WO2022225099A1 - Triboelectric nanogenerator having liquid lubricant for amplifying current through direct electron flow, and operation method thereof - Google Patents

Triboelectric nanogenerator having liquid lubricant for amplifying current through direct electron flow, and operation method thereof Download PDF

Info

Publication number
WO2022225099A1
WO2022225099A1 PCT/KR2021/009524 KR2021009524W WO2022225099A1 WO 2022225099 A1 WO2022225099 A1 WO 2022225099A1 KR 2021009524 W KR2021009524 W KR 2021009524W WO 2022225099 A1 WO2022225099 A1 WO 2022225099A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid lubricant
electrode
rolling
inner cylinder
direct electron
Prior art date
Application number
PCT/KR2021/009524
Other languages
French (fr)
Korean (ko)
Inventor
이상민
정지훈
정세훈
송명환
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Publication of WO2022225099A1 publication Critical patent/WO2022225099A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/948Energy storage/generating using nanostructure, e.g. fuel cell, battery

Definitions

  • the present invention relates to a triboelectric nanogenerator having a liquid lubricant for current amplification through direct electron flow and a method for operating the same.
  • Triboelectric nanogenerators can convert input mechanical energy into electrical energy output through Maxwell's displacement current representing current.
  • TENG TENG
  • TENGs with increased power are being used as auxiliary power sources for a variety of self-powered sensors for portable electronics, chemistry, and motion sensing. Despite these advantages, recent studies can lead to air breakdown and low current output generation by certain limitations of high surface potential.
  • typical TENG structures consist of electrodes and dielectric layers that exhibit relative motion, and this phenomenon can lead to air breakdown and low current output.
  • some researchers have tried strategies such as changing the surrounding environment, using liquids to suppress air destruction, and inducing microplasma to ensure high currents.
  • the present invention has been devised to solve the problems of the prior art.
  • the long Debye length of the lubricant causes air destruction.
  • An object of the present invention is to provide a triboelectric nanogenerator having a liquid lubricant for amplification and a method for operating the same.
  • the friction wear during operation is significantly reduced, which improves the mechanical stability of the TENG, and the rolling electrode inside the TENG reduces the friction between the solid surface and the direct generated when the rolling electrode and the plate electrode are in contact.
  • this invention using liquid lubricant and direct electron flow can generate instantaneous and root mean square (RMS) power of 0.6 W and 1.26 mW, respectively, at low speed rotation of 100 rpm.
  • triboelectric with liquid lubricant for current amplification through direct electron flow which can also produce voltage and current outputs of up to 220V and 170mA, respectively, when connected to a rectifier circuit sufficient to charge commercial capacitors and lithium-ion batteries.
  • An object of the present invention is to provide a nanogenerator and a method for operating the same.
  • a first object of the present invention is, in a triboelectric nanogenerator, an inner cylinder having a dielectric; at least one plate electrode surrounding the inner cylinder to be spaced apart from the outer surface; a plurality of rolling electrodes positioned in contact between the plate electrode and the inner cylinder; and a liquid lubricant filled in the space between the plate electrode and the inner cylinder.
  • liquid lubricant may be a non-polar liquid lubricant.
  • the dielectric layer is laminated at least once on the outer surface of the inner cylinder.
  • the dielectric layer may be characterized in that the PTFE.
  • the plate electrode is coupled to the inner surface of the external cylinder
  • the rolling electrode is configured in a rod shape, and is installed in front and rear of the external cylinder, respectively It may further include a jig for fixing the longitudinal and radial movement positions of the plurality of rolling electrodes.
  • the rolling electrode and the plate electrode may be made of aluminum, and a Teflon wrapping wire may be attached to the plate electrode.
  • the inner cylinder, the outer cylinder and the jig may be characterized in that it is composed of PMMA.
  • non-polar liquid lubricant may include at least one of mineral oil and silicone oil.
  • non-polar liquid lubricant air destruction and field emission of the surface charge of the dielectric layer are suppressed, the operating friction of the rolling electrode is reduced, and direct electron flow is induced between the rolling electrode and the plate electrode. have.
  • a second object of the present invention is a method of operating a triboelectric nanogenerator according to the first object mentioned above, comprising the steps of: rotating an inner cylinder by external input energy and rotating the rolling electrode in association with each other; charging the dielectric layer on the outer surface of the inner cylinder to be negatively charged; inducing a positive charge to the rolling electrode in contact with the dielectric layer and causing polarization; and when the rolling electrode is in contact with the plate electrode, the electrons accumulated in the rolling electrode directly flow to the plate electrode.
  • the triboelectric charging nanogenerator having a liquid lubricant for amplification of current through direct electron flow according to an embodiment of the present invention and an operating method thereof, when the non-polar liquid lubricant is filled in the triboelectric charging nanogenerator, the long Debye of this lubricant Due to its length, it can effectively block air breakage, and rolling friction and lubrication can greatly reduce the friction wear of the device, generating high voltage and current output of up to 200V and 170mA respectively, which has the effect of charging commercial capacitors and batteries.
  • the rolling electrode of the present invention using liquid lubricant and direct electron flow reduces friction between the solid surfaces and helps to amplify the current through the direct electron flow that occurs when the rolling electrode and the plate electrode come in contact. It can generate instantaneous and root mean square (RMS) power of 0.6W and 1.26mW, respectively, at low speed rotation, and can also generate voltages up to 220V and 170mA, respectively, when connected to a rectifier circuit sufficient to charge commercial capacitors and lithium-ion batteries. It has the effect of generating a current output.
  • RMS root mean square
  • LLS-TENG triboelectric charging nanogenerator
  • FIG. 2 is an exploded perspective view of an LLS-TENG according to an embodiment of the present invention.
  • FIG. 3 is a partial cross-sectional view of an LLS-TENG according to an embodiment of the present invention.
  • FIG. 4 is a comparative schematic diagram of suppression of field emission of air and liquid lubricant of LLS-TENG according to an embodiment of the present invention
  • FIG. 7 and 8 show the difference in Debye length ( ⁇ D) for polar (FIG. 7) and non-polar (FIG. 8) liquids.
  • FIG. 11 is a partial cross-sectional view of an LLS-TENG showing an operating mechanism according to an embodiment of the present invention
  • FIG. 12 and 13 are a VOC (FIG. 12) and an enlarged VOC output (FIG. 13) of an LLS-TENG according to an embodiment of the present invention
  • FIG. 16 and 17 are pictures (FIG. 16) and a rectifier circuit (FIG. 17) of an LLS-TENG manufactured according to an embodiment of the present invention
  • 21 is an LLS-TENG charging commercial 100, 200 and 300 ⁇ F capacitor according to an embodiment of the present invention.
  • FIG. 22 is a graph showing a charging graph of an LLS-TENG commercial lithium-ion battery according to an embodiment of the present invention.
  • LLS-TENG 100 triboelectric nanogenerator having a non-polar liquid lubricant for amplification of current through direct electron flow according to an embodiment of the present invention
  • FIG. 1 shows a perspective view of a triboelectric charging nanogenerator (LLS-TENG 100) having a non-polar liquid lubricant for current amplification through direct electron flow according to an embodiment of the present invention
  • FIG. 2 is a perspective view of the present invention.
  • 3 is a partial cross-sectional view of an LLS-TENG according to an embodiment of the present invention.
  • FIG. 4 is a comparative schematic diagram of field emission suppression of air and liquid lubricant of LLS-TENG 100 according to an embodiment of the present invention
  • FIG. 5 is a VOC graph for air and liquid lubricant conditions
  • FIG. 6 is air and ICC graphs for liquid lubricant conditions.
  • the LLS-TENG 100 has an outer cylinder 1, an inner cylinder 2, a dielectric layer 10, a rolling electrode 20, and a plate electrode. (30), it can be seen that it can be configured to include a non-polar liquid lubricant (40).
  • the inner cylinder 2, the outer cylinder 1, and the jig 3 may be made of polymethyl methacrylate (PMMA).
  • the rolling electrode 20 may be made of aluminum in the form of a rod, and the surface of the inner cylinder 2 may be coated with the dielectric layer 10 at least once or more.
  • This dielectric layer may be comprised of polytetrafluoroethylene (PTFE 10).
  • PTFE 10 polytetrafluoroethylene
  • the inner cylinder 2 itself may be made of PTFE 10 .
  • the plate electrode 30 may be made of aluminum.
  • the non-polar liquid lubricant 40 according to the embodiment of the present invention is to be filled in the space between the PTFE (10) layer and the plate electrode (30). That is, the space between the inner cylinder (2) and the outer cylinder (1) is filled.
  • the six aluminum rolling electrodes 20 are also rotated inside the LLS-TENG 100 .
  • the present invention proposed using the rolling electrode 20 and the liquid lubricant 40 allows for improved current output and reduced friction damage.
  • the occurrence of air breakage due to the negative surface charge of the dielectric layer 10 (PTFE) is suppressed by the liquid lubricant 40 .
  • the negative charge induces a positive charge at the top of the rolling electrode 20 and causes polarization at the rolling electrode 20 .
  • the LLS-TENG 100 can produce a higher electrical output compared to a TENG operating on air.
  • the rolling electrode 20 comes into contact with the plate electrode 30 , electrons accumulated in the rolling electrode 20 flow directly to the plate electrode 30 . This direct electron flow creates a high current output during rotation.
  • Wear damage is also greatly reduced through rolling friction and lubrication.
  • the PTFE 10 surface will exhibit a limiting charge density in air.
  • a field strength of about 3 kV/mm can cause air breakdown, and a low field strength can cause field emission in microscale gaps.
  • the electric field strength required for fracture increases to 20 kV/mm and the minimum electric field strength required to generate field emission increases. Therefore, an increase in the surface charge of the PTFE (10) can be observed in the liquid condition (Fig. 4). Also, when the device is immersed in lubricant 40, the electric field is reduced.
  • the rolling electrode 20 material is aluminum and the dielectric layer 10 is a PTFE (10) film.
  • Figure 4 shows the results when each of the LLS-TENG is filled with air and mineral oil.
  • the permittivities of air and mineral oil are 1 and 2.1, respectively.
  • the surface charge density of the surface of the PTFE 10 is -10 ⁇ C m -2 and the rolling electrode 20 is set to float.
  • an electric field is formed between the rolling electrode 20 and the PTFE (10) film in an air and lubricant environment.
  • the maximum strength of the electric field is 5.02 and 2.42 kV mm -1 , respectively.
  • the electric field strength of mineral oil is lower than that of air. In general, the electric field strength at a point can be described as Equation 1 below.
  • Equation 1 the dielectric constant of the material between the electrode and the dielectric surface affects the electric field strength. With mineral oil, the electric field strength decreases as the dielectric constant increases. These interpretations are consistent with the simulation results obtained for the lubricant environment. Nevertheless, as the dielectric constant increases, the electric field strength in the lubricant 40 decreases but the electric flux density increases. As a result, the induced positive charge remains unchanged. According to Gauss's law, the electric flux density (D) is related to the electric field strength (E) as
  • the induced charge is related to the electrical flux of the electrode. Consequently, the positive charge induced in the electrode does not change with the permittivity regardless of the material used (lubricating agent or air). Nevertheless, due to the high electric field strength of air, air breakdown occurs, limiting the surface charge.
  • VOC open circuit voltage
  • the closed circuit current (ICC) output of the lubricant (85 mA) LLS-TENG 100 is significantly higher than that of air (5 mA) as shown in FIG. 6 .
  • the peak ICC output has less electrical peak compared to the VOC, but as can be seen from the enlarged output plot that will be described later, the ICC output in the range of 5 to 10 mA is continuously generated when the LSS-TENG 100 rotates. This increased electrical output shows that the introduction of liquid lubricant 40 improves the mechanical life and electrical performance of the TENG.
  • FIG. 7 and 8 show the difference in the Debye length ( ⁇ D) for polar (FIG. 7) and non-polar (FIG. 8) liquids.
  • Figures 9 and 10 show the VOC and ICC output of the LLS-TENG in different liquids.
  • the electric double layer appears to have a significant effect on the electrical output.
  • EDL electric double layer
  • the length of the EDL is defined as the Debye length ( ⁇ D) and the electrostatic charge on the solid surface is screened for each Debye length. That is, when a solid material with a surface charge is immersed in a liquid, the surface charge is blocked by the charge carriers of the liquid, such as electrons, ions, or molecules. 7 and 8, the LLS-TENG 100 includes a PTFE 10 cylinder exhibiting a negative surface charge and a rolling electrode 20 in contact with the surface. When the device is immersed in a polar liquid, the molecules of the polar liquid block the electrostatic field of negative surface charge on the PTFE (10) surface ( Figure 7). Due to such screening, the positive charge induced in the rolling electrode 20 is greatly limited.
  • non-polar liquids such as mineral oil and silicone oil have a larger Debye length than polar liquids (FIG. 8)
  • a higher negative charge of PTFE 10 is induced in the rolling electrode 20 through the polarization of the electrode.
  • the geometrically larger Debye length of the non-polar liquid corresponds to a higher surface area due to the influence of the negative surface charge of PTFE (10).
  • charge screening specific to polar liquids and non-polar liquids occurs at the surface of the rolling electrode 20 .
  • FIGS. 9 and 10 show the VOC and ICC output when LLS-TENG is filled with mineral oil, silicone oil, castor oil, water and ethyl alcohol, respectively.
  • Mineral oil/silicone oil is a typical non-polar liquid, while water/ethyl alcohol is a polar liquid.
  • castor oil is more polar than other oils because of the presence of hydroxyl functional groups in ricinoleic acid. Therefore, the electrical output for castor oil was lower than for other non-polar liquids.
  • the electrical output result depends on the device length of the liquid. In general, the Via length of polar liquids is relatively small (the Debye length of water is only 10-20 nm, and the length of ethanol is about 38 nm). In contrast, the Debye length of non-polar liquids is much larger than that of polar liquids, over 1 ⁇ m.
  • FIG. 11 is a partial cross-sectional view of an LLS-TENG showing an operating mechanism according to an embodiment of the present invention.
  • 12 and 13 are the VOC (FIG. 12) of the LLS-TENG according to the embodiment of the present invention, the expanded VOC output (FIG. 12), and
  • FIG. 14 is the instantaneous voltage of the LLS-TENG according to the embodiment of the present invention.
  • current and power output graphs are shown.
  • FIG. 15 shows graphs of RMS voltage, current, and power output of an LLS-TENG according to an embodiment of the present invention.
  • the operating mechanism of the LLS-TENG 100 for generating an output includes three main steps, as shown in FIG. 11 .
  • the negative charge of the surface layer of the PTFE (10) induces a positive charge in the rolling electrode (20).
  • the negative charge is separated from the positive charge by the surface of the PTFE 10 and accumulated on the opposite side.
  • direct electron flow occurs as the two electrodes come into contact with each other.
  • the electrical output of the LLS-TENG 100 is amplified due to this flow.
  • the liquid lubricant 40 inhibits air breakage, increasing the surface charge of the PTFE 10 and increasing mechanical life, as described above.
  • the measured VOC output when the PTFE (10) cylinder of the LLS-TENG (100) was operated at 100 rpm is shown in Figures 12 and 13. Attached electrodes are connected as in stand-alone TENG. As shown in FIG. 12 , the LLS-TENG 100 generates a peak voltage output in the range of 100 to 200V. The expanded voltage output is shown in FIG. 13 . It can be seen that a unique shape peak can be observed because direct electron flow occurs due to the contact between the rolling electrode 20 and the plate electrode 30 .
  • Fig. 14 shows the instantaneous peak voltage, current and power when the external load resistance changes from 10 ⁇ to 1G ⁇ .
  • the input rotation is 100rpm.
  • the instantaneous voltage output does not change significantly.
  • the voltage output increases.
  • the voltage output gradually decreases. The highest current output occurs at 10 ⁇ and the output continues to decrease as the external resistance further increases.
  • the LLS-TENG 100 can generate an instantaneous power of about 0.6W when the external resistance is 1M ⁇ .
  • a continuous electrical output is a key factor in the application of TENGs to existing electronic devices.
  • RMS is considered to determine the average power generated by the LLS-TENG 100 .
  • RMS voltage (VRMS) and RMS current (IRMS) are calculated as follows.
  • V(t) and I(t) represent voltage and current with time, respectively. Voltage and current results are measured from T 1 to T 2 .
  • the RMS power (WRMS) is determined as the product of VRMS and IRMS.
  • the RMS results obtained when the LLS-TENG 100 was rotated at 100 rpm are shown in FIG. 15 .
  • VRMS does not change significantly when the external load resistance increases from 10 ⁇ to 1M ⁇ .
  • VRMS increases as the external load resistance increases from 10M ⁇ to 1G ⁇ .
  • the highest VRMS is 7.96V when the external load resistance is 1G ⁇ .
  • IRMS decreases as the external load resistance increases.
  • the highest IRMS is 1.49mA with an external load resistance of 10 ⁇ .
  • WRMS decreases as the external load resistance increases from 1 to 100 M ⁇ and the resistance increases to 1 G ⁇ .
  • the highest WRMS is 1.73mW with an external resistance of 100M ⁇ .
  • FIG. 16 and 17 are pictures (FIG. 16) and a rectifier circuit (FIG. 17) of an LLS-TENG manufactured according to an embodiment of the present invention
  • FIGS. 18 and 19 are in series (FIG. 18) and parallel (FIG. 19).
  • FIG. 20 is a graph of rectified voltage and current of LLS-TENG according to an embodiment of the present invention
  • FIG. 21 is a commercial LLS-TENG charging 100, 200 and 300 ⁇ F capacitor according to an embodiment of the present invention
  • FIG. 22 shows a charging graph of an LLS-TENG commercial lithium-ion battery according to an embodiment of the present invention.
  • the LLS-TENG 100 is an aluminum rolling electrode that rolls between the outer cylinder 1, the inner cylinder 2, the outer cylinder 1 and the inner cylinder 2 (20), was composed of a jig (3) for fixing the aluminum rolling electrode (20).
  • the outer cylinder 1 made of PMMA has a height and diameter of 100 mm and 70 mm, respectively.
  • Four plate electrodes 30 are attached to the inner surface of the outer cylinder 1 .
  • Four 100 mm ⁇ 40 mm commercial aluminum tapes with a thickness of 0.05 mm (Duksung Hitech Co., Ltd.) were used as plate electrodes 30 .
  • a commercial Teflon wrapping wire (AWG 24) is also attached to the plate electrode 30 .
  • the inner cylinder (2) made of PMMA has a height and diameter of 100 mm and 40 mm respectively.
  • the outer surface of the inner cylinder (2) is covered with several layers of 0.13 mm thick PTFE (10) tape.
  • Six aluminum rolling electrodes 20 are provided between the inner cylinder 2 and the outer cylinder 1 .
  • the jig 3 is used to ensure a constant distance between the aluminum rolling electrodes 20 .
  • the LLS-TENG 100 has four plate electrodes 30 attached to the inner surface of the PMMA outer cylinder 1 .
  • Each plate electrode 30 is connected to the middle region of two fast switching diodes, as shown in FIG. 17 for output rectification.
  • the LLS-TENG 100 can power 319 LEDs connected in series and parallel.
  • 18 and 19 show the circuit configuration of 319 LEDs connected in series and parallel, respectively, and corresponding pictures of the LEDs lit when the LLS-TENG 100 is operating.
  • the LLS-TENG 100 shows the rectified voltage and current output of the LLS-TENG.
  • the output was measured at 100 rpm of input rotation. It can be seen that the peak voltage and current outputs are 220V and 171mA, respectively.
  • the LLS-TENG 100 can produce a high current output but must ensure energy storage for use in commercial products.
  • FIG. 21 shows graphs of 100, 200 and 300 ⁇ F capacitors charged using LLS-TENG 100 .
  • the LLS-TENG 100 can charge the 100, 200, and 300 ⁇ F capacitors to 3.28, 1.72, and 1.04 V within 200 seconds, respectively.
  • the LLS-TENG 100 can charge a commercial lithium-ion battery (LIB) through a battery charging circuit including a capacitor.
  • the battery charging circuit stores charge in the device as a capacitor and transfers this charge to the battery to enable stable charging.
  • 22 shows a charge plot of a 3V, 2mAh LIB battery connected to an LLS-TENG(100). It can be seen that the battery charges from 2.737V to 2.763V in 4 hours. This result shows that the LLS-TENG 100 can be used as an auxiliary power source for charging commercial batteries.
  • the use of a TENG filled with a liquid lubricant 40 is demonstrated to improve the electrical and mechanical properties of the existing TENG.
  • the surface charge of PTFE (10) can be enhanced by liquid lubricant (40) through air breakage and suppression of field emission.
  • liquid lubricants 40 such as mineral oil and silicone oil can improve the electrical output of the TENG due to the long Debye length.
  • the rolling electrode 20 of the LLS-TENG 100 can reduce friction during operation and increase the electrical output by inducing a direct electron flow between the electrodes.
  • the LLS-TENG 100 can generate VOC and ICC of up to 220V and 171mA, respectively.
  • the instantaneous and RMS powers of the LLS-TENG 100 during operation are 0.6W and 1.73mW, respectively. With this high current output, it was found that the LLS-TENG 100 can successfully power 319 LEDs connected in series and parallel.
  • the LLS-TENG 100 can charge commercial capacitors and LIBs. Therefore, it was demonstrated that the mechanism according to the embodiment of the present invention can expand the applicability of the TENG by overcoming the electrical and mechanical limitations and facilitating the use of the LLS-TENG 100 as an auxiliary power source.

Landscapes

  • Lubricants (AREA)

Abstract

The present invention relates to a triboelectric nanogenerator having a liquid lubricant for amplifying a current through a direct electron flow, and an operation method thereof, and more specifically to a triboelectric nanogenerator having a liquid lubricant for amplifying a current through a direct electron flow, the triboelectric nanogenerator comprising: an inner cylinder having a dielectric; at least one plate electrode surrounding the inner cylinder so as to be spaced from the outer surface of the inner cylinder by a predetermined interval; a plurality of rolling electrodes positioned between the plate electrode and the inner cylinder; and a liquid lubricant filled in a space between the plate electrode and the inner cylinder.

Description

직접 전자 흐름을 통한 전류 증폭을 위한 액체 윤활제를 갖는 마찰대전나노발생기 및 그 작동방법Tribological electrification nanogenerator with liquid lubricant for current amplification through direct electron flow and method of operation thereof
본 발명은 직접 전자 흐름을 통한 전류 증폭을 위한 액체 윤활제를 갖는 마찰대전나노발생기 및 그 작동방법에 관한 것이다. The present invention relates to a triboelectric nanogenerator having a liquid lubricant for current amplification through direct electron flow and a method for operating the same.
마찰대전나노발전기(Triboelectric nanogenerators, TENG)는 전류를 나타내는 Maxwell의 변위 전류를 통해 입력된 기계적 에너지를 전기 에너지 출력으로 변환 할 수 있다. Triboelectric nanogenerators (TENG) can convert input mechanical energy into electrical energy output through Maxwell's displacement current representing current.
TENG의 이러한 잠재력은 생성 메커니즘을 분석하고 표면 전하가 더 높은 재료를 제조하고 마이크로/나노 구조의 표면을 구현하여 표면적을 증가시킴으로써 입증되었다. This potential of TENG was demonstrated by analyzing the generation mechanism, fabricating materials with higher surface charge, and increasing the surface area by realizing micro/nanostructured surfaces.
출력이 증가된 TENG는 휴대용 전자 기기, 화학 및 동작 감지를 위한 다양한 자체 전원 센서의 보조 전원으로 사용되고 있다. 이러한 장점에도 불구하고 최근 연구는 높은 표면 전위의 특정 한계에 의해 공기 파괴(air breakdown) 및 낮은 전류 출력 생성을 초래할 수 있다. TENGs with increased power are being used as auxiliary power sources for a variety of self-powered sensors for portable electronics, chemistry, and motion sensing. Despite these advantages, recent studies can lead to air breakdown and low current output generation by certain limitations of high surface potential.
특히, 전형적인 TENG 구조는 상대 운동을 나타내는 전극과 유전체층으로 구성되어 있으며 해당 현상으로 인해 공기 파괴와 낮은 전류 출력이 발생할 수 있다. 전기적 문제를 완화하기 위해 일부 연구자들은 주변 환경을 바꾸고 액체를 사용하여 공기 파괴를 억제하고 높은 전류를 보장하기 위해 마이크로 플라즈마를 유도하는 등의 전략을 시도했다. In particular, typical TENG structures consist of electrodes and dielectric layers that exhibit relative motion, and this phenomenon can lead to air breakdown and low current output. To alleviate the electrical problem, some researchers have tried strategies such as changing the surrounding environment, using liquids to suppress air destruction, and inducing microplasma to ensure high currents.
또한, TENG의 몇 가지 알려진 기계적 한계는 기계적 설계 또는 윤활유 사용을 통해 폴리머 유전체가 과도한 입력 힘에 노출되는 것을 방지하여 TENG 수명을 크게 단축시킬 수 있다. 기계적 또는 전기적 문제를 해결하려는 이러한 노력에도 불구하고 전기 및 기계적 한계를 동시에 해결하려면 생성 메커니즘과 구조를 더욱 최적화해야한다. In addition, several known mechanical limitations of TENGs can prevent exposing the polymer dielectric to excessive input forces, either through mechanical design or the use of lubricants, which can significantly shorten the TENG life. Despite these efforts to solve mechanical or electrical problems, simultaneously addressing electrical and mechanical limitations requires further optimization of the generation mechanism and structure.
따라서 본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 실시예에 따르면, 마찰대전나노발전기 내에 비극성 액체 윤활유가 채워지면 이러한 윤활유의 긴 디바이(Debye) 길이로 인해 공기 파괴를 효과적으로 차단할 수 있고, 구름 마찰과 윤활은 장치의 마찰 마모를 크게 줄일 수 있어, 각각 최대 200V 및 170mA의 고전압 및 전류 출력을 생성하여 상용 커패시터와 배터리를 충전 할 수 있는, 직접 전자 흐름을 통한 전류 증폭을 위한 액체 윤활제를 갖는 마찰대전나노발생기 및 그 작동방법을 제공하는데 그 목적이 있다. Therefore, the present invention has been devised to solve the problems of the prior art. According to an embodiment of the present invention, when a non-polar liquid lubricant is filled in a triboelectric nanogenerator, the long Debye length of the lubricant causes air destruction. current through direct electron flow, generating high voltage and current outputs up to 200V and 170mA, respectively, to charge commercial capacitors and batteries, rolling friction and lubrication can greatly reduce the friction wear of the device. An object of the present invention is to provide a triboelectric nanogenerator having a liquid lubricant for amplification and a method for operating the same.
그리고 본 발명의 실시예에 따르면, 작동 중 마찰 마모가 상당히 감소되어 TENG의 기계적 안정성을 향상시키고, TENG 내부의 롤링 전극은 고체 표면 사이의 마찰을 줄이고 롤링 전극과 플레이트 전극이 접촉 할 때 발생하는 직접적인 전자 흐름을 통해 전류를 증폭하는 데 도움이 되며, 액체 윤활제와 직접 전자 흐름을 사용하는 본 발명은 100rpm의 저속 회전에서 각각 0.6W 및 1.26mW의 순간 및 RMS(root mean square) 전력을 생성 할 수 있고, 또한 상용 커패시터 및 리튬 이온 배터리를 충전하기에 충분한 정류 회로에 연결될 때 각각 최대 220V 및 170mA의 전압 및 전류 출력을 생성 할 수 있는, 직접 전자 흐름을 통한 전류 증폭을 위한 액체 윤활제를 갖는 마찰대전나노발생기 및 그 작동방법을 제공하는데 그 목적이 있다. And according to the embodiment of the present invention, the friction wear during operation is significantly reduced, which improves the mechanical stability of the TENG, and the rolling electrode inside the TENG reduces the friction between the solid surface and the direct generated when the rolling electrode and the plate electrode are in contact. Helps to amplify current through electron flow, this invention using liquid lubricant and direct electron flow can generate instantaneous and root mean square (RMS) power of 0.6 W and 1.26 mW, respectively, at low speed rotation of 100 rpm. triboelectric with liquid lubricant for current amplification through direct electron flow, which can also produce voltage and current outputs of up to 220V and 170mA, respectively, when connected to a rectifier circuit sufficient to charge commercial capacitors and lithium-ion batteries. An object of the present invention is to provide a nanogenerator and a method for operating the same.
한편, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned are clearly to those of ordinary skill in the art to which the present invention belongs from the description below. can be understood
본 발명의 제1목적은, 마찰대전나노발전기에 있어서, 유전체을 갖는 내부실린더; 상기 내부실린더 외면과 특정간격 이격되도록 감싸는 적어도 하나의 플레이트 전극; 상기 플레이트 전극과 상기 내부실린더 사이에 접촉되어 위치되는 복수의 롤링 전극; 및 상기 플레이트 전극과 상기 내부실린더 사이공간에 충진되는 액체 윤활제;를 포함하는 것을 특징으로 하는 직접 전자 흐름을 통한 전류 증폭을 위한 액체 윤활제를 갖는 마찰대전나노발생기로서 달성될 수 있다. A first object of the present invention is, in a triboelectric nanogenerator, an inner cylinder having a dielectric; at least one plate electrode surrounding the inner cylinder to be spaced apart from the outer surface; a plurality of rolling electrodes positioned in contact between the plate electrode and the inner cylinder; and a liquid lubricant filled in the space between the plate electrode and the inner cylinder.
그리고 상기 액체 윤활제는 비극성 액체 윤활제인 것을 특징으로 할 수 있다. And the liquid lubricant may be a non-polar liquid lubricant.
또한, 상기 내부실린더 외면에 상기 유전체층이 적어도 1회 적층되는 것을 특징으로 할 수 있다. In addition, it may be characterized in that the dielectric layer is laminated at least once on the outer surface of the inner cylinder.
그리고 유전체층은 PTFE인 것을 특징으로 할 수 있다. And the dielectric layer may be characterized in that the PTFE.
또한 상기 내부실린더와 특정간격 이격되게 위치되는 외부실린더를 더 포함하고, 상기 플레이트 전극은 상기 외부실린더 내면에 결합되며, 상기 롤링전극은 막대 형태로 구성되며, 상기 외부실린더 전방, 후방 각각에 설치되어 상기 복수의 롤링전극의 길이방향과 직경방향 이동 위치를 고정하는 지그;를 더 포함하는 것을 특징으로 할 수 있다. In addition, it further includes an external cylinder positioned to be spaced apart from the internal cylinder at a specific distance, the plate electrode is coupled to the inner surface of the external cylinder, the rolling electrode is configured in a rod shape, and is installed in front and rear of the external cylinder, respectively It may further include a jig for fixing the longitudinal and radial movement positions of the plurality of rolling electrodes.
그리고 상기 롤링전극과 상기 플레이트 전극은 알루미늄으로 구성되고, 상기 플레이트 전극에는 테플론 랩핑와이어가 부착되는 것을 특징으로 할 수 있다. And the rolling electrode and the plate electrode may be made of aluminum, and a Teflon wrapping wire may be attached to the plate electrode.
또한 상기 내부실린더와 상기 외부실린더와 상기 지그는 PMMA로 구성되는 것을 특징으로 할 수 있다. In addition, the inner cylinder, the outer cylinder and the jig may be characterized in that it is composed of PMMA.
그리고 상기 비극성 액체 윤활제는 미네랄 오일과 실리콘 오일 중 적어도 어느 하나를 포함하는 것을 특징으로 할 수 있다. And the non-polar liquid lubricant may include at least one of mineral oil and silicone oil.
또한 비극성 액체 윤활제에 의해, 상기 유전체층의 표면전하는 공기 파괴와 전계방출이 억제되며, 롤링전극의 작동마찰을 감소시키며, 상기 롤링전극과 상기 플레이트 전극 사이에 직접적인 전자흐름을 유도하는 것을 특징으로 할 수 있다. In addition, by the non-polar liquid lubricant, air destruction and field emission of the surface charge of the dielectric layer are suppressed, the operating friction of the rolling electrode is reduced, and direct electron flow is induced between the rolling electrode and the plate electrode. have.
본 발명의 제2목적은 앞서 언급한 제1목적에 따른 마찰대전나노발전기의 작동방법에 있어서, 외부 입력에너지에 의해 내부실린더가 회전되고 롤링전극이 연동하여 회전되는 단계; 상기 내부실린더 외면의 유전체층이 음전하로 대전되는 단계; 상기 유전체층과 접촉된 롤링전극에 양전하가 유도되고 분극을 유발하는 단계; 및상기 롤링전극이 플레이트 전극에 접촉되면 상기 롤링전극에 축적된 전자가 상기 플레이트 전극으로 직접흐르는 단계;를 포함하는 것을 특징으로 하는 직접 전자 흐름을 통한 전류 증폭을 위한 액체 윤활제를 갖는 마찰대전나노발생기의 작동방법으로서 달성될 수 있다. A second object of the present invention is a method of operating a triboelectric nanogenerator according to the first object mentioned above, comprising the steps of: rotating an inner cylinder by external input energy and rotating the rolling electrode in association with each other; charging the dielectric layer on the outer surface of the inner cylinder to be negatively charged; inducing a positive charge to the rolling electrode in contact with the dielectric layer and causing polarization; and when the rolling electrode is in contact with the plate electrode, the electrons accumulated in the rolling electrode directly flow to the plate electrode. can be achieved as a method of operation of
본 발명의 실시예에 따른 직접 전자 흐름을 통한 전류 증폭을 위한 액체 윤활제를 갖는 마찰대전나노발생기 및 그 작동방법에 따르면, 마찰대전나노발전기 내에 비극성 액체 윤활유가 채워지면 이러한 윤활유의 긴 디바이(Debye) 길이로 인해 공기 파괴를 효과적으로 차단할 수 있고, 구름 마찰과 윤활은 장치의 마찰 마모를 크게 줄일 수 있어, 각각 최대 200V 및 170mA의 고전압 및 전류 출력을 생성하여 상용 커패시터와 배터리를 충전 할 수 있는 효과를 갖는다. According to the triboelectric charging nanogenerator having a liquid lubricant for amplification of current through direct electron flow according to an embodiment of the present invention and an operating method thereof, when the non-polar liquid lubricant is filled in the triboelectric charging nanogenerator, the long Debye of this lubricant Due to its length, it can effectively block air breakage, and rolling friction and lubrication can greatly reduce the friction wear of the device, generating high voltage and current output of up to 200V and 170mA respectively, which has the effect of charging commercial capacitors and batteries. have
그리고 본 발명의 실시예에 따른 직접 전자 흐름을 통한 전류 증폭을 위한 액체 윤활제를 갖는 마찰대전나노발생기 및 그 작동방법에 따르면, 작동 중 마찰 마모가 상당히 감소되어 TENG의 기계적 안정성을 향상시키고, TENG 내부의 롤링 전극은 고체 표면 사이의 마찰을 줄이고 롤링 전극과 플레이트 전극이 접촉 할 때 발생하는 직접적인 전자 흐름을 통해 전류를 증폭하는 데 도움이 되며, 액체 윤활제와 직접 전자 흐름을 사용하는 본 발명은 100rpm의 저속 회전에서 각각 0.6W 및 1.26mW의 순간 및 RMS(root mean square) 전력을 생성 할 수 있고, 또한 상용 커패시터 및 리튬 이온 배터리를 충전하기에 충분한 정류 회로에 연결될 때 각각 최대 220V 및 170mA의 전압 및 전류 출력을 생성 할 수 있는 효과를 갖는다. And according to the triboelectric charging nanogenerator having a liquid lubricant for current amplification through direct electron flow and its operating method according to an embodiment of the present invention, friction wear during operation is significantly reduced to improve the mechanical stability of the TENG, and the internal TENG The rolling electrode of the present invention using liquid lubricant and direct electron flow reduces friction between the solid surfaces and helps to amplify the current through the direct electron flow that occurs when the rolling electrode and the plate electrode come in contact. It can generate instantaneous and root mean square (RMS) power of 0.6W and 1.26mW, respectively, at low speed rotation, and can also generate voltages up to 220V and 170mA, respectively, when connected to a rectifier circuit sufficient to charge commercial capacitors and lithium-ion batteries. It has the effect of generating a current output.
한편, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.On the other hand, the effects obtainable in the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those of ordinary skill in the art to which the present invention belongs from the description below. will be able
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술적 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석 되어서는 아니 된다.The following drawings attached to the present specification illustrate preferred embodiments of the present invention, and serve to further understand the technical spirit of the present invention together with the detailed description of the present invention, so the present invention is limited only to the matters described in those drawings and should not be interpreted.
도 1은 본 발명의 실시예에 따른 직접 전자 흐름을 통한 전류 증폭을 위한 비극성 액체 윤활제를 갖는 마찰대전나노발생기(LLS-TENG)의 사시도,1 is a perspective view of a triboelectric charging nanogenerator (LLS-TENG) having a non-polar liquid lubricant for current amplification through direct electron flow according to an embodiment of the present invention;
도 2는 본 발명의 실시예에 따른 LLS-TENG의 분해 사시도, 2 is an exploded perspective view of an LLS-TENG according to an embodiment of the present invention;
도 3은 본 발명의 실시예에 따른 LLS-TENG의 부분 단면도, 3 is a partial cross-sectional view of an LLS-TENG according to an embodiment of the present invention;
도 4는 본 발명의 실시예에 따른 LLS-TENG의 공기와 액체 윤활제의 전계방출 억제 비교 모식도, 4 is a comparative schematic diagram of suppression of field emission of air and liquid lubricant of LLS-TENG according to an embodiment of the present invention;
도 5는 공기와, 액체 윤활제 조건에 대한 VOC 그래프, 5 is a VOC graph for air and liquid lubricant conditions;
도 6은 공기와 액체 윤활제 조건에 대한 ICC 그래프, 6 is an ICC graph for air and liquid lubricant conditions;
도 7 및 도 8은 극성(도 7), 비극성(도 8) 액체에 대한 디바이 길이(λD)의 차이7 and 8 show the difference in Debye length (λD) for polar (FIG. 7) and non-polar (FIG. 8) liquids.
도 9 및 도 10은 서로 다른 액체에서 LLS-TENG의 VOC, ICC 출력9 and 10 show the VOC and ICC output of LLS-TENG in different liquids.
도 11은 본 발명의 실시예에 따른 작동메커니즘을 나타낸 LLS-TENG의 부분 단면도, 11 is a partial cross-sectional view of an LLS-TENG showing an operating mechanism according to an embodiment of the present invention;
도 12 및 도 13은 본 발명의 실시예에 따른 LLS-TENG의 VOC(도 12)와, 확대된 VOC 출력(도 13),12 and 13 are a VOC (FIG. 12) and an enlarged VOC output (FIG. 13) of an LLS-TENG according to an embodiment of the present invention;
도 14는 본 발명의 실시예에 따른 LLS-TENG의 순간 전압, 전류, 전력 출력 그래프, 14 is an instantaneous voltage, current, and power output graph of an LLS-TENG according to an embodiment of the present invention;
도 15는 본 발명의 실시예에 따른 LLS-TENG의 RMS 전압, 전류, 전력 출력 그래프, 15 is an RMS voltage, current, and power output graph of an LLS-TENG according to an embodiment of the present invention;
도 16 및 도 17은 본 발명의 실시예에 따라 제작된 LLS-TENG의 사진(도 16)과 정류회로(도 17),16 and 17 are pictures (FIG. 16) and a rectifier circuit (FIG. 17) of an LLS-TENG manufactured according to an embodiment of the present invention;
도 18 및 도 19는 직렬(도 18), 병렬(도 19)로 연결된 319 LED의 회로구성 및 사진, 18 and 19 are the circuit configuration and photos of 319 LEDs connected in series (FIG. 18) and parallel (FIG. 19);
도 20은 본 발명의 실시예에 따른 LLS-TENG의 정류 전압 및 전류20 is a rectified voltage and current of an LLS-TENG according to an embodiment of the present invention;
도 21은 본 발명의 실시예에 따른 LLS-TENG 충전 상용 100, 200 및 300μF 커패시터, 21 is an LLS-TENG charging commercial 100, 200 and 300 μF capacitor according to an embodiment of the present invention;
도 22는 본 발명의 실시예에 따른 LLS-TENG 상용리튬 이온배터리 충전 그래프를 도시한 것이다. 22 is a graph showing a charging graph of an LLS-TENG commercial lithium-ion battery according to an embodiment of the present invention.
이하에서는 본 발명의 실시예에 따른 직접 전자 흐름을 통한 전류 증폭을 위한 비극성 액체 윤활제를 갖는 마찰대전나노발생기(이하, LLS-TENG(100))의 구성, 기능 및 작동매커니즘에 대해 설명하도록 한다. Hereinafter, the configuration, function and operation mechanism of a triboelectric nanogenerator (hereinafter, LLS-TENG 100 ) having a non-polar liquid lubricant for amplification of current through direct electron flow according to an embodiment of the present invention will be described.
먼저, 도 1은 본 발명의 실시예에 따른 직접 전자 흐름을 통한 전류 증폭을 위한 비극성 액체 윤활제를 갖는 마찰대전나노발생기(LLS-TENG(100))의 사시도를 도시한 것이고, 도 2는 본 발명의 실시예에 따른 LLS-TENG의 분해 사시도를 도시한 것이다. 또한 도 3은 본 발명의 실시예에 따른 LLS-TENG의 부분 단면도를 도시한 것이다. First, FIG. 1 shows a perspective view of a triboelectric charging nanogenerator (LLS-TENG 100) having a non-polar liquid lubricant for current amplification through direct electron flow according to an embodiment of the present invention, and FIG. 2 is a perspective view of the present invention. is an exploded perspective view of the LLS-TENG according to the embodiment. 3 is a partial cross-sectional view of an LLS-TENG according to an embodiment of the present invention.
그리고 도 4는 본 발명의 실시예에 따른 LLS-TENG(100)의 공기와 액체 윤활제의 전계방출 억제 비교 모식도를 나타낸 것이고, 도 5는 공기와, 액체 윤활제 조건에 대한 VOC 그래프, 도 6은 공기와 액체 윤활제 조건에 대한 ICC 그래프를 도시한 것이다. And FIG. 4 is a comparative schematic diagram of field emission suppression of air and liquid lubricant of LLS-TENG 100 according to an embodiment of the present invention, FIG. 5 is a VOC graph for air and liquid lubricant conditions, FIG. 6 is air and ICC graphs for liquid lubricant conditions.
본 발명의 실시예에 따른 LLS-TENG(100)는 도 1 내지 도 3에 도시된 바와 같이, 외부실린더(1), 내부실린더(2), 유전체층(10), 롤링전극(20), 플레이트 전극(30), 비극성 액체 윤활제(40) 등을 포함하여 구성될 수 있음을 알 수 있다. As shown in FIGS. 1 to 3, the LLS-TENG 100 according to an embodiment of the present invention has an outer cylinder 1, an inner cylinder 2, a dielectric layer 10, a rolling electrode 20, and a plate electrode. (30), it can be seen that it can be configured to include a non-polar liquid lubricant (40).
내부실린더(2)와 외부실린더(1)와 지그(3)는 폴리메틸 메타 크릴 레이트(PMMA)로 구성될 수 있다. 또한, 롤링전극(20)은 막대 형태로 알루미늄으로 구성될 수 있고, 내부실린더(2)의 표면은 유전체층(10)으로 적어도 1회 이상 코팅되어 질 수 있다. 이러한 유전체 층은 폴리테트라 플루오로에틸렌(PTFE(10))으로 구성될 수 있다. 또한, 내부 실린더(2) 자체가 PTFE(10)로 구성될 수도 있다. The inner cylinder 2, the outer cylinder 1, and the jig 3 may be made of polymethyl methacrylate (PMMA). In addition, the rolling electrode 20 may be made of aluminum in the form of a rod, and the surface of the inner cylinder 2 may be coated with the dielectric layer 10 at least once or more. This dielectric layer may be comprised of polytetrafluoroethylene (PTFE 10). Also, the inner cylinder 2 itself may be made of PTFE 10 .
PMMA의 외부실린더(1)의 내부 표면에는 4 개의 만곡된 플레이트 전극(30)이 설치된다. 이러한 플레이트 전극(30)은 알루미늄으로 구성될 수 있다. 또한, 본 발명의 실시예에 따른 비극성 액체 윤활제(40)는 PTFE(10)층과, 플레이트 전극(30)의 사이공간에 충진되게 된다. 즉 내부실린더(2)와 외부실린더(1) 사이공간에 충진되게 된다. Four curved plate electrodes 30 are installed on the inner surface of the outer cylinder 1 of PMMA. The plate electrode 30 may be made of aluminum. In addition, the non-polar liquid lubricant 40 according to the embodiment of the present invention is to be filled in the space between the PTFE (10) layer and the plate electrode (30). That is, the space between the inner cylinder (2) and the outer cylinder (1) is filled.
유전체층(10)을 갖는 내부 실린더(2)가 외부의 입력에너지를 통해 회전함에 따라 6 개의 알루미늄 롤링 전극(20)이 LLS-TENG(100) 내부에서도 회전되게 된다. 롤링 전극(20)과 액체 윤활제(40)를 사용하여 제안된 본 발명은 향상된 전류 출력과 마찰 손상을 줄일 수 있게 된다. As the inner cylinder 2 having the dielectric layer 10 rotates through external input energy, the six aluminum rolling electrodes 20 are also rotated inside the LLS-TENG 100 . The present invention proposed using the rolling electrode 20 and the liquid lubricant 40 allows for improved current output and reduced friction damage.
즉, 유전체층(10)(PTFE)의 음의 표면 전하로 인한 공기 파괴의 발생은 액체 윤활제(40)에 의해 억제된다. 특히, 음전하는 롤링 전극(20)의 상단에서 양전하를 유도하고 롤링 전극(20)에서 분극을 유발한다. That is, the occurrence of air breakage due to the negative surface charge of the dielectric layer 10 (PTFE) is suppressed by the liquid lubricant 40 . In particular, the negative charge induces a positive charge at the top of the rolling electrode 20 and causes polarization at the rolling electrode 20 .
공기 파괴 억제로 인해 LLS-TENG(100)는 공기에서 작동하는 TENG에 비해 더 높은 전기 출력을 생성 할 수 있다. 또한, 롤링 전극(20)이 플레이트 전극(30)과 접촉하면 롤링 전극(20)에 축적된 전자가 플레이트 전극(30)으로 직접 흐르게 된다. 이러한 직접 전자 흐름은 회전 중에 높은 전류 출력을 생성하게 된다. Due to the suppression of air destruction, the LLS-TENG 100 can produce a higher electrical output compared to a TENG operating on air. In addition, when the rolling electrode 20 comes into contact with the plate electrode 30 , electrons accumulated in the rolling electrode 20 flow directly to the plate electrode 30 . This direct electron flow creates a high current output during rotation.
또한 구름 마찰과 윤활을 통해 마모 손상도 크게 감소한다.Wear damage is also greatly reduced through rolling friction and lubrication.
공기 파괴 및 전계 방출이 발생하는 동안 PTFE(10) 표면은 공기에서 한계 전하 밀도를 나타내게 된다. 따라서 Paschen의 법칙에 따르면 약 3kV/mm의 전계 강도는 공기 파괴를 유발할 수 있으며 낮은 전계 강도는 마이크로 스케일 갭에서 전계 방출을 유발할 수 있다. During air breakage and field emission, the PTFE 10 surface will exhibit a limiting charge density in air. Thus, according to Paschen's law, a field strength of about 3 kV/mm can cause air breakdown, and a low field strength can cause field emission in microscale gaps.
그러나 대전된 표면이 액체 윤활제(40)에 잠기면, 파괴에 필요한 전계 강도가 20kV/mm로 증가하고 전계 방출 발생에 필요한 최소 전계 강도가 증가하게 된다. 따라서 액체조건 상태에서 PTFE(10) 표면 전하의 증가가 관찰 될 수 있다 (도 4). 또한 장치가 윤활제(40)에 잠기면 전기장이 감소한다. 롤링 전극(20) 재료는 알루미늄이고 유전체층(10)은 PTFE(10) 필름이다. However, when the charged surface is immersed in the liquid lubricant 40, the electric field strength required for fracture increases to 20 kV/mm and the minimum electric field strength required to generate field emission increases. Therefore, an increase in the surface charge of the PTFE (10) can be observed in the liquid condition (Fig. 4). Also, when the device is immersed in lubricant 40, the electric field is reduced. The rolling electrode 20 material is aluminum and the dielectric layer 10 is a PTFE (10) film.
도 4는 LLS-TENG 각각을 공기, 미네랄 오일로 채운 경우의 결과를 보여준다. 공기와 미네랄 오일의 유전율은 각각 1과 2.1이다. PTFE(10) 표면의 표면 전하 밀도는 -10μC m-2이고 롤링 전극(20)은 부동으로 설정된다. 시뮬레이션 결과에 따르면 공기 및 윤활제 환경에서 롤링 전극(20)과 PTFE(10) 필름 사이에 전기장이 형성된다. 장치가 공기 및 윤활제 환경에서 작동할 때 전기장의 최대 강도는 각각 5.02 및 2.42kV mm-1이다. 미네랄 오일의 유전율에 따라 미네랄 오일의 전기장 강도는 공기보다 낮다. 일반적으로 한 지점에서의 전기장 강도는 다음의 수학식 1과 같이 설명 할 수 있습니다.Figure 4 shows the results when each of the LLS-TENG is filled with air and mineral oil. The permittivities of air and mineral oil are 1 and 2.1, respectively. The surface charge density of the surface of the PTFE 10 is -10 μC m -2 and the rolling electrode 20 is set to float. According to the simulation results, an electric field is formed between the rolling electrode 20 and the PTFE (10) film in an air and lubricant environment. When the device is operated in air and lubricant environments, the maximum strength of the electric field is 5.02 and 2.42 kV mm -1 , respectively. Depending on the dielectric constant of mineral oil, the electric field strength of mineral oil is lower than that of air. In general, the electric field strength at a point can be described as Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2021009524-appb-I000001
Figure PCTKR2021009524-appb-I000001
여기서 E는 전계 강도, Q는 전하, εr은 상대 유전율, ε0는 진공 유전율, d는 전하와 point 사이의 거리dl다. 수학식 1에 따르면 전극과 유전체 표면 사이의 재료의 유전율은 전계 강도에 영향을 미친다. 미네랄 오일을 사용하면 유전율이 증가함에 따라 전기장 강도가 감소하게 된다. 이러한 해석은 유활제 환경에 대해 얻은 시뮬레이션 결과와 일치한다. 그럼에도 불구하고 유전율이 증가함에 따라 윤활제(40)에서 전계 강도는 감소하지만 전속 밀도는 증가한다. 결과적으로 유도된 양전하가 변하지 않게 된다. Gauss의 법칙에 따라 전기 자속 밀도 (D)는 다음과 같이 전기장 강도 (E)와 관련된다. where E is the electric field strength, Q is the charge, ε r is the relative permittivity, ε 0 is the vacuum permittivity, and d is the distance dl between the charge and the point. According to Equation 1, the dielectric constant of the material between the electrode and the dielectric surface affects the electric field strength. With mineral oil, the electric field strength decreases as the dielectric constant increases. These interpretations are consistent with the simulation results obtained for the lubricant environment. Nevertheless, as the dielectric constant increases, the electric field strength in the lubricant 40 decreases but the electric flux density increases. As a result, the induced positive charge remains unchanged. According to Gauss's law, the electric flux density (D) is related to the electric field strength (E) as
[수학식 2][Equation 2]
Figure PCTKR2021009524-appb-I000002
Figure PCTKR2021009524-appb-I000002
유도 전하는 전극의 전기 플럭스와 관련이 있다. 결과적으로 전극에서 유도 된 양전하는 사용된 재료(윤활제 또는 공기)에 관계없이 유전율에 따라 변하지 않는다. 그럼에도 불구하고 공기의 높은 전기장 강도로 인해 공기 파괴가 발생하여 표면 전하를 제한하게 된다. The induced charge is related to the electrical flux of the electrode. Consequently, the positive charge induced in the electrode does not change with the permittivity regardless of the material used (lubricating agent or air). Nevertheless, due to the high electric field strength of air, air breakdown occurs, limiting the surface charge.
이 감소된 표면 전하로 인해 PTFE(10) 표면의 음전하와 관련된 전기 플럭스 밀도는 미네랄 오일의 전기 플럭스 밀도에 비해 감소한다. 따라서 공기 및 윤활제(40) 환경에서 LLS-TENG(100)의 전기 출력에는 현저한 차이가 있게 된다. Due to this reduced surface charge, the electrical flux density associated with the negative charge on the surface of the PTFE 10 decreases compared to that of mineral oil. Therefore, there is a significant difference in the electrical output of the LLS-TENG 100 in the air and lubricant 40 environment.
도 5는 작동 중 LLS-TENG의 개방회로전압(VOC) 출력을 보여준다. 도 5에 도시된 바와 같이, 장치가 대기 환경에서 작동 할 때 최대 VOC는 약 28V이다. 그러나 발전기에 액체 윤활제(40)를 채우면 최대 VOC는 200V로 증가함을 알 수 있다. 5 shows the open circuit voltage (VOC) output of the LLS-TENG during operation. As shown in Figure 5, the maximum VOC is about 28V when the device operates in an ambient environment. However, it can be seen that when the generator is filled with liquid lubricant 40, the maximum VOC increases to 200V.
또한 폐회로 전류(ICC) 출력은 윤활제(85mA)의 LLS-TENG(100)는 도 6에 나타난 것처럼 공기(5mA)보다 상당히 높음을 알 수 있다. 피크 ICC 출력은 VOC에 비해 전기적 피크가 적지만 후에 설명될 확대된 출력 플롯에서 볼 수 있듯이 LSS-TENG(100)가 회전할 때 5 ~ 10mA 범위의 ICC 출력이 지속적으로 생성되게 된다. 이러한 증가된 전기 출력은 액체 윤활제(40)의 도입이 TENG의 기계적 수명과 전기적 성능을 향상 시킨다는 것을 보여준다.In addition, it can be seen that the closed circuit current (ICC) output of the lubricant (85 mA) LLS-TENG 100 is significantly higher than that of air (5 mA) as shown in FIG. 6 . The peak ICC output has less electrical peak compared to the VOC, but as can be seen from the enlarged output plot that will be described later, the ICC output in the range of 5 to 10 mA is continuously generated when the LSS-TENG 100 rotates. This increased electrical output shows that the introduction of liquid lubricant 40 improves the mechanical life and electrical performance of the TENG.
도 7 및 도 8은 극성(도 7), 비극성(도 8) 액체에 대한 디바이 길이(λD)의 차이를 나타낸 것이다. 그리고 도 9 및 도 10은 서로 다른 액체에서 LLS-TENG의 VOC, ICC 출력을 도시한 것이다. 7 and 8 show the difference in the Debye length (λD) for polar (FIG. 7) and non-polar (FIG. 8) liquids. And Figures 9 and 10 show the VOC and ICC output of the LLS-TENG in different liquids.
마찰전기재료로 액체를 사용하는 TENG의 경우, 전기이중층(EDL)이 전기 출력에 상당한 영향을 미치는 것으로 나타난다. 액체가 전하로 고체 표면에 닿으면 액체 분자는 고체 표면에 평행한 두 개의 층을 형성한다. For TENGs using liquids as triboelectric materials, the electric double layer (EDL) appears to have a significant effect on the electrical output. When a liquid hits a solid surface with an electric charge, the liquid molecules form two layers parallel to the solid surface.
EDL의 길이는 디바이(Debye) 길이(λD)로 정의되며 고체 표면의 정전기 전하는 각 디바이 길이에 대해 스크리닝된다. 즉, 표면 전하를 가진 고체 물질이 액체에 잠기면 전자, 이온 또는 분자와 같은 액체의 전하 캐리어에 의해 표면 전하가 차단된다. 도 7 및 도 8에서 볼 수 있듯이 LLS-TENG(100)에는 음의 표면 전하를 나타내는 PTFE(10) 실린더와 표면과 접촉하는 롤링 전극(20)이 포함되어 있다. 장치가 극성 액체에 잠기면 극성 액체의 분자가 PTFE(10) 표면에서 음의 표면 전하의 정전기 장을 차단한다 (도 7). 이러한 스크리닝으로 인해 롤링 전극(20)에 유도되는 양전하가 크게 제한된다. The length of the EDL is defined as the Debye length (λD) and the electrostatic charge on the solid surface is screened for each Debye length. That is, when a solid material with a surface charge is immersed in a liquid, the surface charge is blocked by the charge carriers of the liquid, such as electrons, ions, or molecules. 7 and 8, the LLS-TENG 100 includes a PTFE 10 cylinder exhibiting a negative surface charge and a rolling electrode 20 in contact with the surface. When the device is immersed in a polar liquid, the molecules of the polar liquid block the electrostatic field of negative surface charge on the PTFE (10) surface (Figure 7). Due to such screening, the positive charge induced in the rolling electrode 20 is greatly limited.
그러나 미네랄 오일 및 실리콘 오일과 같은 비극성 액체는 극성 액체보다 디바이 길이가 더 크기 때문에 (도 8), PTFE(10)의 더 높은 음전하가 전극의 분극화를 통해 롤링 전극(20)에 유도된다. 비극성 액체의 기하학적으로 더 큰 디바이 길이는 PTFE(10)의 음의 표면 전하의 영향으로 더 높은 표면적에 해당한다. 더욱이, 극성 액체 및 비극성 액체에 특정한 전하 스크리닝은 롤링 전극(20)의 표면에서 발생한다. However, since non-polar liquids such as mineral oil and silicone oil have a larger Debye length than polar liquids (FIG. 8), a higher negative charge of PTFE 10 is induced in the rolling electrode 20 through the polarization of the electrode. The geometrically larger Debye length of the non-polar liquid corresponds to a higher surface area due to the influence of the negative surface charge of PTFE (10). Moreover, charge screening specific to polar liquids and non-polar liquids occurs at the surface of the rolling electrode 20 .
도 9 및 도 10은 각각 LLS-TENG에 미네랄 오일, 실리콘 오일, 피마 자유, 물 및 에틸 알코올을 채웠을 때 VOC 및 ICC 출력을 보여준다. 미네랄 오일/실리콘 오일은 전형적인 비극성, 물/에틸 알코올은 극성 액체입니다. 9 and 10 show the VOC and ICC output when LLS-TENG is filled with mineral oil, silicone oil, castor oil, water and ethyl alcohol, respectively. Mineral oil/silicone oil is a typical non-polar liquid, while water/ethyl alcohol is a polar liquid.
미네랄 오일을 채웠을 때 가장 높은 전기 출력이 생성되었다. 더욱이 장치에 물과 에틸알코올을 채웠을 때 생성되는 전기 출력은 거의 0이어서 측정 할 수 없었다. 일반적으로 피마자유는 리시놀 레산에 하이드 록실 작용기가 존재하기 때문에 다른 오일보다 극성이 더 높다. 따라서 피마자유의 경우 전기 출력은 다른 비극성 액체의 경우보다 낮았다. 전기 출력 결과는 액체의 디바이 길이에 따라 다르게 된다. 일반적으로 극성 액체의 비아이 길이는 상대적으로 작다 (물의 Debye 길이는 10~ 20 nm에 불과하고, 에탄올의 길이는 약 38 nm). 대조적으로, 비극성 액체의 Debye 길이는 1μm 이상으로 극성 액체보다 훨씬 크다.The highest electrical output was produced when filled with mineral oil. Moreover, when the device was filled with water and ethyl alcohol, the generated electrical output was almost zero and could not be measured. In general, castor oil is more polar than other oils because of the presence of hydroxyl functional groups in ricinoleic acid. Therefore, the electrical output for castor oil was lower than for other non-polar liquids. The electrical output result depends on the device length of the liquid. In general, the Via length of polar liquids is relatively small (the Debye length of water is only 10-20 nm, and the length of ethanol is about 38 nm). In contrast, the Debye length of non-polar liquids is much larger than that of polar liquids, over 1 μm.
도 11은 본 발명의 실시예에 따른 작동메커니즘을 나타낸 LLS-TENG의 부분 단면도를 도시한 것이다. 그리고 도 12 및 도 13은 본 발명의 실시예에 따른 LLS-TENG의 VOC(도 12)와, 확대된 VOC 출력(도 12), 도 14는 본 발명의 실시예에 따른 LLS-TENG의 순간 전압, 전류, 전력 출력 그래프를 도시한 것이다. 또한 도 15는 본 발명의 실시예에 따른 LLS-TENG의 RMS 전압, 전류, 전력 출력 그래프를 도시한 것이다. 11 is a partial cross-sectional view of an LLS-TENG showing an operating mechanism according to an embodiment of the present invention. 12 and 13 are the VOC (FIG. 12) of the LLS-TENG according to the embodiment of the present invention, the expanded VOC output (FIG. 12), and FIG. 14 is the instantaneous voltage of the LLS-TENG according to the embodiment of the present invention. , current and power output graphs are shown. Also, FIG. 15 shows graphs of RMS voltage, current, and power output of an LLS-TENG according to an embodiment of the present invention.
출력을 생성하기 위한 LLS-TENG(100)의 작동 메커니즘은 도 11에 도시된 바와 같이, 세 가지 주요 단계를 포함한다. The operating mechanism of the LLS-TENG 100 for generating an output includes three main steps, as shown in FIG. 11 .
첫째, PTFE(10) 표면층의 음전하가 롤링 전극(20)에서 양전하를 유도한다. 당연히 음전하는 PTFE(10) 표면에 의해 양전하와 분리되어 반대쪽에 축적된다. 롤링 전극(20)이 플레이트 전극(30)에 접근함에 따라 두 전극이 서로 접촉함에 따라 직접적인 전자 흐름이 발생한다. First, the negative charge of the surface layer of the PTFE (10) induces a positive charge in the rolling electrode (20). Naturally, the negative charge is separated from the positive charge by the surface of the PTFE 10 and accumulated on the opposite side. As the rolling electrode 20 approaches the plate electrode 30, direct electron flow occurs as the two electrodes come into contact with each other.
LLS-TENG(100)의 전기 출력은 이러한 흐름으로 인해 증폭된다. 액체 윤활제(40)는 앞서 설명한 바와 같이, 공기 파괴를 억제하여 PTFE(10)의 표면 전하를 증가시키고 기계적 수명을 증가시킨다. The electrical output of the LLS-TENG 100 is amplified due to this flow. The liquid lubricant 40 inhibits air breakage, increasing the surface charge of the PTFE 10 and increasing mechanical life, as described above.
LLS-TENG(100)의 PTFE(10) 실린더가 100rpm에서 작동할 때 측정 된 VOC 출력은 도 12 및 도 13에 나와 있다. 부착 된 전극은 독립형 TENG 에서처럼 연결된다. 도 12에 도시된 것처럼 LLS-TENG(100)는 100 ~ 200V 범위의 피크 전압 출력을 생성한다. 확대된 전압 출력은 도 13에 나와 있다. 롤링 전극(20)과 플레이트 전극(30) 사이의 접촉으로 인해 직접적인 전자 흐름이 발생하기 때문에 독특한 모양 피크를 관찰 할 수 있음을 알 수 있다. The measured VOC output when the PTFE (10) cylinder of the LLS-TENG (100) was operated at 100 rpm is shown in Figures 12 and 13. Attached electrodes are connected as in stand-alone TENG. As shown in FIG. 12 , the LLS-TENG 100 generates a peak voltage output in the range of 100 to 200V. The expanded voltage output is shown in FIG. 13 . It can be seen that a unique shape peak can be observed because direct electron flow occurs due to the contact between the rolling electrode 20 and the plate electrode 30 .
전기적 출력 특성을 명확히하기 위해 다양한 외부 부하 저항에 따른 전압, 전류 및 전력 출력을 검토하면, 도 14는 외부 부하 저항이 10Ω에서 1GΩ까지 변하는 순간 피크 전압, 전류 및 전력을 보여준다. 이때 입력 회전은 100rpm이다. 외부 부하 저항이 10Ω에서 1kΩ으로 증가함에 따라 순간 전압 출력은 크게 변하지 않는다. 그러나 외부 저항이 1kΩ에서 1MΩ으로 증가하면 전압 출력이 증가한다. 또한 외부 저항이 1MΩ에서 100MΩ으로 증가함에 따라 전압 출력은 점차 감소한다. 가장 높은 전류 출력은 10Ω에서 발생하며 출력은 외부 저항이 추가로 증가함에 따라 지속적으로 감소한다. Examining the voltage, current and power output according to various external load resistances to clarify the electrical output characteristics, Fig. 14 shows the instantaneous peak voltage, current and power when the external load resistance changes from 10Ω to 1GΩ. At this time, the input rotation is 100rpm. As the external load resistance increases from 10Ω to 1kΩ, the instantaneous voltage output does not change significantly. However, as the external resistance increases from 1kΩ to 1MΩ, the voltage output increases. Also, as the external resistance increases from 1MΩ to 100MΩ, the voltage output gradually decreases. The highest current output occurs at 10Ω and the output continues to decrease as the external resistance further increases.
이 결과에 따르면 LLS-TENG(100)는 외부 저항이 1MΩ 일 때 약 0.6W의 순간 전력을 생성할 수 있다. TENG를 기존 전자 장치에 적용하려면 지속적인 전기 출력이 핵심 요소이다. 본 발명의 실시예에서 RMS는 LLS-TENG(100)에 의해 생성되는 평균 전력을 결정하기 위해 고려되었다. RMS 전압(VRMS) 및 RMS 전류(IRMS)는 다음과 같이 계산된다.According to this result, the LLS-TENG 100 can generate an instantaneous power of about 0.6W when the external resistance is 1MΩ. A continuous electrical output is a key factor in the application of TENGs to existing electronic devices. In an embodiment of the present invention RMS is considered to determine the average power generated by the LLS-TENG 100 . RMS voltage (VRMS) and RMS current (IRMS) are calculated as follows.
[수학식 3][Equation 3]
Figure PCTKR2021009524-appb-I000003
Figure PCTKR2021009524-appb-I000003
여기서 V(t)와 I(t)는 각각 시간에 따른 전압과 전류를 나타낸다. 전압 및 전류 결과는 T1에서 T2까지 측정된다. RMS 전력(WRMS)은 VRMS와 IRMS의 곱으로 결정된다. Here, V(t) and I(t) represent voltage and current with time, respectively. Voltage and current results are measured from T 1 to T 2 . The RMS power (WRMS) is determined as the product of VRMS and IRMS.
LLS-TENG(100)를 100rpm으로 회전했을 때 얻은 RMS 결과는 도 15에 나와 있다. VRMS는 외부 부하 저항이 10Ω에서 1MΩ으로 증가하더라도 크게 변경되지 않는다. 그러나 외부 부하 저항이 10MΩ에서 1GΩ으로 증가하면 VRMS가 증가한다. 가장 높은 VRMS는 외부 부하 저항이 1GΩ 일 때 7.96V이다. The RMS results obtained when the LLS-TENG 100 was rotated at 100 rpm are shown in FIG. 15 . VRMS does not change significantly when the external load resistance increases from 10Ω to 1MΩ. However, VRMS increases as the external load resistance increases from 10MΩ to 1GΩ. The highest VRMS is 7.96V when the external load resistance is 1GΩ.
반대로 IRMS는 외부 부하 저항이 증가함에 따라 감소한다. 가장 높은 IRMS는 외부 부하 저항이 10Ω 일 때 1.49mA이다. WRMS는 외부 부하 저항이 1에서 100MΩ으로 증가하면 저항이 1GΩ까지 증가하면 감소한다. 가장 높은 WRMS는 100MΩ의 외부 저항에서 1.73mW이다. 순간 및 RMS 전력 결과는 LLS-TENG(100)가 실제 응용 분야에서 에너지 원으로 사용될 수 있음을 보여준다.Conversely, IRMS decreases as the external load resistance increases. The highest IRMS is 1.49mA with an external load resistance of 10Ω. WRMS decreases as the external load resistance increases from 1 to 100 MΩ and the resistance increases to 1 GΩ. The highest WRMS is 1.73mW with an external resistance of 100MΩ. The instantaneous and RMS power results show that the LLS-TENG 100 can be used as an energy source in practical applications.
도 16 및 도 17은 본 발명의 실시예에 따라 제작된 LLS-TENG의 사진(도 16)과 정류회로(도 17), 도 18 및 도 19는 직렬(도 18), 병렬(도 19)로 연결된 319 LED의 회로구성 및 사진, 도 20은 본 발명의 실시예에 따른 LLS-TENG의 정류 전압 및 전류 그래프, 도 21은 본 발명의 실시예에 따른 LLS-TENG 충전 상용 100, 200 및 300μF 커패시터, 도 22는 본 발명의 실시예에 따른 LLS-TENG 상용리튬 이온배터리 충전 그래프를 도시한 것이다. 16 and 17 are pictures (FIG. 16) and a rectifier circuit (FIG. 17) of an LLS-TENG manufactured according to an embodiment of the present invention, and FIGS. 18 and 19 are in series (FIG. 18) and parallel (FIG. 19). Circuit configuration and photo of the connected 319 LED, FIG. 20 is a graph of rectified voltage and current of LLS-TENG according to an embodiment of the present invention, and FIG. 21 is a commercial LLS-TENG charging 100, 200 and 300 μF capacitor according to an embodiment of the present invention , FIG. 22 shows a charging graph of an LLS-TENG commercial lithium-ion battery according to an embodiment of the present invention.
본 발명의 실시예에 따른 LLS-TENG의 제작에서, LLS-TENG(100)는 외부실린더(1), 내부실린더(2), 외부실린더(1)와 내부실린더(2) 사이를 구르는 알루미늄 롤링전극(20), 알루미늄 롤링전극(20)을 고정하는 지그(3)로 구성되었다. In the fabrication of the LLS-TENG according to the embodiment of the present invention, the LLS-TENG 100 is an aluminum rolling electrode that rolls between the outer cylinder 1, the inner cylinder 2, the outer cylinder 1 and the inner cylinder 2 (20), was composed of a jig (3) for fixing the aluminum rolling electrode (20).
PMMA로 만든 외부 실린더(1)는 높이와 직경이 각각 100mm와 70mm이다. 외부 실린더(1)의 내부 표면에는 4 개의 플레이트 전극(30)이 부착되어 있다. 두께 0.05mm의 100mm × 40mm 상용 알루미늄 테이프 4 개 (덕성 하이텍 (주))가 플레이트 전극(30)으로 사용되었다. 또한 상용 테플론 랩핑 와이어(AWG 24)가 플레이트 전극(30)에 부착된다. The outer cylinder 1 made of PMMA has a height and diameter of 100 mm and 70 mm, respectively. Four plate electrodes 30 are attached to the inner surface of the outer cylinder 1 . Four 100 mm × 40 mm commercial aluminum tapes with a thickness of 0.05 mm (Duksung Hitech Co., Ltd.) were used as plate electrodes 30 . A commercial Teflon wrapping wire (AWG 24) is also attached to the plate electrode 30 .
또한 PMMA로 만들어진 내부 실린더(2)는 높이와 직경이 각각 100mm와 40mm입니다. 내부 실린더(2)의 외부 표면은 0.13mm 두께의 여러 층의 PTFE(10) 테이프로 덮여 있다. 6 개의 알루미늄 롤링전극(20)은 내부 실린더(2)와 외부 실린더(1) 사이에 구비된다. 지그(3)는 알루미늄 롤링전극(20) 사이의 일정한 거리를 보장하는 데 사용된다.Also, the inner cylinder (2) made of PMMA has a height and diameter of 100 mm and 40 mm respectively. The outer surface of the inner cylinder (2) is covered with several layers of 0.13 mm thick PTFE (10) tape. Six aluminum rolling electrodes 20 are provided between the inner cylinder 2 and the outer cylinder 1 . The jig 3 is used to ensure a constant distance between the aluminum rolling electrodes 20 .
본 발명의 실험예에서, 전압 및 전류의 측정은 혼합 도메인 오실로스코프 (MDO 3015, Tektronix Co.), 전류 프로브 (TCP0030A, Tektronix Co.) 및 디지털 멀티 미터 (Fluke 289, FLUKE Co.)를 사용하여 측정되었다. 확대된 사진은 광학 현미경(BX53M, Olympus)을 사용하여 얻었다.In the experimental example of the present invention, the measurement of voltage and current was measured using a mixed domain oscilloscope (MDO 3015, Tektronix Co.), a current probe (TCP0030A, Tektronix Co.), and a digital multimeter (Fluke 289, FLUKE Co.). became Magnified pictures were obtained using an optical microscope (BX53M, Olympus).
도 16에 도시된 바와 같이, LLS-TENG(100)에는 PMMA 외부실린더(1)의 내부 표면에 부착된 4 개의 플레이트 전극(30)이 있음을 알 수 있다. 각 플레이트 전극(30)은 출력 정류를 위해 도 17에 도시된 바와 같이, 2 개의 고속 스위칭 다이오드의 중간 영역에 연결된다. As shown in FIG. 16 , it can be seen that the LLS-TENG 100 has four plate electrodes 30 attached to the inner surface of the PMMA outer cylinder 1 . Each plate electrode 30 is connected to the middle region of two fast switching diodes, as shown in FIG. 17 for output rectification.
높은 전기 출력으로 LLS-TENG(100)는 직렬 및 병렬로 연결된 319 개의 LED에 전원을 공급할 수 있다. 도 18 및 도 19는 각각 직렬 및 병렬로 연결된 319 개의 LED의 회로 구성과 LLS-TENG(100)가 작동할 때 켜진 LED의 해당 사진을 보여준다.With its high electrical output, the LLS-TENG 100 can power 319 LEDs connected in series and parallel. 18 and 19 show the circuit configuration of 319 LEDs connected in series and parallel, respectively, and corresponding pictures of the LEDs lit when the LLS-TENG 100 is operating.
도 20은 LLS-TENG의 정류된 전압 및 전류 출력을 보여준다. 출력은 입력 회전 100rpm에서 측정되었다. 피크 전압 및 전류 출력은 각각 220V 및 171mA임을 알 수 있다. LLS-TENG(100)는 고전류 출력을 생성할 수 있지만 상용 제품에 사용하기 위해 에너지 저장을 보장해야 한다. 20 shows the rectified voltage and current output of the LLS-TENG. The output was measured at 100 rpm of input rotation. It can be seen that the peak voltage and current outputs are 220V and 171mA, respectively. The LLS-TENG 100 can produce a high current output but must ensure energy storage for use in commercial products.
도 21 LLS-TENG(100)를 사용하여 충전된 100, 200 및 300μF 커패시터의 그래프를 보여준다. 특히 LLS-TENG(100)는 100, 200, 300μF 커패시터를 각각 200 초 내에 3.28, 1.72, 1.04V로 충전할 수 있음을 알 수 있다. 21 shows graphs of 100, 200 and 300 μF capacitors charged using LLS-TENG 100 . In particular, it can be seen that the LLS-TENG 100 can charge the 100, 200, and 300 μF capacitors to 3.28, 1.72, and 1.04 V within 200 seconds, respectively.
또한 LLS-TENG(100)는 커패시터가 포함된 배터리 충전 회로를 통해 상용 리튬 이온 배터리(LIB)를 충전 할 수 있다. 배터리 충전 회로는 장치에서 커패시터로 전하를 저장하고, 이 전하를 배터리로 전송하여 안정적인 충전을 가능하게 한다. 도 22은 LLS-TENG(100)에 연결된 3V, 2mAh LIB 배터리의 충전 플롯을 보여줍니다. 배터리는 4 시간 내에 2.737V에서 2.763V로 충전됨을 알 수 있다. 이 결과는 LLS-TENG(100)를 상용 배터리 충전을 위한 보조 전원으로 사용할 수 있음을 알 수 있다.In addition, the LLS-TENG 100 can charge a commercial lithium-ion battery (LIB) through a battery charging circuit including a capacitor. The battery charging circuit stores charge in the device as a capacitor and transfers this charge to the battery to enable stable charging. 22 shows a charge plot of a 3V, 2mAh LIB battery connected to an LLS-TENG(100). It can be seen that the battery charges from 2.737V to 2.763V in 4 hours. This result shows that the LLS-TENG 100 can be used as an auxiliary power source for charging commercial batteries.
본 발명의 실시예에서는 기존 TENG의 전기적 및 기계적 특성을 향상시키기 위해 액체 윤활제(40)가 채워진 TENG의 사용을 입증하였다. In the embodiment of the present invention, the use of a TENG filled with a liquid lubricant 40 is demonstrated to improve the electrical and mechanical properties of the existing TENG.
PTFE(10)의 표면 전하는 액체 윤활제(40)에 의해 공기 파괴 및 전계 방출 억제를 통해 향상될 수 있다. 미네랄 오일 및 실리콘 오일과 같은 비극성 액체 윤활제(40)는 긴 Debye 길이로 인해 TENG의 전기 출력을 향상시킬 수 있다. The surface charge of PTFE (10) can be enhanced by liquid lubricant (40) through air breakage and suppression of field emission. Non-polar liquid lubricants 40 such as mineral oil and silicone oil can improve the electrical output of the TENG due to the long Debye length.
또한 LLS-TENG(100)의 롤링 전극(20)은 작동 중 마찰을 줄이고 전극 사이에 직접적인 전자 흐름을 유도하여 전기 출력을 증가시킬 수 있다. 100rpm의 입력 회전에서 LLS-TENG(100)는 각각 최대 220V 및 171mA의 VOC 및 ICC를 생성 할 수 있다. 작동 중 LLS-TENG(100)의 순간 및 RMS 전력은 각각 0.6W 및 1.73mW이다. 이러한 높은 전류 출력으로 LLS-TENG(100)는 직렬 및 병렬로 연결된 319 개의 LED에 성공적으로 전원을 공급할 수 있음을 알 수 있었다. In addition, the rolling electrode 20 of the LLS-TENG 100 can reduce friction during operation and increase the electrical output by inducing a direct electron flow between the electrodes. At an input rotation of 100 rpm, the LLS-TENG 100 can generate VOC and ICC of up to 220V and 171mA, respectively. The instantaneous and RMS powers of the LLS-TENG 100 during operation are 0.6W and 1.73mW, respectively. With this high current output, it was found that the LLS-TENG 100 can successfully power 319 LEDs connected in series and parallel.
또한 LLS-TENG(100)는 상용 커패시터와 LIB를 충전할 수 있다. 따라서 본 발명의 실시예에 따른 메커니즘은 전기적 및 기계적 한계를 극복하고 보조 전원으로 LLS-TENG(100)의 사용을 촉진함으로써 TENG의 적용 가능성을 확장 할 수 있음을 입증하였다. In addition, the LLS-TENG 100 can charge commercial capacitors and LIBs. Therefore, it was demonstrated that the mechanism according to the embodiment of the present invention can expand the applicability of the TENG by overcoming the electrical and mechanical limitations and facilitating the use of the LLS-TENG 100 as an auxiliary power source.
또한, 상기와 같이 설명된 장치 및 방법은 상기 설명된 실시예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.In addition, in the apparatus and method described above, the configuration and method of the above-described embodiments are not limitedly applicable, but all or part of each embodiment is selectively combined so that various modifications can be made to the embodiments. may be configured.

Claims (10)

  1. 마찰대전나노발전기에 있어서, In the triboelectric nanogenerator,
    유전체을 갖는 내부실린더; an inner cylinder having a dielectric;
    상기 내부실린더 외면과 특정간격 이격되도록 감싸는 적어도 하나의 플레이트 전극; at least one plate electrode surrounding the inner cylinder to be spaced apart from the outer surface;
    상기 플레이트 전극과 상기 내부실린더 사이에 접촉되어 위치되는 복수의 롤링 전극; 및 a plurality of rolling electrodes positioned in contact between the plate electrode and the inner cylinder; and
    상기 플레이트 전극과 상기 내부실린더 사이공간에 충진되는 액체 윤활제;를 포함하는 것을 특징으로 하는 직접 전자 흐름을 통한 전류 증폭을 위한 액체 윤활제를 갖는 마찰대전나노발생기.A triboelectric charging nanogenerator having a liquid lubricant for current amplification through direct electron flow, characterized in that it comprises a; liquid lubricant filled in the space between the plate electrode and the inner cylinder.
  2. 제 1항에 있어서, The method of claim 1,
    상기 액체 윤활제는 비극성 액체 윤활제인 것을 특징으로 하는 직접 전자 흐름을 통한 전류 증폭을 위한 액체 윤활제를 갖는 마찰대전나노발생기.The liquid lubricant is a triboelectric charging nanogenerator having a liquid lubricant for current amplification through direct electron flow, characterized in that the non-polar liquid lubricant.
  3. 제 2항에 있어서, 3. The method of claim 2,
    상기 내부실린더 외면에 상기 유전체층이 적어도 1회 적층되는 것을 특징으로 하는 직접 전자 흐름을 통한 전류 증폭을 위한 액체 윤활제를 갖는 마찰대전나노발생기.A triboelectric charging nanogenerator having a liquid lubricant for current amplification through direct electron flow, characterized in that the dielectric layer is laminated at least once on the outer surface of the inner cylinder.
  4. 제 3항에 있어서, 4. The method of claim 3,
    상기 유전체층은 PTFE인 것을 특징으로 하는 직접 전자 흐름을 통한 전류 증폭을 위한 액체 윤활제를 갖는 마찰대전나노발생기.The dielectric layer is a triboelectric nanogenerator having a liquid lubricant for current amplification through direct electron flow, characterized in that PTFE.
  5. 제 2항에 있어서, 3. The method of claim 2,
    상기 내부실린더와 특정간격 이격되게 위치되는 외부실린더를 더 포함하고, 상기 플레이트 전극은 상기 외부실린더 내면에 결합되며, It further comprises an external cylinder positioned to be spaced apart from the internal cylinder at a specific distance, wherein the plate electrode is coupled to the inner surface of the external cylinder,
    상기 롤링전극은 막대 형태로 구성되며, 상기 외부실린더 전방, 후방 각각에 설치되어, 상기 복수의 롤링전극의 길이방향과 직경방향 이동 위치를 고정하는 지그;를 더 포함하는 것을 특징으로 하는 직접 전자 흐름을 통한 전류 증폭을 위한 액체 윤활제를 갖는 마찰대전나노발생기.The rolling electrode is configured in the form of a rod, and is installed in each of the front and rear sides of the outer cylinder, and a jig for fixing the longitudinal and diametrical movement positions of the plurality of rolling electrodes; direct electron flow, characterized in that it further comprises A triboelectric nanogenerator with liquid lubricant for current amplification through
  6. 제 1항에 있어서, The method of claim 1,
    상기 롤링전극과 상기 플레이트 전극은 알루미늄으로 구성되고, 상기 플레이트 전극에는 테플론 랩핑와이어가 부착되는 것을 특징으로 하는 직접 전자 흐름을 통한 전류 증폭을 위한 액체 윤활제를 갖는 마찰대전나노발생기.The rolling electrode and the plate electrode are made of aluminum, and a Teflon wrapping wire is attached to the plate electrode.
  7. 제 5항에 있어서, 6. The method of claim 5,
    상기 내부실린더와 상기 외부실린더와 상기 지그는 PMMA로 구성되는 직접 전자 흐름을 통한 전류 증폭을 위한 액체 윤활제를 갖는 마찰대전나노발생기.The inner cylinder, the outer cylinder, and the jig have a liquid lubricant for current amplification through direct electron flow composed of PMMA.
  8. 제 2항에 있어서, 3. The method of claim 2,
    상기 비극성 액체 윤활제는 미네랄 오일과 실리콘 오일 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 직접 전자 흐름을 통한 전류 증폭을 위한 액체 윤활제를 갖는 마찰대전나노발생기.The non-polar liquid lubricant comprises at least one of mineral oil and silicone oil.
  9. 제 2항에 있어서, 3. The method of claim 2,
    상기 비극성 액체 윤활제에 의해 상기 유전체층의 표면전하는 공기 파괴와 전계방출이 억제되며, 롤링전극의 작동마찰을 감소시키며, 상기 롤링전극과 상기 플레이트 전극 사이에 직접적인 전자흐름을 유도하는 것을 특징으로 하는 직접 전자 흐름을 통한 전류 증폭을 위한 액체 윤활제를 갖는 마찰대전나노발생기.Direct electron, characterized in that the surface charge of the dielectric layer is suppressed by air destruction and electric field emission by the non-polar liquid lubricant, reduces the operating friction of the rolling electrode, and induces a direct electron flow between the rolling electrode and the plate electrode A triboelectric nanogenerator with liquid lubricant for current amplification through flow.
  10. 제 1항 내지 제 9항에 따른 마찰대전나노발전기의 작동방법에 있어서, In the operating method of the triboelectric nanogenerator according to any one of claims 1 to 9,
    외부 입력에너지에 의해 내부실린더가 회전되고 롤링전극이 연동하여 회전되는 단계; Rotating the inner cylinder by the external input energy and rotating the rolling electrode interlockingly;
    상기 내부실린더 외면의 유전체층이 음전하로 대전되는 단계; charging the dielectric layer on the outer surface of the inner cylinder to be negatively charged;
    상기 유전체층과 접촉된 롤링전극에 양전하가 유도되고 분극을 유발하는 단계; 및inducing a positive charge to the rolling electrode in contact with the dielectric layer and causing polarization; and
    상기 롤링전극이 플레이트 전극에 접촉되면 상기 롤링전극에 축적된 전자가 상기 플레이트 전극으로 직접흐르는 단계;를 포함하는 것을 특징으로 하는 직접 전자 흐름을 통한 전류 증폭을 위한 액체 윤활제를 갖는 마찰대전나노발생기의 작동방법.When the rolling electrode is in contact with the plate electrode, the electrons accumulated in the rolling electrode directly flow to the plate electrode; triboelectric charging nano generator having a liquid lubricant for current amplification through direct electron flow, characterized in that it comprises a How it works.
PCT/KR2021/009524 2021-04-21 2021-07-23 Triboelectric nanogenerator having liquid lubricant for amplifying current through direct electron flow, and operation method thereof WO2022225099A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210051854A KR102507606B1 (en) 2021-04-21 2021-04-21 Non-polar Liquid Lubricant Submerged Triboelectric Nanogenerator for Current Amplification via Direct Electron Flow
KR10-2021-0051854 2021-04-21

Publications (1)

Publication Number Publication Date
WO2022225099A1 true WO2022225099A1 (en) 2022-10-27

Family

ID=83722362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009524 WO2022225099A1 (en) 2021-04-21 2021-07-23 Triboelectric nanogenerator having liquid lubricant for amplifying current through direct electron flow, and operation method thereof

Country Status (2)

Country Link
KR (1) KR102507606B1 (en)
WO (1) WO2022225099A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10333430B2 (en) * 2014-11-25 2019-06-25 Georgia Tech Research Corporation Robust triboelectric nanogenerator based on rolling electrification
KR20200042750A (en) * 2018-10-16 2020-04-24 한국생산기술연구원 Cylindrical triboelectric generator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101685184B1 (en) 2014-12-17 2016-12-13 한국과학기술원 Cylindrical triboelectric generator based on contact-electrification and method for manufacturing the generator
KR101728472B1 (en) 2015-10-27 2017-04-20 중앙대학교 산학협력단 Energy harvesting apparatus using triboelectrification
KR101800091B1 (en) 2015-12-18 2017-11-21 한국과학기술원 Triboelectric generating apparatus using drippy polymer
KR102101085B1 (en) 2018-08-16 2020-04-14 중앙대학교 산학협력단 Triboelectrification generator applicable to portable electric apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10333430B2 (en) * 2014-11-25 2019-06-25 Georgia Tech Research Corporation Robust triboelectric nanogenerator based on rolling electrification
KR20200042750A (en) * 2018-10-16 2020-04-24 한국생산기술연구원 Cylindrical triboelectric generator

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHUNG SEH-HOON, JIHOON CHUNG,MYUNGHWAN SONG,SEONWOO KIM,DONGJUN SHIN,ZONG-HONG LIN,BONWOOK KOO,DONGSEOB KIM,JINKEE HONG,SANGMIN LE: "Nonpolar Liquid Lubricant Submerged Triboelectric Nanogenerator for Current Amplification via Direct Electron Flow", ADVANCED ENERGY MATERIALS, vol. 11, no. 25, 8 July 2021 (2021-07-08), pages e2100936, XP055979473, DOI: 10.1002/aenm.202100936 *
GUO HENGYU, CHEN JUN, YEH MIN-HSIN, FAN XING, WEN ZHEN, LI ZHAOLING, HU CHENGUO, WANG ZHONG LIN: "An Ultrarobust High-Performance Triboelectric Nanogenerator Based on Charge Replenishment", ACS NANO, AMERICAN CHEMICAL SOCIETY, US, vol. 9, no. 5, 26 May 2015 (2015-05-26), US , pages 5577 - 5584, XP055979467, ISSN: 1936-0851, DOI: 10.1021/acsnano.5b01830 *
HAN QINKAI, DING ZHUANG, QIN ZHAOYE, WANG TIANYANG, XU XUEPING, CHU FULEI: "A triboelectric rolling ball bearing with self-powering and self-sensing capabilities", NANO ENERGY, ELSEVIER, NL, vol. 67, 1 January 2020 (2020-01-01), NL , pages 104277, XP055979464, ISSN: 2211-2855, DOI: 10.1016/j.nanoen.2019.104277 *

Also Published As

Publication number Publication date
KR102507606B1 (en) 2023-03-08
KR20220145464A (en) 2022-10-31

Similar Documents

Publication Publication Date Title
Mao et al. A paper triboelectric nanogenerator for self-powered electronic systems
Sun et al. Wind energy harvesting based on fluttering double-flag type triboelectric nanogenerators
Guo et al. A nanogenerator for harvesting airflow energy and light energy
Ye et al. Electrospun ion gel nanofibers for flexible triboelectric nanogenerator: electrochemical effect on output power
Lei et al. Largely enhanced output of the non‐contact mode triboelectric nanogenerator via a charge excitation based on a high insulation strategy
Kiziroglou et al. Rolling rod electrostatic microgenerator
Vasandani et al. Using a synchronous switch to enhance output performance of triboelectric nanogenerators
WO2021177489A1 (en) Triboelectric generator
WO2021095947A1 (en) Triboelectric generator
WO2022225099A1 (en) Triboelectric nanogenerator having liquid lubricant for amplifying current through direct electron flow, and operation method thereof
Jurado et al. A contact-separation mode triboelectric nanogenerator for ocean wave impact energy harvesting
Li et al. WGUs sensor based on integrated wind-induced generating units for 360 wind energy harvesting and self-powered wind velocity sensing
Tanaka et al. Current Generation Mechanism in Self-assembled Electret-based Vibrational Energy Generators.
AU2020101433A4 (en) Ttriboelectric nanogenerator based on teflon/vitamin B powder for humidity sensing
CN111413569B (en) Discharge testing device based on electret generator and testing method thereof
Heo et al. Synergistic effect of unidirectional charge accumulation and electrostatic discharge: Simplified design approach for dramatic output enhancement of triboelectric nanogenerator
WO2017222313A1 (en) Capacitance-type sensor and manufacturing method therefor
Lundgaard et al. Streamer/leaders from a metallic particle between parallel plane electrodes in transformer oil
CN115290151A (en) Friction nanometer power generation device and self-powered flow sensing system
WO2024135961A1 (en) Flutter-based triboelectric nanogenerator and operating method therefor
Sekiguchi et al. Electrical charges and currents distribution analysis in plaque samples by the DCIC-Q (t) method
WO2018190555A1 (en) Supercapacitor electrode and method for preparing same
Ali et al. Self-Powered Flexible Triboelectric Nanogenerators (TENGs) Based on Lateral Sliding Mode
Son et al. Enhancing the peak/RMS current output performance of a triboelectric nanogenerator by unidirectional charge-supplying flutter
Liu et al. A Helix-like Triboelectric Nanogenerator for Efficient Ambient Vibrational Energy Harvesting and Self-powered Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938016

Country of ref document: EP

Kind code of ref document: A1