WO2016060330A1 - Method for preparing cobalt-silica egg-shell nanocatalyst for fischer-tropsch synthesis reaction, and the catalyst, and method for synthesizing liquid hydrocarbon using same, and the liquid hydrocarbon - Google Patents

Method for preparing cobalt-silica egg-shell nanocatalyst for fischer-tropsch synthesis reaction, and the catalyst, and method for synthesizing liquid hydrocarbon using same, and the liquid hydrocarbon Download PDF

Info

Publication number
WO2016060330A1
WO2016060330A1 PCT/KR2014/012316 KR2014012316W WO2016060330A1 WO 2016060330 A1 WO2016060330 A1 WO 2016060330A1 KR 2014012316 W KR2014012316 W KR 2014012316W WO 2016060330 A1 WO2016060330 A1 WO 2016060330A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
cobalt
shell
fischer
egg
Prior art date
Application number
PCT/KR2014/012316
Other languages
French (fr)
Korean (ko)
Inventor
박지찬
양정일
정헌
이호태
천동현
홍성준
권재인
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2016060330A1 publication Critical patent/WO2016060330A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing

Definitions

  • the present invention relates to a method for preparing a cobalt-silica egg-shell nanocatalyst for a Fischer-Tropsch synthesis reaction, a catalyst thereof, a method for synthesizing a liquid hydrocarbon using the same, and a liquid hydrocarbon thereof in detail.
  • Fischer-Tropsch (FT) synthesis was developed by German chemists Franz Fischer and Hans Tropsch in the 1920s, a mixture of carbon monoxide and hydrogen obtained by converting coal, natural gas and biomass resources. It is a technique for producing a synthetic fuel (hydrocarbon) as shown in the following formula through a catalytic reaction under high temperature, high pressure using.
  • a catalyst including cobalt and iron is mainly used, and reaction conditions such as reaction temperature, pressure, and gas composition are determined according to the type of catalyst applied.
  • the Fischer-Tropsch synthesis reaction is a low temperature Fischer-Tropsch (LTFT) that mainly forms diesel and wax between 180 and 260 ° C, depending on the desired product to be obtained through the reaction and the reaction temperature conditions for obtaining it effectively.
  • LTFT low temperature Fischer-Tropsch
  • HTFT high temperature Fischer-Tropsch
  • gasoline and light olefin gases ethylene, propylene
  • CTL coal-to-liquid
  • iron-based catalysts are used as Fischer-Tropsch reaction catalysts. It is also active in the water gas shift reaction, and the ratio of hydrogen to carbon monoxide synthesis gas can be used in various compositions within 1 to 2, and it can be used even in the presence of carbon dioxide, which is an impure gas.
  • the Fischer-Tropsch reaction using the iron-based catalyst also has the disadvantage of generating a large amount of carbon dioxide after the reaction, whereas the cobalt-based catalyst has a very low activity in the water gas transition reaction, and thus a long carbon chain chain with little generation of carbon dioxide.
  • cobalt-based catalysts have a disadvantage of being expensive compared to iron-based catalysts, they have advantages of high activity and long life. Therefore, in the case of the Fischer-Tropsch synthesis reaction using such a cobalt catalyst, high dispersion, high support and high temperature stability of the supported cobalt catalyst particles are required in order to compactly design the reactor and secure economical efficiency.
  • the egg-shell structure composed of cobalt and silica components, which are known to exhibit high activity in the Fischer-Tropsch reaction, has advantages in controlling heat of reaction or diffusion of reactants during the reaction, compared to general pellet type catalysts. (Gardezi, SA et. Al. Ind. Eng. Chem. Res. 2012, 51, 1703-1712).
  • the surface of the cobalt particles actually supported has a high dispersibility and rapid diffusion and contact with the reactants. There are some disadvantages.
  • the egg-shell catalyst manufactured in the conventional mm size region is mainly controlled by the metal salt impregnation time control or selective absorption technique using viscosity or affinity.
  • the selective uptake of metal salts is not easy, which makes it nearly impossible to make egg-shell catalysts on nanosized silica supports (Iglesia, E. et. Al. J. Catal. 1995, 153, 108-122).
  • An object of the present invention for solving the above problems is that the thermally stable, cobalt nano-scaled active cobalt particles are selectively dispersed in the pores of the nano-sized porous silica support shell and reacted during the Fischer-Tropsch reaction
  • the present invention provides a method for preparing a cobalt-silica egg-shell nanocatalyst having high activity in terms of fast diffusion and contact, and a catalyst thereof.
  • Another object of the present invention to provide a liquid hydrocarbon and a method for producing a liquid hydrocarbon effectively by having a high CO conversion and selectivity during the Fischer-Tropsch synthesis reaction using the cobalt-silica egg-shell nanocatalyst have.
  • the present invention to achieve the object as described above and to solve the conventional drawbacks is to (i) the precursor of silica Synthesizing silica structure particle powder using the method;
  • the step i) is to synthesize a silica structure having a spherical shape of 100 ⁇ 1000 nm size using the precursor TEOS (Tetraethyl orthosilicate) or TMOS (Tetramethyl orthosilicate) of silica in alcohol and water-based conditions It may be a step.
  • TEOS Tetraethyl orthosilicate
  • TMOS Tetramethyl orthosilicate
  • the step (iv) is a CTAB (Cetrimonium bromide, IUPAC Name: hexadecyl-trimethyl) having a long carbon chain of 16 carbons of step (ii) mixed with the silica precursor of step (i) -ammonium bromide) may be a step of forming pores by heat treatment to remove it.
  • CTAB Cosmetical bromide, IUPAC Name: hexadecyl-trimethyl
  • reaction time to melt-impregnated in step (iii) may be 4 to 48 hours.
  • the (iv) step is 400 ⁇ 700 °C to form a nanometer size cobalt particles by firing in a hydrogen atmosphere in the porous shell of the silica powder particles to be used as a support is optionally supported with a cobalt hydrate salt It can reduce in between.
  • the present invention is prepared according to the method described above, and the active nano-cobalt particles are uniformly formed only in the porous silica shell in the nano-silica structure in which the porous shell is formed of a tightly packed silica and many pores are formed near the shell. It is achieved by providing a cobalt-silica egg-shell nanocatalyst for a Fischer-Tropsch synthesis reaction characterized in that it is selectively positioned.
  • the size of the cobalt nanoparticles supported on the porous silica shell is 2 ⁇ 20 nm, the size of the entire particle including the silica structure is 100 ⁇ 1000 nm, the thickness of the porous silica shell is 10 ⁇ 100 nm.
  • the present invention comprises the steps of injecting the cobalt-silica egg-shell nanocatalyst for the Fischer-Tropsch synthesis reaction;
  • Fischer-Tropsch synthesis reaction comprising the It is achieved by providing a process for the preparation of liquid hydrocarbons using cobalt-silica egg-shell nanocatalysts.
  • the synthesis gas may be a mixture of one or two of a volume ratio of carbon monoxide and hydrogen, or a gas in which any one of an inert gas, methane, and carbon dioxide is mixed as impurities in carbon monoxide and hydrogen.
  • the syngas may be injected into the reactor within a gas hourly space velocity (GHSV) of 2.0 to 24.0 NL / g cat / hr.
  • GHSV gas hourly space velocity
  • reaction temperature may be carried out between 180 ⁇ 260 °C.
  • the present invention is also achieved in another embodiment by providing a liquid hydrocarbon prepared according to the method for preparing a liquid hydrocarbon using the cobalt-silica egg-shell nanocatalyst for the Fischer-Tropsch synthesis reaction.
  • the cobalt / silica egg-shell nanocatalyst of the present invention having the above characteristics is made of a porous silica structure formed of solid dense silica in the inside and many pores in the vicinity of the shell. While the active cobalt particles are uniformly supported, they can also be selectively positioned only inside large silica shells.
  • cobalt / silica egg-shell nano-catalyst is a structure that is advantageous for the diffusion and heat dissipation of the reactant when used to obtain a stable and excellent reaction results in the Fischer-Tropsch synthesis reaction proceeds at a high temperature of more than 180 degrees It is a useful invention having the advantage of being able to effectively obtain a hydrocarbon compound from a mixed gas of carbon monoxide and hydrogen is an invention that is expected to be greatly utilized in industry.
  • FIG. 1 is a schematic diagram of the production of egg-shell type high dispersion cobalt / silica nanocatalyst according to an embodiment of the present invention
  • FIG. 2 is a flow chart showing an egg-shell type highly dispersed cobalt / silica nanocatalyst manufacturing process according to one embodiment of the present invention
  • FIG. 3 is a SEM image of silica particles according to Example 1 of the present invention, (b) TEM image of a silica structure coated with a porous silica shell, and (c) egg-shell cobalt / cobalt-containing cobalt particles 10wt% / TEM image of silica nanoparticles, (d) HADDF-STEM image of egg-shell cobalt / silica nanoparticles, high-magnification TEM image of egg-shell cobalt / silica nanoparticle shell portion,
  • Example 4 is a TEM image of silica particles according to Example 2 of the present invention, (b) TEM image of a silica structure coated with a porous silica shell, and (c) an egg-shell cobalt containing 10 wt% of cobalt particles. XRD spectrum of the silica nanoparticles,
  • 5 is (a) a graph of nitrogen adsorption and desorption of a silica structure coated with a porous silica shell and (b) nitrogen of an egg-shell cobalt / silica nanoparticle in which 10 wt% of cobalt particles are loaded. Adsorption and desorption experiment graph,
  • FIG. 6 is a TEM image of (a) an egg-shell cobalt / silica nanoparticle having 20 wt% of cobalt particles according to Example 3 of the present invention, (b) a high magnification TEM image, (c) an XRD spectrum,
  • FIG. 7 is a time-phase FT activity of hydrocarbon production of an egg-shell cobalt / silica nano catalyst having 10 wt% of cobalt particles according to Example 4 of the present invention.
  • FIG. 8 is a time-phase FT activity of hydrocarbon production of an egg-shell cobalt / silica nano catalyst having 20 wt% of cobalt particles according to Example 5 of the present invention.
  • Example 9 is a liquid hydrocarbon compound photograph, a) oil, b) wax, actually produced for 90 hours using an egg-shell cobalt / silica nano catalyst having 20 wt% of cobalt particles according to Example 5 of the present invention.
  • FIG. 1 is a schematic view of the production of egg-shell high dispersion cobalt / silica nanocatalyst according to an embodiment of the present invention
  • Figure 2 is an egg-shell high dispersion cobalt / silica nanocatalyst according to an embodiment of the present invention It is a flowchart showing a manufacturing process.
  • the present invention relates to the production of a cobalt / silica nanostructure catalyst selectively dispersed in the shell of the porous silica structure particles in which the cobalt particles are used as a support at a small size of 2 to 20 nm while thermally stable.
  • the supporting method of the cobalt salt the procedure is easy, and a melt impregnation method which is advantageous for high dispersion of particles is used.
  • the silica structure particles used as a support is a conventionally known method
  • Silica spherical particles prepared by the method have a porous shell obtained through heat treatment after the silica coating again with a compound having a long carbon chain.
  • the porous silica structure is made of solid dense silica inside and many pores are formed near the shell, so that the active cobalt particles are uniformly supported when the particles are supported by the melt impregnation method. Will be located.
  • the cobalt / silica egg-shell catalyst of the present invention is formed at the nano level by selectively impregnating the cobalt salt only in the nanometer-level porous silica shell portion with pores.
  • the size of the cobalt nanoparticles supported on the porous silica shell is preferably between 2 and 20 nm in consideration of its dispersibility and optimal activity.
  • the total particle size including, may include from 100 nm to 1000 nm. The reason is that if the size of the spherical particles is too small, the loading of the cobalt particles becomes difficult, and if they are too large, they may be disadvantageous in reactant diffusion and heat dissipation.
  • the thickness of the stacked porous silica shell may be between 10 nm and 100 nm that can support the active cobalt particles well.
  • the present invention is well known Highly dispersed nano cobalt / silica egg-shell hybrid nanocatalysts are obtained through melt impregnation and thermal reduction of hydrated cobalt salt using nano-sized silica particles synthesized through the process.
  • the method for preparing the cobalt / silica egg-shell catalyst is (i) Synthesizing silica structure particles using the method, (ii) further coating silica using a CTAB (Cetyl trimethylammonium bromide) reagent to form a porous silica shell through heat treatment, and (iii) heat treating the porous silica powder.
  • CTAB Cosmetic Acid Trimethylammonium bromide
  • the silica structure synthesized in step (i) has a spherical shape and uses TEOS (Tetraethyl orthosilicate) as a precursor of silica under alcohol and water-based conditions. It can be synthesized through the method, and the particle size of the silica can be about 100 ⁇ 1000 nm.
  • TEOS Tetraethyl orthosilicate
  • Alcohol used in the method may be methanol, ethanol, propanol (2-propanol) and the like, and the use of ethanol is more preferable to obtain a silica of uniform shape.
  • the silica precursor can be used not only in TEOS (Tetraethyl orthosilicate) but also in TMOS (Tetramethyl orthosilicate). It is disadvantageous.
  • Cetrimonium bromide ((C 16 H 33 ) N (CH 3 ) 3 Br, cetyltrimethylammonium bromide, IUPAC Name: hexadecyl-trimethyl-ammonium bromide, CTAB) compound used in step (ii) is a long carbon chain consisting of 16 carbons Since it remains together when mixed with the silica precursor, it is removed during subsequent heat treatment to form pores.
  • the reaction time is preferably about 4 to 48 hours so that the cobalt salts are sufficiently dissolved to enter the pores of the silica shell.
  • the reduction temperature is preferably between 400 ⁇ 700 °C to achieve a sufficient reduction. This is because reduction may not be performed completely at a temperature below 400 ° C., and aggregation of particles may occur at a temperature of 700 ° C. or more.
  • Cobalt particles located in the cobalt / silica structure obtained through high temperature heat treatment in a hydrogen atmosphere may easily be oxidized when exposed to air, so a passivation process is required immediately after the heat treatment.
  • the passivation process for the stabilization of the activated catalyst under reducing conditions at a high temperature of 300 ° C. or higher in step (v) is a very important step in the subsequent catalytic reaction application of the nanoparticle powder. It will block the reaction of the.
  • the organic solvent can be used a variety of solvents such as ethanol, mineral oil, but can not use water or other oxidizing agents that can oxidize and change the catalyst.
  • Passivation is carried out by dipping the catalyst directly in an organic solvent so as not to be exposed to oxygen in nitrogen or other inert gas atmosphere. It is preferable to use volatile ethanol as a solvent for further analysis or reaction. Especially in the case of transition metal / silica nanostructures, the catalyst itself is magnetic, so it can be easily separated from the solvent using a magnet. desirable.
  • the highly dispersed cobalt / silica supported catalyst prepared as described above is a structure in which small cobalt particles are uniformly embedded in the silica shell, as well as the Fischer-Tropsch reaction, as well as the Pauson-Kand reaction or Carbo. It can be usefully applied to various liquid catalyst reactions such as phenoxycarbonyl reactions.
  • the cobalt / silica egg-shell nanocatalyst prepared by the method for preparing the catalyst may be used in the preparation of liquid hydrocarbons using Fischer-Tropsch synthesis reaction, which includes the step of putting the synthesis gas into a tubular fixed bed reactor. have.
  • the method for producing liquid hydrocarbon using Fischer-Tropsch synthesis reaction according to the present invention is as follows.
  • Syngas may be carbon monoxide, hydrogen, inert gas or methane, or a material composed of carbon dioxide. More preferably, the volume ratio of carbon monoxide and hydrogen is used in a ratio of 1: 2 in terms of yield of the product.
  • the synthesis gas is preferably injected into the fixed bed reactor in the range of the space velocity is 2.0 ⁇ 24.0 NL / gcat / hr.
  • reaction temperature can be used at 180 ⁇ 260 °C but if the high temperature stability of the catalyst is secured, the reaction may be suitable between 220 ⁇ 240 °C to increase the conversion of carbon monoxide and increase the yield of liquid hydrocarbon.
  • Silica nanoparticles that can be used as silica supports are well known It was prepared using the method.
  • silica spherical particles To obtain silica spherical particles, add 8 mL of ammonium hydroxide solution (28 wt%) and 20 mL of tetraethyl orthosilicate (TEOS) in a 1 L beaker containing 200 mL of ethanol and 32 mL of distilled water. Put and stirred for 2 hours.
  • ammonium hydroxide solution 28 wt%
  • TEOS tetraethyl orthosilicate
  • the silica particles obtained after 2 hours were used after being precipitated through centrifugation and dispersed in ethanol. In order to minimize ammonia that may remain even after washing, the dispersion-precipitation process was repeated two or more times using ethanol.
  • Ahead of Porous silica shells were further coated with a silica solution dispersed in ethanol obtained by the method.
  • Cetrimonium bromide ((C 16 H 33 ) N (CH 3 ) 3 Br, cetyltrimethylammonium bromide, hexadecyltrimethylammonium bromide, CTAB) reagent was dissolved in a solution containing 20 mL of distilled water and 10 mL of ethanol.
  • the precipitate was precipitated by centrifugation, followed by water, ethanol, acetone, and washed again by repeating the dispersion-precipitation process. Finally, the powder obtained was sufficiently dried in an oven set at 100 ° C., and then heat-treated at 500 ° C. for 8 hours using an calcination apparatus.
  • the powder was cooled at room temperature, and then calcined at 400 ° C. for 4 hours in a hydrogen atmosphere using a baking oven to obtain an egg-shell cobalt / silica hybrid nanocatalyst having 10 wt% of cobalt.
  • the cobalt / silica hybrid catalyst since oxidation proceeds rapidly when exposed to air, the cobalt / silica hybrid catalyst was stored in ethanol which is effective for passivation under a nitrogen atmosphere after firing. At this time, it is important to blow nitrogen strongly at 500cc / min so as not to introduce external air that may cause oxidation, and to put it instantaneously into a container containing ethanol under a prepared nitrogen atmosphere.
  • Silica particles The method can be adjusted to various sizes depending on various conditions, such as the amount of water, ethanol or ammonia used in the synthesis. Accordingly, the overall size of the egg-shell particles can also be controlled. As an example, 4 mL of ammonium hydroxide solution (28 wt%) and 10 mL of tetraethyl orthosilicate (TEOS) were further added to an Erlenmeyer flask containing 50 mL of ethanol and 8 mL of distilled water, followed by stirring for 2 hours. .
  • TEOS tetraethyl orthosilicate
  • the silica particles obtained after 2 hours were used after being precipitated through centrifugation and dispersed in ethanol. In order to minimize ammonia that may remain even after washing, the dispersion-precipitation process was repeated two or more times using ethanol.
  • Ahead of Porous silica shells were further coated with a colloidal silica solution dispersed in ethanol obtained by the method.
  • a colloidal silica solution dispersed in ethanol obtained by the method.
  • 1.2 g of CTAB reagent was dissolved in a solution of 20 mL of distilled water and 10 mL of ethanol.
  • 100 mL of the 0.181 M silica solution obtained above with 200 mL of distilled water was added and stirred well for 30 minutes.
  • the silica particles were precipitated by centrifugation, followed by water, ethanol and acetone, followed by washing again by dispersing-precipitation. Finally, the powder obtained was sufficiently dried in an oven set at 100 ° C., and then heat-treated at 500 ° C. for 8 hours using a firing apparatus.
  • the powder After 24 hours, the powder is cooled at room temperature, and then fired at 500 ° C. for 4 hours in a hydrogen atmosphere flowing at 200 ml per minute using a tube-type baking oven to obtain an egg-shell cobalt / silica hybrid catalyst containing 10 wt% of cobalt. there was.
  • cobalt / silica mixed powder was stored in ethanol, which is effective for passivation under nitrogen atmosphere, in order to prevent rapid oxidation upon exposure to air.
  • X-ray diffraction (XRD) analysis for qualitative analysis showed that the crystal phase of the particles was metallic cobalt species, as shown in FIG.
  • An egg-shell nanocatalyst carrying 20 wt% of cobalt particles was prepared using silica particles coated with a porous silica shell prepared in the same manner as in Example 2.
  • mixed powder was placed in a 30 mL polypropylene container, the container was capped tightly, and put in a drying oven having a temperature set at 60 ° C., and aged for 24 hours.
  • the powder was cooled to room temperature, and then calcined at 500 ° C. for 4 hours using a baking oven to obtain an egg-shell cobalt / silica hybrid catalyst having 20 wt% of cobalt.
  • cobalt / silica hybrid powder was stored in ethanol under nitrogen atmosphere to prevent rapid oxidation upon exposure to air.
  • the Fischer-Tropsch synthesis reaction was carried out based on the cobalt / silica egg-shell catalyst containing 10 wt% of cobalt metal obtained in Example 2.
  • the reactor used a fixed-bed reactor, and the reaction process used an automated system that can be operated by a personal computer (PC).
  • PC personal computer
  • the Fischer-Tropsch synthesis reaction was carried out on the basis of the cobalt / silica egg-shell catalyst containing 20 wt% of the cobalt metal obtained in Example 3.
  • 0.5 g of a cobalt / silica egg-shell catalyst was dried and immediately loaded into a reactor having an inner diameter of 5 mm.
  • a synthesis gas maintained at a ratio of hydrogen to carbon monoxide at a ratio of 2: 1 was introduced into the reactor under a reaction pressure of 20 atm and a space velocity of 7.2 NL / G (cat) -h to carry out Fischer-Tropsch synthesis reaction at 230 ° C. was performed.

Abstract

The present invention relates to a method for preparing a cobalt-silica egg-shell nanocatalyst for a Fischer-Tropsch synthesis reaction, and the catalyst, and a method for synthesizing liquid hydrocarbon using same, and the liquid hydrocarbon. Provided are a method for preparing a cobalt-silica egg-shell nanocatalyst, and the catalyst which has active cobalt particles that are thermally stable and adjusted by nano-size selectively and highly dispersed on a nano-sized porous silica support shell having pores developed thereon, the catalyst thereby exhibiting high activity in terms of the fast diffusion and contact of a reactant at the time of the Fischer-Tropsch reaction. Also provided are a method for preparing liquid hydrocarbon, and the liquid hydrocarbon, the method having effectiveness by using the cobalt-silica egg-shell nanocatalyst to exhibit a high CO conversion rate and selectivity at the time of the Fischer-Tropsch synthesis reaction.

Description

피셔-트롭쉬 합성 반응을 위한 코발트-실리카 에그-쉘 나노촉매의 제조방법 및 그 촉매와, 이를 이용한 액체 탄화수소의 합성 방법 및 그 액체 탄화 수소Method for preparing cobalt-silica egg-shell nanocatalyst for Fischer-Tropsch synthesis reaction and its catalyst, method for synthesizing liquid hydrocarbon using the same and liquid hydrocarbon
본 발명은 피셔-트롭쉬 합성 반응을 위한 코발트-실리카 에그-쉘 나노촉매의 제조방법 및 그 촉매와, 이를 이용한 액체 탄화수소의 합성 방법 및 그 액체 탄화 수소에 관한 것으로, 자세하게는 열적으로 안정하면서도 활성입자가 나노 수준의 작은 크기로 나노 다공성 실리카 지지체 껍질에 선택적으로 고분산 되어진 코발트/실리카 나노 촉매의 제조 기술과 이를 활용한 피셔-트롭쉬 합성 반응에 의한 액체 탄화수소의 합성 방법 및 그 액체 탄화 수소 기술에 관한 것이다.The present invention relates to a method for preparing a cobalt-silica egg-shell nanocatalyst for a Fischer-Tropsch synthesis reaction, a catalyst thereof, a method for synthesizing a liquid hydrocarbon using the same, and a liquid hydrocarbon thereof in detail. Manufacturing technology of cobalt / silica nanocatalyst in which particles are selectively dispersed in nanoporous silica support shell with small size of nanoscale, synthesis method of liquid hydrocarbon by Fischer-Tropsch synthesis reaction and liquid hydrocarbon technology It is about.
피셔-트롭쉬 (FT, Fischer-Tropsch) 합성반응은 1920년대 이미 독일의 화학자 Franz Fischer와 Hans Tropsch에 의해 개발된 기술로 석탄이나, 천연가스, 바이오매스 자원을 전환하여 얻어진 일산화탄소와 수소의 혼합가스를 이용하여 고온, 고압의 반응조건에서 촉매반응을 통해 아래의 화학식과 같이 합성연료(탄화수소)를 제조하는 기술이다. Fischer-Tropsch (FT) synthesis was developed by German chemists Franz Fischer and Hans Tropsch in the 1920s, a mixture of carbon monoxide and hydrogen obtained by converting coal, natural gas and biomass resources. It is a technique for producing a synthetic fuel (hydrocarbon) as shown in the following formula through a catalytic reaction under high temperature, high pressure using.
(2n+1)H2 + nCO → CnH(2n+2) + nH2O (2n + 1) H 2 + nCO → C n H (2n + 2) + nH 2 O
이러한 피셔-트롭쉬 합성반응에서 코발트 및 철을 포함한 촉매가 주로 사용되는데, 적용되는 촉매의 종류에 따라 반응 온도 및 압력, 가스조성 등 그 반응조건이 결정되게 된다. In the Fischer-Tropsch synthesis reaction, a catalyst including cobalt and iron is mainly used, and reaction conditions such as reaction temperature, pressure, and gas composition are determined according to the type of catalyst applied.
피셔-트롭쉬 합성반응은 반응을 통해 얻고자 하는 원하는 생성물 및 이를 효과적으로 얻기 위한 반응 온도 조건에 따라 180 ~ 260℃ 사이에서 디젤과 왁스를 주로 형성 시키는 저온 FT반응(low temperature Fischer-Tropsch, LTFT)과 300 ℃ 이상의 조건에서 가솔린 및 경질 올레핀 가스 (ethylene, propylene)를 주로 합성하는 고온 FT 반응(high temperature Fischer-Tropsch, HTFT)으로 구분 될 수 있다(Andrei Y. Khodakov et al, Chem. Rev., 2007, 107, 1672). The Fischer-Tropsch synthesis reaction is a low temperature Fischer-Tropsch (LTFT) that mainly forms diesel and wax between 180 and 260 ° C, depending on the desired product to be obtained through the reaction and the reaction temperature conditions for obtaining it effectively. And high temperature Fischer-Tropsch (HTFT), which mainly synthesizes gasoline and light olefin gases (ethylene, propylene) under conditions of 300 ° C or higher (Andrei Y. Khodakov et al, Chem. Rev., 2007, 107, 1672).
전통적으로 석탄을 활용하여 얻어진 합성가스를 통해서 액상 탄화수소 화합물을 얻는 공정인 CTL (coal-to-liquid) 공정에서는 피셔-트롭쉬 반응용 촉매로 철계 촉매를 많이 사용하는데, 철촉매는 수성가스전이 반응(water gas shift reaction)에도 활성을 가지고 있어 수소 대 일산화탄소 합성가스 성분비가 1 ~ 2 내의 다양한 조성에서 사용이 가능하며, 불순 가스인 이산화탄소의 존재하에서도 사용이 가능한 장점이 있다. 하지만 이런 철계 촉매를 이용한 피셔-트롭쉬 반응의 경우 반응 후 이산화탄소가 많이 생성되는 단점을 또한 가지며, 이에 반해 코발트 계 촉매는 수성가스전이 반응에 활성이 매우 낮아 이산화탄소의 생성이 거의 없이 긴 탄소 사슬 체인을 가지는 탄화수소 화합물을 얻을 수 있는 장점이 있다. 비록 코발트계 촉매의 경우 철계 촉매에 비해 가격이 비싼 단점은 있으나, 활성이 높고 수명이 긴 장점을 가지고 있다. 따라서, 이런 코발트 촉매를 이용한 피셔-트롭쉬 합성 반응 같은 경우 반응기를 컴팩트하게 설계하고 경제성을 확보하기 위해 반드시 담지된 코발트 촉매 입자의 고분산, 고담지 및 고온 안정성이 요구 되어진다.In the CTL (coal-to-liquid) process, which is a process of obtaining a liquid hydrocarbon compound through synthesis gas obtained by using coal, traditionally, many iron-based catalysts are used as Fischer-Tropsch reaction catalysts. It is also active in the water gas shift reaction, and the ratio of hydrogen to carbon monoxide synthesis gas can be used in various compositions within 1 to 2, and it can be used even in the presence of carbon dioxide, which is an impure gas. However, the Fischer-Tropsch reaction using the iron-based catalyst also has the disadvantage of generating a large amount of carbon dioxide after the reaction, whereas the cobalt-based catalyst has a very low activity in the water gas transition reaction, and thus a long carbon chain chain with little generation of carbon dioxide. There is an advantage to obtain a hydrocarbon compound having. Although cobalt-based catalysts have a disadvantage of being expensive compared to iron-based catalysts, they have advantages of high activity and long life. Therefore, in the case of the Fischer-Tropsch synthesis reaction using such a cobalt catalyst, high dispersion, high support and high temperature stability of the supported cobalt catalyst particles are required in order to compactly design the reactor and secure economical efficiency.
기존에 알려진 촉매 제조법인 공침법(Co-precipitation)이나 습식담지법(Wetness Impregnation)을 사용하여 제조한 금속/실리카 촉매의 경우 금속 함량의 증가시에는 입자의 뭉침으로 인해 입자가 커지고 불균일 해지는 단점이 있으며 500℃ 이상의 고온 소성과정에서 소결(sintering)이 쉽게 일어나는 단점을 가지고 있었다. 이러한 안정성 확보를 위해 최근 담지 촉매에서 지지체로 사용되는 다공성실리카와 활성 금속 사이에 혼성 구조체들의 개발이 이루어져 왔고, 코어-쉘이나 요크-쉘 구조 등 다양한 구조체로의 접근이 시도 되기도 하였다 (Park, J. C. et al., J. Mater. Chem., 2010, 20, 1239-1246).In the case of metal / silica catalysts prepared using the known catalyst preparation co-precipitation or wetness impregnation, when the metal content is increased, the particles become larger and uneven due to the aggregation of the particles. In addition, sintering occurs easily during the high temperature firing process above 500 ° C. In order to secure such stability, hybrid structures have been developed between porous silica and an active metal used as a support in a supported catalyst, and various structures such as core-shell and yoke-shell structures have been attempted (Park, JC). et al., J. Mater. Chem., 2010, 20, 1239-1246.
특히, 피셔-트롭쉬 반응에서 높은 활성을 나타내는 것으로 알려진 코발트와 실리카 성분으로 구성된 에그-쉘(egg-shell) 구조의 경우, 일반 펠릿(pellet) 형 촉매에 비해 반응 중 반응열 제어나 반응물 확산에 장점을 나타내어 많이 활용 되고 있다(Gardezi, S. A. et. al. Ind. Eng. Chem. Res. 2012, 51, 1703-1712). In particular, the egg-shell structure composed of cobalt and silica components, which are known to exhibit high activity in the Fischer-Tropsch reaction, has advantages in controlling heat of reaction or diffusion of reactants during the reaction, compared to general pellet type catalysts. (Gardezi, SA et. Al. Ind. Eng. Chem. Res. 2012, 51, 1703-1712).
하지만 그 전체 입자의 크기가 1~2 mm 수준으로 매우 크고 촉매입자가 담지된 껍질 부분의 두께도 0.2~ 0.5 mm 로 매우 크기 때문에 실제 담지된 코발트 입자면에서는 분산성과 반응물의 빠른 확산 및 접촉 측면에서 다소 불리한 점이 있다.However, since the total particle size is very large (1 to 2 mm) and the thickness of the shell portion on which the catalyst particles are supported is 0.2 to 0.5 mm, the surface of the cobalt particles actually supported has a high dispersibility and rapid diffusion and contact with the reactants. There are some disadvantages.
즉, 기존의 mm 사이즈 영역에서 제조된 egg-shell 촉매의 경우 주로 금속염의 함침 시간 조절이나 점도 또는 친화성을 이용한 선택적 흡수 기술에 의해 제어되는데, 이와 같은 경우는 마이크로 미터나 나노 미터 수준의 지지체에 대한 금속염의 선택적 흡수가 쉽지 않으며, 이로 인해 나노 사이즈 실리카 지지체에서는 egg-shell 촉매를 만드는 것이 거의 불가능하였다 (Iglesia, E. et. al. J. Catal. 1995, 153, 108-122). That is, the egg-shell catalyst manufactured in the conventional mm size region is mainly controlled by the metal salt impregnation time control or selective absorption technique using viscosity or affinity. The selective uptake of metal salts is not easy, which makes it nearly impossible to make egg-shell catalysts on nanosized silica supports (Iglesia, E. et. Al. J. Catal. 1995, 153, 108-122).
따라서 나노 수준으로 균일하게 조절된 에그-쉘 코발트 촉매 개발의 필요성이 대두되고 있는 실정이다.Therefore, there is a need to develop an egg-shell cobalt catalyst uniformly controlled at the nano level.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 열적으로 안정하면서도 나노 크기로 조절된 활성 코발트 입자가 기공이 발달된 나노 크기의 다공성 실리카 지지체 껍질에 선택적으로 고분산 되어 피셔-트롭쉬 반응시 반응물의 빠른 확산 및 접촉 측면에서 높은 활성을 가지는 코발트-실리카 에그-쉘 나노촉매의 제조방법 및 그 촉매를 제공하는 데 있다. An object of the present invention for solving the above problems is that the thermally stable, cobalt nano-scaled active cobalt particles are selectively dispersed in the pores of the nano-sized porous silica support shell and reacted during the Fischer-Tropsch reaction The present invention provides a method for preparing a cobalt-silica egg-shell nanocatalyst having high activity in terms of fast diffusion and contact, and a catalyst thereof.
또한 본 발명의 다른 목적은 상기 코발트-실리카 에그-쉘 나노촉매를 이용하여 피셔-트롭쉬 합성 반응시 높은 CO 전환율 및 선택성을 갖도록 하여 효과적으로 액체탄화수소를 제조하는 방법과 그 액체 탄화 수소를 제공하는 데 있다.In addition, another object of the present invention to provide a liquid hydrocarbon and a method for producing a liquid hydrocarbon effectively by having a high CO conversion and selectivity during the Fischer-Tropsch synthesis reaction using the cobalt-silica egg-shell nanocatalyst have.
상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명은 (i) 실리카의 선구물질을
Figure PCTKR2014012316-appb-I000001
방법을 이용하여 실리카 구조체 입자 분말을 합성하는 단계;
The present invention to achieve the object as described above and to solve the conventional drawbacks is to (i) the precursor of silica
Figure PCTKR2014012316-appb-I000001
Synthesizing silica structure particle powder using the method;
(ii) CTAB(Cetyl trimethylammonium bromide)를 사용하여 상기 실리카 입자분말을 추가 코팅 후 열처리를 통해 다공성 실리카 껍질을 형성해 주는 단계; (ii) forming a porous silica shell through heat treatment after further coating the silica particle powder using CTAB (Cetyl trimethylammonium bromide);
(iii) 이후 상기 다공성 실리카 분말을 코발트 수화물 염과 함께 균일하게 갈아 준 후 염의 융점부근에서 용융함침 시키는 단계; (iii) then uniformly grinding the porous silica powder together with the cobalt hydrate salt, followed by melt impregnation near the melting point of the salt;
(iv) 용융함침 후 얻어진 혼합분말을 상온에서 건조시킨 후 수소 분위기 하에서 고온으로 열처리 해주는 단계;(iv) drying the mixed powder obtained after melt impregnation at room temperature and then heat-treating at high temperature in a hydrogen atmosphere;
(v) 환원된 코발트/실리카 입자를 상온까지 식힌 후 에탄올을 사용하여 패시베이션을 통해 산화를 방지하는 단계;를 포함하여 구성된 것을 특징으로 하는 피셔-트롭쉬 합성 반응을 위한 코발트-실리카 에그-쉘 나노촉매의 제조방법을 제공함으로써 달성된다.(v) cooling the reduced cobalt / silica particles to room temperature to prevent oxidation through passivation using ethanol; and cobalt-silica egg-shell nanoparticles for the Fischer-Tropsch synthesis reaction comprising: It is achieved by providing a process for preparing the catalyst.
바람직한 실시예로, 상기 i)단계는 알코올과 물 기반의 조건에서 실리카의 선구물질 TEOS(Tetraethyl orthosilicate) 또는 TMOS(Tetramethyl orthosilicate)를 사용하여 구형 형상을 가진 100 ~ 1000 nm 크기의 실리카 구조체를 합성하는 단계일 수 있다.In a preferred embodiment, the step i) is to synthesize a silica structure having a spherical shape of 100 ~ 1000 nm size using the precursor TEOS (Tetraethyl orthosilicate) or TMOS (Tetramethyl orthosilicate) of silica in alcohol and water-based conditions It may be a step.
바람직한 실시예로, 상기 (iv)단계는 상기 (i) 단계의 실리카 선구물질과 혼합된 상기 (ii)단계의 16개 탄소로 이루어진 긴 탄소 체인을 가지는 CTAB(Cetrimonium bromide, IUPAC Name: hexadecyl-trimethyl-ammonium bromide)를 열처리하여 제거시켜 기공을 형성시켜 주는 단계일 수 있다.In a preferred embodiment, the step (iv) is a CTAB (Cetrimonium bromide, IUPAC Name: hexadecyl-trimethyl) having a long carbon chain of 16 carbons of step (ii) mixed with the silica precursor of step (i) -ammonium bromide) may be a step of forming pores by heat treatment to remove it.
바람직한 실시예로, 상기 (iii) 단계에서 실리카에 함침시켜 사용하는 수화된 코발트 금속염은 용융점이 40 ~ 90℃인 Co(NO3)26H2O (m. p. = 55℃ ), CoCl26H2O (m. p. = 86℃), CoSO47H2O (m. p. = 74℃) 중에서 선택된 하나 이상일 수 있다.In a preferred embodiment, the hydrated cobalt metal salt used by impregnating silica in step (iii) is Co (NO 3 ) 2 6H 2 O (mp = 55 ° C), CoCl 2 6H 2 O having a melting point of 40 ~ 90 ℃ (mp = 86 ° C.), CoSO 4 7H 2 O (mp = 74 ° C.).
바람직한 실시예로, 상기 (iii) 단계에서 용융함침 시키는 반응시간은 4 ~ 48시간일 수 있다.In a preferred embodiment, the reaction time to melt-impregnated in step (iii) may be 4 to 48 hours.
바람직한 실시예로, 상기 (iv) 단계는 지지체로 사용되는 실리카 분말 입자의 다공성 껍질에 선택적으로 코발트 수화물 염이 담지된 상태에서 수소 분위기 하에서 소성하여 나노미터 크기의 코발트 입자가 형성되도록 400 ~ 700 ℃ 사이에서 환원시킬 수 있다.In a preferred embodiment, the (iv) step is 400 ~ 700 ℃ to form a nanometer size cobalt particles by firing in a hydrogen atmosphere in the porous shell of the silica powder particles to be used as a support is optionally supported with a cobalt hydrate salt It can reduce in between.
또한 본 발명은 다른 실시양태로 상기 방법에 따라 제조되어 내부에는 견고하게 밀집된 실리카로 이루어져 있고 껍질 부근에는 많은 기공들이 형성된 다공성 껍질이 형성된 나노 실리카 구조체에 활성 나노 코발트 입자가 균일하게 다공성 실리카 껍질 내부에만 선택적으로 위치하여 구성된 것을 특징으로 하는 피셔-트롭쉬 합성 반응을 위한 코발트-실리카 에그-쉘 나노촉매를 제공함으로써 달성된다.In another embodiment, the present invention is prepared according to the method described above, and the active nano-cobalt particles are uniformly formed only in the porous silica shell in the nano-silica structure in which the porous shell is formed of a tightly packed silica and many pores are formed near the shell. It is achieved by providing a cobalt-silica egg-shell nanocatalyst for a Fischer-Tropsch synthesis reaction characterized in that it is selectively positioned.
바람직한 실시예로, 상기 다공성 실리카 껍질에 담지되어 있는 코발트 나노입자의 크기는 2 ~ 20 nm이고, 상기 실리카 구조체를 포함한 전체 입자의 크기는 100 ~ 1000 nm 이고, 상기 다공성 실리카 껍질의 두께는 10 ~ 100 nm 일 수 있다.In a preferred embodiment, the size of the cobalt nanoparticles supported on the porous silica shell is 2 ~ 20 nm, the size of the entire particle including the silica structure is 100 ~ 1000 nm, the thickness of the porous silica shell is 10 ~ 100 nm.
또한 본 발명은 다른 실시양태로 상기 피셔-트롭쉬 합성 반응용 코발트-실리카 에그-쉘 나노촉매를 반응기에 주입하는 단계와;In another embodiment, the present invention comprises the steps of injecting the cobalt-silica egg-shell nanocatalyst for the Fischer-Tropsch synthesis reaction;
이후 반응기에 합성가스를 주입하는 단계와;Then injecting syngas into the reactor;
이후 반응기에서 고온의 반응온도로 코발트-실리카 에그-쉘 나노촉매를 장입한 후 피셔-트롭쉬 합성 반응을 진행하여 액체탄화수소를 제조하는 단계;를 포함하는 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 코발트-실리카 에그-쉘 나노촉매를 이용한 액체 탄화수소의 제조방법을 제공함으로써 달성된다.After charging the cobalt-silica egg-shell nanocatalyst at a high reaction temperature in the reactor and proceeding with the Fischer-Tropsch synthesis reaction to prepare a liquid hydrocarbon; Fischer-Tropsch synthesis reaction comprising the It is achieved by providing a process for the preparation of liquid hydrocarbons using cobalt-silica egg-shell nanocatalysts.
바람직한 실시예로, 상기 합성가스는 일산화탄소와 수소의 부피비를 1 : 2 또는 일산화탄소와 수소에 불순물로 불활성 기체, 메탄, 이산화탄소 중 어느 하나가 혼합된 가스를 1 : 2로 혼합한 것을 사용할 수 있다.In a preferred embodiment, the synthesis gas may be a mixture of one or two of a volume ratio of carbon monoxide and hydrogen, or a gas in which any one of an inert gas, methane, and carbon dioxide is mixed as impurities in carbon monoxide and hydrogen.
바람직한 실시예로, 상기 합성가스는 공간속도(GHSV, gas hourly space velocity)가 2.0 ~ 24.0 NL/gcat/hr인 범위 내에서 반응기에 주입할 수 있다.In a preferred embodiment, the syngas may be injected into the reactor within a gas hourly space velocity (GHSV) of 2.0 to 24.0 NL / g cat / hr.
바람직한 실시예로, 상기 반응온도는 180 ~ 260℃ 사이에서 진행할 수 있다.In a preferred embodiment, the reaction temperature may be carried out between 180 ~ 260 ℃.
또한 본 발명은 다른 실시양태로 상기 피셔-트롭쉬 합성 반응용 코발트-실리카 에그-쉘 나노촉매를 이용한 액체 탄화수소의 제조방법에 따라 제조된 액체 탄화수소를 제공함으로써 달성된다.The present invention is also achieved in another embodiment by providing a liquid hydrocarbon prepared according to the method for preparing a liquid hydrocarbon using the cobalt-silica egg-shell nanocatalyst for the Fischer-Tropsch synthesis reaction.
상기와 같은 특징을 갖는 본 발명의 코발트/실리카 에그-쉘 형 나노 촉매는 내부에는 견고하게 밀집된 실리카로 이루어져 있고 껍질 부근에는 많은 기공들이 형성된 다공성 실리카 구조로 되어 있어, 용융함침법을 통한 입자 담지시 활성 코발트 입자가 균일하게 담지 되면서도 또한, 기공이 큰 실리카 껍질 내부에만 선택적으로 위치하게 제조할 수 있다는 장점과.The cobalt / silica egg-shell nanocatalyst of the present invention having the above characteristics is made of a porous silica structure formed of solid dense silica in the inside and many pores in the vicinity of the shell. While the active cobalt particles are uniformly supported, they can also be selectively positioned only inside large silica shells.
또한, 상기 코발트/실리카 에그-쉘 형 나노 촉매는 반응물의 확산 및 열분산에 유리한 구조로서 이를 활용하게 되면 180도 이상의 고온에서 반응이 진행되는 피셔-트롭쉬 합성 반응에서 안정하면서도 우수한 반응결과를 얻을 수 있고, 일산화탄소와 수소의 혼합가스로부터 탄화수소 화합물을 효과적으로 얻을 수 있게 된다는 장점을 가진 유용한 발명으로 산업상 그 이용이 크게 기대되는 발명인 것이다.In addition, the cobalt / silica egg-shell nano-catalyst is a structure that is advantageous for the diffusion and heat dissipation of the reactant when used to obtain a stable and excellent reaction results in the Fischer-Tropsch synthesis reaction proceeds at a high temperature of more than 180 degrees It is a useful invention having the advantage of being able to effectively obtain a hydrocarbon compound from a mixed gas of carbon monoxide and hydrogen is an invention that is expected to be greatly utilized in industry.
도 1은 본 발명의 한 실시예에 따른 에그-쉘 형 고분산 코발트/실리카 나노 촉매 제조에 대한 모식도이고,1 is a schematic diagram of the production of egg-shell type high dispersion cobalt / silica nanocatalyst according to an embodiment of the present invention,
도 2는 본 발명의 한 실시예에 따른 에그-쉘 형 고분산 코발트/실리카 나노 촉매 제조 공정을 보인 순서도이고,2 is a flow chart showing an egg-shell type highly dispersed cobalt / silica nanocatalyst manufacturing process according to one embodiment of the present invention;
도 3은 본 발명의 실시예 1에 따른 (a) 실리카 입자의 SEM 이미지, (b) 다공성 실리카 껍질이 코팅된 실리카 구조체의 TEM 이미지, (c) 코발트 입자가 10wt% 담지 된 에그-쉘형 코발트/실리카 나노 입자의 TEM 이미지, (d) 에그-쉘 형 코발트/실리카 나노 입자의 HADDF-STEM 이미지, 에그-쉘형 코발트/실리카 나노 입자 껍질 부분의 고배율 TEM 이미지이고,3 is a SEM image of silica particles according to Example 1 of the present invention, (b) TEM image of a silica structure coated with a porous silica shell, and (c) egg-shell cobalt / cobalt-containing cobalt particles 10wt% / TEM image of silica nanoparticles, (d) HADDF-STEM image of egg-shell cobalt / silica nanoparticles, high-magnification TEM image of egg-shell cobalt / silica nanoparticle shell portion,
도 4는 본 발명의 실시예 2에 따른 (a) 실리카 입자의 TEM 이미지, (b) 다공성 실리카 껍질이 코팅된 실리카 구조체의 TEM 이미지, (c) 코발트 입자가 10wt% 담지 된 에그-쉘 형 코발트/실리카 나노 입자의 XRD 스펙트럼이고,4 is a TEM image of silica particles according to Example 2 of the present invention, (b) TEM image of a silica structure coated with a porous silica shell, and (c) an egg-shell cobalt containing 10 wt% of cobalt particles. XRD spectrum of the silica nanoparticles,
도 5는 본 발명의 실시예 2에 따른 (a) 다공성 실리카 껍질이 코팅된 실리카 구조체의 질소 흡탈착 실험 그래프 및 (b) 코발트 입자가 10wt% 담지 된 에그-쉘 형 코발트/실리카 나노 입자의 질소 흡탈착 실험 그래프이고,5 is (a) a graph of nitrogen adsorption and desorption of a silica structure coated with a porous silica shell and (b) nitrogen of an egg-shell cobalt / silica nanoparticle in which 10 wt% of cobalt particles are loaded. Adsorption and desorption experiment graph,
도 6은 본 발명의 실시예 3에 따른 (a) 코발트 입자가 20wt% 담지 된 에그-쉘 형 코발트/실리카나노 입자의 TEM 이미지, (b) 고배율 TEM 이미지, (c) XRD 스펙트럼이고, 6 is a TEM image of (a) an egg-shell cobalt / silica nanoparticle having 20 wt% of cobalt particles according to Example 3 of the present invention, (b) a high magnification TEM image, (c) an XRD spectrum,
도 7은 본 발명의 실시예 4에 따른 코발트 입자가 10wt% 담지 된 에그-쉘 형 코발트/실리카 나노 촉매의 탄화수소 생성에 대한 시간대별 FT 활성도이고,FIG. 7 is a time-phase FT activity of hydrocarbon production of an egg-shell cobalt / silica nano catalyst having 10 wt% of cobalt particles according to Example 4 of the present invention.
도 8은 본 발명의 실시예 5에 따른 코발트 입자가 20wt% 담지 된 에그-쉘 형 코발트/실리카 나노 촉매의 탄화수소 생성에 대한 시간대별 FT 활성도이고,FIG. 8 is a time-phase FT activity of hydrocarbon production of an egg-shell cobalt / silica nano catalyst having 20 wt% of cobalt particles according to Example 5 of the present invention.
도 9는 본 발명의 실시예 5에 따른 코발트 입자가 20wt% 담지 된 에그-쉘 형 코발트/실리카 나노 촉매를 이용하여 90시간 동안 실제 생성된 액상 탄화수소 화합물 사진, a) 오일, b) 왁스이다.9 is a liquid hydrocarbon compound photograph, a) oil, b) wax, actually produced for 90 hours using an egg-shell cobalt / silica nano catalyst having 20 wt% of cobalt particles according to Example 5 of the present invention.
이하 본 발명의 실시 예인 구성과 그 작용을 첨부도면에 연계시켜 상세히 설명하면 다음과 같다. 또한 본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다. Hereinafter, the configuration and the operation of the embodiments of the present invention will be described in detail with reference to the accompanying drawings. In describing the present invention, when it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
도 1은 본 발명의 한 실시예에 따른 에그-쉘 형 고분산 코발트/실리카 나노 촉매 제조에 대한 모식도이고, 도 2는 본 발명의 한 실시예에 따른 에그-쉘 형 고분산 코발트/실리카 나노 촉매 제조 공정을 보인 순서도이다.1 is a schematic view of the production of egg-shell high dispersion cobalt / silica nanocatalyst according to an embodiment of the present invention, Figure 2 is an egg-shell high dispersion cobalt / silica nanocatalyst according to an embodiment of the present invention It is a flowchart showing a manufacturing process.
본 발명은 열적으로 안정하면서도 활성입자가 2 ~ 20 nm 수준의 작은 크기로 코발트 입자가 지지체로 사용되는 다공성 실리카 구조체 입자의 껍질에 선택적으로 고분산된 코발트/실리카 나노구조촉매의 제조에 관한 것으로, 코발트 염의 담지법으로는 그 절차가 쉬우면서, 입자의 고분산에 유리한 용융함침법을 이용한다.The present invention relates to the production of a cobalt / silica nanostructure catalyst selectively dispersed in the shell of the porous silica structure particles in which the cobalt particles are used as a support at a small size of 2 to 20 nm while thermally stable. As the supporting method of the cobalt salt, the procedure is easy, and a melt impregnation method which is advantageous for high dispersion of particles is used.
이때, 지지체로 사용되는 실리카 구조체 입자는 전통적으로 알려진 방법인
Figure PCTKR2014012316-appb-I000002
방법을 통해 제조된 실리카 구형입자에 추가적으로 긴 탄소체인을 가지는 화합물과 함께 다시 실리카 코팅을 해준 후 열처리 과정을 통해 얻어진 다공성 껍질을 지니고 있다.
At this time, the silica structure particles used as a support is a conventionally known method
Figure PCTKR2014012316-appb-I000002
Silica spherical particles prepared by the method have a porous shell obtained through heat treatment after the silica coating again with a compound having a long carbon chain.
이처럼 내부에는 견고하게 밀집된 실리카로 이루어져 있고 껍질 부근에는 많은 기공들이 형성된 다공성 실리카 구조로 되어 있어, 용융함침법을 통한 입자 담지시 활성 코발트 입자가 균일하게 담지 되면서도 또한, 기공이 큰 실리카 껍질 내부에만 선택적으로 위치하게 된다. As such, the porous silica structure is made of solid dense silica inside and many pores are formed near the shell, so that the active cobalt particles are uniformly supported when the particles are supported by the melt impregnation method. Will be located.
특히, 이를 촉매 반응에 적용 시 반응물의 확산에 유리한 장점을 가질 수 있으며, 더 나아가 반응 중 발열이 매우 심해 큰 문제가 되고 있는 피셔-트롭쉬 합성 반응에서는 반응 중 국부적 열점(hot spot)이 형성되게 된다.In particular, when applied to the catalytic reaction may have an advantageous advantage in the diffusion of the reactant, and furthermore, in the Fischer-Tropsch synthesis reaction, which is a big problem because the exotherm during the reaction is very severe, a local hot spot is formed during the reaction. do.
이와 같이 다공성 실리카 껍질 내부에 코발트 나노 입자가 단분산된 코발트/실리카 나노 구조체를 촉매로서 활용하면 200℃ 이상의 고온에서 반응이 진행되는 피셔-트롭쉬 합성 반응에서 안정하면서도 우수한 반응결과를 얻을 수 있게 된다.As such, when cobalt / silica nanostructures in which cobalt nanoparticles are monodispersed inside a porous silica shell are used as catalysts, stable and excellent reaction results can be obtained in Fischer-Tropsch synthesis reactions in which the reaction proceeds at a high temperature of 200 ° C or higher. .
본 발명의 코발트/실리카 에그-쉘 촉매는 기공이 발달된 나노 미터 수준의 다공성 실리카 껍질 부분에만 선택적으로 코발트 염을 함침시켜 나노 수준으로 형성된다.The cobalt / silica egg-shell catalyst of the present invention is formed at the nano level by selectively impregnating the cobalt salt only in the nanometer-level porous silica shell portion with pores.
본 발명에서 제시하는 고분산 코발트/실리카 에그-쉘 촉매에서 다공성 실리카 껍질에 담지되어 있는 코발트 나노입자의 크기는 그 분산성 및 최적의 활성을 고려하여 2 ~ 20 nm 사이가 바람직하며, 구형 실리카 구조체를 포함한 전체 입자의 크기는 100 nm 에서 1000 nm 까지가 포함될 수 있다. 그 이유는 구형 입자의 크기가 너무 작으면 코발트 입자의 담지가 어려워지고, 너무 커지게 되면 반응물 확산 및 열 분산에 있어 불리할 수 있기 때문이다.  In the highly dispersed cobalt / silica egg-shell catalyst proposed in the present invention, the size of the cobalt nanoparticles supported on the porous silica shell is preferably between 2 and 20 nm in consideration of its dispersibility and optimal activity. The total particle size, including, may include from 100 nm to 1000 nm. The reason is that if the size of the spherical particles is too small, the loading of the cobalt particles becomes difficult, and if they are too large, they may be disadvantageous in reactant diffusion and heat dissipation.
이때, 쌓여지는 다공성 실리카 껍질의 두께는 활성 코발트 입자를 잘 담지 할 수 있는 10 nm 에서 100 nm 사이가 될 수 있다. At this time, the thickness of the stacked porous silica shell may be between 10 nm and 100 nm that can support the active cobalt particles well.
본 발명은 잘 알려진
Figure PCTKR2014012316-appb-I000003
방법을 통해 합성된 나노 크기의 실리카 입자를 지지체로 이용하여 수화된 코발트염의 용융함침 및 열적 환원과정을 통해 고분산 나노 코발트/실리카 에그-쉘 혼성 나노촉매를 얻게 된다.
The present invention is well known
Figure PCTKR2014012316-appb-I000003
Highly dispersed nano cobalt / silica egg-shell hybrid nanocatalysts are obtained through melt impregnation and thermal reduction of hydrated cobalt salt using nano-sized silica particles synthesized through the process.
코발트/실리카 에그-쉘 촉매의 제조방법은 (i)
Figure PCTKR2014012316-appb-I000004
방법을 이용하여 실리카 구조체 입자를 합성하는 단계, (ii) CTAB(Cetyl trimethylammonium bromide) 시약을 사용하여 실리카를 추가 코팅 후 열처리를 통해 다공성 실리카 껍질을 형성해 주는 단계, (iii) 열처리된 다공성 실리카 분말을 코발트 수화물 염과 함께 균일하게 갈아 준 후 염의 융점부근에서 용융함침 시키는 단계, (iv) 용융함침 후 얻어진 혼합분말을 상온에서 건조시킨 후 수소 분위기 하에서 고온으로 열처리 해주는 단계, (v)환원된 코발트/실리카 입자를 상온까지 식힌 후 에탄올을 사용하여 패시베이션을 통해 산화를 방지하는 단계를 포함하여 구성된다.
The method for preparing the cobalt / silica egg-shell catalyst is (i)
Figure PCTKR2014012316-appb-I000004
Synthesizing silica structure particles using the method, (ii) further coating silica using a CTAB (Cetyl trimethylammonium bromide) reagent to form a porous silica shell through heat treatment, and (iii) heat treating the porous silica powder. Uniformly grind together with the cobalt hydrate salt and then melt impregnating near the melting point of the salt; (iv) drying the mixed powder obtained after melt impregnation at room temperature and heat-treating it under a hydrogen atmosphere at high temperature, (v) reduced cobalt / The silica particles are cooled to room temperature and then oxidized to prevent oxidation through passivation.
구체적으로 상기 (i)단계에서 합성된 실리카 구조체는 구형 형상을 지니며 알코올과 물 기반의 조건에서 실리카의 선구물질로 TEOS(Tetraethyl orthosilicate)를 사용하는
Figure PCTKR2014012316-appb-I000005
법을 통해 합성 가능하며, 이때 얻어지는 실리카의 입자 크기는 100 ~ 1000 nm 정도가 될 수 있다.
Specifically, the silica structure synthesized in step (i) has a spherical shape and uses TEOS (Tetraethyl orthosilicate) as a precursor of silica under alcohol and water-based conditions.
Figure PCTKR2014012316-appb-I000005
It can be synthesized through the method, and the particle size of the silica can be about 100 ~ 1000 nm.
Figure PCTKR2014012316-appb-I000006
법에서 사용되는 알코올은 메탄올, 에탄올, 프로판올(2-propanol) 등이 가능하며 균일한 형상의 실리카를 얻기 위해 에탄올의 사용이 좀 더 바람직하다.
Figure PCTKR2014012316-appb-I000006
Alcohol used in the method may be methanol, ethanol, propanol (2-propanol) and the like, and the use of ethanol is more preferable to obtain a silica of uniform shape.
상기 실리카 선구물질로는 TEOS(Tetraethyl orthosilicate) 뿐만 아니라 TMOS(Tetramethyl orthosilicate)의 사용도 가능하나, TEOS에 비해 균일성이나 크기 면에서 큰 장점이 없는 반면 가격은 다섯배 가까이 비싸 경제성 면에서는 사용이 다소 불리하다. The silica precursor can be used not only in TEOS (Tetraethyl orthosilicate) but also in TMOS (Tetramethyl orthosilicate). It is disadvantageous.
상기 (ii)단계에서 사용하는 Cetrimonium bromide ((C16H33)N(CH3)3Br, cetyltrimethylammonium bromide, IUPAC Name: hexadecyl-trimethyl-ammonium bromide, CTAB) 화합물은 16개 탄소로 이루어진 긴 탄소 체인을 가지고 있어서 실리카 선구물질과 혼합시 함께 잔류하였다가 이후 열처리 될 때 제거 됨으로써 기공을 형성 시켜 주는 역할을 한다. Cetrimonium bromide ((C 16 H 33 ) N (CH 3 ) 3 Br, cetyltrimethylammonium bromide, IUPAC Name: hexadecyl-trimethyl-ammonium bromide, CTAB) compound used in step (ii) is a long carbon chain consisting of 16 carbons Since it remains together when mixed with the silica precursor, it is removed during subsequent heat treatment to form pores.
이때 사용되는 CTAB에서, 즉(CnH2n+1)N(CH3)3Br)(n=12, 14, 16, 18)이 모두 사용은 가능하나 그 균일한 형상 및 기공 형성을 고려하였을 때 n=16 인 CTAB((C16H33)N(CH3)3Br) 의 사용이 보다 바람직하다.In the CTAB used here, that is, (CnH 2n + 1 ) N (CH 3 ) 3 Br) (n = 12, 14, 16, 18) can all be used, but considering its uniform shape and pore formation, n More preferred is the use of CTAB ((C 16 H 33 ) N (CH 3 ) 3 Br) = 16.
상기 (iii) 단계에서 실리카에 함침시켜 사용하는 수화된 코발트 금속염의 경우 용융점이 40 ~ 90℃ 정도에 속하는 것들로 Co(NO3)26H2O (m. p. = 55℃ ), CoCl26H2O (m. p. = 86℃ ), CoSO47H2O (m. p. = 74℃ ) 등이 사용될 수 있으나 보다 편리하고 안정적인 제조를 위해 융점이 낮은 Co(NO3)26H2O 의 사용이 바람직하다.In the case of the hydrated cobalt metal salt used by impregnating silica in step (iii), the melting point belongs to 40 ~ 90 ℃ Co (NO 3 ) 2 6H 2 O (mp = 55 ℃), CoCl 2 6H 2 O (mp = 86 ° C.), CoSO 4 7H 2 O (mp = 74 ° C.) and the like may be used, but the use of Co (NO 3 ) 2 6H 2 O with a low melting point is preferred for more convenient and stable production.
반응시간은 코발트 염들이 충분히 녹아 실리카 껍질의 기공 속으로 들어갈 수 있도록 4 ~ 48시간 정도가 바람직하다. The reaction time is preferably about 4 to 48 hours so that the cobalt salts are sufficiently dissolved to enter the pores of the silica shell.
상기 (iv) 단계에서 실리카 지지체의 다공성 껍질에 선택적으로 코발트 수화물 염이 담지된 상태에서 수소 분위기 하에서 소성을 하게 되면 담지 된 염의 분해 및 환원으로 인해 수 나노미터 크기의 코발트 입자가 형성되게 된다. 이때 환원 온도는 충분한 환원이 이루어지도록 400 ~ 700 ℃ 사이가 바람직하다. 이는 400 ℃ 미만의 온도에서는 완전히 환원이 이루어지지 않을 수 있고, 700 ℃ 이상의 온도에서는 입자의 뭉침이 다소 일어 날 수 있기 때문이다.In the step (iv), when the cobalt hydrate salt is selectively supported on the porous shell of the silica support, baking in a hydrogen atmosphere causes cobalt particles having a size of several nanometers due to decomposition and reduction of the supported salt. At this time, the reduction temperature is preferably between 400 ~ 700 ℃ to achieve a sufficient reduction. This is because reduction may not be performed completely at a temperature below 400 ° C., and aggregation of particles may occur at a temperature of 700 ° C. or more.
수소 분위기에서의 고온 열처리를 통해 얻어진 코발트/실리카 구조체 내부에 위치한 코발트 입자의 경우 공기 중에 노출 시 산화가 쉽게 일어날 수 있으므로 열처리 후 바로 패시베이션 해주는 과정이 필요하게 된다. Cobalt particles located in the cobalt / silica structure obtained through high temperature heat treatment in a hydrogen atmosphere may easily be oxidized when exposed to air, so a passivation process is required immediately after the heat treatment.
즉, (v) 단계에서의 300℃ 이상의 고온에서 환원 조건에서 활성화된 촉매의 안정화를 위한 패시베이션 과정은 나노 입자 분말의 추후 촉매 반응 적용에 있어 매우 중요한 단계로서, 유기 용매를 사용하여 촉매와 산소와의 반응을 차단해 주는 역할을 하게 된다. 이때 사용될 수 있는 유기 용매로는 에탄올, 미네랄 오일 등 다양한 용매를 쓸 수 있으며, 다만 촉매를 산화 및 변화 시킬 수 있는 물이나 다른 산화제는 사용할 수 없다. That is, the passivation process for the stabilization of the activated catalyst under reducing conditions at a high temperature of 300 ° C. or higher in step (v) is a very important step in the subsequent catalytic reaction application of the nanoparticle powder. It will block the reaction of the. At this time, as the organic solvent can be used a variety of solvents such as ethanol, mineral oil, but can not use water or other oxidizing agents that can oxidize and change the catalyst.
패시베이션은 질소나 다른 불활성(inert) 가스 분위기에서 산소에 노출 되지 않도록 촉매를 유기 용매 내에 직접 담그는 과정을 통해 수행되며, 추후 분석이나 반응에 적용하기 위해서는 휘발이 쉬운 에탄올을 용매로 쓰는 것이 바람직하다. 특히 전이금속/실리카 나노구조체의 경우 촉매 자체가 자성을 띠기 때문에 자석을 이용하여 용매로부터 쉽게 분리 가능하며, 분리 후 진공 건조 과정을 통해 재 건조 하여 바로 사용하거나 진공 포장 또는 질소 포장을 하여 보관하는 것이 바람직하다.Passivation is carried out by dipping the catalyst directly in an organic solvent so as not to be exposed to oxygen in nitrogen or other inert gas atmosphere. It is preferable to use volatile ethanol as a solvent for further analysis or reaction. Especially in the case of transition metal / silica nanostructures, the catalyst itself is magnetic, so it can be easily separated from the solvent using a magnet. desirable.
상기와 같이 제조된 본 발명의 고분산 코발트/실리카 담지 촉매는 실리카 껍질 내부에 작은 코발트 입자들이 균일하게 박혀 있는 구조로서 피셔-트롭쉬 반응 뿐 만 아니라 포손-칸트반응(pauson-khand reaction)이나 카보닐화 반응(phenoxycarbonyl reactions) 등의 다양한 액상 촉매 반응에서도 유용하게 적용 될 수 있다. The highly dispersed cobalt / silica supported catalyst prepared as described above is a structure in which small cobalt particles are uniformly embedded in the silica shell, as well as the Fischer-Tropsch reaction, as well as the Pauson-Kand reaction or Carbo. It can be usefully applied to various liquid catalyst reactions such as phenoxycarbonyl reactions.
특히, 상기 촉매의 제조방법에 의해 제조되는 코발트/실리카 에그-쉘 나노 촉매는 튜브형 고정층 반응기에 넣고 다시 합성가스를 주입하는 단계를 포함하는 피셔-트롭쉬 합성반응을 이용한 액체탄화수소의 제조에 사용될 수 있다.In particular, the cobalt / silica egg-shell nanocatalyst prepared by the method for preparing the catalyst may be used in the preparation of liquid hydrocarbons using Fischer-Tropsch synthesis reaction, which includes the step of putting the synthesis gas into a tubular fixed bed reactor. have.
본 발명에 따른 피셔-트롭쉬 합성반응을 이용한 액체탄화수소의 제조방법은 다음과 같다.The method for producing liquid hydrocarbon using Fischer-Tropsch synthesis reaction according to the present invention is as follows.
합성가스는 일산화탄소, 수소, 그 밖에 불활성 기체나 메탄, 또는 이산화탄소로 구성되는 물질을 사용할 수 있다. 보다 바람직하게는 일산화탄소와 수소의 부피비를 1 : 2의 비율로 사용하는 것이 생성물의 수득율 측면에서 좋다. Syngas may be carbon monoxide, hydrogen, inert gas or methane, or a material composed of carbon dioxide. More preferably, the volume ratio of carbon monoxide and hydrogen is used in a ratio of 1: 2 in terms of yield of the product.
또한 합성가스는 공간속도가 2.0 ~ 24.0 NL/gcat/hr 인 범위내에서 고정층 반응기에 주입되는 것이 바람직하다. In addition, the synthesis gas is preferably injected into the fixed bed reactor in the range of the space velocity is 2.0 ~ 24.0 NL / gcat / hr.
상기 공간속도 보다 미만일 경우에도 반응 진행에는 큰 무리가 없으나 액체탄화수소의 단위시간당 생산성이 낮은 문제가 발생하며 상기 공간속도 보다 많은 합성가스를 주입할 경우 일산화탄소의 전환율이 감소할 수 있다. Even if it is less than the space velocity, there is no big problem in the reaction progress, but there is a problem of low productivity per unit time of liquid hydrocarbon, and when more synthesis gas is injected, the conversion rate of carbon monoxide may be reduced.
또한 반응온도는 180 ~ 260℃에서 이용이 가능하나 촉매의 고온 안정성이 확보되는 경우 일산화탄소의 전환율을 높이고 액체탄화수소의 수득률을 늘리기 위해 220 ~ 240℃ 사이에서 반응이 적합 할 수 있다. In addition, the reaction temperature can be used at 180 ~ 260 ℃ but if the high temperature stability of the catalyst is secured, the reaction may be suitable between 220 ~ 240 ℃ to increase the conversion of carbon monoxide and increase the yield of liquid hydrocarbon.
이하, 본 발명을 실시예를 통해 더욱 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 제한 되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples.
[실시예 1] 10wt%의 코발트 입자가 담지된 코발트/실리카 에그-쉘 나노 촉매의 제조Example 1 Preparation of Cobalt / Silica Egg-Shell Nanocatalyst Supported by 10wt% Cobalt Particles
실리카 지지체로 사용 될 수 있는 실리카 나노입자는 잘 알려진
Figure PCTKR2014012316-appb-I000007
법을 이용하여 제조하였다.
Silica nanoparticles that can be used as silica supports are well known
Figure PCTKR2014012316-appb-I000007
It was prepared using the method.
먼저 실리카 구형입자를 얻기 위해, 에탄올 200mL와 32mL의 증류수가 포함된 1L 용량의 비커에 8 mL의 수산화암모늄 용액(28 wt%)과 20 mL의 테트라에틸오르토실리케이트(Tetraethyl orthosilicate: TEOS)를 추가로 넣고 2시간 동안 교반 하였다. To obtain silica spherical particles, add 8 mL of ammonium hydroxide solution (28 wt%) and 20 mL of tetraethyl orthosilicate (TEOS) in a 1 L beaker containing 200 mL of ethanol and 32 mL of distilled water. Put and stirred for 2 hours.
2시간 이후 얻어진 실리카 입자는 원심 분리를 통해 침전 후 에탄올에서 분산시켜 사용하였다. 세척 후에도 소량 잔류될 수 있는 암모니아를 최소화하기 위해 에탄올을 이용하여 분산-침전 과정을 반복하여 2번 이상 세척하였다. The silica particles obtained after 2 hours were used after being precipitated through centrifugation and dispersed in ethanol. In order to minimize ammonia that may remain even after washing, the dispersion-precipitation process was repeated two or more times using ethanol.
다음으로 앞서
Figure PCTKR2014012316-appb-I000008
법을 이용하여 얻은 에탄올에 분산된 실리카 용액을 이용하여 추가로 다공성 실리카 껍질을 코팅해 주었다.
Ahead of
Figure PCTKR2014012316-appb-I000008
Porous silica shells were further coated with a silica solution dispersed in ethanol obtained by the method.
우선 Cetrimonium bromide((C16H33)N(CH3)3Br, cetyltrimethylammonium bromide, hexadecyltrimethylammonium bromide, CTAB) 시약 1.2 g을 증류수 20 mL 와 에탄올 10 mL가 혼합된 용액에 잘 용해시켜 주었다. 여기에, 증류수 200mL 와 함께 앞서 얻은 0.3M의 실리카 콜로이드 용액 60 mL를 넣은 후 30 분간 잘 교반 해 주었다. First, 1.2 g of Cetrimonium bromide ((C 16 H 33 ) N (CH 3 ) 3 Br, cetyltrimethylammonium bromide, hexadecyltrimethylammonium bromide, CTAB) reagent was dissolved in a solution containing 20 mL of distilled water and 10 mL of ethanol. Here, 60 mL of 0.3 M silica colloidal solution obtained above with 200 mL of distilled water was added thereto, followed by stirring for 30 minutes.
이후, 테트라에틸오르토실리케이트 시약 2.15 mL 를 넣고 다시 21시간 동안 반응 시켜 주었다. After that, 2.15 mL of tetraethylorthosilicate reagent was added and reacted again for 21 hours.
21시간의 반응 후 원심 분리를 통해 침전 시킨 다음 물, 에탄올, 아세톤 순으로 넣고 다시 분산-침전 과정을 반복하여 세척하여 주었다. 최종적으로 얻어진 분말을 100 ℃로 설정된 오븐에서 충분히 건조한 뒤 소성 장치를 이용하여 500℃ 에서 8시간 동안 대기중에서 열처리 해주었다. After 21 hours of reaction, the precipitate was precipitated by centrifugation, followed by water, ethanol, acetone, and washed again by repeating the dispersion-precipitation process. Finally, the powder obtained was sufficiently dried in an oven set at 100 ° C., and then heat-treated at 500 ° C. for 8 hours using an calcination apparatus.
이후, Co(NO3)26H2O (m.p. = 55℃) 염 0.349g을 열처리를 통해 얻어진 다공성 실리카 껍질을 가지는 실리카 나노입자 0.636 g과 함께 막자 사발을 이용해서 균일하게 갈아주었다. 충분히 갈아 준 뒤 혼합 분말을 30 mL 용량의 Polypropylene 용기에 넣은 후 용기의 마개를 꽉 조인 후 60 ℃로 온도가 설정된 건조오븐에 넣고 24시간 동안 숙성 시켰다. Thereafter, 0.349 g of Co (NO 3 ) 2 6H 2 O (mp = 55 ° C.) salt was uniformly ground using a mortar and pestle together with 0.636 g of silica nanoparticles having a porous silica shell obtained through heat treatment. After sufficiently grinding, mixed powder was placed in a 30 mL polypropylene container, the container was capped tightly, and put in a drying oven having a temperature set at 60 ° C., and aged for 24 hours.
24시간 이후 분말(powder)을 상온에서 식힌 후 소성오븐을 이용하여 수소 분위기 하에서 400 ℃에서 4시간동안 소성시켜 코발트가 10wt%가 담지 된 에그-쉘 형 코발트/실리카 혼성 나노 촉매를 얻을 수 있었다. After 24 hours, the powder was cooled at room temperature, and then calcined at 400 ° C. for 4 hours in a hydrogen atmosphere using a baking oven to obtain an egg-shell cobalt / silica hybrid nanocatalyst having 10 wt% of cobalt.
여기서 최종적으로 얻어지는 코발트/실리카 혼성 촉매의 경우 공기 중에 노출 시에 산화가 빠르게 진행되기 때문에, 소성 후 질소 분위기 하에서 패시베이션(passivation)에 효과가 있는 에탄올에 넣어 보관해 주었다. 이때, 산화를 유발할 수 있는 외부의 공기가 유입되지 않도록 질소를 500cc/min 로 강하게 blowing 해주며 미리 준비된 질소 분위기하의 에탄올이 담겨진 용기에 순간적으로 넣어주는 것이 중요하다 볼 수 있다.In the case of the cobalt / silica hybrid catalyst finally obtained here, since oxidation proceeds rapidly when exposed to air, the cobalt / silica hybrid catalyst was stored in ethanol which is effective for passivation under a nitrogen atmosphere after firing. At this time, it is important to blow nitrogen strongly at 500cc / min so as not to introduce external air that may cause oxidation, and to put it instantaneously into a container containing ethanol under a prepared nitrogen atmosphere.
이를 통해 얻어진 샘플에 대한 주사 전자 현미경(Scanning electron microscope: SEM) 및 투과전자현미경(Transmission electron microscopy: TEM) 이미지 및 HADDF-STEM(high angle annular dark field-scanning transmission electron microscopy) 이미지를 도 3 에 나타내었다. Scanning electron microscope (SEM) and transmission electron microscopy (TEM) images and high angle annular dark field-scanning transmission electron microscopy (HADDF-STEM) images of the samples thus obtained are shown in FIG. 3. It was.
도 3의 a) SEM 이미지에서 관찰 가능하듯이 상기의 방법으로 얻어진 구형 실리카 나노입자는 그 크기가 300 ~ 400 nm 수준으로 균일하게 형성되었다. As can be observed in the SEM image of Figure 3 a) spherical silica nanoparticles obtained by the above method was uniformly formed in the size of 300 ~ 400 nm level.
도 3의 b) TEM 이미지를 통해 CTAB을 이용한 실리카 코팅 및 열처리 과정을 통해 다공성 실리카 껍질이 형성 됨을 확인 할 수 있었다.3 b) through the TEM image, it could be seen that the porous silica shell was formed through silica coating and heat treatment using CTAB.
도 3의 c) TEM 이미지에서 수소 분위기 하에서 환원 열처리를 통해 5 ~ 10 nm 수준의 작은 코발트 입자 들이 실리카 껍질 내부에 있음을 알 수 있었다. 보다 명확한 확인을 위한 HADDF-STEM 분석을 통해서도 도 3의 d)와 같이 코발트 입자를 나타내는 밝은 작은 점들이 구형 실리카 입자 표면에 존재함을 확인 할 수 있었다. In c) TEM image of Figure 3 it can be seen that the small cobalt particles of 5 ~ 10 nm level inside the silica shell through a reduction heat treatment under a hydrogen atmosphere. Through HADDF-STEM analysis for clearer confirmation, bright small dots representing cobalt particles as shown in d) of FIG. 3 were found to exist on the surface of the spherical silica particles.
또한, 도 3의 e) 고배율 TEM 사진을 통해 코발트 입자의 격자 형태를 볼 수 있었다.In addition, the lattice shape of the cobalt particles was seen through e) high magnification TEM photograph of FIG.
[실시예 2] 10wt% 의 코발트 입자가 담지된 코발트/실리카 에그-쉘 나노 촉매의 제조Example 2 Preparation of Cobalt / Silica Egg-Shell Nanocatalyst Supported by 10wt% Cobalt Particles
실리카 입자는
Figure PCTKR2014012316-appb-I000009
방법을 사용하여 합성 시에 사용되는 물, 에탄올이나 암모니아 양 등의 여러 조건에 따라 다양한 크기로 조절 될 수 있다. 이에 따라 에그-쉘 입자의 전체 크기 또한 조절 될 수 있다. 한 실시예로서 에탄올 50mL와 8mL의 증류수가 포함된 삼각플라스크에 4 mL의 수산화암모늄 용액(28 wt%)과 10 mL의 테트라에틸오르토실리케이트(Tetraethyl orthosilicate: TEOS)를 추가로 넣고 2시간 동안 교반 하였다.
Silica particles
Figure PCTKR2014012316-appb-I000009
The method can be adjusted to various sizes depending on various conditions, such as the amount of water, ethanol or ammonia used in the synthesis. Accordingly, the overall size of the egg-shell particles can also be controlled. As an example, 4 mL of ammonium hydroxide solution (28 wt%) and 10 mL of tetraethyl orthosilicate (TEOS) were further added to an Erlenmeyer flask containing 50 mL of ethanol and 8 mL of distilled water, followed by stirring for 2 hours. .
2시간 이후 얻어진 실리카 입자는 원심 분리를 통해 침전 후 에탄올에서 분산시켜 사용하였다. 세척 후에도 소량 잔류될 수 있는 암모니아를 최소화하기 위해 에탄올을 이용하여 분산-침전 과정을 반복하여 2번 이상 세척하였다.The silica particles obtained after 2 hours were used after being precipitated through centrifugation and dispersed in ethanol. In order to minimize ammonia that may remain even after washing, the dispersion-precipitation process was repeated two or more times using ethanol.
이를 통해 얻어진 실리카 입자의 SEM 이미지를 도 4의 a)에 나타내었고, 입자의 평균크기는 450 nm 수준 정도 되었다. The SEM image of the silica particles thus obtained is shown in Figure 4 a), the average size of the particles was about 450 nm level.
다음으로 앞서
Figure PCTKR2014012316-appb-I000010
법을 이용하여 얻은 에탄올에 분산된 콜로이드 실리카 용액을 이용하여 추가로 다공성 실리카 껍질을 코팅해 주었다. 우선 CTAB 시약 1.2 g을 증류수 20 mL와 에탄올 10 mL 가 혼합된 용액에 잘 용해시켜 주었다. 여기에, 증류수 200mL와 함께 앞서 얻은 0.181M의 실리카 용액 100 mL를 넣은 후 30 분간 잘 교반 해 주었다.
Ahead of
Figure PCTKR2014012316-appb-I000010
Porous silica shells were further coated with a colloidal silica solution dispersed in ethanol obtained by the method. First, 1.2 g of CTAB reagent was dissolved in a solution of 20 mL of distilled water and 10 mL of ethanol. Here, 100 mL of the 0.181 M silica solution obtained above with 200 mL of distilled water was added and stirred well for 30 minutes.
이후, 테트라에틸오르토실리케이트 시약을 2.15 mL 를 넣고 다시 12시간 동안 반응 시켜 주었다. 이에 대한 TEM 이미지를 도 4의 b)에 나타내었으며, 이를 통해 앞서 얻어진 실리카 입자 위에 다공성 실리카 껍질이 매우 균일하게 형성되어짐을 알 수 있었다. Then, 2.15 mL of tetraethylorthosilicate reagent was added and reacted again for 12 hours. The TEM image for this is shown in b) of FIG. 4, and it can be seen that the porous silica shell is formed very uniformly on the silica particles obtained above.
12시간의 반응 후 실리카 입자를 원심 분리를 통해 침전 후 물, 에탄올, 아세톤 순으로 넣고 다시 분산-침전 과정을 반복하여 세척하여 주었다. 최종적으로 얻어진 분말을 100 ℃로 설정된 오븐에서 충분히 건조한 뒤 소성 장치를 이용하여 500℃에서 8시간 동안 열처리 해주었다. After the reaction for 12 hours, the silica particles were precipitated by centrifugation, followed by water, ethanol and acetone, followed by washing again by dispersing-precipitation. Finally, the powder obtained was sufficiently dried in an oven set at 100 ° C., and then heat-treated at 500 ° C. for 8 hours using a firing apparatus.
이후, Co(NO3)26H2O (m.p. = 55℃)염 0.274g을 열처리를 통해 얻어진 다공성 실리카 껍질을 가지는 실리카 나노입자 0.5 g과 함께 막자 사발을 이용해서 균일하게 갈아 주었다. 충분히 갈아 준 뒤 혼합 분말을 30 mL 용량의 Polypropylene 용기에 넣은 후 용기의 마개를 꽉 조인 후 60 ℃ 로 온도가 설정된 건조오븐에 넣고 24시간 동안 숙성 시켰다. Thereafter, 0.274 g of Co (NO 3 ) 2 6H 2 O (mp = 55 ° C.) salt was uniformly ground using a mortar and pestle together with 0.5 g of silica nanoparticles having a porous silica shell obtained through heat treatment. After sufficiently grinding, mixed powder was placed in a 30 mL polypropylene container, the container was capped tightly, and put in a drying oven having a temperature set at 60 ° C., and aged for 24 hours.
24시간 이후 powder를 상온에서 식힌 후 튜브형 소성오븐기를 이용하여 분당 200ml의 흘려주는 수소 분위기 하에서 500 ℃에서 4시간동안 소성시켜 코발트가 10wt%가 담지 된 에그-쉘 형 코발트/실리카 혼성 촉매를 얻을 수 있었다. After 24 hours, the powder is cooled at room temperature, and then fired at 500 ° C. for 4 hours in a hydrogen atmosphere flowing at 200 ml per minute using a tube-type baking oven to obtain an egg-shell cobalt / silica hybrid catalyst containing 10 wt% of cobalt. there was.
열처리 직후, 공기 중에 노출 시에 빠르게 진행되는 산화를 막기 위해 코발트/실리카 혼성 powder를 질소 분위기 하에서 패시베이션(passivation)에 효과가 있는 에탄올에 넣어 보관하였다. Immediately after the heat treatment, cobalt / silica mixed powder was stored in ethanol, which is effective for passivation under nitrogen atmosphere, in order to prevent rapid oxidation upon exposure to air.
정성분석을 위한 XRD(X-ray Diffraction) 분석에서 도 4의 c)에 나타낸 바와 같이 입자의 결정상이 금속성코발트 종임을 알 수 있었다. X-ray diffraction (XRD) analysis for qualitative analysis showed that the crystal phase of the particles was metallic cobalt species, as shown in FIG.
추가적으로, 얻어진 다공성 실리카 껍질을 가지는 실리카 입자의 기공 형성 및 표면적 분석을 위해 질소 흡탈착 실험을 진행해 보았고, 도 5의 a)에 그 분석 그래프를 나타내었다. 측정결과 BET(Brunauer-Emmett-Teller) 표면적 값이 383.3 m2/g 으로 얻어졌으며, 기공부피는 0.30 cm3/g으로 나타났다. In addition, nitrogen adsorption and desorption experiments were carried out for pore formation and surface area analysis of the silica particles having the porous silica shell obtained, and the analysis graph is shown in FIG. As a result, the surface area of Brunauer-Emmett-Teller (BET) was 383.3 m 2 / g and the pore volume was 0.30 cm 3 / g.
마찬가지로, 10wt%의 코발트가 담지된 코발트/실리카 에그-쉘의 경우 그 질소 흡탈착 실험결과를 도 5의 b)에 나타내었고, 측정결과 BET 표면적 값이 355.9 m2/g 으로 얻어졌으며, 기공부피는 0.20 cm3/g 으로 나타났다. Similarly, in the case of cobalt / silica egg-shell loaded with 10wt% of cobalt, the nitrogen adsorption and desorption test results are shown in b) of FIG. 5, and the BET surface area value was obtained as 355.9 m 2 / g. Was 0.20 cm 3 / g.
[실시예 3] 20wt% 의 코발트 입자가 담지된 코발트/실리카 에그-쉘 나노 촉매의 제조Example 3 Preparation of Cobalt / Silica Egg-Shell Nanocatalyst Carrying 20wt% Cobalt Particles
실시예 2와 동일하게 제조된 다공성 실리카 껍질이 코팅된 실리카 입자를 활용하여 20wt%의 코발트입자가 담지된 에그-쉘 형 나노촉매를 제조하였다. An egg-shell nanocatalyst carrying 20 wt% of cobalt particles was prepared using silica particles coated with a porous silica shell prepared in the same manner as in Example 2.
먼저 Co(NO3)26H2O (m.p. = 55℃) 염 0.617g을 열처리를 통해 얻어진 다공성 실리카 껍질을 가지는 실리카 나노입자 0.5g과 함께 막자 사발을 이용해서 균일하게 갈아 주었다. First, 0.617 g of Co (NO 3 ) 2 6H 2 O (mp = 55 ° C.) salt was uniformly ground using a mortar and pestle together with 0.5 g of silica nanoparticles having a porous silica shell obtained through heat treatment.
충분히 갈아 준 뒤 혼합 분말을 30 mL 용량의 Polypropylene 용기에 넣은 후 용기의 마개를 꽉 조인 후 60 ℃로 온도가 설정된 건조오븐에 넣고 24시간 동안 숙성 시켰다. After sufficiently grinding, mixed powder was placed in a 30 mL polypropylene container, the container was capped tightly, and put in a drying oven having a temperature set at 60 ° C., and aged for 24 hours.
24시간 이후 powder를 상온에서 식힌 후 소성오븐기를 이용하여 수소 분위기 하에서 500 ℃에서 4시간 동안 소성시켜 코발트가 20wt%가 담지된 에그-쉘 형 코발트/실리카 혼성 촉매를 얻을 수 있었다. After 24 hours, the powder was cooled to room temperature, and then calcined at 500 ° C. for 4 hours using a baking oven to obtain an egg-shell cobalt / silica hybrid catalyst having 20 wt% of cobalt.
열처리 직후, 공기 중에 노출 시에 빠르게 진행되는 산화를 막기 위해 코발트/실리카 혼성 powder를 질소 분위기 하에서 에탄올에 넣어 보관하였다. Immediately after heat treatment, cobalt / silica hybrid powder was stored in ethanol under nitrogen atmosphere to prevent rapid oxidation upon exposure to air.
얻어진 샘플에 대한 TEM 분석결과 도 6의 a) 내지 b)에서 확인할 수 있듯이 입자의 크기가 5 ~ 20 nm 수준으로 형성되었음을 알 수 있고, 정성분석을 위한 XRD 분석에서 금속성 코발트를 나타내는 피크들을 확인 할 수 있었다. 여기에, 실리카 입자의 기공 형성 및 표면적 분석을 위해 질소 흡탈착 실험을 진행해 보았고, 측정결과 BET(Brunauer-Emmett-Teller) 표면적 값이 287.1 m2/g 으로 얻어졌으며, 기공부피는 0.16 cm3/g으로 나타났다. As a result of the TEM analysis on the obtained sample, it can be seen that the particle size was formed at a level of 5 to 20 nm as shown in FIGS. 6A and 6B), and peaks indicating metallic cobalt were identified in the XRD analysis for qualitative analysis. Could. Nitrogen adsorption and desorption experiments were carried out for pore formation and surface area analysis of silica particles, and the results showed that the BET (Brunauer-Emmett-Teller) surface area value was 287.1 m 2 / g, and the pore volume was 0.16 cm 3 /. g.
[실시예 4] 10wt% 의 코발트 입자가 담지된 코발트/실리카 에그-쉘 나노 촉매를 이용한 피셔-트롭쉬 합성 반응Example 4 Fischer-Tropsch Synthesis Reaction Using Cobalt / Silica Egg-Shell Nanocatalysts Supported with 10wt% Cobalt Particles
실시예 2 에서 얻어진 10wt%의 코발트 금속이 함유된 코발트/실리카 에그-쉘 촉매를 바탕으로 피셔-트롭쉬 합성 반응을 진행하였다. The Fischer-Tropsch synthesis reaction was carried out based on the cobalt / silica egg-shell catalyst containing 10 wt% of cobalt metal obtained in Example 2.
반응기는 고정층 반응기(fixed-bed reactor)를 이용하였고, 반응 과정은 PC(personal computer)로 조작이 가능한 자동화 시스템을 이용하였다. The reactor used a fixed-bed reactor, and the reaction process used an automated system that can be operated by a personal computer (PC).
5mm의 내부 직경 크기를 가지는 반응기에 얻어진 촉매 0.5 g을 건조 후 펠릿화 시켜 일정한 크기(300-600 ㎛)로 로딩(loading)하여 사용하였다. 반응 중 촉매에서의 심각한 발열에 의한 열점(hot spot)이 생성되는 것을 막기 위해 425 ~ 600 ㎛의 크기를 가지는 glass bead 2.5 g 을 추가적으로 함께 넣어 주었다. 0.5 g of the catalyst obtained in a reactor having an inner diameter of 5 mm was dried and pelletized to load a constant size (300-600 µm). In order to prevent hot spots from being severely exothermic in the catalyst, 2.5 g of glass beads having a size of 425 to 600 μm were added together.
또한 본 반응 전 반응기 내부에 촉매를 담지 한 후 4시간 동안 500℃ 온도 조건에서 상압의 수소 분위기하(80mL/min)에서 2시간 동안 추가적 환원 과정을 진행 시킴으로써 촉매 표면에 일부 산화된 부분을 다시 순수한 코발트로 만들어 주었다. In addition, after the catalyst was loaded in the reactor prior to the reaction, an additional reduction process was performed for 2 hours in an atmospheric hydrogen atmosphere (80 mL / min) at 500 ° C. for 4 hours, thereby partially purifying the partially oxidized portion on the surface of the catalyst. Made with cobalt.
이후 수소 대 일산화탄소의 비가 2:1 의 비율로 유지된 합성가스를 반응압력 20 기압, 공간 속도(GHSV, gas hourly space velocity) 7.2 NL/G(cat)-h 의 조건으로 반응기에 주입하여 230℃ 에서 피셔-트롭쉬 합성반응을 수행하였다. 이후 90 시간 동안의 반응결과를 도 7에 나타내었다. 반응결과, 도 7에서 볼 수 있듯이 단위 코발트g 당 단위 초에 따른 CO의 탄화수소로의 전환 정도를 나타내어 주는 CTY(Cobalt Time Yield, FT activity) 값에서 6*10-5 molco/gCo-s이상의 매우 높은 값을 보여 주었다.Thereafter, a synthetic gas maintained at a ratio of hydrogen to carbon monoxide at a ratio of 2: 1 was introduced into the reactor under a reaction pressure of 20 atm and a gas hourly space velocity (GHSV) 7.2 NL / G (cat) -h. Fischer-Tropsch synthesis was performed at. After the reaction for 90 hours is shown in FIG. As a result, as shown in FIG. 7, 6 * 10 -5 mol co / g Co -s at CTY (Cobalt Time Yield, FT activity) value indicating the degree of conversion of CO to hydrocarbons per unit second per cobalt g as shown in FIG. Showed very high values.
[실시예 5] 20wt% 의 코발트 입자가 담지된 코발트/실리카 에그-쉘 나노 촉매를 이용한 피셔-트롭쉬 합성 반응[Example 5] Fischer-Tropsch synthesis reaction using cobalt / silica egg-shell nanocatalyst loaded with 20wt% cobalt particles
실시예 3에서 얻어진 20wt%의 코발트 금속이 함유된 코발트/실리카 에그-쉘 촉매를 바탕으로 피셔-트롭쉬 합성 반응을 진행하였다. 실시예 4와 마찬가지로 5mm의 내부 직경 크기를 가지는 반응기에 코발트/실리카 에그-쉘 촉매 0.5g을 건조 후 바로 로딩하여 사용하였다.The Fischer-Tropsch synthesis reaction was carried out on the basis of the cobalt / silica egg-shell catalyst containing 20 wt% of the cobalt metal obtained in Example 3. As in Example 4, 0.5 g of a cobalt / silica egg-shell catalyst was dried and immediately loaded into a reactor having an inner diameter of 5 mm.
반응 중 촉매에서의 심각한 발열에 의한 hot spot이 생성되는 것을 막기 위해 glass bead 2.5g을 추가적으로 함께 넣어 주었고 4시간 동안 500℃ 온도 조건에서 상압의 수소 분위기하(유속 80mL/min)에서 환원 과정을 진행 시킴으로써 촉매 표면에 일부 산화된 부분을 다시 순수한 금속성 코발트로 만들어 주었다. In order to prevent hot spots from being severely exothermic in the catalyst during the reaction, 2.5 g of glass beads were added together and the reduction process was carried out under a hydrogen atmosphere of normal pressure (flow rate 80 mL / min) at 500 ° C. for 4 hours. This resulted in part of the oxidized portion of the catalyst surface made of pure metallic cobalt.
이후 수소 대 일산화탄소의 비가 2:1 의 비율로 유지된 합성가스를 반응압력 20 기압, 공간 속도 7.2 NL/G(cat)-h 의 조건으로 반응기에 주입하여 230℃ 에서 피셔-트롭쉬 합성반응을 수행하였다. Thereafter, a synthesis gas maintained at a ratio of hydrogen to carbon monoxide at a ratio of 2: 1 was introduced into the reactor under a reaction pressure of 20 atm and a space velocity of 7.2 NL / G (cat) -h to carry out Fischer-Tropsch synthesis reaction at 230 ° C. Was performed.
이후 90 시간 동안의 반응결과를 도 8에 나타내었다. 반응결과, 도 8에서 볼 수 있듯이 단위 코발트 g당 단위 초에 따른 CO의 탄화수소로의 전환 정도를 나타내어 주는 CTY(Cobalt Time Yield) 값에서5*10-5 molco/gCo-s 이상의 높은 값을 보여 주었다.The reaction results for 90 hours thereafter are shown in FIG. 8. As a result, as shown in FIG. 8, a high value of 5 * 10 -5 mol co / g Co -s or more at the Cobalt Time Yield (CTY) value indicating the degree of conversion of CO to hydrocarbons per unit second of cobalt as shown in FIG. Showed.
실제 반응 후 생성물을 트랩에서 회수하여 도 9와 같이 기름 및 왁스 생성 성분을 확인 가능하였다.After the actual reaction, the product was recovered from the trap to identify oil and wax formation components as shown in FIG. 9.
본 발명은 상술한 특정의 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다. The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

Claims (13)

  1. (i) 실리카의 선구물질을
    Figure PCTKR2014012316-appb-I000011
    방법을 이용하여 실리카 구조체 입자 분말을 합성하는 단계;
    (i) the precursor of silica
    Figure PCTKR2014012316-appb-I000011
    Synthesizing silica structure particle powder using the method;
    (ii) CTAB(Cetyl trimethylammonium bromide)를 사용하여 상기 실리카 입자분말을 추가 코팅 후 열처리를 통해 다공성 실리카 껍질을 형성해 주는 단계; (ii) forming a porous silica shell through heat treatment after further coating the silica particle powder using CTAB (Cetyl trimethylammonium bromide);
    (iii) 이후 상기 다공성 실리카 분말을 코발트 수화물 염과 함께 균일하게 갈아 준 후 염의 융점부근에서 용융함침 시키는 단계; (iii) then uniformly grinding the porous silica powder together with the cobalt hydrate salt, followed by melt impregnation near the melting point of the salt;
    (iv) 용융함침 후 얻어진 혼합분말을 상온에서 건조시킨 후 수소 분위기 하에서 고온으로 열처리 해주는 단계;(iv) drying the mixed powder obtained after melt impregnation at room temperature and then heat-treating at high temperature in a hydrogen atmosphere;
    (v) 환원된 코발트/실리카 입자를 상온까지 식힌 후 에탄올을 사용하여 패시베이션을 통해 산화를 방지하는 단계;를 포함하여 구성된 것을 특징으로 하는 피셔-트롭쉬 합성 반응을 위한 코발트-실리카 에그-쉘 나노촉매의 제조방법.(v) cooling the reduced cobalt / silica particles to room temperature to prevent oxidation through passivation using ethanol; and cobalt-silica egg-shell nanoparticles for the Fischer-Tropsch synthesis reaction comprising: Method for preparing a catalyst.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 i)단계는 알코올과 물 기반의 조건에서 실리카의 선구물질 TEOS(Tetraethyl orthosilicate) 또는 TMOS(Tetramethyl orthosilicate)를 사용하여 구형 형상을 가진 100 ~ 1000 nm 크기의 실리카 구조체를 합성하는 단계인 것을 특징으로 하는 피셔-트롭쉬 합성 반응을 위한 코발트-실리카 에그-쉘 나노촉매의 제조방법.Step i) is a step of synthesizing a silica structure having a spherical shape of 100 ~ 1000 nm size using the precursor TEOS (Tetraethyl orthosilicate) or TMOS (Tetramethyl orthosilicate) of silica under alcohol and water-based conditions Method for preparing a cobalt-silica egg-shell nanocatalyst for Fischer-Tropsch synthesis reaction.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 (iv)단계는 상기 (i) 단계의 실리카 선구물질과 혼합된 상기 (ii)단계의 16개 탄소로 이루어진 긴 탄소 체인을 가지는 CTAB(Cetrimonium bromide, IUPAC Name: hexadecyl-trimethyl-ammonium bromide)를 열처리하여 제거시켜 기공을 형성시켜 주는 단계인 것을 특징으로 하는 피셔-트롭쉬 합성 반응을 위한 코발트-실리카 에그-쉘 나노촉매의 제조방법.Step (iv) is a CTAB (Cetrimonium bromide, IUPAC Name: hexadecyl-trimethyl-ammonium bromide) having a long carbon chain of 16 carbons of step (ii) mixed with the silica precursor of step (i) Method of producing a cobalt-silica egg-shell nanocatalyst for Fischer-Tropsch synthesis reaction, characterized in that the step of removing the heat treatment to form pores.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 (iii) 단계에서 실리카에 함침시켜 사용하는 수화된 코발트 금속염은 용융점이 40 ~ 90℃인Co(NO3)26H2O (m. p. = 55 ℃), CoCl26H2O (m. p. = 86 ℃), CoSO47H2O (m. p. = 74℃) 중에서 선택된 하나 이상인 것을 특징으로 하는 피셔-트롭쉬 합성 반응을 위한 코발트-실리카 에그-쉘 나노촉매의 제조방법.The hydrated cobalt metal salt used by impregnating silica in step (iii) has a melting point of 40 to 90 ° C. Co (NO 3 ) 2 6H 2 O (mp = 55 ° C.), CoCl 2 6H 2 O (mp = 86 ° C.) ), CoSO 4 7H 2 O (mp = 74 ℃) method for producing a cobalt-silica egg-shell nanocatalyst for Fischer-Tropsch synthesis reaction, characterized in that at least one.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 (iii) 단계에서 용융함침 시키는 반응시간은 4 ~ 48시간인 것을 특징으로 하는 피셔-트롭쉬 합성 반응을 위한 코발트-실리카 에그-쉘 나노촉매의 제조방법.The reaction time of the melt impregnation in step (iii) is 4 ~ 48 hours, characterized in that the cobalt-silica egg-shell nanocatalyst for Fischer-Tropsch synthesis reaction.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 (iv) 단계는 지지체로 사용되는 실리카 분말 입자의 다공성 껍질에 선택적으로 코발트 수화물 염이 담지된 상태에서 수소 분위기 하에서 소성하여 나노미터 크기의 코발트 입자가 형성되도록 400 ~ 700 ℃ 사이에서 환원시키는 것을 특징으로 하는 피셔-트롭쉬 합성 반응을 위한 코발트-실리카 에그-쉘 나노촉매의 제조방법.In step (iv), the porous shell of silica powder particles used as a support is calcined under hydrogen atmosphere in a state in which cobalt hydrate salts are selectively supported, and reduced at 400 to 700 ° C. to form nanometer-sized cobalt particles. A method for preparing a cobalt-silica egg-shell nanocatalyst for a Fischer-Tropsch synthesis reaction.
  7. 청구항 1 내지 6 중 어느 한항의 방법에 따라 제조되어 내부에는 견고하게 밀집된 실리카로 이루어져 있고 껍질 부근에는 많은 기공들이 형성된 다공성 껍질이 형성된 나노 실리카 구조체에 활성 나노 코발트 입자가 균일하게 다공성 실리카 껍질 내부에만 선택적으로 위치하여 구성된 것을 특징으로 하는 피셔-트롭쉬 합성 반응을 위한 코발트-실리카 에그-쉘 나노촉매.The active nano-cobalt particles are uniformly selected only inside the porous silica shell in the nano silica structure formed according to the method of any one of claims 1 to 6 and formed of a porous shell in which the porous shell is made of solid dense silica inside and many pores are formed near the shell. Cobalt-silica egg-shell nanocatalyst for the Fischer-Tropsch synthesis reaction, characterized in that it is configured to.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 다공성 실리카 껍질에 담지되어 있는 코발트 나노입자의 크기는 2 ~ 20 nm이고, 상기 실리카 구조체를 포함한 전체 입자의 크기는 100 ~ 1000 nm 이고, 상기 다공성 실리카 껍질의 두께는 10 ~ 100 nm 인 것을 특징으로 하는 피셔-트롭쉬 합성 반응을 위한 코발트-실리카 에그-쉘 나노촉매.The size of the cobalt nanoparticles supported on the porous silica shell is 2 ~ 20 nm, the size of the entire particle including the silica structure is 100 ~ 1000 nm, the thickness of the porous silica shell is 10 ~ 100 nm Cobalt-silica egg-shell nanocatalysts for Fischer-Tropsch synthesis reactions.
  9. 청구항 8에 따른 피셔-트롭쉬 합성 반응용 코발트-실리카 에그-쉘 나노촉매를 반응기에 주입하는 단계와;Injecting a cobalt-silica egg-shell nanocatalyst for the Fischer-Tropsch synthesis reaction according to claim 8 into the reactor;
    이후 반응기에 합성가스를 주입하는 단계와;Then injecting syngas into the reactor;
    이후 반응기에서 고온의 반응온도로 코발트-실리카 에그-쉘 나노촉매를 장입한 후 피셔-트롭쉬 합성 반응을 진행하여 액체탄화수소를 제조하는 단계;를 포함하는 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 코발트-실리카 에그-쉘 나노촉매를 이용한 액체 탄화수소의 제조방법.After charging the cobalt-silica egg-shell nanocatalyst at a high reaction temperature in the reactor and proceeding with the Fischer-Tropsch synthesis reaction to prepare a liquid hydrocarbon; Fischer-Tropsch synthesis reaction comprising the Process for preparing liquid hydrocarbons using cobalt-silica egg-shell nanocatalysts.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 합성가스는 일산화탄소와 수소의 부피비를 1 : 2 또는 일산화탄소와 수소에 불순물로 불활성 기체, 메탄, 이산화탄소 중 어느 하나가 혼합된 가스를 1 : 2로 혼합한 것을 사용한 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 코발트-실리카 에그-쉘 나노촉매를 이용한 액체 탄화수소의 제조방법.The synthesis gas is a Fischer-Tropsch, characterized in that the volume ratio of carbon monoxide and hydrogen 1: 1 or a mixture of any one of an inert gas, methane, carbon dioxide mixed with carbon monoxide and hydrogen in 1: 2: Method for preparing liquid hydrocarbon using cobalt-silica egg-shell nanocatalyst for synthesis reaction.
  11. 청구항 9에 있어서,The method according to claim 9,
    상기 합성가스는 공간속도(GHSV, gas hourly space velocity)가 2.0 ~ 24.0 NL/gcat/h인 범위 내에서 반응기에 주입하는 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 코발트-실리카 에그-쉘 나노촉매를 이용한 액체 탄화수소의 제조방법.The synthesis gas is injected into the reactor within the gas hourly space velocity (GHSV, gas hourly space velocity) of 2.0 ~ 24.0 NL / g cat / h, cobalt-silica egg-shell nanoparticles for Fischer-Tropsch synthesis reaction Method for producing a liquid hydrocarbon using a catalyst.
  12. 청구항 9에 있어서,The method according to claim 9,
    상기 반응온도는 180 ~ 260℃ 사이에서 진행하는 것을 특징으로 하는 피셔-트롭쉬 합성 반응용 코발트-실리카 에그-쉘 나노촉매를 이용한 액체 탄화수소의 제조방법The reaction temperature is a method for producing a liquid hydrocarbon using a cobalt-silica egg-shell nanocatalyst for Fischer-Tropsch synthesis reaction, characterized in that proceeding between 180 ~ 260 ℃
  13. 청구항 9에 따른 피셔-트롭쉬 합성 반응용 코발트-실리카 에그-쉘 나노촉매를 이용한 액체 탄화수소의 제조방법에 따라 제조된 액체 탄화수소.Liquid hydrocarbon prepared according to the method for preparing a liquid hydrocarbon using the cobalt-silica egg-shell nanocatalyst for the Fischer-Tropsch synthesis reaction according to claim 9.
PCT/KR2014/012316 2014-10-17 2014-12-15 Method for preparing cobalt-silica egg-shell nanocatalyst for fischer-tropsch synthesis reaction, and the catalyst, and method for synthesizing liquid hydrocarbon using same, and the liquid hydrocarbon WO2016060330A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0140756 2014-10-17
KR1020140140756A KR101524574B1 (en) 2014-10-17 2014-10-17 Manufacturing method of egg-shell type cobalt/silica nanocatalysts for Fischer-Tropsch Synthesis reaction and cobalt/silica nanocatalysts thereof, manufacturing method of liquid hydrocarbon using the same

Publications (1)

Publication Number Publication Date
WO2016060330A1 true WO2016060330A1 (en) 2016-04-21

Family

ID=53499539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012316 WO2016060330A1 (en) 2014-10-17 2014-12-15 Method for preparing cobalt-silica egg-shell nanocatalyst for fischer-tropsch synthesis reaction, and the catalyst, and method for synthesizing liquid hydrocarbon using same, and the liquid hydrocarbon

Country Status (2)

Country Link
KR (1) KR101524574B1 (en)
WO (1) WO2016060330A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105879899A (en) * 2016-04-27 2016-08-24 武汉凯迪工程技术研究总院有限公司 Multistage duct type cobalt-based Fischer-Tropsch synthesis catalyst with core-shell structure and preparation method of multistage duct type cobalt-based Fischer-Tropsch synthesis catalyst
CN108996477A (en) * 2018-07-26 2018-12-14 四川理工学院 A method of based on St*ber method synthesis of metal oxide microballoon
CN109718852A (en) * 2017-10-31 2019-05-07 中国科学院大连化学物理研究所 The preparation method of one pot process spherical shell type stable metal nanocatalyst
CN114917900A (en) * 2022-04-15 2022-08-19 华东理工大学 Eggshell type silver-silicon catalyst and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102458060B1 (en) * 2020-12-29 2022-10-24 광주과학기술원 FeCu-N-C-BASED ORR CATALYST CONTAINING FIVE ELEMENTS OF IRON, NITROGEN, COPPER, PHOSPHORUS, AND SULFUR AND MANUFACTURING METHOD THEREOF

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108347A1 (en) * 2010-03-05 2011-09-09 Jx日鉱日石エネルギー株式会社 Fischer-tropsch synthesis catalyst, manufacturing method therefor, and hydrocarbon manufacturing method
KR101373823B1 (en) * 2013-10-22 2014-03-11 한국에너지기술연구원 Cobalt catalysts on metallic foam structures for the selective production of the synthetic oil via fischer-tropsch synthesis reaction and manufacturing method thereof, manufacturing method for synthetic oil using the cobalt catalysts on metallic foam structures
CN104001514A (en) * 2014-06-10 2014-08-27 中国科学院山西煤炭化学研究所 Eggshell cobalt-based Fischer-Tropsch synthesis catalyst, and preparation method and application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108347A1 (en) * 2010-03-05 2011-09-09 Jx日鉱日石エネルギー株式会社 Fischer-tropsch synthesis catalyst, manufacturing method therefor, and hydrocarbon manufacturing method
KR101373823B1 (en) * 2013-10-22 2014-03-11 한국에너지기술연구원 Cobalt catalysts on metallic foam structures for the selective production of the synthetic oil via fischer-tropsch synthesis reaction and manufacturing method thereof, manufacturing method for synthetic oil using the cobalt catalysts on metallic foam structures
CN104001514A (en) * 2014-06-10 2014-08-27 中国科学院山西煤炭化学研究所 Eggshell cobalt-based Fischer-Tropsch synthesis catalyst, and preparation method and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A.M. SAIB ET AL.: "Preparation and characterisation of spherical Co/SiO2 model catalysts with well-defined nano-sized cobalt crystallites and a comparison of their stability against oxidation with water''.", JOURNAL OF CATALYSIS, vol. 239, 13 March 2006 (2006-03-13), pages 326 - 339, XP024913197, DOI: doi:10.1016/j.jcat.2006.02.004 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105879899A (en) * 2016-04-27 2016-08-24 武汉凯迪工程技术研究总院有限公司 Multistage duct type cobalt-based Fischer-Tropsch synthesis catalyst with core-shell structure and preparation method of multistage duct type cobalt-based Fischer-Tropsch synthesis catalyst
CN105879899B (en) * 2016-04-27 2018-06-19 武汉凯迪工程技术研究总院有限公司 Nucleocapsid multistage pore canal formula Co based Fischer-Tropsch synthesis catalyst and preparation method thereof
CN109718852A (en) * 2017-10-31 2019-05-07 中国科学院大连化学物理研究所 The preparation method of one pot process spherical shell type stable metal nanocatalyst
CN108996477A (en) * 2018-07-26 2018-12-14 四川理工学院 A method of based on St*ber method synthesis of metal oxide microballoon
CN108996477B (en) * 2018-07-26 2022-02-22 四川理工学院 Method for synthesizing metal oxide microspheres based on Stober method
CN114917900A (en) * 2022-04-15 2022-08-19 华东理工大学 Eggshell type silver-silicon catalyst and preparation method and application thereof
CN114917900B (en) * 2022-04-15 2023-12-01 华东理工大学 Eggshell type silver-silicon catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
KR101524574B1 (en) 2015-06-04

Similar Documents

Publication Publication Date Title
WO2016060330A1 (en) Method for preparing cobalt-silica egg-shell nanocatalyst for fischer-tropsch synthesis reaction, and the catalyst, and method for synthesizing liquid hydrocarbon using same, and the liquid hydrocarbon
WO2015050299A1 (en) Method for preparing iron carbide/carbon nanocomposite catalyst for high-temperature fischer-tropsch synthesis reaction, and catalyst thereof; and method for preparing liquid hydrocarbon using iron carbide/carbon nanocomposite catalyst, and liquid hydrocarbon thereof
WO2015060472A1 (en) Cobalt-based catalyst based on metal structure for fischer-tropsch reaction for selective synthetic oil production, preparation method therefor, and selective synthetic oil preparation method using cobalt-based catalyst based on metal structure
CN107252702B (en) Co-N-C/SiO2Composite nano catalyst, preparation method and application thereof
WO2009136711A2 (en) Cobalt-based catalyst for fischer-tropsch synthesis, and a production method therefor
CN108525669B (en) Highly-dispersed silicon dioxide nanotube supported nickel catalyst and preparation method thereof
WO2015174785A1 (en) Porous iron-silicate with radially developed branch, and iron-carbide/silica composite catalyst prepared therefrom
KR100962181B1 (en) Iron-based catalyst for Fischer-Tropsch synthesis and method for preparing the same
WO2020197200A1 (en) Metallic nanoparticle catalysts embedded in porous oxide support, which show high catalytic activity even at low temperatures
US20120115715A1 (en) Method for producing a supported metal nitrate
WO2014129722A1 (en) Cobalt catalyst for fischer-tropsch synthesis, production method and method for producing liquid hydrocarbon using same
Su et al. Surface treatment effect on the photocatalytic hydrogen generation of CdS/ZnS core-shell microstructures
US8263522B2 (en) Metal nitrate conversion method
WO2016060367A1 (en) Egg-shell-type highly dispersed nanoparticle-metal oxide support hybrid structure, method for preparing same, and use thereof
WO2011027921A2 (en) Catalyst for direct production of light olefins and preparation method thereof
Zhang et al. One-pot solvothermal method to synthesize platinum/W 18 O 49 ultrafine nanowires and their catalytic performance
CN110756197B (en) Ni @ Au core-shell type nano-catalyst and synthesis and application thereof
WO2014119870A1 (en) Fischer-tropsch synthesis catalyst comprising coo phase particles and method for preparing liquid hydrocarbon from natural gas using same
WO2019143030A1 (en) Cobalt-iron hybrid catalyst for fischer-tropsch synthesis reaction, having ordered mesoporous main framework, preparation method therefor, and hydrocarbon preparation method using same
BR112013028495B1 (en) catalysts
RU2602803C2 (en) Method of fischer-tropsch synthesis cobalt-containing catalyst producing
CN107661759A (en) The forming method and hydrocarbon dehydrogenation reaction method of nano-carbon material formed body and its preparation method and application and nano-carbon material
EP2870997B1 (en) Catalyst for emission gas purification and production method thereof
WO2017069340A1 (en) Method for preparing particle size-controlled chromium oxide particles or complex particles of iron oxide-chromium alloy and chromium oxide
WO2014126296A1 (en) Method for forming metal-containing particles by using porous carbon material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904052

Country of ref document: EP

Kind code of ref document: A1