analysis was performed on the catalyst, and the results are shown in Table 3 below.
[표 3][Table 3]
Figure PCTKR2022003984-appb-img-000003
Figure PCTKR2022003984-appb-img-000003
상기 표 3에서 나타낸 바와 같이, 상대적으로 높은 메탄의 전환율을 보였던 0.5Pt-1.0Fe@CRS 촉매에서 가장 낮은 ID1/IG 피크 비율을 나타내었다. 이는 반응 중에 방향족 화합물로부터 비롯된 disordered coke가 0.5Pt-1.0Fe@CRS 촉매에서 잘 생성되지 않았음을 보여준다.As shown in Table 3, the 0.5Pt-1.0Fe@CRS catalyst, which showed a relatively high conversion of methane, showed the lowest I D1 /I G peak ratio. This shows that disordered coke originating from aromatic compounds during the reaction was not well produced in the 0.5Pt-1.0Fe@CRS catalyst.
따라서, 본 발명에 따른 메탄의 비산화 직접전환용 촉매는 탄화수소의 제조에 있어서, 촉매 반응 속도를 극대화하는 동시에 코크스(coke) 생성을 최소화하고, 방향족 화합물의 높은 수율을 제공할 수 있음을 확인할 수 있었다.Therefore, it can be confirmed that the catalyst for non-oxidative direct conversion of methane according to the present invention can maximize the catalytic reaction rate and at the same time minimize coke generation and provide a high yield of aromatic compounds in the production of hydrocarbons. there was.
본 발명은 상기한 실시예와 첨부한 도면을 참조하여 설명되었지만, 본 발명의 개념 및 범위 내에서 상이한 실시예를 구성할 수도 있다. 따라서 본 발명의 범위는 첨부된 청구범위 및 이와 균등한 것들에 의해 정해지며, 본 명세서에 기재된 특정 실시예에 의해 한정되지는 않는다.Although the present invention has been described with reference to the above embodiments and the accompanying drawings, other embodiments may be configured within the spirit and scope of the present invention. Accordingly, the scope of the present invention is defined by the appended claims and their equivalents, and not limited by the specific embodiments described herein.

Claims (11)

  1. (a) 촉매 담체 화합물에 백금(Pt) 전구체를 함침시키는 단계;(a) impregnating the catalyst carrier compound with a platinum (Pt) precursor;
    (b) 함침물을 건조 및 소성시키는 단계;(b) drying and calcining the impregnated material;
    (c) 소성된 함침물을 페이얼라이트(fayalite)와 혼합한 다음, 볼밀을 이용하여 불활성 분위기에서 분쇄하는 단계;(c) mixing the calcined impregnated material with fayalite, followed by pulverization in an inert atmosphere using a ball mill;
    (d) 상기 분쇄된 혼합물을 반응로에 투입한 다음, 용융시켜 용융물을 수득하는 단계; 및(d) introducing the pulverized mixture into a reactor and then melting to obtain a melt; and
    (e) 상기 수득된 용융물을 고화시키는 단계를 포함하는 메탄의 비산화 직접 전환용 촉매의 제조방법.(e) a method for preparing a catalyst for non-oxidative direct conversion of methane comprising the step of solidifying the obtained melt.
  2. 제1항에 있어서,According to claim 1,
    상기 (a) 단계는 촉매 담체 화합물 100 중량부에 대하여, 백금(Pt) 전구체 0.1 내지 2 중량부를 함침하는 것을 특징으로 하는 메탄의 비산화 직접전환용 촉매의 제조방법.In step (a), 0.1 to 2 parts by weight of a platinum (Pt) precursor is impregnated with respect to 100 parts by weight of the catalyst carrier compound.
  3. 제1항에 있어서,The method of claim 1,
    상기 (b) 단계의 소성은 300 ℃ 내지 900 ℃까지 1 ℃/min 이상의 승온 속도로 가열하여 수행하는 것을 특징으로 하는 메탄의 비산화 직접전환용 촉매의 제조방법.The method for producing a catalyst for non-oxidative direct conversion of methane, characterized in that the calcination of step (b) is performed by heating from 300° C. to 900° C. at a temperature increase rate of 1° C./min or more.
  4. 제1항에 있어서,The method of claim 1,
    상기 (c) 단계는 촉매 담체 화합물 100 중량부에 대하여, 페이얼라이트(fayalite)를 0.1 내지 4 중량부 함침하는 것을 특징으로 하는 메탄의 비산화 직접전환용 촉매의 제조방법.In step (c), 0.1 to 4 parts by weight of fayalite is impregnated with respect to 100 parts by weight of the catalyst carrier compound.
  5. 제1항에 있어서,According to claim 1,
    상기 (c) 단계는 볼밀을 이용하여 100 rpm 내지 300 rpm 속도로 4시간 내지 18시간 동안 분쇄하는 것을 특징으로 하는 메탄의 비산화 직접전환용 촉매의 제조방법.The step (c) is a method for producing a catalyst for non-oxidative direct conversion of methane, characterized in that the pulverization for 4 hours to 18 hours at a speed of 100 rpm to 300 rpm using a ball mill.
  6. 제1항에 있어서,The method of claim 1,
    상기 (d) 단계의 용융은 1,200 ℃ 내지 2,000 ℃까지 6 ℃/min 이상의 승온 속도로 가열하여 수행하는 것을 특징으로 하는 메탄의 비산화 직접전환용 촉매의 제조방법.The method for producing a catalyst for non-oxidative direct conversion of methane, characterized in that the melting of step (d) is performed by heating from 1,200 °C to 2,000 °C at a temperature increase rate of 6 °C/min or more.
  7. 제1항에 있어서,According to claim 1,
    상기 촉매 담체 화합물은 실리카, 알루미나, 타이타니아, 지르코니아 및 탄화규소로 구성된 군에서 선택되는 1종 이상인 것을 특징으로 하는 메탄의 비산화 직접전환용 촉매의 제조방법.The catalyst carrier compound is a method for producing a catalyst for non-oxidative direct conversion of methane, characterized in that at least one selected from the group consisting of silica, alumina, titania, zirconia and silicon carbide.
  8. 제1항 내지 제7항의 제조방법에 의해 제조되고, It is prepared by the manufacturing method of claims 1 to 7,
    상기 촉매 담체 화합물을 포함하는 촉매 담체를 포함하고, 비표면적이 5 m2/g 이하의 고결정성 구조를 갖는 것을 특징으로 하는 메탄의 비산화 직접전환용 촉매.A catalyst for non-oxidative direct conversion of methane, comprising a catalyst carrier including the catalyst carrier compound, and having a highly crystalline structure with a specific surface area of 5 m 2 /g or less.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 철의 담지량은 촉매 총 중량에 대하여, 0.1 ~ 2.0 중량%인 것을 특징으로 하는 메탄의 비산화 직접전환용 촉매. The catalyst for non-oxidative direct conversion of methane, characterized in that the supported amount of iron is 0.1 to 2.0 wt% based on the total weight of the catalyst.
  10. 제8항에 있어서,9. The method of claim 8,
    상기 백금(Pt)의 담지량은 촉매 총 중량에 대하여, 0.1 ~ 2.0 중량%인 것을 특징으로 하는 메탄의 비산화 직접전환용 촉매. The catalyst for non-oxidative direct conversion of methane, characterized in that the supported amount of the platinum (Pt) is 0.1 to 2.0 wt% based on the total weight of the catalyst.
  11. 제8항에 있어서,9. The method of claim 8,
    상기 촉매 담체는 용융된 결정성 상태인 것을 특징으로 하는 메탄의 비산화 직접전환용 촉매.The catalyst carrier is a catalyst for non-oxidative direct conversion of methane, characterized in that it is in a molten crystalline state.
PCT/KR2022/003984 2021-04-21 2022-03-22 Heterometallic catalyst for non-oxidative direct conversion of methane and method for preparing same WO2022225200A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210051744A KR20220145455A (en) 2021-04-21 2021-04-21 Bimetallic Catalyst for Nonoxidative Conversion of Methane and Method of Producing the Same
KR10-2021-0051744 2021-04-21

Publications (1)

Publication Number Publication Date
WO2022225200A1 true WO2022225200A1 (en) 2022-10-27

Family

ID=83722414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/003984 WO2022225200A1 (en) 2021-04-21 2022-03-22 Heterometallic catalyst for non-oxidative direct conversion of methane and method for preparing same

Country Status (2)

Country Link
KR (1) KR20220145455A (en)
WO (1) WO2022225200A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140155258A1 (en) * 2008-02-20 2014-06-05 Shell Oil Company Process for the conversion of ethane to aromatic hydrocarbons
KR20200049312A (en) * 2018-10-31 2020-05-08 한국화학연구원 Method for Preparing Catalysts for Oxygen-free Direct Conversion of Methane

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9932280B2 (en) 2013-05-13 2018-04-03 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Synthesis of olefins from oxygen-free direct conversion of methane and catalysts thereof
TWI617536B (en) 2015-06-12 2018-03-11 薩比克環球科技公司 A method for producing hydrocarbons by non-oxidative coupling of methane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140155258A1 (en) * 2008-02-20 2014-06-05 Shell Oil Company Process for the conversion of ethane to aromatic hydrocarbons
KR20200049312A (en) * 2018-10-31 2020-05-08 한국화학연구원 Method for Preparing Catalysts for Oxygen-free Direct Conversion of Methane

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BENEDICTE HOVD: "Direct Nonoxidative Conversion of Methane to C2 Hydrocarbons, Aromatics and Hydrogen", NTNU, 9 June 2016 (2016-06-09), XP055703380, Retrieved from the Internet <URL:https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2413325/14844_FULLTEXT.pdf?sequence=1&isAllowed=y> *
HAN SEUNG JU, LEE SUNG WOO, KIM HYUN WOO, KIM SEOK KI, KIM YONG TAE: "Nonoxidative Direct Conversion of Methane on Silica-Based Iron Catalysts: Effect of Catalytic Surface", ACS CATALYSIS, AMERICAN CHEMICAL SOCIETY, US, vol. 9, no. 9, 6 September 2019 (2019-09-06), US , pages 7984 - 7997, XP055978274, ISSN: 2155-5435, DOI: 10.1021/acscatal.9b01643 *
SIM JAEIK PAUL; LEE BYUNG JIN; HAN GEUN-HO; KIM DO HEUI; LEE KWAN-YOUNG: "Promotional effect of Au on Fe/HZSM-5 catalyst for methane dehydroaromatization", FUEL, IPC SIENCE AND TECHNOLOGY PRESS , GUILDFORD, GB, vol. 274, 22 April 2020 (2020-04-22), GB , XP086152177, ISSN: 0016-2361, DOI: 10.1016/j.fuel.2020.117852 *

Also Published As

Publication number Publication date
KR20220145455A (en) 2022-10-31

Similar Documents

Publication Publication Date Title
CA1316946C (en) Process for the production of mono-olefins by the catalytic oxidative dehydrogenation of gaseous paraffinic hydrocarbons having two or more carbon atoms
WO2015060472A1 (en) Cobalt-based catalyst based on metal structure for fischer-tropsch reaction for selective synthetic oil production, preparation method therefor, and selective synthetic oil preparation method using cobalt-based catalyst based on metal structure
WO2010143783A2 (en) Iron-based catalyst for fischer-tropsch synthesis and preparation method thereof
WO2011102567A1 (en) Method for making a cobalt metal foam catalyst in which a cobalt catalyst powder is coated onto the surface of a metal foam, the cobalt metal foam catalyst, a thermal-medium-circulating heat-exchange reactor using the cobalt metal foam catalyst, and a method for producing a liquid fuel by means of a fischer-tropsch synthesis reaction using the thermal-medium-circulating heat-exchange reactor
Li et al. Ordered mesoporous Sn-SBA-15 as support for Pt catalyst with enhanced performance in propane dehydrogenation
WO2014003332A1 (en) Method for modifying carbon dioxide using carbon black catalyst
WO2014092278A1 (en) Process for preparing fisher-tropsch catalyst
WO2009136711A2 (en) Cobalt-based catalyst for fischer-tropsch synthesis, and a production method therefor
WO2020091418A1 (en) Cobalt-based monoatomic dehydrogenation catalyst and method for preparing olefin corresponding to paraffin from paraffin by using same
WO2019146879A1 (en) Catalyst for nonoxidative direct conversion of methane, and methane conversion method using same
WO2015080519A1 (en) Yolk-shell particles, catalyst, and preparation method therefor
Kulkarni et al. Silicon carbide in catalysis: from inert bed filler to catalytic support and multifunctional material
WO2014129722A1 (en) Cobalt catalyst for fischer-tropsch synthesis, production method and method for producing liquid hydrocarbon using same
WO2022225200A1 (en) Heterometallic catalyst for non-oxidative direct conversion of methane and method for preparing same
WO2016060330A1 (en) Method for preparing cobalt-silica egg-shell nanocatalyst for fischer-tropsch synthesis reaction, and the catalyst, and method for synthesizing liquid hydrocarbon using same, and the liquid hydrocarbon
WO2020091227A1 (en) Catalyst for non-oxidative direct conversion of methane and preparation method for same
US7393877B2 (en) Process for the conversion of a synthesis gas to hydrocarbons in the presence of beta-SiC and effluent from this process
WO2019245157A1 (en) Catalyst for preparing light olefin, preparation method therefor, and method for preparing light olefin by using same
Völger et al. Synthesis and characterization of novel non-oxide sol-gel derived mesoporous amorphous Si-CN membranes
WO2014092482A1 (en) Catalyst containing lanthanum for manufacturing synthetic gas through steam-carbon dioxide reforming, and method for manufacturing synthetic gas by using same
WO2019143030A1 (en) Cobalt-iron hybrid catalyst for fischer-tropsch synthesis reaction, having ordered mesoporous main framework, preparation method therefor, and hydrocarbon preparation method using same
WO2022080643A1 (en) Catalyst for non-oxidative conversion of methane and selective hydrogenation of acetylene and production method therefor
WO2016144104A1 (en) Carbon nanostructure preparation method and carbon nanostructure prepared by means of same
WO2019231072A1 (en) Fischer-tropsch synthesis reaction catalyst for preparing linear long-chain olefins, and method for preparing linear long-chain olefins by using same
Huang et al. Preparation, thermal cure and ceramization of liquid precursors of SiC–ZrC

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791900

Country of ref document: EP

Kind code of ref document: A1