WO2022225125A1 - 가변적 유로 패턴 형성이 가능한 연료전지용 분리판 조립체 - Google Patents

가변적 유로 패턴 형성이 가능한 연료전지용 분리판 조립체 Download PDF

Info

Publication number
WO2022225125A1
WO2022225125A1 PCT/KR2021/017487 KR2021017487W WO2022225125A1 WO 2022225125 A1 WO2022225125 A1 WO 2022225125A1 KR 2021017487 W KR2021017487 W KR 2021017487W WO 2022225125 A1 WO2022225125 A1 WO 2022225125A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
base plate
fuel cell
forming block
coupling
Prior art date
Application number
PCT/KR2021/017487
Other languages
English (en)
French (fr)
Inventor
전용근
최병선
유동수
Original Assignee
주식회사 진영정기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 진영정기 filed Critical 주식회사 진영정기
Priority to JP2023565234A priority Critical patent/JP2024515124A/ja
Priority to EP21938041.7A priority patent/EP4329022A1/en
Priority to CN202180096997.3A priority patent/CN117121242A/zh
Publication of WO2022225125A1 publication Critical patent/WO2022225125A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a separator plate assembly for a fuel cell, and more particularly, by disposing a flow path forming block on a base plate for forming coupling protrusions arranged in a grid shape, gas flow paths of various patterns can be formed on the base plate.
  • the present invention relates to a separator plate assembly for a fuel cell capable of forming a variable flow path pattern.
  • Solid oxide fuel cells generally operate at the highest temperature (700 ⁇ 900°C) among fuel cells. There is no problem, no noble metal catalyst is required, and fuel supply is easy through direct internal reforming.
  • a solid oxide fuel cell is an electrochemical energy converter, and consists of an oxygen ion conductive electrolyte and an air electrode and a fuel electrode located on both sides thereof.
  • oxygen ions generated by the reduction reaction of oxygen move to the anode through the electrolyte and react with hydrogen supplied to the anode to generate water. At this time, electrons are generated at the anode and electrons are consumed at the cathode. When the electrodes are connected to each other, electricity flows.
  • the air electrode of one unit cell and the fuel electrode of the other unit cell need to be electrically connected, and for this purpose, an interconnect is used.
  • the technical problem to be achieved by the present invention is not to form a gas flow path in an etching method on a base plate, but to form a gas flow path by arranging a flow path forming block on a base plate, thereby improving the precision and productivity of flow path shape processing.
  • An object of the present invention is to provide a separator plate assembly for a fuel cell.
  • a fuel cell separator assembly capable of variably forming various gas flow paths on the base plate is provided. but it has a purpose.
  • a separator plate assembly for a solid oxide fuel cell comprising: a base plate protruding in one direction and forming a plurality of coupling protrusions spaced apart from each other; at least one channel forming block forming a coupling hole coupled to the coupling protrusion and disposed on the base plate by coupling the coupling protrusion and the coupling hole; and a gas flow path having a pattern variably formed according to the shape or arrangement of the flow path forming block and provided so that the reaction gas supplied from the outside flows; provides
  • a separator plate assembly for a fuel cell capable of forming a variable flow path, characterized in that the plurality of coupling protrusions are disposed in a mutual lattice form.
  • the flow path forming block is made in the shape of a square column, and provides a separator plate assembly for a fuel cell capable of forming a variable flow path, characterized in that two or more coupling holes are formed in the longitudinal direction.
  • the flow path forming block has a circular cross section, and provides a separator plate assembly for a fuel cell capable of forming a variable flow path, characterized in that one or more coupling holes are formed therein.
  • the flow path forming block has a hexagonal cross section, and provides a separator plate assembly for a fuel cell capable of forming a variable flow path, characterized in that at least one coupling hole is formed therein.
  • the base plate provides a separator plate assembly for a fuel cell capable of forming a variable flow path, characterized in that made of a material containing a Fe-Cr alloy.
  • FIG. 1 is an exploded perspective view showing the overall configuration of a separator plate assembly for a fuel cell according to an embodiment of the present invention.
  • FIG. 2 is a combined perspective view showing the overall configuration of a separator plate assembly for a fuel cell according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along line A-A of FIG. 2 showing the overall configuration of a separator plate assembly for a fuel cell according to an embodiment of the present invention.
  • FIG. 4 is a plan view showing an embodiment of the arrangement of the engaging projection of the present invention.
  • FIG. 5 is a plan view showing another embodiment of the arrangement of the engaging projection of the present invention.
  • FIG. 6 is a cross-sectional view and a partially enlarged view showing a state in which the press-fitting member is coupled to the separator plate assembly for a fuel cell according to an embodiment of the present invention.
  • FIG. 7 is a perspective view illustrating a flow path forming block according to an embodiment of the present invention.
  • FIG. 8 is a perspective view showing a flow path forming block according to another embodiment of the present invention.
  • FIG. 9 is a perspective view showing a flow path forming block according to another embodiment of the present invention.
  • FIG. 10 is a perspective view illustrating an embodiment in which a flow path forming block is disposed on the base plate of the present invention to form a gas flow path.
  • FIG. 11 is a perspective view showing another embodiment in which a flow path forming block is disposed on the base plate of the present invention to form a gas flow path.
  • FIG. 12 is a perspective view showing another embodiment in which a flow path forming block is disposed on the base plate of the present invention to form a gas flow path.
  • FIG. 13 is a cross-sectional view illustrating a state in which cells of a fuel cell are disposed between a separator plate assembly for a fuel cell according to an embodiment of the present invention.
  • FIG. 1 is an exploded perspective view showing the overall configuration of a separator plate assembly for a fuel cell according to an embodiment of the present invention
  • FIG. 2 is a combined perspective view showing the overall configuration of a separator plate assembly for a fuel cell according to an embodiment of the present invention
  • FIG. is a cross-sectional view taken along line A-A of FIG. 2 showing the overall configuration of a separator plate assembly for a fuel cell according to an embodiment of the present invention
  • FIG. 4 is a plan view showing an embodiment of the arrangement of the engaging projection of the present invention
  • FIG. 6 is a cross-sectional view and a partially enlarged view showing a state in which a press-fitting member is coupled to a separator plate assembly for a fuel cell according to an embodiment of the present invention
  • FIG. 7 is an embodiment of the present invention
  • FIG. 8 is a perspective view showing a flow path forming block according to another embodiment of the present invention
  • FIG. 9 is a perspective view showing a flow path forming block according to another embodiment of the present invention
  • FIG. 10 is a perspective view showing an embodiment in which a flow path forming block is disposed on the base plate of the present invention to form a gas flow path
  • FIG. 11 is another embodiment in which a flow path forming block is disposed on the base plate of the present invention to form a gas flow path
  • 12 is a perspective view showing another embodiment in which a flow path forming block is disposed on the base plate of the present invention to form a gas flow path
  • FIG. 13 is a space between the fuel cell separator assembly according to an embodiment of the present invention. It is a cross-sectional view showing the arrangement of the cells of the fuel cell.
  • the separator plate assembly for a fuel cell capable of forming a variable flow path protrudes in one direction and is spaced apart from each other by a plurality of couplings.
  • a base plate 100 forming a protrusion 110;
  • One or more flow path forming blocks 200 to form a coupling hole 210 coupled to the coupling protrusion 110 , and to be disposed on the base plate 100 by the coupling of the coupling protrusion 110 and the coupling hole 210 . ); and a gas flow path 300 having a pattern variably formed according to the shape or arrangement of the flow path forming block 200 so that the reaction gas supplied from the outside flows.
  • a flow path for flowing oxygen or hydrogen, which is a reactive gas, in the separator is formed by an etching method by a chemical corrosive action, and the flow path shape processing by such etching
  • a separator plate assembly for a solid oxide fuel cell is composed of a base plate 100 and a flow path forming block 200 disposed on the base plate 100, and the flow path forming block 200 is formed on the base plate 100. It is characterized in that it is configured to form the gas flow path 300 through which the reaction gas flows by the flow path forming block 200 .
  • the pattern of the gas flow path 300 can be variably changed according to the shape or arrangement of the flow path forming block 200 . It is characterized in that it can be formed.
  • the base plate 100 forms a plurality of coupling protrusions 110 that are disposed to be spaced apart from each other while protruding in one direction.
  • the base plate 100 may be provided, for example, as a plate-shaped member having a predetermined area and thickness, and a coupling protrusion 110 protruding in one direction of the base plate 100 is formed on the base plate 100 .
  • the coupling protrusion 110 may be formed to protrude on the base plate 100 by stamping, which is one of the plate material processing methods, and the coupling protrusion 110 according to the present invention is It may be formed in various shapes according to each embodiment.
  • the coupling protrusion 110a may have a circular cross-section, and as shown in FIG. 12, in another embodiment of the present invention.
  • the coupling protrusion 110b may have a polygonal cross-section.
  • a plurality of coupling protrusions 110 disposed to be spaced apart from each other may be formed, in this case, the plurality of coupling protrusions 110 may be disposed in a mutual lattice form.
  • the plurality of coupling protrusions 110 are spaced apart by a predetermined interval on the same line along the longitudinal direction of the base plate 100 to form one arrangement (a), and a plurality of The arrangement (a) may be arranged to be spaced apart by a predetermined interval along the horizontal direction of the base plate (100).
  • the separation distance between the plurality of coupling protrusions 110 forming the arrangement (a) and the separation distance between the plurality of arrangement (a) may be the same as each other, or may be formed differently from each other.
  • the plurality of coupling protrusions 110 are arranged in a zigzag form along the longitudinal direction of the base plate 100 to form one arrangement (a), and a plurality of arrangement ( a) may be disposed to be spaced apart by a predetermined interval along the horizontal direction of the base plate 100 .
  • the coupling protrusion 110 may be formed to protrude on the base plate 100 by stamping, which is one of the plate material processing methods, and thus correspond to the formation position of the coupling protrusion 110 .
  • a depression 130 recessed in one direction from the other side may be formed.
  • the depression 130 may be formed in a shape (cross-section, height, etc.) corresponding to the coupling protrusion 110 .
  • the base plate 100 is characterized in that it is made of a material containing a Fe-Cr alloy.
  • the separator assembly according to the present invention is expensive. It is characterized in that it is not added with rare earth elements and is based on a Fe-Cr alloy.
  • the base plate 100 is based on an Fe-Cr alloy, and the Fe-Cr alloy may include at least one or more of Mn, Nb, and Mo as an additive.
  • a protective coating layer 150 may be formed on the base plate 100 according to an embodiment of the present invention.
  • the protective coating layer 150 is a spinel-based coating layer containing at least any one of La, Mn, and Sr, or a perovskite-based coating layer containing at least one or more of La, Mn, and Sr. It may be a coating layer.
  • the protective coating layer 150 By forming the protective coating layer 150 on the base plate 100 , it is possible to prevent deterioration of the performance of the fuel cell due to Cr volatilization of the base plate 100 , and also, as shown in FIG. 13 , the When the coupling protrusion 110 contacts the cathode layer 11 or the anode layer 15 of the cell 10, interfacial contact resistance (ICR) between the coupling protrusion 110 and the cathode layer 11 to reduce the interfacial contact resistance between the coupling protrusion 110 and the anode layer 15, it is possible to prevent deterioration of the performance of the fuel cell due to the increase in the interfacial contact resistance.
  • ICR interfacial contact resistance
  • the flow path forming block 200 to be described later is disposed on the base plate 100 by coupling the coupling hole 210 to the coupling protrusion 110, in which case the base plate 100 and the flow path forming block ( 200 ), a separation may occur on the interface between the two poles, which may interfere with the normal flow of gas on the gas flow path 300 .
  • the protective coating layer 150 is formed on the base plate 100 , the interfacial adhesion between the base plate 100 and the flow path forming block 200 is improved, thereby preventing the above problems from occurring.
  • the channel forming block 200 forms a coupling hole 210 coupled to the coupling protrusion 110 , and is disposed on the base plate 100 by coupling the coupling protrusion 110 and the coupling hole 210 . .
  • the flow path forming block 200 is disposed on the base plate 100 to form the gas flow path 300 on the base plate 100, and the flow path forming block 200 according to an embodiment of the present invention is a coupling hole. By coupling the 210 to the coupling protrusion 110 formed on the base plate 100 , it is disposed on the base plate 100 .
  • the coupling hole 210 may be formed in the form of a hole penetrating between one side and the other side of the flow path forming block 200 , or may be formed in the form of a groove recessed in one direction from the other side, and protrude from the base plate 100 . It may be formed in a shape corresponding to the shape of the above-described coupling protrusion 110 so as to be inserted into the formed coupling protrusion 110 .
  • the coupling holes 210 may be formed in a shape corresponding to the cross-section of the coupling protrusion 110a, and the length of the coupling hole 210 may be formed to correspond to the height of the coupling protrusion 110a.
  • the height of the flow path forming block 200 is formed to correspond to the height of the coupling protrusion 110 .
  • the coupling holes 210 may be formed in a shape corresponding to the cross section of the coupling protrusion 110a, and the depth of the depression of the coupling hole 210 may be formed to correspond to the height of the coupling protrusion 110a.
  • the flow path forming block 200 is a base plate 100 by a method of press-fitting the coupling protrusions 110 of the base plate 100 into the coupling holes 210 formed in the flow path forming block 200 . may be placed on the
  • the size of the coupling hole 210 may be formed smaller than the size of the coupling protrusion 110 by a predetermined value.
  • the fuel cell separator assembly according to the present invention is coupled to the other side of the coupling protrusion 110 as shown in FIG. 6 in order to improve the bonding strength between the base plate 100 and the flow path forming block 200 .
  • the press-fitting member 170 is formed in a predetermined ring shape and can be inserted into the engaging protrusion 110.
  • the press-fitting member 170 has a circular shape. It may be formed in a ring shape, and when the coupling protrusion 110b is formed in a polygonal shape, the press-in member 170 may be formed in a polygonal annular shape, in which case the cross-section of the press-in member 170 is formed in a square shape.
  • the press-fitting member 170 is coupled to the other side of the coupling protrusion 110, and is press-fitted to the other side of the flow path forming block 200 when the coupling protrusion 110 is press-fitted into the coupling hole 210, and the base plate 100 and The bonding strength of the flow path forming block 200 is improved.
  • the flow path forming block 200 is provided with one or more in order to form various flow path patterns on the bait plate 100, as shown in Figs. It can be formed in various shapes such as
  • the gas flow path 300 of various patterns is variably formed on the base plate 100 .
  • the flow path forming block (200a) is made of a square pillar shape, characterized in that two or more coupling holes (210a) are formed in the longitudinal direction. do it with
  • the flow path forming block 200a may be formed in a rectangular column shape having a predetermined length, height and width, in this case, two or more coupling holes 210a on the flow path forming block 200a.
  • the flow path forming block 200a may be formed to be spaced apart by a predetermined interval along the longitudinal direction.
  • the flow path forming block 200a may be formed in a quadrangular prism shape in which a portion of the cross section such as “a” or “b” is bent, in addition to the rectangular prism shape having a rectangular cross section. of course there is
  • the coupling hole 210 formed in the flow path forming block 200a may be formed in a circular or polygonal cross section to correspond to the shape of the coupling protrusion 110 as described above.
  • the flow path forming block 200b according to another embodiment of the present invention has a circular cross-section and is characterized in that one or more coupling holes 210b are formed therein.
  • the flow path forming block 200b may be formed in a cylindrical shape having a predetermined diameter and height, and at this time, one or more coupling holes 210b are formed on the flow path forming block 200b. It may be formed in the inside of the block 200b, in this case, the coupling hole 210 may be formed in a circular or polygonal cross-section to correspond to the shape of the coupling protrusion 110 as described above.
  • the flow path forming block 200c according to another embodiment of the present invention has a hexagonal cross-section, and is characterized in that one or more coupling holes 210c are formed therein. .
  • the cross-section of the flow path forming block 200c may be formed in a regular hexagonal shape.
  • the flow path forming block 200c may be formed in a hexagonal column shape having a predetermined height, and at this time, one or more coupling holes 210b are formed on the flow path forming block 200b. It may be formed inside the block 200b.
  • the coupling hole 210 may be formed in a circular or polygonal cross section to correspond to the shape of the coupling protrusion 110 as described above.
  • the flow path forming block 200c according to another embodiment of the present invention
  • the coupling hole (210c) is characterized in that the cross-section is formed in a polygonal cross-section so as to be coupled to the engaging projection (110b) having a polygonal cross-section.
  • the cross-section is a circular coupling protrusion 110a
  • the cross-section is a circular coupling protrusion 110a
  • two or more coupling holes 210a are formed therein, the pattern of the gas flow path 300 It is prevented from being arbitrarily changed by rotation of the flow path forming block 200a disposed on the base plate 100 .
  • the cross section is circular, the pattern of the gas flow path 300 is not changed even when the flow path forming block 200b rotates.
  • the cross section of the coupling hole 210c is formed in a polygonal shape so that it can be disposed on the base plate 100 by the coupling protrusion 110b having a polygonal cross section.
  • the flow path forming block 200 has an octagonal (including regular octagonal) cross-section, and one coupling hole 210 may be formed therein.
  • the flow path forming block 200 is formed on the cathode layer 11 or the anode layer 15 as shown in FIGS. 7 (b), 8 (b) and 9 (b) as an example.
  • the area of the one side may be formed to be larger than the area of the other side.
  • the flow path forming block 200 is formed to have a gradient biased toward the outside of the flow path forming block 200 from the other side to one side, so that the area of the cross section increases from the other side to one side.
  • the interfacial contact resistance between one side of the channel forming block 200 and the cathode layer 11 is reduced.
  • the flow path forming block 200 may be made of a material containing a Fe-Cr alloy, like the above-described base plate 100 .
  • the channel forming block 200 like the above-described base plate 100, a spinel-based coating layer including at least any one of La, Mn, and Sr on the surface, or at least any one of La, Mn, and Sr.
  • a perovskite-based coating layer including one or more may be formed, and thus the technical effects as described above may be achieved.
  • the gas flow path 300 is provided with a variably formed pattern according to the shape or arrangement of the flow path forming block 200 so that the reaction gas supplied from the outside flows.
  • the gas flow path 300 is formed on the base plate 100 by the flow path forming block 200 disposed on the base plate 100 .
  • a flow path is formed by etching, but in the separator assembly for a fuel cell according to the present invention, the flow path forming block 200 is disposed on the base plate 100 .
  • the gas flow path 300 is formed by this.
  • the gas flow path 300 formed on the base plate 100 may be variably formed in various patterns according to the shape or arrangement of the flow path forming block 200 disposed on the base plate 100 .
  • the flow path forming block 200 may be formed in a variety of cross-sections, such as polygonal to circular, and also the coupling holes 210 of various numbers and arrangements are formed in the flow path forming block 200 . can be
  • the coupling protrusions 110 are disposed on the base plate 100 in a lattice form, so that various numbers of the flow path forming blocks 200 formed in various shapes may be disposed on the base plate 100 in various shapes.
  • the gas flow path 300 of various patterns can be variably formed on the base plate 100 , and in FIG. 10 , the flow path forming block 200a according to an embodiment of the present invention is provided on the base plate 100 A gas flow path 300 having a predetermined pattern is formed therein, and in FIG. 11 , a flow path forming block 200b according to another embodiment of the present invention is disposed on the base plate 100 to have a predetermined pattern. A gas flow path 300 is formed, and in FIG. 12 , a flow path forming block 200c according to another embodiment of the present invention is disposed on the base plate 100 to provide a gas flow path 300 having a predetermined pattern. formed is shown.
  • various gas flow paths 300 are formed on the base plate 100 .
  • the feature of the present invention is that it can be variably formed.
  • FIG. 13 shows the cell 10 including the negative electrode layer 11 , the electrolyte layer 13 , and the positive electrode layer 15 between the fuel cell separator assembly according to the present invention.
  • the fuel cell cell 10 may be provided between the fuel cell separator assembly according to the present invention, and in this case, the fuel cell separator plate provided in the negative electrode layer 11 of the cell 10 .
  • Hydrogen may be supplied to and flow through the gas flow path 300 of the assembly, and oxygen may be supplied to and flow through the gas flow path 300 of the fuel cell separator assembly provided in the anode layer 15 of the cell 10 . .
  • the gas flow path is formed by arranging the flow path forming block on the base plate instead of forming the gas flow path in the etching method on the base plate, so that the precision of flow path shape processing And there is an effect that can improve productivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은, 고체산화물 연료전지용 분리판 조립체에 있어서, 베이스플레이트; 유로형성블럭; 및 가스유로를 포함하는 것을 특징으로 하는 가변적 유로 형성이 가능한 연료전지용 분리판 조립체를 제공하는 것을 목적으로 한다. 본 발명에 따르면, 베이스플레이트 상에 유로형성블록을 배치시켜 가스유로를 형성함으로써 유로형상 가공의 정밀성 및 생산성을 향상시킬 수 있으며, 베이스플레이트 상에 다양한 가스유로를 가변적으로 형성할 수 있는 효과가 있다.

Description

가변적 유로 패턴 형성이 가능한 연료전지용 분리판 조립체
본 발명은 연료전지용 분리판 조립체에 관한 것으로서, 더욱 상세하게는 격자 형태로 배치된 결합돌기를 형성하는 베이스플레이트에 유로형성블럭을 배치하여, 베이스플레이트 상에 다양한 패턴의 가스유로를 형성할 수 있는 가변적 유로 패턴 형성이 가능한 연료전지용 분리판 조립체에 관한 것이다.
본 출원은 2021년 4월 20일에 출원된 한국특허출원 제10-2021-0051210호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 기재된 모든 내용은 본 출원에 원용된다.
고체산화물 연료전지는 일반적으로 연료전지 중 가장 높은 온도(700 ~ 900℃)에서 작동하며, 모든 구성요소가 고체로 이루어져 있기 때문에 다른 연료전지에 비해 구조가 간단하고, 전해질의 손실 및 보충과 부식의 문제가 없으며, 귀금속 촉매가 필요 없고 직접 내부 개질을 통한 연료 공급이 용이하다.
또한, 고온의 가스를 배출하기 때문에 폐열을 이용한 열 복합 발전이 가능하다는 장점도 지니고 있다. 이러한 장점 때문에 고체산화물 연료전지에 관한 연구는 현재 활발히 이루어지고 있다.
고체산화물 연료전지(SOFC: Solid Oxide Fuel Cell)는 전기화학적 에너지 변환장치로서, 산소 이온전도성 전해질과 그 양면에 위치한 공기극 및 연료극으로 이루어진다.
공기극에서는 산소의 환원 반응에 의해 생성된 산소이온이 전해질을 통해 연료극으로 이동하여 다시 연료극에 공급된 수소와 반응함으로써 물을 생성하게 되고, 이때, 연료극에서는 전자가 생성되고 공기극에서는 전자가 소모되므로 두 전극을 서로 연결하면 전기가 흐르게 되는 것이다.
그러나, 상기 공기극, 전해질 및 연료극을 기본으로 하는 단위전지 하나에서 발생하는 전력은 상당히 작기 때문에, 여러 개의 단위 전지를 적층(스택)하여 연료 전지를 구성함으로써 상당량의 전력을 출력시킬 수 있게 되고, 나아가 다양한 발전 시스템 분야에 적용할 수 있게 된다.
상기 적층을 위해서, 한 단위전지의 공기극과 다른 단위전지의 연료극은 전기적으로 연결되어야 할 필요가 있으며, 이를 위해 분리판(interconnect)이 사용된다.
본 발명이 이루고자 하는 기술적 과제는, 베이스플레이트에 에칭 방식으로 가스유로를 형성하는 것이 아닌, 베이스플레이트 상에 유로형성블록을 배치시켜 가스유로를 형성함으로써, 유로형상 가공의 정밀성 및 생산성을 향상시킬 수 있는 연료전지용 분리판 조립체를 제공하는데 그 목적이 있다.
또한, 베이스플레이트에 결합돌기를 격자 형태로 배치하고, 다양한 형상, 개수의 유로형성블럭을 다양한 형태로 배치시킴으로써, 베이스플레이트 상에 다양한 가스유로를 가변적으로 형성할 수 있는 연료전지용 분리판 조립체를 제공하는데 그 목적이 있다.
본 발명의 목적은 여기에 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상기의 기술적 과제를 달성하기 위한 본 발명의 일실시예는 고체산화물 연료전지용 분리판 조립체에 있어서, 일측 방향으로 돌출되면서 상호 이격되게 배치되는 복수개의 결합돌기를 형성하는 베이스플레이트; 상기 결합돌기에 결합하는 결합공을 형성하고, 상기 결합돌기와 상기 결합공의 결합에 의해 상기 베이스플레이트 상에 배치되는 형성하는 하나 이상의 유로형성블럭; 및 상기 유로형성블럭의 형상 또는 배치 형태에 따라 패턴이 가변적으로 형성되어, 외부로부터 공급되는 반응가스가 유동하도록 구비되는 가스유로;를 포함하는 것을 특징으로 하는 가변적 유로 형성이 가능한 연료전지용 분리판 조립체를 제공한다.
또한, 상기 복수개의 결합돌기는 상호 격자 형태로 배치되는 것을 특징으로 하는 가변적 유로 형성이 가능한 연료전지용 분리판 조립체를 제공한다.
또한, 상기 유로형성블럭은, 사각기둥 형상으로 이루어지고, 길이 방향으로 둘 이상의 상기 결합공을 형성하는 것을 특징으로 하는 가변적 유로 형성이 가능한 연료전지용 분리판 조립체를 제공한다.
또한, 상기 유로형성블럭은, 횡단면이 원형이고, 내부에 하나 이상의 상기 결합공을 형성하는 것을 특징으로 하는 가변적 유로 형성이 가능한 연료전지용 분리판 조립체를 제공한다.
또한, 상기 유로형성블럭은, 횡단면이 육각형이고, 내부에 하나 이상의 상기 결합공을 형성하는 것을 특징으로 하는 가변적 유로 형성이 가능한 연료전지용 분리판 조립체를 제공한다.
또한, 상기 베이스플레이트는 Fe-Cr 합금을 포함하는 재질로 이루어지는 것을 특징으로 하는 가변적 유로 형성이 가능한 연료전지용 분리판 조립체를 제공한다.
본 발명의 일실시예에 의하면, 베이스플레이트에 에칭 방식으로 가스유로를 형성하는 것이 아닌, 베이스플레이트 상에 유로형성블록을 배치시켜 가스유로를 형성함으로써, 유로형상 가공의 정밀성 및 생산성을 향상시킬 수 있는 효과가 있다.
또한, 베이스플레이트에 결합돌기를 격자 형태로 배치하고, 다양한 형상, 개수의 유로형성블럭을 다양한 형태로 배치시킴으로써, 베이스플레이트 상에 다양한 가스유로를 가변적으로 형성할 수 있는 효과가 있다.
도 1은 본 발명의 일실시예에 따른 연료전지용 분리판 조립체의 전체 구성을 나타내는 분해사시도이다.
도 2는 본 발명의 일실시예에 따른 연료전지용 분리판 조립체의 전체 구성을 나타내는 결합사시도이다.
도 3은 본 발명의 일실시예에 따른 연료전지용 분리판 조립체의 전체 구성을 나타내는 도 2의 A-A 단면도이다.
도 4는 본 발명의 결합돌기의 배치에 관한 일실시예를 나타내는 평면도이다.
도 5는 본 발명의 결합돌기의 배치에 관한 다른 실시예를 나타내는 평면도이다.
도 6은 본 발명의 일실시예에 따른 연료전지용 분리판 조립체에 압입부재가 결합한 모습을 나타내는 단면도 및 부분 확대도이다.
도 7은 본 발명의 일실시예에 따른 유로형성블럭을 나타내는 사시도이다.
도 8은 본 발명의 다른 실시예에 따른 유로형성블럭을 나타내는 사시도이다.
도 9는 본 발명의 또 다른 실시예에 따른 유로형성블럭을 나타내는 사시도이다.
도 10은 본 발명의 베이스플레이트 상에 유로형성블럭이 배치되어 가스유로를 형성하는 일실시예를 나타내는 사시도이다.
도 11은 본 발명의 베이스플레이트 상에 유로형성블럭이 배치되어 가스유로를 형성하는 다른 실시예를 나타내는 사시도이다.
도 12는 본 발명의 베이스플레이트 상에 유로형성블럭이 배치되어 가스유로를 형성하는 또 다른 실시예를 나타내는 사시도이다.
도 13은 본 발명의 일실시예에 따른 연료전지용 분리판 조립체 사이에 연료전지의 셀이 배치된 모습을 나타내는 단면도이다.
[부호의 설명]
10 : 셀
11 : 음극층
13 : 전해질층
15 : 양극층
100 : 베이스플레이트
110 : 결합돌기
130 : 함몰부
150 : 보호코팅층
170 : 압입부재
200 : 유로형성블럭
210 : 결합공
300 : 가스유로
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
도 1은 본 발명의 일실시예에 따른 연료전지용 분리판 조립체의 전체 구성을 나타내는 분해사시도, 도 2는 본 발명의 일실시예에 따른 연료전지용 분리판 조립체의 전체 구성을 나타내는 결합사시도, 도 3은 본 발명의 일실시예에 따른 연료전지용 분리판 조립체의 전체 구성을 나타내는 도 2의 A-A 단면도, 도 4는 본 발명의 결합돌기의 배치에 관한 일실시예를 나타내는 평면도, 도 5는 본 발명의 결합돌기의 배치에 관한 다른 실시예를 나타내는 평면도, 도 6은 본 발명의 일실시예에 따른 연료전지용 분리판 조립체에 압입부재가 결합한 모습을 나타내는 단면도 및 부분 확대도, 도 7은 본 발명의 일실시예에 따른 유로형성블럭을 나타내는 사시도, 도 8은 본 발명의 다른 실시예에 따른 유로형성블럭을 나타내는 사시도, 도 9는 본 발명의 또 다른 실시예에 따른 유로형성블럭을 나타내는 사시도, 도 10은 본 발명의 베이스플레이트 상에 유로형성블럭이 배치되어 가스유로를 형성하는 일실시예를 나타내는 사시도, 도 11은 본 발명의 베이스플레이트 상에 유로형성블럭이 배치되어 가스유로를 형성하는 다른 실시예를 나타내는 사시도, 도 12는 본 발명의 베이스플레이트 상에 유로형성블럭이 배치되어 가스유로를 형성하는 또 다른 실시예를 나타내는 사시도, 도 13은 본 발명의 일실시예에 따른 연료전지용 분리판 조립체 사이에 연료전지의 셀이 배치된 모습을 나타내는 단면도이다.
도면에 도시된 바와 같이, 본 발명의 일실시예에 따른 가변적 유로 형성이 가능한 연료전지용 분리판 조립체는, 고체산화물 연료전지용 분리판 조립체에 있어서, 일측 방향으로 돌출되면서 상호 이격되게 배치되는 복수개의 결합돌기(110)를 형성하는 베이스플레이트(100); 결합돌기(110)에 결합하는 결합공(210)을 형성하고, 결합돌기(110)와 결합공(210)의 결합에 의해 베이스플레이트(100) 상에 배치되는 형성하는 하나 이상의 유로형성블럭(200); 및 유로형성블럭(200)의 형상 또는 배치 형태에 따라 패턴이 가변적으로 형성되어, 외부로부터 공급되는 반응가스가 유동하도록 구비되는 가스유로(300);를 포함하는 것을 특징으로 한다.
이하, 도 1 내지 도 13을 참조하여, 본 발명의 각 구성에 대하여 상세히 설명한다.
종래의 고체산화물 연료전지용 분리판의 경우, 분리판에 반응가스인 산소 또는 수소를 유동시키기 위한 유로를 화학약품의 부식작용에 의한 에칭(etching) 방식으로 형성하였고, 이와 같은 에칭에 의한 유로형상 가공은 가공 단면이 고르지 않고, 가공 정밀도가 낮으며, 가공 시간이 길어 생산성이 떨어지는 문제점이 있었다.
본 발명은 고체산화물 연료전지용 분리판 조립체는 베이스플레이트(100)와 베이스플레이트(100) 상에 배치되는 유로형성블럭(200)으로 구성되어, 베이스플레이트(100) 상에 유로형성블럭을(200) 배치시켜 유로형성블럭(200)에 의해 반응가스가 유동하는 가스유로(300)를 형성되도록 구성한 것을 특징으로 한다.
더 나아가, 베이스플레이트(100) 상에 유로형성블럭(200)을 다양한 형태로 배치시킬 수 있게 구성함으로써, 유로형성블럭(200)의 형상 또는 배치 형태에 따라 가스유로(300)의 패턴을 가변적으로 형성할 수 있게 한 것을 특징으로 한다.
먼저, 베이스플레이트(100)는 일측 방향으로 돌출되면서 상호 이격되게 배치되는 복수개의 결합돌기(110)를 형성한다.
베이스플레이트(100)는 일예로 소정의 면적 및 두께를 갖는 판상형 부재로 구비될 수 있으며, 베이스플레이트(100) 상에는 베이스플레이트(100)의 일측 방향으로 돌출된 결합돌기(110)가 형성된다.
도 3에 도시된 바와 같이, 결합돌기(110)는 판재 가공 방법 중 하나인 스탬핑(stamping) 가공에 의해 베이스플레이트(100) 상에 돌출 형성될 수 있으며, 본 발명에 따른 결합돌기(110)는 각 실시예에 따라 다양한 형상으로 형성될 수 있다.
구체적으로, 도 10 및 도 11에 도시된 바와 같이 본 발명의 일실시예에 따른 결합돌기(110a)는 횡단면이 원형으로 형성될 수 있으며, 도 12에 도시된 바와 같이 본 발명의 다른 실시예에 따른 결합돌기(110b)는 횡단면이 다각형으로 형성될 수 있다.
한편, 베이스플레이트(100) 상에는 상호 이격되게 배치되는 복수개의 결합돌기(110)가 형성될 수 있는데, 이때 복수개의 결합돌기(110)는 상호 격자 형태로 배치될 수 있다.
일실시예로서, 도 4에 도시된 바와 같이 복수개의 결합돌기(110)는 베이스플레이트(100)의 세로 방향을 따라 동일 선상에 소정 간격만큼 이격 배치되어 하나의 배열(a)을 이루고, 복수개의 배열(a)이 베이스플레이트(100)의 가로 방향을 따라 소정 간격만큼 이격되어 배치될 수 있다.
이때, 배열(a)을 형성하는 복수개의 결합돌기(110) 간의 이격거리와, 복수개의 배열(a) 간의 이격거리는 서로 동일하게 형성되거나, 서로 상이하게 형성될 수 있다.
한편, 다른 실시예로서, 도 5에 도시된 바와 같이 복수개의 결합돌기(110)는 베이스플레이트(100)의 세로 방향을 따라 지그재그 형태로 배치되어 하나의 배열(a)을 이루고, 복수개의 배열(a)이 베이스플레이트(100)의 가로 방향을 따라 소정 간격만큼 이격되어 배치될 수도 있다.
한편, 전술한 바와 같이 결합돌기(110)는 판재 가공 방법 중 하나인 스탬핑(stamping) 가공에 의해 베이스플레이트(100) 상에 돌출 형성될 수 있는데, 이에 따라 결합돌기(110)의 형성 위치에 대응하는 베이스플레이트(100) 상에는 타측에서 일측 방향으로 함몰된 함몰부(130)가 형성될 수 있다.
이때, 함몰부(130)는 결합돌기(110)와 대응하는 형상(횡단면, 높이 등)으로 형성될 수 있다.
이어서, 본 발명의 일실시예에 따른 베이스플레이트(100)는 Fe-Cr 합금을 포함하는 재질로 이루어지는 것을 특징으로 한다.
종래의 고체산화물 연료전지용 분리판의 경우, 고온 산화환경에서의 내산화성 및 전기전도성을 향상시키기 위해 고가의 희토류 원소(La, Zr 등)가 필수적으로 첨가되었으나, 본 발명에 따른 분리판 조립체는 고가의 희토류 원소가 첨가되지 않고, Fe-Cr 합금을 기반으로 이루어지는 것을 특징으로 한다.
여기서, 베이스플레이트(100)는 Fe-Cr 합금을 기반으로 하고, Fe-Cr 합금에는 Mn, Nb, Mo 중 적어도 어느 하나 이상이 첨가제로 포함될 수 있다.
한편, 도 3에 도시된 바와 같이 본 발명의 일실시예에 따른 베이스플레이트(100) 상에는 보호코팅층(150)이 형성될 수 있다.
여기서, 보호코팅층(150)은 La, Mn, Sr 중 적어도 어느 하나 이상을 포함하는 스피넬(Spinel)계 코팅층이거나, La, Mn, Sr 중 적어도 어느 하나 이상을 포함하는 페로브스카이트(Perovskite)계 코팅층일 수 있다.
베이스플레이트(100) 상에 보호코팅층(150)이 형성됨으로써 베이스플레이트(100)의 Cr 휘발에 의한 연료전지의 성능열화를 방지할 수 있으며, 또한 도 13에 도시된 바와 같이 베이플레이트(100)의 결합돌기(110)가 셀(10)의 음극층(11) 또는 양극층(15)에 접촉하는 경우, 결합돌기(110)와 음극층(11) 사이의 계면접촉저항(interfacial contact resistance, ICR) 내지 결합돌기(110)와 양극층(15) 사이이 계면접촉저항을 감소시켜, 계면접촉저항의 증가에 따른 연료전지의 성능열화를 방지할 수 있다.
또한, 본 발명의 경우 후술하는 유로형성블럭(200)은 결합공(210)이 결합돌기(110)에 결합함으로써 베이스플레이트(100) 상에 배치되는데, 이때 베이스플레이트(100)와 유로형성블럭(200) 사이의 계면 상에 이격이 발생하여 가스유로(300) 상에 가스의 정상적인 유동을 방해할 수 있다.
이에, 베이스플레이트(100) 상에 보호코팅층(150)이 형성됨으로써 베이스플레이트(100)와 유로형성블럭(200) 사이의 계면 밀착성이 향상되어 위와 같은 문제점이 발생하는 것을 방지할 수 있다.
이어서, 유로형성블럭(200)은 결합돌기(110)에 결합하는 결합공(210)을 형성하고, 결합돌기(110)와 결합공(210)의 결합에 의해 베이스플레이트(100) 상에 배치된다.
유로형성블럭(200)은 베이스플레이트(100) 상에 가스유로(300)를 형성시키기 위해 베이스플레이트(100) 상에 배치되는데, 본 발명의 일실시예에 따른 유로형성블럭(200)은 결합공(210)을 베이스플레이트(100)에 형성된 결합돌기(110)에 결합시킴으로써, 베이스플레이트(100) 상에 배치된다.
결합공(210)은 유로형성블럭(200)의 일측면 및 타측면 사이를 관통하는 홀 형태로 형성되거나, 타측에서 일측 방향으로 함몰된 홈 형태로 형성될 수 있고, 베이스플레이트(100)에 돌출 형성된 결합돌기(110)에 삽입 결합이 가능하도록 전술한 결합돌기(110)의 형상과 대응하는 형상으로 형성될 수 있다.
예컨대, 베이스플레이트(100) 상에 횡단면이 원형 또는 다각형인 결합돌기(110a, 110b)가 형성되면서, 유로형성블럭(200)에 홀 형태의 결합공(210)이 형성되는 경우, 결합공(210)의 횡단면은 결합돌기(110a)의 횡단면에 대응하는 형상으로 형성될 수 있고, 또한 결합공(210)의 길이는 결합돌기(110a)의 높이에 대응하게 형성될 수 있다.
이때, 결합공(210)이 홀 형태로 형성되는 경우에 유로형성블럭(200)의 높이는 결합돌기(110)의 높이에 대응하게 형성된다.
또한, 베이스플레이트(100) 상에 횡단면이 원형 또는 다각형인 결합돌기(110a, 110b)가 형성되면서, 유로형성블럭(200)에 홈 형태의 결합공(210)이 형성되는 경우, 결합공(210)의 횡단면은 결합돌기(110a)의 횡단면에 대응하는 형상으로 형성될 수 있고, 또한 결합공(210)의 함몰 깊이는 결합돌기(110a)의 높이에 대응하게 형성될 수 있다.
한편, 본 발명에 따른 유로형성블럭(200)은, 유로형성블럭(200)에 형성된 결합공(210)에 베이스플레이트(100)의 결합돌기(110)를 압입시키는 방법에 의해 베이스플레이트(100) 상에 배치될 수 있다.
이에 따라, 결합공(210)의 크기는 결합돌기(110)의 크기보다 소정 수치만큼 작게 형성될 수 있다.
여기서, 본 발명에 따른 연료전지용 분리판 조립체는 베이스플레이트(100)와 유로형성블럭(200)의 결합 강도를 향상시키기 위해, 도 6에 도시된 바와 같이, 결합돌기(110)의 타측에 결합하여, 결합돌기(110)와 결합공(210)의 결합 시, 유로형성블럭(200)의 타측에 압입되는 압입부재(170)를 더 포함할 수 있다.
압입부재(170)는 소정의 고리 형상으로 형성되어 결합돌기(110)에 삽입될 수 있으며, 이때 전술한 바와 같이 결합돌기(110a)가 원통형 형상으로 형성되는 경우, 압입부재(170)는 원형의 고리 형상으로 형성될 수 있고, 결합돌기(110b)가 다각형 형상으로 형성되는 경우, 압입부재(170)는 다각형의 고리 형상으로 형성될 수 있으며, 이때 압입부재(170)의 단면은 사각 형상으로 형성될 수 있다.
압입부재(170)는 결합돌기(110)의 타측에 결합하여, 결합돌기(110)를 결합공(210)에 압입시킬 때 유로형성블럭(200)의 타측에 압입되어, 베이스플레이트(100)와 유로형성블럭(200)의 결합 강도를 향상시키게 된다.
한편, 본 발명에 따른 유로형성블럭(200)은 베이트플레이트(100) 상에 다양한 유로 패턴을 형성하기 위하여 하나 이상이 구비되되, 도 7 내지 도 9에 도시된 바와 같이 횡단면이 다각형 내지 원형으로 형성되는 등 다양한 형상으로 형성될 수 있다.
본 발명에 따른 유로형성블럭(200)이 다양한 형상으로 형성되어 베이스플레이트(100) 상에 배치됨으로써, 베이스플레이트(100) 상에 다양한 패턴의 가스유로(300)를 가변적으로 형성하게 된다.
먼저, 도 7(a)에 도시된 바와 같이, 본 발명의 일실시예에 따른 유로형성블럭(200a)은 사각기둥 형상으로 이루어지고, 길이 방향으로 둘 이상의 결합공(210a)을 형성하는 것을 특징으로 한다.
본 발명의 일실시예에 따른 유로형성블럭(200a)의 경우, 소정의 길이, 높이 및 폭을 갖는 사각기둥 형상으로 형성될 수 있으며, 이때 유로형성블럭(200a) 상에는 둘 이상의 결합공(210a)이 유로형성블럭(200a)의 길이 방향을 따라 소정 간격만큼 이격되어 형성될 수 있다.
여기서, 본 발명의 일실시예에 따른 유로형성블럭(200a)은 횡단면이 직사각형인 사각기둥 형상 이외에도, 횡단면이 “ㄱ”자 내지 “ㄴ”자 등의 일부분이 절곡된 사각기둥 형상으로 형성될 수도 있음을 물론이다.
이때, 유로형성블럭(200a)에 형성되는 결합공(210)은 전술한 바와 같이 결합돌기(110)의 형상에 대응하여 횡단면이 원형 또는 다각형으로 형성될 수 있다.
이어서, 도 8(a)에 도시된 바와 같이, 본 발명의 다른 실시예에 따른 유로형성블럭(200b)은 횡단면이 원형이고, 내부에 하나 이상의 결합공(210b)을 형성하는 것을 특징으로 한다.
본 발명의 다른 실시예에 따른 유로형성블럭(200b)의 경우, 소정의 직경 및 높이를 갖는 원기둥 형상으로 형성될 수 있으며, 이때 유로형성블럭(200b) 상에는 하나 이상의 결합공(210b)이 유로형성블럭(200b)의 내부에 형성될 수 있으며, 이때 결합공(210)은 전술한 바와 같이 결합돌기(110)의 형상에 대응하여 횡단면이 원형 또는 다각형으로 형성될 수 있다.
이어서, 도 9 (a)에 도시된 바와 같이, 본 발명의 또 다른 실시예에 따른 유로형성블럭(200c)은 횡단면이 육각형이고, 내부에 하나 이상의 결합공(210c)을 형성하는 것을 특징으로 한다.
여기서, 유로형성블럭(200c)의 횡단면은 특히 정육각형으로 이루어질 수 있다.
본 발명의 또 다른 실시예에 따른 유로형성블럭(200c)의 경우, 소정의 높이를 갖는 육각기둥 형상으로 형성될 수 있으며, 이때 유로형성블럭(200b) 상에는 하나 이상의 결합공(210b)이 유로형성블럭(200b)의 내부에 형성될 수 있다.
이때, 결합공(210)은 전술한 바와 같이 결합돌기(110)의 형상에 대응하여 횡단면이 원형 또는 다각형으로 형성될 수 있는데, 특히 본 발명의 또 다른 실시예에 따른 유로형성블럭(200c)의 결합공(210c)은 횡단면이 다각형인 결합돌기(110b)에 결합할 수 있도록 횡단면이 다각형으로 형성되는 것을 특징으로 한다.
횡단면이 원형인 결합돌기(110a)일 때, 전술한 본 발명의 일실시예에 따른 유로형성블럭(200a)의 경우, 내부에 결합공(210a)이 둘 이상 형성되므로 가스유로(300)의 패턴이 베이스플레이트(100) 상에 배치된 유로형성블럭(200a)의 회전 등에 의해 임의로 변경되는 것이 방지된다.
또한, 본 발명의 다른 실시예에 따른 유로형성블럭(200b)의 경우에는 횡단면이 원형이므로 유로형성블럭(200b)이 회전하여도 가스유로(300)의 패턴이 변경되지 않는다.
그러나, 본 발명의 또 다른 실시예에 따른 유로형성블럭(200c)의 경우 횡단면이 육각형이므로 유로형성블럭(200c)이 회전하면 가스유로(300)의 패턴이 변경되므로, 유로형성블럭(200c)이 회전하는 것을 방지하기 위해 횡단면이 다각형인 결합돌기(110b)에 의해 베이스플레이트(100) 상에 배치될 수 있도록 결합공(210c)의 횡단면을 다각형으로 형성하는 것이다.
한편, 본 발명에 따른 유로형성블럭(200)은 횡단면이 팔각형(정팔각형 포함)이고, 내부에 하나의 결합공(210)을 형성할 수도 있다.
이어서, 본 발명에 따른 유로형성블럭(200)은 일예로서 도 7 (b), 도 8 (b) 및 도 9 (b)에 도시된 바와 같이, 음극층(11) 또는 양극층(15)에 접촉하는 일측면의 접촉 면적을 증가시키기 위해, 일측면의 면적을 타측면의 면적보다 크게 형성할 수 있다.
좀 더 구체적으로, 유로형성블럭(200)은 타측면에서 일측면으로 갈수록 유로형성블럭(200)의 외측으로 치우쳐진 구배를 갖도록 형성되어, 횡단면의 면적이 타측면에서 일측면으로 갈수록 증가하도록 형성될 수 있다.
도 13에 도시된 바와 같이, 본 발명에 따른 분리판이 셀(10)에 결합하는 경우, 유로형성블럭(200)의 일측면은 음극층(11) 또는 양극층(15)에 접촉하게 되는데, 이때 유로형성블럭(200)의 일측면과 음극층(11) 사이의 계면접촉저항 내지 유로형성블럭(200)의 일측면과 양극층(15) 사이이 계면접촉저항이 증가할수록 연료전지의 성능열화된다.
이에, 음극층(11) 또는 양극층(15)에 접촉하는 유로형성블럭(100)의 일측면의 면적을 증가시켜 유로형성블럭(200)의 일측면과 음극층(11) 사이의 계면접촉저항 내지 유로형성블럭(200)의 일측면과 양극층(15) 사이이 계면접촉저항을 감소시킴으로써, 종국적으로 계면저촉저항 증가에 따른 연료전지의 성능열화를 방지할 수 있다.
한편, 본 발명의 일실시예에 따른 유로형성블럭(200)은 전술한 베이스플레이트(100)와 마찬가지로 Fe-Cr 합금을 포함하는 재질로 이루어질 수 있다.
또한, 유로형성블럭(200)은 전술한 베이스플레이트(100)와 마찬가지로, 표면에 La, Mn, Sr 중 적어도 어느 하나 이상을 포함하는 스피넬(Spinel)계 코팅층, 또는 La, Mn, Sr 중 적어도 어느 하나 이상을 포함하는 페로브스카이트(Perovskite)계 코팅층이 형성될 수 있고, 이에 따라 전술한 바와 같은 기술적 효과를 달성할 수 있음은 물론이다.
이어서, 가스유로(300)는 유로형성블럭(200)의 형상 또는 배치 형태에 따라 패턴이 가변적으로 형성되어, 외부로부터 공급되는 반응가스가 유동하도록 구비된다.
도 10 내지 도 12에 도시된 바와 같이, 가스유로(300)는 베이스플레이트(100) 상에 배치된 유로형성블럭(200)에 의해 베이스플레이트(100) 상에 형성된다.
전술한 바와 같이, 종래의 고체산화물 연료전지용 분리판의 경우 에칭 가공에 의해 유로를 형성하지만, 본 발명에 따른 연료전지용 분리판 조립체는 베이스플레이트(100) 상에 배치되는 유로형성블럭(200)에 의해 가스유로(300)를 형성하게 된다.
이때, 베이스플레이트(100) 상에 형성되는 가스유로(300)는 베이스플레이트(100)에 배치하는 유로형성블럭(200)의 형상 또는 배치 형태에 따라 다양하게 패턴으로 가변적으로 형성될 수 있다.
전술한 바와 같이, 본 발명에 따른 유로형성블럭(200)은 횡단면이 다각형 내지 원형 등으로 다양하게 형성될 수 있고, 또한 유로형성블럭(200) 내에 다양한 개수 및 배치의 결합공(210)이 형성될 수 있다.
이때, 베이스플레이트(100) 상에는 결합돌기(110)가 격자 형태로 배치되어 있어, 다양한 형상으로 형성된 유로형성블럭(200)을 베이스플레이트(100) 상에 다양한 개수를 다양한 형태로 배치시킬 수 있다.
이에 따라, 베이스플레이트(100) 상에 다양한 패턴의 가스유로(300)를 가변적으로 형성할 수 있으며, 도 10에는 베이스플레이트(100)에 본 발명의 일실시예에 따른 유로형성블럭(200a)이 배치되어 소정의 패턴을 가지는 가스유로(300)가 형성된 모습이 나타나 있고, 도 11에는 베이스플레이트(100)에 본 발명의 다른 실시예에 따른 유로형성블럭(200b)이 배치되어 소정의 패턴을 가지는 가스유로(300)가 형성된 모습이 나타나 있으며, 도 12에는 베이스플레이트(100)에 본 발명의 또 다른 실시예에 따른 유로형성블럭(200c)이 배치되어 소정의 패턴을 가지는 가스유로(300)가 형성된 모습이 나타나 있다.
이처럼, 베이스플레이트(100)에 형성되는 결합돌기(100)의 배치와, 유로형성블럭(200)의 형상 및 배치 형태를 다양하게 변경하여, 베이스플레이트(100) 상에 다양한 가스유로(300)를 가변적으로 형성할 수 있는 것에 본 발명의 특징이 있다.
한편, 도 13에는 본 발명에 따른 연료전지용 분리판 조립체 사이에 음극층(11), 전해질층(13) 및 양극층(15)을 포함하는 셀(10)이 구비된 모습이 나타나 있다.
도 13에 도시된 바와 같이, 본 발명에 따른 연료전지용 분리판 조립체 사이에는 연료전지의 셀(10)이 구비될 수 있으며, 이때 셀(10)의 음극층(11)에 구비되는 연료전지용 분리판 조립체의 가스유로(300)에는 수소가 공급되어 유동할 수 있으며, 셀(10)의 양극층(15)에 구비되는 연료전지용 분리판 조립체의 가스유로(300)에는 산소가 공급되어 유동할 수 있다.
이상에서 설명한 바와 같이, 본 발명의 일실시예에 따르면, 베이스플레이트에 에칭 방식으로 가스유로를 형성하는 것이 아닌, 베이스플레이트 상에 유로형성블록을 배치시켜 가스유로를 형성함으로써, 유로형상 가공의 정밀성 및 생산성을 향상시킬 수 있는 효과가 있다.
또한, 베이스플레이트에 결합돌기를 격자 형태로 배치하고, 다양한 형상, 개수의 유로형성블럭을 다양한 형태로 배치시킴으로써, 베이스플레이트 상에 다양한 가스유로를 가변적으로 형성할 수 있는 효과가 있다.
이상에서, 본 발명의 바람직한 실시예에 대해 도시하고 설명하였으나, 본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.

Claims (6)

  1. 고체산화물 연료전지용 분리판 조립체에 있어서,
    일측 방향으로 돌출되면서 상호 이격되게 배치되는 복수개의 결합돌기를 형성하는 베이스플레이트;
    상기 결합돌기에 결합하는 결합공을 형성하고, 상기 결합돌기와 상기 결합공의 결합에 의해 상기 베이스플레이트 상에 배치되는 형성하는 하나 이상의 유로형성블럭; 및
    상기 유로형성블럭의 형상 또는 배치 형태에 따라 패턴이 가변적으로 형성되어, 외부로부터 공급되는 반응가스가 유동하도록 구비되는 가스유로;
    를 포함하는 것을 특징으로 하는 가변적 유로 형성이 가능한 연료전지용 분리판 조립체.
  2. 제1항에 있어서,
    상기 복수개의 결합돌기는 상호 격자 형태로 배치되는 것을 특징으로 하는 가변적 유로 형성이 가능한 연료전지용 분리판 조립체.
  3. 제1항에 있어서,
    상기 유로형성블럭은,
    사각기둥 형상으로 이루어지고, 길이 방향으로 둘 이상의 상기 결합공을 형성하는 것을 특징으로 하는 가변적 유로 형성이 가능한 연료전지용 분리판 조립체.
  4. 제1항에 있어서,
    상기 유로형성블럭은,
    횡단면이 원형이고, 내부에 하나 이상의 상기 결합공을 형성하는 것을 특징으로 하는 가변적 유로 형성이 가능한 연료전지용 분리판 조립체.
  5. 제1항에 있어서,
    상기 유로형성블럭은,
    횡단면이 육각형이고, 내부에 하나 이상의 상기 결합공을 형성하는 것을 특징으로 하는 가변적 유로 형성이 가능한 연료전지용 분리판 조립체.
  6. 제1항에 있어서,
    상기 베이스플레이트는 Fe-Cr 합금을 포함하는 재질로 이루어지는 것을 특징으로 하는 가변적 유로 형성이 가능한 연료전지용 분리판 조립체.
PCT/KR2021/017487 2021-04-20 2021-11-25 가변적 유로 패턴 형성이 가능한 연료전지용 분리판 조립체 WO2022225125A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023565234A JP2024515124A (ja) 2021-04-20 2021-11-25 可変的流路パターン形成が可能な燃料電池用分離板組立体
EP21938041.7A EP4329022A1 (en) 2021-04-20 2021-11-25 Separator plate assembly for fuel cell capable of forming variable flow path pattern
CN202180096997.3A CN117121242A (zh) 2021-04-20 2021-11-25 能够形成可变流路图案的燃料电池用分离板组装体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0051210 2021-04-20
KR1020210051210A KR102535955B1 (ko) 2021-04-20 2021-04-20 가변적 유로 패턴 형성이 가능한 연료전지용 분리판 조립체

Publications (1)

Publication Number Publication Date
WO2022225125A1 true WO2022225125A1 (ko) 2022-10-27

Family

ID=83722427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017487 WO2022225125A1 (ko) 2021-04-20 2021-11-25 가변적 유로 패턴 형성이 가능한 연료전지용 분리판 조립체

Country Status (5)

Country Link
EP (1) EP4329022A1 (ko)
JP (1) JP2024515124A (ko)
KR (1) KR102535955B1 (ko)
CN (1) CN117121242A (ko)
WO (1) WO2022225125A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090031946A (ko) * 2006-09-29 2009-03-30 쇼와 덴코 가부시키가이샤 연료 전지용 세퍼레이터, 연료 전지용 단일 셀 유닛, 연료 전지용 쇼트 스택 유닛, 및 연료 전지용 세퍼레이터 및 연료 전지용 셀 유닛〔단일 셀 유닛 또는 쇼트 스택 유닛〕의 제조 방법
US7968245B2 (en) * 2006-09-25 2011-06-28 Bloom Energy Corporation High utilization stack
KR101223082B1 (ko) * 2009-01-23 2013-01-17 도요타 지도샤(주) 연료전지
KR101241016B1 (ko) * 2011-09-09 2013-03-11 현대자동차주식회사 연료전지용 세퍼레이터
JP5198797B2 (ja) * 2007-05-23 2013-05-15 日本特殊陶業株式会社 固体電解質形燃料電池
KR20210051210A (ko) 2019-10-30 2021-05-10 대진볼트공업(주) 허브 볼트 및 그 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101628653B1 (ko) 2013-12-23 2016-06-13 재단법인 포항산업과학연구원 고체산화물 연료전지용 분리판, 이를 포함하는 고체산화물 연료전지 및 그 제조방법
KR101675638B1 (ko) * 2014-10-29 2016-11-14 현대제철 주식회사 연료전지용 유로형성부재

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7968245B2 (en) * 2006-09-25 2011-06-28 Bloom Energy Corporation High utilization stack
KR20090031946A (ko) * 2006-09-29 2009-03-30 쇼와 덴코 가부시키가이샤 연료 전지용 세퍼레이터, 연료 전지용 단일 셀 유닛, 연료 전지용 쇼트 스택 유닛, 및 연료 전지용 세퍼레이터 및 연료 전지용 셀 유닛〔단일 셀 유닛 또는 쇼트 스택 유닛〕의 제조 방법
JP5198797B2 (ja) * 2007-05-23 2013-05-15 日本特殊陶業株式会社 固体電解質形燃料電池
KR101223082B1 (ko) * 2009-01-23 2013-01-17 도요타 지도샤(주) 연료전지
KR101241016B1 (ko) * 2011-09-09 2013-03-11 현대자동차주식회사 연료전지용 세퍼레이터
KR20210051210A (ko) 2019-10-30 2021-05-10 대진볼트공업(주) 허브 볼트 및 그 제조방법

Also Published As

Publication number Publication date
KR20220144645A (ko) 2022-10-27
KR102535955B1 (ko) 2023-05-26
JP2024515124A (ja) 2024-04-04
EP4329022A1 (en) 2024-02-28
CN117121242A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
CA1288468C (en) Solid electrolyte fuel cell and assembly
CA2551609C (en) Solid oxide fuel cell and fuel cell stack having mechanism for applying load in stacking direction
WO2014208869A1 (ko) 고체산화물 연료전지 스택
JP3920018B2 (ja) 燃料電池スタック
WO2014104584A1 (ko) 연료 전지용 스택 구조물
WO2016126032A1 (ko) 연료전지용 엔드셀 히터 및 이를 포함하는 연료전지
EP1698008B1 (en) Fuel cell and fuel cell stack
US7517602B2 (en) Fuel cell and fuel cell stack
EP1695404B1 (en) Fuel cell and fuel cell stack
CA2405324C (en) Fuel cell stacking body
EP1685621B1 (en) Multi-cell fuel layer and system
WO2013183885A1 (ko) 연료 전지용 스택 구조물 및 그의 구성
WO2022225125A1 (ko) 가변적 유로 패턴 형성이 가능한 연료전지용 분리판 조립체
EP1698011B1 (en) Fuel cell
EP1698010B1 (en) Fuel cell
WO2023128447A1 (ko) 구조적 변형이 방지되는 고체산화물 연료전지용 집전체
WO2024111955A1 (ko) 십자형 성형부를 갖는 고체산화물 연료전지용 집전체, 이의 제조방법 및 이를 포함하는 고체산화물 연료전지 스택
WO2022255710A1 (ko) 연료전지용 비선형 다공체 및 이를 포함하는 연료전지
WO2017196050A1 (ko) 연료전지용 다공성 분리판의 제조방법 및 연료전지용 다공성 분리판
WO2012148093A2 (ko) 관형 고체산화물 연료전지용 연결재 및 이를 포함하는 관형 고체산화물 연료전지 스택
WO2019022432A1 (ko) 연료전지 스택 구조
WO2024111977A1 (ko) 전력 수직 배향형 모노폴라 수전해 스택
WO2024058353A1 (ko) 연료전지용 금속 분리판 및 이를 포함하는 연료전지
WO2019022395A1 (ko) 고체 산화물 연료전지용 스택
JPH0246661A (ja) 積層型燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938041

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18287394

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023565234

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2021938041

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021938041

Country of ref document: EP

Effective date: 20231120