WO2021095947A1 - Triboelectric generator - Google Patents

Triboelectric generator Download PDF

Info

Publication number
WO2021095947A1
WO2021095947A1 PCT/KR2019/015686 KR2019015686W WO2021095947A1 WO 2021095947 A1 WO2021095947 A1 WO 2021095947A1 KR 2019015686 W KR2019015686 W KR 2019015686W WO 2021095947 A1 WO2021095947 A1 WO 2021095947A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
charge
protrusion
electric charge
body portion
Prior art date
Application number
PCT/KR2019/015686
Other languages
French (fr)
Korean (ko)
Inventor
박진형
조한철
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2021095947A1 publication Critical patent/WO2021095947A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators

Definitions

  • the present invention relates to an energy harvesting device that converts mechanical energy due to vibration into electrical energy, and more particularly, to a triboelectric power plant capable of exhibiting high output.
  • the triboelectric power plant is a new concept eco-friendly energy power plant that converts consumable mechanical energy generated from micro-vibration or human movements in the surrounding area into electrical energy. can do.
  • a triboelectric power plant generates friction between different dielectrics or between dielectrics and metal through external pressure or vibration, and generates electricity from a potential difference induced by the generated friction. It is known to be able to provide 10 to 100 times the power.
  • the output of such a triboelectric power generator may be determined by the characteristics of the material causing the triboelectric charge (work function, ionization tendency, chemical potential, etc.), the composition and structure of the material, and the like.
  • the conventional triboelectric power plant does not exhibit a higher output due to the limitation of the charging characteristics of the material when generating induction electricity through friction.
  • the applicability of the triboelectric power plant is not wide, and the durability is not expressed at the required level.
  • the present invention is by introducing an electrode capable of efficiently focusing electric charges and improving the coupling relationship between the electrode and the electrode terminal. It is intended to provide a triboelectric generator capable of displaying high power.
  • the present invention includes: a second electric charge generating electric charge by contacting and separating the electric charge with the first electric charge; An electrode inserted into the second charge body; And an electrode terminal for drawing the charge moving through the electrode to the outside, wherein a partial region of the electrode and a partial region of the electrode terminal are in point contact.
  • the electrode may include a plurality of unit electrode bodies dispersed in the second charger, and the unit electrode body may include a body portion and a protrusion provided in the body portion.
  • a partial region of the electrode in point contact with a partial region of the electrode terminal may be the protrusion.
  • the electric charge may be focused on the protrusion.
  • the body portion may have elasticity.
  • the body portion may have at least one shape selected from the group consisting of a straight type, a curved type, a spiral type, and a zigzag type.
  • the body portion is spiral, and the protrusion may be provided toward a central axis of the spiral body portion.
  • the protrusion may have at least one shape selected from the group consisting of a needle-shaped, conical, polygonal pyramid, and serrated shape.
  • the density of the protrusions may be 1000 or less per 1 mm of the body unit length, and the tip angle of the protrusion may be less than 90 °.
  • the second charge may be a negative charge generating negative charge
  • the negative charge may include an organic polymer compound having a surface potential of -100 mV or less measured by Calvin probe force microscopy.
  • a certain region of the electrode and a certain region of the electrode terminal are combined (connected) in point contact, so that the electric charge concentrated on the electrode is discharged toward the electrode terminal at a high resistance value (inducing microdischarge). Because of this, it can show high output.
  • the second charger into which the electrode is inserted has flexibility, and the size of the second charger into which the electrode is inserted can be easily adjusted according to the application field of the triboelectric power plant, so it has excellent applicability. And economic feasibility.
  • FIG. 1 is a schematic diagram showing a triboelectric power generator according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing a unit electrode body included in a triboelectric power plant according to an embodiment of the present invention.
  • 3 and 4 are reference views for explaining a body portion and a protrusion constituting a unit electrode body included in a triboelectric power plant according to an embodiment of the present invention.
  • FIG. 5 is a reference diagram for explaining the principle of operation of a triboelectric power plant according to an embodiment of the present invention.
  • 6 to 9 are reference diagrams for explaining experimental examples of the present invention.
  • the triboelectric power generator according to the present invention includes an electrode having a structure capable of efficiently focusing electric charges, and the electrode and the electrode terminal are combined in point contact so that the electric charge concentrated on the electrode can be discharged in a state having a high resistance value. It is (connected), and it will be described in detail with reference to the drawings as follows.
  • a triboelectric power generator may include a second charger 10, an electrode 20, and an electrode terminal 30.
  • the second charger 10 included in the triboelectric power generator according to an embodiment of the present invention may serve to generate electric charges by contacting and separating the first charger 40.
  • the second charger 10 may be a positive charge generating positive charge (+) or a negative charge generating negative charge (-).
  • the second charger 10 may be a negative charge generating negative charge.
  • the negative charge may include one or more selected from the group consisting of silicone rubber, polysiloxane, polyurethane, polyester, polytetrafluoroethylene, and polyethylene terephthalate.
  • the second charge 10 may be a negative charge, and in this case, the negative charge has a surface potential of -100 mV or less (specifically, -300 to -1000 mV, or -800 to -900 mV) of an organic polymer compound (polysiloxane-based compound) may be included.
  • the surface potential may be a value measured under conditions of room temperature (20 ⁇ 5° C.) and 50% relative humidity.
  • the second charger 10 when the second charger 10 includes an organic polymer compound having a surface potential of -100 mV or less, it is possible to generate a large amount of negative charges, thereby providing a triboelectric power generator exhibiting high output. In addition, flexibility is imparted to the second charger 10 due to the organic polymer compound, thereby providing a triboelectric power generator with improved applicability and workability.
  • the electrode 20 included in the triboelectric power generator according to an embodiment of the present invention is inserted into the second charger 10, and temporarily stores the electric charge generated in the second charger 10, and It may serve to supply electric charge to the electrode terminal 30.
  • the electrode 20 may include a plurality of unit electrode bodies 21 dispersed within the second charger 10 so as to have a high surface area per unit area, which will be described in detail with reference to FIG. 2. Then it looks like this:
  • each of the plurality of unit electrode bodies 21 may include a body portion 21a and a protrusion portion 21b.
  • the body portion (21a) included in the unit electrode body (21) serves to temporarily store the electric charge generated in the second charger (10), and the electrode terminal (30) through contact with the electrode terminal (30). It can play a role of supplying electric charge to the body.
  • This body portion (21a) may have elasticity. When the body part 21a has elasticity, even if the second charger 10 and the electrode 20 are deformed by an external force, they can be varied in response, and thus applicability (usefulness ) And a frictional charging power plant with improved durability can be provided.
  • the shape of the body portion 21a is not limited to FIG. 2 and may have various shapes. Specifically, the body portion 21a may have one or more shapes selected from the group consisting of a straight line, a curved shape, a spiral shape, and a zigzag shape, as shown in FIG. 3. More specifically, the shape of the body portion 21a may be spiral. When the body portion 21a is spiral, the electrode 20 may have a higher surface area per unit area while exhibiting high elasticity.
  • the protrusion 21b included in the unit electrode body 21 may serve to focus electric charges generated in the second charger 10. That is, the electric charge generated by the second charger 10 moves to the body portion 21a of the unit electrode body 21, and the transferred electric charge (all or part) is the protrusion 21b of the unit electrode body 21 It is focused (specifically, focused on the tip of the protrusion 21b). In this case, the electric charge focused on the protrusion 21b may be supplied to the electrode terminal 30 through the contact between the protrusion 21b and the electrode terminal 30.
  • the protrusion 21b makes point contact with a partial region of the electrode terminal 30, microdischarge occurs and the output of the charge is amplified, and a detailed description thereof will be described later.
  • the shape of the protrusion 21b is not limited to FIG. 2 and may have various shapes. Specifically, the protrusion 21b may have one or more shapes selected from the group consisting of a straight type, a needle type (for example, a triangle, a barbed type, a needle type, etc.), a conical type, a polygonal pyramid type, and a sawtooth type, as shown in FIG. 4. have.
  • the protrusion 21b may be provided toward the central axis X of the spiral body portion.
  • the contact with the electrode terminal 30 can be made stably, the efficiency of focusing the electric charge is increased, and the electric charge output is further amplified, resulting in a high output frictional charge.
  • the density of the protrusions 21b may be 1000 or less, specifically 1 to 500, or 10 to 100 per 1mm of the body part 21a.
  • the tip angle ⁇ of the protrusion may be less than 90 °, specifically 1 to 60 °, or 1 to 30 °.
  • the unit electrode body 21 including the body portion 21a and the protrusion portion 21b may include a metal capable of storing and moving electric charges.
  • the unit electrode body includes at least one selected from the group consisting of aluminum (Al), silver (Ag), iron (Fe), nickel (Ni), gold (Au), platinum (Pt), and copper (Cu). can do.
  • the electrode terminal 30 included in the triboelectric power generator according to an embodiment of the present invention may serve to withdraw electric charges moving through the electrode 20 to the outside. These electrode terminals 30 may be in the form of a conventionally known wire.
  • the electrode terminal 30 is coupled (connected to) with an external circuit or an energy storage device, so that electric charges transferred from the electrode 20 to the electrode terminal 30 may be supplied to the external circuit or the energy storage device.
  • the triboelectric power generator according to the embodiment of the present invention provides a triboelectric power generator exhibiting high output by having a partial region of the electrode 20 and a partial region of the electrode terminal 30 in point-contact. can do. That is, the electric charge generated by the second charger 10 is output to the outside through the electrode 20 and the electrode terminal 30, and at this time, a partial region of the electrode 20 and a partial region of the electrode terminal 30 are As a result of contact, a microdischarge occurs in the process of outputting the charge stored in the electrode 20 to a portion of the electrode terminal 30 in point contact (the charge is discharged to a high resistance value), and the charge output is amplified to indicate high output. It is possible to provide a triboelectric power generator.
  • the point contact may be defined as a point in which a partial region of the electrode 20 and a partial region of the electrode terminal 30 contact each other and the contacted region forms a point.
  • a state in which a portion of the electrode 20 and a portion of the electrode terminal 30 are close to just before the point contact (for example, the separation distance between the electrode 20 and the electrode terminal 30 is 100 to 3000 ⁇ m state) may also be included.
  • a partial region of the electrode 20 may be a protrusion 21b included in the unit electrode body 21, and a partial region of the electrode terminal 30 may be a surface of the electrode terminal 30.
  • the electric charge output is more amplified and the output of the triboelectric power generator can be increased.
  • the first charger 40 that is in contact with and separates from the second charger 10 included in the triboelectric power generator according to an embodiment of the present invention is a positive charge generating positive charge (+) or a negative charge (- It may be an entire music bill that generates ).
  • the first charger 40 may be a positive charge generating positive charge.
  • the positive charge is not particularly limited as long as it generates a positive charge.
  • both units are wool, silk, mica, nylon, rubber, paper, glass, fur, polystyrene, It may include at least one selected from the group consisting of polyethylene, polypropylene, polyvinylchloride, polydimethylsiloxane (PDMS), and polyimide.
  • the electric charge may be output in the same process as shown in FIG. 5. That is, in the triboelectric power generating device (see Fig. 5 (a)) including the electrode 20 inserted into the second charger 10 and the electrode terminal 30 contacted with the electrode 20, When the first charger 40 and the second charger 10 contact each other (refer to FIG. 5B), the positive charge due to friction between the first charger 40 and the second charger 10 and Generation and movement of negative charges can occur. Thereafter, when the first charger 40 and the second charger 10 are separated, the electric charge (negative charge) generated in the second charger 10 moves through the electrode 20 and is supplied to the electrode terminal 30.
  • the electric charge supplied to the electrode terminal 30 may move to an external circuit or energy storage unit.
  • the protrusion 21b included in the unit electrode body 21 constituting the electrode 20 makes point contact with a partial region of the electrode terminal 30, and the charge moved from the body 21a to the protrusion 21b is In the state of being focused on the protrusion 21b, it moves to the electrode terminal 30.
  • the micro-discharge occurs in the process of moving the electric charge (as the resistance value increases when the charge moves), the output amplification occurs, and the frictional charge generator is It will be able to show high power.
  • the frictional charging power plant according to an embodiment of the present invention can freely adjust its size while having high power and flexibility, it can be efficiently used in various fields (for example, wearable devices, smart electronic devices, automobiles, sensors, etc.). Can be applied.
  • An aluminum (Al) unit electrode body provided with a needle-shaped protrusion in the spiral body portion as shown in FIG. 2 was prepared as shown in Table 1 below.
  • Each aluminum unit electrode body according to Preparation Examples 1 to 4 and an electrode terminal wire (Cu wire) were separated by a distance of 1000 ⁇ m, and the electric field was measured by COMSOL simulation, and the results are shown in Table 2 below.
  • Each of the aluminum unit electrode bodies of Preparation Examples 1 to 4 was put in a plurality of transparent containers, a polysiloxane-based compound solution (Smooth-On, Inc.) was added, and then dried at room temperature for 2 hours to consist of a plurality of aluminum unit electrode bodies.
  • An electrode structure having a structure in which an electrode (negative electrode, total weight: 0.2 g) is dispersed in a second electric charge (negative charge, total weight: 11 g) (a content ratio of an electrode: a second electric charge 1:55 weight ratio)
  • Each was prepared.
  • the second charge (negative charge) constituting each of the manufactured electrode structures was measured with a Calvin probe force microscope (Parks systems XE10) under conditions of 23° C. and 50% relative humidity, respectively, as a result of measuring the surface potential. The average value was found to be -815.514 mV.
  • a triboelectric power generator in which the electrode (negative electrode) and the electrode terminal are in point contact was manufactured by inserting a wire-type electrode terminal (Cu wire) into the second charger (negative charge) of each manufactured electrode structure.
  • a triboelectric power generator in the same process as in Example 1, except that an aluminum plate having a size of 50 mm ⁇ 50 mm ⁇ 1 mm (width ⁇ height ⁇ height) was applied as an electrode instead of the aluminum unit electrode body of Preparation Example 1. was prepared.
  • the amount of charge in the LCR ((Inductance, L), (Capacitance, C), (Resistance, R)) meter while causing frictional charging by placing the triboelectrically charged generators of Example 1 and Comparative Example 1 on a pushing tester, respectively, by applying a force of 5kgf. was measured, and the results are shown in FIG. 6. At this time, a nitrile rubber was applied as the first charger (both chargers).
  • Example 1 corresponding to the triboelectric power generator of the present invention had a greater variation in charge than Comparative Example 1. This point can be seen as supporting the excellent output characteristics (high current summation amount) of the triboelectric power plant of the present invention.
  • the triboelectric output boost adapter (ATSOLUTION's TENG EHA01 Co., Ltd.) was applied to the output terminal, while the triboelectric output boost adapter (TENG EHA01 of ATSOLUTION Co., Ltd.) was applied to the output terminal while causing frictional charging by applying a force of 5kgf to the pushing tester, respectively, to measure the output characteristics And the results are shown in FIGS. 7 and 8. At this time, a nitrile rubber was applied as the first charger (both chargers).
  • Example 1 corresponding to the triboelectric power generator of the present invention has a high measurement width of voltage and current, and the voltage and current measurement peaks are not continuous and independent linear (specifically, as microdischarge occurs).
  • the time is 0.00 to 0.15 sec, refer to).
  • Comparative Example 1 it was confirmed that the measurement width of voltage and current was low, and the voltage and current measurement peaks were continuously displayed. This point can be seen as supporting that micro-discharge occurs in the triboelectric power plant of the present invention, and thus the output characteristics are excellent.
  • Example 1 The frictional charging power plant of Example 1 and Comparative Example 1 was subjected to a 1% repeated tensile test with a universal compression tensile tester (JSV-H1000) to evaluate the durability of the frictional charging power plant, and the results are shown in FIG. .
  • JSV-H1000 universal compression tensile tester
  • Example 1 corresponding to the triboelectric power generator of the present invention did not change even if the cycle was increased, whereas in Comparative Example 1, the resistance change occurred rapidly after 200 times. This point can be seen as supporting the excellent durability of the triboelectric power plant of the present invention.

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

The present invention relates to a triboelectric generator comprising: a second charged body which generates charges by contact with and separation from a first charged body; an electrode which is embedded in the second charged body; and an electrode terminal via which the charges moving through the electrode are drawn out.

Description

마찰대전 발전소자Tribological warfare generator
본 발명은 진동에 의한 기계적 에너지를 전기 에너지로 전환하는 에너지 하베스팅(Energy Harvesting) 소자에 관한 것으로, 구체적으로는 고출력을 나타낼 수 있는 마찰대전 발전소자에 관한 것이다.The present invention relates to an energy harvesting device that converts mechanical energy due to vibration into electrical energy, and more particularly, to a triboelectric power plant capable of exhibiting high output.
마찰대전 발전소자는 기존의 태양광 발전, 풍력 발전 등과 같은 친환경 에너지와는 달리, 주변에 존재하는 미세진동이나 인간의 움직임으로부터 발생된 소모성의 기계적 에너지를 전기 에너지로 전환하는 새로운 개념의 친환경 에너지 발전소자라 할 수 있다.Unlike conventional eco-friendly energy such as solar power generation and wind power generation, the triboelectric power plant is a new concept eco-friendly energy power plant that converts consumable mechanical energy generated from micro-vibration or human movements in the surrounding area into electrical energy. can do.
구체적으로 마찰대전 발전소자는 외부의 압력 또는 진동을 통해 서로 다른 유전체 간의 마찰, 또는 유전체와 금속 간의 마찰을 발생시키고, 발생된 마찰에 의해 유도된 전위차로부터 전기를 발생시키는 것으로, 압전 발전소자에 비해 약 10 내지 100 배의 출력을 제공할 수 있는 것으로 알려져 있다.Specifically, a triboelectric power plant generates friction between different dielectrics or between dielectrics and metal through external pressure or vibration, and generates electricity from a potential difference induced by the generated friction. It is known to be able to provide 10 to 100 times the power.
이러한 마찰대전 발전소자의 출력은 마찰대전을 일으키는 재료의 특성(일함수, 이온화 경향, 화학적 포텐셜 등), 재료의 조성 및 구조 등에 의해 결정될 수 있다. 그런데 종래의 마찰대전 발전소자는 마찰을 통해 유도 전기를 생산함에 있어서, 재료가 갖는 대전 특성의 한계로 인해 보다 높은 출력을 나타내지 못하고 있다. 또한 재료의 유연성이 떨어져 마찰대전 발전소자의 응용성이 폭넓지 못하고, 내구성도 요구되는 수준으로 나타내지 못하고 있다.The output of such a triboelectric power generator may be determined by the characteristics of the material causing the triboelectric charge (work function, ionization tendency, chemical potential, etc.), the composition and structure of the material, and the like. However, the conventional triboelectric power plant does not exhibit a higher output due to the limitation of the charging characteristics of the material when generating induction electricity through friction. In addition, due to the lack of flexibility of the material, the applicability of the triboelectric power plant is not wide, and the durability is not expressed at the required level.
이에 따라 고출력을 나타내면서 유연성이 우수하여 다양한 분야에 응용될 수 있는 마찰대전 발전소자가 요구되고 있다.Accordingly, there is a need for a triboelectric power plant that exhibits high output and is excellent in flexibility and can be applied to various fields.
본 발명은 전하를 효율적으로 집속시킬 수 있는 전극을 도입하고 전극과 전극 단자 간의 결합 관계를 개선함으로써. 고출력을 나타낼 수 있는 마찰대전 발전소자를 제공하고자 한다.The present invention is by introducing an electrode capable of efficiently focusing electric charges and improving the coupling relationship between the electrode and the electrode terminal. It is intended to provide a triboelectric generator capable of displaying high power.
상기 과제를 해결하기 위해 본 발명은, 제1 대전체와의 접촉과 분리에 의하여 전하를 생성하는 제2 대전체; 상기 제2 대전체에 삽입되는 전극; 및 상기 전극을 통해 이동하는 상기 전하를 외부로 인출하는 전극 단자를 포함하고, 상기 전극의 일부 영역과 상기 전극 단자의 일부 영역이 점접촉하는 것인 마찰대전 발전소자를 제공한다.In order to solve the above problems, the present invention includes: a second electric charge generating electric charge by contacting and separating the electric charge with the first electric charge; An electrode inserted into the second charge body; And an electrode terminal for drawing the charge moving through the electrode to the outside, wherein a partial region of the electrode and a partial region of the electrode terminal are in point contact.
상기 전극은 상기 제2 대전체 내부에 분산되는 복수의 단위 전극체를 포함하고, 상기 단위 전극체는 몸체부 및 상기 몸체부에 구비되는 돌기부를 포함하는 것일 수 있다.The electrode may include a plurality of unit electrode bodies dispersed in the second charger, and the unit electrode body may include a body portion and a protrusion provided in the body portion.
상기 전극 단자의 일부 영역과 점접촉하는 상기 전극의 일부 영역은 상기 돌기부일 수 있다.A partial region of the electrode in point contact with a partial region of the electrode terminal may be the protrusion.
상기 전하는 상기 돌기부에 집속(集束)되는 것일 수 있다.The electric charge may be focused on the protrusion.
상기 몸체부는 탄성을 갖는 것일 수 있다.The body portion may have elasticity.
상기 몸체부는 직선형, 곡선형, 나선형 및 지그재그형으로 이루어진 군에서 선택된 1종 이상의 형상을 가질 수 있다.The body portion may have at least one shape selected from the group consisting of a straight type, a curved type, a spiral type, and a zigzag type.
상기 몸체부는 나선형이며, 상기 돌기부는 나선형 몸체부의 중심축을 향해 구비될 수 있다.The body portion is spiral, and the protrusion may be provided toward a central axis of the spiral body portion.
상기 돌기부는 침상형, 원뿔형, 다각뿔형 및 톱니형으로 이루어진 군에서 선택된 1종 이상의 형상을 가질 수 있다.The protrusion may have at least one shape selected from the group consisting of a needle-shaped, conical, polygonal pyramid, and serrated shape.
상기 돌기부의 밀도는 상기 몸체부 단위길이 1mm 당 1000 개 이하이고, 상기 돌기부의 선단 각도는 90 ° 미만일 수 있다.The density of the protrusions may be 1000 or less per 1 mm of the body unit length, and the tip angle of the protrusion may be less than 90 °.
상기 제2 대전체는 음전하를 생성하는 음대전체이고, 상기 음대전체는 캘빈 프로브 포스 마이크로스코피로 측정한 표면 포텐셜이 -100 mV 이하를 나타내는 유기 고분자 화합물을 포함하는 것일 수 있다.The second charge may be a negative charge generating negative charge, and the negative charge may include an organic polymer compound having a surface potential of -100 mV or less measured by Calvin probe force microscopy.
본 발명에 따른 마찰대전 발전소자는 전극의 어느 일부 영역과 전극 단자의 어느 일부 영역이 점접촉으로 결합(연결)되어 있어 전극에 집속된 전하가 전극 단자를 향해 높은 저항값으로 방전(미세방전 유도)되기 때문에 고출력을 나타낼 수 있다.In the triboelectric power generator according to the present invention, a certain region of the electrode and a certain region of the electrode terminal are combined (connected) in point contact, so that the electric charge concentrated on the electrode is discharged toward the electrode terminal at a high resistance value (inducing microdischarge). Because of this, it can show high output.
또한 본 발명에 따른 마찰대전 발전소자는 전극이 삽입되는 제2 대전체가 유연성을 가지며, 전극이 삽입된 제2 대전체의 크기를 마찰대전 발전소자의 응용 분야에 따라 용이하게 조절할 수 있기 때문에 우수한 응용성 및 경제성 등을 나타낼 수 있다.In addition, in the triboelectric power plant according to the present invention, the second charger into which the electrode is inserted has flexibility, and the size of the second charger into which the electrode is inserted can be easily adjusted according to the application field of the triboelectric power plant, so it has excellent applicability. And economic feasibility.
도 1은 본 발명의 일 실시예에 따른 마찰대전 발전소자를 나타낸 개략도이다.1 is a schematic diagram showing a triboelectric power generator according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 마찰대전 발전소자에 포함되는 단위 전극체를 나타낸 사시도이다.2 is a perspective view showing a unit electrode body included in a triboelectric power plant according to an embodiment of the present invention.
도 3 및 도 4는 본 발명의 일 실시예에 따른 마찰대전 발전소자에 포함되는 단위 전극체를 이루는 몸체부와 돌기부를 설명하기 위한 참고도이다.3 and 4 are reference views for explaining a body portion and a protrusion constituting a unit electrode body included in a triboelectric power plant according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 마찰대전 발전소자의 작동원리를 설명하기 위한 참고도이다.5 is a reference diagram for explaining the principle of operation of a triboelectric power plant according to an embodiment of the present invention.
도 6 내지 도 9은 본 발명의 실험예들을 설명하기 위한 참고도이다.6 to 9 are reference diagrams for explaining experimental examples of the present invention.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Terms and words used in the description and claims of the present invention should not be construed as being limited to their usual or dictionary meanings, and the inventors appropriately explain the concept of terms in order to explain their own invention in the best way. Based on the principle that it can be defined, it should be interpreted as a meaning and concept consistent with the technical idea of the present invention.
본 발명에 따른 마찰대전 발전소자는 전하를 효율적으로 집속시킬 수 있는 구조를 갖는 전극을 포함하고, 상기 전극에 집속된 전하가 높은 저항값을 갖는 상태로 방전될 수 있도록 전극과 전극 단자가 점접촉 결합(연결)된 것으로, 이에 대해 도면을 참조하여 구체적으로 설명하면 다음과 같다.The triboelectric power generator according to the present invention includes an electrode having a structure capable of efficiently focusing electric charges, and the electrode and the electrode terminal are combined in point contact so that the electric charge concentrated on the electrode can be discharged in a state having a high resistance value. It is (connected), and it will be described in detail with reference to the drawings as follows.
도 1을 참조하면, 본 발명의 일 실시예에 따른 마찰대전 발전소자는 제2 대전체(10), 전극(20) 및 전극 단자(30)를 포함할 수 있다.Referring to FIG. 1, a triboelectric power generator according to an embodiment of the present invention may include a second charger 10, an electrode 20, and an electrode terminal 30.
본 발명의 일 실시예에 따른 마찰대전 발전소자에 포함되는 제2 대전체(10)는 제1 대전체(40)와의 접촉과 분리에 의하여 전하를 생성하는 역할을 할 수 있다. 이러한 제2 대전체(10)는 양전하(+)를 생성하는 양대전체이거나 음전하(-)를 생성하는 음대전체일 수 있다.The second charger 10 included in the triboelectric power generator according to an embodiment of the present invention may serve to generate electric charges by contacting and separating the first charger 40. The second charger 10 may be a positive charge generating positive charge (+) or a negative charge generating negative charge (-).
여기서 상기 제2 대전체(10)는 음전하를 생성하는 음대전체일 수 있다. 이러한 음대전체는 실리콘 러버, 폴리실록산, 폴리우레탄, 폴리에스테르, 폴리테트라플루오르에틸렌 및 폴리에틸렌테레프탈레이트로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다. 구체적으로, 제2 대전체(10)는 음대전체일 수 있고, 이때, 음대전체는 캘빈 프로브 포스 마이크로스코피(kelvin probe force microscopy)로 측정한 표면 포텐셜이 -100 mV 이하(구체적으로, -300 내지 -1000 mV, 또는 -800 내지 -900 mV)를 나타내는 유기 고분자 화합물(폴리실록산계 화합물)을 포함할 수 있다. 상기 표면 포텐셜은 상온(20±5 ℃) 및 50% 상대습도 조건 하에 측정된 값일 수 있다. 이와 같이 제2 대전체(10)가 -100 mV 이하의 표면 포텐셜을 나타내는 유기 고분자 화합물을 포함할 경우, 음전하를 다량으로 생성할 수 있게 되어 고출력을 나타내는 마찰대전 발전소자를 제공할 수 있다. 또한 유기 고분자 화합물로 인해 제2 대전체(10)에 유연성이 부여되어 응용성 및 가공성이 향상된 마찰대전 발전소자를 제공할 수 있다.Here, the second charger 10 may be a negative charge generating negative charge. The negative charge may include one or more selected from the group consisting of silicone rubber, polysiloxane, polyurethane, polyester, polytetrafluoroethylene, and polyethylene terephthalate. Specifically, the second charge 10 may be a negative charge, and in this case, the negative charge has a surface potential of -100 mV or less (specifically, -300 to -1000 mV, or -800 to -900 mV) of an organic polymer compound (polysiloxane-based compound) may be included. The surface potential may be a value measured under conditions of room temperature (20±5° C.) and 50% relative humidity. As described above, when the second charger 10 includes an organic polymer compound having a surface potential of -100 mV or less, it is possible to generate a large amount of negative charges, thereby providing a triboelectric power generator exhibiting high output. In addition, flexibility is imparted to the second charger 10 due to the organic polymer compound, thereby providing a triboelectric power generator with improved applicability and workability.
본 발명의 일 실시예에 따른 마찰대전 발전소자에 포함되는 전극(20)은 제2 대전체(10)에 삽입되는 것으로, 제2 대전체(10)에서 생성된 전하를 일시적으로 저장하고, 저장된 전하를 전극 단자(30)에 공급하는 역할을 할 수 있다. 이러한 전극(20)은 단위면적 당 높은 표면적을 가질 수 있도록 제2 대전체(10) 내부에 분산되는 복수의 단위 전극체(21)를 포함할 수 있는데, 이에 대해 도 2를 참조하여 구체적으로 설명하면 다음과 같다.The electrode 20 included in the triboelectric power generator according to an embodiment of the present invention is inserted into the second charger 10, and temporarily stores the electric charge generated in the second charger 10, and It may serve to supply electric charge to the electrode terminal 30. The electrode 20 may include a plurality of unit electrode bodies 21 dispersed within the second charger 10 so as to have a high surface area per unit area, which will be described in detail with reference to FIG. 2. Then it looks like this:
도 2를 참조하면, 복수의 단위 전극체(21) 각각은 몸체부(21a) 및 돌기부(21b)를 포함할 수 있다.Referring to FIG. 2, each of the plurality of unit electrode bodies 21 may include a body portion 21a and a protrusion portion 21b.
상기 단위 전극체(21)에 포함되는 몸체부(21a)는 제2 대전체(10)에서 생성된 전하를 일시적으로 저장하는 역할과 함께, 전극 단자(30)와의 접촉을 통해 전극 단자(30)에 전하를 공급하는 역할을 할 수 있다. 이러한 몸체부(21a)는 탄성을 가질 수 있다. 상기 몸체부(21a)가 탄성을 가질 경우, 제2 대전체(10) 및 전극(20)이 외부의 힘에 의해 변형되더라도 이에 대응하여 가변(可變)할 수 있으며, 이로 인해 응용성(유용성) 및 내구성이 향상된 마찰대전 발전소자를 제공할 수 있다.The body portion (21a) included in the unit electrode body (21) serves to temporarily store the electric charge generated in the second charger (10), and the electrode terminal (30) through contact with the electrode terminal (30). It can play a role of supplying electric charge to the body. This body portion (21a) may have elasticity. When the body part 21a has elasticity, even if the second charger 10 and the electrode 20 are deformed by an external force, they can be varied in response, and thus applicability (usefulness ) And a frictional charging power plant with improved durability can be provided.
이러한 몸체부(21a)의 형상은 도 2에 한정하지 않고, 다양한 형상을 가질 수 있다. 구체적으로 몸체부(21a)는 도 3과 같이 직선형, 곡선형, 나선형 및 지그재그형으로 이루어진 군에서 선택된 1종 이상의 형상을 가질 수 있다. 보다 구체적으로 몸체부(21a)의 형상은 나선형일 수 있다. 상기 몸체부(21a)가 나선형일 경우, 높은 탄성을 나타내면서 전극(20)이 단위면적 당 보다 높은 표면적을 가질 수 있다.The shape of the body portion 21a is not limited to FIG. 2 and may have various shapes. Specifically, the body portion 21a may have one or more shapes selected from the group consisting of a straight line, a curved shape, a spiral shape, and a zigzag shape, as shown in FIG. 3. More specifically, the shape of the body portion 21a may be spiral. When the body portion 21a is spiral, the electrode 20 may have a higher surface area per unit area while exhibiting high elasticity.
상기 단위 전극체(21)에 포함되는 돌기부(21b)는 제2 대전체(10)에서 생성된 전하를 집속(集束)시키는 역할을 할 수 있다. 즉, 제2 대전체(10)에서 생성된 전하가 단위 전극체(21)의 몸체부(21a)로 이동하고, 이동한 전하(전부 또는 일부)가 단위 전극체(21)의 돌기부(21b)로 집속(구체적으로 돌기부(21b)의 선단에 집속됨)되는 것이다. 이때 돌기부(21b)에 집속된 전하는 돌기부(21b)와 전극 단자(30)의 접촉을 통해 전극 단자(30)로 공급될 수 있다. 이러한 돌기부(21b)는 전극 단자(30)의 일부 영역과 점접촉할 경우, 미세방전이 일어나 전하의 출력이 증폭하게 되는데, 이에 대한 구체적인 설명은 후술하기로 한다.The protrusion 21b included in the unit electrode body 21 may serve to focus electric charges generated in the second charger 10. That is, the electric charge generated by the second charger 10 moves to the body portion 21a of the unit electrode body 21, and the transferred electric charge (all or part) is the protrusion 21b of the unit electrode body 21 It is focused (specifically, focused on the tip of the protrusion 21b). In this case, the electric charge focused on the protrusion 21b may be supplied to the electrode terminal 30 through the contact between the protrusion 21b and the electrode terminal 30. When the protrusion 21b makes point contact with a partial region of the electrode terminal 30, microdischarge occurs and the output of the charge is amplified, and a detailed description thereof will be described later.
상기 돌기부(21b)의 형상은 도 2에 한정하지 않고, 다양한 형상을 가질 수 있다. 구체적으로 돌기부(21b)는 도 4와 같이 직선형, 침상형(예를 들어, 삼각형, 가시형, 바늘형 등), 원뿔형, 다각뿔형 및 톱니형으로 이루어진 군에서 선택되는 1종 이상의 형상을 가질 수 있다.The shape of the protrusion 21b is not limited to FIG. 2 and may have various shapes. Specifically, the protrusion 21b may have one or more shapes selected from the group consisting of a straight type, a needle type (for example, a triangle, a barbed type, a needle type, etc.), a conical type, a polygonal pyramid type, and a sawtooth type, as shown in FIG. 4. have.
여기서 몸체부(21a)가 나선형일 경우, 돌기부(21b)는 나선형 몸체부의 중심축(X)을 향해 구비될 수 있다. 돌기부(21b)가 나선형 몸체부의 중심축(X)을 향해 구비될 경우, 전극 단자(30)와의 접촉이 안정적으로 이루어질 수 있고 전하의 집속 효율이 높아져 전하 출력이 보다 증폭됨에 따라 고출력을 나타내는 마찰대전 발전소자를 제공할 수 있다.Here, when the body portion 21a is a spiral, the protrusion 21b may be provided toward the central axis X of the spiral body portion. When the protrusion 21b is provided toward the central axis X of the spiral body, the contact with the electrode terminal 30 can be made stably, the efficiency of focusing the electric charge is increased, and the electric charge output is further amplified, resulting in a high output frictional charge. Can provide power plant.
이러한 돌기부(21b)의 밀도는 몸체부(21a) 단위길이 1mm 당 1000 개 이하, 구체적으로는 1 내지 500 개, 또는 10 내지 100 개일 수 있다. 또한 돌기부의 선단(先端) 각도(θ)는 90 ° 미만, 구체적으로는 1 내지 60 °, 또는 1 내지 30 °일 수 있다. 상기 돌기부(21b)의 밀도와 선단 각도(θ)가 각각 상기 범위 내일 경우, 전하의 집속 효율이 높아져 전하 출력이 보다 증폭됨에 따라 고출력을 나타내는 마찰대전 발전소자를 제공할 수 있다.The density of the protrusions 21b may be 1000 or less, specifically 1 to 500, or 10 to 100 per 1mm of the body part 21a. In addition, the tip angle θ of the protrusion may be less than 90 °, specifically 1 to 60 °, or 1 to 30 °. When the density and the tip angle θ of the protrusions 21b are each within the above ranges, the concentration efficiency of electric charges is increased, and the electric charge output is further amplified, thereby providing a triboelectric power generating element exhibiting high output.
상기 몸체부(21a)와 돌기부(21b)를 포함하는 단위 전극체(21)는 전하의 저장 및 이동이 가능한 금속을 포함할 수 있다. 구체적으로 단위 전극체는 알루미늄(Al), 은(Ag), 철(Fe), 니켈(Ni), 금(Au), 백금(Pt) 및 구리(Cu)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.The unit electrode body 21 including the body portion 21a and the protrusion portion 21b may include a metal capable of storing and moving electric charges. Specifically, the unit electrode body includes at least one selected from the group consisting of aluminum (Al), silver (Ag), iron (Fe), nickel (Ni), gold (Au), platinum (Pt), and copper (Cu). can do.
본 발명의 일 실시예에 따른 마찰대전 발전소자에 포함되는 전극 단자(30)는 전극(20)을 통해 이동하는 전하를 외부로 인출하는 역할을 할 수 있다. 이러한 전극 단자(30)는 통상적으로 공지된 전선 형태일 수 있다. 상기 전극 단자(30)는 외부 회로 또는 에너지 저장소자와 결합(연결)되어 있어, 전극(20)에서 전극 단자(30)로 이동한 전하를 상기 외부 회로 또는 상기 에너지 저장소자에 공급할 수 있다.The electrode terminal 30 included in the triboelectric power generator according to an embodiment of the present invention may serve to withdraw electric charges moving through the electrode 20 to the outside. These electrode terminals 30 may be in the form of a conventionally known wire. The electrode terminal 30 is coupled (connected to) with an external circuit or an energy storage device, so that electric charges transferred from the electrode 20 to the electrode terminal 30 may be supplied to the external circuit or the energy storage device.
이러한 본 발명의 일 실시예에 따른 마찰대전 발전소자는 전극(20)의 일부 영역과 전극 단자(30)의 일부 영역이 점접촉(point-contact)하는 것으로, 이로 인해 고출력을 나타내는 마찰대전 발전소자를 제공할 수 있다. 즉, 제2 대전체(10)에서 생성된 전하는 전극(20) 및 전극 단자(30)를 통해 외부로 출력되는데, 이때, 전극(20)의 일부 영역과 전극 단자(30)의 일부 영역이 점접촉함에 따라 전극(20)에 저장된 전하가 점접촉하고 있는 전극 단자(30)의 일부 영역으로 출력되는 과정에서 미세방전이 일어나(전하가 높은 저항값으로 방전됨) 전하 출력이 증폭되어 고출력을 나타내는 마찰대전 발전소자를 제공할 수 있는 것이다. 이때 상기 점접촉이란 전극(20)의 일부 영역과 전극 단자(30)의 일부 영역이 서로 접촉하여 접촉한 영역이 점(point)을 이루는 것으로 정의할 수 있다. 또한 상기 점접촉의 범위에는 전극(20)의 일부 영역과 전극 단자(30)의 일부 영역이 점접촉 직전까지 근접해 있는 상태(예를 들어, 전극(20)과 전극 단자(30)의 이격 거리가 100 내지 3000 ㎛인 상태)도 포함될 수 있다.The triboelectric power generator according to the embodiment of the present invention provides a triboelectric power generator exhibiting high output by having a partial region of the electrode 20 and a partial region of the electrode terminal 30 in point-contact. can do. That is, the electric charge generated by the second charger 10 is output to the outside through the electrode 20 and the electrode terminal 30, and at this time, a partial region of the electrode 20 and a partial region of the electrode terminal 30 are As a result of contact, a microdischarge occurs in the process of outputting the charge stored in the electrode 20 to a portion of the electrode terminal 30 in point contact (the charge is discharged to a high resistance value), and the charge output is amplified to indicate high output. It is possible to provide a triboelectric power generator. In this case, the point contact may be defined as a point in which a partial region of the electrode 20 and a partial region of the electrode terminal 30 contact each other and the contacted region forms a point. In addition, in the range of the point contact, a state in which a portion of the electrode 20 and a portion of the electrode terminal 30 are close to just before the point contact (for example, the separation distance between the electrode 20 and the electrode terminal 30 is 100 to 3000 ㎛ state) may also be included.
여기서 상기 전극(20)의 일부 영역은 단위 전극체(21)에 포함되는 돌기부(21b)일 수 있고, 상기 전극 단자(30)의 일부 영역은 전극 단자(30)의 표면일 수 있다. 상기 전극(20)의 일부 영역이 단위 전극체(21)에 포함되는 돌기부(21b)일 경우, 전하 출력이 보다 증폭되어 마찰대전 발전소자의 출력을 높일 수 있다.Here, a partial region of the electrode 20 may be a protrusion 21b included in the unit electrode body 21, and a partial region of the electrode terminal 30 may be a surface of the electrode terminal 30. When a partial region of the electrode 20 is the protrusion 21b included in the unit electrode body 21, the electric charge output is more amplified and the output of the triboelectric power generator can be increased.
한편 본 발명의 일 실시예에 따른 마찰대전 발전소자에 포함되는 제2 대전체(10)와 접촉 및 분리가 이루어지는 제1 대전체(40)는 양전하(+)를 생성하는 양대전체이거나 음전하(-)를 생성하는 음대전체일 수 있다. 구체적으로 제1 대전체(40)는 양전하를 생성하는 양대전체일 수 있다. 여기서 상기 양대전체는 양전하를 생성하는 것이라면 특별히 한정되지 않는다. 구체적으로 양대전체는 울(wool), 실크(silk), 미카(mica), 나일론(nylon), 러버(rubber), 종이(paper), 유리(glass), 퍼(fur), 폴리스티렌(polystyrene), 폴리에틸렌(polyethylene), 폴리프로필렌(polypropylene), 폴리비닐클로라이드(polyvinylchloride), 폴리디메틸실록산(polydimethylsiloxane, PDMS) 및 폴리이미드(polyimide)로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다.Meanwhile, the first charger 40 that is in contact with and separates from the second charger 10 included in the triboelectric power generator according to an embodiment of the present invention is a positive charge generating positive charge (+) or a negative charge (- It may be an entire music bill that generates ). Specifically, the first charger 40 may be a positive charge generating positive charge. Here, the positive charge is not particularly limited as long as it generates a positive charge. Specifically, both units are wool, silk, mica, nylon, rubber, paper, glass, fur, polystyrene, It may include at least one selected from the group consisting of polyethylene, polypropylene, polyvinylchloride, polydimethylsiloxane (PDMS), and polyimide.
이러한 본 발명의 일 실시예에 따른 마찰대전 발전소자는 도 5와 같은 과정으로 전하의 출력이 이루어질 수 있다. 즉, 제2 대전체(10)에 삽입된 전극(20) 및 상기 전극(20)과 접점촉 결합된 전극 단자(30)를 포함하는 마찰대전 발전소자(도 5의 (a) 참조)에서, 제1 대전체(40)와 제2 대전체(10)가 서로 접촉하면(도 5의 (b) 참조), 제1 대전체(40)와 제2 대전체(10)의 마찰에 의한 양전하와 음전하의 생성 및 이동이 이루어질 수 있다. 이후, 제1 대전체(40)와 제2 대전체(10)가 분리되면 제2 대전체(10)에 생성된 전하(음전하)는 전극(20)을 통해 이동하여 전극 단자(30)로 공급되고, 전극 단자(30)로 공급된 전하는 외부의 회로 또는 에너지 저장소자로 이동할 수 있다. 여기서 전극(20)을 이루는 단위 전극체(21)에 포함되는 돌기부(21b)가 전극 단자(30)의 일부 영역과 점접촉이 이루어지고, 몸체부(21a)에서 돌기부(21b)로 이동한 전하는 돌기부(21b)에 집속된 상태에서 전극 단자(30)로 이동하게 되는데 이때, 전하의 이동 과정에서 미세방전이 일어남에 따라(전하 이동 시 저항값이 높아짐에 따라) 출력 증폭이 일어나 마찰대전 발전소자는 고출력을 나타낼 수 있게 된다.In the triboelectric power plant according to the embodiment of the present invention, the electric charge may be output in the same process as shown in FIG. 5. That is, in the triboelectric power generating device (see Fig. 5 (a)) including the electrode 20 inserted into the second charger 10 and the electrode terminal 30 contacted with the electrode 20, When the first charger 40 and the second charger 10 contact each other (refer to FIG. 5B), the positive charge due to friction between the first charger 40 and the second charger 10 and Generation and movement of negative charges can occur. Thereafter, when the first charger 40 and the second charger 10 are separated, the electric charge (negative charge) generated in the second charger 10 moves through the electrode 20 and is supplied to the electrode terminal 30. Then, the electric charge supplied to the electrode terminal 30 may move to an external circuit or energy storage unit. Here, the protrusion 21b included in the unit electrode body 21 constituting the electrode 20 makes point contact with a partial region of the electrode terminal 30, and the charge moved from the body 21a to the protrusion 21b is In the state of being focused on the protrusion 21b, it moves to the electrode terminal 30. At this time, as the micro-discharge occurs in the process of moving the electric charge (as the resistance value increases when the charge moves), the output amplification occurs, and the frictional charge generator is It will be able to show high power.
이와 같은 본 발명의 일 실시예에 따른 마찰대전 발전소자는 고출력 및 유연성을 가지면서 그 크기를 자유롭게 조절할 수 있기 때문에 다양한 분야(예를 들어, 웨어러블 기기, 스마트 전자기기, 자동차, 센서 등)에 효율적으로 응용될 수 있다.Since the frictional charging power plant according to an embodiment of the present invention can freely adjust its size while having high power and flexibility, it can be efficiently used in various fields (for example, wearable devices, smart electronic devices, automobiles, sensors, etc.). Can be applied.
이하, 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 통상의 기술자에게 있어서 명백한 것이며, 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by examples. However, the following examples are intended to illustrate the present invention, and that various changes and modifications can be made within the scope of the present invention and the scope of the technical idea are obvious to those skilled in the art, and the scope of the present invention is not limited thereto.
[준비예 1 내지 4][Preparation Examples 1 to 4]
도 2와 같은 나선형 몸체부에 침상형 돌기부가 구비된 알루미늄(Al) 단위 전극체를 하기 표 1과 같이 준비하였다.An aluminum (Al) unit electrode body provided with a needle-shaped protrusion in the spiral body portion as shown in FIG. 2 was prepared as shown in Table 1 below.
구분division 나선형 몸체부의 높이(H)Height of the spiral body (H) 침상형 돌기부의 밀도(나선형 몸체부 단위 길이 1㎜ 당 개수)Density of needle-shaped protrusions (number per unit length of helical body part 1mm) 침상형 돌기부의 선단 각도(θ)The tip angle of the needle-shaped protrusion (θ)
준비예 1Preparation Example 1 1 ㎜1 mm 100100 10°10°
준비예 2Preparation Example 2 2 ㎜2 mm 8080 20°20°
준비예 3Preparation Example 3 4 ㎜4 mm 5050 40°40°
준비예 4Preparation Example 4 6 ㎜6 mm 2020 60°60°
[실험예 1][Experimental Example 1]
준비예 1 내지 4에 따른 각 알루미늄 단위 전극체와 전극 단자 와이어(Cu wire)를 1000 ㎛ 거리로 이격시킨 상태에서 COMSOL simulation하여 전기장을 측정하였으며, 그 결과를 하기 표 2에 나타내었다.Each aluminum unit electrode body according to Preparation Examples 1 to 4 and an electrode terminal wire (Cu wire) were separated by a distance of 1000 μm, and the electric field was measured by COMSOL simulation, and the results are shown in Table 2 below.
구분division 전기장Electric field
준비예 1Preparation Example 1 4.11×106 V/m4.11×10 6 V/m
준비예 2Preparation Example 2 3.46×106 V/m3.46×10 6 V/m
준비예 3Preparation Example 3 3.02×106 V/m3.02×10 6 V/m
준비예 4Preparation Example 4 2.89×106 V/m2.89×10 6 V/m
상기 표 2를 참조하면, 돌기부의 선단 각도가 작을수록 전기장 측정치가 높아지는 것을 확인할 수 있다.Referring to Table 2, it can be seen that the smaller the tip angle of the protrusion, the higher the electric field measurement value.
[실시예 1 내지 4][Examples 1 to 4]
준비예 1 내지 4의 알루미늄 단위 전극체 각각을 투명 용기에 복수로 투입하고, 폴리실록산계 화합물 용액(Smooth-On, Inc.)을 첨가한 후 상온에서 2 시간 동안 건조시켜 복수의 알루미늄 단위 전극체로 이루어진 전극(음전극, 총 중량: 0.2 g)이 제2 대전체(음대전체, 총 중량: 11 g)에 분산된 구조를 갖는 전극 구조체(전극:제2 대전체의 함량 비율 = 1:55 중량비)를 각각 제조하였다. 이때, 각 제조된 전극 구조체를 이루는 제2 대전체(음대전체)를 캘빈 프로브 포스 마이크로스코피(Parks systems XE10)로 23 ℃ 및 50% 상대습도 조건 하에서 그 표면 포텐셜을 각각 측정한 결과, 표면 포텐셜의 평균값이 -815.514 mV로 확인되었다.Each of the aluminum unit electrode bodies of Preparation Examples 1 to 4 was put in a plurality of transparent containers, a polysiloxane-based compound solution (Smooth-On, Inc.) was added, and then dried at room temperature for 2 hours to consist of a plurality of aluminum unit electrode bodies. An electrode structure having a structure in which an electrode (negative electrode, total weight: 0.2 g) is dispersed in a second electric charge (negative charge, total weight: 11 g) (a content ratio of an electrode: a second electric charge = 1:55 weight ratio) Each was prepared. At this time, the second charge (negative charge) constituting each of the manufactured electrode structures was measured with a Calvin probe force microscope (Parks systems XE10) under conditions of 23° C. and 50% relative humidity, respectively, as a result of measuring the surface potential. The average value was found to be -815.514 mV.
각각 제조된 전극 구조체의 제2 대전체(음대전체)에 전선형 전극 단자(Cu wire)를 삽입하여 전극(음전극)과 전극 단자가 점접촉하는 마찰대전 발전소자를 각각 제조하였다.A triboelectric power generator in which the electrode (negative electrode) and the electrode terminal are in point contact was manufactured by inserting a wire-type electrode terminal (Cu wire) into the second charger (negative charge) of each manufactured electrode structure.
[비교예 1][Comparative Example 1]
준비예 1의 알루미늄 단위 전극체 대신에 50mm×50mm×1mm 크기(가로×세로×높이)의 알루미늄 플레이트를 전극으로 적용한 것을 제외하고는 실시예 1과 동일한 과정으로 마찰대전 발전소자(전극과 전극 단자가 면접촉하게 됨)를 제조하였다.A triboelectric power generator (electrode and electrode terminal) in the same process as in Example 1, except that an aluminum plate having a size of 50 mm × 50 mm × 1 mm (width × height × height) was applied as an electrode instead of the aluminum unit electrode body of Preparation Example 1. Was prepared.
[실험예 2][Experimental Example 2]
실시예 1과 비교예 1의 마찰대전 발전소자를 각각 pushing tester에 놓고 5kgf의 힘을 가해 마찰 대전을 일으키면서 LCR((Inductance, L), (Capacitance, C), (Resistance, R)) 미터로 전하량을 측정하였으며, 그 결과를 도 6에 나타내었다. 이때, 제1 대전체(양대전체)로는 니트릴 러버를 적용하였다.The amount of charge in the LCR ((Inductance, L), (Capacitance, C), (Resistance, R)) meter while causing frictional charging by placing the triboelectrically charged generators of Example 1 and Comparative Example 1 on a pushing tester, respectively, by applying a force of 5kgf. Was measured, and the results are shown in FIG. 6. At this time, a nitrile rubber was applied as the first charger (both chargers).
도 6을 참조하면, 본 발명의 마찰대전 발전소자에 해당하는 실시예 1은 전하(Charge)의 변동 폭이 비교예 1보다 큰 것을 확인할 수 있었다. 이러한 점은 본 발명의 마찰대전 발전소자의 출력 특성(전류합상량 높음)이 우수하다는 것을 뒷받침하는 것으로 볼 수 있다.Referring to FIG. 6, it was confirmed that Example 1 corresponding to the triboelectric power generator of the present invention had a greater variation in charge than Comparative Example 1. This point can be seen as supporting the excellent output characteristics (high current summation amount) of the triboelectric power plant of the present invention.
[실험예 3][Experimental Example 3]
실시에 1과 비교예 1의 마찰대전 발전소자를 각각 pushing tester에 놓고 5kgf의 힘을 가해 마찰 대전을 일으키면서 output 단자에 triboelectric output boost adaptor((주)ATSOLUTION의 TENG EHA01)를 적용하여 출력 특성을 측정하였으며, 그 결과를 도 7 및 도 8에 나타내었다. 이때, 제1 대전체(양대전체)로는 니트릴 러버를 적용하였다.The triboelectric output boost adapter (ATSOLUTION's TENG EHA01 Co., Ltd.) was applied to the output terminal, while the triboelectric output boost adapter (TENG EHA01 of ATSOLUTION Co., Ltd.) was applied to the output terminal while causing frictional charging by applying a force of 5kgf to the pushing tester, respectively, to measure the output characteristics And the results are shown in FIGS. 7 and 8. At this time, a nitrile rubber was applied as the first charger (both chargers).
도 7을 참조하면, 본 발명의 마찰대전 발전소자에 해당하는 실시예 1은 전압 및 전류의 측정 폭이 높으며, 미세방전이 일어남에 따라 전압 및 전류 측정 피크가 연속적이지 않고 독립된 선형(구체적으로, Time이 0.00 내지 0.15 sec인 경우 참조)으로 나타나는 것을 확인할 수 있었다. 한편 도 8을 참조하면, 비교예 1은 전압 및 전류의 측정 폭이 낮으며, 전압 및 전류 측정 피크가 연속적으로 이어져 나타나는 것을 확인할 수 있었다. 이러한 점은 본 발명의 마찰대전 발전소자에서 미세방전이 일어나며, 이로 인해 출력 특성이 우수하다는 것을 뒷받침하는 것으로 볼 수 있다.Referring to FIG. 7, Example 1 corresponding to the triboelectric power generator of the present invention has a high measurement width of voltage and current, and the voltage and current measurement peaks are not continuous and independent linear (specifically, as microdischarge occurs). When the time is 0.00 to 0.15 sec, refer to). Meanwhile, referring to FIG. 8, in Comparative Example 1, it was confirmed that the measurement width of voltage and current was low, and the voltage and current measurement peaks were continuously displayed. This point can be seen as supporting that micro-discharge occurs in the triboelectric power plant of the present invention, and thus the output characteristics are excellent.
[실험예 4][Experimental Example 4]
실시예 1과 비교예 1의 마찰대전 발전소자를 만능압축인장시험기(JSV-H1000)로 1% 반복 인장시험을 진행하여 마찰대전 발전소자의 내구성(durability)을 평가하였으며, 그 결과를 도 9에 나타내었다.The frictional charging power plant of Example 1 and Comparative Example 1 was subjected to a 1% repeated tensile test with a universal compression tensile tester (JSV-H1000) to evaluate the durability of the frictional charging power plant, and the results are shown in FIG. .
도 9를 참조하면, 본 발명의 마찰대전 발전소자에 해당하는 실시예 1은 사이클이 증가하더라도 저항 변화가 없는 반면에, 비교예 1은 200 회 이후 저항 변화가 급격히 일어나는 것을 확인할 수 있었다. 이러한 점은 본 발명의 마찰대전 발전소자의 내구성이 우수하다는 것을 뒷받침하는 것으로 볼 수 있다.Referring to FIG. 9, it was confirmed that the resistance change in Example 1 corresponding to the triboelectric power generator of the present invention did not change even if the cycle was increased, whereas in Comparative Example 1, the resistance change occurred rapidly after 200 times. This point can be seen as supporting the excellent durability of the triboelectric power plant of the present invention.

Claims (10)

  1. 제1 대전체와의 접촉과 분리에 의하여 전하를 생성하는 제2 대전체;A second electric charge generating electric charge by contacting and separating the electric charge with the first electric charge;
    상기 제2 대전체에 삽입되는 전극; 및An electrode inserted into the second charge body; And
    상기 전극을 통해 이동하는 상기 전하를 외부로 인출하는 전극 단자를 포함하고,Including an electrode terminal for drawing the charge moving through the electrode to the outside,
    상기 전극의 일부 영역과 상기 전극 단자의 일부 영역이 점접촉하는 것인 마찰대전 발전소자.A triboelectric power generator in which a partial region of the electrode and a partial region of the electrode terminal are in point contact.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 전극은 상기 제2 대전체 내부에 분산되는 복수의 단위 전극체를 포함하고,The electrode includes a plurality of unit electrode bodies dispersed in the second charge body,
    상기 단위 전극체는 몸체부 및 상기 몸체부에 구비되는 돌기부를 포함하는 것인 마찰대전 발전소자.The unit electrode body is a frictional charging generator comprising a body portion and a protrusion provided in the body portion.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 전극 단자의 일부 영역과 점접촉하는 상기 전극의 일부 영역이 상기 돌기부인 것인 마찰대전 발전소자.A triboelectric power generator wherein a partial region of the electrode in point contact with a partial region of the electrode terminal is the protrusion.
  4. 청구항 2에 있어서,The method according to claim 2,
    상기 전하는 상기 돌기부에 집속되는 것인 마찰대전 발전소자.The electric charge is focused on the protrusion.
  5. 청구항 2에 있어서,The method according to claim 2,
    상기 몸체부는 탄성을 갖는 것인 마찰대전 발전소자.The frictional charging power generator of the body portion having elasticity.
  6. 청구항 2에 있어서,The method according to claim 2,
    상기 몸체부는 직선형, 곡선형, 나선형 및 지그재그형으로 이루어진 군에서 선택된 1종 이상의 형상을 갖는 것인 마찰대전 발전소자.The body portion is a triboelectric power generator having at least one shape selected from the group consisting of a straight type, a curved type, a spiral type and a zigzag type.
  7. 청구항 6에 있어서,The method of claim 6,
    상기 몸체부는 나선형이며,The body portion is spiral,
    상기 돌기부는 나선형 몸체부의 중심축을 향해 구비되는 것인 마찰대전 발전소자.Wherein the protrusion is provided toward the central axis of the spiral body portion of the frictional charging power plant.
  8. 청구항 2에 있어서,The method according to claim 2,
    상기 돌기부는 침상형, 원뿔형, 다각뿔형 및 톱니형으로 이루어진 군에서 선택된 1종 이상의 형상을 갖는 것인 마찰대전 발전소자.The protrusion is a triboelectric power generator having at least one shape selected from the group consisting of a needle-shaped, conical, polygonal pyramid, and serrated shape.
  9. 청구항 2에 있어서,The method according to claim 2,
    상기 돌기부의 밀도는 상기 몸체부 단위길이 1mm 당 1000 개 이하이고,The density of the protrusions is 1000 or less per 1 mm of the body unit length,
    상기 돌기부의 선단 각도는 90 ° 미만인 것인 마찰대전 발전소자.The tip angle of the protrusion is less than 90 ° a triboelectric power generator.
  10. 청구항 1에 있어서,The method according to claim 1,
    상기 제2 대전체는 음전하를 생성하는 음대전체이고,The second electric charge is a negative electric charge generating negative charge,
    상기 음대전체는 캘빈 프로브 포스 마이크로스코피로 측정한 표면 포텐셜이 -100 mV 이하를 나타내는 유기 고분자 화합물을 포함하는 것인 마찰대전 발전소자.The negative charge is a triboelectric charge generator containing an organic polymer compound having a surface potential of -100 mV or less measured by Calvin probe force microscopy.
PCT/KR2019/015686 2019-11-15 2019-11-15 Triboelectric generator WO2021095947A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190146494A KR102312834B1 (en) 2019-11-15 2019-11-15 Triboelectric generating device
KR10-2019-0146494 2019-11-15

Publications (1)

Publication Number Publication Date
WO2021095947A1 true WO2021095947A1 (en) 2021-05-20

Family

ID=75912991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015686 WO2021095947A1 (en) 2019-11-15 2019-11-15 Triboelectric generator

Country Status (2)

Country Link
KR (1) KR102312834B1 (en)
WO (1) WO2021095947A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220216809A1 (en) * 2021-01-07 2022-07-07 City University Of Hong Kong Electronic sensing apparatus and a method of producing the electronic sensing apparatus
US20230099318A1 (en) * 2021-09-28 2023-03-30 Industry-Academic Cooperation Foundation, Chosun University Body attachable triboelectric generating device and manufacturing method thereof
US20230109824A1 (en) * 2020-03-05 2023-04-13 Lg Electronics Inc. Triboelectric generator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102704344B1 (en) * 2022-06-27 2024-09-09 한국화학연구원 Triboelectric Nanogenerator And Manufacturing Method Thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160040175A (en) * 2013-06-25 2016-04-12 베이징 인스티튜트 오브 나노에너지 앤드 나노시스템즈 Sliding friction power generator, power generation method and vector displacement sensor
CN106992707A (en) * 2017-05-19 2017-07-28 苏州大学 Stretchable friction nanometer power generator based on liquid metal electrode and preparation method thereof
CN207304405U (en) * 2017-09-25 2018-05-01 大连海事大学 A kind of flexibility ocean energy harvester
WO2018104244A1 (en) * 2016-12-05 2018-06-14 Chambre De Commerce Et D'industrie De Region Paris Ile De France (Esiee Paris) Electrostatic transducer for kinetic energy harvesting or mechanical sensing
CN108619616A (en) * 2018-05-24 2018-10-09 张必清 A kind of self power generation neck guard necklace

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101598592B1 (en) 2014-10-15 2016-03-03 중앙대학교 산학협력단 Energy harvesting apparatus using triboelectrification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160040175A (en) * 2013-06-25 2016-04-12 베이징 인스티튜트 오브 나노에너지 앤드 나노시스템즈 Sliding friction power generator, power generation method and vector displacement sensor
WO2018104244A1 (en) * 2016-12-05 2018-06-14 Chambre De Commerce Et D'industrie De Region Paris Ile De France (Esiee Paris) Electrostatic transducer for kinetic energy harvesting or mechanical sensing
CN106992707A (en) * 2017-05-19 2017-07-28 苏州大学 Stretchable friction nanometer power generator based on liquid metal electrode and preparation method thereof
CN207304405U (en) * 2017-09-25 2018-05-01 大连海事大学 A kind of flexibility ocean energy harvester
CN108619616A (en) * 2018-05-24 2018-10-09 张必清 A kind of self power generation neck guard necklace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230109824A1 (en) * 2020-03-05 2023-04-13 Lg Electronics Inc. Triboelectric generator
US12009761B2 (en) * 2020-03-05 2024-06-11 Lg Electronics Inc. Triboelectric generator
US20220216809A1 (en) * 2021-01-07 2022-07-07 City University Of Hong Kong Electronic sensing apparatus and a method of producing the electronic sensing apparatus
US11784587B2 (en) * 2021-01-07 2023-10-10 City University Of Hong Kong Electronic sensing apparatus and a method of producing the electronic sensing apparatus
US20230099318A1 (en) * 2021-09-28 2023-03-30 Industry-Academic Cooperation Foundation, Chosun University Body attachable triboelectric generating device and manufacturing method thereof
US11848626B2 (en) * 2021-09-28 2023-12-19 Industry-Academic Cooperation Foundation, Chosun University Body attachable triboelectric generating device and manufacturing method thereof

Also Published As

Publication number Publication date
KR102312834B1 (en) 2021-10-14
KR20210059263A (en) 2021-05-25

Similar Documents

Publication Publication Date Title
WO2021095947A1 (en) Triboelectric generator
US4990813A (en) Rolling triboelectric generator
Tian et al. Core–shell coaxially structured triboelectric nanogenerator for energy harvesting and motion sensing
Lei et al. Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy
Dong et al. Versatile core–sheath yarn for sustainable biomechanical energy harvesting and real‐time human‐interactive sensing
Zhong et al. Stretchable self‐powered fiber‐based strain sensor
WO2016129817A1 (en) Energy harvester
Li et al. Self-powered stretchable strain sensors for motion monitoring and wireless control
CN104253561A (en) Sliding friction generator, power generation method and vector displacement sensor
WO2014193182A1 (en) Triboelectric generator
Kim et al. Humidity-resistant triboelectric energy harvester using electrospun PVDF/PU nanofibers for flexibility and air permeability
WO2021177489A1 (en) Triboelectric generator
WO2017074073A1 (en) Energy harvesting apparatus using triboelectricity
Zheng et al. Design of high-performance triboelectric-piezoelectric hybridized mechanical energy harvester inspired by three-phase asynchronous generator
Xiao et al. Integrated Triboelectric‐Electromagnetic‐Piezoelectric Self‐Rebounding Energy Harvester for Human Energy Harvesting
CN110200595A (en) A kind of step-by-step movement detection device and system
US5772445A (en) Electrostatic meter
WO2020040536A1 (en) Electric power generation element using triboelectrification
CN207817068U (en) Resistivity measurement instrument
WO2015142030A1 (en) Shape changeable material having inherent shapes using hierarchical structure and electrode having same
CN113726215B (en) Static electrostatic voltage source device and preparation method thereof
KR101971933B1 (en) Self-powered puzzle comprising triboelectric nanogenerators and preparing method of the same
KR20210059264A (en) Triboelectric generating device
Paranjape et al. Multimode Consecutively Connected Piston‐Type Cylindrical Triboelectric Nanogenerators for Rotational Energy Harvesting and Sensing Application
WO2019013419A1 (en) Lost energy harvesting apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952529

Country of ref document: EP

Kind code of ref document: A1