WO2022224804A1 - Device and method for manufacturing glass preform for optical fiber - Google Patents

Device and method for manufacturing glass preform for optical fiber Download PDF

Info

Publication number
WO2022224804A1
WO2022224804A1 PCT/JP2022/016745 JP2022016745W WO2022224804A1 WO 2022224804 A1 WO2022224804 A1 WO 2022224804A1 JP 2022016745 W JP2022016745 W JP 2022016745W WO 2022224804 A1 WO2022224804 A1 WO 2022224804A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
supply pipe
optical fiber
tank
vaporizer
Prior art date
Application number
PCT/JP2022/016745
Other languages
French (fr)
Japanese (ja)
Inventor
正敏 早川
圭省 森田
修平 豊川
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2022224804A1 publication Critical patent/WO2022224804A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod

Definitions

  • the present disclosure relates to an optical fiber glass preform manufacturing apparatus and an optical fiber glass preform manufacturing method.
  • Patent Document 1 discloses a manufacturing apparatus that implements a method for manufacturing a glass particulate deposit.
  • the manufacturing apparatus includes a reaction vessel, a gas supply device, and a burner for producing glass microparticles.
  • the apparatus for manufacturing an optical fiber glass preform includes: A tank for pressurizing a liquid raw material with gas, a vaporizer for vaporizing the pressurized raw material, a burner for ejecting the raw material vaporized by the vaporizer to form glass fine particles, and pressurized by the tank.
  • L(t) be the position vector of the raw material positioned at an arbitrary position x inside the supply pipe at an arbitrary time t, with reference to the inlet of the supply pipe, and
  • the supply pipe is arranged so that the supply pipe is always 0 or more when the pressure is applied.
  • the manufacturing method of the glass preform for optical fiber of the present disclosure includes: a tank for pressurizing a liquid raw material, which is the basis of glass fine particles, with a gas; a vaporizer for vaporizing the pressurized raw material; a burner for jetting the raw material vaporized by the vaporizer to form glass fine particles;
  • FIG. 1 is a diagram showing an apparatus for manufacturing an optical fiber glass preform according to an embodiment.
  • An apparatus for manufacturing an optical fiber glass preform ejects a raw material from a burner, oxidizes it in a flame to form glass particles, and deposits the glass particles to produce an optical fiber glass preform. If the raw material is liquid, the raw material is pressurized by gas in the tank and supplied to the vaporizer. However, if the supply amount of the raw material fluctuates, the amount of the formed glass particles also fluctuates, which may cause molding defects in the optical fiber glass preform.
  • An object of the present disclosure is to provide an apparatus for manufacturing an optical fiber glass preform and a method for manufacturing an optical fiber glass preform that can suppress the occurrence of molding defects in the optical fiber glass preform.
  • An apparatus for manufacturing an optical fiber glass preform includes: A tank for pressurizing a liquid raw material with gas, a vaporizer for vaporizing the pressurized raw material, a burner for ejecting the raw material vaporized by the vaporizer to form glass fine particles, and pressurized by the tank.
  • L(t) be the position vector of the raw material positioned at an arbitrary position x inside the supply pipe at an arbitrary time t, with reference to the inlet of the supply pipe, and
  • the supply pipe is arranged so that the supply pipe is always 0 or more when the pressure is applied. The gas dissolved in the liquid raw material sometimes spouts out as bubbles and stays in the supply pipe.
  • a method for manufacturing an optical fiber glass preform includes: a tank for pressurizing a liquid raw material, which is the basis of glass fine particles, with a gas; a vaporizer for vaporizing the pressurized raw material; a burner for jetting the raw material vaporized by the vaporizer to form glass fine particles;
  • a method for producing an optical fiber glass base material in which the raw material is supplied so that the value is always 0 or more when The gas dissolved in the liquid raw material sometimes spouts out as bubbles and stays in the supply pipe.
  • FIG. 1 is a configuration diagram of an apparatus 100 for manufacturing an optical fiber glass preform 8 according to an embodiment.
  • the manufacturing apparatus 100 includes a tank 10 , a supply pipe 40 , a supply device 20 , a burner 30 and a reaction vessel 130 .
  • the arrow labeled A in FIG. 1 indicates the vertical direction.
  • the tank 10 is installed on the vertically lower floor 110
  • the feeder 20 , the burner 30 and the reaction vessel 130 are installed on the vertically upper floor 120 .
  • the supply pipe 40 is laid across a lower floor 110 and an upper floor 120 .
  • the tank 10 is a container that stores the liquid raw material 2 that forms the basis of the glass fine particles 6 .
  • the liquid raw material 2 include silicon tetrachloride and siloxane (eg, octamethylcyclotetrasiloxane).
  • liquid source 2 is pressurized with gas 4 and introduced into supply pipe 40 .
  • gas for pressurizing the liquid raw material 2 an inert gas such as He that is sparingly soluble in liquid at room temperature (20° C.) is used.
  • the supply pipe 40 is a pipe that guides the liquid raw material 2 to the burner 30 .
  • the supply pipe 40 is connected with the burner 30 .
  • the supply device 20 is provided on the supply pipe 40 at a position immediately before the portion connected to the burner 30 .
  • the supply pipe 40 branches into five between the tank 10 and the supply device 20 .
  • a supply device 20 is provided in each of the branched supply pipes 40 .
  • the part where the supply pipe 40 branches in FIG. 1 there is a part where the supply pipe 40 extends toward the front side of the paper surface, which indicates that it branches in the horizontal direction. It does not indicate that it extends vertically downward.
  • L(t) be the position vector of the liquid raw material 2 positioned at an arbitrary position x inside the supply pipe 40 at an arbitrary time t, with reference to the inlet o of the supply pipe 40 .
  • L(t+ ⁇ t) be the position vector of the liquid raw material 2 with reference to the inlet o of the supply pipe 40 after the minute time ⁇ t has elapsed.
  • the supply pipe 40 is arranged so that the vertical component of the displacement vector ⁇ x ( ⁇ t) of the liquid raw material 2 is always 0 or more when the upward direction in the vertical direction is positive. In other words, the supply pipe 40 is arranged so that there is no portion where the liquid raw material 2 is conveyed downward in the vertical direction in the manufacturing apparatus 100 .
  • the supply device 20 includes, for example, a vaporization device 22, a gas-liquid mixing section 24, a control valve 26, and a mass flow meter (MFM) 28. These are arranged in the order of the MFM 28 , the control valve 26 , the gas-liquid mixing section 24 and the vaporizer 22 from the upstream side of the supply channel of the liquid raw material 2 .
  • the MFM 28 is a device that measures the supply flow rate of the liquid raw material 2 .
  • the control valve 26 is a valve that controls the supply flow rate of the liquid raw material 2 to the gas-liquid mixing section 24 .
  • the control valve 26 is configured such that the degree of opening of the valve is controlled based on the supply flow rate of the liquid raw material 2 detected by the MFM 28 .
  • the gas-liquid mixing section 24 is a section that introduces a carrier gas such as nitrogen into the liquid raw material 2 to vaporize the liquid raw material 2 (into a mist state).
  • the vaporizer 22 is a device that supplies the liquid raw material 2 in a mist state to the burner 30 .
  • the burner 30 is a member that generates the glass microparticles 6 by thermally decomposing and oxidizing the vaporized raw material in a flame inside the reaction vessel 130 .
  • the burner 30 sprays and deposits the generated glass fine particles 6 on the starting rod 132 rotating about the axis, thereby manufacturing the optical fiber glass preform 8 .
  • the burner 30 is supplied with a flame forming gas such as H 2 and O 2 and an inert gas such as N 2 and Ar as a burner sealing gas.
  • the reaction vessel 130 includes, for example, a starting rod 132, a burner 30, an end heating burner 32, and an exhaust 134.
  • the exhaust part 134 is a part for discharging the glass particles 6 that have not adhered to the starting rod 132 and the optical fiber glass base material 8 to the outside of the reaction vessel 130 together with the gas inside the reaction vessel 130 .
  • the end heating burners 32 are burners for heating the upper and lower ends of the optical fiber glass preform 8 . In FIG. 1, two end heating burners 32 are shown by way of example. The two end heating burners 32 are arranged so as to sandwich the five burners 30 from above and below.
  • the liquid raw material 2 is supplied so that the vertical component of the displacement vector ⁇ x ( ⁇ t) of the liquid raw material 2 is always 0 or more when the upward vertical direction is positive. Then, the vaporized raw material is supplied to the burner 30 via the supply device 20, and the glass microparticles 6 are generated by thermally decomposing and oxidizing the raw material in the flame. Then, the generated glass particles 6 are sprayed and deposited on the starting rod 132 rotating about the axis to manufacture the optical fiber glass preform 8 .
  • Gases such as He are generally poorly soluble in liquids. Melt into raw materials. When the pressure applied to the liquid raw material drops due to pressure loss in the supply pipe or the like, the dissolved gas gushes out as bubbles. If this bubbling gas stays in the supply pipe and the staying gas flows into the supply device at once, a hunting phenomenon may occur. For example, when an MFM is employed, if stagnant gas flows into the MFM at once, the flow rate detected by the MFM becomes 0, the opening of the control valve increases, and a hunting phenomenon occurs. As a result, the liquid raw material flows into the gas-liquid mixing section and the vaporizer at once, and a large amount of raw material gas is jetted out. If such a hunting phenomenon occurs, there is a possibility that the manufactured optical fiber glass preform may have a molding defect.
  • the vertical component of the displacement vector ⁇ x ( ⁇ t) of the liquid raw material 2 inside the supply pipe 40 is always 0 or more when the upward direction in the vertical direction is positive.
  • P1 be the supply pressure of the gas 4 to the liquid raw material 2 in the tank 10 of the manufacturing apparatus 100 .
  • P2 be the pressure of the liquid raw material 2 immediately before it is supplied to the vaporizer 22 of the manufacturing apparatus 100 .
  • the manufacturing apparatus 100 of the present embodiment may be configured to supply the liquid raw material 2 from the tank 10 to the vaporizer 22 so that the differential pressure ⁇ P is 190 MPa or less.
  • the differential pressure ⁇ P When the differential pressure ⁇ P is decreased, the pressure loss in the supply pipe 40 is decreased, so the gas 4 dissolved in the liquid raw material 2 is less likely to bubble.
  • the differential pressure ⁇ P By supplying the liquid raw material 2 from the tank 10 to the vaporizer 22 with the differential pressure ⁇ P set to 190 MPa or less, it is possible to further suppress sharp fluctuations in the supply flow rate of the raw material of the glass fine particles 6, thereby improving the glass preform for optical fibers. The occurrence of molding defects can be further suppressed.
  • the lower limit of the differential pressure ⁇ P is not particularly limited, the differential pressure ⁇ P may be greater than 0 MPa, and may be 10 MPa or more. Further, the differential pressure ⁇ P is better if it is 140 MPa or less, and even better if it is 80 MPa or less.
  • Table 1 shows the results of evaluating the occurrence of the hunting phenomenon by changing the differential pressure ⁇ P.
  • the set supply amount of the liquid glass raw material was set to 50 g / min, and the generation and size of bubbles when the differential pressure ⁇ P was changed while passing through the Teflon (registered trademark) pipe was It was carried out by visual confirmation.
  • the presence or absence of the hunting phenomenon was determined by observing the flow rate variation of the MFM. From the results in Table 1, it was confirmed that the occurrence of the hunting phenomenon can be suppressed by setting the differential pressure ⁇ P to 190 MPa or less, and that the occurrence of the hunting phenomenon can be further suppressed by setting the differential pressure ⁇ P to 140 MPa or less.
  • siloxane has a higher boiling point than silicon tetrachloride and is difficult to vaporize, so a supply section in a liquid state is more necessary. Therefore, if the present disclosure is applied when siloxane is used as a raw material, the occurrence of the hunting phenomenon can be suppressed more appropriately.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

This device for manufacturing a glass preform for an optical fiber comprises a tank for pressurizing a liquid starting material with a gas, a vaporizer for vaporizing the pressurized starting material, a burner for blowing out the starting material vaporized by the vaporizer and thus forming fine glass particles, and a supply pipe for supplying the starting material pressurized in the tank to the vaporizer, wherein the supply pipe is arranged so that, when the position vector, with respect to the inlet of the supply pipe, of the starting material located at an arbitrary position x inside the supply pipe at an arbitrary time point t is regarded as L(t) and the position vector, with respect to the inlet of the supply pipe, of the starting material after a minute time δt is regarded as L(t+δt), then the vertical component of the displacement vector δx(δt) = L(t+δt) - L(t) of the starting material is always equal to or greater than 0 with the vertical upward direction being positive.

Description

光ファイバ用ガラス母材の製造装置および光ファイバ用ガラス母材の製造方法Optical fiber glass preform manufacturing apparatus and optical fiber glass preform manufacturing method
 本開示は、光ファイバ用ガラス母材の製造装置および光ファイバ用ガラス母材の製造方法に関する。 The present disclosure relates to an optical fiber glass preform manufacturing apparatus and an optical fiber glass preform manufacturing method.
 本出願は、2021年 4月21日出願の日本出願第2021- 71901号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 This application claims priority based on Japanese Application No. 2021-71901 filed on April 21, 2021, and incorporates all the content described in the Japanese application.
 特許文献1は、ガラス微粒子堆積体の製造方法を実施する製造装置を開示している。当該製造装置は、反応容器と、ガス供給装置と、ガラス微粒子生成用のバーナーと、を備えている。 Patent Document 1 discloses a manufacturing apparatus that implements a method for manufacturing a glass particulate deposit. The manufacturing apparatus includes a reaction vessel, a gas supply device, and a burner for producing glass microparticles.
日本国特開2014-224007号公報Japanese Patent Application Laid-Open No. 2014-224007
 本開示の光ファイバ用ガラス母材の製造装置は、
 液体の原料をガスで加圧するタンクと、加圧された前記原料を気化させる気化装置と、前記気化装置で気化された前記原料を噴出させてガラス微粒子を形成するバーナーと、前記タンクで加圧された前記原料を前記気化装置に供給する供給管と、を備える光ファイバ用ガラス母材の製造装置であって、
 任意の時間tにおいて前記供給管の内部の任意の位置xに位置する前記原料の、前記供給管の入口を基準とする位置ベクトルをL(t)とし、前記原料の微小時間δt経過後の前記供給管の入口を基準とする位置ベクトルをL(t+δt)とした時に、前記原料の変位ベクトルδx(δt)=L(t+δt)-L(t)の鉛直方向成分が、鉛直方向上向きを正とした時に常に0以上となるように前記供給管が配置された、光ファイバ用ガラス母材の製造装置である。
The apparatus for manufacturing an optical fiber glass preform according to the present disclosure includes:
A tank for pressurizing a liquid raw material with gas, a vaporizer for vaporizing the pressurized raw material, a burner for ejecting the raw material vaporized by the vaporizer to form glass fine particles, and pressurized by the tank. and a supply pipe for supplying the raw material thus obtained to the vaporization device, comprising:
Let L(t) be the position vector of the raw material positioned at an arbitrary position x inside the supply pipe at an arbitrary time t, with reference to the inlet of the supply pipe, and When the position vector with reference to the inlet of the supply pipe is L(t+δt), the vertical direction component of the raw material displacement vector δx(δt)=L(t+δt)−L(t) is positive when the vertical direction is upward. In the apparatus for manufacturing an optical fiber glass preform, the supply pipe is arranged so that the supply pipe is always 0 or more when the pressure is applied.
 本開示の光ファイバ用ガラス母材の製造方法は、
 ガラス微粒子の基となる液体原料をガスで加圧するタンクと、加圧された前記原料を気化させる気化装置と、前記気化装置で気化された前記原料を噴出させてガラス微粒子を形成するバーナーと、前記タンクで加圧された前記原料を前記気化装置に供給する供給管と、を備える光ファイバ用ガラス母材の製造装置を用いる光ファイバ用ガラス母材の製造方法であって、
 任意の時間tにおいて前記供給管の内部の任意の位置xに位置する前記原料の、前記供給管の入口を基準とする位置ベクトルをL(t)とし、前記原料の微小時間δt経過後の前記供給管の入口を基準とする位置ベクトルをL(t+δt)とした時に、前記原料の変位ベクトルδx(δt)=L(t+δt)-L(t)の鉛直方向成分が、鉛直方向上向きを正とした時に常に0以上となるように前記原料を供給する、光ファイバ用ガラス母材の製造方法である。
The manufacturing method of the glass preform for optical fiber of the present disclosure includes:
a tank for pressurizing a liquid raw material, which is the basis of glass fine particles, with a gas; a vaporizer for vaporizing the pressurized raw material; a burner for jetting the raw material vaporized by the vaporizer to form glass fine particles; A method for producing an optical fiber glass preform using an apparatus for producing an optical fiber glass preform comprising a supply pipe for supplying the raw material pressurized in the tank to the vaporization device, the method comprising:
Let L(t) be the position vector of the raw material positioned at an arbitrary position x inside the supply pipe at an arbitrary time t, with reference to the inlet of the supply pipe, and When the position vector with reference to the inlet of the supply pipe is L(t+δt), the vertical direction component of the raw material displacement vector δx(δt)=L(t+δt)−L(t) is positive when the vertical direction is upward. a method for producing an optical fiber glass base material, in which the raw material is supplied so that the value is always 0 or more when
図1は実施形態に係る光ファイバ用ガラス母材の製造装置を示す図である。FIG. 1 is a diagram showing an apparatus for manufacturing an optical fiber glass preform according to an embodiment.
[本開示が解決しようとする課題]
 光ファイバ用ガラス母材の製造装置は、原料をバーナーから噴出し、火炎中において酸化反応させることでガラス微粒子を形成し、このガラス微粒子を堆積させることで光ファイバ用ガラス母材を製造する。原料が液体である場合には、原料をタンク内でガスによって加圧して気化装置へ供給する。しかしながら、この原料の供給量が変動すると形成されるガラス微粒子の量も変動し、光ファイバ用ガラス母材に成形不良が発生する場合がある。
[Problems to be Solved by the Present Disclosure]
An apparatus for manufacturing an optical fiber glass preform ejects a raw material from a burner, oxidizes it in a flame to form glass particles, and deposits the glass particles to produce an optical fiber glass preform. If the raw material is liquid, the raw material is pressurized by gas in the tank and supplied to the vaporizer. However, if the supply amount of the raw material fluctuates, the amount of the formed glass particles also fluctuates, which may cause molding defects in the optical fiber glass preform.
 本開示は、光ファイバ用ガラス母材の成形不良の発生を抑制できる、光ファイバ用ガラス母材の製造装置および光ファイバ用ガラス母材の製造方法を提供することを目的とする。 An object of the present disclosure is to provide an apparatus for manufacturing an optical fiber glass preform and a method for manufacturing an optical fiber glass preform that can suppress the occurrence of molding defects in the optical fiber glass preform.
[本開示の効果]
 本開示によれば、光ファイバ用ガラス母材の成形不良の発生を抑制できる、光ファイバ用ガラス母材の製造装置および光ファイバ用ガラス母材の製造方法を提供できる。
[Effect of the present disclosure]
ADVANTAGE OF THE INVENTION According to this indication, the manufacturing apparatus of the glass preform for optical fibers and the manufacturing method of the glass preform for optical fibers which can suppress generation|occurrence|production of the molding defect of the glass preform for optical fibers can be provided.
[本開示の実施形態の説明]
 最初に本開示の実施形態を列記して説明する。
(1) 実施形態に係る光ファイバ用ガラス母材の製造装置は、
 液体の原料をガスで加圧するタンクと、加圧された前記原料を気化させる気化装置と、前記気化装置で気化された前記原料を噴出させてガラス微粒子を形成するバーナーと、前記タンクで加圧された前記原料を前記気化装置に供給する供給管と、を備える光ファイバ用ガラス母材の製造装置であって、
 任意の時間tにおいて前記供給管の内部の任意の位置xに位置する前記原料の、前記供給管の入口を基準とする位置ベクトルをL(t)とし、前記原料の微小時間δt経過後の前記供給管の入口を基準とする位置ベクトルをL(t+δt)とした時に、前記原料の変位ベクトルδx(δt)=L(t+δt)-L(t)の鉛直方向成分が、鉛直方向上向きを正とした時に常に0以上となるように前記供給管が配置された、光ファイバ用ガラス母材の製造装置である。
 液体の原料に溶存したガスは、気泡として湧き出して供給管に滞留することがあるが、供給管の内部の液体の原料の変位ベクトルδx(δt)=L(t+δt)-L(t)の鉛直方向成分が鉛直方向上向きを正とした時に常に0以上となるように供給管を配置することで、滞留したガスが一気に気化装置に流れ込むことによる、原料の供給の不安定化を抑制できる。これにより、光ファイバ用ガラス母材の成形不良の発生を抑制できる。
[Description of Embodiments of the Present Disclosure]
First, the embodiments of the present disclosure will be listed and described.
(1) An apparatus for manufacturing an optical fiber glass preform according to an embodiment includes:
A tank for pressurizing a liquid raw material with gas, a vaporizer for vaporizing the pressurized raw material, a burner for ejecting the raw material vaporized by the vaporizer to form glass fine particles, and pressurized by the tank. and a supply pipe for supplying the raw material thus obtained to the vaporization device, comprising:
Let L(t) be the position vector of the raw material positioned at an arbitrary position x inside the supply pipe at an arbitrary time t, with reference to the inlet of the supply pipe, and When the position vector with reference to the inlet of the supply pipe is L(t+δt), the vertical direction component of the raw material displacement vector δx(δt)=L(t+δt)−L(t) is positive when the vertical direction is upward. In the apparatus for manufacturing an optical fiber glass preform, the supply pipe is arranged so that the supply pipe is always 0 or more when the pressure is applied.
The gas dissolved in the liquid raw material sometimes spouts out as bubbles and stays in the supply pipe. By arranging the supply pipe so that the vertical component is always 0 or more when the upward vertical direction is positive, it is possible to suppress the instability of the raw material supply due to the stagnant gas flowing into the vaporizer at once. As a result, the occurrence of molding defects in the optical fiber glass preform can be suppressed.
(2)上記(1)の光ファイバ用ガラス母材の製造装置は、
 前記タンクにおける前記原料への前記ガスの供給圧力をP1とし、前記気化装置に供給される直前の前記原料の圧力をP2とした時に、差圧ΔP=P1-P2が190MPa以下となるように、前記原料を前記タンクから前記気化装置へ供給するように構成されてもよい。
 差圧ΔP=P1-P2を小さくすると、配管内の圧力損失が小さくなるため、液体原料に溶け込んだガスが発泡しにくくなる。差圧ΔPを190MPa以下として、原料をタンクから気化装置へ供給することで、ガラス微粒子の原料の供給量が急峻に変動することをより抑制でき、光ファイバ用ガラス母材の成形不良の発生を抑制できる。
(2) The apparatus for manufacturing an optical fiber glass preform according to (1) above,
When the supply pressure of the gas to the raw material in the tank is P1 and the pressure of the raw material immediately before being supplied to the vaporization device is P2, the differential pressure ΔP = P1 - P2 is 190 MPa or less, The raw material may be supplied from the tank to the vaporizer.
When the pressure difference ΔP=P1−P2 is reduced, the pressure loss in the pipe is reduced, so that the gas dissolved in the liquid raw material is less likely to bubble. By supplying the raw material from the tank to the vaporizer with a differential pressure ΔP of 190 MPa or less, it is possible to further suppress sharp fluctuations in the supply amount of the raw material of the glass fine particles, and to prevent the occurrence of molding defects in the glass preform for optical fibers. can be suppressed.
(3) 実施形態に係る光ファイバ用ガラス母材の製造方法は、
 ガラス微粒子の基となる液体原料をガスで加圧するタンクと、加圧された前記原料を気化させる気化装置と、前記気化装置で気化された前記原料を噴出させてガラス微粒子を形成するバーナーと、前記タンクで加圧された前記原料を前記気化装置に供給する供給管と、を備える光ファイバ用ガラス母材の製造装置を用いる光ファイバ用ガラス母材の製造方法であって、
 任意の時間tにおいて前記供給管の内部の任意の位置xに位置する前記原料の、前記供給管の入口を基準とする位置ベクトルをL(t)とし、前記原料の微小時間δt経過後の前記供給管の入口を基準とする位置ベクトルをL(t+δt)とした時に、前記原料の変位ベクトルδx(δt)=L(t+δt)-L(t)の鉛直方向成分が、鉛直方向上向きを正とした時に常に0以上となるように前記原料を供給する、光ファイバ用ガラス母材の製造方法である。
 液体の原料に溶存したガスは、気泡として湧き出して供給管に滞留することがあるが、供給管の内部の液体の原料の変位ベクトルδx(δt)=L(t+δt)-L(t)の鉛直方向成分が鉛直方向上向きを正とした時に常に0以上となるように原料を供給することで、滞留したガスが一気に気化装置に流れ込むことによる、原料の供給の不安定化を抑制できる。これにより、光ファイバ用ガラス母材の成形不良の発生を抑制できる。
(3) A method for manufacturing an optical fiber glass preform according to an embodiment includes:
a tank for pressurizing a liquid raw material, which is the basis of glass fine particles, with a gas; a vaporizer for vaporizing the pressurized raw material; a burner for jetting the raw material vaporized by the vaporizer to form glass fine particles; A method for producing an optical fiber glass preform using an apparatus for producing an optical fiber glass preform comprising a supply pipe for supplying the raw material pressurized in the tank to the vaporization device, the method comprising:
Let L(t) be the position vector of the raw material positioned at an arbitrary position x inside the supply pipe at an arbitrary time t, with reference to the inlet of the supply pipe, and When the position vector with reference to the inlet of the supply pipe is L(t+δt), the vertical direction component of the raw material displacement vector δx(δt)=L(t+δt)−L(t) is positive when the vertical direction is upward. a method for producing an optical fiber glass base material, in which the raw material is supplied so that the value is always 0 or more when
The gas dissolved in the liquid raw material sometimes spouts out as bubbles and stays in the supply pipe. By supplying the raw material so that the vertical component is always 0 or more when the upward vertical direction is positive, it is possible to suppress the instability of the raw material supply due to the stagnant gas flowing into the vaporizer at once. As a result, the occurrence of molding defects in the optical fiber glass preform can be suppressed.
(4)上記(3)の光ファイバ用ガラス母材の製造方法は、
 前記タンクにおける前記原料への前記ガスの供給圧力をP1とし、前記気化装置に供給される直前の前記原料の圧力をP2とした時に、差圧ΔP=P1-P2が190MPa以下となるように、前記原料を前記タンクから前記気化装置へ供給してもよい。
 差圧ΔP=P1-P2を小さくすると、配管内の圧力損失が小さくなるため、液体原料に溶け込んだガスが発泡しにくくなる。差圧ΔPを190MPa以下として、原料をタンクから気化装置へ供給することで、ガラス微粒子の原料の供給量が急峻に変動することをより抑制でき、光ファイバ用ガラス母材の成形不良の発生を抑制できる。
(4) The method for producing the optical fiber glass base material of (3) above comprises:
When the supply pressure of the gas to the raw material in the tank is P1 and the pressure of the raw material immediately before being supplied to the vaporization device is P2, the differential pressure ΔP = P1 - P2 is 190 MPa or less, The raw material may be supplied from the tank to the vaporizer.
When the pressure difference ΔP=P1−P2 is reduced, the pressure loss in the pipe is reduced, so that the gas dissolved in the liquid raw material is less likely to bubble. By supplying the raw material from the tank to the vaporizer with a differential pressure ΔP of 190 MPa or less, it is possible to further suppress sharp fluctuations in the supply amount of the raw material of the glass fine particles, and to prevent the occurrence of molding defects in the glass preform for optical fibers. can be suppressed.
[本開示の実施形態の詳細]
 以下、本開示の光ファイバ用ガラス母材の製造装置および光ファイバ用ガラス母材の製造方法の実施形態の詳細を、図面を参照しつつ説明する。なお、以下に示す実施形態ではMMD法(多バーナー多層付け法)を基に説明するが、本開示はMMD法に限定されるものではなく、OVD法(外付け法)やVAD法(気相軸付け法)にも適用可能である。
[Details of the embodiment of the present disclosure]
Hereinafter, details of embodiments of an apparatus for manufacturing an optical fiber glass preform and a method for manufacturing an optical fiber glass preform according to the present disclosure will be described with reference to the drawings. In addition, although the embodiment shown below will be described based on the MMD method (multi-burner multilayer method), the present disclosure is not limited to the MMD method, and the OVD method (external method) and the VAD method (vapor phase method). It is also applicable to the shaft attachment method).
 図1は、実施形態に係る光ファイバ用ガラス母材8の製造装置100の構成図である。製造装置100は、タンク10と、供給管40と、供給装置20と、バーナー30と、反応容器130と、を備える。図1における符号Aが付された矢印は、鉛直方向を表す。タンク10は鉛直方向下位のフロア110に設置され、供給装置20、バーナー30および反応容器130は鉛直方向上位のフロア120に設置されている。供給管40は下位のフロア110と上位のフロア120とに亘って配管されている。 FIG. 1 is a configuration diagram of an apparatus 100 for manufacturing an optical fiber glass preform 8 according to an embodiment. The manufacturing apparatus 100 includes a tank 10 , a supply pipe 40 , a supply device 20 , a burner 30 and a reaction vessel 130 . The arrow labeled A in FIG. 1 indicates the vertical direction. The tank 10 is installed on the vertically lower floor 110 , and the feeder 20 , the burner 30 and the reaction vessel 130 are installed on the vertically upper floor 120 . The supply pipe 40 is laid across a lower floor 110 and an upper floor 120 .
 タンク10は、ガラス微粒子6の基となる液体原料2を貯留する容器である。液体原料2としては、例えば四塩化ケイ素、シロキサン(例えばオクタメチルシクロテトラシロキサン)等が挙げられる。タンク10において、液体原料2はガス4で加圧されて供給管40に導入される。液体原料2を加圧するガスは、常温(20℃)で液体に難溶であるHeなどの不活性ガスが用いられる。 The tank 10 is a container that stores the liquid raw material 2 that forms the basis of the glass fine particles 6 . Examples of the liquid raw material 2 include silicon tetrachloride and siloxane (eg, octamethylcyclotetrasiloxane). In tank 10 , liquid source 2 is pressurized with gas 4 and introduced into supply pipe 40 . As the gas for pressurizing the liquid raw material 2, an inert gas such as He that is sparingly soluble in liquid at room temperature (20° C.) is used.
 供給管40は、液体原料2をバーナー30へ導く管である。供給管40は、バーナー30と連結されている。供給管40には、バーナー30と連結される部分の直前の位置に、供給装置20が設けられている。図1においては、一例として、5つのバーナー30と5つの供給装置20が示されている。供給管40は、タンク10と供給装置20との間で5つに分岐している。分岐したそれぞれの供給管40に供給装置20が設けられている。なお、図1の供給管40が分岐している部分において、供給管40が紙面の手前側に向かって延びている部分があるが、これは水平方向で分岐していることを示しており、鉛直方向の下向きに延びていることを示しているわけではない。 The supply pipe 40 is a pipe that guides the liquid raw material 2 to the burner 30 . The supply pipe 40 is connected with the burner 30 . The supply device 20 is provided on the supply pipe 40 at a position immediately before the portion connected to the burner 30 . In FIG. 1, five burners 30 and five feeders 20 are shown by way of example. The supply pipe 40 branches into five between the tank 10 and the supply device 20 . A supply device 20 is provided in each of the branched supply pipes 40 . In addition, in the part where the supply pipe 40 branches in FIG. 1, there is a part where the supply pipe 40 extends toward the front side of the paper surface, which indicates that it branches in the horizontal direction. It does not indicate that it extends vertically downward.
 ここで、任意の時間tにおいて供給管40の内部の任意の位置xに位置する液体原料2の、供給管40の入口оを基準とする位置ベクトルをL(t)とする。そして、この液体原料2の微小時間δt経過後の供給管40の入口оを基準とする位置ベクトルをL(t+δt)とする。この時、この液体原料2の変位ベクトルδx(δt)は、δx(δt)=L(t+δt)-L(t)で示される。供給管40は、液体原料2の変位ベクトルδx(δt)の鉛直方向成分が鉛直方向上向きを正とした時に常に0以上となるように配管されている。換言すると、供給管40は、製造装置100において液体原料2を鉛直方向下向きに搬送する箇所がないように配管されている。 Here, let L(t) be the position vector of the liquid raw material 2 positioned at an arbitrary position x inside the supply pipe 40 at an arbitrary time t, with reference to the inlet o of the supply pipe 40 . Then, let L(t+δt) be the position vector of the liquid raw material 2 with reference to the inlet o of the supply pipe 40 after the minute time δt has elapsed. At this time, the displacement vector .delta.x(.delta.t) of the liquid raw material 2 is given by .delta.x(.delta.t)=L(t+.delta.t)-L(t). The supply pipe 40 is arranged so that the vertical component of the displacement vector δx (δt) of the liquid raw material 2 is always 0 or more when the upward direction in the vertical direction is positive. In other words, the supply pipe 40 is arranged so that there is no portion where the liquid raw material 2 is conveyed downward in the vertical direction in the manufacturing apparatus 100 .
 供給装置20は、例えば気化装置22と、気液混合部24と、コントロールバルブ26と、マスフローメーター(MFM)28と、を備える。これらは液体原料2の供給流路における上流側からMFM28、コントロールバルブ26、気液混合部24、気化装置22、の順に配置されている。MFM28は、液体原料2の供給流量を測定する装置である。コントロールバルブ26は、気液混合部24への液体原料2の供給流量を制御するバルブである。コントロールバルブ26は、MFM28が検知した液体原料2の供給流量に基づいてバルブの開度が制御されるように構成されている。気液混合部24は、液体原料2に窒素などのキャリアガスを導入して、液体原料2を気化(ミスト状態に)する部分である。気化装置22は、ミスト状態の液体原料2を、バーナー30に供給する装置である。 The supply device 20 includes, for example, a vaporization device 22, a gas-liquid mixing section 24, a control valve 26, and a mass flow meter (MFM) 28. These are arranged in the order of the MFM 28 , the control valve 26 , the gas-liquid mixing section 24 and the vaporizer 22 from the upstream side of the supply channel of the liquid raw material 2 . The MFM 28 is a device that measures the supply flow rate of the liquid raw material 2 . The control valve 26 is a valve that controls the supply flow rate of the liquid raw material 2 to the gas-liquid mixing section 24 . The control valve 26 is configured such that the degree of opening of the valve is controlled based on the supply flow rate of the liquid raw material 2 detected by the MFM 28 . The gas-liquid mixing section 24 is a section that introduces a carrier gas such as nitrogen into the liquid raw material 2 to vaporize the liquid raw material 2 (into a mist state). The vaporizer 22 is a device that supplies the liquid raw material 2 in a mist state to the burner 30 .
 バーナー30は、反応容器130の内部で、気化された原料を火炎中において熱分解酸化反応させることでガラス微粒子6を生成する部材である。バーナー30は、生成されたガラス微粒子6を、軸周りに回転する出発ロッド132に噴きつけて堆積させて、光ファイバ用ガラス母材8を製造する。バーナー30には原料ガスの他、火炎形成ガスとしてHやO等、バーナーシールガスとしてNやAr等の不活性ガスが供給される。 The burner 30 is a member that generates the glass microparticles 6 by thermally decomposing and oxidizing the vaporized raw material in a flame inside the reaction vessel 130 . The burner 30 sprays and deposits the generated glass fine particles 6 on the starting rod 132 rotating about the axis, thereby manufacturing the optical fiber glass preform 8 . In addition to the raw material gas, the burner 30 is supplied with a flame forming gas such as H 2 and O 2 and an inert gas such as N 2 and Ar as a burner sealing gas.
 反応容器130は、例えば出発ロッド132と、バーナー30と、端部加熱バーナー32と、排気部134と、を備える。上述の様に、反応容器130においてバーナー30により生成されたガラス微粒子6が出発ロッド132に噴きつけられて、光ファイバ用ガラス母材8が製造される。排気部134は、出発ロッド132および光ファイバ用ガラス母材8に付着しなかったガラス微粒子6などを反応容器130内のガスとともに反応容器130の外部に排出する部分である。端部加熱バーナー32は、光ファイバ用ガラス母材8の上下の端部を加熱するバーナーである。図1においては、一例として、2つの端部加熱バーナー32が示されている。2つの端部加熱バーナー32は、5つのバーナー30を上下で挟むように配置されている。 The reaction vessel 130 includes, for example, a starting rod 132, a burner 30, an end heating burner 32, and an exhaust 134. As described above, the glass particles 6 generated by the burner 30 in the reaction vessel 130 are sprayed onto the starting rod 132 to produce the optical fiber glass preform 8 . The exhaust part 134 is a part for discharging the glass particles 6 that have not adhered to the starting rod 132 and the optical fiber glass base material 8 to the outside of the reaction vessel 130 together with the gas inside the reaction vessel 130 . The end heating burners 32 are burners for heating the upper and lower ends of the optical fiber glass preform 8 . In FIG. 1, two end heating burners 32 are shown by way of example. The two end heating burners 32 are arranged so as to sandwich the five burners 30 from above and below.
 続いて、上記の製造装置100を用いた本実施形態の光ファイバ用ガラス母材の製造方法を説明する。当該製造方法では、液体原料2の上述の変位ベクトルδx(δt)の鉛直方向成分が鉛直方向上向きを正とした時に常に0以上となるように、液体原料2を供給する。そして、供給装置20を介してバーナー30に気化した原料を供給し、当該原料を火炎中において熱分解酸化反応させることでガラス微粒子6を生成する。そして、生成されたガラス微粒子6を、軸周りに回転する出発ロッド132に噴きつけて堆積させて、光ファイバ用ガラス母材8を製造する。 Next, a method for manufacturing an optical fiber glass preform according to the present embodiment using the manufacturing apparatus 100 described above will be described. In this production method, the liquid raw material 2 is supplied so that the vertical component of the displacement vector δx (δt) of the liquid raw material 2 is always 0 or more when the upward vertical direction is positive. Then, the vaporized raw material is supplied to the burner 30 via the supply device 20, and the glass microparticles 6 are generated by thermally decomposing and oxidizing the raw material in the flame. Then, the generated glass particles 6 are sprayed and deposited on the starting rod 132 rotating about the axis to manufacture the optical fiber glass preform 8 .
 ところで、液体原料の供給流量が急峻に変動すると、気化装置に供給される液体原料が増減を繰り返す現象(ハンチング現象)が発生する場合がある。ハンチング現象が発生すると、製造されるガラス母材に成形不良が発生するおそれがある。 By the way, if the supply flow rate of the liquid raw material fluctuates sharply, a phenomenon (hunting phenomenon) may occur in which the liquid raw material supplied to the vaporizer repeats an increase and decrease. When the hunting phenomenon occurs, there is a risk that the manufactured glass base material will have a molding defect.
 Heなどのガスは、一般的に液体に難溶であるが、液体原料がHeなどのガスによって加圧されて供給管に導入される際、当該ガスはヘンリーの法則に従ってその一部が液体の原料に溶け込む。そして供給管での圧力損失などにより液体原料にかかる圧力が低下すると、溶けたガスが気泡として湧き出す。この湧き出したガスが供給管内で滞留し、滞留したガスが供給装置に一気に流れ込むと、ハンチング現象を起こす場合がある。例えばMFMを採用している場合に滞留したガスがMFMに一気に流れ込むと、MFMが検知する流量が0となり、コントロールバルブの開度が増大し、ハンチング現象を起こす。その結果、液体原料が一気に気液混合部、気化装置に流れ込み、大量の原料ガスを噴出することになる。このようなハンチング現象が起きると、製造される光ファイバ用ガラス母材に成形不良が発生するおそれがある。 Gases such as He are generally poorly soluble in liquids. Melt into raw materials. When the pressure applied to the liquid raw material drops due to pressure loss in the supply pipe or the like, the dissolved gas gushes out as bubbles. If this bubbling gas stays in the supply pipe and the staying gas flows into the supply device at once, a hunting phenomenon may occur. For example, when an MFM is employed, if stagnant gas flows into the MFM at once, the flow rate detected by the MFM becomes 0, the opening of the control valve increases, and a hunting phenomenon occurs. As a result, the liquid raw material flows into the gas-liquid mixing section and the vaporizer at once, and a large amount of raw material gas is jetted out. If such a hunting phenomenon occurs, there is a possibility that the manufactured optical fiber glass preform may have a molding defect.
 本実施形態の製造装置100および製造方法によれば、供給管40の内部の液体原料2の変位ベクトルδx(δt)の鉛直方向成分が鉛直方向上向きを正とした時に常に0以上となるように供給管40を配置することで、液体原料2に溶存したガス4が供給管40に滞留し、滞留したガス4が供給装置20に一気に流れ込み、原料の供給が不安定となることを抑制できる。これにより、光ファイバ用ガラス母材8の成形不良の発生を抑制できる。 According to the manufacturing apparatus 100 and the manufacturing method of the present embodiment, the vertical component of the displacement vector δx (δt) of the liquid raw material 2 inside the supply pipe 40 is always 0 or more when the upward direction in the vertical direction is positive. By arranging the supply pipe 40, it is possible to prevent the gas 4 dissolved in the liquid raw material 2 from stagnating in the supply pipe 40, the stagnant gas 4 flowing into the supply device 20 at once, and the supply of the raw material becoming unstable. As a result, the occurrence of molding defects in the optical fiber glass preform 8 can be suppressed.
 ここで、製造装置100のタンク10における液体原料2へのガス4の供給圧力をP1とする。また、製造装置100の気化装置22に供給される直前の液体原料2の圧力をP2とする。この時、P1およびP2の差圧ΔPは、ΔP=P1-P2で示される。本実施形態の製造装置100は、差圧ΔPが190MPa以下となるように、液体原料2をタンク10から気化装置22へ供給するように構成されてもよい。 Here, let P1 be the supply pressure of the gas 4 to the liquid raw material 2 in the tank 10 of the manufacturing apparatus 100 . Also, let P2 be the pressure of the liquid raw material 2 immediately before it is supplied to the vaporizer 22 of the manufacturing apparatus 100 . At this time, the differential pressure ΔP between P1 and P2 is expressed as ΔP=P1−P2. The manufacturing apparatus 100 of the present embodiment may be configured to supply the liquid raw material 2 from the tank 10 to the vaporizer 22 so that the differential pressure ΔP is 190 MPa or less.
 差圧ΔPを小さくすると、供給管40内の圧力損失が小さくなるため、液体原料2に溶け込んだガス4が発泡しにくくなる。差圧ΔPを190MPa以下として、液体原料2をタンク10から気化装置22へ供給することで、ガラス微粒子6の原料の供給流量が急峻に変動することをより抑制でき、光ファイバ用ガラス母材の成形不良の発生をより抑制できる。また、差圧ΔPの下限は特に限定されるものではないが、差圧ΔPは0MPaより大きければよく、10MPa以上でもよい。また、差圧ΔPは140MPa以下であればよりよく、80MPa以下であればさらによい。 When the differential pressure ΔP is decreased, the pressure loss in the supply pipe 40 is decreased, so the gas 4 dissolved in the liquid raw material 2 is less likely to bubble. By supplying the liquid raw material 2 from the tank 10 to the vaporizer 22 with the differential pressure ΔP set to 190 MPa or less, it is possible to further suppress sharp fluctuations in the supply flow rate of the raw material of the glass fine particles 6, thereby improving the glass preform for optical fibers. The occurrence of molding defects can be further suppressed. Moreover, although the lower limit of the differential pressure ΔP is not particularly limited, the differential pressure ΔP may be greater than 0 MPa, and may be 10 MPa or more. Further, the differential pressure ΔP is better if it is 140 MPa or less, and even better if it is 80 MPa or less.
 表1に差圧ΔPを変化させてハンチング現象の発生を評価した結果を示す。なお、この評価は液体ガラス原料の設定供給量を50g/分とし、テフロン(登録商標)配管を通過させている最中に、差圧ΔPを変化させたときの気泡の発生、大きさを、目視で確認することで実施した。また、ハンチング現象は、MFMの流量変動を観察することにより、その有無を判断した。表1の結果から、差圧ΔPを190MPa以下とすることでハンチング現象の発生を抑制でき、差圧ΔPを140MPa以下とすることでハンチング現象の発生をより抑制できることが確認できた。 Table 1 shows the results of evaluating the occurrence of the hunting phenomenon by changing the differential pressure ΔP. In this evaluation, the set supply amount of the liquid glass raw material was set to 50 g / min, and the generation and size of bubbles when the differential pressure ΔP was changed while passing through the Teflon (registered trademark) pipe was It was carried out by visual confirmation. Moreover, the presence or absence of the hunting phenomenon was determined by observing the flow rate variation of the MFM. From the results in Table 1, it was confirmed that the occurrence of the hunting phenomenon can be suppressed by setting the differential pressure ΔP to 190 MPa or less, and that the occurrence of the hunting phenomenon can be further suppressed by setting the differential pressure ΔP to 140 MPa or less.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、液体原料2として、四塩化ケイ素やシロキサンを例示したが、シロキサンは四塩化ケイ素と比べて沸点が高く気化させにくいため液体状態での供給区間がより必要となる。そのため、シロキサンを原料とする場合に本開示を適用すると、より好適にハンチング現象の発生を抑制できる。 In addition, silicon tetrachloride and siloxane were exemplified as the liquid raw material 2, but siloxane has a higher boiling point than silicon tetrachloride and is difficult to vaporize, so a supply section in a liquid state is more necessary. Therefore, if the present disclosure is applied when siloxane is used as a raw material, the occurrence of the hunting phenomenon can be suppressed more appropriately.
 以上、特定の実施形態に基づいて本開示を説明したが、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 As described above, the present disclosure has been described based on specific embodiments, but the present invention is not limited to these exemplifications, and is indicated by the scope of the claims. is intended to include changes to
 2:液体原料、4:ガス、6:ガラス微粒子、8:光ファイバ用ガラス母材、10:タンク、20:供給装置、22:気化装置、24:気液混合部、26:コントロールバルブ、28:マスフローメーター、30:バーナー、32:端部加熱バーナー、40:供給管、100:光ファイバ用ガラス母材の製造装置、110:下位のフロア、120:上位のフロア、130:反応容器、132:出発ロッド、134:排気部 2: liquid raw material, 4: gas, 6: fine glass particles, 8: glass base material for optical fiber, 10: tank, 20: supply device, 22: vaporization device, 24: gas-liquid mixing section, 26: control valve, 28 : mass flow meter 30: burner 32: end heating burner 40: supply pipe 100: optical fiber glass base material manufacturing apparatus 110: lower floor 120: upper floor 130: reaction vessel 132 : starting rod, 134: exhaust part

Claims (4)

  1.  液体の原料をガスで加圧するタンクと、加圧された前記原料を気化させる気化装置と、前記気化装置で気化された前記原料を噴出させてガラス微粒子を形成するバーナーと、前記タンクで加圧された前記原料を前記気化装置に供給する供給管と、を備える光ファイバ用ガラス母材の製造装置であって、
     任意の時間tにおいて前記供給管の内部の任意の位置xに位置する前記原料の、前記供給管の入口を基準とする位置ベクトルをL(t)とし、前記原料の微小時間δt経過後の前記供給管の入口を基準とする位置ベクトルをL(t+δt)とした時に、前記原料の変位ベクトルδx(δt)=L(t+δt)-L(t)の鉛直方向成分が、鉛直方向上向きを正とした時に常に0以上となるように前記供給管が配置された、光ファイバ用ガラス母材の製造装置。
    A tank for pressurizing a liquid raw material with gas, a vaporizer for vaporizing the pressurized raw material, a burner for ejecting the raw material vaporized by the vaporizer to form glass fine particles, and pressurized by the tank. and a supply pipe for supplying the raw material thus obtained to the vaporization device, comprising:
    Let L(t) be the position vector of the raw material positioned at an arbitrary position x inside the supply pipe at an arbitrary time t, with reference to the inlet of the supply pipe, and When the position vector with reference to the inlet of the supply pipe is L(t+δt), the vertical direction component of the raw material displacement vector δx(δt)=L(t+δt)−L(t) is positive when the vertical direction is upward. A manufacturing apparatus for a glass preform for an optical fiber, wherein the supply pipe is arranged so that the supply pipe is always 0 or more when the pressure is constant.
  2.  前記タンクにおける前記原料への前記ガスの供給圧力をP1とし、前記気化装置に供給される直前の前記原料の圧力をP2とした時に、差圧ΔP=P1-P2が190MPa以下となるように、前記原料を前記タンクから前記気化装置へ供給するように構成された、請求項1に記載の光ファイバ用ガラス母材の製造装置。 When the supply pressure of the gas to the raw material in the tank is P1 and the pressure of the raw material immediately before being supplied to the vaporization device is P2, the differential pressure ΔP = P1 - P2 is 190 MPa or less, 2. The apparatus for manufacturing an optical fiber glass preform according to claim 1, wherein said raw material is supplied from said tank to said vaporizer.
  3.  ガラス微粒子の基となる液体原料をガスで加圧するタンクと、加圧された前記原料を気化させる気化装置と、前記気化装置で気化された前記原料を噴出させてガラス微粒子を形成するバーナーと、前記タンクで加圧された前記原料を前記気化装置に供給する供給管と、を備える光ファイバ用ガラス母材の製造装置を用いる光ファイバ用ガラス母材の製造方法であって、
     任意の時間tにおいて前記供給管の内部の任意の位置xに位置する前記原料の、前記供給管の入口を基準とする位置ベクトルをL(t)とし、前記原料の微小時間δt経過後の前記供給管の入口を基準とする位置ベクトルをL(t+δt)とした時に、前記原料の変位ベクトルδx(δt)=L(t+δt)-L(t)の鉛直方向成分が、鉛直方向上向きを正とした時に常に0以上となるように前記原料を供給する、光ファイバ用ガラス母材の製造方法。
    a tank for pressurizing a liquid raw material, which is the basis of glass fine particles, with a gas; a vaporizer for vaporizing the pressurized raw material; a burner for jetting the raw material vaporized by the vaporizer to form glass fine particles; A method for producing an optical fiber glass preform using an apparatus for producing an optical fiber glass preform comprising a supply pipe for supplying the raw material pressurized in the tank to the vaporization device, the method comprising:
    Let L(t) be the position vector of the raw material positioned at an arbitrary position x inside the supply pipe at an arbitrary time t, with reference to the inlet of the supply pipe, and When the position vector with reference to the inlet of the supply pipe is L(t+δt), the vertical direction component of the raw material displacement vector δx(δt)=L(t+δt)−L(t) is positive when the vertical direction is upward. A method for producing an optical fiber glass base material, wherein the raw material is supplied so that the value of the raw material is always 0 or more when the
  4.  前記タンクにおける前記原料への前記ガスの供給圧力をP1とし、前記気化装置に供給される直前の前記原料の圧力をP2とした時に、差圧ΔP=P1-P2が190MPa以下となるように、前記原料を前記タンクから前記気化装置へ供給する、請求項3に記載の光ファイバ用ガラス母材の製造方法。 When the supply pressure of the gas to the raw material in the tank is P1 and the pressure of the raw material immediately before being supplied to the vaporization device is P2, the differential pressure ΔP = P1 - P2 is 190 MPa or less, 4. The method of manufacturing an optical fiber glass preform according to claim 3, wherein said raw material is supplied from said tank to said vaporizer.
PCT/JP2022/016745 2021-04-21 2022-03-31 Device and method for manufacturing glass preform for optical fiber WO2022224804A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-071901 2021-04-21
JP2021071901 2021-04-21

Publications (1)

Publication Number Publication Date
WO2022224804A1 true WO2022224804A1 (en) 2022-10-27

Family

ID=83722229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016745 WO2022224804A1 (en) 2021-04-21 2022-03-31 Device and method for manufacturing glass preform for optical fiber

Country Status (1)

Country Link
WO (1) WO2022224804A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565337A (en) * 1979-06-20 1981-01-20 Hitachi Ltd Manufacture of optical fiber mother material
JP2006327916A (en) * 2005-05-30 2006-12-07 Nikon Corp Manufacturing device for quartz glass, and manufacturing method for quartz glass using the same device
JP2017197402A (en) * 2016-04-27 2017-11-02 株式会社フジクラ Manufacturing method and manufacturing apparatus of glass preform
WO2019240232A1 (en) * 2018-06-15 2019-12-19 住友電気工業株式会社 Method for producing glass particulate deposit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565337A (en) * 1979-06-20 1981-01-20 Hitachi Ltd Manufacture of optical fiber mother material
JP2006327916A (en) * 2005-05-30 2006-12-07 Nikon Corp Manufacturing device for quartz glass, and manufacturing method for quartz glass using the same device
JP2017197402A (en) * 2016-04-27 2017-11-02 株式会社フジクラ Manufacturing method and manufacturing apparatus of glass preform
WO2019240232A1 (en) * 2018-06-15 2019-12-19 住友電気工業株式会社 Method for producing glass particulate deposit

Similar Documents

Publication Publication Date Title
KR100645351B1 (en) Emulsion atomizer nozzle and burner, and method for oxy-fuel burner applications
JP5935882B2 (en) Method for producing glass particulate deposit and method for producing glass base material
JPH11320556A (en) Method and system for controlling feeding of vapor in manufacture of optical premolding
JP2017036172A (en) Manufacturing method for optical fiber preform
US20220363583A1 (en) Manufacturing apparatus and manufacturing method of porous glass base material for optical fiber
CN112512980A (en) Method and apparatus for producing porous glass substrate for optical fiber
WO2022224804A1 (en) Device and method for manufacturing glass preform for optical fiber
JP7409319B2 (en) Raw material supply device and raw material supply method for manufacturing glass fine particle deposits
WO2023038124A1 (en) Device and method for manufacturing glass preform for optical fiber
JP2018510115A (en) Apparatus and method for conditioning molten glass
US20230227345A1 (en) Apparatus and method for producing porous glass preform
KR102484035B1 (en) Method for synthesizing glass microparticles
JP6206179B2 (en) Molten glass supply apparatus and glass plate manufacturing apparatus
JP2006342031A (en) Method of manufacturing optical fiber preform
JP7194301B2 (en) Manufacturing method of porous glass base material for optical fiber
JP7449842B2 (en) Manufacturing method and manufacturing device for porous glass base material
JP7404144B2 (en) Method for manufacturing porous glass particles and method for manufacturing optical fiber base material
CN111548002A (en) Method for manufacturing porous glass base material for optical fiber
JP3437109B2 (en) Optical waveguide film forming apparatus and optical waveguide film forming method
EP3865220A1 (en) Device for the continuous supply of a liquid compound and related method
JP2023051076A (en) Method and apparatus for manufacturing glass particle deposit
WO2022224725A1 (en) Burner, device for producing glass microparticle deposit, and method for producing glass microparticle deposit
US20210387106A1 (en) Method for cleaning vaporizer and vaporization apparatus
JP2012162414A (en) Method and apparatus for producing glass fine particle deposit
JP3192571B2 (en) Method for producing silica-based glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791579

Country of ref document: EP

Kind code of ref document: A1