WO2022224536A1 - Base station function deployment control device, base station function deployment control method, and computer program - Google Patents

Base station function deployment control device, base station function deployment control method, and computer program Download PDF

Info

Publication number
WO2022224536A1
WO2022224536A1 PCT/JP2022/004050 JP2022004050W WO2022224536A1 WO 2022224536 A1 WO2022224536 A1 WO 2022224536A1 JP 2022004050 W JP2022004050 W JP 2022004050W WO 2022224536 A1 WO2022224536 A1 WO 2022224536A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
cell
designation information
access network
radio access
Prior art date
Application number
PCT/JP2022/004050
Other languages
French (fr)
Japanese (ja)
Inventor
優 塚本
宏之 新保
忍 難波
Original Assignee
株式会社Kddi総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kddi総合研究所 filed Critical 株式会社Kddi総合研究所
Publication of WO2022224536A1 publication Critical patent/WO2022224536A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present invention relates to a base station function allocation control device, a base station function allocation control method, and a computer program.
  • 5G system In the 5th generation (5G) mobile communication system (hereinafter referred to as 5G system), studies are being conducted to further improve performance, such as throughput, communication delay, and the number of connections, from the initial system.
  • various services such as robot control, connected cars, AR (Augmented Reality), VR (Virtual Reality), etc. are being provided using 5G systems.
  • AR Algmented Reality
  • VR Virtual Reality
  • Radio Access Network (RAN) slicing technology is known as a wireless communication technology for satisfying the communication quality required by such diversifying services.
  • the RAN slicing technology is a technology that divides the RAN into a plurality of logical networks (slices) and flexibly customizes the slices according to services (see Patent Document 1, for example).
  • RAN slicing technology for example, by changing the arrangement of CU (Central Unit) and DU (Distributed Unit), which are base station functions, communication delay, inter-cell cooperation performance, and necessary network resources (radio resources and computer resources and transmission line resources) change.
  • CU Central Unit
  • DU Distributed Unit
  • network resources radio resources and transmission line resources
  • Non-Patent Document 1 (Open Radio Access Network) Alliance (O-RAN Alliance) is considering openness and intelligentization of next-generation radio access networks such as 5G systems (for example, see Non-Patent Document 1).
  • O-RAN Open Radio Access Network
  • Non-Patent Document 1 describes "Non-RT RIC (Non-Real Time RAN Intelligent Controller)" according to traffic fluctuations.
  • NSSI Network Slice Subnet Instance
  • Non-RT RIC collects the necessary KPIs (Key Performance Indicators) from each node via the O1 interface.
  • the parameters that can be collected by the O1 interface correspond to the parameters defined in Non-Patent Document 2. For example, parameters such as "DL PRB usage”, “UL PRB usage”, “Average DL UE throughput”, “Average UL UE throughput”, “Number of PDU Sessions requested”. Analyze the information collected by "Non-RT RIC” and decide to change the resources related to NSSI. For example, change “VNF resources” and “slice subnet attributes" (see Non-Patent Document 3). "Non-RT RIC” changes resource settings related to NSSI for each node via the O1 interface.
  • Deep reinforcement learning is a machine learning method that learns optimal behavior (control) through trial and error in an environment to be controlled.
  • distributed learning distributed reinforcement learning
  • Ape-X a method of distributed reinforcement learning, multiple "Actors” collect experience (learning data) through trial and error with the environment, and learn this by "Learner”.
  • the "Actor” learning model is periodically updated by the "Learner”.
  • Non-Patent Document 4 describes a radio resource allocation control technique using distributed reinforcement learning.
  • each "Actor” optimally controls the radio resource allocation for each slice, thereby satisfying the quality requested by the user with a small amount of radio resources.
  • O-RAN WG1 “Slicing architecture”, v03.00, 3.2.3 Use Case 3: NSSI Resource Allocation Optimization 3GPP, “TS 28.552”, V17.1.0, 2020-12 3GPP, “TS 28.541”, V15.4.0, 2019-09 Yu Abiko, et al., “Flexible Resource Block Allocation to Multiple Slices for Radio Access Network Slicing Using Deep Reinforcement Learning”, IEEE Access, vol. 8, pp.68183-68198, Apr. 2020.
  • the traffic demand changes dynamically in the RAN
  • the traffic flowing through each slice also changes dynamically.
  • the bandwidth required for transmission lines and the computer resources of antenna sites and accommodation stations fluctuate due to traffic fluctuations. Therefore, in order to meet the quality requirements of many users with limited network resources, it is preferable to adaptively change the RAN base station functional arrangement according to traffic fluctuations.
  • each "Actor” controls the base station functional allocation (mapping of slices and base station functions) of each cell.
  • the base station functional allocation maps of slices and base station functions
  • the base station functional allocation of each cell determines the base station functional allocation of each cell to maximize.
  • the present invention has been made in consideration of such circumstances, and its purpose is to appropriately control execution of base station functional allocation in an O-RAN specification radio access network.
  • a base station functional allocation control apparatus assigns priority designation information indicating an area or cell for which the desired quality achievement rate is to be preferentially improved in an O-RAN specification radio access network to an SMO (Service and Management Orchestration)
  • a priority designation information acquisition unit that is acquired through an interface between the function unit, and the requested quality achievement rate indicated in the priority designation information among areas or cells included in the radio access network.
  • a control unit that preferentially determines the base station functional arrangement for an area or cell to be preferentially improved.
  • the priority designation information indicates different priorities for all areas or cells included in the radio access network. Information to be specified.
  • the priority designation information indicates the desired quality achievement rate among all areas or cells included in the radio access network. This is information specifying the maximum priority only for areas or cells to be preferentially improved.
  • the control unit for each area or cell included in the radio access network, Base station functional allocation is determined by distributed reinforcement learning.
  • the base station functional allocation control device of (1) is implemented using a Non-RT RIC (Non-Real Time RAN Intelligent Controller).
  • a base station functional allocation control device controls the required quality achievement rate in an O-RAN specification radio access network.
  • SMO Service and Management Orchestration
  • the computer program indicates to the computer of the base station functional allocation control device an area or cell in which the required quality achievement rate is to be preferentially improved in the O-RAN specification radio access network.
  • SMO Service and Management Orchestration
  • FIG. 1 is a block diagram illustrating a configuration example of a radio access network (RAN) according to one embodiment
  • FIG. FIG. 2 is an explanatory diagram showing an example of base station functional arrangement of RAN according to one embodiment
  • 4 is a block diagram showing a configuration example of a base station function allocation control unit according to one embodiment
  • FIG. It is a block diagram which shows the structural example of the control part which concerns on one Embodiment.
  • 4 is a flow chart of a schematic procedure of a base station functional allocation control method according to an embodiment
  • FIG. 4 is a sequence diagram showing an example of detailed procedures of a base station functional allocation control method according to an embodiment
  • 4 is a table showing configuration example 1 of priority designation information according to an embodiment
  • FIG. 11 is a table showing configuration example 2 of priority designation information according to an embodiment
  • FIG. 1 is a block diagram showing a configuration example of a radio access network according to one embodiment.
  • a radio access network (RAN) 1 shown in FIG. 1 is a RAN to which the RAN slicing technique is applied. Also, in RAN1, the O-RAN specification is applied.
  • FIG. 2 shows an example of the base station functional arrangement of RAN1.
  • a total of five sets of vCUs and vDUs are connected to RUs forming a single cell.
  • a first example “O-RAN slice subnet#1” is a C-RAN (Centralized-RAN) arrangement, and both vCU and vDU are arranged in the accommodating station.
  • the C-RAN arrangement is characterized in that inter-cell coordination is possible, but the required bandwidth of the transmission path is large.
  • the second example “O-RAN slice subnet # 2” and the third example “O-RAN slice subnet # 3” are S-RAN (Split-RAN) deployments, vDUs are deployed at antenna sites and A vCU is placed in the accommodation station.
  • the S-RAN arrangement does not allow inter-cell cooperation, but has the feature that the required bandwidth of the transmission path is small.
  • the fourth example “O-RAN slice subnet # 4” and the fifth example “O-RAN slice subnet # 5” are D-RAN (Distributed RAN) deployments, and both vCU and vDU are in the antenna site. placed.
  • the D-RAN arrangement does not allow cooperation between cells, but has a feature of small communication delay.
  • RAN1 by connecting multiple sets of vCUs and vDUs to RUs that form a single cell, a base station with multiple different characteristics for a single cell A slice of functional layout can be realized.
  • RAN1 it becomes possible to provide wireless communication services with a plurality of different features in a single cell, and it is possible to adapt to various communication qualities required by a wide variety of services.
  • RAN 1 includes an SMO (Service and Management Orchestration) function (SMO Functions) 11, a "Non-RT RIC (non-real-time RAN intelligent controller)" 12 including a base station function allocation control unit 20, and a base station a function group 2;
  • the base station function allocation control unit 20 corresponds to a base station function allocation control device.
  • the base station functional allocation control unit 20 is implemented using the "Non-RT RIC" 12.
  • the SMO function unit 11 and the "Non-RT RIC" 12 are implemented using the SMO framework 10.
  • the base station functional group 2 is composed of RU, vCU and vDU as illustrated in FIG.
  • the SMO framework 10 provides the O1 interface defined by the O-RAN specifications.
  • the "Non-RT RIC" 12 acquires KPIs (key performance indicators) from the base station function group 2 via the O1 interface.
  • An interface 100 is an interface with the SMO function unit 11 .
  • FIG. 3 is a block diagram showing a configuration example of the base station function allocation control section 20 according to this embodiment.
  • base station function allocation control section 20 includes priority designation information acquisition section 210 , KPI acquisition section 203 , base station function allocation setting information transmission section 204 , and control section 205 .
  • the priority designation information acquisition unit 210 acquires priority designation information via the interface 100 with the SMO function unit 11 .
  • the priority designation information is information indicating an area or cell in RAN1 in which the required quality achievement rate is preferentially desired to be improved.
  • the requested quality achievement rate is a rate indicating how much the communication quality requested by the user has been achieved.
  • the KPI acquisition unit 203 acquires KPIs from the base station function group 2 via the O1 interface.
  • the KPIs that the KPI acquisition unit 203 acquires from the base station function group 2 are, for example, the throughput of each service, the utilization rate of radio resources, the utilization rate of computer resources, the utilization rate of transmission line bandwidth, and the like.
  • the base station function allocation setting information transmission unit 204 transmits base station function allocation setting information via the interface 100 with the SMO function unit 11 .
  • the base station functional allocation setting information is information indicating the content of change in the base station functional allocation for changing the base station functional allocation in RAN1.
  • the control unit 205 determines the next base station functional arrangement based on the KPI acquired by the KPI acquisition unit 203.
  • the control unit 205 preferentially acquires a base for an area or cell in which the required quality achievement rate indicated in the priority designation information acquired by the priority designation information acquisition unit 210 is to be preferentially improved, out of the areas or cells included in the RAN1. Determine station function allocation.
  • Each part of the base station function allocation control unit 20 realizes its function by the CPU executing a computer program for realizing the function of each part.
  • FIG. 4 is a block diagram showing a configuration example of a control unit according to this embodiment.
  • the control unit 205 shown in FIG. 1 determines base station functional allocation by distributed reinforcement learning for each area or cell included in RAN1.
  • RAN1 includes a plurality of cells (Cell#1, Cell#2, . . . , Cell#n).
  • the control unit 205 generates a plurality of “Actors” 301 (Actor#1, Actor#2, . . . , Actor#) respectively corresponding to a plurality of cells (Cell#1, Cell#2, . n), 'Repository' 302, and 'Learner' 303.
  • Each “Actor” 301 collects “Experiences” (learning data) through trial and error with the cell (environment) based on the KPI obtained from the cell it is in charge of.
  • “Repository” 302 stores learning data collected by each “Actor” 301 .
  • 'Learner' 303 uses learning data stored in 'Repository' 302 to learn a base station functional allocation learning model.
  • the base station functional arrangement learning model of each 'Actor' 301 is periodically updated by the 'Learner' 303 .
  • a certain "Actor” 301 uses a base station functional allocation learning model to optimize the base station functional allocation in the cell that the "Actor" 301 is in charge of.
  • the control unit 205 controls the base station in each cell (Cell #1, Cell #2, ..., Cell #n) by each "Actor” 301 (Actor #1, Actor #2, ..., Actor #n) Find the optimal solution for functional placement. At this time, control section 205 sets the order (cell order), and the optimum solution for base station functional allocation is obtained according to the order of the cell.
  • the control unit 205 selects a cell whose required quality achievement rate indicated in the priority designation information is to be preferentially improved, from the topmost cell. Give the order of the cells.
  • the optimal solution of the base station functional allocation is preferentially obtained for the cell whose desired quality achievement rate indicated in the priority designation information is to be preferentially improved.
  • FIG. 5 is a flow chart of a schematic procedure of the base station functional allocation control method according to the present embodiment.
  • Step S11 The base station function allocation control section 20 (control section 205) determines whether there is priority designation information acquired by the priority designation information acquisition section 210 or not. If there is priority designation information acquired by the priority designation information acquisition unit 210, the process proceeds to step S12; otherwise, the process proceeds to step S13.
  • Step S12 The base station function allocation control unit 20 (control unit 205) selects the cell whose required quality achievement rate indicated in the priority designation information acquired by the priority designation information acquisition unit 210 is to be preferentially improved. Set the order of cells (top priority setting).
  • the base station function allocation control section 20 determines the cell order for a plurality of cells (Cell#1, Cell#2, . . . , Cell#n). At this time, if there is a highest priority setting, the order of the cells is assigned from the highest priority to the cells with the highest priority setting.
  • the top priority setting may be canceled after the cell order is determined in step S13, or may be canceled at regular intervals.
  • Cell#1, Cell#2, . . . , Cell#n base station function allocation is performed for each cell (Cell#1, Cell#2, . . . , Cell#n) in the order of cells determined in step S13.
  • Cell#1, Cell#2, . . . , Cell#n are shown in order for convenience.
  • Steps S14 and S15 are executed in executing the cell base station functional allocation.
  • Cell #1 is taken as an example to describe the execution of the base station functional allocation, but other cells are similar.
  • Step S14 The base station function allocation control section 20 (KPI acquisition section 203) acquires KPI from "Cell #1".
  • Step S15 Based on the KPI acquired from "Cell #1", the base station functional allocation control unit 20 (control unit 205) determines the next base station functional allocation in "Cell #1". to decide.
  • the base station function allocation control unit 20 (control unit 205) generates base station function allocation setting information regarding the next base station function allocation of the determined "Cell #1".
  • the base station functional allocation setting information is information indicating the change contents of the base station functional allocation for changing the base station functional allocation in "Cell #1" to the next base station functional allocation.
  • the base station function allocation control section 20 (base station function allocation setting information transmitting section 204) transmits the base station function allocation setting information of "Cell #1" generated by the control section 205 to the SMO function section 11. do.
  • the SMO function unit 11 sets to change the base station function allocation of "Cell #1" of the base station function group 2 based on the base station function allocation setting information of "Cell #1". to run. As a result, the base station functional arrangement of "Cell #1" of the base station functional group 2 is changed to the next base station functional arrangement.
  • FIG. 6 is a sequence diagram showing an example of detailed procedures of the base station functional allocation control method according to this embodiment.
  • Step S201 The "External system” sends an "Emergency notification” message to the SMO function unit 11.
  • the "Emergency notification” message corresponds to priority information.
  • Step S202 the SMO function unit 11 transmits an "Emergency notification” message to the "Non-RT RIC" 12 via the interface 100.
  • the base station function allocation control unit 20 acquires the "Emergency notification” message.
  • Step S203 the base station functional allocation control unit 20 determines the execution order (cell order) of the base station functional allocation. At this time, the base station function allocation control unit 20 assigns the order of the cells from the highest level to the cells for which the required quality achievement rate indicated in the "Emergency notification" message received from the SMO function unit 11 is to be preferentially improved. .
  • the base station function allocation control unit 20 receives the "Performance measurements" message from each node (O-CU, O-DU1, O-DUN) of the base station function group 2 via the O1 interface.
  • the base station function allocation control unit 20 acquires KPI from the "Performance measurements" message.
  • Step S205 the base station function allocation control unit 20 determines the next base station function allocation based on the KPI obtained from the "Performance measurements" message for each cell according to the cell order determined in step S203. .
  • the base station functional allocation control unit 20 generates base station functional allocation setting information regarding the determined next base station functional allocation of each cell.
  • steps S206 to S207 are executed as a setting change sequence for the base station functions.
  • This setting change sequence of the base station function is based on the O-RAN specification "Reconfiguration of O-RAN Virtual Network Function(s) (O-RAN.WG6.ORCH-USE-CASES-v01.00)" .
  • Step S206 The base station function allocation control unit 20 transmits the "Reconfig NF set" message containing the base station function allocation setting information for each cell generated in step S205 to the SMO function unit 11 via the interface 100.
  • the SMO function unit 11 acquires the base station function allocation setting information of each cell from the “Reconfig NF set” message received by the interface 100 .
  • Step S207 The SMO function unit 11 transmits a "Configure NF" message to each node (O-CU, O-DU1, O-DUN) of the base station function group 2 via the O1 interface.
  • This "Configure NF" message includes setting information for changing to the next base station functional layout of each cell indicated by the base station functional layout setting information of each cell acquired in step S206. As a result, the base station functional arrangement of each cell of the base station functional group 2 is changed to the next base station functional arrangement of each cell.
  • FIG. 7 shows a configuration example 1 of priority designation information according to this embodiment.
  • the priority designation information is information that designates different priorities for all cells included in RAN1.
  • the control unit 205 determines the order of the cells in order of the priority of each cell indicated in the priority designation information in FIG.
  • FIG. 8 shows a configuration example 2 of priority designation information according to this embodiment.
  • the priority designation information is information in which the maximum priority is designated only for the cell whose required quality achievement rate is to be preferentially improved among all the cells included in RAN1. is.
  • the predetermined ordering rule may be, for example, random ordering or ordering based on a predetermined communication quality parameter.
  • priority is designated for each cell in the examples of priority designation information in FIGS. 7 and 8, the present invention is not limited to this.
  • a priority may be specified for each area in the priority specification information. In this case, the priority of the area is designated for all cells included in the same area.
  • priority designation information is designated for all cells included in RAN1, but this is not limiting.
  • the priority designation information may be information designating only an area or a cell for which the requested quality achievement rate is to be preferentially improved.
  • the present embodiment it is possible to preferentially change the base station function allocation for the area or cell in which the emergency occurs, for example, in the event of an emergency such as a disaster. As a result, it is possible to obtain the effect of being able to appropriately control the execution of the base station functional allocation in the O-RAN specification radio access network.
  • the base station function layout is preferentially changed so as to improve the quality of communication by mobile terminals used by personnel involved in activities such as firefighting, police, and ambulance.
  • the base station function layout is preferentially changed so as to improve the quality of communication by emergency vehicles, unmanned flying vehicles, security cameras, and the like.
  • a computer program for realizing the functions of the devices described above may be recorded in a computer-readable recording medium, and the program recorded in the recording medium may be read and executed by the computer system.
  • the “computer system” referred to here may include hardware such as an OS and peripheral devices.
  • “computer-readable recording medium” includes writable nonvolatile memories such as flexible discs, magneto-optical discs, ROMs and flash memories, portable media such as DVDs (Digital Versatile Discs), and computer system built-in media.
  • a storage device such as a hard disk that
  • “computer-readable recording medium” means a volatile memory (e.g., DRAM (Dynamic Random Access Memory)), which holds the program for a certain period of time, is also included.
  • the above program may be transmitted from a computer system storing this program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in a transmission medium.
  • the "transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the program may be for realizing part of the functions described above. Further, it may be a so-called difference file (difference program) that can realize the above-described functions in combination with a program already recorded in the computer system.
  • Radio Access Network (RAN) base station function group 10
  • SMO framework 11 SMO function unit 12
  • Non-RT RIC base station function allocation control unit 210 priority designation information acquisition unit 203
  • KPI acquisition unit 204 base station function allocation setting information transmission unit 205 control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

This base station function deployment control device comprises: a priority designation information acquisition unit that acquires, through an interface with an SMO function unit, priority designation information indicating an area or a cell for which a required quality achievement rate is to be preferentially improved in a wireless access network based on O-RAN specifications; and a control unit that preferentially determines base station function deployment for the area or the cell for which the required quality achievement rate is to be preferentially improved and which is indicated in the priority designation information, from among areas or cells included in the wireless access network.

Description

基地局機能配置制御装置、基地局機能配置制御方法及びコンピュータプログラムBase station function allocation control device, base station function allocation control method, and computer program
 本発明は、基地局機能配置制御装置、基地局機能配置制御方法及びコンピュータプログラムに関する。
 本願は、2021年4月20日に、日本に出願された特願2021-71090号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a base station function allocation control device, a base station function allocation control method, and a computer program.
This application claims priority based on Japanese Patent Application No. 2021-71090 filed in Japan on April 20, 2021, the content of which is incorporated herein.
 第5世代(5G)移動通信システム(以下、5Gシステムと称する)においては、初期のシステムから、例えばスループットや通信遅延や接続数等の性能をさらに向上させるための検討が行われている。また、多種多様なサービスとして例えばロボット制御やコネクティッドカーやAR(Augmented Reality)やVR(Virtual Reality)等のサービスが5Gシステムを利用して提供されるようになってきている。このように、個々のサービスが要求する通信品質を満たすことの重要性が高まっている。  In the 5th generation (5G) mobile communication system (hereinafter referred to as 5G system), studies are being conducted to further improve performance, such as throughput, communication delay, and the number of connections, from the initial system. In addition, various services such as robot control, connected cars, AR (Augmented Reality), VR (Virtual Reality), etc. are being provided using 5G systems. Thus, it is becoming more and more important to satisfy the communication quality required by each service.
 そのように多様化するサービスが要求する通信品質を満たすための無線通信技術として、無線アクセスネットワーク(Radio Access Network:RAN)スライシング技術が知られている。RANスライシング技術は、RANを複数の論理ネットワーク(スライス)に分割し、サービスに応じてスライスを柔軟にカスタマイズする技術である(例えば特許文献1参照)。 Radio Access Network (RAN) slicing technology is known as a wireless communication technology for satisfying the communication quality required by such diversifying services. The RAN slicing technology is a technology that divides the RAN into a plurality of logical networks (slices) and flexibly customizes the slices according to services (see Patent Document 1, for example).
 RANスライシング技術によれば、例えば、基地局機能であるCU(Central Unit)やDU(Distributed Unit)の配置を変えることによって、通信遅延やセル間の連携性能や必要なネットワークリソース(無線リソースや計算機リソースや伝送路リソース)が変わる。このため、特許文献1に記載される技術では、単一のセルを形成するRU(Radio Unit)に対してvCU(Virtual CU)とvDU(Virtual DU)のセットを複数接続することにより、単一のセルに対して複数の異なる基地局機能配置のスライスを実現している。 According to RAN slicing technology, for example, by changing the arrangement of CU (Central Unit) and DU (Distributed Unit), which are base station functions, communication delay, inter-cell cooperation performance, and necessary network resources (radio resources and computer resources and transmission line resources) change. For this reason, in the technology described in Patent Document 1, by connecting multiple sets of vCU (Virtual CU) and vDU (Virtual DU) to an RU (Radio Unit) forming a single cell, a single A plurality of different base station functional allocation slices are realized for each cell.
 また、O-RAN((Open Radio Access Network)アライアンス(O-RAN Alliance)によって、5Gシステム等の次世代の無線アクセスネットワークのオープン化及びインテリジェント化が検討されている(例えば非特許文献1参照)。O-RANアライアンスが策定するO-RAN仕様のうち、非特許文献1には、トラヒックの変動に応じて、「Non-RT RIC(Non-Real Time RAN Intelligent Controller、非リアルタイムRANインテリジェントコントローラー)」を用いてNSSI(Network Slice Subnet Instance)を最適化するユースケースが規定されている。 In addition, the O-RAN ((Open Radio Access Network) Alliance (O-RAN Alliance) is considering openness and intelligentization of next-generation radio access networks such as 5G systems (for example, see Non-Patent Document 1). Among the O-RAN specifications formulated by the O-RAN Alliance, Non-Patent Document 1 describes "Non-RT RIC (Non-Real Time RAN Intelligent Controller)" according to traffic fluctuations. A use case is defined for optimizing NSSI (Network Slice Subnet Instance) using .
 この非特許文献1のユースケースでは、「Non-RT RIC」がO1インターフェースを介して必要なKPI(Key Performance Indicator、主要性能指標)を各ノードから収集する。O1インターフェースによって収集可能なパラメータは、非特許文献2に規定されるパラメータに対応する。例えば、「DL PRB usage」、「UL PRB usage」、「Average DL UE throughput」、「Average UL UE throughput」、「Number of PDU Sessions requested」等のパラメータである。「Non-RT RIC」が収取した情報を解析し、NSSIに関するリソースの変更を決定する。例えば、「VNF resources」や「slice subnet attributes」を変更する(非特許文献3参照)。「Non-RT RIC」がO1インターフェースを介して各ノードに対してNSSIに関するリソースの設定変更を行う。 In the use case of this non-patent document 1, "Non-RT RIC" collects the necessary KPIs (Key Performance Indicators) from each node via the O1 interface. The parameters that can be collected by the O1 interface correspond to the parameters defined in Non-Patent Document 2. For example, parameters such as "DL PRB usage", "UL PRB usage", "Average DL UE throughput", "Average UL UE throughput", "Number of PDU Sessions requested". Analyze the information collected by "Non-RT RIC" and decide to change the resources related to NSSI. For example, change "VNF resources" and "slice subnet attributes" (see Non-Patent Document 3). "Non-RT RIC" changes resource settings related to NSSI for each node via the O1 interface.
 また、多様なパラメータを考慮したネットワーク制御を行うために深層強化学習を用いる方法が検討されている。深層強化学習は、制御対象となる環境において試行錯誤を通じて最適な行動(制御)を学習する機械学習方法である。さらに近年は、学習効率を向上させるために、深層強化学習における分散学習(分散強化学習)が注目されている。例えば、分散強化学習の一方法である「Ape-X」では、複数の「Actor」がそれぞれに環境との試行錯誤を通じて経験(学習データ)を収集し、これを「Learner」により学習する。「Actor」の学習モデルは定期的に「Learner」によって更新される。複数の「Actor」で並列処理することにより、多様なデータを効率的に学習することができる。 In addition, methods using deep reinforcement learning are being studied to perform network control that takes into account various parameters. Deep reinforcement learning is a machine learning method that learns optimal behavior (control) through trial and error in an environment to be controlled. Furthermore, in recent years, distributed learning (distributed reinforcement learning) in deep reinforcement learning has attracted attention in order to improve learning efficiency. For example, in "Ape-X", a method of distributed reinforcement learning, multiple "Actors" collect experience (learning data) through trial and error with the environment, and learn this by "Learner". The "Actor" learning model is periodically updated by the "Learner". By performing parallel processing with multiple "Actors", various data can be learned efficiently.
 非特許文献4には、分散強化学習を用いた無線リソース割当制御技術が記載されている。非特許文献4に記載された無線リソース割当制御技術では、各「Actor」が各スライスの無線リソース割当を最適制御することにより、少ない無線リソースでユーザの要求品質を満足させるようにしている。  Non-Patent Document 4 describes a radio resource allocation control technique using distributed reinforcement learning. In the radio resource allocation control technique described in Non-Patent Document 4, each "Actor" optimally controls the radio resource allocation for each slice, thereby satisfying the quality requested by the user with a small amount of radio resources.
特開2020-136787号公報JP 2020-136787 A
 RANにおいてトラヒック需要は動的に変化するので、各スライスに流れるトラヒックも動的に変化する。またトラヒックの変動によって、伝送路に必要な帯域やアンテナサイトと収容局の計算機リソースが変動する。このため、限られたネットワークリソースで多くのユーザの要求品質を満たすために、トラヒック変動に応じてRANの基地局機能配置を適応的に変更することが好ましい。  Since the traffic demand changes dynamically in the RAN, the traffic flowing through each slice also changes dynamically. In addition, the bandwidth required for transmission lines and the computer resources of antenna sites and accommodation stations fluctuate due to traffic fluctuations. Therefore, in order to meet the quality requirements of many users with limited network resources, it is preferable to adaptively change the RAN base station functional arrangement according to traffic fluctuations.
 ここで、分散強化学習を基地局機能配置に適用する場合、各「Actor」が各セルの基地局機能配置(スライスと基地局機能のマッピング)を制御することが考えられる。基地局機能配置を決める場合、セル間で共有している伝送路及び収容局の計算機リソースやセル間連携の有無などは各セルの基地局機能配置によって異なるので、RAN全体でユーザの要求品質を最大化するように各セルの基地局機能配置を決定することが好ましい。 Here, when distributed reinforcement learning is applied to base station functional allocation, it is conceivable that each "Actor" controls the base station functional allocation (mapping of slices and base station functions) of each cell. When determining the base station functional allocation, the transmission paths shared between cells, the computer resources of the accommodating station, and the presence or absence of inter-cell cooperation differ depending on the base station functional allocation of each cell. It is preferable to determine the base station functional allocation of each cell to maximize.
 しかし、分散強化学習において「Actor」は独立して行動するので、複数の「Actor」が互いに他の「Actor」の行動を考慮しないため、従来のように各Actorが同時に行動(基地局機能配置の変更)を実行する場合、RAN全体で基地局機能配置を最適化することが難しい。例えば、伝送路の帯域が空いているからといって全てのセルが伝送路帯域を多く消費するように基地局機能配置を行うと、伝送路が輻輳してしまう。また、トラヒック需要の変動によって輻輳が生じると、次の基地局機能配置の変更タイミングまで輻輳が継続してしまう。一方、災害発生時等の緊急時には、緊急事態が発生したエリアやセルに対して優先的に基地局機能配置の変更を行うことが求められる。このため、基地局機能配置の実行を適切に制御することが課題である。 However, since "Actors" act independently in distributed reinforcement learning, multiple "Actors" do not consider the actions of other "Actors". ), it is difficult to optimize the base station functional allocation across the RAN. For example, if base station functions are arranged so that all cells consume a large amount of the transmission line band even though the transmission line band is vacant, the transmission line will be congested. Further, if congestion occurs due to changes in traffic demand, the congestion will continue until the timing of the next change in base station functional allocation. On the other hand, in an emergency such as when a disaster occurs, it is required to preferentially change the base station function allocation for the area or cell in which the emergency has occurred. Therefore, it is a challenge to properly control the execution of the base station functional allocation.
 本発明は、このような事情を考慮してなされたものであり、その目的は、O-RAN仕様の無線アクセスネットワークにおいて基地局機能配置の実行を適切に制御することを図ることにある。 The present invention has been made in consideration of such circumstances, and its purpose is to appropriately control execution of base station functional allocation in an O-RAN specification radio access network.
(1)本発明の一態様によれば、基地局機能配置制御装置は、O-RAN仕様の無線アクセスネットワークにおいて要求品質達成率を優先的に改善したいエリア又はセルを示す優先指定情報を、SMO(Service and Management Orchestration)機能部との間のインターフェースを介して取得する優先指定情報取得部と、前記無線アクセスネットワークに含まれるエリア又はセルのうち前記優先指定情報に示される前記要求品質達成率を優先的に改善したいエリア又はセルに対して優先的に基地局機能配置を決定する制御部と、を備える。
(2)本発明の一態様によれば、上記(1)の基地局機能配置制御装置において、前記優先指定情報は、前記無線アクセスネットワークに含まれる全てのエリア又はセルに対して異なる優先度が指定される情報である。
(3)本発明の一態様によれば、上記(1)の基地局機能配置制御装置において、前記優先指定情報は、前記無線アクセスネットワークに含まれる全てのエリア又はセルのうち要求品質達成率を優先的に改善したいエリア又はセルのみに対して最大の優先度が指定される情報である。
(4)本発明の一態様によれば、上記(1)から(3)のいずれかの基地局機能配置制御装置において、前記制御部は、前記無線アクセスネットワークに含まれるエリア又はセル毎に、分散強化学習によって基地局機能配置を決定する。
(5)本発明の一態様によれば、前記(1)の基地局機能配置制御装置は、Non-RT RIC(Non-Real Time RAN Intelligent Controller)を用いて実現される。
(1) According to one aspect of the present invention, a base station functional allocation control apparatus assigns priority designation information indicating an area or cell for which the desired quality achievement rate is to be preferentially improved in an O-RAN specification radio access network to an SMO (Service and Management Orchestration) A priority designation information acquisition unit that is acquired through an interface between the function unit, and the requested quality achievement rate indicated in the priority designation information among areas or cells included in the radio access network. a control unit that preferentially determines the base station functional arrangement for an area or cell to be preferentially improved.
(2) According to one aspect of the present invention, in the base station functional allocation control device of (1), the priority designation information indicates different priorities for all areas or cells included in the radio access network. Information to be specified.
(3) According to one aspect of the present invention, in the base station functional allocation control device of (1) above, the priority designation information indicates the desired quality achievement rate among all areas or cells included in the radio access network. This is information specifying the maximum priority only for areas or cells to be preferentially improved.
(4) According to an aspect of the present invention, in the base station functional allocation control device according to any one of (1) to (3) above, the control unit, for each area or cell included in the radio access network, Base station functional allocation is determined by distributed reinforcement learning.
(5) According to one aspect of the present invention, the base station functional allocation control device of (1) is implemented using a Non-RT RIC (Non-Real Time RAN Intelligent Controller).
(6)本発明の一態様によれば、O-RAN仕様の無線アクセスネットワークにおける基地局機能配置制御方法は、基地局機能配置制御装置が、O-RAN仕様の無線アクセスネットワークにおいて要求品質達成率を優先的に改善したいエリア又はセルを示す優先指定情報を、SMO(Service and Management Orchestration)機能部との間のインターフェースを介して取得する優先指定情報取得ステップと、前記基地局機能配置制御装置が、前記無線アクセスネットワークに含まれるエリア又はセルのうち前記優先指定情報に示される前記要求品質達成率を優先的に改善したいエリア又はセルに対して優先的に基地局機能配置を決定する制御ステップと、を含む。 (6) According to one aspect of the present invention, in a base station functional allocation control method in an O-RAN specification radio access network, a base station functional allocation control device controls the required quality achievement rate in an O-RAN specification radio access network. a priority designation information acquisition step of acquiring priority designation information indicating an area or cell in which the priority is to be improved through an interface with an SMO (Service and Management Orchestration) function unit; a control step of preferentially determining a base station functional arrangement for an area or cell in which the desired quality achievement rate indicated in the priority designation information is to be preferentially improved among areas or cells included in the radio access network; ,including.
(7)本発明の一態様によれば、コンピュータプログラムは、基地局機能配置制御装置のコンピュータに、O-RAN仕様の無線アクセスネットワークにおいて要求品質達成率を優先的に改善したいエリア又はセルを示す優先指定情報を、SMO(Service and Management Orchestration)機能部との間のインターフェースを介して取得する優先指定情報取得ステップと、前記無線アクセスネットワークに含まれるエリア又はセルのうち前記優先指定情報に示される前記要求品質達成率を優先的に改善したいエリア又はセルに対して優先的に基地局機能配置を決定する制御ステップと、を実行させる。 (7) According to one aspect of the present invention, the computer program indicates to the computer of the base station functional allocation control device an area or cell in which the required quality achievement rate is to be preferentially improved in the O-RAN specification radio access network. a priority designation information obtaining step of obtaining priority designation information through an interface with an SMO (Service and Management Orchestration) function unit; and a control step of preferentially determining a base station functional arrangement for an area or cell in which the desired quality achievement ratio is to be preferentially improved.
 本発明によれば、O-RAN仕様の無線アクセスネットワークにおいて基地局機能配置の実行を適切に制御することができるという効果が得られる。 According to the present invention, it is possible to obtain the effect of being able to appropriately control the execution of base station functional allocation in an O-RAN specification radio access network.
一実施形態に係る無線アクセスネットワーク(RAN)の構成例を示すブロック図である。1 is a block diagram illustrating a configuration example of a radio access network (RAN) according to one embodiment; FIG. 一実施形態に係るRANの基地局機能配置の例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of base station functional arrangement of RAN according to one embodiment; 一実施形態に係る基地局機能配置制御部の構成例を示すブロック図である。4 is a block diagram showing a configuration example of a base station function allocation control unit according to one embodiment; FIG. 一実施形態に係る制御部の構成例を示すブロック図である。It is a block diagram which shows the structural example of the control part which concerns on one Embodiment. 一実施形態に係る基地局機能配置制御方法の概略手順のフローチャートである。4 is a flow chart of a schematic procedure of a base station functional allocation control method according to an embodiment; 一実施形態に係る基地局機能配置制御方法の詳細な手順の例を示すシーケンス図である。FIG. 4 is a sequence diagram showing an example of detailed procedures of a base station functional allocation control method according to an embodiment; 一実施形態に係る優先指定情報の構成例1を示す表である。4 is a table showing configuration example 1 of priority designation information according to an embodiment; 一実施形態に係る優先指定情報の構成例2を示す表である。FIG. 11 is a table showing configuration example 2 of priority designation information according to an embodiment; FIG.
 以下、図面を参照し、本発明の実施形態について説明する。
 図1は、一実施形態に係る無線アクセスネットワークの構成例を示すブロック図である。図1に示される無線アクセスネットワーク(RAN)1は、RANスライシング技術が適用されたRANである。またRAN1においてO-RAN仕様を適用する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a configuration example of a radio access network according to one embodiment. A radio access network (RAN) 1 shown in FIG. 1 is a RAN to which the RAN slicing technique is applied. Also, in RAN1, the O-RAN specification is applied.
 図2に、RAN1の基地局機能配置の例が示される。図2の例では、単一のセルを形成するRUに対してvCUとvDUのセットが合計5セット接続される。第1の例「O-RAN slice subnet#1」は、C-RAN(Centralized -RAN)配置であって、収容局にvCUとvDUの両方が配置される。C-RAN配置は、セル間連携が可能であるが、伝送路の必要帯域が大きいという特徴を持つ。第2の例「O-RAN slice subnet#2」及び第3の例「O-RAN slice subnet#3」は、S-RAN(Split -RAN)配置であって、アンテナサイトにvDUが配置され且つ収容局にvCUが配置される。S-RAN配置は、セル間連携が不可であるが、伝送路の必要帯域が小さいという特徴を持つ。第4の例「O-RAN slice subnet#4」及び第5の例「O-RAN slice subnet#5」は、D-RAN(Distributed RAN)配置であって、アンテナサイトにvCUとvDUの両方が配置される。D-RAN配置は、セル間連携が不可であるが、通信遅延が小さいという特徴を持つ。 FIG. 2 shows an example of the base station functional arrangement of RAN1. In the example of FIG. 2, a total of five sets of vCUs and vDUs are connected to RUs forming a single cell. A first example “O-RAN slice subnet#1” is a C-RAN (Centralized-RAN) arrangement, and both vCU and vDU are arranged in the accommodating station. The C-RAN arrangement is characterized in that inter-cell coordination is possible, but the required bandwidth of the transmission path is large. The second example “O-RAN slice subnet # 2” and the third example “O-RAN slice subnet # 3” are S-RAN (Split-RAN) deployments, vDUs are deployed at antenna sites and A vCU is placed in the accommodation station. The S-RAN arrangement does not allow inter-cell cooperation, but has the feature that the required bandwidth of the transmission path is small. The fourth example “O-RAN slice subnet # 4” and the fifth example “O-RAN slice subnet # 5” are D-RAN (Distributed RAN) deployments, and both vCU and vDU are in the antenna site. placed. The D-RAN arrangement does not allow cooperation between cells, but has a feature of small communication delay.
 図2に例示されるように、RAN1において、単一のセルを形成するRUに対してvCUとvDUのセットを複数接続することにより、単一のセルに対して複数の異なる特徴を持つ基地局機能配置のスライスを実現することができる。これにより、RAN1において、単一のセルで複数の異なる特徴を持つ無線通信サービスを提供することが可能になり、多種多様なサービスが要求する様様な通信品質に適応することができる。 As illustrated in FIG. 2, in RAN1, by connecting multiple sets of vCUs and vDUs to RUs that form a single cell, a base station with multiple different characteristics for a single cell A slice of functional layout can be realized. As a result, in RAN1, it becomes possible to provide wireless communication services with a plurality of different features in a single cell, and it is possible to adapt to various communication qualities required by a wide variety of services.
 図1において、RAN1は、SMO(Service and Management Orchestration)機能部(SMO Functions)11と、基地局機能配置制御部20を含む「Non-RT RIC(非リアルタイムRANインテリジェントコントローラー)」12と、基地局機能群2とを備える。基地局機能配置制御部20は、基地局機能配置制御装置に対応する。本実施形態では、基地局機能配置制御部20は、「Non-RT RIC」12を用いて実現される。また、SMO機能部11及び「Non-RT RIC」12は、SMOフレームワーク10を用いて実現される。基地局機能群2は、図2に例示されるように、RU、vCU及びvDUから構成される。 In FIG. 1, RAN 1 includes an SMO (Service and Management Orchestration) function (SMO Functions) 11, a "Non-RT RIC (non-real-time RAN intelligent controller)" 12 including a base station function allocation control unit 20, and a base station a function group 2; The base station function allocation control unit 20 corresponds to a base station function allocation control device. In this embodiment, the base station functional allocation control unit 20 is implemented using the "Non-RT RIC" 12. Also, the SMO function unit 11 and the "Non-RT RIC" 12 are implemented using the SMO framework 10. FIG. The base station functional group 2 is composed of RU, vCU and vDU as illustrated in FIG.
 SMOフレームワーク10は、O-RAN仕様で規定されるO1インターフェースを提供する。「Non-RT RIC」12は、O1インターフェースを介してKPI(主要性能指標)を基地局機能群2から取得する。 The SMO framework 10 provides the O1 interface defined by the O-RAN specifications. The "Non-RT RIC" 12 acquires KPIs (key performance indicators) from the base station function group 2 via the O1 interface.
 SMO機能部11と「Non-RT RIC」12とは、インターフェース100を介してメッセージを交換する。インターフェース100は、SMO機能部11との間のインターフェースである。 The SMO function unit 11 and the "Non-RT RIC" 12 exchange messages via the interface 100. An interface 100 is an interface with the SMO function unit 11 .
 図3は、本実施形態に係る基地局機能配置制御部20の構成例を示すブロック図である。図3において、基地局機能配置制御部20は、優先指定情報取得部210と、KPI取得部203と、基地局機能配置設定情報送信部204と、制御部205と、を備える。 FIG. 3 is a block diagram showing a configuration example of the base station function allocation control section 20 according to this embodiment. In FIG. 3 , base station function allocation control section 20 includes priority designation information acquisition section 210 , KPI acquisition section 203 , base station function allocation setting information transmission section 204 , and control section 205 .
 優先指定情報取得部210は、SMO機能部11との間のインターフェース100を介して優先指定情報を取得する。優先指定情報は、RAN1において要求品質達成率を優先的に改善したいエリア又はセルを示す情報である。要求品質達成率は、ユーザが要求する通信品質がどのくらい達成されているかを示す割合である。 The priority designation information acquisition unit 210 acquires priority designation information via the interface 100 with the SMO function unit 11 . The priority designation information is information indicating an area or cell in RAN1 in which the required quality achievement rate is preferentially desired to be improved. The requested quality achievement rate is a rate indicating how much the communication quality requested by the user has been achieved.
 KPI取得部203は、O1インターフェースを介してKPIを基地局機能群2から取得する。KPI取得部203が基地局機能群2から取得するKPIは、例えば、各サービスのスループット、無線リソースの利用率、計算機リソースの使用率、伝送路帯域の使用率等である。 The KPI acquisition unit 203 acquires KPIs from the base station function group 2 via the O1 interface. The KPIs that the KPI acquisition unit 203 acquires from the base station function group 2 are, for example, the throughput of each service, the utilization rate of radio resources, the utilization rate of computer resources, the utilization rate of transmission line bandwidth, and the like.
 基地局機能配置設定情報送信部204は、SMO機能部11との間のインターフェース100を介して基地局機能配置設定情報を送信する。基地局機能配置設定情報は、RAN1における基地局機能配置を変更するための基地局機能配置の変更内容を示す情報である。 The base station function allocation setting information transmission unit 204 transmits base station function allocation setting information via the interface 100 with the SMO function unit 11 . The base station functional allocation setting information is information indicating the content of change in the base station functional allocation for changing the base station functional allocation in RAN1.
 制御部205は、KPI取得部203が取得したKPIに基づいて、次の基地局機能配置を決定する。制御部205は、RAN1に含まれるエリア又はセルのうち、優先指定情報取得部210が取得した優先指定情報に示される要求品質達成率を優先的に改善したいエリア又はセルに対して優先的に基地局機能配置を決定する。 The control unit 205 determines the next base station functional arrangement based on the KPI acquired by the KPI acquisition unit 203. The control unit 205 preferentially acquires a base for an area or cell in which the required quality achievement rate indicated in the priority designation information acquired by the priority designation information acquisition unit 210 is to be preferentially improved, out of the areas or cells included in the RAN1. Determine station function allocation.
 基地局機能配置制御部20の各部は、各部の機能を実現するためのコンピュータプログラムをCPUが実行することによりその機能が実現される。 Each part of the base station function allocation control unit 20 realizes its function by the CPU executing a computer program for realizing the function of each part.
 図4は、本実施形態に係る制御部の構成例を示すブロック図である。図1に示される制御部205は、RAN1に含まれるエリア又はセル毎に、分散強化学習によって基地局機能配置を決定する。RAN1は、複数のセル(Cell#1,Cell#2,・・・,Cell#n)を備える。制御部205は、複数のセル(Cell#1,Cell#2,・・・,Cell#n)にそれぞれ対応する複数の「Actor」301(Actor#1,Actor#2,・・・,Actor#n)と、「Repository」302と、「Learner」303とを備える。 FIG. 4 is a block diagram showing a configuration example of a control unit according to this embodiment. The control unit 205 shown in FIG. 1 determines base station functional allocation by distributed reinforcement learning for each area or cell included in RAN1. RAN1 includes a plurality of cells (Cell#1, Cell#2, . . . , Cell#n). The control unit 205 generates a plurality of “Actors” 301 (Actor#1, Actor#2, . . . , Actor#) respectively corresponding to a plurality of cells (Cell#1, Cell#2, . n), 'Repository' 302, and 'Learner' 303.
 各「Actor」301は、自己が担当するセルから取得されたKPIに基づいて当該セル(環境)との試行錯誤を通じて「経験(Experiences)」(学習データ)を収集する。「Repository」302は、各「Actor」301が収集した学習データを格納する。「Learner」303は、「Repository」302に格納された学習データを使用して、基地局機能配置学習モデルを学習する。各「Actor」301の基地局機能配置学習モデルは、定期的に「Learner」303によって更新される。ある「Actor」301は、基地局機能配置学習モデルを用いて、当該「Actor」301が担当するセルにおける基地局機能配置を最適化する。 Each "Actor" 301 collects "Experiences" (learning data) through trial and error with the cell (environment) based on the KPI obtained from the cell it is in charge of. “Repository” 302 stores learning data collected by each “Actor” 301 . 'Learner' 303 uses learning data stored in 'Repository' 302 to learn a base station functional allocation learning model. The base station functional arrangement learning model of each 'Actor' 301 is periodically updated by the 'Learner' 303 . A certain "Actor" 301 uses a base station functional allocation learning model to optimize the base station functional allocation in the cell that the "Actor" 301 is in charge of.
 制御部205は、各「Actor」301(Actor#1,Actor#2,・・・,Actor#n)によって各セル(Cell#1,Cell#2,・・・,Cell#n)における基地局機能配置の最適解を求める。このとき、制御部205は、複数のセル(Cell#1,Cell#2,・・・,Cell#n)に対して、どのセルから基地局機能配置の最適解を求めるのかを示す順番(セルの順番)を決定し、当該セルの順番に従って基地局機能配置の最適解を求める。ここで、制御部205は、優先指定情報取得部210が取得した優先指定情報がある場合には、当該優先指定情報に示される要求品質達成率を優先的に改善したいセルに対して最上位からセルの順番を付与する。したがって、優先指定情報に示される要求品質達成率を優先的に改善したいセルに対して優先的に基地局機能配置の最適解が求められる。これにより、優先指定情報に示される要求品質達成率を優先的に改善したいセルにおける基地局機能配置を迅速に変更することができる。例えば災害発生時等の緊急時には、緊急事態が発生したエリアに存在するセルに対して、当該緊急事態に対処するように、迅速に基地局機能配置を変更することができる。 The control unit 205 controls the base station in each cell (Cell #1, Cell #2, ..., Cell #n) by each "Actor" 301 (Actor #1, Actor #2, ..., Actor #n) Find the optimal solution for functional placement. At this time, control section 205 sets the order (cell order), and the optimum solution for base station functional allocation is obtained according to the order of the cell. Here, if there is priority designation information acquired by the priority designation information acquisition unit 210, the control unit 205 selects a cell whose required quality achievement rate indicated in the priority designation information is to be preferentially improved, from the topmost cell. Give the order of the cells. Therefore, the optimal solution of the base station functional allocation is preferentially obtained for the cell whose desired quality achievement rate indicated in the priority designation information is to be preferentially improved. As a result, it is possible to quickly change the base station functional allocation in the cell in which the desired quality achievement ratio indicated in the priority designation information is to be preferentially improved. For example, in an emergency such as when a disaster occurs, it is possible to quickly change the base station functional arrangement for cells existing in the area where the emergency has occurred so as to cope with the emergency.
 次に図5を参照して本実施形態に係る基地局機能配置制御方法の全体手順を説明する。図5は、本実施形態に係る基地局機能配置制御方法の概略手順のフローチャートである。 Next, the overall procedure of the base station functional allocation control method according to this embodiment will be described with reference to FIG. FIG. 5 is a flow chart of a schematic procedure of the base station functional allocation control method according to the present embodiment.
(ステップS11) 基地局機能配置制御部20(制御部205)は、優先指定情報取得部210が取得した優先指定情報があるか否かを判断する。優先指定情報取得部210が取得した優先指定情報がある場合にはステップS12へ進み、そうではない場合にはステップ13に進む。 (Step S11) The base station function allocation control section 20 (control section 205) determines whether there is priority designation information acquired by the priority designation information acquisition section 210 or not. If there is priority designation information acquired by the priority designation information acquisition unit 210, the process proceeds to step S12; otherwise, the process proceeds to step S13.
(ステップS12) 基地局機能配置制御部20(制御部205)は、優先指定情報取得部210が取得した優先指定情報に示される要求品質達成率を優先的に改善したいセルに対して最上位からセルの順番を付与する設定(最優先設定)を行う。 (Step S12) The base station function allocation control unit 20 (control unit 205) selects the cell whose required quality achievement rate indicated in the priority designation information acquired by the priority designation information acquisition unit 210 is to be preferentially improved. Set the order of cells (top priority setting).
(ステップS13) 基地局機能配置制御部20(制御部205)は、複数のセル(Cell#1,Cell#2,・・・,Cell#n)に対してセルの順番を決定する。このとき、最優先設定がある場合には、最優先設定されたセルに対して最上位からセルの順番を付与する。 (Step S13) The base station function allocation control section 20 (control section 205) determines the cell order for a plurality of cells (Cell#1, Cell#2, . . . , Cell#n). At this time, if there is a highest priority setting, the order of the cells is assigned from the highest priority to the cells with the highest priority setting.
 なお、最優先設定は、ステップS13によるセルの順番の決定後に解除されてもよく、又は、一定期間毎に解除されてもよい。 Note that the top priority setting may be canceled after the cell order is determined in step S13, or may be canceled at regular intervals.
 次いで、ステップS13で決定されたセルの順番で各セル(Cell#1,Cell#2,・・・,Cell#n)の基地局機能配置が実行される。図5中には、便宜上、Cell#1,Cell#2,・・・,Cell#nの順番で示されている。 Next, base station function allocation is performed for each cell (Cell#1, Cell#2, . . . , Cell#n) in the order of cells determined in step S13. In FIG. 5, Cell#1, Cell#2, . . . , Cell#n are shown in order for convenience.
 セルの基地局機能配置の実行ではステップS14,S15が実行される。ここでは、「Cell(セル)#1」を例に挙げて基地局機能配置の実行を説明するが、他のセルも同様である。 Steps S14 and S15 are executed in executing the cell base station functional allocation. Here, "Cell #1" is taken as an example to describe the execution of the base station functional allocation, but other cells are similar.
(ステップS14) 基地局機能配置制御部20(KPI取得部203)は、「Cell(セル)#1」からKPIを取得する。 (Step S14) The base station function allocation control section 20 (KPI acquisition section 203) acquires KPI from "Cell #1".
(ステップS15) 基地局機能配置制御部20(制御部205)は、「Cell(セル)#1」から取得されたKPIに基づいて、「Cell(セル)#1」における次の基地局機能配置を決定する。基地局機能配置制御部20(制御部205)は、決定された「Cell(セル)#1」の次の基地局機能配置に関する基地局機能配置設定情報を生成する。当該基地局機能配置設定情報は、「Cell(セル)#1」における基地局機能配置を当該次の基地局機能配置に変更するための基地局機能配置の変更内容を示す情報である。 (Step S15) Based on the KPI acquired from "Cell #1", the base station functional allocation control unit 20 (control unit 205) determines the next base station functional allocation in "Cell #1". to decide. The base station function allocation control unit 20 (control unit 205) generates base station function allocation setting information regarding the next base station function allocation of the determined "Cell #1". The base station functional allocation setting information is information indicating the change contents of the base station functional allocation for changing the base station functional allocation in "Cell #1" to the next base station functional allocation.
 次いで、基地局機能配置制御部20(基地局機能配置設定情報送信部204)は、制御部205が生成した「Cell(セル)#1」の基地局機能配置設定情報をSMO機能部11へ送信する。次いで、SMO機能部11は、「Cell(セル)#1」の基地局機能配置設定情報に基づいて、基地局機能群2の「Cell(セル)#1」の基地局機能配置を変更する設定を実行する。これにより、基地局機能群2の「Cell(セル)#1」の基地局機能配置が、当該次の基地局機能配置に変更される。 Next, the base station function allocation control section 20 (base station function allocation setting information transmitting section 204) transmits the base station function allocation setting information of "Cell #1" generated by the control section 205 to the SMO function section 11. do. Next, the SMO function unit 11 sets to change the base station function allocation of "Cell #1" of the base station function group 2 based on the base station function allocation setting information of "Cell #1". to run. As a result, the base station functional arrangement of "Cell #1" of the base station functional group 2 is changed to the next base station functional arrangement.
 次に図6を参照して本実施形態に係る基地局機能配置制御方法の詳細な手順を説明する。図6は、本実施形態に係る基地局機能配置制御方法の詳細な手順の例を示すシーケンス図である。 Next, detailed procedures of the base station functional allocation control method according to the present embodiment will be described with reference to FIG. FIG. 6 is a sequence diagram showing an example of detailed procedures of the base station functional allocation control method according to this embodiment.
(ステップS201) 「External system」は、「Emergency notification」メッセージをSMO機能部11へ送信する。「Emergency notification」メッセージは、優先指定情報に対応する。 (Step S201) The "External system" sends an "Emergency notification" message to the SMO function unit 11. The "Emergency notification" message corresponds to priority information.
(ステップS202) 次いで、SMO機能部11は、インターフェース100により「Emergency notification」メッセージを「Non-RT RIC」12へ送信する。基地局機能配置制御部20は、当該「Emergency notification」メッセージを取得する。 (Step S202) Next, the SMO function unit 11 transmits an "Emergency notification" message to the "Non-RT RIC" 12 via the interface 100. The base station function allocation control unit 20 acquires the "Emergency notification" message.
(ステップS203) 次いで、基地局機能配置制御部20は、基地局機能配置の実行順序(セルの順番)を決定する。このとき、基地局機能配置制御部20は、SMO機能部11から受信した「Emergency notification」メッセージに示される要求品質達成率を優先的に改善したいセルに対して最上位からセルの順番を付与する。 (Step S203) Next, the base station functional allocation control unit 20 determines the execution order (cell order) of the base station functional allocation. At this time, the base station function allocation control unit 20 assigns the order of the cells from the highest level to the cells for which the required quality achievement rate indicated in the "Emergency notification" message received from the SMO function unit 11 is to be preferentially improved. .
(ステップS204) 次いで、基地局機能配置制御部20は、O1インターフェースにより基地局機能群2の各ノード(O-CU、O-DU1、O-DUN)から「Performance measurements」メッセージを受信する。基地局機能配置制御部20は、当該「Performance measurements」メッセージからKPIを取得する。 (Step S204) Next, the base station function allocation control unit 20 receives the "Performance measurements" message from each node (O-CU, O-DU1, O-DUN) of the base station function group 2 via the O1 interface. The base station function allocation control unit 20 acquires KPI from the "Performance measurements" message.
(ステップS205) 次いで、基地局機能配置制御部20は、ステップS203で決定されたセルの順番に従ってセル毎に、「Performance measurements」メッセージから取得したKPIに基づいて次の基地局機能配置を決定する。基地局機能配置制御部20は、決定された各セルの次の基地局機能配置に関する基地局機能配置設定情報を生成する。 (Step S205) Next, the base station function allocation control unit 20 determines the next base station function allocation based on the KPI obtained from the "Performance measurements" message for each cell according to the cell order determined in step S203. . The base station functional allocation control unit 20 generates base station functional allocation setting information regarding the determined next base station functional allocation of each cell.
 次に基地局機能の設定変更シーケンスとしてステップS206からステップS207までが実行される。この基地局機能の設定変更シーケンスは、O-RAN仕様「Reconfiguration of O-RAN Virtual Network Function(s)(O-RAN.WG6.ORCH-USE-CASES-v01.00)」に基づいたものである。 Next, steps S206 to S207 are executed as a setting change sequence for the base station functions. This setting change sequence of the base station function is based on the O-RAN specification "Reconfiguration of O-RAN Virtual Network Function(s) (O-RAN.WG6.ORCH-USE-CASES-v01.00)" .
(ステップS206) 基地局機能配置制御部20は、ステップS205で生成された各セルの基地局機能配置設定情報を含む「Reconfig NF set」メッセージをインターフェース100によりSMO機能部11へ送信する。SMO機能部11は、インターフェース100により受信した「Reconfig NF set」メッセージから各セルの基地局機能配置設定情報を取得する。 (Step S206) The base station function allocation control unit 20 transmits the "Reconfig NF set" message containing the base station function allocation setting information for each cell generated in step S205 to the SMO function unit 11 via the interface 100. The SMO function unit 11 acquires the base station function allocation setting information of each cell from the “Reconfig NF set” message received by the interface 100 .
(ステップS207) SMO機能部11は、O1インターフェースにより基地局機能群2の各ノード(O-CU、O-DU1、O-DUN)へ「Configure NF」メッセージを送信する。この「Configure NF」メッセージには、ステップS206で取得された各セルの基地局機能配置設定情報に示される各セルの次の基地局機能配置に変更するための設定情報が含まれる。これにより、基地局機能群2の各セルの基地局機能配置が、当該各セルの次の基地局機能配置に変更される。 (Step S207) The SMO function unit 11 transmits a "Configure NF" message to each node (O-CU, O-DU1, O-DUN) of the base station function group 2 via the O1 interface. This "Configure NF" message includes setting information for changing to the next base station functional layout of each cell indicated by the base station functional layout setting information of each cell acquired in step S206. As a result, the base station functional arrangement of each cell of the base station functional group 2 is changed to the next base station functional arrangement of each cell.
 次に図7,図8を参照して、本実施形態に係る優先指定情報の構成例を説明する。 Next, a configuration example of priority designation information according to the present embodiment will be described with reference to FIGS. 7 and 8. FIG.
 図7は、本実施形態に係る優先指定情報の構成例1を示す。図7の優先指定情報の構成例1では、優先指定情報は、RAN1に含まれる全てのセルに対して異なる優先度が指定される情報である。図7の優先指定情報の例では、「セル識別子(セルID)=3」のセルと「セルID=4」のセルとが、緊急事態が発生したセルであって、要求品質達成率を優先的に改善したいセルである。このため、「セルID=3」のセルに対して最大の優先度「1」が付与され、「セルID=4」のセルに対して2番目に大きい優先度「2」が付与されている。制御部205は、図7の優先指定情報に示される各セルの優先度の順に、セルの順番を決定する。 FIG. 7 shows a configuration example 1 of priority designation information according to this embodiment. In configuration example 1 of the priority designation information in FIG. 7, the priority designation information is information that designates different priorities for all cells included in RAN1. In the example of the priority designation information in FIG. 7, the cell with "cell identifier (cell ID)=3" and the cell with "cell ID=4" are cells in which an emergency has occurred, and the requested quality achievement rate is given priority. This is the cell that we want to improve. Therefore, the highest priority "1" is given to the cell with "cell ID=3", and the second highest priority "2" is given to the cell with "cell ID=4". . The control unit 205 determines the order of the cells in order of the priority of each cell indicated in the priority designation information in FIG.
 図8は、本実施形態に係る優先指定情報の構成例2を示す。図8の優先指定情報の構成例2では、優先指定情報は、RAN1に含まれる全てのセルのうち要求品質達成率を優先的に改善したいセルのみに対して最大の優先度が指定される情報である。図8の優先指定情報の例では、「セルID=3」のセルと「セルID=4」のセルとが、緊急事態が発生したセルであって、要求品質達成率を優先的に改善したいセルである。このため、「セルID=3」のセルと「セルID=4」のセルとの2つのセルのみに対して最大の優先度「1」が付与されている。制御部205は、図8の優先指定情報に示される最大の優先度「1」が付与された「セルID=3」のセルと「セルID=4」のセルとに対して最上位からセルの順番を付与する。次いで、残りの「セルID=1,2,5」の各セルに対して順次セルの順番を付与する。なお、同じ優先度の複数のセル間の順番付けは、所定の順番付け規則に従う。所定の順番付け規則は、例えば、無作為に順番付けを行うものであってもよく、又は、所定の通信品質パラメータに基づく順番付けであってもよい。 FIG. 8 shows a configuration example 2 of priority designation information according to this embodiment. In the configuration example 2 of the priority designation information in FIG. 8, the priority designation information is information in which the maximum priority is designated only for the cell whose required quality achievement rate is to be preferentially improved among all the cells included in RAN1. is. In the example of the priority designation information in FIG. 8, the cell with "cell ID=3" and the cell with "cell ID=4" are cells in which an emergency has occurred, and it is desired to improve the required quality achievement rate preferentially. cell. Therefore, the highest priority "1" is assigned only to two cells, the cell with "cell ID=3" and the cell with "cell ID=4". The control unit 205 selects the cell of "cell ID=3" and the cell of "cell ID=4" to which the highest priority "1" shown in the priority designation information in FIG. give the order of Then, the order of the cells is sequentially assigned to the remaining "cell ID=1, 2, 5" cells. It should be noted that the ordering among multiple cells with the same priority follows a predetermined ordering rule. The predetermined ordering rule may be, for example, random ordering or ordering based on a predetermined communication quality parameter.
 なお、図7及び図8の優先指定情報の例ではセル毎に優先度が指定されたが、これに限定されない。優先指定情報において、エリア毎に優先度が指定されてもよい。この場合、同じエリアに含まれる全てのセルに対して当該エリアの優先度が指定されたものになる。 Although the priority is designated for each cell in the examples of priority designation information in FIGS. 7 and 8, the present invention is not limited to this. A priority may be specified for each area in the priority specification information. In this case, the priority of the area is designated for all cells included in the same area.
 また、図7及び図8の優先指定情報の例では、RAN1に含まれる全てのセルに対して優先度が指定されたが、これに限定されない。優先指定情報は、要求品質達成率を優先的に改善したいエリア又はセルのみが指定される情報であってもよい。 Also, in the example of priority designation information in FIGS. 7 and 8, priority is designated for all cells included in RAN1, but this is not limiting. The priority designation information may be information designating only an area or a cell for which the requested quality achievement rate is to be preferentially improved.
 上述したように本実施形態によれば、例えば災害発生時等の緊急時において緊急事態が発生したエリアやセルに対して優先的に基地局機能配置の変更を行うことができる。これにより、O-RAN仕様の無線アクセスネットワークにおいて基地局機能配置の実行を適切に制御することができるという効果が得られる。 As described above, according to the present embodiment, it is possible to preferentially change the base station function allocation for the area or cell in which the emergency occurs, for example, in the event of an emergency such as a disaster. As a result, it is possible to obtain the effect of being able to appropriately control the execution of the base station functional allocation in the O-RAN specification radio access network.
 緊急事態発生時の対処例として、火事や犯罪が発生したときに、当該発生場所のセルにおける基地局機能配置を優先的に変更することにより、消防や警察や救急等の活動に関わる通信の品質を向上させることが挙げられる。例えば、消防や警察や救急等の活動に関わる人員が使用する携帯端末による通信の品質を向上させるように、基地局機能配置を優先的に変更する。例えば、緊急車両や無人飛行体や防犯カメラ等による通信の品質を向上させるように、基地局機能配置を優先的に変更する。 As an example of emergency response, when a fire or crime occurs, by preferentially changing the base station functional allocation in the cell where the incident occurred, the quality of communication related to activities such as firefighting, police, and emergency services will be improved. to improve For example, the base station function layout is preferentially changed so as to improve the quality of communication by mobile terminals used by personnel involved in activities such as firefighting, police, and ambulance. For example, the base station function layout is preferentially changed so as to improve the quality of communication by emergency vehicles, unmanned flying vehicles, security cameras, and the like.
 なお、これにより、例えば無線アクセスネットワークにおける総合的なサービス品質の向上を実現することができることから、国連が主導する持続可能な開発目標(SDGs)の目標9「レジリエントなインフラを整備し、持続可能な産業化を推進するとともに、イノベーションの拡大を図る」に貢献することが可能となる。 As a result, it will be possible to improve overall service quality in radio access networks, for example. It will be possible to contribute to the promotion of industrialization and the expansion of innovation.
 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。 Although the embodiment of the present invention has been described in detail above with reference to the drawings, the specific configuration is not limited to this embodiment, and design changes and the like are included within the scope of the present invention.
 また、上述した各装置の機能を実現するためのコンピュータプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行するようにしてもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものであってもよい。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、フラッシュメモリ等の書き込み可能な不揮発性メモリ、DVD(Digital Versatile Disc)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
Alternatively, a computer program for realizing the functions of the devices described above may be recorded in a computer-readable recording medium, and the program recorded in the recording medium may be read and executed by the computer system. Note that the “computer system” referred to here may include hardware such as an OS and peripheral devices.
In addition, "computer-readable recording medium" includes writable nonvolatile memories such as flexible discs, magneto-optical discs, ROMs and flash memories, portable media such as DVDs (Digital Versatile Discs), and computer system built-in media. A storage device such as a hard disk that
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(例えばDRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。
 また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。
 また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
Furthermore, "computer-readable recording medium" means a volatile memory (e.g., DRAM (Dynamic Random Access Memory)), which holds the program for a certain period of time, is also included.
Further, the above program may be transmitted from a computer system storing this program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in a transmission medium. Here, the "transmission medium" for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
Further, the program may be for realizing part of the functions described above. Further, it may be a so-called difference file (difference program) that can realize the above-described functions in combination with a program already recorded in the computer system.
 1      無線アクセスネットワーク(RAN)
 2      基地局機能群
 10     SMOフレームワーク
 11     SMO機能部
 12     Non-RT RIC
 20     基地局機能配置制御部
 210    優先指定情報取得部
 203    KPI取得部
 204    基地局機能配置設定情報送信部
 205    制御部
1 Radio Access Network (RAN)
2 base station function group 10 SMO framework 11 SMO function unit 12 Non-RT RIC
20 base station function allocation control unit 210 priority designation information acquisition unit 203 KPI acquisition unit 204 base station function allocation setting information transmission unit 205 control unit

Claims (7)

  1.  O-RAN(Open Radio Access Network)仕様の無線アクセスネットワークにおいて要求品質達成率を優先的に改善したいエリア又はセルを示す優先指定情報を、SMO(Service and Management Orchestration)機能部との間のインターフェースを介して取得する優先指定情報取得部と、
     前記無線アクセスネットワークに含まれるエリア又はセルのうち前記優先指定情報に示される前記要求品質達成率を優先的に改善したいエリア又はセルに対して優先的に基地局機能配置を決定する制御部と、
     を備える基地局機能配置制御装置。
    The interface between the SMO (Service and Management Orchestration) functional unit and the priority designation information indicating the area or cell whose required quality achievement rate is to be preferentially improved in the O-RAN (Open Radio Access Network) specification radio access network. a priority designation information acquisition unit that acquires via
    a control unit that preferentially determines a base station function arrangement for an area or cell in which the desired quality achievement ratio indicated in the priority designation information is to be preferentially improved, among the areas or cells included in the radio access network;
    A base station functional allocation control device comprising:
  2.  前記優先指定情報は、前記無線アクセスネットワークに含まれる全てのエリア又はセルに対して異なる優先度が指定される情報である請求項1に記載の基地局機能配置制御装置。 The base station function allocation control apparatus according to claim 1, wherein the priority designation information is information designating different priorities for all areas or cells included in the radio access network.
  3.  前記優先指定情報は、前記無線アクセスネットワークに含まれる全てのエリア又はセルのうち要求品質達成率を優先的に改善したいエリア又はセルのみに対して最大の優先度が指定される情報である請求項1に記載の基地局機能配置制御装置。 The priority designation information is information that designates a maximum priority only for an area or cell whose required quality achievement rate is to be preferentially improved among all areas or cells included in the radio access network. 2. The base station functional allocation control device according to 1.
  4.  前記制御部は、前記無線アクセスネットワークに含まれるエリア又はセル毎に、分散強化学習によって基地局機能配置を決定する請求項1から3のいずれか1項に記載の基地局機能配置制御装置。 The base station functional allocation control device according to any one of claims 1 to 3, wherein the control unit determines the base station functional allocation by distributed reinforcement learning for each area or cell included in the radio access network.
  5.  前記基地局機能配置制御装置は、Non-RT RIC(Non-Real Time RAN Intelligent Controller)を用いて実現される請求項1から4のいずれか1項に記載の基地局機能配置制御装置。 The base station functional allocation control device according to any one of claims 1 to 4, wherein the base station functional allocation control device is implemented using a Non-RT RIC (Non-Real Time RAN Intelligent Controller).
  6.  O-RAN(Open Radio Access Network)仕様の無線アクセスネットワークにおける基地局機能配置制御方法であって、
     基地局機能配置制御装置が、O-RAN仕様の無線アクセスネットワークにおいて要求品質達成率を優先的に改善したいエリア又はセルを示す優先指定情報を、SMO(Service and Management Orchestration)機能部との間のインターフェースを介して取得する優先指定情報取得ステップと、
     前記基地局機能配置制御装置が、前記無線アクセスネットワークに含まれるエリア又はセルのうち前記優先指定情報に示される前記要求品質達成率を優先的に改善したいエリア又はセルに対して優先的に基地局機能配置を決定する制御ステップと、
     を含む基地局機能配置制御方法。
    A base station function allocation control method in a radio access network of O-RAN (Open Radio Access Network) specification,
    A base station function allocation control device transmits priority designation information indicating an area or a cell in which the required quality achievement rate is to be preferentially improved in an O-RAN specification radio access network to an SMO (Service and Management Orchestration) function unit. a priority designation information obtaining step obtained through an interface;
    The base station function allocation control device prioritizes base stations for areas or cells in which the desired quality achievement rate indicated in the priority designation information is to be preferentially improved, among areas or cells included in the radio access network. a control step for determining functional placement;
    A base station functional allocation control method comprising:
  7.  基地局機能配置制御装置のコンピュータに、
     O-RAN(Open Radio Access Network)仕様の無線アクセスネットワークにおいて要求品質達成率を優先的に改善したいエリア又はセルを示す優先指定情報を、SMO(Service and Management Orchestration)機能部との間のインターフェースを介して取得する優先指定情報取得ステップと、
     前記無線アクセスネットワークに含まれるエリア又はセルのうち前記優先指定情報に示される前記要求品質達成率を優先的に改善したいエリア又はセルに対して優先的に基地局機能配置を決定する制御ステップと、
     を実行させるためのコンピュータプログラム。
    In the computer of the base station functional allocation controller,
    The interface between the SMO (Service and Management Orchestration) functional unit and the priority designation information indicating the area or cell whose required quality achievement rate is to be preferentially improved in the O-RAN (Open Radio Access Network) specification radio access network. a priority designation information obtaining step obtained through
    a control step of preferentially determining a base station functional arrangement for an area or cell in which the desired quality achievement rate indicated in the priority designation information is to be preferentially improved among areas or cells included in the radio access network;
    A computer program for executing
PCT/JP2022/004050 2021-04-20 2022-02-02 Base station function deployment control device, base station function deployment control method, and computer program WO2022224536A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-071090 2021-04-20
JP2021071090A JP2022165661A (en) 2021-04-20 2021-04-20 Device and method for controlling arrangement of functions of base station and computer program

Publications (1)

Publication Number Publication Date
WO2022224536A1 true WO2022224536A1 (en) 2022-10-27

Family

ID=83722783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004050 WO2022224536A1 (en) 2021-04-20 2022-02-02 Base station function deployment control device, base station function deployment control method, and computer program

Country Status (2)

Country Link
JP (1) JP2022165661A (en)
WO (1) WO2022224536A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111654877A (en) * 2019-03-04 2020-09-11 中国移动通信有限公司研究院 Wireless resource management method and device
WO2021048831A1 (en) * 2019-09-12 2021-03-18 Telefonaktiebolaget Lm Ericsson (Publ) Data sharing between a non-rt-ric and a nearrt-ric for radio resource management

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111654877A (en) * 2019-03-04 2020-09-11 中国移动通信有限公司研究院 Wireless resource management method and device
WO2021048831A1 (en) * 2019-09-12 2021-03-18 Telefonaktiebolaget Lm Ericsson (Publ) Data sharing between a non-rt-ric and a nearrt-ric for radio resource management

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TSUBOTA, HIROKI: "Towards the New World of Carrier Networks", TEREKOMYUNIKESHON - TELECOMMUNICATION, TEREKOMU, TOKYO, JP, vol. 38, no. 3 (440), 25 February 2021 (2021-02-25), JP , pages 5 - 8, XP009540704, ISSN: 0910-7576 *

Also Published As

Publication number Publication date
JP2022165661A (en) 2022-11-01

Similar Documents

Publication Publication Date Title
CA3112926C (en) Slice information processing method and apparatus
EP3855842A1 (en) Method and apparatus for dynamically allocating radio resources in a wireless communication system
JP7159347B2 (en) MODEL UPDATE METHOD AND APPARATUS, AND SYSTEM
CN111638935B (en) Mirror image management method, network system, device, and storage medium
CN105103492A (en) Controlling a topology of a network
CN112888069B (en) 5G network slicing system serving city center environment
EP3648404A1 (en) Method, device and system for deploying network slice
US20130148596A1 (en) Resource management system and method of centralized base station in mobile communication network
CN115552933A (en) Federal learning in a telecommunications system
KR20140075958A (en) Channel Information Providing Method and Channel Information Providing Database Server and Channel Information Providing System
Ganjalizadeh et al. Interplay between distributed AI workflow and URLLC
WO2022224536A1 (en) Base station function deployment control device, base station function deployment control method, and computer program
WO2021152629A1 (en) Method and apparatus for dynamically allocating radio resources in a wireless communication system
US10887888B2 (en) Methods and modules for handling channels in a radio spectrum
WO2023185428A1 (en) Method for reconstructing key service capability of user plane function network element, and communication apparatus
WO2023045931A1 (en) Network performance abnormality analysis method and apparatus, and readable storage medium
WO2022209251A1 (en) Base station function deployment control device, base station function deployment control method, and computer program
JP7333876B2 (en) Method, orchestrator and communication system for providing multi-site orchestration in public network for factory automation
JP7440449B2 (en) Base station function allocation control device, base station function allocation control method, and computer program
JP2022165660A (en) Device and method for controlling arrangement of functions of base station and computer program
JP2022165659A (en) Device and method for controlling arrangement of functions of base station and computer program
WO2023082877A1 (en) Communication method and apparatus
JP7100613B2 (en) Controls, control methods, programs and base stations
CN117692970A (en) QoS parameter configuration method, qoS parameter configuration device and storage medium
CN114143830A (en) Flow optimization method and device, equipment and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791321

Country of ref document: EP

Kind code of ref document: A1