WO2022224520A1 - 送信装置、送信方法、受信装置、及び受信方法 - Google Patents

送信装置、送信方法、受信装置、及び受信方法 Download PDF

Info

Publication number
WO2022224520A1
WO2022224520A1 PCT/JP2022/003002 JP2022003002W WO2022224520A1 WO 2022224520 A1 WO2022224520 A1 WO 2022224520A1 JP 2022003002 W JP2022003002 W JP 2022003002W WO 2022224520 A1 WO2022224520 A1 WO 2022224520A1
Authority
WO
WIPO (PCT)
Prior art keywords
additional information
information
data
transmission
physical layer
Prior art date
Application number
PCT/JP2022/003002
Other languages
English (en)
French (fr)
Inventor
和幸 高橋
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to BR112023021174A priority Critical patent/BR112023021174A2/pt
Priority to JP2023516281A priority patent/JPWO2022224520A1/ja
Publication of WO2022224520A1 publication Critical patent/WO2022224520A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/235Processing of additional data, e.g. scrambling of additional data or processing content descriptors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/435Processing of additional data, e.g. decrypting of additional data, reconstructing software from modules extracted from the transport stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/438Interfacing the downstream path of the transmission network originating from a server, e.g. retrieving encoded video stream packets from an IP network

Definitions

  • the present disclosure relates to a transmitting device, a transmitting method, a receiving device, and a receiving method, and more particularly to a transmitting device, a transmitting method, a receiving device, and a receiving method that enable more flexible operation of broadcasting services.
  • Patent Document 1 Investigations are underway to improve the next generation of digital terrestrial television broadcasting.
  • the present disclosure has been made in view of this situation, and is intended to enable more flexible operation of broadcasting services.
  • a transmission device includes a generation unit that generates additional information including at least one of control information or data from among a plurality of types of control information, and a physical layer frame that includes the additional information as a broadcast signal. and a transmission unit for transmitting as a transmission device.
  • a transmission device In a transmission method according to one aspect of the present disclosure, a transmission device generates additional information including at least one of control information of a plurality of types of control information or data, and broadcasts a physical layer frame including the additional information. It is a transmission method for transmitting as a signal.
  • At least one of a plurality of types of control information or additional information including data is generated, and a physical layer frame including the additional information is generated by: transmitted as a broadcast signal.
  • a receiving device includes a receiving unit that receives a physical layer frame transmitted as a broadcast signal, at least one of a plurality of types of control information included in the physical layer frame, Alternatively, the receiving device includes a processing unit that performs predetermined processing based on additional information including data.
  • a receiving device receives a physical layer frame transmitted as a broadcast signal, and includes at least one of a plurality of types of control information included in the physical layer frame. , or a receiving method for performing predetermined processing based on additional information including data.
  • a physical layer frame transmitted as a broadcast signal is received, and at least one of a plurality of types of control information included in the physical layer frame is controlled. Predetermined processing is performed based on additional information including information or data.
  • the transmitting device and the receiving device may be independent devices, or may be internal blocks forming one device.
  • FIG. 1 is a block diagram showing a configuration example of an embodiment of a transmission system to which the present disclosure is applied;
  • FIG. 2 is a block diagram showing a configuration example of a data processing device and a transmission device in FIG. 1;
  • FIG. FIG. 2 is a block diagram showing a configuration example of a receiving device in FIG. 1;
  • 1 is a diagram showing the structure of a current physical layer frame;
  • FIG. FIG. 4 is a diagram showing an example structure of a next-generation physical layer frame; It is a figure which shows the structural example of the hierarchy of a next-generation system.
  • FIG. 4 is a diagram showing an example of LLch syntax;
  • FIG. 8 is a diagram showing an example of semantics of LLch of FIG. 7;
  • FIG. 10 is a diagram showing an example of descriptor_tag;
  • FIG. 10 is a diagram showing an example of LLch syntax when arranging single data;
  • FIG. 4 is a diagram showing the relationship between frames and packets when arranging a single piece of data;
  • FIG. 10 is a diagram showing an example of LLch syntax when arranging a plurality of data;
  • FIG. 13 is a diagram showing an example of semantics of LLch of FIG. 12;
  • FIG. 10 is a diagram showing the relationship between frames and packets when arranging a plurality of data;
  • FIG. 10 is a diagram showing an example of LLch syntax when arranging a single piece of control information;
  • FIG. 10 is a diagram showing an example of LLch syntax when arranging a plurality of pieces of control information;
  • FIG. 17 is a diagram showing an example of semantics of LLch of FIG. 16; 1 is a block diagram showing a configuration example of a transmission system including relay devices; FIG. FIG. 10 is a diagram showing an example of LLch syntax when arranging repeater control information; FIG. 20 is a diagram showing an example of semantics of LLch of FIG. 19; 4 is a flowchart for explaining the flow of processing on the transmitting side and the receiving side; It is a block diagram which shows the structural example of a computer.
  • FIG. 1 is a block diagram showing a configuration example of an embodiment of a transmission system to which the present disclosure is applied.
  • the transmission system includes data processing devices 10-1 to 10-N (N is an integer equal to or greater than 1) installed at facilities related to each broadcasting station, a transmission device 20 installed at a transmission station, It consists of receivers 30-1 to 30-M (M is an integer equal to or greater than 1) owned by the end user.
  • the data processing devices 10-1 to 10-N and the transmission device 20 are connected via communication lines 12-1 to 12-N.
  • the communication lines 12-1 through 12-N are, for example, dedicated lines.
  • the data processing device 10-1 performs necessary processing on content data such as broadcast programs produced by the broadcasting station A, and transmits the resulting transmission data to the transmission device 20 via the communication line 12-1. do.
  • data processing devices 10-2 to 10-N similarly to the data processing device 10-1, data of contents such as broadcast programs produced by each broadcasting station such as broadcasting station B and broadcasting station Z are processed, The transmission data obtained as a result is transmitted to the transmission device 20 via the communication lines 12-2 to 12-N.
  • the data processors 10-1 to 10-N will be referred to as data processors 10 when there is no need to distinguish them.
  • the transmission device 20 receives transmission data transmitted from the data processing devices 10-1 to 10-N via the communication lines 12-1 to 12-N.
  • the transmission device 20 performs necessary processing on transmission data from the data processing devices 10-1 to 10-N, and transmits the resulting broadcast signal from a transmission antenna installed at a transmission station.
  • the broadcast signal from the transmitting device 20 is transmitted to the receiving devices 30-1 to 30-M.
  • Receiving devices 30-1 to 30-M are fixed receivers such as television receivers, set top boxes (STB: Set Top Box), recorders, game machines, and network storage, or smart phones, mobile phones, tablet computers, etc. mobile receiver. Also, the receiving devices 30-1 to 30-M may be, for example, in-vehicle equipment mounted in a vehicle such as an in-vehicle television, or a wearable computer such as a head mounted display (HMD).
  • STB Set Top Box
  • HMD head mounted display
  • the receiving device 30-1 receives the broadcast signal transmitted from the transmitting device 20 and performs necessary processing to reproduce content such as a broadcast program according to the channel selection operation by the end user.
  • the broadcast signal from the transmitting device 20 is processed, and content corresponding to the channel selection operation by the end user is reproduced.
  • the broadcasting transmission path for transmitting broadcast signals is not only terrestrial (terrestrial broadcasting), but also satellite broadcasting using broadcasting satellites (BS: Broadcasting Satellite) and communication satellites (CS: Communications Satellite).
  • BS Broadcasting Satellite
  • CS Communications Satellite
  • cable broadcasting using cables CATV: Common Antenna TeleVision
  • FIG. 2 is a block diagram showing a configuration example of the data processing device 10 and the transmission device 20 of FIG.
  • the data processing device 10 is composed of an information generation unit 111, a data processing unit 112, and a communication unit 113.
  • the information generation unit 111 generates control information used when performing processing such as demodulation processing and decoding processing on the receiving side based on the information input thereto, and supplies the control information to the data processing unit 112 .
  • control information used in physical layer processing is referred to as physical layer control information
  • control information used in higher layer processing which is a layer higher than the physical layer
  • upper layer control information is referred to as upper layer control information.
  • the physical layer control information includes transmission multiplexing control information such as TMCC, which will be described later.
  • the information generation unit 111 generates additional information related to broadcasting based on the information input thereto, and supplies the additional information to the data processing unit 112 .
  • the additional information is information included in LLch, which will be described later.
  • the data processing unit 112 is supplied with data of components that make up content such as broadcast programs, and control information and additional information from the information generating unit 111 .
  • Component data is data such as video, audio, and subtitles.
  • the data processing unit 112 generates a multiplexed stream by encoding the component data and multiplexing it with the upper layer control information.
  • the data processing unit 112 generates packets of a predetermined format from the multiplexed stream.
  • the data processing unit 112 supplies transmission data including the generated packet, physical layer control information and additional information to the communication unit 113 .
  • the communication unit 113 transmits transmission data supplied from the data processing unit 112 to the transmission device 20 via the communication line 12 according to a predetermined communication method.
  • the transmission device 20 is composed of a communication section 211, a data processing section 212, and a transmission section 213.
  • the communication unit 211 receives transmission data transmitted from the data processing device 10 via the communication line 12 according to a predetermined communication method, and supplies the data to the data processing unit 212 .
  • the data processing unit 212 performs necessary processing on the packets, physical layer control information, and additional information included in the transmission data supplied from the communication unit 211 to generate a physical layer frame conforming to a predetermined broadcasting system. , to the transmission unit 213 .
  • the transmission unit 213 performs necessary processing such as modulation processing on the physical layer frame supplied from the data processing unit 212, and transmits the resulting broadcast signal from the transmission antenna installed at the transmission station.
  • the device on the transmission side is composed of the data processing device 10 and the transmission device 20, but in reality it is composed of a plurality of devices having the functions of the blocks shown in FIG. A system composed of these devices can be regarded as a device on the transmitting side.
  • FIG. 3 is a block diagram showing a configuration example of the receiving device 30 of FIG.
  • the receiving device 30 is composed of a receiving section 311 and a data processing section 312.
  • the receiving unit 311 is composed of, for example, a tuner and a demodulation LSI (Large Scale Integration).
  • the receiving unit 311 performs necessary processing such as demodulation processing on the broadcast signal received via the antenna 321 and supplies packets obtained as a result to the data processing unit 312 .
  • necessary processing such as demodulation processing on the broadcast signal received via the antenna 321 and supplies packets obtained as a result to the data processing unit 312 .
  • a packet of a predetermined format is obtained by subjecting the physical layer frame to necessary processing based on physical layer control information or additional information.
  • the data processing unit 312 is composed of, for example, a main SoC (System On Chip).
  • the data processing unit 312 performs necessary processing such as decoding processing and reproduction processing on the packets supplied from the receiving unit 311 . For example, in decoding processing and reproduction processing, component data decoding processing and reproduction processing are performed based on upper layer control information included in a packet.
  • Data such as video, audio, subtitles, etc. obtained by processing such as decoding and playback are output to the subsequent circuit.
  • the receiving device 30 reproduces content such as a broadcast program, and outputs its video and audio.
  • a broadcasting system such as ISDB-T (Integrated Services Digital Broadcasting-Terrestrial) can be adopted.
  • ISDB-T Integrated Services Digital Broadcasting-Terrestrial
  • Japan ISDB-T has been adopted as a broadcasting system for digital terrestrial television broadcasting, and the next-generation system for digital terrestrial television broadcasting is being studied.
  • the current ISDB-T will be referred to as the current system to distinguish it from the next-generation system.
  • frequency division multiplexing In the current system, frequency division multiplexing (FDM) is used as the method for multiplexing broadcast signals, but the next generation system is also scheduled to adopt frequency division multiplexing.
  • FDM frequency division multiplexing
  • a predetermined frequency band (eg, 6 MHz) is frequency-divided into a plurality of segments, and hierarchical transmission is performed using the band for each segment or segments.
  • data of different services can be transmitted in each layer consisting of one or more segments.
  • each layer is a unit that summarizes one or more segments.
  • OFDM segments are used in the current scheme.
  • OFDM Orthogonal Frequency Division Multiplexing
  • a large number of orthogonal subcarriers (subcarriers) are provided within a transmission band and digital modulation is performed.
  • broadcasting is mainly for fixed receivers, and there is high-definition broadcasting using 12 segments, and broadcasting mainly for mobile receivers, which uses 1 segment for mobile phones and mobile terminals.
  • 1-segment partial reception service for "(one-segment broadcasting)" is defined.
  • TMCC Transmission Multiplexing Configuration Control
  • transmission multiplexing control information which is physical layer control information, but TMCC is planned to be adopted in the next-generation system as well.
  • TMCC is defined, for example, in Document 1 below.
  • the current system uses the MPEG2-TS (Transport Stream) system as the transmission system, but the next-generation system is scheduled to adopt the IP system.
  • the IP system applies IP (Internet Protocol) packets, which are used in the field of communications, to digital television broadcasting for the purpose of linking broadcasting and communications.
  • IP Internet Protocol
  • TLV Type Length Value
  • a TLV packet is a variable-length packet, and has a size of, for example, 4 to 65536 bytes.
  • a TLV packet stores an IP packet.
  • MMT MPEG Media Transport
  • various networks such as broadcasting and communication
  • MMT MPEG Media Transport
  • IP packets data such as video, audio, subtitles, control information, applications, and contents are stored in IP packets, and the IP packets are encapsulated in TLV packets, and the resulting TLV stream is used for broadcasting. It will be transmitted as waves.
  • a media transport method based on MMT is specified in Document 2 below, for example.
  • FIG. 4 is a diagram showing the structure of the current physical layer frame.
  • FIG. 4 shows the configuration of an OFDM segment when the horizontal direction is the carrier number corresponding to the frequency direction and the vertical direction is the symbol number corresponding to the time direction.
  • the symbol number in the vertical direction is the OFDM symbol number.
  • the transmission parameters are different for each mode, but for example, the number of symbols per frame is 204 and the carrier numbers are 0 to 107.
  • the OFDM segment includes TMCC and AC.
  • TMCC is transmission multiplex control information.
  • AC Alternative Channel
  • the same number of ACs are present in all segments. For example, AC is used for specific applications such as earthquake early warning.
  • pilot signals such as carrier symbols and SP (Scattered Pilot) are arranged in parts other than TMCC and AC.
  • the structure of the physical layer frame of the current method is specified in "3.12 Frame structure" of Document 1 above, etc., so the detailed explanation of its content is omitted here.
  • a physical layer frame composed of OFDM segments is also referred to as an OFDM frame.
  • FIG. 5 is a diagram showing a structural example of a physical layer frame of the next-generation system. As in FIG. 4, FIG. 5 shows the configuration of an OFDM segment when the horizontal direction is the carrier number corresponding to the frequency direction and the vertical direction is the OFDM symbol number corresponding to the time direction.
  • the transmission parameters are different for each mode, but for example, the number of symbols per frame is 204 and the carrier numbers are 0 to 431.
  • next-generation physical layer frame includes TMCC and LLch.
  • next-generation TMCC will also be referred to as the next-generation TMCC to distinguish it from the current TMCC.
  • the next-generation AC is called LLch (Low Latency Channel).
  • Next-generation TMCC includes information on transmission multiplexing control for performing processes such as demodulation and decoding on the receiving side in hierarchical transmission in which multiple transmission parameters (modulation parameters) are mixed.
  • Next-generation TMCC is assumed to be variable-length information. For example, by specifying fixed-length TMCC length information and including information about the length of the next-generation TMCC, which has a variable length, the reception device 30 can acquire the next-generation TMCC. Parity can be appropriately added to the next-generation TMCC and TMCC length information.
  • LLch contains additional information about broadcasting.
  • LLch is assumed to be variable-length information. For example, by defining fixed-length LLch length information and including information about the length of variable-length LLch, the receiver 30 can acquire LLch. Parity can be appropriately added to LLch and LLch length information.
  • padding or inserting other data may be performed.
  • FIG. 6 is a diagram showing a configuration example of a hierarchy of the next-generation scheme.
  • a predetermined frequency band (eg, 6 MHz) is frequency-divided into a plurality of segments, but in FIG. 6 it is frequency-divided into 35 segments.
  • the current method was divided into 13 segments, but the next-generation method is divided into 35 segments.
  • the middle segment in the figure is segment #0
  • the left and right segments are segment #1 and #2
  • the left and right segments are segment #3 and #2.
  • the leftmost segment in the figure becomes segment #33
  • the rightmost segment in the figure becomes segment #34.
  • Hierarchy 1 is composed of three segments #0 to #2.
  • Hierarchy 2 is composed of six segments #3, #5, #7 and segments #4, #6, #8.
  • descriptions of segments #11 to #28 are omitted, but segments #9, #11, . . . , #31, #33 and segments #10, #12, .
  • Layer 3 is composed of 26 segments.
  • 35 segments are divided into 3 layers, but 9 segments in layers 1 and 2 are used as partial reception bands, and 26 segments in layer 3 are used as non-partial reception bands. That is, the receiving device 30 can perform partial reception of receiving only the 9 segments of the 1st and 2nd hierarchies.
  • each OFDM segment includes the next-generation TMCC and LLch, but the LLch (L0) of 9 segments of the partial reception band and the LLch (L1) of 26 segments of the non-partial reception band are not separated. can be used with or separately.
  • the reception device 30 can use L0 and L1 It is possible to perform processing using the additional information contained in LLch by recognizing that the and are used in a non-separated or separated manner.
  • next-generation TMCC using the reserve bit, information indicating whether L0 and L1 are used without separation or L0 and L1 are used separately (new flag) can be defined. Specifically, when the new flag defined in the reserved bit is set to "1", it indicates that L0 and L1 are not separated, and when set to "0", L0 and It can be shown that L1 and L1 are separated.
  • L0 and L1 are used separately using the flag. You can decide whether or not there is.
  • L0 and L1 can be used non-separately or separately, more flexible and efficient broadcasting services can be realized.
  • additional information with high importance control information with high importance, etc.
  • LLch (L0) of the partial reception band LLch (L0) of the non-partial reception band is arranged.
  • other additional information less important control information, data, etc.
  • FIG. 7 is a diagram showing an example of LLch syntax. The semantics will be explained with appropriate reference to FIG.
  • descriptor_tag indicates a tag that identifies the type of LLch data.
  • FIG. 9 shows an example of descriptor_tag.
  • 12-bit descriptor_length indicates the length of the following LLch data.
  • 8-bit LLch_data indicates LLch data.
  • LLch data includes additional information such as seismic motion warning information, time information, data, control information, and private areas.
  • Earthquake motion warning information is information related to earthquake motion warnings, and is generally called an emergency earthquake early warning. Seismic motion warning information is stipulated in "3.16.6 Seismic motion warning information" in Document 1 above. As shown in FIG. 9, when seismic motion warning information is arranged as LLch data, the value of descriptor_tag is "0".
  • the time information is information about the time specified in a predetermined format.
  • time information information related to NTP (Network Time Protocol) format can be arranged.
  • NTP Network Time Protocol
  • 2-bit leap_indicator leap second indicator
  • 3-bit version version number
  • 3-bit mode operting mode
  • 64-bit transmit_timestamp transmission timestamp
  • the data is data in a predetermined format.
  • the data is data composed of TLV packets.
  • descriptor_tag is "2".
  • the control information is various control information used in the processing of the receiving device 30 that receives the broadcast signal. Different types of control information can be placed for each descriptor_tag. In the example of FIG. 9, when there are two types of control information, control information A and control information B, as LLch data, the value of descriptor_tag for control information A is "3", and the value of descriptor_tag for control information B is "3". "4". Note that the number of types of control information is not limited to two, and may be three or more. In this case, reserve values of "5" to "14" can be used as descriptor_tag.
  • the private area is an area used by broadcasters, and it is possible to specify their own information.
  • information used by the broadcaster to control the repeater can be placed.
  • the value of descriptor_tag is "15".
  • LLch whose data structure is undefined in the next-generation system
  • at least one of multiple types of control information control information or additional information such as data can be transmitted.
  • additional information such as various types of control information and data using LLch, which is characterized by low delay, and to flexibly operate broadcasting services.
  • the receiver 30 can acquire the time information at the fastest speed, thereby shortening the channel selection time and improving the synchronization accuracy.
  • the receiver 30 can acquire the time information at the fastest speed, thereby shortening the channel selection time and improving the synchronization accuracy.
  • it can be transmitted with low delay.
  • the section structure is used to allow LLch data to be arranged, the scalability is high, and it is easy to add new LLch data.
  • uimsbf unsigned integer most significant bit first
  • Mnemonic means that bit operations are performed and treated as an integer
  • FIG. 10 is a diagram showing an example of syntax of LLch when arranging a single piece of data for each physical layer frame.
  • descriptor_tag In the syntax of FIG. 10, descriptor_tag, descriptor_length, and data are arranged, but descriptions of parts that overlap with the syntax of FIG. 7 will be omitted.
  • 8-bit data indicates that data is allocated as LLch data. This data consists of TLV packets.
  • FIG. 11 shows the relationship between frames and data when a single piece of data is arranged for each physical layer frame.
  • OFDM frame #1 and OFDM frame #2 are temporally continuous, OFDM frame #1 includes TLV packet #0, and OFDM frame #2 includes TLV packet #1. . That is, TLV packet #1 is a TLV packet following TLV packet #0, and OFDM frame #1 and OFDM frame #2 each include one TLV packet as LLch data.
  • LLch can be used to arrange a single piece of data such as a TLV packet for each physical layer frame such as an OFDM frame.
  • FIG. 12 is a diagram showing an example of LLch syntax when a plurality of pieces of data are arranged for each physical layer frame. The semantics will be explained with appropriate reference to FIG.
  • descriptor_tag In the syntax of FIG. 12, descriptor_tag, descriptor_length, pointer, and data are arranged, but descriptions of parts that overlap with the syntax of FIG. 7 will be omitted.
  • the 8-bit pointer indicates the beginning position of the packet.
  • This head position indicates the position of the head packet (TLV packet, etc.) in the physical layer frame including the LLch in which the self is allocated.
  • 8-bit data indicates that data such as TLV packets are arranged as LLch data.
  • variable-length TLV packets may be arranged across multiple OFDM frames.
  • the receiving device 30 in order to process the data included in the OFDM frame in units of TLV packets, it is necessary to specify the boundaries (breaks) of the TLV packets in the OFDM frame. to indicate the start position of the TLV packet.
  • FIG. 14 shows the relationship between frames and packets when multiple pieces of data are arranged in each physical layer frame.
  • OFDM frame #1 includes TLV packet #0, TLV packet #1, and part of TLV packet #2
  • OFDM frame #2 includes the remaining part of TLV packet #2 and TLV Includes packet #3 and TLV packet #4. That is, TLV packet #2 is arranged across OFDM frame #1 and OFDM frame #2.
  • the pointer indicates the head position of the TLV packet #3.
  • the data contained in the OFDM frame can be shaped and output in units of TLV packets.
  • multiple data such as multiple TLV packets can be arranged for each physical layer frame such as an OFDM frame using LLch.
  • FIG. 15 is a diagram showing an example of LLch syntax when arranging a single piece of control information.
  • Descriptor_tag, descriptor_length, and control_info are arranged in the syntax of Fig. 15, but the description of the parts that overlap with the syntax of Fig. 7 will be omitted.
  • control_info indicates that control information is arranged as LLch data.
  • This control information can be various control information used in the processing in the receiving device 30 .
  • LLch can be used to arrange a single piece of control information for each physical layer frame such as an OFDM frame.
  • FIG. 16 is a diagram showing an example of LLch syntax when arranging a plurality of pieces of control information. The semantics will be explained with appropriate reference to FIG.
  • descriptor_tag In the syntax of FIG. 16, descriptor_tag, descriptor_length, num_of_control_info, control_info_tag, control_info_length, and control_info are arranged, but descriptions of parts that overlap with the syntax of FIG. 7 will be omitted.
  • 8-bit num_of_control_info indicates the number of control information to be arranged.
  • 8-bit control_info_tag indicates a tag that identifies the type of control data.
  • 8-bit control_info_length indicates the length of control information.
  • control_info indicates that control information is arranged as LLch data.
  • This control information can be various control information used in processing in the receiving device 30, and the number of pieces of control information indicated by num_of_control_info can be arranged.
  • LLch can be used to arrange multiple pieces of control information for each physical layer frame such as an OFDM frame. That is, by using LLch, as shown in FIG. 9, it is possible not only to arrange a plurality of types of control information according to descriptor_tag values (such as values "3" and "4"), As shown in FIGS. 16 and 17, when arranging control information, it is possible to arrange a plurality of types of control information according to the value of control_info_tag.
  • FIG. 18 is a block diagram showing a configuration example of a transmission system including relay devices.
  • a relay device 40 installed in a relay station is added compared to the configuration of FIG.
  • the relay device 40 receives the broadcast signal transmitted from the transmission device 20 installed in the transmission station (master station), performs predetermined processing, and transmits the resulting broadcast signal to the relay station installed. Transmit from the transmitting antenna.
  • broadcast signals from the relay device 40 of the relay station are transmitted to the receiving devices 30-1 to 30-M.
  • FIG. 19 is a diagram showing an example of LLch syntax when repeater control information is arranged as LLch data. The semantics will be explained with appropriate reference to FIG.
  • descriptor_tag In the syntax of FIG. 19, descriptor_tag, descriptor_length, transmit_frequency, transmit_power, transmission_mode, guard_interval, modulation, code_rate, and time_interleaving are arranged, but descriptions of parts that overlap with the syntax of FIG. 7 will be omitted.
  • 16-bit transmit_frequency indicates the output frequency.
  • 12-bit transmit_power indicates output power.
  • 3-bit transmission_mode indicates the transmission mode. For example, FFT size is specified as the transmission mode.
  • 3-bit guard_interval indicates the guard interval length.
  • 3-bit modulation indicates the carrier modulation method.
  • 3-bit code_rate indicates the coding rate.
  • 3-bit time_interleaving indicates the time interleaving length.
  • the relay device 40 transmits the broadcast signal from the transmitting antenna based on the parameters included in the repeater control information. This enables remote control of the relay device 40 installed in the relay station from the transmitting station (master station) side.
  • the relay device 40 can be regarded as a receiving device that receives broadcast signals from the transmitting device 20 .
  • the relay device 40 may change parameters (for example, output power) included in the relay control information as necessary.
  • the device on the transmission side and the device on the reception side are devices compatible with the next-generation system, and processing compatible with the next-generation system is performed.
  • step S11 the information generator 111 generates additional information.
  • additional information control information, data such as TLV packets, seismic motion warning information, time information, repeater control information, and the like are generated.
  • step S12 the data processing unit 212 generates a physical layer frame including additional information and next-generation TMCC.
  • additional information is included in LLch.
  • step S13 the transmission unit 213 transmits the physical layer frame as a broadcast signal.
  • the broadcast signal from the transmission device 20 may be transmitted via the relay device 40 .
  • step S31 the receiving unit 311 receives the broadcast signal transmitted from the transmitting device 20 or the relay device 40.
  • step S32 the receiving unit 311 processes the physical layer frame obtained from the broadcast signal.
  • the additional information included in LLch and the next-generation TMCC are obtained by processing the physical layer frame.
  • step S33 the data processing unit 312 performs predetermined processing based on the additional information.
  • control information data such as TLV packets, seismic motion warning information, and time information are acquired as additional information, and the data processing unit 312 performs necessary processing using these additional information.
  • the next generation system of ISDB-T which is a system adopted in Japan and the like, was described as a broadcasting system for digital television broadcasting, but the present disclosure may be applied to other broadcasting systems.
  • the broadcasting system of digital terrestrial television broadcasting has been described, but the present disclosure includes satellite broadcasting using broadcasting satellites (BS: Broadcasting Satellite), communication satellites (CS: Communications Satellite), etc., cable television It may be applied to a broadcasting system such as cable broadcasting such as (CATV).
  • BS Broadcasting Satellite
  • CS Communications Satellite
  • CATV cable broadcasting
  • CATV cable broadcasting
  • a TLV packet may be called an ALP (ATSC Link-layer Protocol) packet, a Generic packet, or the like.
  • ALP ATSC Link-layer Protocol
  • Generic packet or the like.
  • frame and packet may be used interchangeably.
  • system refers to a logical assembly of a plurality of devices.
  • time information defined by NTP is used as time information.
  • Arbitrary time information such as time information, time information included in GPS (Global Positioning System) information, and time information in a uniquely determined format can be used.
  • the receiving device 30 a device capable of receiving broadcast signals via an antenna, such as a television receiver and a set-top box, was exemplified. It may also have a communication function to perform communication via such as. In this case, the receiving device 30 performs two-way communication with the server via a communication line such as the Internet.
  • FIG. 22 is a block diagram showing a hardware configuration example of a computer that executes the series of processes described above by a program.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • An input/output interface 1005 is further connected to the bus 1004 .
  • An input unit 1006 , an output unit 1007 , a storage unit 1008 , a communication unit 1009 and a drive 1010 are connected to the input/output interface 1005 .
  • the input unit 1006 consists of a keyboard, mouse, microphone, and the like.
  • the output unit 1007 includes a display, a speaker, and the like.
  • the storage unit 1008 includes a hard disk, nonvolatile memory, and the like.
  • a communication unit 1009 includes a network interface and the like.
  • a drive 1010 drives a removable recording medium 1011 such as a semiconductor memory, magnetic disk, optical disk, or magneto-optical disk.
  • the CPU 1001 loads a program recorded in the ROM 1002 or the storage unit 1008 into the RAM 1003 via the input/output interface 1005 and the bus 1004 and executes the above-described series of programs. is processed.
  • a program executed by the computer (CPU 1001) can be provided by being recorded on a removable recording medium 1011 such as a package medium, for example. Also, the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the storage section 1008 via the input/output interface 1005 by loading the removable recording medium 1011 into the drive 1010 . Also, the program can be received by the communication unit 1009 and installed in the storage unit 1008 via a wired or wireless transmission medium. In addition, programs can be installed in the ROM 1002 and the storage unit 1008 in advance.
  • processing performed by the computer according to the program does not necessarily have to be performed in chronological order according to the order described as the flowchart.
  • processing performed by a computer according to a program includes processing that is executed in parallel or individually (for example, parallel processing or processing by objects).
  • the program may be processed by one computer (processor) or may be processed by a plurality of computers in a distributed manner.
  • the present disclosure can be configured as follows.
  • a transmission device comprising: a transmission unit configured to transmit a physical layer frame including the additional information as a broadcast signal.
  • the data are packets of variable length, The transmitting device according to (3), wherein, when the additional information includes a plurality of the packets, the additional information includes a pointer indicating a head position of the packet.
  • the transmission device includes seismic motion warning information, time information, or information on control of a relay device.
  • the broadcast signal is transmitted by frequency division multiplexing, The additional information is transmitted using the entire partial reception band and the non-partial reception band together, or is transmitted using each of the partial reception band and the non-partial reception band independently.
  • the transmitter according to any one of (1) to (5).
  • a transmission method of the additional information is specified in transmission multiplexing control information included in the physical layer frame.
  • the additional information is variable-length information, The transmission device according to any one of (1) to (7), wherein the physical layer frame includes information indicating the length of the additional information.
  • the transmitting device according to any one of (1) to (8), wherein the additional information is information included in LLch defined by the next-generation system of ISDB-T. (10) the transmitting device generating additional information including at least one of a plurality of types of control information or data; A transmission method, comprising transmitting a physical layer frame including the additional information as a broadcast signal. (11) a receiving unit that receives a physical layer frame transmitted as a broadcast signal; a processing unit that performs a predetermined process based on at least one of a plurality of types of control information included in the physical layer frame or additional information including data. (12) The receiving device according to (11), wherein the additional information includes one or more pieces of control information.
  • the receiving device (13) The receiving device according to (11) or (12), wherein the additional information includes one or more pieces of data.
  • the data are packets of variable length, The receiving device according to (13), wherein when the additional information includes a plurality of the packets, the additional information includes a pointer indicating a head position of the packet.
  • the receiving device according to any one of (11) to (14), wherein the additional information includes seismic motion warning information, time information, or information relating to control of a relay device.
  • the broadcast signal is transmitted by frequency division multiplexing, The additional information is transmitted using the entire partial reception band and the non-partial reception band together, or is transmitted using each of the partial reception band and the non-partial reception band independently.
  • the receiving device according to any one of (11) to (15).
  • the receiving device (16), wherein a transmission method of the additional information is specified in transmission multiplexing control information included in the physical layer frame.
  • the additional information is variable-length information, The receiving device according to any one of (11) to (17), wherein the physical layer frame includes information indicating the length of the additional information.
  • the receiving device (10) The receiving device according to any one of (11) to (18), wherein the additional information is information included in LLch defined by the ISDB-T next-generation system. (20) the receiving device receiving a physical layer frame transmitted as a broadcast signal; A reception method of performing a predetermined process based on at least one of a plurality of types of control information included in the physical layer frame or additional information including data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

本開示は、より柔軟に放送サービスを運用することができるようにする送信装置、送信方法、受信装置、及び受信方法に関する。 複数種類の制御情報のうちの少なくともいずれかの制御情報、又はデータを含む付加情報を生成する生成部と、付加情報を含む物理層フレームを、放送信号として送信する送信部とを備える送信装置が提供される。本開示は、例えば、地上デジタルテレビ放送の放送方式に対応した伝送システムに適用することができる。

Description

送信装置、送信方法、受信装置、及び受信方法
 本開示は、送信装置、送信方法、受信装置、及び受信方法に関し、特に、より柔軟に放送サービスを運用することができるようにした送信装置、送信方法、受信装置、及び受信方法に関する。
 地上デジタルテレビ放送の次世代に向けた高度化の検討が行われている(例えば、特許文献1参照)。
特開2019-36933号公報
 次世代の放送方式の策定に際して、より柔軟に放送サービスを運用するための提案が要請されていた。
 本開示はこのような状況に鑑みてなされたものであり、より柔軟に放送サービスを運用することができるようにするものである。
 本開示の一側面の送信装置は、複数種類の制御情報のうちの少なくともいずれかの制御情報、又はデータを含む付加情報を生成する生成部と、前記付加情報を含む物理層フレームを、放送信号として送信する送信部とを備える送信装置である。
 本開示の一側面の送信方法は、送信装置が、複数種類の制御情報のうちの少なくともいずれかの制御情報、又はデータを含む付加情報を生成し、前記付加情報を含む物理層フレームを、放送信号として送信する送信方法である。
 本開示の一側面の送信装置、及び送信方法においては、複数種類の制御情報のうちの少なくともいずれかの制御情報、又はデータを含む付加情報が生成され、前記付加情報を含む物理層フレームが、放送信号として送信される。
 本開示の一側面の受信装置は、放送信号として送信されてくる物理層フレームを受信する受信部と、前記物理層フレームに含まれる、複数種類の制御情報のうちの少なくともいずれかの制御情報、又はデータを含む付加情報に基づいて、所定の処理を行う処理部とを備える受信装置である。
 本開示の一側面の受信方法は、受信装置が、放送信号として送信されてくる物理層フレームを受信し、前記物理層フレームに含まれる、複数種類の制御情報のうちの少なくともいずれかの制御情報、又はデータを含む付加情報に基づいて、所定の処理を行う受信方法である。
 本開示の一側面の受信装置、及び受信方法においては、放送信号として送信されてくる物理層フレームが受信され、前記物理層フレームに含まれる、複数種類の制御情報のうちの少なくともいずれかの制御情報、又はデータを含む付加情報に基づいて、所定の処理が行われる。
 なお、本開示の一側面の送信装置と、受信装置は、独立した装置であってもよいし、1つの装置を構成している内部ブロックであってもよい。
本開示を適用した伝送システムの一実施の形態の構成例を示すブロック図である。 図1のデータ処理装置と送信装置の構成例を示すブロック図である。 図1の受信装置の構成例を示すブロック図である。 現行方式の物理層フレームの構造を示す図である。 次世代方式の物理層フレームの構造例を示す図である。 次世代方式の階層の構成例を示す図である。 LLchのシンタックスの例を示す図である。 図7のLLchのセマンティックスの例を示す図である。 descriptor_tagの例を示す図である。 単一のデータを配置する場合のLLchのシンタックスの例を示す図である。 単一のデータを配置する場合のフレームとパケットの関係を示す図である。 複数のデータを配置する場合のLLchのシンタックスの例を示す図である。 図12のLLchのセマンティックスの例を示す図である。 複数のデータを配置する場合のフレームとパケットの関係を示す図である。 単一の制御情報を配置する場合のLLchのシンタックスの例を示す図である。 複数の制御情報を配置する場合のLLchのシンタックスの例を示す図である。 図16のLLchのセマンティックスの例を示す図である。 中継装置を含む伝送システムの構成例を示すブロック図である。 中継器制御情報を配置する場合のLLchのシンタックスの例を示す図である。 図19のLLchのセマンティックスの例を示す図である。 送信側と受信側の処理の流れを説明するフローチャートである。 コンピュータの構成例を示すブロック図である。
<1.本開示の実施の形態>
(システム構成例)
 図1は、本開示を適用した伝送システムの一実施の形態の構成例を示すブロック図である。
 図1において、伝送システムは、各放送局に関連する施設に設置されるデータ処理装置10-1乃至10-N(Nは1以上の整数)と、送信所に設置される送信装置20と、エンドユーザが所有する受信装置30-1乃至30-M(Mは1以上の整数)から構成される。
 データ処理装置10-1乃至10-Nと、送信装置20とは、通信回線12-1乃至12-Nを介して接続されている。通信回線12-1乃至12-Nは、例えば専用線とされる。
 データ処理装置10-1は、放送局Aにより制作された放送番組等のコンテンツのデータに必要な処理を施し、その結果得られる伝送データを、通信回線12-1を介して送信装置20に送信する。
 データ処理装置10-2乃至10-Nにおいては、データ処理装置10-1と同様に、放送局Bや放送局Z等の各放送局により制作された放送番組等のコンテンツのデータが処理され、その結果得られる伝送データが、通信回線12-2乃至12-Nを介して、送信装置20に送信される。以下、データ処理装置10-1乃至10-Nを区別する必要がない場合、データ処理装置10と称する。
 送信装置20は、通信回線12-1乃至12-Nを介して、データ処理装置10-1乃至10-Nから送信されてくる伝送データを受信する。送信装置20は、データ処理装置10-1乃至10-Nからの伝送データに必要な処理を施し、その結果得られる放送信号を、送信所に設置された送信用アンテナから送信する。
 これにより、送信装置20からの放送信号は、受信装置30-1乃至30-Mに送信される。
 受信装置30-1乃至30-Mは、テレビ受像機やセットトップボックス(STB:Set Top Box)、録画機、ゲーム機、ネットワークストレージなどの固定受信機、あるいはスマートフォンや携帯電話機、タブレット型コンピュータ等のモバイル受信機である。また、受信装置30-1乃至30-Mは、例えば車載テレビなどの車両に搭載される車載機器や、ヘッドマウントディスプレイ(HMD:Head Mounted Display)等のウェアラブルコンピュータなどであってもよい。
 受信装置30-1は、送信装置20から送信されてくる放送信号を受信して必要な処理を施すことで、エンドユーザによる選局操作に応じた放送番組等のコンテンツを再生する。
 受信装置30-2乃至30-Mにおいては、受信装置30-1と同様に、送信装置20からの放送信号が処理され、エンドユーザによる選局操作に応じたコンテンツが再生される。
 なお、伝送システムにおいて、放送信号を伝送する放送伝送路は、地上波(地上波放送)のほか、例えば、放送衛星(BS:Broadcasting Satellite)や通信衛星(CS:Communications Satellite)を利用した衛星放送、あるいは、ケーブルを用いた有線放送(CATV:Common Antenna TeleVision)などであってもよい。
(送信側の装置構成例)
 図2は、図1のデータ処理装置10と送信装置20の構成例を示すブロック図である。
 図2において、データ処理装置10は、情報生成部111、データ処理部112、及び通信部113から構成される。
 情報生成部111は、そこに入力される情報に基づいて、受信側での復調処理や復号処理等の処理を行う際に用いられる制御情報を生成し、データ処理部112に供給する。
 以下、物理層の処理で用いられる制御情報を物理層制御情報、物理層よりも上位の層である上位層の処理で用いられる制御情報を上位層制御情報と称する。物理層制御情報は、後述するTMCC等の伝送多重制御情報を含む。
 また、情報生成部111は、そこに入力される情報に基づいて、放送に関する付加情報を生成し、データ処理部112に供給する。付加情報は、後述するLLchに含まれる情報である。
 データ処理部112には、放送番組等のコンテンツを構成するコンポーネントのデータと、情報生成部111からの制御情報及び付加情報が供給される。コンポーネントのデータは、ビデオやオーディオ、字幕などのデータである。
 データ処理部112は、コンポーネントのデータに符号化処理を施して、上位層制御情報と多重化することで、多重化ストリームを生成する。データ処理部112は、多重化ストリームから、所定の形式のパケットを生成する。
 データ処理部112は、生成したパケットと、物理層制御情報及び付加情報とを含む伝送データを通信部113に供給する。
 通信部113は、所定の通信方式に従い、データ処理部112から供給される伝送データを、通信回線12を介して送信装置20に送信する。
 図2において、送信装置20は、通信部211、データ処理部212、及び送信部213から構成される。
 通信部211は、所定の通信方式に従い、通信回線12を介してデータ処理装置10から送信されてくる伝送データを受信し、データ処理部212に供給する。
 データ処理部212は、通信部211から供給される伝送データに含まれるパケットと物理層制御情報及び付加情報に、必要な処理を施すことで、所定の放送方式に準拠した物理層フレームを生成し、送信部213に供給する。
 送信部213は、データ処理部212から供給される物理層フレームに対し、変調処理等の必要な処理を施し、その結果得られる放送信号を、送信所に設置された送信用アンテナから送信する。
 なお、図2においては、送信側の装置が、データ処理装置10と送信装置20から構成されるとしたが、実際には、図2に示したブロックの各機能を有する複数の装置から構成されるものであり、それらの装置から構成されるシステムを、送信側の装置として捉えることができる。
(受信側の装置構成例)
 図3は、図1の受信装置30の構成例を示すブロック図である。
 図3において、受信装置30は、受信部311、及びデータ処理部312から構成される。
 受信部311は、例えばチューナや復調LSI(Large Scale Integration)等から構成される。受信部311は、アンテナ321を介して受信した放送信号に対し、復調処理等の必要な処理を施し、その結果得られるパケットを、データ処理部312に供給する。例えば、復調処理では、物理層制御情報又は付加情報に基づき、物理層フレームに必要な処理が施されることで、所定の形式のパケットが得られる。
 データ処理部312は、例えばメインSoC(System On Chip)等から構成される。データ処理部312は、受信部311から供給されるパケットに対し、復号処理や再生処理等の必要な処理を施す。例えば、復号処理や再生処理では、パケットに含まれる上位層制御情報に基づき、コンポーネントのデータの復号処理や再生処理などが行われる。
 復号処理や再生処理等の処理で得られるビデオやオーディオ、字幕などのデータは、後段の回路に出力される。これにより、受信装置30では、放送番組等のコンテンツが再生され、その映像や音声が出力される。
(放送方式の概要)
 図1の伝送システムでは、ISDB-T(Integrated Services Digital Broadcasting - Terrestrial)等の放送方式を採用することができる。例えば、日本では、地上デジタルテレビ放送の放送方式として、ISDB-Tが採用されているが、地上デジタルテレビ放送の次世代方式の検討が行われている。以下、現行のISDB-Tを現行方式と称し、次世代方式と区別する。
 現行方式では、放送信号の多重化方式として、周波数分割多重化方式(FDM:Frequency Division Multiplexing)を採用しているが、次世代方式においても、周波数分割多重化方式の採用が予定されている。
 周波数分割多重化方式を採用した場合には、所定の周波数帯域(例えば6MHz)が、複数のセグメントに周波数分割され、1又は複数のセグメントごとの帯域を利用した階層伝送が行われる。例えば、1又は複数のセグメントからなる階層ごとに、異なるサービスのデータを伝送することができる。
 すなわち、各階層は、1又は複数のセグメントをまとめた単位である。現行方式においては、OFDMセグメントが用いられている。OFDM(Orthogonal Frequency Division Multiplexing)(直交周波数分割多重)では、伝送帯域内に多数の直交するサブキャリア(副搬送波)が設けられ、デジタル変調が行われる。
 なお、現行方式においては、主に固定受信機向けの放送であり、12セグメントを使用したハイビジョン放送と、主にモバイル受信機向けの放送であり、1セグメントを使用した「携帯電話・移動体端末向けの1セグメント部分受信サービス」(ワンセグ放送)が規定されている。
 現行方式では、物理層制御情報である伝送多重制御情報として、TMCC(Transmission Multiplexing Configuration Control)が規定されているが、次世代方式においても、TMCCの採用が予定されている。TMCCについては、例えば、下記の文献1に規定されている。
 文献1:ARIB STD-B31 2.2版 一般社団法人 電波産業会
 現行方式では、伝送方式として、MPEG2-TS(Transport Stream)方式を採用しているが、次世代方式では、IP方式の採用が予定されている。IP方式は、放送と通信の連携を目的として、通信の分野で用いられているIP(Internet Protocol)パケットを、デジタルテレビ放送に適用したものである。IP方式を導入することで、より高度なサービスを提供することが期待されている。
 IP方式を採用する場合、IPパケットを放送伝送路で伝送するためのTLV(Type Length Value)パケットを用いることができる。TLVパケットは、可変長のパケットであって、例えば、4~65536バイトのサイズとされる。TLVパケットは、IPパケットを格納する。
 また、IP方式を採用する場合には、メディアトランスポート方式として、放送や通信等の多様なネットワークを用いてマルチメディアコンテンツを伝送するためのMMT(MPEG Media Transport)を用いることができる。
 すなわち、MMTを用いて、ビデオやオーディオ、字幕、制御情報、アプリケーション、コンテンツ等のデータが、IPパケットに格納され、さらにIPパケットがTLVパケットにカプセル化され、それにより得られるTLVストリームが、放送波として伝送されることになる。MMTによるメディアトランスポート方式については、例えば、下記の文献2に規定されている。
 文献2:ARIB STD-B60 1.6版 一般社団法人 電波産業会
 このように、次世代方式として、現行方式を拡張して高度化することが検討されているが、その拡張に伴い、より柔軟に、デジタルテレビ放送の運用を行うための提案が要請されている。本開示では、そのような要請に応えるために、より柔軟に、デジタルテレビ放送の運用を行うための提案を行う。以下、本開示の実施の形態について説明する。
(物理層のフレーム構造)
 ここでは比較のために、現行方式の物理層フレームの構造を説明してから、次世代方式の物理層フレームの構造について説明する。図4は、現行方式の物理層フレームの構造を示す図である。
 図4においては、横方向を、周波数方向に応じたキャリア番号とし、縦方向を、時間方向に応じたシンボル番号としたときのOFDMセグメントの構成を示している。現行方式の場合、縦方向のシンボル番号は、OFDMシンボル番号とされる。伝送パラメータは、モードごとに異なるが、例えば、フレーム当たりのシンボル数は204とされ、キャリア番号は0から107とされる。
 図4において、OFDMセグメントには、TMCCとACが含まれている。TMCCは、伝送多重制御情報である。AC(Auxiliary Channel)は、放送に関する付加情報である。ACは、すべてのセグメントに同一数存在している。例えば、ACは、緊急地震速報などの特定用途に用いられる。
 図示は省略しているが、OFDMセグメントにおいて、TMCCとAC以外の部分には、キャリアシンボルやSP(Scattered Pilot)等のパイロット信号が配置される。なお、現行方式の物理層フレームの構造については、上記の文献1の「3.12 フレーム構成」などに規定されているため、ここでは、その詳細な内容の説明は省略する。以下、OFDMセグメントから構成される物理層フレームを、OFDMフレームとも称する。
 図5は、次世代方式の物理層フレームの構造例を示す図である。図5においては、図4と同様に、横方向を周波数方向に応じたキャリア番号とし、縦方向を時間方向に応じたOFDMシンボル番号としたときのOFDMセグメントの構成を示している。伝送パラメータは、モードごとに異なるが、例えば、フレーム当たりのシンボル数は204とされ、キャリア番号は0から431とされる。
 図5において、次世代方式の物理層フレームには、TMCCとLLchが含まれる。以下、次世代方式のTMCCは、現行方式のTMCCと区別するために、次世代TMCCとも称する。次世代方式のACは、LLch(Low Latency Channel)と呼ばれる。
 次世代TMCCは、複数の伝送パラメータ(変調パラメータ)が混在する階層伝送において、受信側での復調処理や復号処理などの処理を行うための伝送多重制御に関する情報を含む。次世代TMCCは、可変長の情報とされる。例えば、固定長のTMCC長情報を規定して、可変長となる次世代TMCCの長さに関する情報を含めることで、受信装置30では次世代TMCCが取得可能となる。次世代TMCCとTMCC長情報には、パリティを適宜付加することができる。
 LLchは、放送に関する付加情報を含む。LLchは、可変長の情報とされる。例えば、固定長のLLch長情報を規定して、可変長となるLLchの長さに関する情報を含めることで、受信装置30ではLLchが取得可能となる。LLchとLLch長情報には、パリティを適宜付加することができる。
 なお、物理層フレームにおいて、次世代TMCCとTMCC長情報や、LLchとLLch長情報を含むデータの長さを合わせる場合には、パディングを行うか、あるいは他のデータを挿入すればよい。
(階層構成)
 図6は、次世代方式の階層の構成例を示す図である。
 図6においては、放送信号の多重化方式として、周波数分割多重化方式が採用されている場合に、横方向を周波数f(MHz)としたときに、図中の四角で表したセグメントにより、階層が構成されることを示している。
 周波数分割多重化方式が採用される場合、所定の周波数帯域(例えば6MHz)が複数のセグメントに周波数分割されるが、図6では、35セグメントに周波数分割されている。つまり、現行方式では、13セグメントに分割されていたが、次世代方式では、35セグメントに分割されている。
 ここでは、35個のセグメントのうち、図中の中央の1セグメントを、セグメント#0として、その左右のセグメントを、セグメント#1,#2とし、さらに、その左右のセグメントを、セグメント#3,#4とすることを繰り返していくと、図中の最も左側の1セグメントが、セグメント#33となり、図中の最も右側の1セグメントが、セグメント#34となる。
 また、1又は複数のセグメントをまとめることで、階層が構成される。図6においては、セグメント#0乃至#2の3セグメントにより、階層1が構成される。また、セグメント#3,#5,#7と、セグメント#4,#6,#8の6セグメントにより、階層2が構成される。図6では、セグメント#11乃至#28の記述は省略しているが、セグメント#9,#11,…,#31,#33と、セグメント#10,#12,…,#32,#34の26セグメントにより、階層3が構成される。
 このように、35セグメントが3階層に分けられるが、階層1と階層2の9セグメントは部分受信帯域とされ、階層3の26セグメントは非部分受信帯域とされる。すなわち、受信装置30は、階層1と階層2の9セグメントのみを受信する部分受信を行うことが可能となる。
 部分受信帯域のLLchをL0,非部分受信帯域のLLchをL1と称するとき、L0とL1のLLchの全帯域を一体に使用するか、あるいはL0とL1のそれぞれの帯域を独立に使用するかを選択することができる。すなわち、OFDMセグメントであるセグメントごとに、次世代TMCCとLLchが含まれるが、部分受信帯域の9セグメントのLLch(L0)と、非部分受信帯域の26セグメントのLLch(L1)とを、非分離で使用するか、又は分離して使用することができる。
 このとき、付加情報の伝送方式を示す情報として、L0とL1とが非分離で又は分離して使用されることを示す情報を、次世代TMCCに含めることで、受信装置30では、L0とL1とが非分離で又は分離して使用されていることを認識して、LLchに含まれる付加情報を用いた処理を行うことができる。
 例えば、次世代TMCCにおいては、リザーブビットを利用して、L0とL1とが非分離で使用されるか、又はL0とL1とが分離して使用されるかを示す情報(新規のフラグ)を定義することができる。具体的には、リザーブビットに定義した新規のフラグに、"1"が設定された場合にはL0とL1とが非分離であることを示し、"0"が設定された場合にはL0とL1とが分離されていることを示すことができる。
 また、次世代TMCCにおいて、部分受信帯域におけるデータの送信が行われているか否かを示すフラグが定義されている場合に、当該フラグを利用して、L0とL1とが分離して使用されているか否かを判断しても構わない。
 このように、L0とL1とを非分離で又は分離して使用することができるため、より柔軟で効率のよい放送サービスを実現することができる。例えば、受信装置30により部分受信が行われる場合には、部分受信帯域のLLch(L0)に重要度の高い付加情報(重要度の高い制御情報等)を配置し、非部分受信帯域のLLch(L1)にそれ以外の付加情報(重要度の低い制御情報やデータ等)を配置することにより、より柔軟で効率のよい放送サービスを実現することができる。
(LLchの構成)
 図7は、LLchのシンタックスの例を示す図である。セマンティックスについては、図8を適宜参照しながら説明する。
 4ビットのdescriptor_tagは、LLchデータの種別を識別するタグを示す。図9には、descriptor_tagの例を示している。
 12ビットのdescriptor_lengthは、後続するLLchデータの長さを示す。
 8ビットのLLch_dataは、LLchデータを示す。LLchデータは、地震動警報情報、時刻情報、データ、制御情報、プライベート領域などの付加情報を含む。
 地震動警報情報は、地震動警報に関する情報であり、一般には緊急地震速報という名称が用いられる。地震動警報情報については、上記の文献1の「3.16.6 地震動警報情報」などに規定されている。図9に示すように、LLchデータとして地震動警報情報が配置される場合、descriptor_tagの値は"0"となる。
 時刻情報は、所定の形式で指定される時刻に関する情報である。例えば、時刻情報としては、NTP(Network Time Protocol)形式に関する情報を配置することができる。
 具体的には、上記の文献2の「3.1 NTP形式の構成」に規定されている、2ビットのleap_indicator(閏秒指示子),3ビットのversion(バージョン番号),3ビットのmode(動作モード),64ビットのtransmit_timestamp(送信タイムスタンプ)からなる合計72ビットの情報を配置することができる。図9に示すように、LLchデータとして時刻情報が配置される場合、descriptor_tagの値は"1"となる。
 データは、所定の形式からなるデータである。例えば、データとしては、TLVパケットで構成されるデータである。図9に示すように、LLchデータとしてデータが配置される場合、descriptor_tagの値は"2"となる。
 制御情報は、放送信号を受信する受信装置30の処理で用いられる各種の制御情報である。descriptor_tagごとに、異なる種類の制御情報を配置することができる。図9の例では、LLchデータとして、制御情報Aと制御情報Bの2種類の制御情報が存在する場合に、制御情報Aに対するdescriptor_tagの値は"3"となり、制御情報Bに対するdescriptor_tagの値は"4"となる。なお、制御情報の種類は、2種類に限らず、3種類以上であってもよく、その場合には、descriptor_tagとして、"5"~"14"であるリザーブ用の値を用いることができる。
 プライベート領域は、放送事業者が使用する領域であり、独自の情報を指定することができる。例えば、プライベート領域としては、放送事業者が中継器を制御するために用いる情報(中継器制御情報)を配置することができる。図9に示すように、LLchデータとして、中継器制御情報等がプライベート領域として配置される場合、descriptor_tagの値は"15"となる。
 このように、本開示では、次世代方式においてデータ構造が未定義であるLLchに対して、セクション構造を用いてLLchデータを配置可能にすることで、複数種類の制御情報のうちの少なくともいずれかの制御情報、又はデータ等の付加情報を伝送できるようにしている。これにより、低遅延の特徴を持つLLchを利用して、様々な種類の制御情報やデータ等の付加情報を適宜伝送することが可能となり、放送サービスを柔軟に運用することができる。
 例えば、通常は、部分受信帯域のLLch(L0)を使用して時刻情報を伝送することで、受信装置30では最速で時刻情報を取得することにより選局時間の短縮と同期精度の向上が可能となる一方で、地震動警報情報を伝送する必要がある場合でも低遅延で伝送することができる。また、セクション構造を用いてLLchデータを配置可能にしているために拡張性が高く、LLchデータを新規に追加することが容易である。
 なお、図7においては、Mnemonicとして、uimsbf(unsigned integer most significant bit first)が指定されており、ビット演算をして、整数として扱われることを意味している。
 次に、LLchデータの種別に応じたシンタックスの具体的な例について説明する。
(第1の例)
 図10は、物理層フレームごとに単一のデータを配置する場合のLLchのシンタックスの例を示す図である。
 図10のシンタックスでは、descriptor_tag,descriptor_length,dataが配置されるが、図7のシンタックスと重複する部分の説明は省略する。
 8ビットのdataは、LLchデータとしてデータが配置されることを示す。このデータは、TLVパケットで構成される。
 図11には、物理層フレームごとに単一のデータを配置する場合のフレームとデータの関係を示している。
 図11において、OFDMフレーム#1とOFDMフレーム#2は、時間的に連続しており、OFDMフレーム#1にはTLVパケット#0が含まれ、OFDMフレーム#2にはTLVパケット#1が含まれる。すなわち、TLVパケット#1は、TLVパケット#0の次のTLVパケットであり、OFDMフレーム#1とOFDMフレーム#2には、LLchデータとして、TLVパケットが1つずつ含まれる。
 このように、LLchを利用して、OFDMフレーム等の物理層フレームごとに、TLVパケット等の単一のデータを配置することができる。
(第2の例)
 図12は、物理層フレームごとに複数のデータを配置する場合のLLchのシンタックスの例を示す図である。セマンティックスについては、図13を適宜参照しながら説明する。
 図12のシンタックスでは、descriptor_tag,descriptor_length,pointer,dataが配置されるが、図7のシンタックスと重複する部分の説明は省略する。
 8ビットのpointerは、パケットの先頭位置を示す。この先頭位置は、自身が配置されるLLchを含む物理層フレームにおいて、先頭のパケット(TLVパケット等)の位置を示す。8ビットのdataは、LLchデータとして、TLVパケット等のデータが配置されることを示す。
 例えば、LLchを利用して、OFDMフレームごとに複数のTLVパケットが配置される場合、可変長のTLVパケットが複数のOFDMフレームに跨がって配置される可能性がある。受信装置30では、OFDMフレームに含まれるデータをTLVパケット単位で処理するために、OFDMフレーム内のTLVパケットの境界(切れ目)を特定する必要があるので、pointerにより、複数のOFDMフレームに跨がったTLVパケットの先頭位置を示すようにする。
 図14は、物理層フレームごとに複数のデータを配置する場合のフレームとパケットの関係を示している。図14において、OFDMフレーム#1には、TLVパケット#0とTLVパケット#1とTLVパケット#2の一部が含まれ、OFDMフレーム#2には、TLVパケット#2の残りの一部とTLVパケット#3とTLVパケット#4が含まれる。つまり、TLVパケット#2は、OFDMフレーム#1とOFDMフレーム#2に跨がって配置されている。
 OFDMフレーム#2においては、ポインタ(pointer)により、TLVパケット#3の先頭位置が示されているので、受信装置30では、OFDMフレーム#2から受信した場合でも、TLVパケット#2とTLVパケット#3との境界の位置を特定して、OFDMフレームに含まれるデータをTLVパケット単位に整形して出力することができる。
 このように、LLchを利用して、OFDMフレーム等の物理層フレームごとに、複数のTLVパケット等の複数のデータを配置することができる。
(第3の例)
 図15は、単一の制御情報を配置する場合のLLchのシンタックスの例を示す図である。
 図15のシンタックスでは、descriptor_tag,descriptor_length,control_infoが配置されるが、図7のシンタックスと重複する部分の説明は省略する。
 8ビットのcontrol_infoは、LLchデータとして制御情報が配置されることを示す。この制御情報は、受信装置30での処理で用いられる様々な制御情報とすることができる。
 このように、LLchを利用して、OFDMフレーム等の物理層フレームごとに、単一の制御情報を配置することができる。
(第4の例)
 図16は、複数の制御情報を配置する場合のLLchのシンタックスの例を示す図である。セマンティックスについては、図17を適宜参照しながら説明する。
 図16のシンタックスでは、descriptor_tag,descriptor_length,num_of_control_info,control_info_tag,control_info_length,control_infoが配置されるが、図7のシンタックスと重複する部分の説明は省略する。
 8ビットのnum_of_control_infoは、配置される制御情報の個数を示す。8ビットのcontrol_info_tagは、制御データの種別を識別するタグを示す。8ビットのcontrol_info_lengthは、制御情報の長さを示す。
 8ビットのcontrol_infoは、LLchデータとして制御情報が配置されることを示す。この制御情報は、受信装置30での処理で用いられる様々な制御情報とすることができ、num_of_control_infoが示す個数の制御情報を配置することができる。
 このように、LLchを利用して、OFDMフレーム等の物理層フレームごとに、複数の制御情報を配置することができる。すなわち、LLchを利用することで、図9に示したように、descriptor_tagの値("3","4"である値など)に応じた複数種類の制御情報を配置可能であるだけでなく、図16,図17に示したように、制御情報を配置する場合には、control_info_tagの値に応じた種類の制御情報を複数配置可能となる。
(第5の例)
 図18は、中継装置を含む伝送システムの構成例を示すブロック図である。
 図18においては、図1の構成と比べて、中継局に設置された中継装置40が追加されている。中継装置40は、送信所(親局)に設置された送信装置20から送信されてくる放送信号を受信して所定の処理を行い、その結果得られた放送信号を、中継局に設置された送信用アンテナから送信する。
 これにより、中継局の中継装置40からの放送信号は、受信装置30-1乃至30-Mに送信される。
 図19は、LLchデータとして、中継器制御情報を配置する場合のLLchのシンタックスの例を示す図である。セマンティックスについては、図20を適宜参照しながら説明する。
 図19のシンタックスでは、descriptor_tag,descriptor_length,transmit_frequency,transmit_power,transmission_mode,guard_interval,modulation,code_rate,time_interleavingが配置されるが、図7のシンタックスと重複する部分の説明は省略する。
 16ビットのtransmit_frequencyは、出力周波数を示す。12ビットのtransmit_powerは、出力電力を示す。3ビットのtransmission_modeは、伝送モードを示す。例えば、伝送モードとしては、FFTサイズが指定される。
 3ビットのguard_intervalは、ガードインターバル長を示す。3ビットのmodulationは、キャリア変調方式を示す。3ビットのcode_rateは、符号化率を示す。3ビットのtime_interleavingは、時間インタリーブ長を示す。
 このように、LLchを利用して、中継器制御情報を伝送することで、中継装置40では、中継器制御情報に含まれるパラメータに基づき、放送信号が送信用アンテナから送信される。これにより、送信所(親局)側から、中継局に設置された中継装置40をリモート制御することが可能となる。ここでは、中継装置40を、送信装置20からの放送信号を受信する受信装置と捉えることができる。なお、中継装置40は、中継器制御情報に含まれるパラメータ(例えば出力電力など)を必要に応じて変更しても構わない。
(送信側と受信側の処理の流れ)
 次に、図21のフローチャートを参照して、送信側と受信側の処理の流れを説明する。送信側の装置と受信側の装置は、次世代方式に対応した装置であり、次世代方式に対応した処理が実施される。
 まず、送信側の装置により実施されるステップS11乃至S13の処理を説明する。
 ステップS11において、情報生成部111は、付加情報を生成する。例えば、付加情報として、制御情報、TLVパケット等のデータ、地震動警報情報、時刻情報、中継器制御情報などが生成される。
 ステップS12において、データ処理部212は、付加情報と次世代TMCCを含む物理層フレームを生成する。物理層フレームにおいて、付加情報はLLchに含まれる。
 ステップS13において、送信部213は、物理層フレームを、放送信号として送信する。なお、送信装置20からの放送信号は、中継装置40を経由して伝送されてもよい。
 次に、受信側の装置により実施されるステップS31乃至S33の処理を説明する。
 ステップS31において、受信部311は、送信装置20又は中継装置40から送信されてくる放送信号を受信する。
 ステップS32において、受信部311は、放送信号から得られる物理層フレームを処理する。ここでは、物理層フレームを処理することで、LLchに含まれる付加情報と、次世代TMCCが取得される。
 ステップS33において、データ処理部312は、付加情報に基づいて、所定の処理を行う。例えば、付加情報として、制御情報、TLVパケット等のデータ、地震動警報情報、時刻情報などが取得されるので、データ処理部312では、それらの付加情報に用いて必要な処理が行われる。
 以上のように、送信側と受信側の処理では、次世代方式においてデータ構造が未定義であるLLchに対して、セクション構造を用いてLLchデータを配置することで、複数種類の制御情報やデータ等の付加情報を伝送している。これにより、低遅延の特徴を持つLLchを利用して、様々な種類の制御情報やデータ等の付加情報を適宜伝送することが可能となり、放送サービスを柔軟に運用することができる。
<2.変形例>
(他の放送方式)
 上述した説明では、デジタルテレビ放送の放送方式として、日本等で採用されている方式であるISDB-Tの次世代方式を説明したが、本開示は、他の放送方式に適用してもよい。また、上述した説明では、地上デジタルテレビ放送の放送方式を説明したが、本開示は、放送衛星(BS:Broadcasting Satellite)や通信衛星(CS:Communications Satellite)等を利用した衛星放送や、ケーブルテレビ(CATV)等の有線放送などの放送方式に適用してもよい。
(パケットやフレームの名称)
 また、上述したパケットやフレーム、制御情報などの名称は、一例であって、他の名称が用いられる場合がある。ただし、これらの名称の違いは、形式的な違いであって、対象のパケットやフレーム、制御情報などの実質的な内容が異なるものではない。例えば、TLVパケットは、ALP(ATSC Link-layer Protocol)パケットやGenericパケットなどを称される場合がある。また、フレームとパケットは、同じ意味で用いられる場合がある。なお、本明細書において、システムとは、複数の装置が論理的に集合したものをいう。
(他の時刻情報)
 上述した説明では、時刻情報として、NTPで規定される時刻の情報が用いられる場合を説明したが、それに限らず、例えば、PTP(Precision Time Protocol)や3GPP(Third Generation Partnership Project)で規定されている時刻の情報や、GPS(Global Positioning System)情報に含まれる時刻の情報、その他独自に決定された形式の時刻の情報等の任意の時刻の情報を用いることができる。
(受信装置の他の構成)
 上述した説明では、受信装置30として、テレビ受像機やセットトップボックスなどの、アンテナを介して放送信号を受信可能な機器を例示したが、例えば、インターネットや電話網等の通信回線(通信網)などを介した通信を実施する通信機能を有していても構わない。この場合において、受信装置30は、インターネット等の通信回線を介してサーバとの間で、双方向の通信を実施することになる。
(コンピュータの構成)
 上述した送信側と受信側の一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。図22は、上述した一連の処理をプログラムにより実行するコンピュータのハードウェアの構成例を示すブロック図である。
 コンピュータにおいて、CPU(Central Processing Unit)1001、ROM(Read Only Memory)1002、RAM(Random Access Memory)1003は、バス1004により相互に接続されている。バス1004には、さらに、入出力インターフェース1005が接続されている。入出力インターフェース1005には、入力部1006、出力部1007、記憶部1008、通信部1009、及びドライブ1010が接続されている。
 入力部1006は、キーボード、マウス、マイクロフォンなどよりなる。出力部1007は、ディスプレイ、スピーカなどよりなる。記憶部1008は、ハードディスクや不揮発性のメモリなどよりなる。通信部1009は、ネットワークインターフェースなどよりなる。ドライブ1010は、半導体メモリ、磁気ディスク、光ディスク、又は光磁気ディスクなどのリムーバブル記録媒体1011を駆動する。
 以上のように構成されるコンピュータでは、CPU1001が、ROM1002や記憶部1008に記録されているプログラムを、入出力インターフェース1005及びバス1004を介して、RAM1003にロードして実行することにより、上述した一連の処理が行われる。
 コンピュータ(CPU1001)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブル記録媒体1011に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線又は無線の伝送媒体を介して提供することができる。
 コンピュータでは、プログラムは、リムーバブル記録媒体1011をドライブ1010に装着することにより、入出力インターフェース1005を介して、記憶部1008にインストールすることができる。また、プログラムは、有線又は無線の伝送媒体を介して、通信部1009で受信し、記憶部1008にインストールすることができる。その他、プログラムは、ROM1002や記憶部1008に、あらかじめインストールしておくことができる。
 ここで、本明細書において、コンピュータがプログラムに従って行う処理は、必ずしもフローチャートとして記載された順序に沿って時系列に行われる必要はない。すなわち、コンピュータがプログラムに従って行う処理は、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)も含む。また、プログラムは、1のコンピュータ(プロセッサ)により処理されてもよいし、複数のコンピュータによって分散処理されてもよい。
 なお、本開示の実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
 また、本開示は、以下のような構成をとることができる。
(1)
 複数種類の制御情報のうちの少なくともいずれかの制御情報、又はデータを含む付加情報を生成する生成部と、
 前記付加情報を含む物理層フレームを、放送信号として送信する送信部と
 を備える送信装置。
(2)
 前記付加情報は、1又は複数の制御情報を含む
 前記(1)に記載の送信装置。
(3)
 前記付加情報は、1又は複数のデータを含む
 前記(1)又は(2)に記載の送信装置。
(4)
 前記データは、可変長のパケットであり、
 前記付加情報は、複数の前記パケットを含む場合、前記パケットの先頭位置を示すポインタを含む
 前記(3)に記載の送信装置。
(5)
 前記付加情報は、地震動警報情報、時刻情報、又は中継装置の制御に関する情報を含む
 前記(1)乃至(4)のいずれかに記載の送信装置。
(6)
 前記放送信号は、周波数分割多重化方式により伝送され、
 前記付加情報は、部分受信帯域と非部分受信帯域の全帯域を一体に使用して伝送されるか、又は部分受信帯域と非部分受信帯域のそれぞれの帯域を独立に使用して伝送される
 前記(1)乃至(5)のいずれかに記載の送信装置。
(7)
 前記付加情報の伝送方式は、前記物理層フレームに含まれる伝送多重制御情報に規定される
 前記(6)に記載の送信装置。
(8)
 前記付加情報は、可変長の情報であり、
 前記物理層フレームは、前記付加情報の長さを示す情報を含む
 前記(1)乃至(7)のいずれかに記載の送信装置。
(9)
 前記付加情報は、ISDB-Tの次世代方式で規定されたLLchに含まれる情報である
 前記(1)乃至(8)のいずれかに記載の送信装置。
(10)
 送信装置が、
 複数種類の制御情報のうちの少なくともいずれかの制御情報、又はデータを含む付加情報を生成し、
 前記付加情報を含む物理層フレームを、放送信号として送信する
 送信方法。
(11)
 放送信号として送信されてくる物理層フレームを受信する受信部と、
 前記物理層フレームに含まれる、複数種類の制御情報のうちの少なくともいずれかの制御情報、又はデータを含む付加情報に基づいて、所定の処理を行う処理部と
 を備える受信装置。
(12)
 前記付加情報は、1又は複数の制御情報を含む
 前記(11)に記載の受信装置。
(13)
 前記付加情報は、1又は複数のデータを含む
 前記(11)又は(12)に記載の受信装置。
(14)
 前記データは、可変長のパケットであり、
 前記付加情報は、複数の前記パケットを含む場合、前記パケットの先頭位置を示すポインタを含む
 前記(13)に記載の受信装置。
(15)
 前記付加情報は、地震動警報情報、時刻情報、又は中継装置の制御に関する情報を含む
 前記(11)乃至(14)のいずれかに記載の受信装置。
(16)
 前記放送信号は、周波数分割多重化方式により伝送され、
 前記付加情報は、部分受信帯域と非部分受信帯域の全帯域を一体に使用して伝送されるか、又は部分受信帯域と非部分受信帯域のそれぞれの帯域を独立に使用して伝送される
 前記(11)乃至(15)のいずれかに記載の受信装置。
(17)
 前記付加情報の伝送方式は、前記物理層フレームに含まれる伝送多重制御情報に規定される
 前記(16)に記載の受信装置。
(18)
 前記付加情報は、可変長の情報であり、
 前記物理層フレームは、前記付加情報の長さを示す情報を含む
 前記(11)乃至(17)のいずれかに記載の受信装置。
(19)
 前記付加情報は、ISDB-Tの次世代方式で規定されたLLchに含まれる情報である
 前記(11)乃至(18)のいずれかに記載の受信装置。
(20)
 受信装置が、
 放送信号として送信されてくる物理層フレームを受信し、
 前記物理層フレームに含まれる、複数種類の制御情報のうちの少なくともいずれかの制御情報、又はデータを含む付加情報に基づいて、所定の処理を行う
 受信方法。
 10,10-1乃至10-N データ処理装置, 20 送信装置, 30,30-1乃至30-M 受信装置, 40 中継装置, 111 情報生成部, 112 データ処理部, 113 通信部, 211 通信部, 212 データ処理部, 213 送信部, 311 受信部, 312 データ処理部

Claims (20)

  1.  複数種類の制御情報のうちの少なくともいずれかの制御情報、又はデータを含む付加情報を生成する生成部と、
     前記付加情報を含む物理層フレームを、放送信号として送信する送信部と
     を備える送信装置。
  2.  前記付加情報は、1又は複数の制御情報を含む
     請求項1に記載の送信装置。
  3.  前記付加情報は、1又は複数のデータを含む
     請求項1に記載の送信装置。
  4.  前記データは、可変長のパケットであり、
     前記付加情報は、複数の前記パケットを含む場合、前記パケットの先頭位置を示すポインタを含む
     請求項3に記載の送信装置。
  5.  前記付加情報は、地震動警報情報、時刻情報、又は中継装置の制御に関する情報を含む
     請求項1に記載の送信装置。
  6.  前記放送信号は、周波数分割多重化方式により伝送され、
     前記付加情報は、部分受信帯域と非部分受信帯域の全帯域を一体に使用して伝送されるか、又は部分受信帯域と非部分受信帯域のそれぞれの帯域を独立に使用して伝送される
     請求項1に記載の送信装置。
  7.  前記付加情報の伝送方式は、前記物理層フレームに含まれる伝送多重制御情報に規定される
     請求項6に記載の送信装置。
  8.  前記付加情報は、可変長の情報であり、
     前記物理層フレームは、前記付加情報の長さを示す情報を含む
     請求項1に記載の送信装置。
  9.  前記付加情報は、ISDB-Tの次世代方式で規定されたLLchに含まれる情報である
     請求項1に記載の送信装置。
  10.  送信装置が、
     複数種類の制御情報のうちの少なくともいずれかの制御情報、又はデータを含む付加情報を生成し、
     前記付加情報を含む物理層フレームを、放送信号として送信する
     送信方法。
  11.  放送信号として送信されてくる物理層フレームを受信する受信部と、
     前記物理層フレームに含まれる、複数種類の制御情報のうちの少なくともいずれかの制御情報、又はデータを含む付加情報に基づいて、所定の処理を行う処理部と
     を備える受信装置。
  12.  前記付加情報は、1又は複数の制御情報を含む
     請求項11に記載の受信装置。
  13.  前記付加情報は、1又は複数のデータを含む
     請求項11に記載の受信装置。
  14.  前記データは、可変長のパケットであり、
     前記付加情報は、複数の前記パケットを含む場合、前記パケットの先頭位置を示すポインタを含む
     請求項13に記載の受信装置。
  15.  前記付加情報は、地震動警報情報、時刻情報、又は中継装置の制御に関する情報を含む
     請求項11に記載の受信装置。
  16.  前記放送信号は、周波数分割多重化方式により伝送され、
     前記付加情報は、部分受信帯域と非部分受信帯域の全帯域を一体に使用して伝送されるか、又は部分受信帯域と非部分受信帯域のそれぞれの帯域を独立に使用して伝送される
     請求項11に記載の受信装置。
  17.  前記付加情報の伝送方式は、前記物理層フレームに含まれる伝送多重制御情報に規定される
     請求項16に記載の受信装置。
  18.  前記付加情報は、可変長の情報であり、
     前記物理層フレームは、前記付加情報の長さを示す情報を含む
     請求項11に記載の受信装置。
  19.  前記付加情報は、ISDB-Tの次世代方式で規定されたLLchに含まれる情報である
     請求項11に記載の受信装置。
  20.  受信装置が、
     放送信号として送信されてくる物理層フレームを受信し、
     前記物理層フレームに含まれる、複数種類の制御情報のうちの少なくともいずれかの制御情報、又はデータを含む付加情報に基づいて、所定の処理を行う
     受信方法。
PCT/JP2022/003002 2021-04-19 2022-01-27 送信装置、送信方法、受信装置、及び受信方法 WO2022224520A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112023021174A BR112023021174A2 (pt) 2021-04-19 2022-01-27 Dispositivos de transmissão e de recepção, e, métodos de transmissão e de recepção
JP2023516281A JPWO2022224520A1 (ja) 2021-04-19 2022-01-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-070164 2021-04-19
JP2021070164 2021-04-19

Publications (1)

Publication Number Publication Date
WO2022224520A1 true WO2022224520A1 (ja) 2022-10-27

Family

ID=83722051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003002 WO2022224520A1 (ja) 2021-04-19 2022-01-27 送信装置、送信方法、受信装置、及び受信方法

Country Status (4)

Country Link
JP (1) JPWO2022224520A1 (ja)
BR (1) BR112023021174A2 (ja)
CL (1) CL2023003057A1 (ja)
WO (1) WO2022224520A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011244041A (ja) * 2010-05-14 2011-12-01 Hitachi Consumer Electronics Co Ltd デジタル放送受信装置およびデジタル放送受信方法
JP2018046458A (ja) * 2016-09-15 2018-03-22 ソニー株式会社 送信装置、送信方法、受信装置、及び、受信方法
WO2018230348A1 (ja) * 2017-06-14 2018-12-20 ソニーセミコンダクタソリューションズ株式会社 復調装置、処理装置、受信装置、及びデータ処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011244041A (ja) * 2010-05-14 2011-12-01 Hitachi Consumer Electronics Co Ltd デジタル放送受信装置およびデジタル放送受信方法
JP2018046458A (ja) * 2016-09-15 2018-03-22 ソニー株式会社 送信装置、送信方法、受信装置、及び、受信方法
WO2018230348A1 (ja) * 2017-06-14 2018-12-20 ソニーセミコンダクタソリューションズ株式会社 復調装置、処理装置、受信装置、及びデータ処理方法

Also Published As

Publication number Publication date
BR112023021174A2 (pt) 2023-12-19
CL2023003057A1 (es) 2024-05-03
JPWO2022224520A1 (ja) 2022-10-27

Similar Documents

Publication Publication Date Title
JP7338756B2 (ja) 受信装置、及び、受信方法
JP7293448B2 (ja) 送信装置、及び、データ処理方法
JP7069542B2 (ja) 送信装置、及び、送信方法
JP7512344B2 (ja) 受信装置、及び、データ処理方法
KR20170028372A (ko) 미디어 데이터의 송신 및 수신을 위한 방법 및 장치
JP2023164953A (ja) 送信装置、及び、送信方法
WO2022224520A1 (ja) 送信装置、送信方法、受信装置、及び受信方法
KR20040084508A (ko) 멀티미디어 데이터를 디지털 오디오 방송 데이터에다중화하는 장치와 그 방법 및 그 역다중화 방법
WO2016098302A1 (en) Reception apparatus, receiving method, transmission apparatus, and transmitting method
WO2023234281A1 (ja) 送信装置、送信方法、受信装置、及び受信方法
JP7017029B2 (ja) 送信装置、及び送信方法
JP7505613B2 (ja) 送信装置、及び送信方法
JP7251668B2 (ja) 送信装置、及び送信方法
WO2023218981A1 (ja) 送信装置、送信方法、受信装置、及び受信方法
WO2023013124A1 (ja) 再送出装置、再送出方法、受信装置、及び受信方法
WO2024070652A1 (ja) 送信装置、送信方法、受信装置、及び、受信方法
WO2021153259A1 (ja) 受信装置および方法
WO2016181806A1 (ja) 送信装置、送信方法、受信装置、及び、受信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791305

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023516281

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023021174

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023021174

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231011

122 Ep: pct application non-entry in european phase

Ref document number: 22791305

Country of ref document: EP

Kind code of ref document: A1