WO2022224772A1 - Method for producing titanium oxide particles using amphoteric substance - Google Patents

Method for producing titanium oxide particles using amphoteric substance Download PDF

Info

Publication number
WO2022224772A1
WO2022224772A1 PCT/JP2022/016019 JP2022016019W WO2022224772A1 WO 2022224772 A1 WO2022224772 A1 WO 2022224772A1 JP 2022016019 W JP2022016019 W JP 2022016019W WO 2022224772 A1 WO2022224772 A1 WO 2022224772A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
titanium
oxide particles
producing
sol
Prior art date
Application number
PCT/JP2022/016019
Other languages
French (fr)
Japanese (ja)
Inventor
政樹 木全
勇樹 渡辺
真人 山口
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2023516399A priority Critical patent/JPWO2022224772A1/ja
Publication of WO2022224772A1 publication Critical patent/WO2022224772A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts

Definitions

  • the present invention relates to a method for producing titanium oxide particles using an amphoteric substance.
  • Titanium oxide is widely used as a white pigment in additives such as paints, plastics and cosmetics, and in industrial products such as chemical fibers and pharmaceuticals.
  • it is also used for conductive materials, ultrafine particle materials, photocatalyst materials, and the like.
  • Ultraviolet shielding materials are used as ultraviolet protection materials and cosmetics to protect our from harmful ultraviolet rays.
  • Conductive titanium oxide combined with conductive tin oxide is used as an antistatic material for various paints, inks, and fibers.
  • Composite oxides such as barium titanate are also used as dielectric materials.
  • a method for producing titanium oxide particles in which a titanium alkoxide, an organic acid and a quaternary ammonium hydroxide are reacted and then hydrothermally treated at 110 to 170° C. (see Patent Document 1). ).
  • polyvalent organic acids such as oxalic acid, malonic acid, malic acid, tartaric acid, succinic acid, adipic acid, and itaconic acid are used as organic acids.
  • a dispersion liquid in which an amino acid is added to titanium oxide particles is disclosed (see Patent Document 2). This dispersion contains amino acids, and when used as a coating agent, it is possible to form a highly hydrophilic film on the substrate surface.
  • a highly dispersible titanium oxide sol is obtained using a sol-gel method in which a titanium monomer such as titanium alkoxide is hydrolyzed and condensed in the presence of an amphoteric substance.
  • a first aspect of the present invention is a method for producing titanium oxide particles, comprising a step of decomposing and condensing a titanium-containing compound in the presence of an amphoteric substance and a titanium-containing compound,
  • the method for producing titanium oxide particles according to the first aspect wherein the titanium oxide particles have an average primary particle size of 5 to 300 nm as observed by a transmission electron microscope;
  • the method for producing titanium oxide particles according to the first aspect or the second aspect, wherein the decomposition and condensation of the titanium-containing compound is a sol-gel method using titanium alkoxide as the titanium-containing compound;
  • the method for producing titanium oxide particles according to any one of the first to third aspects further containing water and a catalyst;
  • the method for producing titanium oxide particles according to the fourth aspect wherein the catalyst is a nitrogen-containing basic compound selected from the group consisting of ammonia and quaternary ammonium hydroxide;
  • the method for producing titanium oxide particles according to the first aspect wherein the titanium oxide particles have an average primary particle size of 5 to
  • a method for producing titanium particles As an eighth aspect, the method for producing titanium oxide particles according to the first aspect, wherein the amphoteric substance is an amino acid; As a ninth aspect, the production of titanium oxide particles according to the first aspect, the seventh aspect, or the eighth aspect, wherein the molar ratio of (amphoteric substance)/(titanium atom of the titanium-containing compound) is 0.05 to 1.5 Method, As a tenth aspect, a method for producing a titanium oxide sol containing titanium oxide particles according to any one of the first to ninth aspects including the following steps (A) to (C); Step (A): step (A) of mixing a nitrogen-containing basic catalyst, an amphoteric substance, a titanium-containing compound, and water while stirring; Step (B): step (B) of heating the aqueous medium obtained in step (A) at 80 to 100° C.
  • Step (C) Step (C) of subjecting the aqueous medium obtained in step (B) to hydrothermal treatment at 120 to 200° C. for 0.1 to 20 hours;
  • Step (C) after the step (C) described in the tenth aspect, production of a titanium oxide sol containing titanium oxide particles, further comprising at least one step selected from the group consisting of steps (D) and (E).
  • Step (D) Step (D) of ultrafiltrating the aqueous sol containing titanium oxide particles obtained in step (C) according to the tenth aspect
  • Step (E) step (E) of cation-exchanging and/or anion-exchanging the aqueous sol containing titanium oxide particles obtained in step (C) according to the tenth aspect
  • production of a titanium oxide sol containing titanium oxide particles according to the tenth or eleventh aspect further comprising step (F) after step (C), step (D), or step (E).
  • Step (F) The aqueous sol of titanium oxide particles obtained in step (C), step (D), or step (E) is subjected to solvent substitution from an aqueous solvent to an organic solvent to obtain an organic solvent sol (F). and, as a thirteenth aspect, a method for producing a titanium oxide sol containing titanium oxide particles according to any one of the tenth to twelfth aspects, which has an average particle size of 10 to 500 nm as determined by a dynamic light scattering method.
  • the present invention employs a sol-gel method in which a titanium-containing compound (titanium monomer) such as titanium alkoxide is hydrolyzed and condensed as a raw material for forming titanium oxide particles, and titanium oxide, which serves as a titanium oxide precursor, is further grown into particles.
  • a titanium-containing compound titanium monomer
  • titanium oxide titanium oxide
  • titanium oxide precursors formed colloidal particles of titanium oxide without agglomeration due to the presence of amphoteric substances.
  • a sol containing titanium oxide particles with high dispersibility can be obtained. Titanium alkoxide is hydrolyzed to form a titanium oxide precursor, and the titanium oxide precursor undergoes particle growth to form titanium oxide particles.
  • Titanium oxide precursors are unstable, and coarse particles tend to form agglomerates due to rapid reaction.
  • the amphoteric substance due to the presence of the amphoteric substance, it coordinates with the titanium oxide precursor to make the titanium oxide precursor exist stably in terms of charge. be able to.
  • the amphoteric substance a zwitterionic compound having a cationic group consisting of an amino group or an ammonium group and an anionic group consisting of a hydroxyl group, a carboxyl group, or a sulfonic acid group, or an amino acid such as glycine can be used to obtain a titanium oxide precursor.
  • the body forms a stable structure close to that of a titanium-containing complex to prevent agglomeration, and subsequent heating (for example, hydrothermal treatment) prevents agglomeration, making it possible to produce titanium oxide particles in the colloidal region.
  • the titanium oxide particles and titanium oxide sol obtained by the present invention can be applied to optical members, such as spectacle lenses, window glass, film-like coating agents, additives to resins, and displays.
  • the present invention is a method for producing titanium oxide particles in which a titanium-containing compound is decomposed and condensed in the presence of an amphoteric substance.
  • the titanium oxide particles obtained in the present invention have an average primary particle size of 5 to 300 nm, or 10 to 250 nm, as measured by transmission electron microscopy (TEM method).
  • TEM method transmission electron microscopy
  • the particle shape of titanium oxide particles is bale-shaped, petal-shaped, star-shaped, etc., and in transmission electron microscopic observation, the longest distance of particles with these shapes is measured, and the average value is taken as the average primary particle diameter.
  • the titanium oxide particles of the present invention can be dispersed in an aqueous solvent or an organic solvent, and the particle diameter dispersed in the solvent is 10 to 500 nm as an average particle diameter according to the dynamic light scattering method (DLS method), or It is obtained in the range of 10 to 300 nm.
  • DLS method dynamic light scattering method
  • titanium-containing compound examples include titanium alkoxides, titanium salts, and titanium complexes.
  • a titanium alkoxide has a structure of Ti(OR 1 ) 4 , and R 1 is an alkyl group having 1 to 5 carbon atoms.
  • alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, and the like.
  • Titanium salts include titanium tetrachloride, titanium oxychloride, titanium sulfate, titanium oxysulfate, titanium trichloride, titanium tetrabromide, titanium tribromide, titanium oxybromide, titanium tetraiodide, titanium triiodide, and oxyiodide. Titanium salts such as titanium can be mentioned.
  • a titanium complex having a ligand having a structure of R 2 —CO—CH 2 —CO—R 3 or R 4 COO— can be used.
  • R 2 and R 3 include alkyl groups and alkoxy groups having 1 to 10 carbon atoms.
  • R 4 includes an alkyl group having 1 to 4 carbon atoms.
  • examples include titanium acetylacetone complexes and titanium acetoethyl acetate complexes.
  • the decomposition and condensation of the titanium-containing compound utilizes a sol-gel method using titanium alkoxide as the titanium-containing compound. Titanium alkoxides include titanium tetraisopropoxide.
  • the present invention can further contain water and a catalyst.
  • the catalyst include alkaline catalysts such as ammonia or quaternary ammonium hydroxide, and nitrogen-containing basic catalysts.
  • the quaternary ammonium hydroxide includes tetraalkylammonium hydroxide, and as the alkyl group, an alkyl group having 1 to 6 carbon atoms is used. Examples include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide and the like.
  • the catalyst has a molar ratio of (nitrogen-containing basic compound) / (titanium atom of titanium-containing compound) in the range of 0.05 to 1.5, or 0.1 to 1.5, or 0.5 to 1.5 can be added with
  • the amphoteric substance used in the present invention is a zwitterionic compound or zwitterion having a cationic group consisting of an amino group or an ammonium group and an anionic group consisting of a hydroxyl group, a carboxyl group, or a sulfonic acid group. It is a compound that creates.
  • An amino acid which is an organic compound having both functional groups of an amino group and a carboxyl group, can be preferably used as the amphoteric substance.
  • Amino acids are preferably water-soluble, and are preferably aliphatic amino acids having no aromatic ring.
  • An alpha-amino acid in which an amino group is also bonded to the carbon (alpha-carbon) to which the carboxyl group is bonded can be preferably used, for example, glycine.
  • the amount of amphoteric substance added is such that the molar ratio of (amphoteric substance)/(titanium atom of titanium-containing compound) is 0.05 to 1.5, or 0.1 to 1.5, or 0.5 to 1.5. It can be used within a range.
  • Step (A) step (A) of mixing a nitrogen-containing basic catalyst, an amphoteric substance, a titanium-containing compound, and water while stirring; Step (B): step (B) of heating the aqueous medium obtained in step (A) at 80 to 100° C. for 0.1 to 20 hours; Step (C): produced by a method including step (C) of subjecting the aqueous medium obtained in step (B) to hydrothermal treatment at 120 to 200° C. for 0.1 to 20 hours.
  • step (A) it is preferable to put water in a container and add, with stirring, for example, a quaternary ammonium hydroxide salt as a nitrogen-containing basic catalyst, glycine as an amphoteric substance, and titanium tetraisopropoxide as a titanium-containing compound.
  • the solid content concentration can be 0.1 to 30% by mass, and the concentration of the titanium compound can be 0.1 to 30% by mass.
  • step (B) the aqueous medium obtained in step (A) is heated at 80-100°C for 0.1-20 hours.
  • a heating method can be selected in which the heating temperature is increased stepwise within the range of 80 to 100°C. Since the heating temperature in step (B) is within 100° C., it can be carried out under atmospheric pressure.
  • step (C) the aqueous medium obtained in step (B) can be hydrothermally treated at 120 to 200° C. for 0.1 to 20 hours. Since the temperature exceeds 100° C., the aqueous medium obtained in step (B) is transferred to an autoclave and subjected to hydrothermal treatment. An autoclave made of stainless steel and having a stirring device can be used. After step (C) is completed and cooled to room temperature, the aqueous medium is taken out to obtain an alkaline aqueous dispersion in which colloidal particles of titanium oxide are dispersed. These aqueous sols are obtained in the range of 0.1 to 30% by mass as the concentration of titanium oxide particles. Producing an aqueous sol containing titanium oxide particles by further adding at least one step selected from the group consisting of step (D) and step (E) to the aqueous sol containing titanium oxide particles obtained in step (C). can be done.
  • Step (D) is a step of ultrafiltrating the aqueous sol of titanium oxide particles
  • Step (E) is a step of exchanging cations and/or anions in the aqueous sol of titanium oxide particles.
  • the step (F) can be added after the step (C), the step (D), or the step (E).
  • Step (F) is a step (F) in which the aqueous sol of titanium oxide particles obtained in step (C), step (D), or step (E) is replaced with an organic solvent from an aqueous solvent to obtain an organic solvent sol. is.
  • These organic solvent sols are obtained with a titanium oxide particle concentration in the range of 0.1 to 30 mass %.
  • the ultrafiltration step is performed using a commercially available ultrafiltration device equipped with an ultrafiltration membrane.
  • the step of exchanging cations is a step of adding and stirring a cation exchange resin, or a step of passing through a column packed with a cation exchange resin.
  • the cation exchange resin used in the present invention is not particularly limited, and various known cation exchange resins can be used.
  • the step of anion exchange is a step of adding an anion exchange resin and stirring, or a step of passing through a column packed with an anion exchange resin.
  • the anion exchange resin used in the present invention is not particularly limited, and various known anion exchange resins can be used.
  • Examples of the organic solvent in the step of replacing the aqueous solvent of the aqueous sol of titanium oxide particles with an organic solvent to form an organic solvent sol include n-pentane, i-pentane, n-hexane, i-hexane, n-heptane, Aliphatic hydrocarbon solvents such as i-heptane, 2,2,4-trimethylpentane, n-octane, i-octane, cyclohexane, methylcyclohexane; benzene, toluene, xylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n- Aromatic hydrocarbon solvents such as propylbenzene, i-propylbenzene, diethylbenzene, i-butylbenzene, triethylbenzene, di-i-propylbenzene, n-amyl
  • the titanium oxide sol of the present invention can contain an amine for improving stability.
  • a pH of 9-12 can be set by adding an amine.
  • Amines include alkylamines such as ethylamine, diethylamine, n-propylamine, isopropylamine, diisopropylamine, dipropylamine, n-butylamine, isobutylamine, diisobutylamine and triethylamine; arylamines such as phenylamine and benzylamine; Alkanolamine such as amine, diethanolamine, triethanolamine, and the like.
  • a surfactant can be added to the titanium oxide sol of the present invention.
  • surfactants include nonionic surfactants, anionic surfactants, cationic surfactants, silicone surfactants, and UV curing surfactants.
  • polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and polyoxyethylene oleyl ether; Oxyethylene alkyl allyl ethers, polyoxyethylene/polyoxypropylene block copolymers, sorbitan fatty acids such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, and sorbitan tristearate Esters, polyoxyethylene sorbitan fatty acid esters such as polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene
  • Silicon-based surfactants such as Cationic surfactants such as distearyldimethylammonium chloride, benzalkonium chloride, benzethonium chloride, cetylpyridinium chloride, hexadecyltrimethylammonium bromide, dequalinium chloride, octanoate, decanoate, octanesulfonate, decanoic acid
  • Anionic surfactants such as sulfonates, palmitates, perfluorobutanesulfonates, dodecylbenzenesulfonates, BYK307, BYK333, BYK381, BYK-UV-3500, BYK-UV-3510, BYK-UV- UV curable surfactants such as 3530 (manufactured by BYK, trade name) can be mentioned.
  • surfactants may be used alone or in combination of two or more.
  • the ratio is 0.0001 to 5 parts by mass, or 0.001 to 5 parts by mass, or 0.01 to 5 parts by mass with respect to 100 parts by mass of the solid content of titanium oxide. is.
  • a dispersion (sol) of titanium oxide particles is diluted with water or methanol, dried on a copper mesh, observed with a transmission electron microscope, and the particle diameter of 500 particles is measured. It was obtained as a diameter.
  • Average particle size of titanium oxide sol determined by dynamic light scattering method (dynamic light scattering method particle size) The titanium oxide sol was diluted with its dispersion solvent and measured with a dynamic light scattering measurement device: Zeta-Sizer manufactured by Malvern Instruments Ltd using the parameters of the solvent.
  • TiO 2 Concentration of Titanium Oxide Sol Determined from residual solids after firing at 600°C.
  • Example 1 1420.7 g of pure water was placed in a 5-liter container, and 315.6 g of a 35% by mass tetraethylammonium hydroxide aqueous solution, 47.9 g of glycine, and 213.2 g of titanium tetraisopropoxide (containing 59.9 g of TiO2 ) were stirred. added below.
  • the resulting mixed solution had a tetraethylammonium hydroxide/titanium atom molar ratio of 1.00 and a glycine/titanium atom molar ratio of 0.85.
  • the mixed solution was held at 90° C. for 2 hours and then held at 95° C.
  • the titanium mixed solution after preparation had a pH of 10.8 and a TiO 2 concentration of 3.0% by mass.
  • 1,500 g of the titanium mixed solution was put into a 3-liter SUS autoclave container, and hydrothermally treated at 150° C. for 5 hours. After cooling to room temperature, the hydrothermally treated solution taken out was an aqueous dispersion of milky white titanium oxide colloidal particles.
  • the resulting dispersion had a pH of 11.6, a TiO 2 concentration of 3.0% by mass, a dynamic light scattering particle diameter of 49 nm, and bale-shaped particles having an average primary particle diameter of 33 nm were observed by transmission electron microscope observation.
  • Example 2 1423.5 g of pure water was placed in a 5-liter container, and 315.6 g of a 35% by mass tetraethylammonium hydroxide aqueous solution, 45.0 g of glycine, and 213.2 g of titanium tetraisopropoxide (contains 59.9 g of TiO2 ) were stirred. added below.
  • the resulting mixed solution had a molar ratio of tetraethylammonium hydroxide/titanium atom of 1.00 and a molar ratio of glycine/titanium atom of 0.80.
  • the mixed solution was held at 90° C. for 2 hours and then held at 95° C.
  • the titanium mixed solution after preparation had a pH of 11.0 and a TiO 2 concentration of 3.0% by mass.
  • 1,500 g of the titanium mixed solution was put into a 3-liter SUS autoclave container, and hydrothermally treated at 150° C. for 5 hours. After cooling to room temperature, the hydrothermally treated solution taken out was an aqueous dispersion of milky white titanium oxide colloidal particles.
  • the resulting dispersion had a pH of 12.0, a TiO 2 concentration of 3.0% by mass, a dynamic light scattering particle diameter of 67 nm, and bale-shaped particles having an average primary particle diameter of 55 nm were observed by transmission electron microscope observation.
  • Example 3 1426.3 g of pure water was placed in a 5-liter container, and 315.6 g of a 35% by mass tetraethylammonium hydroxide aqueous solution, 42.2 g of glycine, and 213.2 g of titanium tetraisopropoxide (containing 59.9 g of TiO2 ) were stirred. added below.
  • the resulting mixed solution had a molar ratio of tetraethylammonium hydroxide/titanium atom of 1.00 and a molar ratio of glycine/titanium atom of 0.75.
  • the mixed solution was held at 90° C. for 2 hours and then held at 95° C.
  • a titanium mixed solution The pH of the titanium mixed solution after preparation was 11.1 and the TiO 2 concentration was 3.0% by mass. 1,500 g of the titanium mixed solution was put into a 3-liter SUS autoclave container, and hydrothermally treated at 150° C. for 5 hours. After cooling to room temperature, the hydrothermally treated solution taken out was an aqueous dispersion of milky white titanium oxide colloidal particles. The resulting dispersion had a pH of 12.2, a TiO 2 concentration of 3.0% by mass, a dynamic light scattering particle diameter of 94 nm, and bale-shaped particles having an average primary particle diameter of 70 nm were observed by transmission electron microscope observation.
  • Example 4 1429.1 g of pure water was placed in a 5-liter container, and 315.6 g of a 35% by mass tetraethylammonium hydroxide aqueous solution, 39.4 g of glycine, and 213.2 g of titanium tetraisopropoxide (containing 59.9 g of TiO2 ) were stirred. added below.
  • the resulting mixed solution had a tetraethylammonium hydroxide/titanium atom molar ratio of 1.00 and a glycine/titanium atom molar ratio of 0.70.
  • the mixed solution was held at 90° C. for 2 hours and then held at 95° C.
  • the titanium mixed solution after preparation had a pH of 11.2 and a TiO 2 concentration of 3.0% by mass.
  • 1,500 g of the titanium mixed solution was put into a 3-liter SUS autoclave container, and hydrothermally treated at 150° C. for 5 hours. After cooling to room temperature, the hydrothermally treated solution taken out was an aqueous dispersion of milky white titanium oxide colloidal particles.
  • the resulting dispersion had a pH of 12.2, a TiO 2 concentration of 3.0% by mass, a dynamic light scattering particle diameter of 141 nm, and bale-shaped particles having an average primary particle diameter of 94 nm were observed by transmission electron microscope observation.
  • Example 5 1616.8 g of pure water was placed in a 5-liter container, and 157.8 g of a 35% by mass tetraethylammonium hydroxide aqueous solution, 9.6 g of glycine, and 213.2 g of titanium tetraisopropoxide (contains 59.9 g of TiO2 ) were stirred. added below.
  • the resulting mixed solution had a molar ratio of tetraethylammonium hydroxide/titanium atom of 0.50 and a molar ratio of glycine/titanium atom of 0.17.
  • the mixed solution was held at 90° C. for 2 hours and then held at 95° C.
  • the titanium mixed solution after preparation had a pH of 11.4 and a TiO 2 concentration of 3.0% by mass.
  • 1,500 g of the titanium mixed solution was put into a 3-liter SUS autoclave container, and hydrothermally treated at 150° C. for 5 hours. After cooling to room temperature, the hydrothermally treated solution taken out was an aqueous dispersion of milky white titanium oxide colloidal particles.
  • the resulting dispersion had a pH of 12.6, a TiO 2 concentration of 3.0% by mass, a dynamic light scattering particle diameter of 167 nm, and bale-shaped particles having an average primary particle diameter of 120 nm were observed by transmission electron microscope observation.
  • the titanium mixed solution 1,500 g was put into a 3-liter SUS autoclave container, and hydrothermally treated at 150° C. for 5 hours. After cooling to room temperature, the hydrothermally treated solution taken out was an aqueous dispersion of milky white titanium oxide colloidal particles.
  • the resulting dispersion had a pH of 12.0, a TiO 2 concentration of 3.0% by mass, a dynamic light scattering particle diameter of 715 nm, and petal-like particles having an average primary particle diameter of 488 nm were observed by transmission electron microscope observation.
  • a highly dispersible titanium oxide sol can be obtained by using a sol-gel method in which a titanium monomer such as a titanium alkoxide is hydrolyzed and condensed in the presence of an amphoteric substance, thereby obtaining titanium oxide particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

[Problem] To provide a method for producing titanium oxide particles and a titanium oxide sol having high dispersibility. [Solution] A method that is for producing titanium oxide particles and that comprises degrading and condensing a titanium-containing compound in the presence of an amphoteric substance. The average primary particle size of the titanium oxide particles is 5-300 nm as observed with a transmission electron microscope. The method is a sol-gel method using titanium alkoxide as the titanium-containing compound. The amphoteric substance is an amino acid. The molar ratio of (the amphoteric substance)/(titanium atoms in the titanium-containing compound) is 0.05-1.5. The method comprises: a step (A) for mixing a nitrogen-containing basic catalyst, an amphoteric substance, a titanium-containing compound, and water together by stirring; a step (B) for heating the aqueous medium obtained in the step (A) at 80-100°C for 0.1-20 hours; and a step (C) for subjecting the aqueous medium obtained in the step (B) to a hydrothermal treatment at 120-200°C for 0.1-20 hours. The average particle size is 10-500 nm as measured by dynamic light scattering.

Description

両性物質を用いる酸化チタン粒子の製造方法Method for producing titanium oxide particles using amphoteric substance
 本発明は両性物質を用いた酸化チタン粒子の製造方法に係る。 The present invention relates to a method for producing titanium oxide particles using an amphoteric substance.
 酸化チタンは白色顔料として塗料、プラスチック、化粧品等の添加剤や、化学繊維、医薬品等の工業製品に広く用いられている。
 また酸化チタンの持つ機能から導電性材料、超微粒子材料、光触媒材料等にも利用されている。紫外線遮蔽材料は有害な紫外線から身を守るための紫外線保護材料や化粧品として使われている。導電性酸化スズを組み合わせた導電性酸化チタンは各種塗料、インキ、繊維などの帯電防止材料として使われている。また、チタン酸バリウム等の複合酸化物は誘電材料としても用いられている。
 これら酸化チタン粒子の製造方法として、チタンアルコキシド、有機酸及び水酸化第4級アンモニウムを反応させた後に、110~170℃で水熱処理する酸化チタンの製造方法が開示されている(特許文献1参照)。上記製法で有機酸はシュウ酸、マロン酸、リンゴ酸、酒石酸、コハク酸、アジピン酸、及びイタコン酸等の多価有機酸が用いられている。
 また、酸化チタン粒子にアミノ酸を加えた分散液が開示されている(特許文献2参照)。
この分散液はアミノ酸が含有されていて、コーティング剤として用いたときに高い親水性を示す膜を基材表面に形成する事が可能である。
Titanium oxide is widely used as a white pigment in additives such as paints, plastics and cosmetics, and in industrial products such as chemical fibers and pharmaceuticals.
In addition, due to the functions of titanium oxide, it is also used for conductive materials, ultrafine particle materials, photocatalyst materials, and the like. Ultraviolet shielding materials are used as ultraviolet protection materials and cosmetics to protect ourselves from harmful ultraviolet rays. Conductive titanium oxide combined with conductive tin oxide is used as an antistatic material for various paints, inks, and fibers. Composite oxides such as barium titanate are also used as dielectric materials.
As a method for producing these titanium oxide particles, a method for producing titanium oxide is disclosed in which a titanium alkoxide, an organic acid and a quaternary ammonium hydroxide are reacted and then hydrothermally treated at 110 to 170° C. (see Patent Document 1). ). In the above production method, polyvalent organic acids such as oxalic acid, malonic acid, malic acid, tartaric acid, succinic acid, adipic acid, and itaconic acid are used as organic acids.
Further, a dispersion liquid in which an amino acid is added to titanium oxide particles is disclosed (see Patent Document 2).
This dispersion contains amino acids, and when used as a coating agent, it is possible to form a highly hydrophilic film on the substrate surface.
国際公開パンフレットWO2010-055770International pamphlet WO2010-055770 特開2004-182558JP 2004-182558
 両性物質の存在下にチタンアルコキシド等のチタンモノマーを加水分解して縮合するゾルゲル法を用いて、分散性の高い酸化チタンゾルを得ようとするものである。 A highly dispersible titanium oxide sol is obtained using a sol-gel method in which a titanium monomer such as titanium alkoxide is hydrolyzed and condensed in the presence of an amphoteric substance.
 本発明は第1観点として、両性物質及びチタン含有化合物の共存下でチタン含有化合物の分解と縮合を行う工程を含む酸化チタン粒子の製造方法、
 第2観点として、透過型電子顕微鏡観察による平均一次粒子径が5~300nmを有する酸化チタン粒子である第1観点に記載の酸化チタン粒子の製造方法、
 第3観点として、チタン含有化合物の分解と縮合が、チタン含有化合物としてチタンアルコキシドを用いたゾルゲル法である第1観点又は第2観点に記載の酸化チタン粒子の製造方法、
 第4観点として、更に水と触媒を含有する第1観点乃至第3観点のいずれか一つに記載の酸化チタン粒子の製造方法、
 第5観点として、触媒がアンモニア、及び水酸化第4級アンモニウムからなる群から選ばれる窒素含有塩基性化合物である第4観点に記載の酸化チタン粒子の製造方法、
 第6観点として、(窒素含有塩基性化合物)/(チタン含有化合物のチタン原子)のモル比が0.05~1.5である第5観点に記載の酸化チタン粒子の製造方法、
 第7観点として、両性物質がアミノ基又はアンモニウム基からなるカチオン性基と、ヒドロキシル基、カルボキシル基又はスルホン酸基からなるアニオン性基とを有する双性イオン化合物である第1観点に記載の酸化チタン粒子の製造方法、
 第8観点として、両性物質がアミノ酸である第1観点に記載の酸化チタン粒子の製造方法、
 第9観点として、(両性物質)/(チタン含有化合物のチタン原子)のモル比が0.05~1.5である第1観点、第7観点又は第8観点に記載の酸化チタン粒子の製造方法、
 第10観点として、下記工程(A)乃至工程(C)を含む第1観点乃至第9観点のいずれか一つに記載の酸化チタン粒子を含む酸化チタンゾルの製造方法、
工程(A):窒素含有塩基性触媒、両性物質、チタン含有化合物、及び水を攪拌下に混合する工程(A)、
工程(B):工程(A)で得られた水性媒体を80~100℃で0.1~20時間加熱する工程(B)、
工程(C):工程(B)で得られた水性媒体を120~200℃で0.1~20時間の水熱処理を行う工程(C)、
 第11観点として、第10観点に記載の工程(C)の後、更に、工程(D)及び工程(E)からなる群より選ばれる少なくとも一つの工程を有する酸化チタン粒子を含む酸化チタンゾルの製造方法、
工程(D):第10観点に記載の工程(C)で得られた酸化チタン粒子を含む水性ゾルを限外ろ過する工程(D)、
工程(E):第10観点に記載の工程(C)で得られた酸化チタン粒子を含む水性ゾルを陽イオン交換及び/又は陰イオン交換する工程(E)、
 第12観点として、上記工程(C)、工程(D)、又は工程(E)の後に、更に工程(F)を有する第10観点又は第11観点に記載の酸化チタン粒子を含む酸化チタンゾルの製造方法、
工程(F):工程(C)、工程(D)、又は工程(E)で得られた酸化チタン粒子の水性ゾルを水性溶媒から有機溶媒に溶媒置換し、有機溶媒ゾルとする工程(F)、及び
 第13観点として、動的光散乱法による平均粒子径が10~500nmである第10観点乃至第12観点のいずれか一つに記載の酸化チタン粒子を含む酸化チタンゾルの製造方法である。
A first aspect of the present invention is a method for producing titanium oxide particles, comprising a step of decomposing and condensing a titanium-containing compound in the presence of an amphoteric substance and a titanium-containing compound,
As a second aspect, the method for producing titanium oxide particles according to the first aspect, wherein the titanium oxide particles have an average primary particle size of 5 to 300 nm as observed by a transmission electron microscope;
As a third aspect, the method for producing titanium oxide particles according to the first aspect or the second aspect, wherein the decomposition and condensation of the titanium-containing compound is a sol-gel method using titanium alkoxide as the titanium-containing compound;
As a fourth aspect, the method for producing titanium oxide particles according to any one of the first to third aspects, further containing water and a catalyst;
As a fifth aspect, the method for producing titanium oxide particles according to the fourth aspect, wherein the catalyst is a nitrogen-containing basic compound selected from the group consisting of ammonia and quaternary ammonium hydroxide;
As a sixth aspect, the method for producing titanium oxide particles according to the fifth aspect, wherein the molar ratio of (nitrogen-containing basic compound)/(titanium atom of titanium-containing compound) is 0.05 to 1.5;
As a seventh aspect, the oxidation according to the first aspect, wherein the amphoteric substance is a zwitterionic compound having a cationic group consisting of an amino group or an ammonium group and an anionic group consisting of a hydroxyl group, a carboxyl group or a sulfonic acid group. a method for producing titanium particles,
As an eighth aspect, the method for producing titanium oxide particles according to the first aspect, wherein the amphoteric substance is an amino acid;
As a ninth aspect, the production of titanium oxide particles according to the first aspect, the seventh aspect, or the eighth aspect, wherein the molar ratio of (amphoteric substance)/(titanium atom of the titanium-containing compound) is 0.05 to 1.5 Method,
As a tenth aspect, a method for producing a titanium oxide sol containing titanium oxide particles according to any one of the first to ninth aspects including the following steps (A) to (C);
Step (A): step (A) of mixing a nitrogen-containing basic catalyst, an amphoteric substance, a titanium-containing compound, and water while stirring;
Step (B): step (B) of heating the aqueous medium obtained in step (A) at 80 to 100° C. for 0.1 to 20 hours;
Step (C): Step (C) of subjecting the aqueous medium obtained in step (B) to hydrothermal treatment at 120 to 200° C. for 0.1 to 20 hours;
As an eleventh aspect, after the step (C) described in the tenth aspect, production of a titanium oxide sol containing titanium oxide particles, further comprising at least one step selected from the group consisting of steps (D) and (E). Method,
Step (D): Step (D) of ultrafiltrating the aqueous sol containing titanium oxide particles obtained in step (C) according to the tenth aspect;
Step (E): step (E) of cation-exchanging and/or anion-exchanging the aqueous sol containing titanium oxide particles obtained in step (C) according to the tenth aspect;
As a twelfth aspect, production of a titanium oxide sol containing titanium oxide particles according to the tenth or eleventh aspect, further comprising step (F) after step (C), step (D), or step (E). Method,
Step (F): The aqueous sol of titanium oxide particles obtained in step (C), step (D), or step (E) is subjected to solvent substitution from an aqueous solvent to an organic solvent to obtain an organic solvent sol (F). and, as a thirteenth aspect, a method for producing a titanium oxide sol containing titanium oxide particles according to any one of the tenth to twelfth aspects, which has an average particle size of 10 to 500 nm as determined by a dynamic light scattering method.
 本発明は酸化チタン粒子を形成するための原料としてチタンアルコキシド等のチタン含有化合物(チタンモノマー)を加水分解して縮合するゾルゲル法を用いて酸化チタン前駆体となるチタン酸化物が更に粒子成長して酸化チタン粒子に成長するが、チタン酸化物前駆体が酸化チタン粒子への成長過程に着目し、チタン酸化物前駆体が両性物質の存在により凝集を発生せずに酸化チタンのコロイド粒子を形成する事で分散性の高い酸化チタン粒子を含むゾルを得る事ができる。
 チタンアルコキシドは加水分解する事により酸化チタン前駆体となり、その酸化チタン前駆体が粒子成長して酸化チタン粒子となる。酸化チタン前駆体は不安定であり急激な反応により粗大粒子が凝集粒子を形成しやすい。本発明では両性物質が存在する事でチタン酸化物前駆体に配位してチタン酸化物前駆体を電荷的に安定に存在させ、更にその後の加熱により適切なコロイド領域の酸化チタン粒子を形成することができる。
 両性物質としてはアミノ基又はアンモニウム基からなるカチオン基と、ヒドロキシル基、カルボキシル基又はスルホン酸基からなるアニオン基とを有する双性イオン化合物又はグリシン等のアミノ酸を使用することで、チタン酸化物前駆体はチタン含有錯体に近い安定な構造を形成し凝集を防ぎ、その後の加熱(例えば水熱処理)により凝集が発生しない事でコロイド領域の酸化チタン粒子を生成することができる。
 本発明により得られる酸化チタン粒子、酸化チタンゾルは光学部材に適用可能であり、メガネレンズ、窓ガラス、フィルム状のコーティング剤、樹脂への添加剤、ディスプレイ等の用途に適用可能である。
The present invention employs a sol-gel method in which a titanium-containing compound (titanium monomer) such as titanium alkoxide is hydrolyzed and condensed as a raw material for forming titanium oxide particles, and titanium oxide, which serves as a titanium oxide precursor, is further grown into particles. However, we focused on the growth process of titanium oxide precursors into titanium oxide particles and found that titanium oxide precursors formed colloidal particles of titanium oxide without agglomeration due to the presence of amphoteric substances. By doing so, a sol containing titanium oxide particles with high dispersibility can be obtained.
Titanium alkoxide is hydrolyzed to form a titanium oxide precursor, and the titanium oxide precursor undergoes particle growth to form titanium oxide particles. Titanium oxide precursors are unstable, and coarse particles tend to form agglomerates due to rapid reaction. In the present invention, due to the presence of the amphoteric substance, it coordinates with the titanium oxide precursor to make the titanium oxide precursor exist stably in terms of charge. be able to.
As the amphoteric substance, a zwitterionic compound having a cationic group consisting of an amino group or an ammonium group and an anionic group consisting of a hydroxyl group, a carboxyl group, or a sulfonic acid group, or an amino acid such as glycine can be used to obtain a titanium oxide precursor. The body forms a stable structure close to that of a titanium-containing complex to prevent agglomeration, and subsequent heating (for example, hydrothermal treatment) prevents agglomeration, making it possible to produce titanium oxide particles in the colloidal region.
The titanium oxide particles and titanium oxide sol obtained by the present invention can be applied to optical members, such as spectacle lenses, window glass, film-like coating agents, additives to resins, and displays.
 本発明は両性物質の存在下に、チタン含有化合物の分解と縮合を行う酸化チタン粒子の製造方法である。本発明で得られる酸化チタン粒子は透過型電子顕微鏡観察(TEM法)による平均一次粒子径が5~300nm、又は10~250nmの範囲で得られる。酸化チタン粒子の粒子形状は俵状、花弁状、星型等の形状が観察されるが、透過型電子顕微鏡観察ではそれらの形状の粒子の最長距離を測定し、その平均値を平均一次粒子径の値とする。
 また、本件の酸化チタン粒子は水性溶媒又は有機溶媒に分散する事が可能であり、それら溶媒中に分散した粒子径を動的光散乱法(DLS法)による平均粒子径として10~500nm、又は10~300nmの範囲で得られる。
The present invention is a method for producing titanium oxide particles in which a titanium-containing compound is decomposed and condensed in the presence of an amphoteric substance. The titanium oxide particles obtained in the present invention have an average primary particle size of 5 to 300 nm, or 10 to 250 nm, as measured by transmission electron microscopy (TEM method). The particle shape of titanium oxide particles is bale-shaped, petal-shaped, star-shaped, etc., and in transmission electron microscopic observation, the longest distance of particles with these shapes is measured, and the average value is taken as the average primary particle diameter. be the value of
In addition, the titanium oxide particles of the present invention can be dispersed in an aqueous solvent or an organic solvent, and the particle diameter dispersed in the solvent is 10 to 500 nm as an average particle diameter according to the dynamic light scattering method (DLS method), or It is obtained in the range of 10 to 300 nm.
 上記チタン含有化合物としてはチタンアルコキシド、チタン塩、チタン錯体が挙げられる。
 チタンアルコキシドとしてはTi(ORの構造を有し、Rは炭素数1~5のアルキル基が挙げられる。例えばアルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、等が挙げられる。
 チタン塩としては4塩化チタン、オキシ塩化チタン、硫酸チタン、オキシ硫酸チタン、三塩化チタン、四臭化チタン、三臭化チタン、オキシ臭化チタン、四ヨウ化チタン、三ヨウ化チタン、オキシヨウ化チタン等のチタン塩が挙げられる。
Examples of the titanium-containing compound include titanium alkoxides, titanium salts, and titanium complexes.
A titanium alkoxide has a structure of Ti(OR 1 ) 4 , and R 1 is an alkyl group having 1 to 5 carbon atoms. For example, alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, and the like.
Titanium salts include titanium tetrachloride, titanium oxychloride, titanium sulfate, titanium oxysulfate, titanium trichloride, titanium tetrabromide, titanium tribromide, titanium oxybromide, titanium tetraiodide, titanium triiodide, and oxyiodide. Titanium salts such as titanium can be mentioned.
 チタン錯体としては、R-CO-CH-CO-R、の構造や、RCOO-、の構造を有する配位子を有するチタン錯体を用いる事ができる。R、Rは炭素原子数1~10のアルキル基やアルコキシ基が挙げられる。またRは炭素原子数1~4のアルキル基が挙げられる。例えば、チタンアセチルアセトン錯体、チタンアセト酢酸エチル錯体が挙げられる。
 チタン含有化合物の分解と縮合が、チタン含有化合物としてチタンアルコキシドを用いたゾルゲル法を利用する事が好ましい。チタンアルコキシドとしてはチタンテトライソプロポキシドが挙げられる。
As the titanium complex, a titanium complex having a ligand having a structure of R 2 —CO—CH 2 —CO—R 3 or R 4 COO— can be used. Examples of R 2 and R 3 include alkyl groups and alkoxy groups having 1 to 10 carbon atoms. Further, R 4 includes an alkyl group having 1 to 4 carbon atoms. Examples include titanium acetylacetone complexes and titanium acetoethyl acetate complexes.
Preferably, the decomposition and condensation of the titanium-containing compound utilizes a sol-gel method using titanium alkoxide as the titanium-containing compound. Titanium alkoxides include titanium tetraisopropoxide.
 本発明では更に水と触媒を含有する事ができる。触媒としてはアンモニア、又は水酸化第4級アンモニウム等のアルカリ性触媒であり、窒素含有塩基性触媒が挙げられる。
 水酸化第4級アンモニウムは水酸化テトラアルキルアンモニウムが挙げられ、アルキル基としては炭素原子数1~6のアルキル基が用いられる。例えば、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム等が例示される。
 触媒は、(窒素含有塩基性化合物)/(チタン含有化合物のチタン原子)のモル比が0.05~1.5、又は0.1~1.5、又は0.5~1.5の範囲で添加する事ができる。
The present invention can further contain water and a catalyst. Examples of the catalyst include alkaline catalysts such as ammonia or quaternary ammonium hydroxide, and nitrogen-containing basic catalysts.
The quaternary ammonium hydroxide includes tetraalkylammonium hydroxide, and as the alkyl group, an alkyl group having 1 to 6 carbon atoms is used. Examples include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide and the like.
The catalyst has a molar ratio of (nitrogen-containing basic compound) / (titanium atom of titanium-containing compound) in the range of 0.05 to 1.5, or 0.1 to 1.5, or 0.5 to 1.5 can be added with
 本発明に用いられる両性物質はアミノ基又はアンモニウム基からなるカチオン性基と、ヒドロキシル基、カルボキシル基、又はスルホン酸基からなるアニオン性基とを有している双性イオン化合物又は双性イオンを創出する化合物である。
 両性物質としてアミノ基とカルボキシ基の両方の官能基を持つ有機化合物であるアミノ酸を好適に用いる事ができる。アミノ酸は構造内にカルボキシル基数>アミノ基数である酸性アミノ酸、アミノ基数>カルボキシル基数である塩基性アミノ酸、カルボキシル基数=アミノ基数である中性アミノ酸を用いる事ができる。アミノ酸は水溶性である事が好ましく、芳香族環を有さない脂肪族アミノ酸が好ましい。そして、カルボキシル基が結合している炭素(アルファー炭素)にアミノ基も結合しているアルファーアミノ酸は好ましく用いる事ができ、例えばグリシンが例示される。
 両性物質の添加量は、(両性物質)/(チタン含有化合物のチタン原子)のモル比が0.05~1.5、又は0.1~1.5、又は0.5~1.5の範囲の範囲で用いる事ができる。
The amphoteric substance used in the present invention is a zwitterionic compound or zwitterion having a cationic group consisting of an amino group or an ammonium group and an anionic group consisting of a hydroxyl group, a carboxyl group, or a sulfonic acid group. It is a compound that creates.
An amino acid, which is an organic compound having both functional groups of an amino group and a carboxyl group, can be preferably used as the amphoteric substance. Amino acids that can be used include acidic amino acids in which the number of carboxyl groups>number of amino groups in the structure, basic amino acids in which the number of amino groups>number of carboxyl groups, and neutral amino acids in which the number of carboxyl groups=number of amino groups. Amino acids are preferably water-soluble, and are preferably aliphatic amino acids having no aromatic ring. An alpha-amino acid in which an amino group is also bonded to the carbon (alpha-carbon) to which the carboxyl group is bonded can be preferably used, for example, glycine.
The amount of amphoteric substance added is such that the molar ratio of (amphoteric substance)/(titanium atom of titanium-containing compound) is 0.05 to 1.5, or 0.1 to 1.5, or 0.5 to 1.5. It can be used within a range.
 本発明の酸化チタン粒子の製造方法では、下記工程(A)乃至工程(C)、
工程(A):窒素含有塩基性触媒、両性物質、チタン含有化合物、及び水を攪拌下に混合する工程(A)、
工程(B):工程(A)で得られた水性媒体を80~100℃で0.1~20時間加熱する工程(B)、
工程(C):工程(B)で得られた水性媒体を120~200℃で0.1~20時間の水熱処理を行う工程(C)、を含む方法により製造される。
In the method for producing titanium oxide particles of the present invention, the following steps (A) to (C),
Step (A): step (A) of mixing a nitrogen-containing basic catalyst, an amphoteric substance, a titanium-containing compound, and water while stirring;
Step (B): step (B) of heating the aqueous medium obtained in step (A) at 80 to 100° C. for 0.1 to 20 hours;
Step (C): produced by a method including step (C) of subjecting the aqueous medium obtained in step (B) to hydrothermal treatment at 120 to 200° C. for 0.1 to 20 hours.
 工程(A)では容器に水を入れ、窒素含有塩基性触媒として例えば水酸化第4級アンモニウム塩、両性物質としてグリシン、チタン含有化合物としてチタンテトライソプロポキシドを攪拌下に添加する事が好ましい。工程(A)では固形分濃度が0.1~30質量%、チタン化合物の濃度として0.1~30質量%の範囲で用いる事ができる。 In step (A), it is preferable to put water in a container and add, with stirring, for example, a quaternary ammonium hydroxide salt as a nitrogen-containing basic catalyst, glycine as an amphoteric substance, and titanium tetraisopropoxide as a titanium-containing compound. In the step (A), the solid content concentration can be 0.1 to 30% by mass, and the concentration of the titanium compound can be 0.1 to 30% by mass.
 工程(B)では工程(A)で得られた水性媒体を80~100℃で0.1~20時間加熱する。工程(B)の加熱は、80~100℃の範囲の中で段階的に加熱温度を上げてゆく加熱方法を選択する事ができる。工程(B)では100℃以内の加熱温度であるため大気圧下で行う事ができる。 In step (B), the aqueous medium obtained in step (A) is heated at 80-100°C for 0.1-20 hours. For the heating in step (B), a heating method can be selected in which the heating temperature is increased stepwise within the range of 80 to 100°C. Since the heating temperature in step (B) is within 100° C., it can be carried out under atmospheric pressure.
 工程(C)では工程(B)で得られた水性媒体を120~200℃で0.1~20時間の水熱処理を行う事ができる。温度が100℃を超えるため工程(B)で得られた水性媒体を、オートクレーブ装置に移し替えて水熱処理が行われる。オートクレーブ装置はステンレス製で攪拌装置を有するオートクレーブ装置を用いる事ができる。
 工程(C)の終了後、室温に冷却された後に、水性媒体を取り出し酸化チタンのコロイド粒子が分散したアルカリ性の水性分散体が得られる。これらの水性ゾルは酸化チタン粒子の濃度として0.1~30質量%の範囲で得られる。
 工程(C)で得られた酸化チタン粒子を含む水性ゾルに更に、工程(D)及び工程(E)からなる群より選ばれる少なくとも一つの工程を加える酸化チタン粒子を含む水性ゾルを製造する事ができる。
In step (C), the aqueous medium obtained in step (B) can be hydrothermally treated at 120 to 200° C. for 0.1 to 20 hours. Since the temperature exceeds 100° C., the aqueous medium obtained in step (B) is transferred to an autoclave and subjected to hydrothermal treatment. An autoclave made of stainless steel and having a stirring device can be used.
After step (C) is completed and cooled to room temperature, the aqueous medium is taken out to obtain an alkaline aqueous dispersion in which colloidal particles of titanium oxide are dispersed. These aqueous sols are obtained in the range of 0.1 to 30% by mass as the concentration of titanium oxide particles.
Producing an aqueous sol containing titanium oxide particles by further adding at least one step selected from the group consisting of step (D) and step (E) to the aqueous sol containing titanium oxide particles obtained in step (C). can be done.
 工程(D)は酸化チタン粒子の水性ゾルを限外ろ過する工程、
 工程(E)は酸化チタン粒子の水性ゾルを陽イオン交換及び/又は陰イオン交換する工程である。
 また、上記工程(C)、工程(D)、又は工程(E)の後に、更に工程(F)を加える事ができる。
 工程(F)は工程(C)、工程(D)、又は工程(E)で得られた酸化チタン粒子の水性ゾルを水性溶媒から有機溶媒に溶媒置換し、有機溶媒ゾルとする工程(F)である。
 これらの有機溶媒ゾルは酸化チタン粒子の濃度として0.1~30質量%の範囲で得られる。
Step (D) is a step of ultrafiltrating the aqueous sol of titanium oxide particles;
Step (E) is a step of exchanging cations and/or anions in the aqueous sol of titanium oxide particles.
Moreover, the step (F) can be added after the step (C), the step (D), or the step (E).
Step (F) is a step (F) in which the aqueous sol of titanium oxide particles obtained in step (C), step (D), or step (E) is replaced with an organic solvent from an aqueous solvent to obtain an organic solvent sol. is.
These organic solvent sols are obtained with a titanium oxide particle concentration in the range of 0.1 to 30 mass %.
 限外ろ過する工程は、限外ろ過膜が装着された市販の限外ろ過装置を用いて行われる。
 陽イオン交換する工程は、陽イオン交換樹脂を添加し撹拌する工程、又は陽イオン交換樹脂が充填されたカラムに通液する工程である。本発明で使用する陽イオン交換樹脂は特に限定されず、各種公知の陽イオン交換樹脂を使用することができる。
 陰イオン交換する工程は、陰イオン交換樹脂を添加し撹拌する工程、又は陰イオン交換樹脂が充填されたカラムに通液する工程である。本発明で使用する陰イオン交換樹脂は特に限定されず、各種公知の陰イオン交換樹脂を使用することができる。
The ultrafiltration step is performed using a commercially available ultrafiltration device equipped with an ultrafiltration membrane.
The step of exchanging cations is a step of adding and stirring a cation exchange resin, or a step of passing through a column packed with a cation exchange resin. The cation exchange resin used in the present invention is not particularly limited, and various known cation exchange resins can be used.
The step of anion exchange is a step of adding an anion exchange resin and stirring, or a step of passing through a column packed with an anion exchange resin. The anion exchange resin used in the present invention is not particularly limited, and various known anion exchange resins can be used.
 酸化チタン粒子の水性ゾルを水性溶媒から有機溶媒に溶媒置換し、有機溶媒ゾルにする工程における有機溶媒としては、例えばn-ペンタン、i-ペンタン、n-ヘキサン、i-ヘキサン、n-ヘプタン、i-ヘプタン、2,2,4-トリメチルペンタン、n-オクタン、i-オクタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n-プロピルベンセン、i-プロピルベンセン、ジエチルベンゼン、i-ブチルベンゼン、トリエチルベンゼン、ジ-i-プロピルベンセン、n-アミルナフタレン、トリメチルベンゼン等の芳香族炭化水素系溶媒;メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、sec-ブタノール、t-ブタノール、n-ペンタノール、i-ペンタノール、2-メチルブタノール、sec-ペンタノール、t-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、ヘプタノール-3、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、2,6-ジメチルヘプタノール-4、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、ベンジルアルコール、フェニルメチルカルビノール、ジアセトンアルコール、クレゾール等のモノアルコール系溶媒;エチレングリコール、プロピレングリコール、1,3-ブチレングリコール、ペンタンジオール-2,4、2-メチルペンタンジオール-2,4、ヘキサンジオール-2,5、ヘプタンジオール-2,4、2-エチルヘキサンジオール-1,3、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、グリセリン等の多価アルコール系溶媒;アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-i-ブチルケトン、メチル-n-ペンチルケトン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-i-ブチルケトン、トリメチルノナノン、シクロヘキサノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン、ジアセトンアルコール、アセトフェノン、フェンチョン等のケトン系溶媒;エチルエーテル、i-プロピルエーテル、n-ブチルエーテル、n-ヘキシルエーテル、2-エチルヘキシルエーテル、エチレンオキシド、1,2-プロピレンオキシド、ジオキソラン、4-メチルジオキソラン、ジオキサン、ジメチルジオキサン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールモノ-n-ブチルエーテル、エチレングリコールモノ-n-ヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノ-2-エチルブチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールジ-n-ブチルエーテル、ジエチレングリコールモノ-n-ヘキシルエーテル、エトキシトリグリコール、テトラエチレングリコールジ-n-ブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル系溶媒;
ジエチルカーボネート、酢酸メチル、酢酸エチル、γ-ブチロラクトン、γ-バレロラクトン、酢酸n-プロピル、酢酸i-プロピル、酢酸n-ブチル、酢酸i-ブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸n-ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ-n-ブチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸i-アミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、マロン酸ジエチル、フタル酸ジメチル、フタル酸ジエチル等のエステル系溶媒;N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド、N-メチルピロリドン等の含窒素系溶媒;硫化ジメチル、硫化ジエチル、チオフェン、テトラヒドロチオフェン、ジメチルスルホキシド、スルホラン、1,3-プロパンスルトン等の含硫黄系溶媒等を挙げることができる。これらの溶剤は1種又は2種以上の組み合わせで用いることができる。
Examples of the organic solvent in the step of replacing the aqueous solvent of the aqueous sol of titanium oxide particles with an organic solvent to form an organic solvent sol include n-pentane, i-pentane, n-hexane, i-hexane, n-heptane, Aliphatic hydrocarbon solvents such as i-heptane, 2,2,4-trimethylpentane, n-octane, i-octane, cyclohexane, methylcyclohexane; benzene, toluene, xylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n- Aromatic hydrocarbon solvents such as propylbenzene, i-propylbenzene, diethylbenzene, i-butylbenzene, triethylbenzene, di-i-propylbenzene, n-amylnaphthalene, trimethylbenzene; methanol, ethanol, n-propanol, i -propanol, n-butanol, i-butanol, sec-butanol, t-butanol, n-pentanol, i-pentanol, 2-methylbutanol, sec-pentanol, t-pentanol, 3-methoxybutanol, n -hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, heptanol-3, n-octanol, 2-ethylhexanol, sec-octanol, n-nonyl alcohol, 2,6-dimethylhepta Nol-4, n-decanol, sec-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec-heptadecyl alcohol, phenol, cyclohexanol, methylcyclohexanol, 3,3,5-trimethylcyclohexanol, benzyl Monoalcohol solvents such as alcohol, phenylmethylcarbinol, diacetone alcohol, cresol; ethylene glycol, propylene glycol, 1,3-butylene glycol, pentanediol-2,4, 2-methylpentanediol-2,4, hexane Polyhydric alcohol solvents such as diol-2,5, heptanediol-2,4, 2-ethylhexanediol-1,3, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, glycerin; acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-i-butyl ketone, methyl-n-pentyl ketone, ethyl-n-butyl ketone, methyl-n-hexyl ketone , di-i-butyl ketone, trimethylnonanone, cyclohexanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone, diacetone alcohol, acetophenone, ketone solvents such as finchong; ethyl ether, i-propyl ether, n -butyl ether, n-hexyl ether, 2-ethylhexyl ether, ethylene oxide, 1,2-propylene oxide, dioxolane, 4-methyldioxolane, dioxane, dimethyldioxane, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol diethyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol mono-n-hexyl ether, ethylene glycol monophenyl ether, ethylene glycol mono-2-ethylbutyl ether, ethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol diethyl ether, Diethylene glycol mono-n-butyl ether, diethylene glycol di-n-butyl ether, diethylene glycol mono-n-hexyl ether, ethoxytriglycol, tetraethylene glycol di-n-butyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl Ether solvents such as ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran ;
diethyl carbonate, methyl acetate, ethyl acetate, γ-butyrolactone, γ-valerolactone, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, sec-butyl acetate, n-pentyl acetate, sec acetate -pentyl acetate, 3-methoxybutyl acetate, methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, n-nonyl acetate, methyl acetoacetate, ethyl acetoacetate, ethylene glycol monomethyl acetate Ether, Ethylene glycol monoethyl ether acetate, Diethylene glycol monomethyl ether acetate, Diethylene glycol monoethyl ether acetate, Diethylene glycol mono-n-butyl ether acetate, Propylene glycol monomethyl ether acetate, Propylene glycol monoethyl ether acetate, Propylene glycol monopropyl ether acetate, Propylene acetate Glycol monobutyl ether, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, glycol diacetate, methoxytriglycol acetate, ethyl propionate, n-butyl propionate, i-amyl propionate, diethyl oxalate, oxalic acid Ester solvents such as di-n-butyl, methyl lactate, ethyl lactate, n-butyl lactate, n-amyl lactate, diethyl malonate, dimethyl phthalate, diethyl phthalate; N-methylformamide, N,N-dimethylformamide , N,N-diethylformamide, acetamide, N-methylacetamide, N,N-dimethylacetamide, N-methylpropionamide, nitrogen-containing solvents such as N-methylpyrrolidone; dimethyl sulfide, diethyl sulfide, thiophene, tetrahydrothiophene, Sulfur-containing solvents such as dimethylsulfoxide, sulfolane, 1,3-propanesultone, and the like can be used. These solvents can be used singly or in combination of two or more.
 本発明の酸化チタンゾルは安定性向上のためアミンを含有する事ができる。アミンの添加によりpHが9~12に設定する事ができる。
 アミンは例えばエチルアミン、ジエチルアミン、n-プロピルアミン、イソプロピルアミン、ジイソプロピルアミン、ジプロピルアミン、n-ブチルアミン、イソブチルアミン、ジイソブチルアミン、トリエチルアミン等のアルキルアミン、フェニルアミン、ベンジルアミン等のアリールアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン等が挙げられる。
The titanium oxide sol of the present invention can contain an amine for improving stability. A pH of 9-12 can be set by adding an amine.
Amines include alkylamines such as ethylamine, diethylamine, n-propylamine, isopropylamine, diisopropylamine, dipropylamine, n-butylamine, isobutylamine, diisobutylamine and triethylamine; arylamines such as phenylamine and benzylamine; Alkanolamine such as amine, diethanolamine, triethanolamine, and the like.
 本発明の酸化チタンゾルは界面活性剤を添加する事ができる。界面活性剤としては、ノニオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤、シリコン系界面活性剤、UV硬化系界面活性剤が挙げられる。
 例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフエノールエーテル、ポリオキシエチレンノニルフエノールエーテル等のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロツクコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、商品名エフトップEF301、EF303、EF352((株)トーケムプロダクツ製)、商品名メガファックF171、F173、R-08、R-30、R-40、R-40N(DIC(株)製)、フロラードFC430、FC431(住友スリーエム(株)製)、商品名アサヒガードAG710,サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子(株)製)等のフッ素系界面活性剤、及びオルガノシロキサンポリマ-KP341(信越化学工業(株)製、商品名)、BYK302、BYK307、BYK333、BYK341、BYK345、BYK346、BYK347、BYK348(BYK社製、商品名)等のシリコン系界面活性剤を挙げることができる。塩化ジステアリルジメチルアンモニウム、塩化ベンザルコニウム、塩化ベンゼトニウム、塩化セチルピリジニウム、臭化ヘキサデシルトリメチルアンモニウム、塩化デカリニウム等のカチオン系界面活性剤、オクタン酸塩、デカン酸塩、オクタンスルホン酸塩、デカン酸スルホン酸塩、パルミチン酸塩、パーフルオロブタンスルホン酸塩、ドデシルベンゼンスルホン酸塩等のアニオン系界面活性剤、BYK307、BYK333、BYK381、BYK-UV-3500、BYK-UV-3510、BYK-UV-3530(BYK社製、商品名)等のUV硬化系界面活性剤を挙げることができる。
A surfactant can be added to the titanium oxide sol of the present invention. Examples of surfactants include nonionic surfactants, anionic surfactants, cationic surfactants, silicone surfactants, and UV curing surfactants.
For example, polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and polyoxyethylene oleyl ether; Oxyethylene alkyl allyl ethers, polyoxyethylene/polyoxypropylene block copolymers, sorbitan fatty acids such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, and sorbitan tristearate Esters, polyoxyethylene sorbitan fatty acid esters such as polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate Nonionic surfactants such as, trade names Ftop EF301, EF303, EF352 (manufactured by Tochem Products Co., Ltd.), trade names Megafac F171, F173, R-08, R-30, R-40, R-40N (manufactured by DIC Corporation), Florard FC430, FC431 (manufactured by Sumitomo 3M Co., Ltd.), trade names Asahiguard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.) and organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd., trade name), BYK302, BYK307, BYK333, BYK341, BYK345, BYK346, BYK347, BYK348 (manufactured by BYK, trade name). Silicon-based surfactants such as Cationic surfactants such as distearyldimethylammonium chloride, benzalkonium chloride, benzethonium chloride, cetylpyridinium chloride, hexadecyltrimethylammonium bromide, dequalinium chloride, octanoate, decanoate, octanesulfonate, decanoic acid Anionic surfactants such as sulfonates, palmitates, perfluorobutanesulfonates, dodecylbenzenesulfonates, BYK307, BYK333, BYK381, BYK-UV-3500, BYK-UV-3510, BYK-UV- UV curable surfactants such as 3530 (manufactured by BYK, trade name) can be mentioned.
 これらの界面活性剤は単独で使用してもよいし、また二種以上の組み合わせで使用することもできる。界面活性剤が使用される場合、その割合としては、酸化チタンの固形分100質量部に対して0.0001~5質量部、又は0.001~5質量部、又は0.01~5質量部である。 These surfactants may be used alone or in combination of two or more. When a surfactant is used, the ratio is 0.0001 to 5 parts by mass, or 0.001 to 5 parts by mass, or 0.01 to 5 parts by mass with respect to 100 parts by mass of the solid content of titanium oxide. is.
〔透過型電子顕微鏡による酸化チタン粒子の平均一次粒子径〕
 酸化チタン粒子の分散液(ゾル)を水又はメタノールで希釈し、これを銅メッシュ上で乾燥させ、透過型電子顕微鏡にて観察し、500個の粒子径を測定し、その平均値を一次粒子径として求めた。
〔酸化チタンゾルの動的光散乱法による平均粒子径(動的光散乱法粒子径)〕
 酸化チタンゾルをその分散溶媒で希釈し、溶媒のパラメーターを用いて、動的光散乱法測定装置:Malvern Instruments Ltd製ゼータ-サイザーで測定した。
〔酸化チタンゾルのTiO濃度〕600℃で焼成した際の残存固形物より求めた。
[Average Primary Particle Size of Titanium Oxide Particles Observed by Transmission Electron Microscope]
A dispersion (sol) of titanium oxide particles is diluted with water or methanol, dried on a copper mesh, observed with a transmission electron microscope, and the particle diameter of 500 particles is measured. It was obtained as a diameter.
[Average particle size of titanium oxide sol determined by dynamic light scattering method (dynamic light scattering method particle size)]
The titanium oxide sol was diluted with its dispersion solvent and measured with a dynamic light scattering measurement device: Zeta-Sizer manufactured by Malvern Instruments Ltd using the parameters of the solvent.
[TiO 2 Concentration of Titanium Oxide Sol] Determined from residual solids after firing at 600°C.
〔実施例1〕
 5リットルの容器に純水1420.7gを入れ、35質量%水酸化テトラエチルアンモニウム水溶液315.6g、グリシン47.9g、チタンテトライソプロポキシド213.2g(TiO換算で59.9g含有)を攪拌下に添加した。得られた混合溶液は、水酸化テトラエチルアンモニウム/チタン原子のモル比1.00、グリシン/チタン原子のモル比0.85であった。該混合溶液を、90℃で2時間保持した後、95℃で5時間保持し、チタン混合溶液を調製した。調製後のチタン混合溶液のpH10.8、TiO濃度3.0質量%であった。3リットルのSUS製オートクレーブ容器に上記チタン混合溶液1500gを投入し、150℃で5時間水熱処理を行った。室温に冷却後、取り出された水熱処理後の溶液は乳白色の酸化チタンコロイド粒子の水分散液であった。得られた分散液は、pH11.6、TiO濃度3.0質量%、動的光散乱粒子径49nm、透過型電子顕微鏡観察では、平均一次粒子径33nmの俵状粒子が観察された。
[Example 1]
1420.7 g of pure water was placed in a 5-liter container, and 315.6 g of a 35% by mass tetraethylammonium hydroxide aqueous solution, 47.9 g of glycine, and 213.2 g of titanium tetraisopropoxide (containing 59.9 g of TiO2 ) were stirred. added below. The resulting mixed solution had a tetraethylammonium hydroxide/titanium atom molar ratio of 1.00 and a glycine/titanium atom molar ratio of 0.85. The mixed solution was held at 90° C. for 2 hours and then held at 95° C. for 5 hours to prepare a titanium mixed solution. The titanium mixed solution after preparation had a pH of 10.8 and a TiO 2 concentration of 3.0% by mass. 1,500 g of the titanium mixed solution was put into a 3-liter SUS autoclave container, and hydrothermally treated at 150° C. for 5 hours. After cooling to room temperature, the hydrothermally treated solution taken out was an aqueous dispersion of milky white titanium oxide colloidal particles. The resulting dispersion had a pH of 11.6, a TiO 2 concentration of 3.0% by mass, a dynamic light scattering particle diameter of 49 nm, and bale-shaped particles having an average primary particle diameter of 33 nm were observed by transmission electron microscope observation.
〔実施例2〕
 5リットルの容器に純水1423.5gを入れ、35質量%水酸化テトラエチルアンモニウム水溶液315.6g、グリシン45.0g、チタンテトライソプロポキシド213.2g(TiO換算で59.9g含有)を攪拌下に添加した。得られた混合溶液は、水酸化テトラエチルアンモニウム/チタン原子のモル比1.00、グリシン/チタン原子のモル比0.80であった。該混合溶液を、90℃で2時間保持した後、95℃で5時間保持し、チタン混合溶液を調製した。調製後のチタン混合溶液のpH11.0、TiO濃度3.0質量%であった。3リットルのSUS製オートクレーブ容器に上記チタン混合溶液1500gを投入し、150℃で5時間水熱処理を行った。室温に冷却後、取り出された水熱処理後の溶液は乳白色の酸化チタンコロイド粒子の水分散液であった。得られた分散液は、pH12.0、TiO濃度3.0質量%、動的光散乱粒子径67nm、透過型電子顕微鏡観察では、平均一次粒子径55nmの俵状粒子が観察された。
[Example 2]
1423.5 g of pure water was placed in a 5-liter container, and 315.6 g of a 35% by mass tetraethylammonium hydroxide aqueous solution, 45.0 g of glycine, and 213.2 g of titanium tetraisopropoxide (contains 59.9 g of TiO2 ) were stirred. added below. The resulting mixed solution had a molar ratio of tetraethylammonium hydroxide/titanium atom of 1.00 and a molar ratio of glycine/titanium atom of 0.80. The mixed solution was held at 90° C. for 2 hours and then held at 95° C. for 5 hours to prepare a titanium mixed solution. The titanium mixed solution after preparation had a pH of 11.0 and a TiO 2 concentration of 3.0% by mass. 1,500 g of the titanium mixed solution was put into a 3-liter SUS autoclave container, and hydrothermally treated at 150° C. for 5 hours. After cooling to room temperature, the hydrothermally treated solution taken out was an aqueous dispersion of milky white titanium oxide colloidal particles. The resulting dispersion had a pH of 12.0, a TiO 2 concentration of 3.0% by mass, a dynamic light scattering particle diameter of 67 nm, and bale-shaped particles having an average primary particle diameter of 55 nm were observed by transmission electron microscope observation.
〔実施例3〕
 5リットルの容器に純水1426.3gを入れ、35質量%水酸化テトラエチルアンモニウム水溶液315.6g、グリシン42.2g、チタンテトライソプロポキシド213.2g(TiO換算で59.9g含有)を攪拌下に添加した。得られた混合溶液は、水酸化テトラエチルアンモニウム/チタン原子のモル比1.00、グリシン/チタン原子のモル比0.75であった。該混合溶液を、90℃で2時間保持した後、95℃で5時間保持し、チタン混合溶液を調製した。調製後のチタン混合溶液のpH11.1、TiO濃度3.0質量%であった。3リットルのSUS製オートクレーブ容器に上記チタン混合溶液1500gを投入し、150℃で5時間水熱処理を行った。室温に冷却後、取り出された水熱処理後の溶液は乳白色の酸化チタンコロイド粒子の水分散液であった。得られた分散液は、pH12.2、TiO濃度3.0質量%、動的光散乱粒子径94nm、透過型電子顕微鏡観察では、平均一次粒子径70nmの俵状粒子が観察された。
[Example 3]
1426.3 g of pure water was placed in a 5-liter container, and 315.6 g of a 35% by mass tetraethylammonium hydroxide aqueous solution, 42.2 g of glycine, and 213.2 g of titanium tetraisopropoxide (containing 59.9 g of TiO2 ) were stirred. added below. The resulting mixed solution had a molar ratio of tetraethylammonium hydroxide/titanium atom of 1.00 and a molar ratio of glycine/titanium atom of 0.75. The mixed solution was held at 90° C. for 2 hours and then held at 95° C. for 5 hours to prepare a titanium mixed solution. The pH of the titanium mixed solution after preparation was 11.1 and the TiO 2 concentration was 3.0% by mass. 1,500 g of the titanium mixed solution was put into a 3-liter SUS autoclave container, and hydrothermally treated at 150° C. for 5 hours. After cooling to room temperature, the hydrothermally treated solution taken out was an aqueous dispersion of milky white titanium oxide colloidal particles. The resulting dispersion had a pH of 12.2, a TiO 2 concentration of 3.0% by mass, a dynamic light scattering particle diameter of 94 nm, and bale-shaped particles having an average primary particle diameter of 70 nm were observed by transmission electron microscope observation.
〔実施例4〕
 5リットルの容器に純水1429.1gを入れ、35質量%水酸化テトラエチルアンモニウム水溶液315.6g、グリシン39.4g、チタンテトライソプロポキシド213.2g(TiO換算で59.9g含有)を攪拌下に添加した。得られた混合溶液は、水酸化テトラエチルアンモニウム/チタン原子のモル比1.00、グリシン/チタン原子のモル比0.70であった。該混合溶液を、90℃で2時間保持した後、95℃で5時間保持し、チタン混合溶液を調製した。調製後のチタン混合溶液のpH11.2、TiO濃度3.0質量%であった。3リットルのSUS製オートクレーブ容器に上記チタン混合溶液1500gを投入し、150℃で5時間水熱処理を行った。室温に冷却後、取り出された水熱処理後の溶液は乳白色の酸化チタンコロイド粒子の水分散液であった。得られた分散液は、pH12.2、TiO濃度3.0質量%、動的光散乱粒子径141nm、透過型電子顕微鏡観察では、平均一次粒子径94nmの俵状粒子が観察された。
[Example 4]
1429.1 g of pure water was placed in a 5-liter container, and 315.6 g of a 35% by mass tetraethylammonium hydroxide aqueous solution, 39.4 g of glycine, and 213.2 g of titanium tetraisopropoxide (containing 59.9 g of TiO2 ) were stirred. added below. The resulting mixed solution had a tetraethylammonium hydroxide/titanium atom molar ratio of 1.00 and a glycine/titanium atom molar ratio of 0.70. The mixed solution was held at 90° C. for 2 hours and then held at 95° C. for 5 hours to prepare a titanium mixed solution. The titanium mixed solution after preparation had a pH of 11.2 and a TiO 2 concentration of 3.0% by mass. 1,500 g of the titanium mixed solution was put into a 3-liter SUS autoclave container, and hydrothermally treated at 150° C. for 5 hours. After cooling to room temperature, the hydrothermally treated solution taken out was an aqueous dispersion of milky white titanium oxide colloidal particles. The resulting dispersion had a pH of 12.2, a TiO 2 concentration of 3.0% by mass, a dynamic light scattering particle diameter of 141 nm, and bale-shaped particles having an average primary particle diameter of 94 nm were observed by transmission electron microscope observation.
〔実施例5〕
 5リットルの容器に純水1616.8gを入れ、35質量%水酸化テトラエチルアンモニウム水溶液157.8g、グリシン9.6g、チタンテトライソプロポキシド213.2g(TiO換算で59.9g含有)を攪拌下に添加した。得られた混合溶液は、水酸化テトラエチルアンモニウム/チタン原子のモル比0.50、グリシン/チタン原子のモル比0.17であった。該混合溶液を、90℃で2時間保持した後、95℃で5時間保持し、チタン混合溶液を調製した。調製後のチタン混合溶液のpH11.4、TiO濃度3.0質量%であった。3リットルのSUS製オートクレーブ容器に上記チタン混合溶液1500gを投入し、150℃で5時間水熱処理を行った。室温に冷却後、取り出された水熱処理後の溶液は乳白色の酸化チタンコロイド粒子の水分散液であった。得られた分散液は、pH12.6、TiO濃度3.0質量%、動的光散乱粒子径167nm、透過型電子顕微鏡観察では、平均一次粒子径120nmの俵状粒子が観察された。
[Example 5]
1616.8 g of pure water was placed in a 5-liter container, and 157.8 g of a 35% by mass tetraethylammonium hydroxide aqueous solution, 9.6 g of glycine, and 213.2 g of titanium tetraisopropoxide (contains 59.9 g of TiO2 ) were stirred. added below. The resulting mixed solution had a molar ratio of tetraethylammonium hydroxide/titanium atom of 0.50 and a molar ratio of glycine/titanium atom of 0.17. The mixed solution was held at 90° C. for 2 hours and then held at 95° C. for 5 hours to prepare a titanium mixed solution. The titanium mixed solution after preparation had a pH of 11.4 and a TiO 2 concentration of 3.0% by mass. 1,500 g of the titanium mixed solution was put into a 3-liter SUS autoclave container, and hydrothermally treated at 150° C. for 5 hours. After cooling to room temperature, the hydrothermally treated solution taken out was an aqueous dispersion of milky white titanium oxide colloidal particles. The resulting dispersion had a pH of 12.6, a TiO 2 concentration of 3.0% by mass, a dynamic light scattering particle diameter of 167 nm, and bale-shaped particles having an average primary particle diameter of 120 nm were observed by transmission electron microscope observation.
〔比較例1〕
 5リットルの容器に純水1737.6gを入れ、グリシン47.9g、チタンテトライソプロポキシド213.2g(TiO換算で59.9g含有)を攪拌下に添加した。得られた混合溶液は、グリシン/チタン原子のモル比0.85であった。該混合溶液を、90℃で2時間保持した後、95℃で5時間保持したが、チタンテトライソプロポキシドが溶解せず、粒子を形成しなかった。
[Comparative Example 1]
1737.6 g of pure water was placed in a 5-liter container, and 47.9 g of glycine and 213.2 g of titanium tetraisopropoxide (containing 59.9 g of TiO2 ) were added with stirring. The resulting mixed solution had a glycine/titanium atom molar ratio of 0.85. The mixed solution was held at 90° C. for 2 hours and then at 95° C. for 5 hours, but titanium tetraisopropoxide did not dissolve and no particles were formed.
〔比較例2〕
 5リットルの容器に純水1464.4gを入れ、35質量%水酸化テトラエチルアンモニウム水溶液315.6g、チタンテトライソプロポキシド213.2g(TiO換算で59.9g含有)を攪拌下に添加した。得られた混合溶液は、水酸化テトラエチルアンモニウム/チタン原子のモル比1.00であった。該混合溶液を、90℃で2時間保持した後、95℃で5時間保持し、チタン混合溶液を調製した。調製後のチタン混合溶液のpH11.0、TiO濃度3.0質量%であった。3リットルのSUS製オートクレーブ容器に上記チタン混合溶液1500gを投入し、150℃で5時間水熱処理を行った。室温に冷却後、取り出された水熱処理後の溶液は乳白色の酸化チタンコロイド粒子の水分散液であった。得られた分散液は、pH12.0、TiO濃度3.0質量%、動的光散乱粒子径715nm、透過型電子顕微鏡観察では、平均一次粒子径488nmの花弁状粒子が観察された。
[Comparative Example 2]
1464.4 g of pure water was placed in a 5-liter container, and 315.6 g of a 35 mass % tetraethylammonium hydroxide aqueous solution and 213.2 g of titanium tetraisopropoxide (contains 59.9 g of TiO 2 ) were added with stirring. The resulting mixed solution had a tetraethylammonium hydroxide/titanium atom molar ratio of 1.00. The mixed solution was held at 90° C. for 2 hours and then held at 95° C. for 5 hours to prepare a titanium mixed solution. The titanium mixed solution after preparation had a pH of 11.0 and a TiO 2 concentration of 3.0% by mass. 1,500 g of the titanium mixed solution was put into a 3-liter SUS autoclave container, and hydrothermally treated at 150° C. for 5 hours. After cooling to room temperature, the hydrothermally treated solution taken out was an aqueous dispersion of milky white titanium oxide colloidal particles. The resulting dispersion had a pH of 12.0, a TiO 2 concentration of 3.0% by mass, a dynamic light scattering particle diameter of 715 nm, and petal-like particles having an average primary particle diameter of 488 nm were observed by transmission electron microscope observation.
 実施例1~5のいずれも、水熱処理後の粒子形状は俵状であり、グリシン/チタン原子のモル比に応じて任意の粒子径を持つ粒子を作成できることが確認された。一方、比較例1では粒子形成に至らず、比較例2では俵状の粒子を得ることができなかった。 In all of Examples 1 to 5, the particle shape after hydrothermal treatment was bale-shaped, and it was confirmed that particles with an arbitrary particle diameter could be produced according to the molar ratio of glycine/titanium atoms. On the other hand, in Comparative Example 1, no particles were formed, and in Comparative Example 2, bale-shaped particles could not be obtained.
 両性物質の存在下にチタンアルコキシド等のチタンモノマーを加水分解して縮合するゾルゲル法を用いて、分散性の高い酸化チタンゾルを得る事ができ、それにより酸化チタン粒子が得られる。
 
A highly dispersible titanium oxide sol can be obtained by using a sol-gel method in which a titanium monomer such as a titanium alkoxide is hydrolyzed and condensed in the presence of an amphoteric substance, thereby obtaining titanium oxide particles.

Claims (13)

  1. 両性物質及びチタン含有化合物の共存下でチタン含有化合物の分解と縮合を行う工程を含む酸化チタン粒子の製造方法。 A method for producing titanium oxide particles, comprising a step of decomposing and condensing a titanium-containing compound in the coexistence of an amphoteric substance and a titanium-containing compound.
  2. 透過型電子顕微鏡観察による平均一次粒子径が5~300nmを有する酸化チタン粒子である請求項1に記載の酸化チタン粒子の製造方法。 2. The method for producing titanium oxide particles according to claim 1, wherein the titanium oxide particles have an average primary particle size of 5 to 300 nm as observed by a transmission electron microscope.
  3. チタン含有化合物の分解と縮合が、チタン含有化合物としてチタンアルコキシドを用いたゾルゲル法である請求項1又は請求項2に記載の酸化チタン粒子の製造方法。 3. The method for producing titanium oxide particles according to claim 1, wherein the decomposition and condensation of the titanium-containing compound is a sol-gel method using titanium alkoxide as the titanium-containing compound.
  4. 更に水と触媒を含有する請求項1乃至請求項3のいずれか1項に記載の酸化チタン粒子の製造方法。 4. The method for producing titanium oxide particles according to any one of claims 1 to 3, further comprising water and a catalyst.
  5. 触媒がアンモニア、及び水酸化第4級アンモニウムからなる群から選ばれる窒素含有塩基性化合物である請求項4に記載の酸化チタン粒子の製造方法。 5. The method for producing titanium oxide particles according to claim 4, wherein the catalyst is a nitrogen-containing basic compound selected from the group consisting of ammonia and quaternary ammonium hydroxide.
  6. (窒素含有塩基性化合物)/(チタン含有化合物のチタン原子)のモル比が0.05~1.5である請求項5に記載の酸化チタン粒子の製造方法。 6. The method for producing titanium oxide particles according to claim 5, wherein the molar ratio of (nitrogen-containing basic compound)/(titanium atom of titanium-containing compound) is 0.05 to 1.5.
  7. 両性物質がアミノ基又はアンモニウム基からなるカチオン性基と、ヒドロキシル基、カルボキシル基又はスルホン酸基からなるアニオン性基とを有する双性イオン化合物である請求項1に記載の酸化チタン粒子の製造方法。 2. The method for producing titanium oxide particles according to claim 1, wherein the amphoteric substance is a zwitterionic compound having a cationic group consisting of an amino group or an ammonium group and an anionic group consisting of a hydroxyl group, a carboxyl group or a sulfonic acid group. .
  8. 両性物質がアミノ酸である請求項1に記載の酸化チタン粒子の製造方法。 2. The method for producing titanium oxide particles according to claim 1, wherein the amphoteric substance is an amino acid.
  9. (両性物質)/(チタン含有化合物のチタン原子)のモル比が0.05~1.5である請求項1、請求項7又は請求項8に記載の酸化チタン粒子の製造方法。 9. The method for producing titanium oxide particles according to claim 1, wherein the molar ratio of (amphoteric substance)/(titanium atom of titanium-containing compound) is 0.05 to 1.5.
  10. 下記工程(A)乃至工程(C)を含む請求項1乃至請求項9のいずれか1項に記載の酸化チタン粒子を含む酸化チタンゾルの製造方法。
    工程(A):窒素含有塩基性触媒、両性物質、チタン含有化合物、及び水を攪拌下に混合する工程(A)、
    工程(B):工程(A)で得られた水性媒体を80~100℃で0.1~20時間加熱する工程(B)、
    工程(C):工程(B)で得られた水性媒体を120~200℃で0.1~20時間の水熱処理を行う工程(C)。
    10. A method for producing a titanium oxide sol containing titanium oxide particles according to any one of claims 1 to 9, comprising the following steps (A) to (C).
    Step (A): step (A) of mixing a nitrogen-containing basic catalyst, an amphoteric substance, a titanium-containing compound, and water while stirring;
    Step (B): step (B) of heating the aqueous medium obtained in step (A) at 80 to 100° C. for 0.1 to 20 hours;
    Step (C): Step (C) of subjecting the aqueous medium obtained in step (B) to hydrothermal treatment at 120 to 200° C. for 0.1 to 20 hours.
  11. 請求項10に記載の工程(C)の後、更に、工程(D)及び工程(E)からなる群より選ばれる少なくとも一つの工程を有する酸化チタン粒子を含む酸化チタンゾルの製造方法。
    工程(D):請求項10に記載の工程(C)で得られた酸化チタン粒子を含む水性ゾルを限外ろ過する工程(D)、
    工程(E):請求項10に記載の工程(C)で得られた酸化チタン粒子を含む水性ゾルを陽イオン交換及び/又は陰イオン交換する工程(E)。
    11. A method for producing a titanium oxide sol containing titanium oxide particles, further comprising at least one step selected from the group consisting of step (D) and step (E) after step (C) according to claim 10.
    Step (D): Step (D) of ultrafiltrating the aqueous sol containing titanium oxide particles obtained in step (C) according to claim 10;
    Step (E): Step (E) of subjecting the aqueous sol containing titanium oxide particles obtained in step (C) according to claim 10 to cation exchange and/or anion exchange.
  12. 上記工程(C)、工程(D)、又は工程(E)の後に、更に工程(F)を有する請求項10又は請求項11に記載の酸化チタン粒子を含む酸化チタンゾルの製造方法。
    工程(F):工程(C)、工程(D)、又は工程(E)で得られた酸化チタン粒子の水性ゾルを水性溶媒から有機溶媒に溶媒置換し、有機溶媒ゾルとする工程(F)。
    12. The method for producing a titanium oxide sol containing titanium oxide particles according to claim 10, further comprising step (F) after step (C), step (D), or step (E).
    Step (F): The aqueous sol of titanium oxide particles obtained in step (C), step (D), or step (E) is subjected to solvent substitution from an aqueous solvent to an organic solvent to obtain an organic solvent sol (F). .
  13. 動的光散乱法による平均粒子径が10~500nmである請求項10乃至請求項12のいずれか1項に記載の酸化チタン粒子を含む酸化チタンゾルの製造方法。
     
    13. The method for producing a titanium oxide sol containing titanium oxide particles according to any one of claims 10 to 12, wherein the average particle size as determined by a dynamic light scattering method is 10 to 500 nm.
PCT/JP2022/016019 2021-04-23 2022-03-30 Method for producing titanium oxide particles using amphoteric substance WO2022224772A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023516399A JPWO2022224772A1 (en) 2021-04-23 2022-03-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-073474 2021-04-23
JP2021073474 2021-04-23

Publications (1)

Publication Number Publication Date
WO2022224772A1 true WO2022224772A1 (en) 2022-10-27

Family

ID=83722211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016019 WO2022224772A1 (en) 2021-04-23 2022-03-30 Method for producing titanium oxide particles using amphoteric substance

Country Status (3)

Country Link
JP (1) JPWO2022224772A1 (en)
TW (1) TW202308943A (en)
WO (1) WO2022224772A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2633604A1 (en) * 1988-07-01 1990-01-05 Rhone Poulenc Chimie Process for the preparation of titanium oxide and use of the said product for synthesising alkaline-earth titanates
US7344591B2 (en) * 2005-04-15 2008-03-18 Headwaters Technology Innovation, Llc Stabilized suspension of titanium dioxide nanoparticles and methods of manufacture
CN102757092A (en) * 2012-07-31 2012-10-31 常州大学 L-tryptophan molecular imprinted TiO2 powder and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2633604A1 (en) * 1988-07-01 1990-01-05 Rhone Poulenc Chimie Process for the preparation of titanium oxide and use of the said product for synthesising alkaline-earth titanates
US7344591B2 (en) * 2005-04-15 2008-03-18 Headwaters Technology Innovation, Llc Stabilized suspension of titanium dioxide nanoparticles and methods of manufacture
CN102757092A (en) * 2012-07-31 2012-10-31 常州大学 L-tryptophan molecular imprinted TiO2 powder and preparation method thereof

Also Published As

Publication number Publication date
TW202308943A (en) 2023-03-01
JPWO2022224772A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
EP2539409B1 (en) Compositions of metal oxides functionalised by oligomer siloxanols and use thereof
JP5541864B2 (en) Modified nanoparticles
CN1286929C (en) Antifogging sterilization multifunctional coating and its preparation process and use
JP2011213514A (en) Silica particle material, composition containing silica particle material, and method for surface treatment of silica particle
JP2018506636A5 (en)
WO2007097284A1 (en) Uniformly dispersed photocatalyst coating liquid, method for producing same, and photocatalytically active composite material obtained by using same
EP2144972B1 (en) Hydrophobic and scratch-resistant paints for metal surfaces and brake dust-repelling wheel coatings
TWI598416B (en) Coating composition, film made of the coating composition, and method for preparing the coating composition
CN106661272A (en) Hybrid material for use as coating means in optoelectronic components
JP6004201B2 (en) Method for stabilizing silanol group-containing polysiloxane solution and method for producing stabilized silanol group-containing polysiloxane solution
JP2004025167A (en) Method for manufacturing nano zinc oxide dispersion body stabilized by hydroxyl group-containing inorganic polymer
US20230100957A1 (en) Composition for Liquid-Based Additive Manufacturing
KR102516530B1 (en) Aluminum-containing silica sol and resin composition dispersed in a nitrogen-containing solvent
JP5865466B2 (en) Silica particle material and filler-containing resin composition
CN109072006B (en) Composition for forming dense silica membrane
JP2019073704A (en) Resin composite material and electronic device
KR101493979B1 (en) manufacturing method of hybrid materials using inorganic nano-particles
JP6214412B2 (en) Core-shell type oxide fine particle dispersion, method for producing the same, and use thereof
EP1918338B1 (en) Composite titanic acid coating film and composite titanic acid-coated resin substrate
DE60303885T2 (en) A photocurable coating composition for hard protective layer and coated article
WO2022224772A1 (en) Method for producing titanium oxide particles using amphoteric substance
CN1301283A (en) Solid meltable, thermohardening mass, its production and its use
KR20180026259A (en) Silica-siloxane nanohybrid coating materials and their manufacturing method
CN1759135A (en) Organic siloxane resins and insulating film using the same
CN107090232B (en) Micromolecular organic acid-resistant anticorrosive paint and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791547

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023516399

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791547

Country of ref document: EP

Kind code of ref document: A1