WO2022224475A1 - Method for producing wiring board - Google Patents

Method for producing wiring board Download PDF

Info

Publication number
WO2022224475A1
WO2022224475A1 PCT/JP2021/042079 JP2021042079W WO2022224475A1 WO 2022224475 A1 WO2022224475 A1 WO 2022224475A1 JP 2021042079 W JP2021042079 W JP 2021042079W WO 2022224475 A1 WO2022224475 A1 WO 2022224475A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic layer
insulating magnetic
conductor wiring
substrate
wiring
Prior art date
Application number
PCT/JP2021/042079
Other languages
French (fr)
Japanese (ja)
Inventor
航介 浦島
元気 米倉
征宏 有福
智彦 小竹
悦男 水嶋
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to JP2023516029A priority Critical patent/JPWO2022224475A1/ja
Publication of WO2022224475A1 publication Critical patent/WO2022224475A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to a method for manufacturing a wiring board.
  • Mobile communication devices such as mobile phones, their base station devices, network-related electronic devices such as servers and routers, and large computers are required to transmit and process large amounts of information at low loss and at high speed. ing.
  • the frequency of electric signals handled by the printed wiring boards mounted on the devices described above is increasing.
  • electrical signals tend to be attenuated as the frequency increases, printed wiring boards that handle high-frequency electrical signals are required to have a transmission loss that is lower than ever before.
  • the surface roughness of a conductor layer including wiring is reduced to suppress the transmission loss caused by the large surface roughness of the conductor layer (see, for example, Patent Document 1 below. ), or using a polyphenylene ether-containing resin having a small dielectric constant and dielectric loss tangent as a substrate material to reduce the transmission loss caused by the dielectric (see, for example, Patent Document 2 below).
  • an object of the present invention is to provide a wiring board with low transmission loss in a high frequency band.
  • the present invention provides a substrate, a conductor wiring provided on the substrate, an upper surface of the conductor wiring located on the side opposite to the substrate, and/or a conductor located on the upper surface and the substrate side.
  • a method for manufacturing a wiring board comprising: a substrate; A step a1 of preparing a substrate with wiring provided with a conductor wiring provided in the step a1, covering the conductor wiring with an insulating magnetic layer forming composition containing a magnetic material, and curing the insulating magnetic layer forming composition
  • a method for manufacturing a wiring board comprising the step a2 of forming an insulating magnetic layer made of a cured product of the composition for forming an insulating magnetic layer.
  • the manufacturing method of the wiring board of the side surface it is possible to provide a wiring board with small transmission loss in the high frequency band.
  • the reason why such an effect is exhibited is that the magnetic flux generated at a high frequency passes through an insulator containing a magnetic material, which reduces the eddy current inside the conductor wiring, thereby reducing the skin effect. .
  • the step a2 is the step b1 of applying the composition for forming an insulating magnetic layer to the conductor wiring such that the upper surface of the conductor wiring is covered without filling the gap between the conductor wiring adjacent to each other. and a step b2 of curing the composition for forming an insulating magnetic layer to form an insulating magnetic layer.
  • the step a2 includes the step of removing the insulating magnetic layer covering the upper surface of the conductor wiring by grinding or polishing after the step b2. It may further contain In this case, in step b1, the composition for forming an insulating magnetic layer is applied to the conductor wiring so as to cover at least one of the pair of side surfaces in addition to the upper surface of the conductor wiring.
  • the step a2 includes step c1 of forming a layer made of the composition for forming an insulating magnetic layer on a region of the substrate with wires where the conductor wiring is formed, and a step c2 of curing the layer to form an insulating magnetic layer made of the cured product of the composition for forming an insulating magnetic layer; a step c3 of forming a photosensitive layer on the substrate, a step c4 of forming a resist film having an opening in at least a part of the portion other than the conductor wiring by exposing the photosensitive layer in a predetermined pattern and developing it, and a step c4 of insulating A step c5 of removing a portion of the layer made of the composition for forming the magnetic layer or the insulating magnetic layer located between the substrate and the opening of the resist film may be included.
  • the step a2 includes the step of removing the insulating magnetic layer covering the upper surface of the conductor wiring by grinding or polishing after step c2. It may further contain
  • the step c1 may be a step of applying the insulating magnetic layer forming composition to the above region, or may be a step of laminating a sheet made of the insulating magnetic layer forming composition to the above region.
  • the magnetic material may be metal oxide or amorphous metal.
  • the insulator may have a relative magnetic permeability of 2 to 1,000.
  • the dielectric constant of the insulator may be 1-30.
  • FIG. 1A to 1D are schematic cross-sectional views for explaining a first embodiment of a wiring board manufacturing method; It is a schematic cross section for explaining a second embodiment of a method for manufacturing a wiring board.
  • FIG. 3 is a schematic cross-sectional view for explaining the second embodiment of the wiring board manufacturing method following FIG. 2 ;
  • FIG. 2 is a schematic cross-sectional view showing a wiring substrate produced in Examples.
  • each component in the composition means the total amount of the plurality of substances present in the composition, unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition.
  • a numerical range indicated using "-” indicates a range including the numerical values before and after "-" as the minimum and maximum values, respectively.
  • the upper limit value or lower limit value of the numerical range at one step may be replaced with the upper limit value or lower limit value of the numerical range at another step.
  • the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • the insulating magnetic layer-forming composition is a curable composition containing a magnetic material.
  • the composition for forming an insulating magnetic layer can be formed, for example, by mixing a binder resin varnish and magnetic powder.
  • the magnetic material may be, for example, at least one kind of magnetic powder selected from the group consisting of simple metals, alloys and metal compounds.
  • the alloy may contain at least one selected from the group consisting of solid solutions, eutectic, amorphous metals, and intermetallic compounds.
  • a metal oxide is mentioned as a metal compound.
  • the magnetic material may be a metal oxide or an amorphous metal, or may be metallic glass magnetic powder.
  • Metal oxides include ferrite.
  • Amorphous metals include Fe-based nanocrystalline alloys and Co-based nanocrystalline alloys.
  • the magnetic powder may contain one type of metal element or multiple types of metal elements.
  • the metal elements contained in the magnetic powder may be, for example, base metal elements, noble metal elements, transition metal elements, or rare earth elements.
  • Metal elements contained in the magnetic powder include, for example, iron (Fe), copper (Cu), titanium (Ti), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), and aluminum (Al).
  • the magnetic powder may contain elements other than metal elements. Magnetic powders may contain, for example, oxygen, boron, or silicon.
  • Magnetic powders include Fe—Si alloys, Fe—Si—Al alloys (sendust), Fe—Ni alloys (permalloy), Fe—Cu—Ni alloys (permalloy), Fe—Cr—Si alloys, Fe At least selected from the group consisting of -Cr alloy, Fe-Ni-Cr alloy (electromagnetic stainless steel), Nd-Fe-B alloy (rare earth magnet), Al-Ni-Co alloy (alnico magnet) and ferrite One composition can be used.
  • Ferrites may be, for example, spinel ferrites, hexagonal ferrites, or garnet ferrites.
  • the Fe-based alloy may be an amorphous Fe alloy.
  • Fe amorphous alloy powder is an amorphous powder obtained by rapidly cooling an alloy obtained by melting Fe, which is the main component, together with other elements such as Si at a high temperature, and is also known as metallic glass.
  • Fe amorphous alloy powder can be produced according to methods well known in the art.
  • the Fe amorphous alloy powder has the product names "AW2-08" and "KUAMET-6B2" manufactured by Epson Atmix Co., Ltd., and the product names "DAPMS3", “DAPMS7", "DAPMSA10” and “DAPMSA10” manufactured by Daido Steel Co., Ltd.
  • the magnetic powder may contain one of the above elements and compositions, or may contain more than one of the above elements and compositions.
  • the magnetic powder may be spherical, approximately spherical, flaky, or elliptical.
  • the magnetic powder may have various other shapes with some corners. From the viewpoint of excellent fluidity, the magnetic powder may be spherical.
  • the magnetic powder may have an average particle size of 0.005 to 50 ⁇ m.
  • the "average particle size” described in this specification means the particle size at 50% of the integrated value (by volume) in the particle size distribution.
  • the magnetic powder can be a mixture of particles with two or three average particle sizes so as to be closely packed.
  • the magnetic powder may have a coating on its surface.
  • the coating can be formed from, for example, inorganic salts, acrylic resins, silicic acid compounds, and the like.
  • the magnetic powder may be entirely or partially coated with a surface treatment agent.
  • surface treatment agents include inorganic oxides, phosphoric acid compounds and phosphate compounds, inorganic surface treatment agents such as silane coupling agents, organic surface treatment agents such as montan wax, and cured resins. you can A coupling agent, which will be described later, can also be used as the surface treatment agent.
  • metal-based magnetic powder such as Fe-based alloys may be entirely or partially covered with an insulating material. Examples of insulating materials include silica, titania, calcium phosphate, montan wax, and cured epoxy resins.
  • the magnetic powder may include magnetic powder whose surface is coated with an insulating material (hereinafter referred to as "insulating-coated magnetic powder").
  • the insulating coated magnetic powder can be used singly or in combination of two or more.
  • the average particle diameters of the two or more types of insulation-coated magnetic powders may be the same or different.
  • Insulating coated magnetic powder and magnetic powder without insulating coating hereinafter referred to as uncoated magnetic powder
  • the average particle size of the uncoated magnetic powder may be the same as or different from the average particle size of the insulating-coated magnetic powder.
  • the average particle size of the uncoated magnetic powder may be smaller than the average particle size of the insulation-coated magnetic powder from the viewpoint of exhibiting insulating properties.
  • the insulating coated magnetic powder may be Fe amorphous alloy powder having an insulating coating.
  • insulating coated magnetic powder examples include "KUAMET9A4" (Fe--Si--B alloy, D50: 20 ⁇ m, with insulating coating) manufactured by Epson Atmix Corporation, and "SAP- 2D(C)" (Fe--Si--B--PNb--Cr alloy, D50: 2.3 ⁇ m, with insulating coating) and the like can be used.
  • the uncoated magnetic powder is, for example, "SAP-2D” (Fe-Si-B-PNb-Cr alloy, D50: 2.3 ⁇ m, no insulation coating) manufactured by Sintokogyo Co., Ltd., or manufactured by Toda Kogyo Co., Ltd. soft ferrite powder "BSN-125" (Ni--Zn alloy, D50: 10 ⁇ m, no insulation coating) or the like can be used.
  • the content of the magnetic powder in the insulating magnetic layer-forming composition may be 70 to 99 parts by mass, or 80 to 90 parts by mass when the total mass of the composition is 100 parts by mass.
  • a resin composition can be used for the binder resin varnish.
  • the resin composition can contain epoxy resin.
  • epoxy resins examples include naphthalene-type epoxy resins, naphthalene-type tetrafunctional epoxy resins, naphthol-type epoxy resins, naphthylene ether-type epoxy resins, anthracene-type epoxy resins, dicyclopentadiene-type epoxy resins, naphthalene-type epoxy resins, and naphthalene-type epoxy resins.
  • Epoxy resins having a condensed ring structure such as tetrafunctional epoxy resins, naphthol type epoxy resins, naphthylene ether type epoxy resins, dicyclopentadiene type epoxy resins; bisphenol A type epoxy resins; bisphenol F type epoxy resins; bisphenol S type epoxy resins bisphenol AF type epoxy resin; trisphenol type epoxy resin; novolak type epoxy resin; naphthol novolak type epoxy resin; phenol novolak type epoxy resin; tert-butyl-catechol type epoxy resin; glycidylamine type epoxy resin; linear aliphatic epoxy resins; epoxy resins having a butadiene structure; alicyclic epoxy resins; heterocyclic epoxy resins; spiro ring-containing epoxy resins; ; trimethylol type epoxy resin; tetraphenylethane type epoxy resin; bixylenol type epoxy resin and the like. These can be used individually by 1 type or in combination of 2 or more types.
  • the epoxy resin may be an epoxy resin having two or more epoxy groups in one molecule. Also, the epoxy resin may be liquid or solid at a temperature of 25°C.
  • Epoxy resins that are liquid at 25° C. include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AF type epoxy resins, naphthalene type epoxy resins, and glycidyl ester type epoxy resins.
  • liquid epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AF type epoxy resins, naphthalene type epoxy resins, and glycidyl ester type epoxy resins.
  • glycidylamine type epoxy resins, phenol novolac type epoxy resins, alicyclic epoxy resins having an ester skeleton, cyclohexanedimethanol type epoxy resins, glycidylamine type epoxy resins, and epoxy resins having a butadiene structure can be used.
  • Liquid epoxy resins include "HP4032”, “HP4032D”, and “HP4032SS” (naphthalene type epoxy resins) manufactured by DIC Corporation, and “828US”, “jER828EL” (bisphenol A type epoxy resins) and “jER807” manufactured by Mitsubishi Chemical Corporation. (bisphenol F type epoxy resin), “jER152” (phenol novolac type epoxy resin), “630", “630LSD” (glycidylamine type epoxy resin), “ZX1059” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • Epoxy resins that are solid at 25° C. include naphthalene-type tetrafunctional epoxy resin, cresol novolac-type epoxy resin, dicyclopentadiene-type epoxy resin, trisphenol-type epoxy resin, naphthol-type epoxy resin, biphenyl-type epoxy resin, and naphthylene ether. type epoxy resin, anthracene type epoxy resin, bisphenol A type epoxy resin, and tetraphenylethane type epoxy resin can be used.
  • Solid epoxy resins manufactured by DIC “HP4032H” (naphthalene type epoxy resin), “HP-4700”, “HP-4710” (naphthalene type tetrafunctional epoxy resin), “N-690” (cresol novolak type epoxy resin), “N-695”, “N-680” (cresol novolak type epoxy resin), “HP-7200” (dicyclopentadiene type epoxy resin), "HP-7200HH”, “HP-7200H”, "EXA -7311”, “EXA-7311-G3", “EXA-7311-G4", “EXA-7311-G4S”, "HP6000” (naphthylene ether type epoxy resin), "EPPN-502H” manufactured by Nippon Kayaku Co., Ltd.
  • the resin composition may contain a curing agent.
  • curing agents include phenol-based curing agents, naphthol-based curing agents, benzoxazine-based curing agents, and cyanate ester-based curing agents. Curing agents may be used singly or in combination of two or more.
  • phenol-based curing agent and naphthol-based curing agent a phenol-based curing agent having a novolak structure, a naphthol-based curing agent having a novolac structure, a nitrogen-containing phenol-based curing agent, and a triazine skeleton-containing phenol-based curing agent can be used.
  • Phenol-based curing agents and naphthol-based curing agents are "MEH-7700", “MEH-7810", and “MEH-7851” manufactured by Meiwa Kasei Co., Ltd., and "NHN", “CBN”, and “GPH” manufactured by Nippon Kayaku Co., Ltd.
  • cyanate ester curing agents include bisphenol A dicyanate, polyphenolcyanate, oligo(3-methylene-1,5-phenylenecyanate), 4,4′-methylenebis(2,6-dimethylphenylcyanate), 4,4 '-ethylidene diphenyl dicyanate, hexafluorobisphenol A dicyanate, 2,2-bis(4-cyanate)phenylpropane, 1,1-bis(4-cyanatophenylmethane), bis(4-cyanate-3,5-dimethyl Bifunctional cyanate resins such as phenyl)methane, 1,3-bis(4-cyanatophenyl-1-(methylethylidene))benzene, bis(4-cyanatophenyl)thioether, and bis(4-cyanatophenyl)ether, phenol Polyfunctional cyanate resins derived from novolacs, cresol novolaks, etc., and prepolymers obtained by partially triazine
  • the cyanate ester curing agents are Lonza Japan's "PT30” and “PT60” (both phenol novolac type polyfunctional cyanate ester resins), "BA230”, and “BA230S75” (part or all of bisphenol A dicyanate is triazine A commercially available product such as a trimerized prepolymer) can be used.
  • the content of the curing agent in the resin composition is 0.1 parts by mass or more, 0.3 parts by mass or more, or 0.5 parts by mass or more when the resin component in the resin composition is 100 parts by mass. 5 parts by mass or less, 3 parts by mass or less, or 2 parts by mass or less.
  • the resin composition may contain a curing accelerator.
  • curing accelerators include phosphorus-based curing accelerators, amine-based curing accelerators, imidazole-based curing accelerators, guanidine-based curing accelerators, and metal-based curing accelerators. Curing accelerators, imidazole-based curing accelerators, and metal-based curing accelerators are included.
  • a hardening accelerator can be used individually by 1 type or in combination of 2 or more types.
  • Phosphorus curing accelerators include, for example, triphenylphosphine, phosphonium borate compounds, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, (4-methylphenyl)triphenylphosphonium thiocyanate. , tetraphenylphosphonium thiocyanate, butyltriphenylphosphonium thiocyanate, and the like.
  • amine curing accelerators include trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl)phenol, 1,8-diazabicyclo (5,4,0)-undecene and the like, including 4-dimethylaminopyridine and 1,8-diazabicyclo(5,4,0)-undecene.
  • imidazole curing accelerators examples include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl- 2-phenylimidazolium trimellitate, 2,4-d
  • Guanidine curing accelerators include, for example, dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1-(o-tolyl)guanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, Tetramethylguanidine, Pentamethylguanidine, 1,5,7-triazabicyclo[4.4.0]dec-5-ene, 7-methyl-1,5,7-triazabicyclo[4.4.0] Dec-5-ene, 1-methylbiguanide, 1-ethylbiguanide, 1-n-butylbiguanide, 1-n-octadecylbiguanide, 1,1-dimethylbiguanide, 1,1-diethylbiguanide, 1-cyclohexylbiguanide, 1 -allylbiguanide, 1-phenylbiguanide, 1-(o-tolyl)biguanide and
  • metal-based curing accelerators include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
  • Organic metal complexes include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate; organic copper complexes such as copper (II) acetylacetonate; Examples include zinc complexes, organic iron complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate.
  • organic metal salts include zinc octoate, tin octoate, zinc naphthenate, cobalt naphthenate, tin stearate, zinc stearate and the like.
  • the content of the curing accelerator in the resin composition is 0.001 parts by mass or more, 0.005 parts by mass or more, or 0.01 parts by mass or more when the non-volatile component in the resin composition is 100 parts by mass. 0.1 parts by mass or less, 0.08 parts by mass or less, or 0.05 parts by mass or less.
  • the resin composition may contain a thermoplastic resin.
  • thermoplastic resins include phenoxy resins, polyvinyl acetal resins, polyolefin resins, polybutadiene resins, siloxane resins, poly(meth)acrylic resins, polyalkylene resins, polyalkyleneoxy resins, polyisoprene resins, polyisobutylene resins, and polyimide resins. , polyamideimide resins, polyetherimide resins, polysulfone resins, polyethersulfone resins, polyphenylene ether resins, polycarbonate resins, polyetheretherketone resins, and polyester resins.
  • the phenoxy resins are Mitsubishi Chemical's "1256” and “4250” (both bisphenol A structure-containing phenoxy resins), "YX8100” (bisphenol S skeleton-containing phenoxy resin), and "YX6954” (bisphenol acetophenone structure-containing phenoxy resin).
  • the thermoplastic resin has, in its molecule, one or more selected from a polybutadiene structure, a polysiloxane structure, a poly(meth)acrylate structure, a polyalkylene structure, a polyalkyleneoxy structure, a polyisoprene structure, a polyisobutylene structure, and a polycarbonate structure.
  • a polybutadiene structure a polysiloxane structure, a poly(meth)acrylate structure
  • a polyalkylene structure a polyalkyleneoxy structure
  • a polyisoprene structure a polyisobutylene structure
  • a polycarbonate structure may have the structure of These structures may be contained in the main chain or may be contained in the side chain.
  • a part or all of the polybutadiene structure may be hydrogenated.
  • the polyalkyleneoxy structure may be a polyalkyleneoxy structure having 2 to 15 carbon atoms, a polyalkyleneoxy structure having 3 to 10 carbon atoms, or
  • the thermoplastic resin may have a number average molecular weight (Mn) of 1,000 or more, 1,500 or more, 3,000 or more, or 5,000 or more, and 1,000,000 or less, or 900,000 or less.
  • Mn number average molecular weight
  • GPC gel permeation chromatography
  • the thermoplastic resin may have a functional group that can react with the epoxy resin.
  • the functional group capable of reacting with the epoxy resin may be one or more functional groups selected from the group consisting of a hydroxyl group, a carboxyl group, an acid anhydride group, a phenolic hydroxyl group, an epoxy group, an isocyanate group and a urethane group. good.
  • the polybutadiene resin is "Ricon 130MA8”, “Ricon 130MA13”, “Ricon 130MA20”, “Ricon 131MA5", “Ricon 131MA10”, “Ricon 131MA17”, “Ricon 131MA20”, “Ricon 184MA6” (acid anhydride group-containing polybutadiene), Nippon Soda Co., Ltd.
  • GQ-1000 hydroxyl group- and carboxyl group-introduced polybutadiene
  • G-1000 hydroxyl group- and carboxyl group-introduced polybutadiene
  • G-2000 hydroxyl group-2000
  • G-3000 polybutadiene with both hydroxyl groups
  • Commercial products such as “GI-1000”, “GI-2000”, “GI-3000” (hydrogenated polybutadiene with both hydroxyl groups), “FCA-061L” (hydrogenated polybutadiene skeleton epoxy resin) manufactured by Nagase ChemteX Co., Ltd. can be used.
  • Poly(meth)acrylic resins are Teisan resin manufactured by Nagase ChemteX Co., Ltd., and "ME-2000", “W-116.3”, “W-197C” manufactured by Negami Kogyo Co., Ltd., "KG-25", “KG -3000” and other commercial products can be used.
  • Polycarbonate resins are commercially available products such as “T6002” and “T6001” (polycarbonate diol) manufactured by Asahi Kasei Chemicals, "C-1090", “C-2090” and “C-3090” (polycarbonate diol) manufactured by Kuraray Co., Ltd. can be used.
  • Thermoplastic resins include "SMP-2006”, “SMP-2003PGMEA” and “SMP-5005PGMEA” manufactured by Shin-Etsu Silicone Co., Ltd., linear polyimides made from amine group-terminated polysiloxane and tetrabasic acid anhydride (International Publication No.
  • the content of the thermoplastic resin in the resin composition is 0.1 parts by mass or more, 0.3 parts by mass or more, or 0.5 parts by mass or more when the non-volatile component in the resin composition is 100 parts by mass. 20 parts by mass or less, 10 parts by mass or less, 5 parts by mass or less, or 3 parts by mass or less.
  • the resin composition can contain an active ester compound having one or more active ester groups in one molecule.
  • An active ester compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • active ester compound compounds having two or more highly reactive ester groups in one molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, heterocyclic hydroxy compound esters, etc., are used. be able to.
  • active ester compounds include those obtained by a condensation reaction between a carboxylic acid compound and/or a thiocarboxylic acid compound and a hydroxy compound and/or a thiol compound.
  • the active ester compound may be an active ester compound obtained from a carboxylic acid compound and a hydroxy compound, or an active ester compound obtained from a carboxylic acid compound and a phenol compound and/or a naphthol compound.
  • carboxylic acid compounds include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
  • phenol compounds or naphthol compounds include hydroquinone, resorcinol, bisphenol A, bisphenol F, bisphenol S, phenolphthalin, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m- cresol, p-cresol, catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucine, Benzenetriol, dicyclopentadiene-type diphenol compound, phenol novolak, and the like.
  • dicyclopentadiene-type diphenol compound refers to a diphenol compound obtained by condensing one molecule of dicyclopentadiene with two molecules of phenol.
  • the active ester compound examples include an active ester compound containing a dicyclopentadiene type diphenol structure, an active ester compound containing a naphthalene structure, an active ester compound containing an acetylated phenol novolac, and an active ester containing a benzoylated phenol novolac. compound.
  • the “dicyclopentadiene-type diphenol structure” represents a divalent structural unit composed of phenylene-dicyclopentylene-phenylene.
  • Active ester compounds containing a dicyclopentadiene-type diphenol structure include "EXB9451”, “EXB9460”, “EXB9460S”, "HPC-8000-65T”, “HPC-8000H-65TM”, “EXB-8000L-65TM”, “EXB-8150-65T” (manufactured by DIC), “EXB9416-70BK” (manufactured by DIC) as an active ester compound containing a naphthalene structure, “DC808” (Mitsubishi chemical company), "YLH1026” (manufactured by Mitsubishi Chemical Corporation) as an active ester compound containing a benzoylated phenol novolak, “DC808” (manufactured by Mitsubishi Chemical Corporation) as an active ester compound that is an acetylated product of phenol novolac, phenol novolac Commercially available products such as “YLH1026” (manufactured by Mitsubishi Chemical Co.), "
  • the quantitative ratio of the epoxy resin to the active ester compound is [total number of epoxy groups in the epoxy resin]:[total number of active ester groups in the active ester compound]. ratio of 1:0.01 to 1:5, 1:0.05 to 1:3, or 1:0.1 to 1:1.5.
  • the content of the active ester compound in the resin composition may be 1 part by mass or more, 1.5 parts by mass or more, or 2 parts by mass or more when the non-volatile component in the resin composition is 100 parts by mass. , 40 parts by mass or less, 30 parts by mass or less, 20 parts by mass or less, 10 parts by mass or less, 8 parts by mass or less, or 5 parts by mass or less.
  • a carbodiimide compound having two or more carbodiimide groups in one molecule may be used.
  • a carbodiimide compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the number of carbon atoms in the alkylene group represented by X may be 1 to 20, 1 to 10, 1 to 6, 1 to 4, or 1 to 3.
  • Alkylene groups include methylene, ethylene, propylene and butylene groups.
  • the number of carbon atoms in the cycloalkylene group represented by X may be 3-20, 3-12, or 3-6.
  • a cycloalkylene group includes a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, and a cyclohexylene group.
  • the arylene group represented by X is a group obtained by removing two hydrogen atoms on the aromatic ring from an aromatic hydrocarbon.
  • the number of carbon atoms in the arylene group (not including the number of carbon atoms in the substituents) may be 6-24, 6-18, 6-14, or 6-10.
  • Arylene groups include phenylene groups, naphthylene groups, and anthracenylene groups.
  • the alkylene group, cycloalkylene group or aryl group represented by X may have a substituent.
  • Substituents include, for example, halogen atoms, alkyl groups, alkoxy groups, cycloalkyl groups, cycloalkyloxy groups, aryl groups, aryloxy groups, acyl groups and acyloxy groups.
  • Halogen atoms used as substituents include, for example, fluorine, chlorine, bromine and iodine atoms.
  • Alkyl groups and alkoxy groups as substituents may be linear or branched, and the number of carbon atoms thereof may be 1 to 20, 1 to 10, 1 to 6, 1 to 4, or 1 to 3 may be used.
  • the cycloalkyl group or cycloalkyloxy group as a substituent may have 3 to 20, 3 to 12, or 3 to 6 carbon atoms.
  • An aryl group as a substituent is a group obtained by removing one hydrogen atom on an aromatic ring from an aromatic hydrocarbon, and has 6 to 24, 6 to 18, 6 to 14, or 6 to 10 carbon atoms.
  • the aryloxy group as a substituent may have 6 to 24, 6 to 18, 6 to 14, or 6 to 10 carbon atoms.
  • the alkyl group represented by R 1 may be linear or branched, and has 1 to 20, 1 to 10, 1 to 6, 1 to 4, or 1 to 3 carbon atoms. may be The aryl group represented by R 1 may have 6-24, 6-18, 6-14, or 6-10 carbon atoms.
  • p represents an integer of 1-5. p may be 1-4, 2-4, 2 or 3.
  • the content of the structure represented by formula (A) in the carbodiimide compound is 50 parts by mass or more, 60 parts by mass or more, 70 parts by mass or more, and 80 parts by mass when the mass of the entire molecule of the carbodiimide compound is 100 parts by mass. or more, or 90 parts by mass or more.
  • the carbodiimide compound may consist essentially of the structure represented by formula (A), except for the terminal structure. Examples of terminal structures of carbodiimide compounds include alkyl groups, cycloalkyl groups and aryl groups, which may have substituents.
  • the alkyl group, cycloalkyl group, and aryl group used as the terminal structure may be the same as the alkyl group, cycloalkyl group, and aryl group described for the substituents that the group represented by X may have. Further, the substituent that the group used as the terminal structure may have may be the same as the substituent that the group represented by X may have.
  • the weight average molecular weight of the carbodiimide compound may be 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, or 1000 or more, or 5000 or less, 4500 or less, 4000 or less, 3500 or less, or 3000 or less. good.
  • the weight average molecular weight of the carbodiimide compound can be measured, for example, by a gel permeation chromatography (GPC) method (converted to polystyrene).
  • GPC gel permeation chromatography
  • the content of the isocyanate group (also referred to as "NCO content") in the carbodiimide compound is 5% by mass or less to 4% by mass. Below, it may be 3% by mass or less, 2% by mass or less, 1% by mass or less, or 0.5% by mass or less.
  • Carbodiimide compounds include Carbodilite (registered trademark) V-02B, V-03, V-04K, V-07 and V-09 manufactured by Nisshinbo Chemical Co., Ltd.; You may use commercial items, such as.
  • the content of the carbodiimide compound in the resin composition is 0.1 parts by mass or more, 0.3 parts by mass or more, or 0.5 parts by mass or more when the non-volatile component in the resin composition is 100 parts by mass. 3 parts by mass or less, 2 parts by mass or less, or 1.5 parts by mass or less.
  • the resin composition may further contain other additives as necessary.
  • additives include, for example, flame retardants, organometallic compounds such as organocopper compounds, organozinc compounds and organocobalt compounds, binders, thickeners, antifoaming agents, leveling agents, adhesion imparting agents, and colorants. and other resin additives.
  • the insulating magnetic layer-forming composition may be in the form of a paste (hereinafter referred to as "paste").
  • the paste may contain magnetic powder, an epoxy group-containing compound, and a curing agent.
  • the magnetic powder described above can be used as the magnetic powder.
  • the magnetic powder contained in the paste may have an average particle size of 0.05 to 200 ⁇ m, 0.5 to 100 ⁇ m, or 1 to 50 ⁇ m.
  • the average particle size of the magnetic powder including the coating film may be within the above range.
  • the magnetic powder content in the paste may be 70% by mass or more, or 80% by mass or more, and may be 99% by mass or less, or 90% by mass or less, based on the total mass of the paste.
  • the magnetic powder content in the paste may be 70 to 99% by mass, or 80 to 90% by mass based on the total mass of the paste.
  • An epoxy group-containing compound means a compound having one or more epoxy groups in the molecule, and may be in the form of a monomer, or an oligomer or polymer having a structural unit formed by polymerization of the monomer.
  • the epoxy group-containing compound can be cured by heat treatment and can function as a binder resin that binds the metal element-containing powder.
  • Examples of epoxy group-containing compounds include oligomers and polymers having two or more epoxy groups in the molecule, commonly known as epoxy resins.
  • Other examples of epoxy group-containing compounds include compounds that have one or more epoxy groups in the molecule but do not contain structural units formed by polymerization (hereinafter referred to as epoxy compounds). Such epoxy compounds are commonly known as reactive diluents.
  • the epoxy group-containing compound preferably contains at least one selected from the group consisting of epoxy resins and epoxy compounds.
  • Epoxy resins similar to those blended in the resin composition described above can be used. good.
  • the molecular weight of the epoxy compound may be 100 or more, 150 or more, or 200 or more.
  • an epoxy compound having a molecular weight of 100 or more volatilization before reacting with the curing agent can be suppressed by setting appropriate curing conditions.
  • the molecular weight since the molecular weight is low, the distance between the cross-linking points after the reaction is short, and the occurrence of the problem that the cured product tends to crack can be reduced.
  • the molecular weight of the epoxy compound may be 700 or less, 500 or less, or 300 or less. When an epoxy compound having a molecular weight of 700 or less is used, a suitable viscosity as a diluent can be easily obtained.
  • the molecular weight of the epoxy compound may be 100-700, 150-500, or 200-300.
  • an epoxy compound having a molecular weight within such a range is used, it becomes easy to adjust the viscosity of the paste.
  • epoxy compounds cure when heated and are incorporated into the cured product. Therefore, when an epoxy compound is used, it is possible to contribute to the adjustment of the viscosity of the paste and, at the same time, to suppress deterioration of the properties of the cured product.
  • the epoxy compound may contain one or two or more epoxy groups in the molecule.
  • Epoxy compounds include, for example, n-butyl glycidyl ether, versatic acid glycidyl ether, styrene oxide, ethylhexyl glycidyl ether, phenyl glycidyl ether, butylphenyl glycidyl ether, 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether. , diethylene glycol diglycidyl ether, and trimethylolpropane triglycidyl ether.
  • the epoxy compound may have 500 ppm or less of ionic impurities such as free Na ions and free Cl ions.
  • the epoxy group-containing compound may have an epoxy equivalent weight of 80 g/eq to 350 g/eq, 100 g/eq to 300 g/eq, and 120 g/eq to 250 g/eq.
  • the epoxy equivalent is within the above range, the viscosity of the epoxy group-containing compound itself is low, making it easy to adjust the viscosity of the paste.
  • the epoxy group-containing compound preferably contains an epoxy group-containing compound that is liquid at 25°C.
  • liquid at 25°C means that the epoxy group-containing compound has a viscosity of 200 Pa ⁇ s or less at 25°C.
  • the above viscosity is a value measured using an E-type viscometer under conditions of temperature: 25° C., cone plate type: SPP, cone angle: 1°34′, rotation speed: 2.5 rpm.
  • E-type viscometer for example, a TV-33 type viscometer manufactured by Toki Sangyo Co., Ltd. can be used.
  • the blending amount of volatile components such as organic solvents that are usually used to obtain fluidity can be greatly reduced.
  • the paste can also be constructed without organic solvents.
  • the viscosity of the epoxy group-containing compound may be 100 Pa ⁇ s or less, 50 Pa ⁇ s or less, or 10 Pa ⁇ s or less.
  • the viscosity of the epoxy compound may be lower than the viscosity of the liquid epoxy resin from the viewpoint of adjusting the paste viscosity.
  • the viscosity of the epoxy compound may be 1 Pa ⁇ s or less, 0.5 Pa ⁇ s or less, or 0.1 Pa ⁇ s or less.
  • the epoxy group-containing compound that is liquid at 25°C may include at least one selected from the group consisting of an epoxy resin that is liquid at 25°C and an epoxy compound that is liquid at 25°C.
  • the content of the epoxy resin that is liquid at 25° C. may be 50% by mass or more, 70% by mass or more, 90% by mass or more, or 100% by mass based on the total mass of the epoxy group-containing compound.
  • Epoxy resins that are liquid at 25° C. include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, naphthalene diol type epoxy resin, hydrogenated bisphenol A type epoxy resin, and It may contain at least one liquid epoxy resin selected from aminoglycidyl ether type epoxy resins.
  • Epoxy group-containing compounds that are liquid at 25°C can also be obtained as commercial products. For example, they are sold by Nippon Steel Chemical Co., Ltd. as liquid bisphenol A type epoxy resin and liquid bisphenol F type epoxy resin.
  • liquid bisphenol A type epoxy resin the product name "YDF-8170C” (epoxy equivalent 165, viscosity 1,000 to 1,500 mPa ⁇ s) can be used.
  • epoxy compounds include the series of ADEKA GLYCIROL (product name) manufactured by ADEKA Corporation.
  • the product name "ADEKA GLYCIROL ED-503G” epoxy equivalent 135, viscosity 15 mPa ⁇ s
  • the paste may further contain other resins in addition to the epoxy group-containing compound.
  • Other resins may include at least one selected from the group consisting of thermosetting resins (excluding epoxy resins) and thermoplastic resins.
  • the thermosetting resin may be, for example, at least one selected from the group consisting of phenolic resins, acrylic resins, polyimide resins, and polyamideimide resins. When a phenolic resin is used in addition to the epoxy group-containing compound, the phenolic resin can also function as a curing agent for the epoxy group-containing compound.
  • the thermoplastic resin may be, for example, at least one selected from the group consisting of acrylic resin, polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate.
  • the resin component may further contain a silicone resin in addition to the epoxy group-containing compound.
  • the content of the other resin is preferably adjusted within a range that does not reduce the effect of the epoxy group-containing compound.
  • the content of other resins may be 50% by mass or less, 30% by mass or less, or 10% by mass or less based on the total mass of resins in the paste.
  • the blending amount can be adjusted so long as the viscosity of the mixture of the epoxy group-containing compound and the other resin is 50 Pa ⁇ s or less at 25°C.
  • the above viscosity is a value measured using an E-type viscometer under conditions of temperature: 25° C., cone plate type: SPP, cone angle: 1°34′, rotation speed: 2.5 rpm.
  • the E-type viscometer for example, a TV-33 type viscometer manufactured by Toki Sangyo Co., Ltd. can be used.
  • curing agent a compound that imparts appropriate viscosity to the paste and that can react with the epoxy group of the epoxy group-containing compound to form a cured product can be used.
  • curing agent a well-known curing agent generally used as a curing agent for epoxy resins can be used.
  • Curing agents include, for example, phenol-based curing agents, acid anhydride-based curing agents, and amine-based curing agents.
  • Curing agents are classified into curing agents that cure epoxy resins in the temperature range from low temperature to room temperature, and heat-curing curing agents that cure epoxy resins when heated.
  • Curing agents that cure epoxy resins at temperatures ranging from low to room temperature include, for example, aliphatic polyamines, polyaminoamides, and polymercaptans.
  • Heat-curable curing agents include, for example, aromatic polyamines, acid anhydrides, phenolic novolak resins, and dicyandiamide (DICY).
  • DICY dicyandiamide
  • the curing agent preferably contains a thermosetting curing agent.
  • a curing agent that is liquid at 25°C can be used from the viewpoint of lowering the viscosity of the paste.
  • the liquid curing agent for example, at least one selected from the group consisting of aliphatic polyamines, polymercaptans, aromatic polyamines, acid anhydrides, and imidazole curing agents can be used.
  • a curing agent that is solid at 25° C. may be used, or a combination of a liquid curing agent and a solid curing agent may be used as long as the viscosity increase of the paste can be suppressed.
  • solid curing agents examples include dicyandiamide, tertiary amines, imidazole-based curing agents, and imidazoline-based curing agents.
  • the exemplified solid curing agents are polyfunctional or catalytically active so that even small amounts can function satisfactorily.
  • the curing agent may contain at least one selected from the group consisting of amine-based curing agents, imidazole-based curing agents, and imidazoline-based curing agents.
  • the curing agent can contain at least an amine-based curing agent.
  • Amine-based curing agents (more specifically, tertiary amines), imidazole-based curing agents, and imidazoline-based curing agents can also be used as curing accelerators in combination with other curing agents.
  • Amine-based curing agents may be compounds having at least two amino groups in the molecule.
  • the amine curing agent contains at least one selected from the group consisting of aliphatic amines and aromatic amines.
  • aliphatic amine compounds include diethylenetriamine, triethylenetetramine, n-propylamine, 2-hydroxyethylaminopropylamine, cyclohexylamine, and 4,4'-diamino-dicyclohexylmethane.
  • aromatic amine compounds include 4,4′-diaminodiphenylmethane, 2-methylaniline, amine compounds represented by the following formula (1), and amine compounds represented by the following formula (2).
  • the imidazole-based curing agent is a compound having an imidazole skeleton, and may be an imidazole-based compound in which a hydrogen atom in the molecule is substituted with a substituent.
  • the imidazole-based curing agent may be a compound having an imidazole skeleton such as alkyl group-substituted imidazole.
  • Examples of imidazole curing agents include imidazole, 2-methylimidazole, 2-ethylimidazole, and 2-isopropylimidazole.
  • commercially available products such as “Curesol 2E4MZ” (2-ethyl-4-methylimidazole) manufactured by Shikoku Kasei Co., Ltd. can be used.
  • the imidazoline-based curing agent is a compound having an imidazoline skeleton, and may be an imidazoline-based compound in which a hydrogen atom in the molecule is substituted with a substituent.
  • the imidazoline-based curing agent may be a compound having an imidazoline skeleton such as alkyl group-substituted imidazoline.
  • Examples of imidazoline curing agents include imidazoline, 2-methylimidazoline, and 2-ethylimidazoline.
  • the curing agent may contain an aromatic amine.
  • the aromatic ring of the aromatic amine may have a substituent other than the amino group.
  • it may have an alkyl group having 1 to 5 carbon atoms, or may have an alkyl group having 1 or 3 carbon atoms.
  • the number of aromatic rings in the aromatic amine may be one or two or more. When the number of aromatic rings is 2 or more, the aromatic rings may be bonded to each other with a single bond or via a linking group such as an alkylene group.
  • the curing agent preferably contains a liquid aromatic amine.
  • a liquid aromatic amine For example, at least one selected from the group consisting of compounds represented by the above formula (1) and compounds represented by the above formula (2) can be used.
  • Liquid aromatic amines that can be used as curing agents are also available as commercial products.
  • the product name "Grade: jER Cure WA” manufactured by Mitsubishi Chemical Corporation and the product name "Kayahard AA” manufactured by Nippon Kayaku Co., Ltd. can be mentioned.
  • the content of the curing agent in the paste can be set by considering the ratio between the number of equivalents of epoxy groups in the epoxy group-containing compound such as epoxy resin and the number of equivalents of active groups in the curing agent.
  • the ratio of the curing agent to 1 equivalent of the epoxy group of the epoxy group-containing compound may be 0.5 to 1.5 equivalents, may be 0.9 to 1.4 equivalents, or may be 1.0 to 1.0 equivalents. It can be 2 equivalents.
  • the above ratio of the active groups in the curing agent is 0.5 equivalent or more, the amount of OH per unit weight of the epoxy resin after heat curing is reduced, and a decrease in the curing speed of the epoxy resin can be suppressed. Moreover, the decrease in the glass transition temperature of the obtained cured product and the decrease in elastic modulus of the cured product can be suppressed. Furthermore, it is possible to suppress deterioration in the insulation reliability of the cured product due to unreacted resin components in the binder resin. On the other hand, when the ratio of active groups in the curing agent is 1.5 equivalents or less, the reduction in mechanical strength of the insulating magnetic layer formed from the paste after heat curing can be suppressed. In addition, it is possible to suppress the deterioration of the insulation properties of the cured product due to the unreacted curing agent.
  • the paste may further contain a curing accelerator as necessary.
  • the paste may contain magnetic powder, an epoxy group-containing compound, a curing agent, and a curing accelerator.
  • the paste may further include additives such as coupling agents and flame retardants in addition to the above components.
  • the curing accelerator is not limited as long as it is a compound that can accelerate the curing reaction between the epoxy resin and the curing agent.
  • Curing accelerators include, for example, tertiary amines, imidazole-based curing accelerators, imidazoline-based curing accelerators, and phosphorus compounds.
  • the imidazole-based curing accelerator and the imidazoline-based curing accelerator the compounds exemplified above as the imidazole-based curing agent and imidazoline-based curing agent may be used.
  • liquid curing agents when a liquid acid anhydride is used, a curing accelerator can be used in combination.
  • the paste may contain one or more curing accelerators. When a curing accelerator is used, the mechanical strength of the insulating magnetic layer formed from the paste can be improved, and the curing temperature of the paste can be easily lowered.
  • the amount of the curing accelerator is not particularly limited as long as the curing acceleration effect is obtained.
  • the amount of the curing accelerator is 0.001 parts by mass or more with respect to the total of 100 parts by mass of the epoxy resin and the curing agent. good.
  • the content of the curing accelerator may be 0.01 parts by mass or more, and may be 0.1 parts by mass or more.
  • the amount of the curing accelerator compounded may be 5 parts by mass or less, 4 parts by mass or less, or 3 parts by mass or less.
  • the amount of the curing accelerator to be blended is 0.001 parts by mass or more, a sufficient curing acceleration effect can be easily obtained.
  • the amount of the curing accelerator is 5 parts by mass or less, the paste can easily have excellent storage stability.
  • the coupling agent may be, for example, at least one selected from the group consisting of silane-based compounds (silane coupling agents), titanium-based compounds, aluminum compounds (aluminum chelates), and aluminum/zirconium-based compounds.
  • the silane coupling agent may be, for example, at least one selected from the group consisting of epoxysilanes, mercaptosilanes, aminosilanes, alkylsilanes, ureidosilanes, acid anhydride-based silanes and vinylsilanes. Further, the silane coupling agent may be an aminophenyl-based silane coupling agent.
  • the paste may contain at least one of the above coupling agents, and may contain two or more of the above coupling agents.
  • the paste may contain a flame retardant.
  • Flame retardants are selected from the group consisting of, for example, brominated flame retardants, phosphorus flame retardants, hydrated metal compound flame retardants, silicone flame retardants, nitrogen-containing compounds, hindered amine compounds, organometallic compounds and aromatic engineering plastics. At least one may be used.
  • the paste may contain one or more of the flame retardants exemplified above.
  • the paste may contain an organic solvent as needed.
  • the organic solvent is not particularly limited.
  • an organic solvent capable of dissolving the binder resin can be used.
  • the organic solvent may be, for example, at least one selected from the group consisting of acetone, methyl ethyl ketone, methyl isobutyl ketone, benzene, toluene, carbitol acetate, butyl carbitol acetate, cyclohexanone, and xylene.
  • the organic solvent may be liquid at room temperature (25°C).
  • the boiling point of the organic solvent may be 50°C or higher and 160°C or lower.
  • the content may be 5% by mass or less, 3% by mass or less, or 1% by mass or less based on the total mass of the paste.
  • the paste may be substantially free of organic solvents. As used herein, “substantially free” means that no organic solvent is intentionally added to the paste. Therefore, the paste may contain, for example, an organic solvent that was used during the production of the resin and remained in the resin.
  • the viscosity of the paste may be 1 Pa ⁇ s or more, 10 Pa ⁇ s or more, or 100 Pa ⁇ s or more. By adjusting the viscosity to 1 Pa ⁇ s or more, it is possible to suppress liquid dripping after coating and easily prevent the pattern shape from collapsing after printing. In addition, sedimentation of the magnetic powder in the paste can be suppressed, and deterioration of coatability due to passage of time after stirring the paste can be easily improved.
  • the viscosity of the paste may be 600 Pa ⁇ s or less, 400 Pa ⁇ s or less, or 200 Pa ⁇ s or less. By adjusting the viscosity to 600 Pa ⁇ s or less, fluidity is generated in the paste, and good coatability can be easily obtained.
  • the viscosity of the paste may be 10 Pa ⁇ s to 400 Pa ⁇ s, 50 Pa ⁇ s to 300 Pa ⁇ s, or 100 Pa ⁇ s to 250 Pa ⁇ s.
  • the viscosity of the paste can be freely adjusted depending on the structure and properties of the epoxy group-containing compound, the structure and properties of the curing agent, the combination and compounding ratio thereof, and the structure and compounding ratio of additives such as curing accelerators and coupling agents. can be adjusted.
  • the paste may contain additives such as viscosity modifiers, thixotropic agents, and dispersion stabilizers.
  • the wiring board includes a substrate, conductor wiring provided on the substrate, an upper surface of the conductor wiring located on the opposite side of the substrate, and/or between the upper surface and a bottom surface located on the substrate side. and an insulating magnetic layer that covers at least one of the pair of side surfaces located in and is made of an insulator containing a magnetic material.
  • a method for manufacturing a wiring board will be described below by dividing it into several embodiments. In the following embodiments, the composition for forming an insulating magnetic layer of the above embodiment can be used.
  • FIG. 1 is a schematic cross-sectional view for explaining the first embodiment of the wiring board manufacturing method.
  • the manufacturing method of the first embodiment comprises a step a1 of preparing a substrate with wiring 50 including a substrate 10 and conductor wiring 20 provided on the substrate 10, and insulating the conductor wiring 20 with a magnetic material.
  • the insulating magnetic layer forming composition 35 is applied to the conductor wiring 20 so that the upper surface S1 of the conductor wiring 20 is covered without filling the gap g between the conductor wiring 20 adjacent to each other.
  • Step b1 of coating and step b2 of curing the insulating magnetic layer forming composition 35 to form the insulating magnetic layer 30 are included. Steps a1 to a3, steps b1 and b2 will be described below.
  • a substrate 50 with wiring is prepared.
  • the step a1 may be a step of manufacturing the substrate 50 with wiring.
  • the wiring-equipped substrate 5 can be formed, for example, by forming a conductor layer on the substrate 10 and then patterning the conductor layer by photolithography or the like to form the conductor wiring 20, or by forming the conductor wiring 20 on the substrate 10 by plating, sputtering, or the like. It can be obtained by a known method such as a method of forming
  • the substrate 10 for example, one obtained by pasting together several known prepregs and subjecting them to pressurization and heat treatment can be used.
  • a prepreg one prepared by a known method by impregnating a fiber base material (reinforcing fiber) such as glass fiber or organic fiber with the prepared resin varnish can be used. mentioned.
  • known low dielectric substrates such as substrates using low dielectric resin materials such as polyimide resins, fluorine resins, and liquid crystal polymers (LCP) can be used.
  • Examples of the resin material forming the substrate 10 include resins such as thermosetting resins and thermoplastic resins.
  • the resin materials may be used singly or in combination of two or more.
  • thermosetting resins include polycarbonate resins, thermosetting polyimide resins, thermosetting fluorinated polyimide resins, epoxy resins, phenol resins, urea resins, melamine resins, diallyl phthalate resins, silicone resins, and thermosetting urethane resins. , fluororesins, and liquid crystal polymers.
  • fluororesins include polymers of fluorine-containing olefins such as polytetrafluoroethylene (PTFE).
  • thermoplastic resins examples include olefin resins, acrylic resins, polystyrene resins, polyester resins, polyacrylonitrile resins, maleimide resins, polyvinyl acetate resins, ethylene-vinyl acetate copolymers, polyvinyl alcohol resins, polyamide resins, and polyvinyl chloride.
  • Resin polyacetal resin, polyphenylene oxide resin, polyphenylene sulfide resin, polysulfone resin, polyethersulfone resin, polyetheretherketone resin, polyarylsulfone resin, thermoplastic polyimide resin, thermoplastic fluorinated polyimide resin, thermoplastic urethane resin, poly Examples include etherimide resins, polymethylpentene resins, cellulose resins, liquid crystal polymers, and ionomers.
  • the substrate 10 may be a single layer or multiple layers.
  • the substrate may have an adhesive layer on its surface.
  • the thickness of the substrate 10 may be, for example, 10 ⁇ m to 1 mm.
  • the conductor wiring 20 is in contact with the substrate 10, for example.
  • the conductor wiring 20 includes conductors. Examples of conductors include metals such as copper, gold, silver, and nickel.
  • the thickness of the conductor wiring 20 is, for example, 1 to 50 ⁇ m, and may be 5 to 50 ⁇ m.
  • the width of the conductor wiring 20 may be, for example, 5 to 300 ⁇ m.
  • a specific example of the substrate with wiring 50 is a substrate in which wiring is formed by patterning a copper layer of a copper-clad laminate.
  • step a2 the conductor wiring 20 is coated with the insulating magnetic layer forming composition 35 to form the insulating magnetic layer 30 .
  • step a2 includes steps b1 and b2 below.
  • step b1 the insulating magnetic layer forming composition 35 is applied to the conductor wiring 20 so as to cover the upper surface S1 of the conductor wiring 20 (see FIG. 1(a)).
  • the insulating magnetic layer forming composition 35 is applied so as to cover at least one of the pair of side surfaces S3a and S3b in addition to the upper surface S1 of the conductor wiring 20. may be applied to the conductor wiring 20 .
  • the gap g between the conductor wirings 20 adjacent to each other should not be filled with the composition 35 for forming the insulating magnetic layer.
  • the insulating magnetic layer forming composition 35 covering one of the conductor wirings 20, 20 adjacent to each other and the insulating magnetic layer forming composition 35 covering the other are prevented from coming into contact with each other.
  • the insulating magnetic layer forming composition 35 is applied to the conductor wiring 20 so as to cover the pair of side surfaces S3a and S3b in addition to the upper surface S1 of the conductor wiring 20.
  • the insulating magnetic layer-forming composition 35 may be applied to the conductor wiring 20 so that one or both of the side surfaces S3a and S3b of the conductor wiring 20 are not coated with the insulating magnetic layer-forming composition 35.
  • the insulating magnetic layer forming composition 35 for example, a paste-like or ink-like composition is used.
  • the method of applying the insulating magnetic layer forming composition 35 is not particularly limited as long as it is a method capable of applying the insulating magnetic layer forming composition 35 in a width approximately equal to the width of the fine conductor wiring 20 .
  • the insulating magnetic layer forming composition 35 is applied (printed) onto the conductor wiring 20 by a printing method in which the insulating magnetic layer forming composition 35 is ejected from nozzles 15. can be done.
  • the insulating magnetic layer forming composition 35 may be applied by a jet printing method, a dispenser, a jet dispenser, a needle dispenser, a particle deposition method, a spray coater, a spin coater, a dip coater, or the like.
  • step b2 the insulating magnetic layer forming composition 35 is cured to form the insulating magnetic layer 30 (see (b) of FIG. 1).
  • the insulating magnetic layer forming composition 35 can be cured, for example, by heating. Curing of the insulating magnetic layer-forming composition 35 may be curing by drying the insulating magnetic layer-forming composition 35.
  • the insulating magnetic layer-forming composition 35 contains a thermosetting resin
  • the insulating magnetic layer can be Thermal curing of the forming composition 35 may also be used. The heating temperature and heating time may be appropriately adjusted according to the type of solvent and the type of thermosetting resin contained in the insulating magnetic layer forming composition 35 .
  • the wiring board 100A shown in FIG. 1(b) is obtained.
  • 100 A of wiring boards are provided with the board
  • FIG. The insulating magnetic layer 30 has a dome-shaped cross section that protrudes toward the upper surface S1.
  • the insulating magnetic layer 30 is made of an insulator containing a magnetic material.
  • the magnetic material may be dispersed in the insulating magnetic layer 30 .
  • the coating thickness of the insulating magnetic layer 30 may be 0.1 to 100 ⁇ m, 0.2 to 30 ⁇ m, or 0.5 to 10 ⁇ m. good too.
  • it is preferable that the coating thickness at the point where the coating thickness is the largest is smaller than the maximum value of the range described above, and the coating thickness at the point where the coating thickness is the smallest is the minimum value of the range described above. value is preferred.
  • the coating thickness of the insulating magnetic layer 30 refers to (i) below when the insulating magnetic layer 30 is provided apart from the conductor wiring 20, and the insulating magnetic layer 30 is provided so as to be in contact with the conductor wiring 20. (ii) below. (i) When a point A on the surface of the insulating magnetic layer 30 on the side of the conductor wiring 20 and a line that passes through this point A and connects the conductor wiring 20 from the point A to the conductor wiring 20 at the shortest distance is extended, the conductor of the insulating magnetic layer 30 The distance from the point B that intersects the surface on the side opposite to the wiring 20 side. (ii) thickness in a direction orthogonal to the interface between the insulating magnetic layer 30 and the conductor wiring 20;
  • the insulating magnetic layer 30 may have a relative magnetic permeability of 2 to 1,000, 10 to 1,000, or 20 to 1,000.
  • the dielectric constant of the insulating magnetic layer 30 may be 1-30, 1-20, or 1-10.
  • the insulating magnetic layer 30 is formed so as to cover the upper surface S1 and the pair of side surfaces S3a and S3b of the conductor wiring 20, but the upper surface S1 is covered with the insulating magnetic layer 30 and the pair of side surfaces S3a and S3b. may not be covered with the insulating magnetic layer 30 .
  • one or both of the pair of side surfaces S3a and S3b may be covered with the insulating magnetic layer 30, and the upper surface S1 may not be covered with the insulating magnetic layer 30.
  • the insulating magnetic layer forming composition 35 may be applied only to the upper surface S1 of the conductor wiring 20 so that both the pair of side surfaces S3a and S3b are not covered.
  • the insulating magnetic layer 30 covering the pair of side surfaces S3a and S3b is not formed.
  • the insulating magnetic layer forming composition 35 may be applied to the conductor wiring 20 so that one of the pair of side surfaces S3a and S3b is covered and the other is not covered.
  • the insulating magnetic layer 30 covering one of the pair of side surfaces S3a and S3b is formed, but the insulating magnetic layer 30 covering the other side is not formed.
  • the step a2 may further include a step of removing the insulating magnetic layer 30 covering the upper surface S1 of the conductor wiring 20 by grinding or polishing after the step b2.
  • the insulating magnetic layer forming composition 35 is applied to the conductor wiring 20 so as to cover at least one of the pair of side surfaces S3a and S3b in addition to the upper surface S1 of the conductor wiring 20.
  • the insulating magnetic layer 30 covering the upper surface S1 of the conductor wiring 20 is not formed.
  • the grinding method and the polishing method are not particularly limited, but may be, for example, grinding by a fly-cut method, polishing by CMP (Chemical Mechanical Polishing), or the like.
  • CMP Chemical Mechanical Polishing
  • a grinder with a diamond bit can be used, for example, an automatic surface planer (manufactured by Disco Co., Ltd., trade name "DAS8930") compatible with 300 mm wafers can be used.
  • Step c1 of forming a layer of the insulating magnetic layer-forming composition 35 on the region; Step c2 of forming the magnetic layer 30; Step c3 of forming the photosensitive layer 7a on the opposite side of the substrate 10 of the insulating magnetic layer forming composition 35 or the insulating magnetic layer 30;
  • a step c5 of removing a portion of the insulating magnetic layer 30 located between the substrate 10 and the opening H1 of the resist film 8a is included.
  • Step a2 may further include step c6 of removing the resist film 8a. Steps c1 to c6 will be described below.
  • step c1 an insulating magnetic layer is formed on the region where the conductor wiring 20 of the substrate with wiring 50 is formed (on the substrate 10 and on the conductor wiring 20) so as to fill the gap between the conductor wiring 20, 20 adjacent to each other.
  • the layer-forming composition 35 By forming a layer made of the layer-forming composition 35, the upper surface S1 and the pair of side surfaces S3a and S3b of the conductor wiring 20 are covered with the insulating magnetic layer-forming composition 35 (see FIG. 2(a)).
  • the step c1 may be a step of applying the insulating magnetic layer forming composition 35 to the above region, and a sheet (for example, a film-like sheet) made of the insulating magnetic layer forming composition 35 is applied to the above region. It may be a step of laminating to.
  • the layer made of the insulating magnetic layer forming composition 35 may be formed so as to partially cover the region where the conductor wiring 20 of the substrate with wiring 50 is formed, and the conductor wiring 20 of the substrate with wiring 50 is formed. It may be formed so as to cover the entire region (for example, the entire surface of the wiring-equipped substrate 50).
  • the method of applying the insulating magnetic layer forming composition 35 is not particularly limited, but may be screen printing, transfer printing, offset printing, jet printing, dispenser, jet dispenser, needle dispenser, comma coater, slit coater, die coater, gravure coater, Slit coating, letterpress printing, intaglio printing, gravure printing, stencil printing, soft lithography, bar coating, applicator, particle deposition method, spray coater, spin coater, dip coater and the like can be used.
  • a sheet composed of the insulating magnetic layer forming composition 35 can be formed, for example, by applying the insulating magnetic layer forming composition 35 onto a support film by the coating method described above.
  • the method of laminating the sheet composed of the insulating magnetic layer forming composition 35 is not particularly limited, but a roll laminator, a diaphragm type laminator, a vacuum roll laminator, a vacuum diaphragm type laminator, or the like can be employed.
  • step c2 the layer made of the insulating magnetic layer forming composition 35 is cured to form the insulating magnetic layer 30 (see (b) of FIG. 2).
  • the layer composed of the insulating magnetic layer forming composition 35 can be cured in the same manner as the insulating magnetic layer forming composition in step b2 of the first embodiment.
  • step c2 is performed before step c3 in FIG. 2, step c2 may be performed after step c3.
  • Step c2 may, for example, be performed after step c5.
  • step c3 is a step of forming the photosensitive layer 7a on the side opposite to the substrate 10 of the layer made of the insulating magnetic layer forming composition 35, and step c2 is the step.
  • step c3 is the step of forming the photosensitive layer 7a on the side of the insulating magnetic layer 30 opposite to the substrate 10.
  • step c5 removes the portion of the layer made of the insulating magnetic layer forming composition 35 located between the substrate 10 and the opening H1 of the resist film 8a. If step c2 is performed before step c5, step c5 is a step of removing the portion of the insulating magnetic layer 30 located between the substrate 10 and the opening H1 of the resist film 8a. .
  • step c3 a photosensitive layer 7a is formed on the side of the insulating magnetic layer 30 opposite to the substrate 10 (see FIG. 2(b)).
  • the photosensitive layer 7a is a layer having photosensitivity.
  • the photosensitive layer 7a may be made of, for example, a photosensitive resin composition containing a binder polymer, a photopolymerizable compound, and a photopolymerization initiator. Although the photosensitive layer 7a shown in FIG. 2 is of a negative type, it may be of a positive type.
  • the photosensitive layer 7a is formed by coating a photosensitive resin composition on the side of the insulating magnetic layer 30 opposite to the substrate 10, or by laminating a sheet (for example, a film sheet) made of a photosensitive resin composition.
  • a sheet for example, a film sheet
  • a sheet made of a photosensitive resin composition can be formed by As a method for applying the photosensitive resin composition and a method for laminating a sheet made of the photosensitive resin composition, the method for applying the composition for forming the insulating magnetic layer and the sheet made of the composition for forming the insulating magnetic layer described above are used. lamination method can be adopted.
  • the thickness of the photosensitive layer 7a is, for example, 10-100 ⁇ m.
  • step c4 the photosensitive layer 7a is exposed in a predetermined pattern and developed to form a resist film having an opening H1 in at least a portion of the portion other than the conductor wiring 20 (see FIG. 2(c)). ).
  • the photosensitive layer 7a is exposed in a predetermined pattern through a predetermined mask pattern.
  • Actinic rays used for exposure include, for example, light rays using a g-line stepper as a light source; ultraviolet rays using a low-pressure mercury lamp, high-pressure mercury lamp, metal halide lamp, i-line stepper, etc. as a light source; electron beams; laser beams, and the like.
  • the amount of exposure is appropriately selected depending on the light source used, the thickness of the photosensitive layer 7a, and the like.
  • the exposed photosensitive layer 7a is developed with a developer.
  • the photosensitive layer 7a is of a negative type
  • the exposed portion is cured by exposure, and the unexposed portion is removed by development.
  • a resist film 8a having an opening H1 having a shape corresponding to the removed unexposed portion is formed.
  • the photosensitive layer 7a is of a positive type
  • the exposed portions are made soluble in the developing solution by exposure, so that the exposed portions are removed by development, leaving a resist film having openings with shapes corresponding to the removed exposed portions. It is formed.
  • the developer is, for example, an alkaline developer, and an alkaline aqueous solution in which an alkaline compound such as sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, or choline is dissolved in water to a concentration of about 1 to 10% by mass,
  • An alkaline aqueous solution such as ammonia water can be used.
  • Examples of the developing method include a shower developing method, a spray developing method, an immersion developing method, a puddle developing method, and the like.
  • step c5 the portion of the insulating magnetic layer 30 located between the substrate 10 and the opening H1 of the resist film 8a is removed (see FIG. 3(d)).
  • wet etching is performed using a known etchant such as a cupric chloride solution or a ferric chloride solution.
  • a known etchant such as a cupric chloride solution or a ferric chloride solution.
  • step c6 the resist film 8a is removed (see (e) of FIG. 3).
  • the resist film 8a can be removed, for example, by using an alkaline aqueous solution stronger than the alkaline developer used for development in step c4.
  • Methods for removing the resist film 8a include an immersion method, a spray method, and the like.
  • the wiring board 100B shown in FIG. 3(d) and the wiring board 100C shown in FIG. 3(e) are obtained.
  • the details of the wiring boards 100B and 100C are the same as in the first embodiment, except that the insulating magnetic layers 30 on the upper surface S1 side, the side surface S3a side, and the side surface S3b side of the conductor wiring 20 are each formed with a uniform coating thickness. It is the same as the wiring board 100A obtained in .
  • the coating thickness of the insulating magnetic layer 30 may be the same or different on the upper surface S1 side, the lower surface S2 side, the side surface S3a side, and the side surface S3b side of the conductor wiring 20 .
  • the insulating magnetic layer 30 is formed so as to cover the upper surface S1 and the pair of side surfaces S3a and S3b of the conductor wiring 20.
  • the upper surface S1 is covered with the insulating magnetic layer 30 and the pair of side surfaces S3a and S3b may not be covered with the insulating magnetic layer 30 .
  • one or both of the pair of side surfaces S3a and S3b may be covered with the insulating magnetic layer 30, and the upper surface S1 may not be covered with the insulating magnetic layer 30.
  • the resist film 8a may be formed so that the entire portion other than the conductor wiring 20 becomes the opening H1.
  • the step a2 may further include a step of removing the insulating magnetic layer 30 covering the upper surface S1 of the conductor wiring 20 by grinding or polishing after the step c2. This step may be performed after step c6.
  • the insulating magnetic layer 30 covering the upper surface S1 of the conductor wiring 20 is not formed.
  • the grinding method and the polishing method are not particularly limited, but may be, for example, grinding by a fly-cut method, polishing by CMP (Chemical Mechanical Polishing), or the like.
  • CMP Chemical Mechanical Polishing
  • a grinder with a diamond bit can be used, for example, an automatic surface planer (manufactured by Disco Co., Ltd., trade name "DAS8930”) compatible with 300 mm wafers can be used.
  • a binder resin varnish I was obtained by stirring and mixing all the raw materials in the ointment container having the composition shown in Table 1 with a rotation-revolution stirrer ("ARE-500" manufactured by THINKY Co., Ltd.).
  • ARE-500 manufactured by THINKY Co., Ltd.
  • the revolution speed of the rotation/revolution stirrer was maintained at 2000 rpm, and stirring/mixing was performed for 300 seconds.
  • the rotation of the rotation-revolution stirrer was stopped, and the mixture in the container was stirred using a spatula, and then the revolution speed of the rotation-revolution stirrer was maintained at 2000 rpm again, and the mixture was stirred and mixed for 120 seconds.
  • ⁇ YDF-8170C trade name manufactured by Nippon Steel Chemical & Materials Co., Ltd., bisphenol F type epoxy resin
  • ⁇ jER Cure WA (“jER cure” is a registered trademark): trade name manufactured by Mitsubishi Chemical Corporation, amine-based epoxy resin curing Agent 2E4MZ: Curing accelerator manufactured by Shikoku Kasei Co., Ltd., 2-ethyl-4-methylimidazole Teisan Resin HTR-860-P3: Trade name manufactured by Nagase ChemteX Co., Ltd., acrylic resin (cyclohexanone solution)
  • ⁇ KBM-573 trade name manufactured by Shin-Etsu Silicone Co., Ltd., N-phenyl-3-aminopropyltrimethoxysilane
  • binder resin varnish I 8.5 parts by mass of binder resin varnish I and 73 parts by mass of magnetic powder (SAP-2D (C): manufactured by Shinto Kogyo) were weighed out and placed in a 50 ml ointment container.
  • the binder resin varnish I and the magnetic powder in the ointment container were stirred at a revolution speed of 2000 rpm for 45 seconds using a rotation-revolution stirrer.
  • the rotation of the rotation-revolution stirrer was stopped, and the mixture in the container was stirred using a scoop, and then stirred twice for 45 seconds at a revolution speed of 2000 rpm.
  • a paste composition for forming an insulating magnetic layer was obtained.
  • Prepreg (trade name: GEA-705G, manufactured by Showa Denko Materials Co., Ltd., thickness: 25 ⁇ m), which is a substrate, is laminated with copper foil (thickness: 30 ⁇ m) to form laminate A (substrate/copper foil). Obtained.
  • a negative photosensitive resin composition solution (trade name: PMER P-LA900PM, manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied onto the copper foil side of laminate A to form a photosensitive layer (thickness: 50 ⁇ m). ) was formed. Then, the photosensitive layer was pattern-exposed and developed so that the exposed portion had a wiring pattern with a width of 190 ⁇ m.
  • PMER developer P-7G manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • a resist film having openings was formed on the copper foil. This resist film has a wiring pattern with a width of 190 ⁇ m except for the opening.
  • Example 1 The composition for forming an insulating magnetic layer obtained above was applied to the surface of a PET film using a bar coater to form a sheet of the composition for forming an insulating magnetic layer on the PET film. By laminating the obtained sheet on the region where the conductor wiring of the wiring board obtained in Comparative Example 1 is formed, a layer made of the composition for forming an insulating magnetic layer is formed on the region, and the conductor The top surface and a pair of side surfaces of the wiring were coated.
  • a photosensitive layer was formed on the opposite side of the insulating magnetic layer from the substrate in the same manner as in Comparative Example 1. formed. Then, the portion of the photosensitive layer located on the conductor wiring was exposed and developed.
  • PMER developer P-7G manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • a resist film was formed having openings in portions other than the portions located on the conductor wiring.
  • a wiring board was obtained, which included a substrate, conductor wiring (thickness: 30 ⁇ m, width: 190 ⁇ m) provided on the substrate, and a 5 ⁇ m-thick insulating magnetic layer covering the upper surface of the conductor wiring.
  • the resulting wiring board is shown in FIG. 4(a).
  • Example 2 When the photosensitive layer formed on the conductor wiring is exposed, the photosensitive layer on the conductor wiring and the portion of the insulating magnetic layer located on one of the portions adjacent to the pair of side surfaces of the conductor wiring are exposed.
  • the substrate, the conductor wiring (thickness: 30 ⁇ m, width: 190 ⁇ m) provided on the substrate, and the insulating magnetic material with a thickness of 5 ⁇ m covering the upper surface and one side surface of the conductor wiring A wiring board comprising a layer was obtained. The resulting wiring board is shown in FIG. 4(b).
  • Example 3 When exposing the photosensitive layer formed on the conductor wiring, the portions of the photosensitive layer located on both the conductor wiring and the portions adjacent to the pair of side surfaces of the conductor wiring in the insulating magnetic layer are exposed.
  • the substrate, the conductor wiring (thickness: 30 ⁇ m, width: 190 ⁇ m) provided on the substrate, and the insulating magnetic material with a thickness of 5 ⁇ m covering the upper surface and the pair of side surfaces of the conductor wiring A wiring board comprising a layer was obtained. The resulting wiring board is shown in FIG. 4(c).
  • Example 4 The insulating magnetic layer covering the upper surface of the conductor wiring in the wiring board obtained in Example 2 was removed by a fly-cut method. As a result, a wiring board including a substrate, conductor wiring (thickness: 30 ⁇ m, width: 190 ⁇ m) provided on the substrate, and an insulating magnetic layer with a thickness of 5 ⁇ m covering one side surface of the conductor wiring is obtained. rice field. The resulting wiring board is shown in FIG. 4(d).
  • Example 5 The insulating magnetic layer covering the upper surface of the conductor wiring in the wiring board obtained in Example 3 was removed by a fly-cut method. As a result, a wiring board including a substrate, conductor wiring (thickness: 30 ⁇ m, width: 190 ⁇ m) provided on the substrate, and an insulating magnetic layer having a thickness of 5 ⁇ m covering a pair of side surfaces of the conductor wiring is obtained. rice field. The resulting wiring board is shown in FIG. 4(e).
  • the transmission loss of the wiring board produced above was evaluated by the triplate line resonator method.
  • a vector type network analyzer (E8364B manufactured by Keysight Technologies) was used in the triplate line resonator method.
  • the measurement conditions were line width: 0.15 mm, line length: 10 mm, characteristic impedance: about 50 ⁇ , frequencies: 10, 30, 50 GHz, and measurement temperature: 25°C. Based on the measured value of Comparative Example 1, when the transmission loss was reduced, it was evaluated as ⁇ , and when the transmission loss remained the same or increased, it was evaluated as x.
  • Photosensitive layer 8a Resist film 10
  • Substrate 20 Conductive wiring 30
  • Insulating magnetic layer 35 Composition for forming insulating magnetic layer 50
  • Substrate with wiring 100A, 100B, 100C Wiring substrate, H1... Opening.

Abstract

Provided is a method for producing a wiring board 100A, the wiring board 100A being provided with a substrate 10, conductive wiring 20 provided on the substrate 10, and an insulating magnetic layer 30 that comprises an insulator including a magnetic material and covers at least one of an upper surface S1 positioned on the side of the conductive wiring 20 opposite from the substrate 10 and/or a pair of side surfaces S3a, S3b positioned between the upper surface S1 and a bottom surface S2 positioned on the substrate 10 side, the method comprising a step a1 of preparing a wired substrate 50 provided with the substrate 10 and the conductive wiring 20 provided on the substrate 10, and a step a2 of forming the insulating magnetic layer 30 comprising a cured composition 35 for forming the insulating magnetic layer including a magnetic material, by covering the conductive wiring 20 with the composition 35 for forming the insulating magnetic layer and curing the composition 35 for forming the insulating magnetic layer.

Description

配線基板の製造方法Wiring board manufacturing method
 本発明は、配線基板の製造方法に関する。 The present invention relates to a method for manufacturing a wiring board.
 携帯電話に代表される移動体通信機器やその基地局装置、サーバー、ルーター等のネットワーク関連電子機器、あるいは大型コンピュータ等では、大容量の情報を低損失かつ高速で伝送・処理することが要求されている。かかる要求に対応するため、上述のような装置に搭載されるプリント配線板では、扱う電気信号の高周波数化が進んでいる。しかしながら、電気信号は、高周波になるほど減衰しやすくなる性質を有することから、高周波の電気信号を扱うプリント配線板には、従来以上に伝送損失を低くすることが求められる。 Mobile communication devices such as mobile phones, their base station devices, network-related electronic devices such as servers and routers, and large computers are required to transmit and process large amounts of information at low loss and at high speed. ing. In order to meet such demands, the frequency of electric signals handled by the printed wiring boards mounted on the devices described above is increasing. However, since electrical signals tend to be attenuated as the frequency increases, printed wiring boards that handle high-frequency electrical signals are required to have a transmission loss that is lower than ever before.
 上記の要求に対し、例えば、配線を含む導体層の表面粗さを小さくして、導体層の表面粗度が大きいことに起因する伝送損失を抑制すること(例えば、下記特許文献1を参照。)や、基板材料に、誘電率、誘電正接が小さいポリフェニレンエーテル含有樹脂等を用いて、誘電体に起因する伝送損失を低減すること(例えば、下記特許文献2を参照。)などの対策が知られている。 In response to the above requirements, for example, the surface roughness of a conductor layer including wiring is reduced to suppress the transmission loss caused by the large surface roughness of the conductor layer (see, for example, Patent Document 1 below. ), or using a polyphenylene ether-containing resin having a small dielectric constant and dielectric loss tangent as a substrate material to reduce the transmission loss caused by the dielectric (see, for example, Patent Document 2 below). It is
特開2021-016006号公報Japanese Patent Application Laid-Open No. 2021-016006 国際公開第2014/034103号パンフレットInternational Publication No. 2014/034103 pamphlet
 しかしながら、ポスト5G/6Gにおいて電気信号が更に高周波数化すると、上記の対策だけでは伝送損失の低下への対応が困難となる。 However, if the frequency of electrical signals increases further in post 5G/6G, it will be difficult to reduce transmission loss with the above measures alone.
 そこで、本発明は、高周波帯の伝送損失が小さい配線基板を提供することを目的とする。 Therefore, an object of the present invention is to provide a wiring board with low transmission loss in a high frequency band.
 本発明は、一側面において、基板と、該基板上に設けられた導体配線と、該導体配線の該基板とは反対側に位置する上面、及び/又は、該上面と該基板側に位置する底面との間に位置する一対の側面のうちの少なくとも一方を被覆し、磁性材を含む絶縁体からなる絶縁磁性層と、を備える、配線基板の製造方法であって、基板と、該基板上に設けられた導体配線と、を備える配線付き基板を用意する工程a1と、該導体配線を、磁性材を含む絶縁磁性層形成用組成物で被覆し、絶縁磁性層形成用組成物を硬化させることにより、絶縁磁性層形成用組成物の硬化物からなる絶縁磁性層を形成する工程a2と、を備える、配線基板の製造方法を提供する。 In one aspect, the present invention provides a substrate, a conductor wiring provided on the substrate, an upper surface of the conductor wiring located on the side opposite to the substrate, and/or a conductor located on the upper surface and the substrate side. A method for manufacturing a wiring board, comprising: a substrate; A step a1 of preparing a substrate with wiring provided with a conductor wiring provided in the step a1, covering the conductor wiring with an insulating magnetic layer forming composition containing a magnetic material, and curing the insulating magnetic layer forming composition Thus, there is provided a method for manufacturing a wiring board, comprising the step a2 of forming an insulating magnetic layer made of a cured product of the composition for forming an insulating magnetic layer.
 上記側面の配線基板の製造方法によれば、高周波帯の伝送損失が小さい配線基板を提供することができる。このような効果が奏される理由として、高周波で発生した磁束が磁性材を含む絶縁体を通過することで、導体配線内部の渦電流が低減し、これにより表皮効果が小さくなることが考えられる。 According to the manufacturing method of the wiring board of the side surface, it is possible to provide a wiring board with small transmission loss in the high frequency band. The reason why such an effect is exhibited is that the magnetic flux generated at a high frequency passes through an insulator containing a magnetic material, which reduces the eddy current inside the conductor wiring, thereby reducing the skin effect. .
 一側面において、上記工程a2は、互いに隣り合う前記導体配線間の空隙が充填されることなく導体配線の上面が被覆されるように、絶縁磁性層形成用組成物を導体配線に塗布する工程b1と、該絶縁磁性層形成用組成物を硬化させて絶縁磁性層を形成する工程b2と、を含んでいてよい。また、上記工程a2において、導体配線の上面を被覆する絶縁磁性層を形成しない場合、工程a2は、工程b2の後に、導体配線の上面を被覆する絶縁磁性層を研削又は研磨により除去する工程を更に含んでいてよい。この場合、工程b1では、導体配線の上面に加えて、一対の側面のうちの少なくとも一方が被覆されるように絶縁磁性層形成用組成物を導体配線に塗布する。 In one aspect, the step a2 is the step b1 of applying the composition for forming an insulating magnetic layer to the conductor wiring such that the upper surface of the conductor wiring is covered without filling the gap between the conductor wiring adjacent to each other. and a step b2 of curing the composition for forming an insulating magnetic layer to form an insulating magnetic layer. Further, if the insulating magnetic layer covering the upper surface of the conductor wiring is not formed in the above step a2, the step a2 includes the step of removing the insulating magnetic layer covering the upper surface of the conductor wiring by grinding or polishing after the step b2. It may further contain In this case, in step b1, the composition for forming an insulating magnetic layer is applied to the conductor wiring so as to cover at least one of the pair of side surfaces in addition to the upper surface of the conductor wiring.
 他の一側面において、上記工程a2は、配線付き基板の導体配線が形成されている領域上に絶縁磁性層形成用組成物からなる層を形成する工程c1と、絶縁磁性層形成用組成物からなる層を硬化させて絶縁磁性層形成用組成物の硬化物からなる絶縁磁性層を形成する工程c2と、絶縁磁性層形成用組成物からなる層又は絶縁磁性層の、基板とは反対側上に感光層を形成する工程c3と、感光層を所定のパターンで露光し、現像することにより、導体配線上以外の部分の少なくとも一部に開口部を有するレジスト膜を形成する工程c4と、絶縁磁性層形成用組成物からなる層又は絶縁磁性層の、基板とレジスト膜の開口部との間に位置する部分を除去する工程c5と、を含んでいてよい。また、上記工程a2において、導体配線の上面を被覆する絶縁磁性層を形成しない場合、工程a2は、工程c2の後に、導体配線の上面を被覆する絶縁磁性層を研削又は研磨により除去する工程を更に含んでいてよい。 In another aspect, the step a2 includes step c1 of forming a layer made of the composition for forming an insulating magnetic layer on a region of the substrate with wires where the conductor wiring is formed, and a step c2 of curing the layer to form an insulating magnetic layer made of the cured product of the composition for forming an insulating magnetic layer; a step c3 of forming a photosensitive layer on the substrate, a step c4 of forming a resist film having an opening in at least a part of the portion other than the conductor wiring by exposing the photosensitive layer in a predetermined pattern and developing it, and a step c4 of insulating A step c5 of removing a portion of the layer made of the composition for forming the magnetic layer or the insulating magnetic layer located between the substrate and the opening of the resist film may be included. If the insulating magnetic layer covering the upper surface of the conductor wiring is not formed in the above step a2, the step a2 includes the step of removing the insulating magnetic layer covering the upper surface of the conductor wiring by grinding or polishing after step c2. It may further contain
 上記工程c1は、絶縁磁性層形成用組成物を上記領域に塗布する工程であってよく、絶縁磁性層形成用組成物からなるシートを上記領域にラミネートする工程であってもよい。 The step c1 may be a step of applying the insulating magnetic layer forming composition to the above region, or may be a step of laminating a sheet made of the insulating magnetic layer forming composition to the above region.
 一側面において、上記磁性材は、金属酸化物又はアモルファス金属であってよい。 In one aspect, the magnetic material may be metal oxide or amorphous metal.
 一側面において、上記絶縁体の比透磁率は、2~1000であってよい。 In one aspect, the insulator may have a relative magnetic permeability of 2 to 1,000.
 一側面において、上記絶縁体の比誘電率は、1~30であってよい。 In one aspect, the dielectric constant of the insulator may be 1-30.
 本発明によれば、高周波帯の伝送損失が小さい配線基板を提供することができる。 According to the present invention, it is possible to provide a wiring board with low transmission loss in a high frequency band.
配線基板の製造方法の第一実施形態を説明するための模式断面図である。1A to 1D are schematic cross-sectional views for explaining a first embodiment of a wiring board manufacturing method; 配線基板の製造方法の第二実施形態を説明するための模式断面図である。It is a schematic cross section for explaining a second embodiment of a method for manufacturing a wiring board. 図2に続く、配線基板の製造方法の第二実施形態を説明するための模式断面図である。FIG. 3 is a schematic cross-sectional view for explaining the second embodiment of the wiring board manufacturing method following FIG. 2 ; 実施例で作製した配線基板を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing a wiring substrate produced in Examples.
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and overlapping descriptions are omitted. In addition, unless otherwise specified, positional relationships such as up, down, left, and right are based on the positional relationships shown in the drawings. Furthermore, the dimensional ratios of the drawings are not limited to the illustrated ratios.
 なお、「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。また、以下で例示する材料は、特に断らない限り、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する該複数の物質の合計量を意味する。「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 It should be noted that the term "layer" includes not only a structure having a shape formed over the entire surface, but also a structure having a shape formed partially when observed as a plan view. Materials exemplified below may be used singly or in combination of two or more unless otherwise specified. The content of each component in the composition means the total amount of the plurality of substances present in the composition, unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition. A numerical range indicated using "-" indicates a range including the numerical values before and after "-" as the minimum and maximum values, respectively. In the numerical ranges described stepwise in this specification, the upper limit value or lower limit value of the numerical range at one step may be replaced with the upper limit value or lower limit value of the numerical range at another step. In the numerical ranges described herein, the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
<絶縁磁性層形成用組成物>
 絶縁磁性層形成用組成物は、磁性材を含む硬化性の組成物である。絶縁磁性層形成用組成物は、例えば、バインダ樹脂ワニスと、磁性粉とを混合して形成することができる。
<Composition for forming insulating magnetic layer>
The insulating magnetic layer-forming composition is a curable composition containing a magnetic material. The composition for forming an insulating magnetic layer can be formed, for example, by mixing a binder resin varnish and magnetic powder.
 磁性材としては、例えば、金属単体、合金及び金属化合物からなる群より選ばれる少なくとも一種の磁性粉であってよい。合金は、固溶体、共晶、アモルファス(非晶質)金属、及び金属間化合物からなる群より選ばれる少なくとも一種を含んでよい。金属化合物としては、金属酸化物が挙げられる。 The magnetic material may be, for example, at least one kind of magnetic powder selected from the group consisting of simple metals, alloys and metal compounds. The alloy may contain at least one selected from the group consisting of solid solutions, eutectic, amorphous metals, and intermetallic compounds. A metal oxide is mentioned as a metal compound.
 磁性材は、絶縁性の観点から、金属酸化物又はアモルファス(非晶質)金属であってもよく、金属ガラス磁性粉であってもよい。金属酸化物としては、フェライトが挙げられる。アモルファス(非晶質)金属としては、Fe基ナノ結晶合金、Co基ナノ結晶合金が挙げられる。 From the viewpoint of insulation, the magnetic material may be a metal oxide or an amorphous metal, or may be metallic glass magnetic powder. Metal oxides include ferrite. Amorphous metals include Fe-based nanocrystalline alloys and Co-based nanocrystalline alloys.
 磁性粉は、一種の金属元素又は複数種の金属元素を含んでよい。磁性粉に含まれる金属元素は、例えば、卑金属元素、貴金属元素、遷移金属元素、又は希土類元素であってよい。磁性粉に含まれる金属元素は、例えば、鉄(Fe)、銅(Cu)、チタン(Ti)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、スズ(Sn)、クロム(Cr)、バリウム(Ba)、ストロンチウム(Sr)、鉛(Pb)、銀(Ag)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)及びジスプロシウム(Dy)からなる群より選ばれる少なくとも一種であってよい。磁性粉は、金属元素以外の元素を含んでもよい。磁性粉は、例えば、酸素、ホウ素、又はケイ素を含んでもよい。 The magnetic powder may contain one type of metal element or multiple types of metal elements. The metal elements contained in the magnetic powder may be, for example, base metal elements, noble metal elements, transition metal elements, or rare earth elements. Metal elements contained in the magnetic powder include, for example, iron (Fe), copper (Cu), titanium (Ti), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), and aluminum (Al). , tin (Sn), chromium (Cr), barium (Ba), strontium (Sr), lead (Pb), silver (Ag), praseodymium (Pr), neodymium (Nd), samarium (Sm) and dysprosium (Dy) It may be at least one selected from the group consisting of The magnetic powder may contain elements other than metal elements. Magnetic powders may contain, for example, oxygen, boron, or silicon.
 磁性粉としては、Fe-Si系合金、Fe-Si-Al系合金(センダスト)、Fe-Ni系合金(パーマロイ)Fe-Cu-Ni系合金(パーマロイ)、Fe-Cr-Si系合金、Fe-Cr系合金、Fe-Ni-Cr系合金(電磁ステンレス鋼)、Nd-Fe-B系合金(希土類磁石)、Al-Ni-Co系合金(アルニコ磁石)及びフェライトからなる群より選ばれる少なくとも一種の組成物を用いることができる。フェライトは、例えば、スピネルフェライト、六方晶フェライト、又はガーネットフェライトであってよい。 Magnetic powders include Fe—Si alloys, Fe—Si—Al alloys (sendust), Fe—Ni alloys (permalloy), Fe—Cu—Ni alloys (permalloy), Fe—Cr—Si alloys, Fe At least selected from the group consisting of -Cr alloy, Fe-Ni-Cr alloy (electromagnetic stainless steel), Nd-Fe-B alloy (rare earth magnet), Al-Ni-Co alloy (alnico magnet) and ferrite One composition can be used. Ferrites may be, for example, spinel ferrites, hexagonal ferrites, or garnet ferrites.
 Fe系合金は、Feアモルファス合金であってもよい。Feアモルファス合金粉は、主成分となるFeをSi等の他の元素と一緒に高温溶融した合金を急冷して得られる非晶質の粉末であり、金属ガラスとしても知られている。Feアモルファス合金粉は、当技術分野で周知の方法に従って製造することができる。Feアモルファス合金粉は、エプソンアトミックス株式会社製の製品名「AW2-08」、及び「KUAMET-6B2」、大同特殊鋼株式会社製の製品名「DAPMS3」、「DAPMS7」、「DAPMSA10」、「DAPPB」、「DAPPC」、「DAPMKV49」、「DAP410L」、「DAP430L」、及び「DAPHYBシリーズ」、並びに株式会社神戸製鋼所製の製品名「MH45D」、「MH28D」、「MH25D」、及び「MH20D」などの市販品を用いることができる。 The Fe-based alloy may be an amorphous Fe alloy. Fe amorphous alloy powder is an amorphous powder obtained by rapidly cooling an alloy obtained by melting Fe, which is the main component, together with other elements such as Si at a high temperature, and is also known as metallic glass. Fe amorphous alloy powder can be produced according to methods well known in the art. The Fe amorphous alloy powder has the product names "AW2-08" and "KUAMET-6B2" manufactured by Epson Atmix Co., Ltd., and the product names "DAPMS3", "DAPMS7", "DAPMSA10" and "DAPMSA10" manufactured by Daido Steel Co., Ltd. DAPPB", "DAPPC", "DAPMKV49", "DAP410L", "DAP430L", and "DAPHYB series", and product names "MH45D", "MH28D", "MH25D", and "MH20D" manufactured by Kobe Steel, Ltd. ” can be used.
 磁性粉は、上記の元素及び組成物のうち一種を含んでよく、上記の元素及び組成物のうち複数種を含んでもよい。 The magnetic powder may contain one of the above elements and compositions, or may contain more than one of the above elements and compositions.
 磁性粉は、球状、略球状、フレーク状、又は楕円状であってもよい。また、磁性粉は、一部に角が形成されるその他の様々な形状であってもよい。流動性に優れる観点から、磁性粉は、球状であってもよい。 The magnetic powder may be spherical, approximately spherical, flaky, or elliptical. In addition, the magnetic powder may have various other shapes with some corners. From the viewpoint of excellent fluidity, the magnetic powder may be spherical.
 磁性粉の平均粒子径は、0.005~50μmであってもよい。本明細書において記載する「平均粒子径」は、粒度分布における積算値50%(体積基準)での粒径を意味する。磁性粉は、細密充填するように、2~3種類の平均粒子径の粒子の混合物を用いることができる。 The magnetic powder may have an average particle size of 0.005 to 50 μm. The "average particle size" described in this specification means the particle size at 50% of the integrated value (by volume) in the particle size distribution. The magnetic powder can be a mixture of particles with two or three average particle sizes so as to be closely packed.
 磁性粉は、表面に被膜を有していてもよい。被膜は、例えば、無機塩、アクリル樹脂、ケイ素酸化合物などから形成することができる。また、磁性粉は、表面の全体又は一部が表面処理剤によって被覆されていてもよい。表面処理剤は、例えば、無機酸化物、リン酸系化合物及びリン酸塩系化合物、並びにシランカップリング剤等の無機系表面処理剤、モンタンワックス等の有機系表面処理剤、樹脂硬化物であってよい。表面処理剤として、後述するカップリング剤を使用することもできる。例えば、Fe系合金等の金属系の磁性粉は、その表面の全体又は一部が絶縁性材料によって被覆されていてもよい。絶縁性材料として、例えば、シリカ、チタニア、リン酸カルシウム、モンタンワックス、及びエポキシ樹脂硬化物が挙げられる。 The magnetic powder may have a coating on its surface. The coating can be formed from, for example, inorganic salts, acrylic resins, silicic acid compounds, and the like. Further, the magnetic powder may be entirely or partially coated with a surface treatment agent. Examples of surface treatment agents include inorganic oxides, phosphoric acid compounds and phosphate compounds, inorganic surface treatment agents such as silane coupling agents, organic surface treatment agents such as montan wax, and cured resins. you can A coupling agent, which will be described later, can also be used as the surface treatment agent. For example, metal-based magnetic powder such as Fe-based alloys may be entirely or partially covered with an insulating material. Examples of insulating materials include silica, titania, calcium phosphate, montan wax, and cured epoxy resins.
 磁性粉は、表面が絶縁性材料で被覆された磁性粉(以下、絶縁被覆磁性粉という)を含んでよい。絶縁被覆磁性粉は、1種を単独で又は2種以上を組み合わせて用いることができる。2種以上の絶縁被覆磁性粉の平均粒子径は互いに同じであっても、異なっていてもよい。また、絶縁被覆磁性粉と、絶縁被覆を持たない磁性粉(以下、未被覆磁性粉という)とを併用してもよい。未被覆磁性粉の平均粒子径は、絶縁被覆磁性粉の平均粒子径と同じであっても、異なっていてもよい。例えば、絶縁性を発現させる観点から、未被覆磁性粉の平均粒子径は、絶縁被覆磁性粉の平均粒子径よりも小さくてもよい。 The magnetic powder may include magnetic powder whose surface is coated with an insulating material (hereinafter referred to as "insulating-coated magnetic powder"). The insulating coated magnetic powder can be used singly or in combination of two or more. The average particle diameters of the two or more types of insulation-coated magnetic powders may be the same or different. Insulating coated magnetic powder and magnetic powder without insulating coating (hereinafter referred to as uncoated magnetic powder) may be used together. The average particle size of the uncoated magnetic powder may be the same as or different from the average particle size of the insulating-coated magnetic powder. For example, the average particle size of the uncoated magnetic powder may be smaller than the average particle size of the insulation-coated magnetic powder from the viewpoint of exhibiting insulating properties.
 絶縁被覆磁性粉は、絶縁被覆を有するFeアモルファス合金粉であってよい。このような絶縁被覆磁性粉は、例えば、エプソンアトミックス株式会社製の「KUAMET9A4」(Fe-Si-B系合金、D50:20μm、絶縁被覆あり)、及び新東工業株式会社製の「SAP-2D(C)」(Fe-Si-B-PNb-Cr系合金、D50:2.3μm、絶縁被覆あり)などの市販品を用いることができる。未被覆磁性粉は、例えば、新東工業株式会社製の「SAP-2D」(Fe-Si-B-PNb-Cr系合金、D50:2.3μm、絶縁被覆なし)や、戸田工業株式会社製のソフトフェライト粉「BSN-125」(Ni-Zn系合金、D50:10μm、絶縁被覆なし)などの市販品を用いることができる。 The insulating coated magnetic powder may be Fe amorphous alloy powder having an insulating coating. Examples of such insulating coated magnetic powder include "KUAMET9A4" (Fe--Si--B alloy, D50: 20 μm, with insulating coating) manufactured by Epson Atmix Corporation, and "SAP- 2D(C)" (Fe--Si--B--PNb--Cr alloy, D50: 2.3 μm, with insulating coating) and the like can be used. The uncoated magnetic powder is, for example, "SAP-2D" (Fe-Si-B-PNb-Cr alloy, D50: 2.3 μm, no insulation coating) manufactured by Sintokogyo Co., Ltd., or manufactured by Toda Kogyo Co., Ltd. soft ferrite powder "BSN-125" (Ni--Zn alloy, D50: 10 μm, no insulation coating) or the like can be used.
 絶縁磁性層形成用組成物における磁性粉の含有量は、組成物の全質量を100質量部としたときに、70~99質量部、又は80~90質量部であってもよい。 The content of the magnetic powder in the insulating magnetic layer-forming composition may be 70 to 99 parts by mass, or 80 to 90 parts by mass when the total mass of the composition is 100 parts by mass.
 バインダ樹脂ワニスは、樹脂組成物を用いることができる。 A resin composition can be used for the binder resin varnish.
 樹脂組成物はエポキシ樹脂を含有することができる。 The resin composition can contain epoxy resin.
 エポキシ樹脂としては、例えば、ナフタレン型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、ナフトール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、ナフトール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等の縮合環構造を有するエポキシ樹脂;ビスフェノールA型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;ビスフェノールS型エポキシ樹脂;ビスフェノールAF型エポキシ樹脂;トリスフェノール型エポキシ樹脂;ノボラック型エポキシ樹脂;ナフトールノボラック型エポキシ樹脂;フェノールノボラック型エポキシ樹脂;tert-ブチル-カテコール型エポキシ樹脂;グリシジルアミン型エポキシ樹脂;グリシジルエステル型エポキシ樹脂;クレゾールノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂;線状脂肪族エポキシ樹脂;ブタジエン構造を有するエポキシ樹脂;脂環式エポキシ樹脂;複素環式エポキシ樹脂;スピロ環含有エポキシ樹脂;シクロヘキサンジメタノール型エポキシ樹脂;トリメチロール型エポキシ樹脂;テトラフェニルエタン型エポキシ樹脂;ビキシレノール型エポキシ樹脂等が挙げられる。これらは、1種を単独で、又は2種以上を組み合わせて用いることができる。 Examples of epoxy resins include naphthalene-type epoxy resins, naphthalene-type tetrafunctional epoxy resins, naphthol-type epoxy resins, naphthylene ether-type epoxy resins, anthracene-type epoxy resins, dicyclopentadiene-type epoxy resins, naphthalene-type epoxy resins, and naphthalene-type epoxy resins. Epoxy resins having a condensed ring structure such as tetrafunctional epoxy resins, naphthol type epoxy resins, naphthylene ether type epoxy resins, dicyclopentadiene type epoxy resins; bisphenol A type epoxy resins; bisphenol F type epoxy resins; bisphenol S type epoxy resins bisphenol AF type epoxy resin; trisphenol type epoxy resin; novolak type epoxy resin; naphthol novolak type epoxy resin; phenol novolak type epoxy resin; tert-butyl-catechol type epoxy resin; glycidylamine type epoxy resin; linear aliphatic epoxy resins; epoxy resins having a butadiene structure; alicyclic epoxy resins; heterocyclic epoxy resins; spiro ring-containing epoxy resins; ; trimethylol type epoxy resin; tetraphenylethane type epoxy resin; bixylenol type epoxy resin and the like. These can be used individually by 1 type or in combination of 2 or more types.
 エポキシ樹脂は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂であってもよい。また、エポキシ樹脂は、温度25℃で液状又は固体状であってもよい。 The epoxy resin may be an epoxy resin having two or more epoxy groups in one molecule. Also, the epoxy resin may be liquid or solid at a temperature of 25°C.
 25℃で液状のエポキシ樹脂(以下、「液状エポキシ樹脂」ともいう。)としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、エステル骨格を有する脂環式エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、及びブタジエン構造を有するエポキシ樹脂を用いることができる。液状エポキシ樹脂は、DIC社製の「HP4032」、「HP4032D」、「HP4032SS」(ナフタレン型エポキシ樹脂)、三菱ケミカル社製の「828US」、「jER828EL」(ビスフェノールA型エポキシ樹脂)、「jER807」(ビスフェノールF型エポキシ樹脂)、「jER152」(フェノールノボラック型エポキシ樹脂)、「630」、「630LSD」(グリシジルアミン型エポキシ樹脂)、新日鉄住金化学社製の「ZX1059」(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品)、ナガセケムテックス社製の「EX-721」(グリシジルエステル型エポキシ樹脂)、ダイセル社製の「セロキサイド2021P」(エステル骨格を有する脂環式エポキシ樹脂)、「PB-3600」(ブタジエン構造を有するエポキシ樹脂)、新日鉄住金化学社製の「ZX1658」、「ZX1658GS」(液状1,4-グリシジルシクロヘキサン)、三菱ケミカル社製の「630LSD」(グリシジルアミン型エポキシ樹脂)、ADEKA社製の「EP-3980S」(グリシジルアミン型エポキシ樹脂)等の市販品を用いることができる。 Epoxy resins that are liquid at 25° C. (hereinafter also referred to as “liquid epoxy resins”) include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AF type epoxy resins, naphthalene type epoxy resins, and glycidyl ester type epoxy resins. , glycidylamine type epoxy resins, phenol novolac type epoxy resins, alicyclic epoxy resins having an ester skeleton, cyclohexanedimethanol type epoxy resins, glycidylamine type epoxy resins, and epoxy resins having a butadiene structure can be used. Liquid epoxy resins include "HP4032", "HP4032D", and "HP4032SS" (naphthalene type epoxy resins) manufactured by DIC Corporation, and "828US", "jER828EL" (bisphenol A type epoxy resins) and "jER807" manufactured by Mitsubishi Chemical Corporation. (bisphenol F type epoxy resin), "jER152" (phenol novolac type epoxy resin), "630", "630LSD" (glycidylamine type epoxy resin), "ZX1059" manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. (bisphenol A type epoxy resin and Bisphenol F type epoxy resin mixture), "EX-721" (glycidyl ester type epoxy resin) manufactured by Nagase ChemteX Corporation, "Celoxide 2021P" manufactured by Daicel (alicyclic epoxy resin having an ester skeleton), " PB-3600" (epoxy resin having a butadiene structure), Nippon Steel & Sumikin Chemical Co., Ltd. "ZX1658", "ZX1658GS" (liquid 1,4-glycidylcyclohexane), Mitsubishi Chemical Corporation "630LSD" (glycidylamine type epoxy resin ), ADEKA's "EP-3980S" (glycidylamine type epoxy resin), and other commercially available products can be used.
 25℃で固体状のエポキシ樹脂としては、ナフタレン型4官能エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂を用いることができる。固体状エポキシ樹脂は、DIC社製の「HP4032H」(ナフタレン型エポキシ樹脂)、「HP-4700」、「HP-4710」(ナフタレン型4官能エポキシ樹脂)、「N-690」(クレゾールノボラック型エポキシ樹脂)、「N-695」、「N-680」(クレゾールノボラック型エポキシ樹脂)、「HP-7200」(ジシクロペンタジエン型エポキシ樹脂)、「HP-7200HH」、「HP-7200H」、「EXA-7311」、「EXA-7311-G3」、「EXA-7311-G4」、「EXA-7311-G4S」、「HP6000」(ナフチレンエーテル型エポキシ樹脂)、日本化薬社製の「EPPN-502H」(トリスフェノール型エポキシ樹脂)、「NC7000L」(ナフトールノボラック型エポキシ樹脂)、「NC3000H」、「NC3000」、「NC3000L」、「NC3100」(ビフェニル型エポキシ樹脂)、新日鉄住金化学社製の「ESN475V」(ナフタレン型エポキシ樹脂)、「ESN485」(ナフトールノボラック型エポキシ樹脂)、三菱ケミカル社製の「YX4000H」、「YL6121」(ビフェニル型エポキシ樹脂)、「YX4000HK」(ビキシレノール型エポキシ樹脂)、「YX8800」(アントラセン型エポキシ樹脂)、大阪ガスケミカル社製の「PG-100」、「CG-500」、三菱ケミカル社製の「YL7760」(ビスフェノールAF型エポキシ樹脂)、「YL7800」(フルオレン型エポキシ樹脂)、三菱ケミカル社製の「jER1010」(固体状ビスフェノールA型エポキシ樹脂)、「jER1031S」(テトラフェニルエタン型エポキシ樹脂)、「157S70」(ノボラック型エポキシ樹脂)等の市販品を用いることができる。 Epoxy resins that are solid at 25° C. include naphthalene-type tetrafunctional epoxy resin, cresol novolac-type epoxy resin, dicyclopentadiene-type epoxy resin, trisphenol-type epoxy resin, naphthol-type epoxy resin, biphenyl-type epoxy resin, and naphthylene ether. type epoxy resin, anthracene type epoxy resin, bisphenol A type epoxy resin, and tetraphenylethane type epoxy resin can be used. Solid epoxy resins, manufactured by DIC "HP4032H" (naphthalene type epoxy resin), "HP-4700", "HP-4710" (naphthalene type tetrafunctional epoxy resin), "N-690" (cresol novolak type epoxy resin), "N-695", "N-680" (cresol novolak type epoxy resin), "HP-7200" (dicyclopentadiene type epoxy resin), "HP-7200HH", "HP-7200H", "EXA -7311", "EXA-7311-G3", "EXA-7311-G4", "EXA-7311-G4S", "HP6000" (naphthylene ether type epoxy resin), "EPPN-502H" manufactured by Nippon Kayaku Co., Ltd. ” (trisphenol type epoxy resin), “NC7000L” (naphthol novolak type epoxy resin), “NC3000H”, “NC3000”, “NC3000L”, “NC3100” (biphenyl type epoxy resin), “ESN475V” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. " (naphthalene type epoxy resin), "ESN485" (naphthol novolac type epoxy resin), "YX4000H" manufactured by Mitsubishi Chemical Corporation, "YL6121" (biphenyl type epoxy resin), "YX4000HK" (bixylenol type epoxy resin), " YX8800" (anthracene type epoxy resin), Osaka Gas Chemicals Co., Ltd. "PG-100", "CG-500", Mitsubishi Chemical Co., Ltd. "YL7760" (bisphenol AF type epoxy resin), "YL7800" (fluorene type epoxy resin), commercially available products such as "jER1010" (solid bisphenol A type epoxy resin), "jER1031S" (tetraphenylethane type epoxy resin), "157S70" (novolac type epoxy resin) manufactured by Mitsubishi Chemical Corporation can be used. can.
 樹脂組成物は、硬化剤を含有してもよい。硬化剤としては、例えば、フェノール系硬化剤、ナフトール系硬化剤、ベンゾオキサジン系硬化剤、及びシアネートエステル系硬化剤などが挙げられる。硬化剤は、1種を単独で、又は2種以上を組み合わせて用いることができる。 The resin composition may contain a curing agent. Examples of curing agents include phenol-based curing agents, naphthol-based curing agents, benzoxazine-based curing agents, and cyanate ester-based curing agents. Curing agents may be used singly or in combination of two or more.
 フェノール系硬化剤及びナフトール系硬化剤としては、ノボラック構造を有するフェノール系硬化剤、ノボラック構造を有するナフトール系硬化剤、含窒素フェノール系硬化剤、トリアジン骨格含有フェノール系硬化剤を用いることができる。 As the phenol-based curing agent and naphthol-based curing agent, a phenol-based curing agent having a novolak structure, a naphthol-based curing agent having a novolac structure, a nitrogen-containing phenol-based curing agent, and a triazine skeleton-containing phenol-based curing agent can be used.
 フェノール系硬化剤及びナフトール系硬化剤は、明和化成社製の「MEH-7700」、「MEH-7810」、「MEH-7851」、日本化薬社製の「NHN」、「CBN」、「GPH」、新日鉄住金化学社製の「SN170」、「SN180」、「SN190」、「SN475」、「SN485」、「SN495V」、「SN375」、「SN395」、DIC社製の「TD2090」、「TD2090-60M」、「LA-7052」、「LA-7054」、「LA-1356」、「LA-3018」、「LA-3018-50P」、「EXB-9500」、「HPC-9500」、「KA-1160」、「KA-1163」、「KA-1165」、群栄化学社製の「GDP-6115L」、「GDP-6115H」、「ELPC75」等の市販品を用いることができる。 Phenol-based curing agents and naphthol-based curing agents are "MEH-7700", "MEH-7810", and "MEH-7851" manufactured by Meiwa Kasei Co., Ltd., and "NHN", "CBN", and "GPH" manufactured by Nippon Kayaku Co., Ltd. ”, “SN170”, “SN180”, “SN190”, “SN475”, “SN485”, “SN495V”, “SN375”, “SN395” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., “TD2090” manufactured by DIC, “TD2090 -60M", "LA-7052", "LA-7054", "LA-1356", "LA-3018", "LA-3018-50P", "EXB-9500", "HPC-9500", "KA -1160", "KA-1163", "KA-1165", and commercially available products such as "GDP-6115L", "GDP-6115H", and "ELPC75" manufactured by Gun Ei Kagaku Co., Ltd. can be used.
 ベンゾオキサジン系硬化剤は、昭和高分子社製の「HFB2006M」、四国化成工業社製の「P-d」、「F-a」等の市販品を用いることができる。 Commercial products such as "HFB2006M" manufactured by Showa Polymer Co., Ltd., "Pd" and "Fa" manufactured by Shikoku Kasei Kogyo Co., Ltd. can be used as benzoxazine-based curing agents.
 シアネートエステル系硬化剤としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート、オリゴ(3-メチレン-1,5-フェニレンシアネート)、4,4’-メチレンビス(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2-ビス(4-シアネート)フェニルプロパン、1,1-ビス(4-シアネートフェニルメタン)、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、及びビス(4-シアネートフェニル)エーテル等の2官能シアネート樹脂、フェノールノボラック及びクレゾールノボラック等から誘導される多官能シアネート樹脂、これらシアネート樹脂が一部トリアジン化したプレポリマーなどが挙げられる。 Examples of cyanate ester curing agents include bisphenol A dicyanate, polyphenolcyanate, oligo(3-methylene-1,5-phenylenecyanate), 4,4′-methylenebis(2,6-dimethylphenylcyanate), 4,4 '-ethylidene diphenyl dicyanate, hexafluorobisphenol A dicyanate, 2,2-bis(4-cyanate)phenylpropane, 1,1-bis(4-cyanatophenylmethane), bis(4-cyanate-3,5-dimethyl Bifunctional cyanate resins such as phenyl)methane, 1,3-bis(4-cyanatophenyl-1-(methylethylidene))benzene, bis(4-cyanatophenyl)thioether, and bis(4-cyanatophenyl)ether, phenol Polyfunctional cyanate resins derived from novolacs, cresol novolaks, etc., and prepolymers obtained by partially triazine-forming these cyanate resins.
 シアネートエステル系硬化剤は、ロンザジャパン社製の「PT30」及び「PT60」(いずれもフェノールノボラック型多官能シアネートエステル樹脂)、「BA230」、「BA230S75」(ビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー)等の市販品を用いることができる。 The cyanate ester curing agents are Lonza Japan's "PT30" and "PT60" (both phenol novolac type polyfunctional cyanate ester resins), "BA230", and "BA230S75" (part or all of bisphenol A dicyanate is triazine A commercially available product such as a trimerized prepolymer) can be used.
 樹脂組成物における硬化剤の含有量は、樹脂組成物中の樹脂成分を100質量部としたときに、0.1質量部以上、0.3質量部以上、又は0.5質量部以上であってもよく、5質量部以下、3質量部以下、又は2質量部以下であってもよい。 The content of the curing agent in the resin composition is 0.1 parts by mass or more, 0.3 parts by mass or more, or 0.5 parts by mass or more when the resin component in the resin composition is 100 parts by mass. 5 parts by mass or less, 3 parts by mass or less, or 2 parts by mass or less.
 樹脂組成物は、硬化促進剤を含有してもよい。硬化促進剤としては、例えば、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤、グアニジン系硬化促進剤、金属系硬化促進剤等が挙げられ、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤、金属系硬化促進剤が挙げられる。硬化促進剤は、1種を単独で、又は2種以上を組み合わせて用いることができる。 The resin composition may contain a curing accelerator. Examples of curing accelerators include phosphorus-based curing accelerators, amine-based curing accelerators, imidazole-based curing accelerators, guanidine-based curing accelerators, and metal-based curing accelerators. Curing accelerators, imidazole-based curing accelerators, and metal-based curing accelerators are included. A hardening accelerator can be used individually by 1 type or in combination of 2 or more types.
 リン系硬化促進剤としては、例えば、トリフェニルホスフィン、ホスホニウムボレート化合物、テトラフェニルホスホニウムテトラフェニルボレート、n-ブチルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムデカン酸塩、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート等が挙げられる。 Phosphorus curing accelerators include, for example, triphenylphosphine, phosphonium borate compounds, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, (4-methylphenyl)triphenylphosphonium thiocyanate. , tetraphenylphosphonium thiocyanate, butyltriphenylphosphonium thiocyanate, and the like.
 アミン系硬化促進剤としては、例えば、トリエチルアミン、トリブチルアミン等のトリアルキルアミン、4-ジメチルアミノピリジン、ベンジルジメチルアミン、2,4,6,-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)-ウンデセン等が挙げられ、4-ジメチルアミノピリジン、1,8-ジアザビシクロ(5,4,0)-ウンデセンが挙げられる。 Examples of amine curing accelerators include trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl)phenol, 1,8-diazabicyclo (5,4,0)-undecene and the like, including 4-dimethylaminopyridine and 1,8-diazabicyclo(5,4,0)-undecene.
 イミダゾール系硬化促進剤としては、例えば、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン、2-フェニルイミダゾリン等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられる。 Examples of imidazole curing accelerators include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl- 2-phenylimidazolium trimellitate, 2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-undecyl imidazolyl-(1′)]-ethyl-s-triazine, 2,4-diamino-6-[2′-ethyl-4′-methylimidazolyl-(1′)]-ethyl-s-triazine, 2,4- Diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine isocyanurate, 2-phenylimidazole isocyanurate, 2-phenyl-4,5-dihydroxymethylimidazole, 2- Phenyl-4-methyl-5-hydroxymethylimidazole, 2,3-dihydro-1H-pyrrolo[1,2-a]benzimidazole, 1-dodecyl-2-methyl-3-benzylimidazolium chloride, 2-methylimidazoline , 2-phenylimidazoline and other imidazole compounds, and adducts of imidazole compounds and epoxy resins.
 イミダゾール系硬化促進剤は、三菱ケミカル社製の「P200-H50」等の市販品を用いることができる。 Commercial products such as "P200-H50" manufactured by Mitsubishi Chemical can be used as the imidazole-based curing accelerator.
 グアニジン系硬化促進剤としては、例えば、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド等が挙げられる。 Guanidine curing accelerators include, for example, dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1-(o-tolyl)guanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, Tetramethylguanidine, Pentamethylguanidine, 1,5,7-triazabicyclo[4.4.0]dec-5-ene, 7-methyl-1,5,7-triazabicyclo[4.4.0] Dec-5-ene, 1-methylbiguanide, 1-ethylbiguanide, 1-n-butylbiguanide, 1-n-octadecylbiguanide, 1,1-dimethylbiguanide, 1,1-diethylbiguanide, 1-cyclohexylbiguanide, 1 -allylbiguanide, 1-phenylbiguanide, 1-(o-tolyl)biguanide and the like.
 金属系硬化促進剤としては、例えば、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体又は有機金属塩が挙げられる。有機金属錯体としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体等が挙げられる。有機金属塩としては、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛等が挙げられる。 Examples of metal-based curing accelerators include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin. Organic metal complexes include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate; organic copper complexes such as copper (II) acetylacetonate; Examples include zinc complexes, organic iron complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate. Examples of organic metal salts include zinc octoate, tin octoate, zinc naphthenate, cobalt naphthenate, tin stearate, zinc stearate and the like.
 樹脂組成物における硬化促進剤の含有量は、樹脂組成物中の不揮発成分を100質量部としたときに、0.001質量部以上、0.005質量部以上、又は0.01質量部以上であってもよく、0.1質量部以下、0.08質量部以下、又は0.05質量部以下であってもよい。 The content of the curing accelerator in the resin composition is 0.001 parts by mass or more, 0.005 parts by mass or more, or 0.01 parts by mass or more when the non-volatile component in the resin composition is 100 parts by mass. 0.1 parts by mass or less, 0.08 parts by mass or less, or 0.05 parts by mass or less.
 樹脂組成物は、熱可塑性樹脂を含有してもよい。熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリオレフィン樹脂、ポリブタジエン樹脂、シロキサン樹脂、ポリ(メタ)アクリル樹脂、ポリアルキレン樹脂、ポリアルキレンオキシ樹脂、ポリイソプレン樹脂、ポリイソブチレン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂が挙げられる。 The resin composition may contain a thermoplastic resin. Examples of thermoplastic resins include phenoxy resins, polyvinyl acetal resins, polyolefin resins, polybutadiene resins, siloxane resins, poly(meth)acrylic resins, polyalkylene resins, polyalkyleneoxy resins, polyisoprene resins, polyisobutylene resins, and polyimide resins. , polyamideimide resins, polyetherimide resins, polysulfone resins, polyethersulfone resins, polyphenylene ether resins, polycarbonate resins, polyetheretherketone resins, and polyester resins.
 フェノキシ樹脂は、三菱ケミカル社製の「1256」及び「4250」(いずれもビスフェノールA構造含有フェノキシ樹脂)、「YX8100」(ビスフェノールS骨格含有フェノキシ樹脂)、及び「YX6954」(ビスフェノールアセトフェノン構造含有フェノキシ樹脂)が挙げられ、その他にも、新日鉄住金化学社製の「FX280」及び「FX293」、三菱ケミカル社製の「YX7180」、「YX6954」、「YX7553」、「YX7553BH30」、「YL7553BH30」、「YL7769」、「YL6794」、「YL7213」、「YL7290」、「YL7891」、「YL7482」等の市販品を用いることができる。 The phenoxy resins are Mitsubishi Chemical's "1256" and "4250" (both bisphenol A structure-containing phenoxy resins), "YX8100" (bisphenol S skeleton-containing phenoxy resin), and "YX6954" (bisphenol acetophenone structure-containing phenoxy resin). ), and in addition, “FX280” and “FX293” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., “YX7180” manufactured by Mitsubishi Chemical Corporation, “YX6954”, “YX7553”, “YX7553BH30”, “YL7553BH30”, “YL7769 , YL6794, YL7213, YL7290, YL7891, YL7482 and the like can be used.
 熱可塑性樹脂は、分子内に、ポリブタジエン構造、ポリシロキサン構造、ポリ(メタ)アクリレート構造、ポリアルキレン構造、ポリアルキレンオキシ構造、ポリイソプレン構造、ポリイソブチレン構造、及びポリカーボネート構造から選択される1種以上の構造を有していてもよい。これらの構造は主鎖に含まれていても側鎖に含まれていてもよい。ポリブタジエン構造は、一部又は全てが水素添加されていてもよい。ポリアルキレンオキシ構造は、炭素原子数2~15のポリアルキレンオキシ構造、炭素原子数3~10のポリアルキレンオキシ構造、又は炭素原子数5~6のポリアルキレンオキシ構造であってもよい。 The thermoplastic resin has, in its molecule, one or more selected from a polybutadiene structure, a polysiloxane structure, a poly(meth)acrylate structure, a polyalkylene structure, a polyalkyleneoxy structure, a polyisoprene structure, a polyisobutylene structure, and a polycarbonate structure. may have the structure of These structures may be contained in the main chain or may be contained in the side chain. A part or all of the polybutadiene structure may be hydrogenated. The polyalkyleneoxy structure may be a polyalkyleneoxy structure having 2 to 15 carbon atoms, a polyalkyleneoxy structure having 3 to 10 carbon atoms, or a polyalkyleneoxy structure having 5 to 6 carbon atoms.
 熱可塑性樹脂は、数平均分子量(Mn)が1,000以上、1,500以上、3,000以上、又は5,000以上であってもよく、1,000,000以下、又は900,000以下であってもよい。数平均分子量(Mn)は、GPC(ゲル浸透クロマトグラフィー)を使用して測定されるポリスチレン換算の数平均分子量を意味する。 The thermoplastic resin may have a number average molecular weight (Mn) of 1,000 or more, 1,500 or more, 3,000 or more, or 5,000 or more, and 1,000,000 or less, or 900,000 or less. may be The number average molecular weight (Mn) means the polystyrene equivalent number average molecular weight measured using GPC (gel permeation chromatography).
 熱可塑性樹脂は、エポキシ樹脂と反応し得る官能基を有していてもよい。エポキシ樹脂と反応し得る官能基は、ヒドロキシ基、カルボキシ基、酸無水物基、フェノール性水酸基、エポキシ基、イソシアネート基及びウレタン基からなる群から選択される1種以上の官能基であってもよい。 The thermoplastic resin may have a functional group that can react with the epoxy resin. The functional group capable of reacting with the epoxy resin may be one or more functional groups selected from the group consisting of a hydroxyl group, a carboxyl group, an acid anhydride group, a phenolic hydroxyl group, an epoxy group, an isocyanate group and a urethane group. good.
 ポリブタジエン樹脂は、クレイバレー社製の「Ricon 130MA8」、「Ricon 130MA13」、「Ricon 130MA20」、「Ricon 131MA5」、「Ricon 131MA10」、「Ricon 131MA17」、「Ricon 131MA20」、「Ricon 184MA6」(酸無水物基含有ポリブタジエン)、日本曹達社製の「GQ-1000」(水酸基、カルボキシル基導入ポリブタジエン)、「G-1000」、「G-2000」、「G-3000」(両末端水酸基ポリブタジエン)、「GI-1000」、「GI-2000」、「GI-3000」(両末端水酸基水素化ポリブタジエン)、ナガセケムテックス社製の「FCA-061L」(水素化ポリブタジエン骨格エポキシ樹脂)等の市販品を用いることができる。 The polybutadiene resin is "Ricon 130MA8", "Ricon 130MA13", "Ricon 130MA20", "Ricon 131MA5", "Ricon 131MA10", "Ricon 131MA17", "Ricon 131MA20", "Ricon 184MA6" (acid anhydride group-containing polybutadiene), Nippon Soda Co., Ltd. "GQ-1000" (hydroxyl group- and carboxyl group-introduced polybutadiene), "G-1000", "G-2000", "G-3000" (polybutadiene with both hydroxyl groups), Commercial products such as "GI-1000", "GI-2000", "GI-3000" (hydrogenated polybutadiene with both hydroxyl groups), "FCA-061L" (hydrogenated polybutadiene skeleton epoxy resin) manufactured by Nagase ChemteX Co., Ltd. can be used.
 ポリ(メタ)アクリル樹脂は、ナガセケムテックス社製のテイサンレジン、根上工業社製の「ME-2000」、「W-116.3」、「W-197C」、「KG-25」、「KG-3000」等の市販品を用いることができる。 Poly(meth)acrylic resins are Teisan resin manufactured by Nagase ChemteX Co., Ltd., and "ME-2000", "W-116.3", "W-197C" manufactured by Negami Kogyo Co., Ltd., "KG-25", "KG -3000" and other commercial products can be used.
 ポリカーボネート樹脂は、旭化成ケミカルズ社製の「T6002」、「T6001」(ポリカーボネートジオール)、クラレ社製の「C-1090」、「C-2090」、「C-3090」(ポリカーボネートジオール)等の市販品を用いることができる。 Polycarbonate resins are commercially available products such as "T6002" and "T6001" (polycarbonate diol) manufactured by Asahi Kasei Chemicals, "C-1090", "C-2090" and "C-3090" (polycarbonate diol) manufactured by Kuraray Co., Ltd. can be used.
 熱可塑性樹脂は、信越シリコーン社製の「SMP-2006」、「SMP-2003PGMEA」、「SMP-5005PGMEA」、アミン基末端ポリシロキサンおよび四塩基酸無水物を原料とする線状ポリイミド(国際公開第2010/053185号、特開2002-12667号公報及び特開2000-319386号公報等)、旭化成せんい社製の「PTXG-1000」、「PTXG-1800」、クラレ社製の「KL-610」、「KL613」、カネカ社製の「SIBSTAR-073T」(スチレン-イソブチレン-スチレントリブロック共重合体)、「SIBSTAR-042D」(スチレン-イソブチレンジブロック共重合体)、電気化学工業社製の「電化ブチラール4000-2」、「電化ブチラール5000-A」、「電化ブチラール6000-C」、「電化ブチラール6000-EP」、積水化学工業社製のエスレックBHシリーズ、BXシリーズ(例えばBX-5Z)、KSシリーズ(例えばKS-1)、BLシリーズ、BMシリーズ、新日本理化社製の「リカコートSN20」及び「リカコートPN20」、東洋紡社製の「バイロマックスHR11NN」及び「バイロマックスHR16NN」、日立化成社製の「KS9100」及び「KS9300」、住友化学社製の「PES5003P」、ソルベイアドバンストポリマーズ社製のポリスルホン「P1700」及び「P3500」、ガンツ化成社製の「AC3832」等の市販品を用いてもよい。 Thermoplastic resins include "SMP-2006", "SMP-2003PGMEA" and "SMP-5005PGMEA" manufactured by Shin-Etsu Silicone Co., Ltd., linear polyimides made from amine group-terminated polysiloxane and tetrabasic acid anhydride (International Publication No. 2010/053185, JP 2002-12667 and JP 2000-319386, etc.), "PTXG-1000" and "PTXG-1800" manufactured by Asahi Kasei Fibers Co., Ltd., "KL-610" manufactured by Kuraray Co., Ltd., "KL613", "SIBSTAR-073T" (styrene-isobutylene-styrene triblock copolymer) manufactured by Kaneka, "SIBSTAR-042D" (styrene-isobutylene diblock copolymer) manufactured by Denki Kagaku Kogyo Co., Ltd. "Denka Butyral 4000-2", "Denka Butyral 5000-A", "Denka Butyral 6000-C", "Denka Butyral 6000-EP", Sekisui Chemical Co., Ltd. S-Lec BH series, BX series (e.g. BX-5Z), KS series (e.g. KS-1), BL series, BM series, "Ricacoat SN20" and "Ricacoat PN20" manufactured by Shin Nippon Rika Co., Ltd., "Vylomax HR11NN" and "Vylomax HR16NN" manufactured by Toyobo Co., Ltd., Hitachi Chemical Co., Ltd. "KS9100" and "KS9300" manufactured by Sumitomo Chemical Co., Ltd. "PES5003P" Polysulfone "P1700" and "P3500" manufactured by Solvay Advanced Polymers Co., Ltd., "AC3832" manufactured by Ganz Kasei Co., etc. may be used. .
 樹脂組成物における熱可塑性樹脂の含有量は、樹脂組成物中の不揮発成分を100質量部としたときに、0.1質量部以上、0.3質量部以上、又は0.5質量部以上であってもよく、20質量部以下、10質量部以下、5質量部以下、又は3質量部以下であってもよい。 The content of the thermoplastic resin in the resin composition is 0.1 parts by mass or more, 0.3 parts by mass or more, or 0.5 parts by mass or more when the non-volatile component in the resin composition is 100 parts by mass. 20 parts by mass or less, 10 parts by mass or less, 5 parts by mass or less, or 3 parts by mass or less.
 樹脂組成物は、1分子中に活性エステル基を1個以上有する活性エステル化合物を含有することができる。活性エステル化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The resin composition can contain an active ester compound having one or more active ester groups in one molecule. An active ester compound may be used individually by 1 type, and may be used in combination of 2 or more type.
 活性エステル化合物としては、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の、反応活性の高いエステル基を1分子中に2個以上有する化合物を用いることができる。このような活性エステル化合物は、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが挙げられる。 As the active ester compound, compounds having two or more highly reactive ester groups in one molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, heterocyclic hydroxy compound esters, etc., are used. be able to. Examples of such active ester compounds include those obtained by a condensation reaction between a carboxylic acid compound and/or a thiocarboxylic acid compound and a hydroxy compound and/or a thiol compound.
 活性エステル化合物は、耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル化合物であってもよく、カルボン酸化合物とフェノール化合物及び/又はナフトール化合物とから得られる活性エステル化合物であってもよい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール化合物又はナフトール化合物としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型ジフェノール化合物、フェノールノボラック等が挙げられる。ここで、「ジシクロペンタジエン型ジフェノール化合物」とは、ジシクロペンタジエン1分子にフェノール2分子が縮合して得られるジフェノール化合物をいう。 From the viewpoint of improving heat resistance, the active ester compound may be an active ester compound obtained from a carboxylic acid compound and a hydroxy compound, or an active ester compound obtained from a carboxylic acid compound and a phenol compound and/or a naphthol compound. There may be. Examples of carboxylic acid compounds include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid. Examples of phenol compounds or naphthol compounds include hydroquinone, resorcinol, bisphenol A, bisphenol F, bisphenol S, phenolphthalin, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m- cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucine, Benzenetriol, dicyclopentadiene-type diphenol compound, phenol novolak, and the like. Here, the term "dicyclopentadiene-type diphenol compound" refers to a diphenol compound obtained by condensing one molecule of dicyclopentadiene with two molecules of phenol.
 活性エステル化合物の具体例としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物、ナフタレン構造を含む活性エステル化合物、フェノールノボラックのアセチル化物を含む活性エステル化合物、フェノールノボラックのベンゾイル化物を含む活性エステル化合物が挙げられる。なお、「ジシクロペンタジエン型ジフェノール構造」とは、フェニレン-ジシクロペンチレン-フェニレンからなる2価の構造単位を表す。 Specific examples of the active ester compound include an active ester compound containing a dicyclopentadiene type diphenol structure, an active ester compound containing a naphthalene structure, an active ester compound containing an acetylated phenol novolac, and an active ester containing a benzoylated phenol novolac. compound. The “dicyclopentadiene-type diphenol structure” represents a divalent structural unit composed of phenylene-dicyclopentylene-phenylene.
 ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物として、「EXB9451」、「EXB9460」、「EXB9460S」、「HPC-8000-65T」、「HPC-8000H-65TM」、「EXB-8000L-65TM」、「EXB-8150-65T」(DIC社製)、ナフタレン構造を含む活性エステル化合物として、「EXB9416-70BK」(DIC社製)、フェノールノボラックのアセチル化物を含む活性エステル化合物として、「DC808」(三菱ケミカル社製)、フェノールノボラックのベンゾイル化物を含む活性エステル化合物として、「YLH1026」(三菱ケミカル社製)、フェノールノボラックのアセチル化物である活性エステル化合物として「DC808」(三菱ケミカル社製)、フェノールノボラックのベンゾイル化物である活性エステル系硬化剤として「YLH1026」(三菱ケミカル社製)、「YLH1030」(三菱ケミカル社製)、「YLH1048」(三菱ケミカル社製)等の市販品を用いてもよい。 Active ester compounds containing a dicyclopentadiene-type diphenol structure include "EXB9451", "EXB9460", "EXB9460S", "HPC-8000-65T", "HPC-8000H-65TM", "EXB-8000L-65TM", "EXB-8150-65T" (manufactured by DIC), "EXB9416-70BK" (manufactured by DIC) as an active ester compound containing a naphthalene structure, "DC808" (Mitsubishi chemical company), "YLH1026" (manufactured by Mitsubishi Chemical Corporation) as an active ester compound containing a benzoylated phenol novolak, "DC808" (manufactured by Mitsubishi Chemical Corporation) as an active ester compound that is an acetylated product of phenol novolac, phenol novolac Commercially available products such as "YLH1026" (manufactured by Mitsubishi Chemical Co.), "YLH1030" (manufactured by Mitsubishi Chemical Co.), and "YLH1048" (manufactured by Mitsubishi Chemical Co.) may be used as an active ester curing agent which is a benzoylated product of.
 樹脂組成物が活性エステル化合物及びエポキシ樹脂を含有する場合、エポキシ樹脂と活性エステル化合物との量比は、[エポキシ樹脂のエポキシ基の合計数]:[活性エステル化合物の活性エステル基の合計数]の比率で、1:0.01~1:5、1:0.05~1:3、又は、1:0.1~1:1.5であってもよい。 When the resin composition contains an active ester compound and an epoxy resin, the quantitative ratio of the epoxy resin to the active ester compound is [total number of epoxy groups in the epoxy resin]:[total number of active ester groups in the active ester compound]. ratio of 1:0.01 to 1:5, 1:0.05 to 1:3, or 1:0.1 to 1:1.5.
 樹脂組成物における活性エステル化合物の含有量は、樹脂組成物中の不揮発成分を100質量部としたときに、1質量部以上、1.5質量部以上、又は2質量部以上であってもよく、40質量部以下、30質量部以下、20質量部以下、10質量部以下、8質量部以下、又は5質量部以下であってもよい。 The content of the active ester compound in the resin composition may be 1 part by mass or more, 1.5 parts by mass or more, or 2 parts by mass or more when the non-volatile component in the resin composition is 100 parts by mass. , 40 parts by mass or less, 30 parts by mass or less, 20 parts by mass or less, 10 parts by mass or less, 8 parts by mass or less, or 5 parts by mass or less.
 樹脂組成物は、1分子中にカルボジイミド基(-N=C=N-)を1個以上有するカルボジイミド化合物を含有することができる。カルボジイミド化合物としては、1分子中にカルボジイミド基を2個以上有する化合物を用いてもよい。カルボジイミド化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The resin composition can contain a carbodiimide compound having one or more carbodiimide groups (-N=C=N-) in one molecule. As the carbodiimide compound, a compound having two or more carbodiimide groups in one molecule may be used. A carbodiimide compound may be used individually by 1 type, and may be used in combination of 2 or more type.
 カルボジイミド化合物としては、下記式(A)で表される構造を含有する化合物が挙げられる。
-(X)-N=C=N-   …(A)
[式中、Xは、アルキレン基、シクロアルキレン基又はアリーレン基を表し、これらは置換基を有していてもよい。pは1~5の整数を表す。Xが複数存在する場合、それらは同一でも相異なってもよい。]
Carbodiimide compounds include compounds containing a structure represented by the following formula (A).
-(X) p -N=C=N- …(A)
[In the formula, X represents an alkylene group, a cycloalkylene group or an arylene group, which may have a substituent. p represents an integer of 1 to 5; When multiple Xs are present, they may be the same or different. ]
 Xで表されるアルキレン基の炭素原子数(置換基の炭素原子数は含まれない)は、1~20、1~10、1~6、1~4、又は1~3であってもよい。アルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基が挙げられる。 The number of carbon atoms in the alkylene group represented by X (not including the number of carbon atoms in the substituent) may be 1 to 20, 1 to 10, 1 to 6, 1 to 4, or 1 to 3. . Alkylene groups include methylene, ethylene, propylene and butylene groups.
 Xで表されるシクロアルキレン基の炭素原子数(置換基の炭素原子数は含まれない)は、3~20、3~12、3~6であってもよい。シクロアルキレン基としては、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基が挙げられる。 The number of carbon atoms in the cycloalkylene group represented by X (not including the number of carbon atoms in the substituent) may be 3-20, 3-12, or 3-6. A cycloalkylene group includes a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, and a cyclohexylene group.
 Xで表されるアリーレン基は、芳香族炭化水素から芳香環上の水素原子を2個除いた基である。アリーレン基の炭素原子数(置換基の炭素原子数は含まれない)は、6~24、6~18、6~14、又は6~10であってもよい。アリーレン基としては、フェニレン基、ナフチレン基、アントラセニレン基が挙げられる。 The arylene group represented by X is a group obtained by removing two hydrogen atoms on the aromatic ring from an aromatic hydrocarbon. The number of carbon atoms in the arylene group (not including the number of carbon atoms in the substituents) may be 6-24, 6-18, 6-14, or 6-10. Arylene groups include phenylene groups, naphthylene groups, and anthracenylene groups.
 Xで表されるアルキレン基、シクロアルキレン基又はアリール基は置換基を有していてもよい。置換基としては、例えば、ハロゲン原子、アルキル基、アルコキシ基、シクロアルキル基、シクロアルキルオキシ基、アリール基、アリールオキシ基、アシル基及びアシルオキシ基が挙げられる。置換基として用いられるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。置換基としてのアルキル基、アルコキシ基は、直鎖状、分岐状のいずれであってもよく、その炭素原子数は、1~20、1~10、1~6、1~4、又は1~3であってもよい。置換基としてのシクロアルキル基、シクロアルキルオキシ基の炭素原子数は、3~20、3~12、又は3~6であってもよい。置換基としてのアリール基は、芳香族炭化水素から芳香環上の水素原子を1個除いた基であり、その炭素原子数は、6~24、6~18、6~14、又は6~10であってもよい。置換基としてのアリールオキシ基の炭素原子数は、6~24、6~18、6~14、又は6~10であってもよい。置換基としてのアシル基は、式:-C(=O)-Rで表される基(式中、Rはアルキル基又はアリール基を表す。)をいう。Rで表されるアルキル基は、直鎖状、分岐状のいずれであってもよく、その炭素原子数は、1~20、1~10、1~6、1~4、又は1~3であってもよい。Rで表されるアリール基の炭素原子数は、6~24、6~18、6~14、又は6~10であってもよい。置換基としてのアシルオキシ基は、式:-O-C(=O)-Rで表される基(式中、Rはアルキル基又はアリール基を表す。)をいう。 The alkylene group, cycloalkylene group or aryl group represented by X may have a substituent. Substituents include, for example, halogen atoms, alkyl groups, alkoxy groups, cycloalkyl groups, cycloalkyloxy groups, aryl groups, aryloxy groups, acyl groups and acyloxy groups. Halogen atoms used as substituents include, for example, fluorine, chlorine, bromine and iodine atoms. Alkyl groups and alkoxy groups as substituents may be linear or branched, and the number of carbon atoms thereof may be 1 to 20, 1 to 10, 1 to 6, 1 to 4, or 1 to 3 may be used. The cycloalkyl group or cycloalkyloxy group as a substituent may have 3 to 20, 3 to 12, or 3 to 6 carbon atoms. An aryl group as a substituent is a group obtained by removing one hydrogen atom on an aromatic ring from an aromatic hydrocarbon, and has 6 to 24, 6 to 18, 6 to 14, or 6 to 10 carbon atoms. may be The aryloxy group as a substituent may have 6 to 24, 6 to 18, 6 to 14, or 6 to 10 carbon atoms. An acyl group as a substituent refers to a group represented by the formula: -C(=O)-R 1 (wherein R 1 represents an alkyl group or an aryl group). The alkyl group represented by R 1 may be linear or branched, and has 1 to 20, 1 to 10, 1 to 6, 1 to 4, or 1 to 3 carbon atoms. may be The aryl group represented by R 1 may have 6-24, 6-18, 6-14, or 6-10 carbon atoms. An acyloxy group as a substituent refers to a group represented by the formula: -OC(=O) -R2 (wherein R2 represents an alkyl group or an aryl group).
 式(A)中、pは1~5の整数を表す。pは、1~4、2~4、2又は3であってもよい。 In formula (A), p represents an integer of 1-5. p may be 1-4, 2-4, 2 or 3.
 カルボジイミド化合物における式(A)で表される構造の含有量は、カルボジイミド化合物の分子全体の質量を100質量部としたとき、50質量部以上、60質量部以上、70質量部以上、80質量部以上又は90質量部以上であってもよい。カルボジイミド化合物は、末端構造を除いて、式(A)で表される構造から実質的になってもよい。カルボジイミド化合物の末端構造としては、例えば、アルキル基、シクロアルキル基及びアリール基が挙げられ、これらは置換基を有していてもよい。末端構造として用いられるアルキル基、シクロアルキル基、アリール基は、Xで表される基が有していてもよい置換基について説明したアルキル基、シクロアルキル基、アリール基と同じであってよい。また、末端構造として用いられる基が有していてもよい置換基は、Xで表される基が有していてもよい置換基と同じであってよい。 The content of the structure represented by formula (A) in the carbodiimide compound is 50 parts by mass or more, 60 parts by mass or more, 70 parts by mass or more, and 80 parts by mass when the mass of the entire molecule of the carbodiimide compound is 100 parts by mass. or more, or 90 parts by mass or more. The carbodiimide compound may consist essentially of the structure represented by formula (A), except for the terminal structure. Examples of terminal structures of carbodiimide compounds include alkyl groups, cycloalkyl groups and aryl groups, which may have substituents. The alkyl group, cycloalkyl group, and aryl group used as the terminal structure may be the same as the alkyl group, cycloalkyl group, and aryl group described for the substituents that the group represented by X may have. Further, the substituent that the group used as the terminal structure may have may be the same as the substituent that the group represented by X may have.
 カルボジイミド化合物の重量平均分子量は、500以上、600以上、700以上、800以上、900以上又は1000以上であってもよく、5000以下、4500以下、4000以下、3500以下、又は3000以下であってもよい。カルボジイミド化合物の重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレンン換算)で測定することができる。 The weight average molecular weight of the carbodiimide compound may be 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, or 1000 or more, or 5000 or less, 4500 or less, 4000 or less, 3500 or less, or 3000 or less. good. The weight average molecular weight of the carbodiimide compound can be measured, for example, by a gel permeation chromatography (GPC) method (converted to polystyrene).
 カルボジイミド化合物が分子中にイソシアネート基(-N=C=O)を含有する場合、カルボジイミド化合物中のイソシアネート基の含有量(「NCO含有量」ともいう。)は、5質量%以下、4質量%以下、3質量%以下、2質量%以下、1質量%以下又は0.5質量%以下であってもよい。 When the carbodiimide compound contains an isocyanate group (-N=C=O) in the molecule, the content of the isocyanate group (also referred to as "NCO content") in the carbodiimide compound is 5% by mass or less to 4% by mass. Below, it may be 3% by mass or less, 2% by mass or less, 1% by mass or less, or 0.5% by mass or less.
 カルボジイミド化合物は、日清紡ケミカル社製のカルボジライト(登録商標)V-02B、V-03、V-04K、V-07及びV-09、ラインケミー社製のスタバクゾール(登録商標)P、P400、及びハイカジル510等の市販品を用いてもよい。 Carbodiimide compounds include Carbodilite (registered trademark) V-02B, V-03, V-04K, V-07 and V-09 manufactured by Nisshinbo Chemical Co., Ltd.; You may use commercial items, such as.
 樹脂組成物におけるカルボジイミド化合物の含有量は、樹脂組成物中の不揮発成分を100質量部としたときに、0.1質量部以上、0.3質量部以上、又は0.5質量部以上であってもよく、3質量部以下、2質量部以下、又は1.5質量部以下であってもよい。 The content of the carbodiimide compound in the resin composition is 0.1 parts by mass or more, 0.3 parts by mass or more, or 0.5 parts by mass or more when the non-volatile component in the resin composition is 100 parts by mass. 3 parts by mass or less, 2 parts by mass or less, or 1.5 parts by mass or less.
 樹脂組成物は、さらに必要に応じて、他の添加剤を含んでいてもよい。他の添加剤としては、例えば、難燃剤、有機銅化合物、有機亜鉛化合物及び有機コバルト化合物等の有機金属化合物、バインダー、増粘剤、消泡剤、レベリング剤、密着性付与剤、並びに着色剤等の樹脂添加剤等が挙げられる。 The resin composition may further contain other additives as necessary. Other additives include, for example, flame retardants, organometallic compounds such as organocopper compounds, organozinc compounds and organocobalt compounds, binders, thickeners, antifoaming agents, leveling agents, adhesion imparting agents, and colorants. and other resin additives.
 絶縁磁性層形成用組成物は、ペースト状であってもよい(以下、「ペースト」という)。ペーストは、磁性粉と、エポキシ基含有化合物と、硬化剤と、を含んでいてもよい。 The insulating magnetic layer-forming composition may be in the form of a paste (hereinafter referred to as "paste"). The paste may contain magnetic powder, an epoxy group-containing compound, and a curing agent.
 磁性粉は、上述した磁性粉を用いることができる。 The magnetic powder described above can be used as the magnetic powder.
 ペーストに含まれる磁性粉の平均粒子径は、0.05~200μm、0.5~100μm、又は1~50μmであってよい。磁性粉が被覆されている場合は、被覆膜を含めた磁性粉の平均粒子径が上記範囲内であってよい。 The magnetic powder contained in the paste may have an average particle size of 0.05 to 200 μm, 0.5 to 100 μm, or 1 to 50 μm. When the magnetic powder is coated, the average particle size of the magnetic powder including the coating film may be within the above range.
 ペーストにおける磁性粉の含有量は、ペーストの全質量を基準として、70質量%以上、又は80質量%以上であってよく、99質量%以下、又は90質量%以下であってよい。ペーストにおける磁性粉の含有量は、ペーストの全質量を基準として、70~99質量%、又は80~90質量%であってもよい。 The magnetic powder content in the paste may be 70% by mass or more, or 80% by mass or more, and may be 99% by mass or less, or 90% by mass or less, based on the total mass of the paste. The magnetic powder content in the paste may be 70 to 99% by mass, or 80 to 90% by mass based on the total mass of the paste.
 エポキシ基含有化合物は、分子内に1以上のエポキシ基を有する化合物を意味し、モノマー、並びにモノマーの重合化によって形成される構造単位を有するオリゴマー及びポリマーのいずれの形態であってもよい。エポキシ基含有化合物は、加熱処理によって硬化し、金属元素含有粉を結着するバインダ樹脂として機能することができる。エポキシ基含有化合物の一例として、一般的にエポキシ樹脂として知られる、分子内に2以上のエポキシ基を有するオリゴマー及びポリマーが挙げられる。エポキシ基含有化合物の他の例として、分子内に1以上のエポキシ基を有するが、重合化によって形成される構造単位を含まない化合物(以下、エポキシ化合物と称す)が挙げられる。このようなエポキシ化合物は、一般的に反応性希釈剤として知られている。エポキシ基含有化合物は、エポキシ樹脂、及びエポキシ化合物からなる群から選択される少なくとも1種を含むことが好ましい。 An epoxy group-containing compound means a compound having one or more epoxy groups in the molecule, and may be in the form of a monomer, or an oligomer or polymer having a structural unit formed by polymerization of the monomer. The epoxy group-containing compound can be cured by heat treatment and can function as a binder resin that binds the metal element-containing powder. Examples of epoxy group-containing compounds include oligomers and polymers having two or more epoxy groups in the molecule, commonly known as epoxy resins. Other examples of epoxy group-containing compounds include compounds that have one or more epoxy groups in the molecule but do not contain structural units formed by polymerization (hereinafter referred to as epoxy compounds). Such epoxy compounds are commonly known as reactive diluents. The epoxy group-containing compound preferably contains at least one selected from the group consisting of epoxy resins and epoxy compounds.
 エポキシ樹脂は、上述した樹脂組成物で配合されるものと同様のものを用いることができる。
よい。
Epoxy resins similar to those blended in the resin composition described above can be used.
good.
 エポキシ化合物の分子量は、100以上であってよく、150以上であってよく、200以上であってよい。分子量が100以上であるエポキシ化合物を使用した場合、適切な硬化条件を設定することで硬化剤と反応する前の揮発を抑制することができる。また、低分子量であることで反応後の架橋点間の距離が短く硬化物が割れやすくなる不具合の発生を低減できる。一方、エポキシ化合物の分子量は、700以下であってよく、500以下であってよく、300以下であってよい。分子量が700以下であるエポキシ化合物を使用した場合、希釈剤として適切な粘度を容易に得ることができる。 The molecular weight of the epoxy compound may be 100 or more, 150 or more, or 200 or more. When an epoxy compound having a molecular weight of 100 or more is used, volatilization before reacting with the curing agent can be suppressed by setting appropriate curing conditions. In addition, since the molecular weight is low, the distance between the cross-linking points after the reaction is short, and the occurrence of the problem that the cured product tends to crack can be reduced. On the other hand, the molecular weight of the epoxy compound may be 700 or less, 500 or less, or 300 or less. When an epoxy compound having a molecular weight of 700 or less is used, a suitable viscosity as a diluent can be easily obtained.
 エポキシ化合物の分子量は、100~700、150~500、又は200~300であってもよい。このような範囲の分子量を有するエポキシ化合物を使用した場合、ペーストの粘度調整が容易となる。エポキシ化合物は、加熱時に揮発する有機溶剤等の成分とは異なり、加熱時に硬化して硬化物中に取り込まれる。そのため、エポキシ化合物を使用した場合、ペーストの粘度調整に寄与し、その一方で硬化物の特性低下を抑制することが可能である。 The molecular weight of the epoxy compound may be 100-700, 150-500, or 200-300. When an epoxy compound having a molecular weight within such a range is used, it becomes easy to adjust the viscosity of the paste. Unlike components such as organic solvents that volatilize when heated, epoxy compounds cure when heated and are incorporated into the cured product. Therefore, when an epoxy compound is used, it is possible to contribute to the adjustment of the viscosity of the paste and, at the same time, to suppress deterioration of the properties of the cured product.
 エポキシ化合物は、分子内にエポキシ基を1個、又は2個以上含んでよい。エポキシ化合物は、例えば、n-ブチルグリシジルエーテル、バーサティック酸グリシジルエーテル、スチレンオキサイド、エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、ブチルフェニルグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、及びトリメチロールプロパントリグリシジルエーテルからなる群から選択される少なくとも1種であってよい。エポキシ化合物は、遊離Naイオン、及び遊離Clイオンといったイオン性不純物が500ppm以下であってもよい。 The epoxy compound may contain one or two or more epoxy groups in the molecule. Epoxy compounds include, for example, n-butyl glycidyl ether, versatic acid glycidyl ether, styrene oxide, ethylhexyl glycidyl ether, phenyl glycidyl ether, butylphenyl glycidyl ether, 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether. , diethylene glycol diglycidyl ether, and trimethylolpropane triglycidyl ether. The epoxy compound may have 500 ppm or less of ionic impurities such as free Na ions and free Cl ions.
 エポキシ基含有化合物のエポキシ当量は、80g/eq~350g/eq、100g/eq~300g/eq、120g/eq~250g/eqであってよい。エポキシ当量が上記範囲内である場合、エポキシ基含有化合物自体の粘度が低くなるため、ペーストの粘度を調整することが容易となる。 The epoxy group-containing compound may have an epoxy equivalent weight of 80 g/eq to 350 g/eq, 100 g/eq to 300 g/eq, and 120 g/eq to 250 g/eq. When the epoxy equivalent is within the above range, the viscosity of the epoxy group-containing compound itself is low, making it easy to adjust the viscosity of the paste.
 エポキシ基含有化合物は、25℃において液状であるエポキシ基含有化合物を含むことが好ましい。本明細書において「25℃において液状である」とは、25℃におけるエポキシ基含有化合物の粘度が、200Pa・s以下であることを意味する。上記粘度は、E型粘度計を用い、温度:25℃、コーンプレートタイプ:SPP、コーン角度:1°34’、回転速度:2.5rpmの条件下で測定した値である。E型粘度計として、例えば、東機産業株式会社製のTV-33型粘度計を使用することができる。 The epoxy group-containing compound preferably contains an epoxy group-containing compound that is liquid at 25°C. As used herein, "liquid at 25°C" means that the epoxy group-containing compound has a viscosity of 200 Pa·s or less at 25°C. The above viscosity is a value measured using an E-type viscometer under conditions of temperature: 25° C., cone plate type: SPP, cone angle: 1°34′, rotation speed: 2.5 rpm. As the E-type viscometer, for example, a TV-33 type viscometer manufactured by Toki Sangyo Co., Ltd. can be used.
 25℃において液状のエポキシ基含有化合物を使用した場合、通常、流動性を得るために使用される有機溶剤等の揮発性成分の配合量を大幅に減らすことができる。一実施形態において、有機溶剤を含まないペーストを構成することもできる。また、ペーストとして適切な流動性を確保しながら、磁性粉の含有量を容易に高めることができる。これらの観点から、エポキシ基含有化合物の粘度は、100Pa・s以下、50Pa・s以下、10Pa・s以下であってよい。 When an epoxy group-containing compound that is liquid at 25°C is used, the blending amount of volatile components such as organic solvents that are usually used to obtain fluidity can be greatly reduced. In one embodiment, the paste can also be constructed without organic solvents. In addition, it is possible to easily increase the content of the magnetic powder while ensuring appropriate fluidity as a paste. From these viewpoints, the viscosity of the epoxy group-containing compound may be 100 Pa·s or less, 50 Pa·s or less, or 10 Pa·s or less.
 上記エポキシ基含有化合物のなかでもエポキシ化合物の粘度は、ペースト粘度を調整する観点から、液状エポキシ樹脂の粘度よりも低くてもよい。エポキシ化合物の粘度は、1Pa・s以下、0.5Pa・s以下、0.1Pa・s以下であってよい。 Among the above epoxy group-containing compounds, the viscosity of the epoxy compound may be lower than the viscosity of the liquid epoxy resin from the viewpoint of adjusting the paste viscosity. The viscosity of the epoxy compound may be 1 Pa·s or less, 0.5 Pa·s or less, or 0.1 Pa·s or less.
 25℃において液状のエポキシ基含有化合物は、25℃において液状のエポキシ樹脂、及び25℃において液状のエポキシ化合物からなる群から選択される少なくとも1種を含んでよい。25℃において液状のエポキシ樹脂の含有量は、エポキシ基含有化合物の全質量を基準として、50質量%以上、70質量%以上、90質量%以上、又は100質量%であってもよい。 The epoxy group-containing compound that is liquid at 25°C may include at least one selected from the group consisting of an epoxy resin that is liquid at 25°C and an epoxy compound that is liquid at 25°C. The content of the epoxy resin that is liquid at 25° C. may be 50% by mass or more, 70% by mass or more, 90% by mass or more, or 100% by mass based on the total mass of the epoxy group-containing compound.
 25℃において液状のエポキシ樹脂は、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、及びアミノグリシジルエーテル型エポキシ樹脂から選ばれる少なくとも1種の液状エポキシ樹脂を含んでよい。 Epoxy resins that are liquid at 25° C. include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, naphthalene diol type epoxy resin, hydrogenated bisphenol A type epoxy resin, and It may contain at least one liquid epoxy resin selected from aminoglycidyl ether type epoxy resins.
 25℃において液状のエポキシ基含有化合物は、市販品として入手することもできる。例えば、液状ビスフェノールA型エポキシ樹脂及び液状ビスフェノールF型エポキシ樹脂として、新日鐵化学株式会社から販売されている。例えば、液状ビスフェノールF型エポキシ樹脂として、製品名「YDF-8170C」(エポキシ当量165、粘度1,000~1,500mPa・s)を用いることができる。エポキシ化合物として、株式会社ADEKA製のアデカグリシロール(製品名)のシリーズが挙げられる。例えば、製品名「アデカグリシロールED-503G」(エポキシ当量135、粘度15mPa・s)を用いることができる。 Epoxy group-containing compounds that are liquid at 25°C can also be obtained as commercial products. For example, they are sold by Nippon Steel Chemical Co., Ltd. as liquid bisphenol A type epoxy resin and liquid bisphenol F type epoxy resin. For example, as a liquid bisphenol F type epoxy resin, the product name "YDF-8170C" (epoxy equivalent 165, viscosity 1,000 to 1,500 mPa·s) can be used. Examples of epoxy compounds include the series of ADEKA GLYCIROL (product name) manufactured by ADEKA Corporation. For example, the product name "ADEKA GLYCIROL ED-503G" (epoxy equivalent 135, viscosity 15 mPa·s) can be used.
 ペーストは、上記エポキシ基含有化合物に加えて、他の樹脂をさらに含んでもよい。他の樹脂は、熱硬化性樹脂(エポキシ樹脂を除く)及び熱可塑性樹脂からなる群から選択される少なくとも1種を含んでよい。熱硬化性樹脂は、例えば、フェノール樹脂、アクリル樹脂、ポリイミド樹脂、及びポリアミドイミド樹脂からなる群より選ばれる少なくとも1種であってよい。エポキシ基含有化合物に加えてフェノール樹脂を使用した場合、フェノール樹脂は、エポキシ基含有化合物の硬化剤として機能することもできる。 The paste may further contain other resins in addition to the epoxy group-containing compound. Other resins may include at least one selected from the group consisting of thermosetting resins (excluding epoxy resins) and thermoplastic resins. The thermosetting resin may be, for example, at least one selected from the group consisting of phenolic resins, acrylic resins, polyimide resins, and polyamideimide resins. When a phenolic resin is used in addition to the epoxy group-containing compound, the phenolic resin can also function as a curing agent for the epoxy group-containing compound.
 熱可塑性樹脂は、例えば、アクリル樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、及びポリエチレンテレフタレートからなる群より選ばれる少なくとも1種であってよい。樹脂成分は、エポキシ基含有化合物に加えて、さらにシリコーン樹脂を含んでもよい。 The thermoplastic resin may be, for example, at least one selected from the group consisting of acrylic resin, polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate. The resin component may further contain a silicone resin in addition to the epoxy group-containing compound.
 ペーストが、エポキシ基含有化合物以外の樹脂を含む場合、その他の樹脂の含有量は、エポキシ基含有化合物による効果を低減させない範囲で調整することが好ましい。例えば、その他の樹脂の含有量は、ペースト中の樹脂の全質量を基準として、50質量%以下、30質量%以下、又は10質量%以下であってよい。エポキシ基含有化合物とその他の樹脂との混合物の粘度が、25℃において50Pa・s以下となる範囲で、配合量を調整することができる。上記粘度は、E型粘度計を用いて、温度:25℃、コーンプレートタイプ:SPP、コーン角度:1°34’、回転速度:2.5rpmの条件下で測定した値である。E型粘度計として、例えば、東機産業株式会社製のTV-33型粘度計を使用することができる。 When the paste contains a resin other than the epoxy group-containing compound, the content of the other resin is preferably adjusted within a range that does not reduce the effect of the epoxy group-containing compound. For example, the content of other resins may be 50% by mass or less, 30% by mass or less, or 10% by mass or less based on the total mass of resins in the paste. The blending amount can be adjusted so long as the viscosity of the mixture of the epoxy group-containing compound and the other resin is 50 Pa·s or less at 25°C. The above viscosity is a value measured using an E-type viscometer under conditions of temperature: 25° C., cone plate type: SPP, cone angle: 1°34′, rotation speed: 2.5 rpm. As the E-type viscometer, for example, a TV-33 type viscometer manufactured by Toki Sangyo Co., Ltd. can be used.
 硬化剤としては、ペーストに適度な粘性を付与し、かつエポキシ基含有化合物のエポキシ基と反応し硬化物を形成することができる化合物を用いることができる。硬化剤は、エポキシ樹脂の硬化剤として一般的に使用される周知の硬化剤を用いることができる。硬化剤として、例えば、フェノール系硬化剤、酸無水物系硬化剤、及びアミン系硬化剤が挙げられる。 As the curing agent, a compound that imparts appropriate viscosity to the paste and that can react with the epoxy group of the epoxy group-containing compound to form a cured product can be used. As the curing agent, a well-known curing agent generally used as a curing agent for epoxy resins can be used. Curing agents include, for example, phenol-based curing agents, acid anhydride-based curing agents, and amine-based curing agents.
 硬化剤は、低温から室温の温度範囲でエポキシ樹脂を硬化させる硬化剤と、加熱に伴ってエポキシ樹脂を硬化させる加熱硬化型硬化剤とに分類される。低温から室温の温度範囲でエポキシ樹脂を硬化させる硬化剤としては、例えば、脂肪族ポリアミン、ポリアミノアミド、及びポリメルカプタンが挙げられる。加熱硬化型硬化剤としては、例えば、芳香族ポリアミン、酸無水物、フェノールノボラック樹脂、及びジシアンジアミド(DICY)が挙げられる。低温から室温の温度範囲でエポキシ樹脂を硬化させる硬化剤を用いた場合、エポキシ樹脂の硬化物のガラス転移点は低く、エポキシ樹脂の硬化物は軟らかい傾向がある。その結果、ペーストから形成された絶縁磁性層も軟らかくなる傾向がある。絶縁磁性層の耐熱性及び機械的強度を向上させる観点から、硬化剤は、加熱硬化型硬化剤を含むことが好ましい。 Curing agents are classified into curing agents that cure epoxy resins in the temperature range from low temperature to room temperature, and heat-curing curing agents that cure epoxy resins when heated. Curing agents that cure epoxy resins at temperatures ranging from low to room temperature include, for example, aliphatic polyamines, polyaminoamides, and polymercaptans. Heat-curable curing agents include, for example, aromatic polyamines, acid anhydrides, phenolic novolak resins, and dicyandiamide (DICY). When a curing agent that cures epoxy resins in a temperature range from low temperature to room temperature is used, the glass transition point of the cured epoxy resins tends to be low and the cured epoxy resins tend to be soft. As a result, the insulating magnetic layer formed from the paste also tends to become soft. From the viewpoint of improving the heat resistance and mechanical strength of the insulating magnetic layer, the curing agent preferably contains a thermosetting curing agent.
 加熱硬化型硬化剤のなかでも、ペーストの低粘度化の観点から、25℃において液状の硬化剤を使用することができる。液状の硬化剤としては、例えば、脂肪族ポリアミン、ポリメルカプタン、芳香族ポリアミン、及び酸無水物、及びイミダゾール系硬化剤からなる群から選択される少なくとも1種を使用することができる。ペーストの粘度上昇を抑えることができれば、25℃において固形の硬化剤を使用してもよく、液状の硬化剤と固形の硬化剤とを併用してもよい。固形の硬化剤としては、例えば、ジシアンジアミド、三級アミン、イミダゾール系硬化剤、及びイミダゾリン系硬化剤を使用することができる。例示した固形の硬化剤は、多官能であるか、又は触媒的に作用するため、少量でも十分に機能することができる。 Among the heat-curing curing agents, a curing agent that is liquid at 25°C can be used from the viewpoint of lowering the viscosity of the paste. As the liquid curing agent, for example, at least one selected from the group consisting of aliphatic polyamines, polymercaptans, aromatic polyamines, acid anhydrides, and imidazole curing agents can be used. A curing agent that is solid at 25° C. may be used, or a combination of a liquid curing agent and a solid curing agent may be used as long as the viscosity increase of the paste can be suppressed. Examples of solid curing agents that can be used include dicyandiamide, tertiary amines, imidazole-based curing agents, and imidazoline-based curing agents. The exemplified solid curing agents are polyfunctional or catalytically active so that even small amounts can function satisfactorily.
 硬化剤は、アミン系硬化剤、イミダゾール系硬化剤、及びイミダゾリン系硬化剤からなる群から選択される少なくとも1種を含んでいてもよい。硬化剤は、少なくともアミン系硬化剤を含むことができる。アミン系硬化剤(より具体的には第3級アミン)、イミダゾール系硬化剤、及びイミダゾリン系硬化剤は、他の硬化剤との組合せにおいて硬化促進剤として使用することもできる。 The curing agent may contain at least one selected from the group consisting of amine-based curing agents, imidazole-based curing agents, and imidazoline-based curing agents. The curing agent can contain at least an amine-based curing agent. Amine-based curing agents (more specifically, tertiary amines), imidazole-based curing agents, and imidazoline-based curing agents can also be used as curing accelerators in combination with other curing agents.
 アミン系硬化剤は、分子内に少なくとも2つのアミノ基を有する化合物であってよい。アミン系硬化剤は、脂肪族アミン、及び芳香族アミンからなる群から選択される少なくとも1種を含む。脂肪族アミン化合物としては、例えば、ジエチレントリアミン、トリエチレンテトラミン、n-プロピルアミン、2-ヒドロキシエチルアミノブロピルアミン、シクロへキシルアミン、4,4’-ジアミノ-ジシクロへキシルメタンが挙げられる。芳香族アミン化合物としては、例えば、4,4’-ジアミノジフェニルメタン、2-メチルアニリン、下式(1)で表されるアミン化合物、下式(2)で表されるアミン化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Amine-based curing agents may be compounds having at least two amino groups in the molecule. The amine curing agent contains at least one selected from the group consisting of aliphatic amines and aromatic amines. Examples of aliphatic amine compounds include diethylenetriamine, triethylenetetramine, n-propylamine, 2-hydroxyethylaminopropylamine, cyclohexylamine, and 4,4'-diamino-dicyclohexylmethane. Examples of aromatic amine compounds include 4,4′-diaminodiphenylmethane, 2-methylaniline, amine compounds represented by the following formula (1), and amine compounds represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 イミダゾール系硬化剤は、イミダゾール骨格を有する化合物であり、分子内の水素原子を置換基で置換したイミダゾール系化合物であってよい。イミダゾール系硬化剤は、アルキル基置換イミダゾール等のイミダゾール骨格を有する化合物であってよい。イミダゾール系硬化剤として、例えば、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、及び2-イソプロピルイミダゾールが挙げられる。イミダゾール系硬化剤は、四国化成工業株式会社製の「キュアゾール2E4MZ」(2-エチル-4-メチルイミダゾール)などの市販品を使用することができる。 The imidazole-based curing agent is a compound having an imidazole skeleton, and may be an imidazole-based compound in which a hydrogen atom in the molecule is substituted with a substituent. The imidazole-based curing agent may be a compound having an imidazole skeleton such as alkyl group-substituted imidazole. Examples of imidazole curing agents include imidazole, 2-methylimidazole, 2-ethylimidazole, and 2-isopropylimidazole. As the imidazole-based curing agent, commercially available products such as “Curesol 2E4MZ” (2-ethyl-4-methylimidazole) manufactured by Shikoku Kasei Co., Ltd. can be used.
 イミダゾリン系硬化剤は、イミダゾリン骨格を有する化合物であり、分子内の水素原子を置換基で置換したイミダゾリン系化合物であってよい。イミダゾリン系硬化剤は、アルキル基置換イミダゾリン等のイミダゾリン骨格を有する化合物であってよい。イミダゾリン系硬化剤として、例えば、イミダゾリン、2-メチルイミダゾリン、及び2-エチルイミダゾリンが挙げられる。 The imidazoline-based curing agent is a compound having an imidazoline skeleton, and may be an imidazoline-based compound in which a hydrogen atom in the molecule is substituted with a substituent. The imidazoline-based curing agent may be a compound having an imidazoline skeleton such as alkyl group-substituted imidazoline. Examples of imidazoline curing agents include imidazoline, 2-methylimidazoline, and 2-ethylimidazoline.
 25℃で液状のエポキシ樹脂との適合性及び保存安定性の観点から、硬化剤は芳香族アミンを含んでいてもよい。芳香族アミンの芳香環は、アミノ基以外の置換基を有していてもよい。例えば、炭素数1~5のアルキル基を有していてもよく、炭素数1又は3のアルキル基を有していてもよい。芳香族アミンにおける芳香環の数は、1つでも2つ以上であってもよい。芳香環の数が2以上である場合、芳香環同士は単結合で結合していても、アルキレン基等の連結基を介して結合していてもよい。 From the viewpoint of compatibility with epoxy resins that are liquid at 25°C and storage stability, the curing agent may contain an aromatic amine. The aromatic ring of the aromatic amine may have a substituent other than the amino group. For example, it may have an alkyl group having 1 to 5 carbon atoms, or may have an alkyl group having 1 or 3 carbon atoms. The number of aromatic rings in the aromatic amine may be one or two or more. When the number of aromatic rings is 2 or more, the aromatic rings may be bonded to each other with a single bond or via a linking group such as an alkylene group.
 ペーストの粘度の観点から、硬化剤は液状の芳香族アミンを含むことが好ましい。例えば、上記式(1)で表される化合物及び上記式(2)で表される化合物からなる群より選択される少なくとも1種を使用することができる。 From the viewpoint of paste viscosity, the curing agent preferably contains a liquid aromatic amine. For example, at least one selected from the group consisting of compounds represented by the above formula (1) and compounds represented by the above formula (2) can be used.
 硬化剤として使用できる液状の芳香族アミンは、市販品として入手することもできる。例えば、三菱ケミカル株式会社製の製品名「グレード:jERキュアWA」、日本化薬株式会社製の製品名「カヤハードAA」が挙げられる。 Liquid aromatic amines that can be used as curing agents are also available as commercial products. For example, the product name "Grade: jER Cure WA" manufactured by Mitsubishi Chemical Corporation and the product name "Kayahard AA" manufactured by Nippon Kayaku Co., Ltd. can be mentioned.
 ペーストにおける硬化剤の含有量は、エポキシ樹脂等のエポキシ基含有化合物のエポキシ基の当量数と、硬化剤における活性基の当量数との比率を考慮して設定することができる。例えば、エポキシ基含有化合物のエポキシ基1当量に対する硬化剤の比率は、0.5~1.5当量であってよく、0.9~1.4当量であってよく、1.0~1.2当量であってよい。 The content of the curing agent in the paste can be set by considering the ratio between the number of equivalents of epoxy groups in the epoxy group-containing compound such as epoxy resin and the number of equivalents of active groups in the curing agent. For example, the ratio of the curing agent to 1 equivalent of the epoxy group of the epoxy group-containing compound may be 0.5 to 1.5 equivalents, may be 0.9 to 1.4 equivalents, or may be 1.0 to 1.0 equivalents. It can be 2 equivalents.
 硬化剤における活性基の上記比率が0.5当量以上である場合、加熱硬化後のエポキシ樹脂の単位重量当たりのOH量が少なくなり、エポキシ樹脂の硬化速度が低下することを抑制できる。また、得られる硬化物のガラス転移温度の低下、及び硬化物の弾性率の低下を抑制できる。さらに、バインダ樹脂中の未反応の樹脂成分よって硬化物の絶縁信頼性が低下することを抑制できる。一方、硬化剤中の活性基の比率が1.5当量以下である場合、ペーストから形成される加熱硬化後の絶縁磁性層の機械的強度の低下を抑制できる。また、未反応の硬化剤によって硬化物の絶縁性が低下することを抑制できる。 When the above ratio of the active groups in the curing agent is 0.5 equivalent or more, the amount of OH per unit weight of the epoxy resin after heat curing is reduced, and a decrease in the curing speed of the epoxy resin can be suppressed. Moreover, the decrease in the glass transition temperature of the obtained cured product and the decrease in elastic modulus of the cured product can be suppressed. Furthermore, it is possible to suppress deterioration in the insulation reliability of the cured product due to unreacted resin components in the binder resin. On the other hand, when the ratio of active groups in the curing agent is 1.5 equivalents or less, the reduction in mechanical strength of the insulating magnetic layer formed from the paste after heat curing can be suppressed. In addition, it is possible to suppress the deterioration of the insulation properties of the cured product due to the unreacted curing agent.
 ペーストは、必要に応じて、さらに硬化促進剤を含んでよい。ペーストは、磁性粉と、エポキシ基含有化合物と、硬化剤と、硬化促進剤とを含んでよい。他の実施形態において、ペーストは、上記成分に加えて、例えば、カップリング剤及び難燃剤等の添加剤をさらに含んでもよい。 The paste may further contain a curing accelerator as necessary. The paste may contain magnetic powder, an epoxy group-containing compound, a curing agent, and a curing accelerator. In other embodiments, the paste may further include additives such as coupling agents and flame retardants in addition to the above components.
 硬化促進剤は、エポキシ樹脂と硬化剤との硬化反応を促進できる化合物であれば限定されない。硬化促進剤として、例えば、第3級アミン、イミダゾール系硬化促進剤、イミダゾリン系硬化促進剤、及びリン化合物が挙げられる。イミダゾール系硬化促進剤及びイミダゾリン系硬化促進剤として、イミダゾール系硬化剤及びイミダゾリン系硬化剤として先に例示した化合物を使用してもよい。液状の硬化剤のなかでも、液状の酸無水物を使用した場合は、硬化促進剤を併用することができる。ペーストは、1種又は2種以上の硬化促進剤を含んでよい。硬化促進剤を使用した場合、ペーストから形成された絶縁磁性層の機械的強度を向上させ、またペーストの硬化温度を容易に低下させることができる。 The curing accelerator is not limited as long as it is a compound that can accelerate the curing reaction between the epoxy resin and the curing agent. Curing accelerators include, for example, tertiary amines, imidazole-based curing accelerators, imidazoline-based curing accelerators, and phosphorus compounds. As the imidazole-based curing accelerator and the imidazoline-based curing accelerator, the compounds exemplified above as the imidazole-based curing agent and imidazoline-based curing agent may be used. Among liquid curing agents, when a liquid acid anhydride is used, a curing accelerator can be used in combination. The paste may contain one or more curing accelerators. When a curing accelerator is used, the mechanical strength of the insulating magnetic layer formed from the paste can be improved, and the curing temperature of the paste can be easily lowered.
 硬化促進剤の配合量は、硬化促進効果が得られる量であればよく、特に限定されない。ただし、ペーストの吸湿時の硬化性及び流動性を改善する観点からは、硬化促進剤の配合量は、エポキシ樹脂及び硬化剤の合計100質量部に対して、0.001質量部以上であってよい。上記硬化促進剤の配合量は、0.01質量部以上であってよく、0.1質量部以上であってよい。一方、上記硬化促進剤の配合量は、5質量部以下であってよく、4質量部以下であってよく、3質量部以下であってよい。硬化促進剤の配合量を0.001質量部以上にした場合、十分な硬化促進効果を容易に得ることができる。硬化促進剤の配合量が5質量部以下である場合、ペーストにおいて優れた保存安定性を容易に得ることができる。 The amount of the curing accelerator is not particularly limited as long as the curing acceleration effect is obtained. However, from the viewpoint of improving the curability and fluidity of the paste when it absorbs moisture, the amount of the curing accelerator is 0.001 parts by mass or more with respect to the total of 100 parts by mass of the epoxy resin and the curing agent. good. The content of the curing accelerator may be 0.01 parts by mass or more, and may be 0.1 parts by mass or more. On the other hand, the amount of the curing accelerator compounded may be 5 parts by mass or less, 4 parts by mass or less, or 3 parts by mass or less. When the amount of the curing accelerator to be blended is 0.001 parts by mass or more, a sufficient curing acceleration effect can be easily obtained. When the amount of the curing accelerator is 5 parts by mass or less, the paste can easily have excellent storage stability.
 カップリング剤を使用した場合、ペースト中の磁性粉の分散性の向上、及びペースト粘度の制御が容易となる。また、バインダ樹脂と、磁性粉との密着性の向上が容易となる。さらに、ペーストから形成される絶縁磁性層の導体配線に対する密着性、可撓性、機械的強度の向上が容易となる。カップリング剤は、例えば、シラン系化合物(シランカップリング剤)、チタン系化合物、アルミニウム化合物(アルミニウムキレート類)、及びアルミニウム/ジルコニウム系化合物からなる群より選ばれる少なくとも1種であってよい。シランカップリング剤は、例えば、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、酸無水物系シラン及びビニルシランからなる群より選ばれる少なくとも1種であってよい。また、シランカップリング剤は、アミノフェニル系のシランカップリング剤であってもよい。ペーストは、上記カップリング剤の少なくとも1種を含んでよく、上記2種以上のカップリング剤を含んでもよい。 When using a coupling agent, it becomes easier to improve the dispersibility of the magnetic powder in the paste and control the paste viscosity. In addition, it becomes easy to improve the adhesion between the binder resin and the magnetic powder. Furthermore, it becomes easy to improve the adhesion, flexibility, and mechanical strength of the insulating magnetic layer formed from the paste to the conductor wiring. The coupling agent may be, for example, at least one selected from the group consisting of silane-based compounds (silane coupling agents), titanium-based compounds, aluminum compounds (aluminum chelates), and aluminum/zirconium-based compounds. The silane coupling agent may be, for example, at least one selected from the group consisting of epoxysilanes, mercaptosilanes, aminosilanes, alkylsilanes, ureidosilanes, acid anhydride-based silanes and vinylsilanes. Further, the silane coupling agent may be an aminophenyl-based silane coupling agent. The paste may contain at least one of the above coupling agents, and may contain two or more of the above coupling agents.
 ペーストの環境安全性、リサイクル性、成形加工性及び低コストのために、ペーストは難燃剤を含んでよい。難燃剤は、例えば、臭素系難燃剤、リン系難燃剤、水和金属化合物系難燃剤、シリコーン系難燃剤、窒素含有化合物、ヒンダードアミン化合物、有機金属化合物及び芳香族エンジニアリングプラスチックからなる群より選ばれる少なくとも1種であってよい。ペーストは、上記で例示した難燃剤の1種を含んでも、又は2種以上を含んでもよい。 For the environmental safety, recyclability, moldability and low cost of the paste, the paste may contain a flame retardant. Flame retardants are selected from the group consisting of, for example, brominated flame retardants, phosphorus flame retardants, hydrated metal compound flame retardants, silicone flame retardants, nitrogen-containing compounds, hindered amine compounds, organometallic compounds and aromatic engineering plastics. At least one may be used. The paste may contain one or more of the flame retardants exemplified above.
 ペーストは、必要に応じて有機溶剤を含んでもよい。有機溶剤は、特に限定されない。例えば、バインダ樹脂を溶解可能な有機溶剤を使用することができる。有機溶剤は、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、ベンゼン、トルエン、カルビトールアセテート、ブチルカルビトールアセテート、シクロヘキサノン、及びキシレンからなる群より選ばれる少なくとも1種であってよい。作業性の観点から、有機溶剤は、常温(25℃)で液体であってもよい。作業性の観点から、有機溶剤の沸点は、50℃以上、160℃以下であってもよい。 The paste may contain an organic solvent as needed. The organic solvent is not particularly limited. For example, an organic solvent capable of dissolving the binder resin can be used. The organic solvent may be, for example, at least one selected from the group consisting of acetone, methyl ethyl ketone, methyl isobutyl ketone, benzene, toluene, carbitol acetate, butyl carbitol acetate, cyclohexanone, and xylene. From the viewpoint of workability, the organic solvent may be liquid at room temperature (25°C). From the viewpoint of workability, the boiling point of the organic solvent may be 50°C or higher and 160°C or lower.
 ペーストが有機溶剤を含む場合、その含有量は、ペーストの全質量を基準として、5質量%以下、3質量%以下、又は1質量%以下であってもよい。ペーストは、実質的に有機溶剤を含まないものであってもよい。本明細書おいて「実質的に含まない」とは、ペーストに対して有機溶剤を意図的に添加していないことを意味する。そのため、ペーストは、例えば、樹脂の製造時に使用され、樹脂中に残存した有機溶剤を含んでいてもよい。 When the paste contains an organic solvent, the content may be 5% by mass or less, 3% by mass or less, or 1% by mass or less based on the total mass of the paste. The paste may be substantially free of organic solvents. As used herein, "substantially free" means that no organic solvent is intentionally added to the paste. Therefore, the paste may contain, for example, an organic solvent that was used during the production of the resin and remained in the resin.
 ペーストの粘度は、1Pa・s以上、10Pa・s以上、100Pa・s以上であってよい。1Pa・s以上の粘度に調整することで、塗布後の液ダレを抑制し、印刷後にパターン形状が崩れることを容易に防止することができる。また、ペースト中の磁性粉の沈降を抑止し、ペースト撹拌後の時間経過による塗布性の低下を容易に改善することができる。一方、ペーストの粘度は、600Pa・s以下、400Pa・s以下、200Pa・s以下であってよい。粘度を600Pa・s以下に調整することで、ペーストに流動性が生じ、良好な塗布性を容易に得ることができる。 The viscosity of the paste may be 1 Pa·s or more, 10 Pa·s or more, or 100 Pa·s or more. By adjusting the viscosity to 1 Pa·s or more, it is possible to suppress liquid dripping after coating and easily prevent the pattern shape from collapsing after printing. In addition, sedimentation of the magnetic powder in the paste can be suppressed, and deterioration of coatability due to passage of time after stirring the paste can be easily improved. On the other hand, the viscosity of the paste may be 600 Pa·s or less, 400 Pa·s or less, or 200 Pa·s or less. By adjusting the viscosity to 600 Pa·s or less, fluidity is generated in the paste, and good coatability can be easily obtained.
 ペーストをスクリーン印刷に適用する場合、ペーストの粘度は、10Pa・s~400Pa・s、50Pa・s~300Pa・s、又は100Pa・s~250Pa・sであってよい。粘度を上記範囲に調整した場合、スクリーン印刷においては、版の開口部をペーストが透過しなくなる不具合の発生を抑制することができる。ペーストの粘度は、エポキシ基含有化合物の構造及び特性、硬化剤の構造及び特性、並びにこれらの組合せ及び配合比、さらに硬化促進剤及びカップリング剤等の添加剤の構造及び配合比等によって自在に調整することができる。ペーストは、粘度調整剤、チキソ性付与剤、及び分散安定剤等の添加剤を含んでもよい。 When the paste is applied to screen printing, the viscosity of the paste may be 10 Pa·s to 400 Pa·s, 50 Pa·s to 300 Pa·s, or 100 Pa·s to 250 Pa·s. When the viscosity is adjusted to the above range, in screen printing, it is possible to suppress the occurrence of the problem that the paste does not pass through the openings of the plate. The viscosity of the paste can be freely adjusted depending on the structure and properties of the epoxy group-containing compound, the structure and properties of the curing agent, the combination and compounding ratio thereof, and the structure and compounding ratio of additives such as curing accelerators and coupling agents. can be adjusted. The paste may contain additives such as viscosity modifiers, thixotropic agents, and dispersion stabilizers.
<配線基板及びその製造方法>
 配線基板は、基板と、該基板上に設けられた導体配線と、該導体配線の該基板とは反対側に位置する上面、及び/又は、該上面と該基板側に位置する底面との間に位置する一対の側面のうちの少なくとも一方を被覆し、磁性材を含む絶縁体からなる絶縁磁性層と、を備える。以下では、いくつかの実施形態に分けて、配線基板の製造方法について説明する。なお、以下の実施形態では、上記実施形態の絶縁磁性層形成用組成物を用いることができる。
<Wiring board and its manufacturing method>
The wiring board includes a substrate, conductor wiring provided on the substrate, an upper surface of the conductor wiring located on the opposite side of the substrate, and/or between the upper surface and a bottom surface located on the substrate side. and an insulating magnetic layer that covers at least one of the pair of side surfaces located in and is made of an insulator containing a magnetic material. A method for manufacturing a wiring board will be described below by dividing it into several embodiments. In the following embodiments, the composition for forming an insulating magnetic layer of the above embodiment can be used.
(第一実施形態)
 図1は、配線基板の製造方法の第一実施形態を説明するための模式断面図である。第一実施形態の製造方法は、基板10と、該基板10上に設けられた導体配線20と、を備える配線付き基板50を用意する工程a1と、該導体配線20を、磁性材を含む絶縁磁性層形成用組成物35で被覆し、絶縁磁性層形成用組成物35を硬化させることにより、絶縁磁性層形成用組成物35の硬化物からなる絶縁磁性層30を形成する工程a2と、を備え、工程a2が、互いに隣り合う導体配線20,20間の空隙gが充填されることなく導体配線20の上面S1が被覆されるように、絶縁磁性層形成用組成物35を導体配線20に塗布する工程b1と、該絶縁磁性層形成用組成物35を硬化させて絶縁磁性層30を形成する工程b2と、を含む。以下、工程a1~a3、工程b1及び工程b2について説明する。
(First embodiment)
FIG. 1 is a schematic cross-sectional view for explaining the first embodiment of the wiring board manufacturing method. The manufacturing method of the first embodiment comprises a step a1 of preparing a substrate with wiring 50 including a substrate 10 and conductor wiring 20 provided on the substrate 10, and insulating the conductor wiring 20 with a magnetic material. a step a2 of forming the insulating magnetic layer 30 composed of the cured product of the insulating magnetic layer-forming composition 35 by coating with the magnetic layer-forming composition 35 and curing the insulating magnetic layer-forming composition 35; In step a2, the insulating magnetic layer forming composition 35 is applied to the conductor wiring 20 so that the upper surface S1 of the conductor wiring 20 is covered without filling the gap g between the conductor wiring 20 adjacent to each other. Step b1 of coating and step b2 of curing the insulating magnetic layer forming composition 35 to form the insulating magnetic layer 30 are included. Steps a1 to a3, steps b1 and b2 will be described below.
[工程a1]
 工程a1では、配線付き基板50を用意する。工程a1は、配線付き基板50を製造する工程であってもよい。配線付き基板5は、例えば、基板10上に導体層を形成した後、導体層をフォトリソグラフィ法等によりパターニングして導体配線20を形成する方法、基板10上にめっき、スパッタリング等により導体配線20を形成する方法などの公知の方法により得ることができる。
[Step a1]
In step a1, a substrate 50 with wiring is prepared. The step a1 may be a step of manufacturing the substrate 50 with wiring. The wiring-equipped substrate 5 can be formed, for example, by forming a conductor layer on the substrate 10 and then patterning the conductor layer by photolithography or the like to form the conductor wiring 20, or by forming the conductor wiring 20 on the substrate 10 by plating, sputtering, or the like. It can be obtained by a known method such as a method of forming
 基板10としては、例えば、公知のプリプレグを数枚貼り合わせ、加圧加熱処理を行って得られるものが使用できる。かかるプリプレグとしては、調製された樹脂ワニスをガラス繊維、有機繊維等の繊維基材(強化繊維)に含浸させて公知の方法により作製されたものを用いることができ、例えば、ガラスエポキシ複合基板が挙げられる。また、基板10としては、ポリイミド系樹脂、フッ素系樹脂、液晶ポリマー(LCP)等の低誘電樹脂材料を用いた基板など、公知の低誘電基板が使用できる。 As the substrate 10, for example, one obtained by pasting together several known prepregs and subjecting them to pressurization and heat treatment can be used. As such a prepreg, one prepared by a known method by impregnating a fiber base material (reinforcing fiber) such as glass fiber or organic fiber with the prepared resin varnish can be used. mentioned. As the substrate 10, known low dielectric substrates such as substrates using low dielectric resin materials such as polyimide resins, fluorine resins, and liquid crystal polymers (LCP) can be used.
 基板10を構成する樹脂材料としては、例えば、熱硬化性樹脂、熱可塑性樹脂などの樹脂が挙げられる。樹脂材料は、単独使用又は2種以上の併用であってもよい。 Examples of the resin material forming the substrate 10 include resins such as thermosetting resins and thermoplastic resins. The resin materials may be used singly or in combination of two or more.
 熱硬化性樹脂としては、例えば、ポリカーボネート樹脂、熱硬化性ポリイミド樹脂、熱硬化性フッ化ポリイミド樹脂、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、熱硬化性ウレタン樹脂、フッ素樹脂、液晶ポリマーなどが挙げられる。フッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)等の含フッ素オレフィンの重合体が挙げられる。 Examples of thermosetting resins include polycarbonate resins, thermosetting polyimide resins, thermosetting fluorinated polyimide resins, epoxy resins, phenol resins, urea resins, melamine resins, diallyl phthalate resins, silicone resins, and thermosetting urethane resins. , fluororesins, and liquid crystal polymers. Examples of fluororesins include polymers of fluorine-containing olefins such as polytetrafluoroethylene (PTFE).
 熱可塑性樹脂としては、例えば、オレフィン樹脂、アクリル樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリアクリロニトリル樹脂、マレイミド樹脂、ポリ酢酸ビニル樹脂、エチレン-酢酸ビニル共重合体、ポリビニルアルコール樹脂、ポリアミド樹脂、ポリ塩化ビニル樹脂、ポリアセタール樹脂、ポリフェニレンオキシド樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリルスルホン樹脂、熱可塑性ポリイミド樹脂、熱可塑性フッ化ポリイミド樹脂、熱可塑性ウレタン樹脂、ポリエーテルイミド樹脂、ポリメチルペンテン樹脂、セルロース樹脂、液晶ポリマー、アイオノマーなどが挙げられる。 Examples of thermoplastic resins include olefin resins, acrylic resins, polystyrene resins, polyester resins, polyacrylonitrile resins, maleimide resins, polyvinyl acetate resins, ethylene-vinyl acetate copolymers, polyvinyl alcohol resins, polyamide resins, and polyvinyl chloride. Resin, polyacetal resin, polyphenylene oxide resin, polyphenylene sulfide resin, polysulfone resin, polyethersulfone resin, polyetheretherketone resin, polyarylsulfone resin, thermoplastic polyimide resin, thermoplastic fluorinated polyimide resin, thermoplastic urethane resin, poly Examples include etherimide resins, polymethylpentene resins, cellulose resins, liquid crystal polymers, and ionomers.
 基板10は、単層であってもよく、多層であってもよい。基板は、表面に接着層を有していてもよい。 The substrate 10 may be a single layer or multiple layers. The substrate may have an adhesive layer on its surface.
 基板10の厚さは、例えば、10μm~1mmであってもよい。 The thickness of the substrate 10 may be, for example, 10 μm to 1 mm.
 導体配線20は、例えば基板10に接触している。導体配線20は、導体を含む。導体としては、例えば、銅、金、銀、ニッケル等の金属が挙げられる。 The conductor wiring 20 is in contact with the substrate 10, for example. The conductor wiring 20 includes conductors. Examples of conductors include metals such as copper, gold, silver, and nickel.
 導体配線20の厚さは、例えば、1~50μmであり、5~50μmであってもよい。導体配線20の幅は、例えば、5~300μmであってよい。 The thickness of the conductor wiring 20 is, for example, 1 to 50 μm, and may be 5 to 50 μm. The width of the conductor wiring 20 may be, for example, 5 to 300 μm.
 配線付き基板50の具体例としては、銅貼り積層板の銅層をパターニングして配線を形成したもの等が挙げられる。 A specific example of the substrate with wiring 50 is a substrate in which wiring is formed by patterning a copper layer of a copper-clad laminate.
[工程a2]
 工程a2では、導体配線20を絶縁磁性層形成用組成物35で被覆し、絶縁磁性層30を形成する。第一実施形態では、工程a2が下記工程b1及び工程b2を含む。
[Step a2]
In step a2, the conductor wiring 20 is coated with the insulating magnetic layer forming composition 35 to form the insulating magnetic layer 30 . In the first embodiment, step a2 includes steps b1 and b2 below.
-工程b1
 工程b1では、導体配線20の上面S1が被覆されるように絶縁磁性層形成用組成物35を導体配線20に塗布する(図1の(a)参照)。この際、図1の(a)に示されるように、導体配線20の上面S1に加えて、一対の側面S3a,S3bのうちの少なくとも一方が被覆されるように絶縁磁性層形成用組成物35を導体配線20に塗布してもよい。ただし、互いに隣り合う導体配線20,20間の空隙gが絶縁磁性層形成用組成物35によって充填されないようにする。より詳細には、互いに隣り合う導体配線20,20のうちの一方を被覆する絶縁磁性層形成用組成物35と他方を被覆する絶縁磁性層形成用組成物35とが互いに接触しないようにする。図1の(a)では、導体配線20の上面S1に加えて、一対の側面S3a,S3bが被覆されるように絶縁磁性層形成用組成物35が導体配線20に塗布されているが、一対の側面S3a,S3bの一方又は両方が絶縁磁性層形成用組成物35に被覆されないように、絶縁磁性層形成用組成物35を導体配線20に塗布してもよい。
- step b1
In step b1, the insulating magnetic layer forming composition 35 is applied to the conductor wiring 20 so as to cover the upper surface S1 of the conductor wiring 20 (see FIG. 1(a)). At this time, as shown in FIG. 1(a), the insulating magnetic layer forming composition 35 is applied so as to cover at least one of the pair of side surfaces S3a and S3b in addition to the upper surface S1 of the conductor wiring 20. may be applied to the conductor wiring 20 . However, the gap g between the conductor wirings 20 adjacent to each other should not be filled with the composition 35 for forming the insulating magnetic layer. More specifically, the insulating magnetic layer forming composition 35 covering one of the conductor wirings 20, 20 adjacent to each other and the insulating magnetic layer forming composition 35 covering the other are prevented from coming into contact with each other. In FIG. 1(a), the insulating magnetic layer forming composition 35 is applied to the conductor wiring 20 so as to cover the pair of side surfaces S3a and S3b in addition to the upper surface S1 of the conductor wiring 20. The insulating magnetic layer-forming composition 35 may be applied to the conductor wiring 20 so that one or both of the side surfaces S3a and S3b of the conductor wiring 20 are not coated with the insulating magnetic layer-forming composition 35. FIG.
 絶縁磁性層形成用組成物35としては、例えば、ペースト状又はインク状の組成物を用いる。絶縁磁性層形成用組成物35の塗布方法は、微細な導体配線20の幅と同程度の幅で絶縁磁性層形成用組成物35を塗布できる方法であれば特に限定されない。例えば、図1の(a)に示すように、ノズル15から絶縁磁性層形成用組成物35を吐出する印刷法により、導体配線20に絶縁磁性層形成用組成物35を塗布(印刷)することができる。絶縁磁性層形成用組成物35の塗布方法は、ジェットプリンティング法、ディスペンサー、ジェットディスペンサ、ニードルディスペンサ、粒子堆積法、スプレーコータ、スピンコータ、ディップコータ等であってもよい。 As the insulating magnetic layer forming composition 35, for example, a paste-like or ink-like composition is used. The method of applying the insulating magnetic layer forming composition 35 is not particularly limited as long as it is a method capable of applying the insulating magnetic layer forming composition 35 in a width approximately equal to the width of the fine conductor wiring 20 . For example, as shown in FIG. 1A, the insulating magnetic layer forming composition 35 is applied (printed) onto the conductor wiring 20 by a printing method in which the insulating magnetic layer forming composition 35 is ejected from nozzles 15. can be done. The insulating magnetic layer forming composition 35 may be applied by a jet printing method, a dispenser, a jet dispenser, a needle dispenser, a particle deposition method, a spray coater, a spin coater, a dip coater, or the like.
-工程b2
 工程b2では、絶縁磁性層形成用組成物35を硬化させて絶縁磁性層30を形成する(図1の(b)参照)。
- step b2
In step b2, the insulating magnetic layer forming composition 35 is cured to form the insulating magnetic layer 30 (see (b) of FIG. 1).
 絶縁磁性層形成用組成物35の硬化は、例えば加熱により行うことができる。絶縁磁性層形成用組成物35の硬化は、絶縁磁性層形成用組成物35の乾燥による硬化であってよく、絶縁磁性層形成用組成物35が熱硬化性樹脂を含む場合は、絶縁磁性層形成用組成物35の熱硬化であってもよい。加熱温度及び加熱時間は、絶縁磁性層形成用組成物35に含まれる溶剤の種類、熱硬化性樹脂の種類等に応じて適宜調整してよい。 The insulating magnetic layer forming composition 35 can be cured, for example, by heating. Curing of the insulating magnetic layer-forming composition 35 may be curing by drying the insulating magnetic layer-forming composition 35. When the insulating magnetic layer-forming composition 35 contains a thermosetting resin, the insulating magnetic layer can be Thermal curing of the forming composition 35 may also be used. The heating temperature and heating time may be appropriately adjusted according to the type of solvent and the type of thermosetting resin contained in the insulating magnetic layer forming composition 35 .
 以上の操作により、図1の(b)に示す配線基板100Aが得られる。配線基板100Aは、基板10と、基板10の主面上に設けられた導体配線20と、導体配線20の上面S1及び一対の側面S3a,S3bを被覆する絶縁磁性層30と、を備える。絶縁磁性層30は、上面S1側に盛り上がった断面ドーム状を呈している。 By the above operation, the wiring board 100A shown in FIG. 1(b) is obtained. 100 A of wiring boards are provided with the board|substrate 10, the conductor wiring 20 provided on the main surface of the board|substrate 10, and the insulating magnetic layer 30 which coat|covers the upper surface S1 and a pair of side surface S3a, S3b of the conductor wiring 20. FIG. The insulating magnetic layer 30 has a dome-shaped cross section that protrudes toward the upper surface S1.
 絶縁磁性層30は、磁性材を含む絶縁体からなる。磁性材は、絶縁磁性層30中で分散されていてよい。 The insulating magnetic layer 30 is made of an insulator containing a magnetic material. The magnetic material may be dispersed in the insulating magnetic layer 30 .
 信号伝搬のしやすさの観点から、絶縁磁性層30の被覆厚さは、0.1~100μmであってもよく、0.2~30μmであってもよく、0.5~10μmであってもよい。第一実施形態では、被覆厚さが最も大きくなる箇所における該被覆厚さが上述した範囲の最大値より小さいことが好ましく、被覆厚さが最も小さく箇所における該被覆厚さが上述した範囲の最小値より大きいことが好ましい。 From the viewpoint of ease of signal propagation, the coating thickness of the insulating magnetic layer 30 may be 0.1 to 100 μm, 0.2 to 30 μm, or 0.5 to 10 μm. good too. In the first embodiment, it is preferable that the coating thickness at the point where the coating thickness is the largest is smaller than the maximum value of the range described above, and the coating thickness at the point where the coating thickness is the smallest is the minimum value of the range described above. value is preferred.
 本明細書において、絶縁磁性層30の被覆厚さとは、絶縁磁性層30が導体配線20と離れて設けられている場合は下記(i)、絶縁磁性層30が導体配線20と接するように設けられている場合は下記(ii)を意味する。
(i)絶縁磁性層30の導体配線20側の表面における点Aと、この点Aを通り、点Aから導体配線20までを最短距離で結ぶ線を延ばしたときに、絶縁磁性層30の導体配線20側とは反対側の表面と交差する点B、との距離。
(ii)絶縁磁性層30と導体配線20との界面に直交する方向における厚さ。
In this specification, the coating thickness of the insulating magnetic layer 30 refers to (i) below when the insulating magnetic layer 30 is provided apart from the conductor wiring 20, and the insulating magnetic layer 30 is provided so as to be in contact with the conductor wiring 20. (ii) below.
(i) When a point A on the surface of the insulating magnetic layer 30 on the side of the conductor wiring 20 and a line that passes through this point A and connects the conductor wiring 20 from the point A to the conductor wiring 20 at the shortest distance is extended, the conductor of the insulating magnetic layer 30 The distance from the point B that intersects the surface on the side opposite to the wiring 20 side.
(ii) thickness in a direction orthogonal to the interface between the insulating magnetic layer 30 and the conductor wiring 20;
 伝送損失を抑制する観点から、絶縁磁性層30の比透磁率は、2~1000であってもよく、10~1000であってもよく、20~1000であってもよい。 From the viewpoint of suppressing transmission loss, the insulating magnetic layer 30 may have a relative magnetic permeability of 2 to 1,000, 10 to 1,000, or 20 to 1,000.
 伝送損失を抑制する観点から、絶縁磁性層30の比誘電率は、1~30であってもよく、1~20であってもよく、1~10であってもよい。 From the viewpoint of suppressing transmission loss, the dielectric constant of the insulating magnetic layer 30 may be 1-30, 1-20, or 1-10.
 図1では、絶縁磁性層30が導体配線20の上面S1及び一対の側面S3a,S3bを被覆するように形成されているが、上面S1が絶縁磁性層30によって被覆され、一対の側面S3a,S3bの一方又は両方が絶縁磁性層30によって被覆されなくてもよい。また、一対の側面S3a,S3bのうちの一方又は両方が絶縁磁性層30によって被覆され、上面S1が絶縁磁性層30によって被覆されなくてもよい。例えば、工程b1において、一対の側面S3a,S3bの両方が被覆されないように、絶縁磁性層形成用組成物35を導体配線20の上面S1にのみ塗布してもよい。この方法によれば、一対の側面S3a,S3bを被覆する絶縁磁性層30は形成されない。また、例えば、工程b1において、一対の側面S3a,S3bのうちの一方が被覆され、他方が被覆されないように、絶縁磁性層形成用組成物35を導体配線20に塗布してもよい。この方法によれば、一対の側面S3a,S3bのうちの一方を被覆する絶縁磁性層30は形成されるが、他方を被覆する絶縁磁性層30は形成されない。また、例えば、工程a2が、工程b2の後に、導体配線20の上面S1を被覆する絶縁磁性層30を研削又は研磨により除去する工程を更に含んでいてよい。この場合、工程b1では、導体配線20の上面S1に加えて、一対の側面S3a,S3bのうちの少なくとも一方が被覆されるように絶縁磁性層形成用組成物35を導体配線20に塗布する。この方法によれば、導体配線20の上面S1を被覆する絶縁磁性層30は形成されない。研削方法及び研磨方法は特に限定されないが、例えば、フライカット法による研削、CMP(Chemical Mechanical Polishing)による研磨等であってよい。フライカット法では、ダイヤモンドバイトによる研削装置を使用することができ、例えば、300mmウェハ対応のオートマチックサーフェースプレーナ(株式会社ディスコ製、商品名「DAS8930」)を用いることができる。 In FIG. 1, the insulating magnetic layer 30 is formed so as to cover the upper surface S1 and the pair of side surfaces S3a and S3b of the conductor wiring 20, but the upper surface S1 is covered with the insulating magnetic layer 30 and the pair of side surfaces S3a and S3b. may not be covered with the insulating magnetic layer 30 . Alternatively, one or both of the pair of side surfaces S3a and S3b may be covered with the insulating magnetic layer 30, and the upper surface S1 may not be covered with the insulating magnetic layer 30. FIG. For example, in step b1, the insulating magnetic layer forming composition 35 may be applied only to the upper surface S1 of the conductor wiring 20 so that both the pair of side surfaces S3a and S3b are not covered. According to this method, the insulating magnetic layer 30 covering the pair of side surfaces S3a and S3b is not formed. Further, for example, in step b1, the insulating magnetic layer forming composition 35 may be applied to the conductor wiring 20 so that one of the pair of side surfaces S3a and S3b is covered and the other is not covered. According to this method, the insulating magnetic layer 30 covering one of the pair of side surfaces S3a and S3b is formed, but the insulating magnetic layer 30 covering the other side is not formed. Further, for example, the step a2 may further include a step of removing the insulating magnetic layer 30 covering the upper surface S1 of the conductor wiring 20 by grinding or polishing after the step b2. In this case, in step b1, the insulating magnetic layer forming composition 35 is applied to the conductor wiring 20 so as to cover at least one of the pair of side surfaces S3a and S3b in addition to the upper surface S1 of the conductor wiring 20. According to this method, the insulating magnetic layer 30 covering the upper surface S1 of the conductor wiring 20 is not formed. The grinding method and the polishing method are not particularly limited, but may be, for example, grinding by a fly-cut method, polishing by CMP (Chemical Mechanical Polishing), or the like. In the fly-cutting method, a grinder with a diamond bit can be used, for example, an automatic surface planer (manufactured by Disco Co., Ltd., trade name "DAS8930") compatible with 300 mm wafers can be used.
(第二実施形態)
 図2及び図3は、配線基板の製造方法の第二実施形態を説明するための模式断面図である。第二実施形態の配線基板の製造方法は、上記第一実施形態と同様に、工程a1と、工程a2と、を備えるが、工程a2が、配線付き基板50の導体配線20が形成されている領域上に絶縁磁性層形成用組成物35からなる層を形成する工程c1と、絶縁磁性層形成用組成物35からなる層を硬化させて絶縁磁性層形成用組成物35の硬化物からなる絶縁磁性層30を形成する工程c2と、絶縁磁性層形成用組成物35からなる層又は絶縁磁性層30の、基板10とは反対側上に感光層7aを形成する工程c3と、感光層7aを所定のパターンで露光し、現像することにより、導体配線20上以外の部分の少なくとも一部に開口部H1を有するレジスト膜8aを形成する工程c4と、絶縁磁性層形成用組成物35からなる層又は絶縁磁性層30の、基板10とレジスト膜8aの開口部H1との間に位置する部分を除去する工程c5と、を含む。工程a2は、レジスト膜8aを除去する工程c6を更に含んでいてもよい。以下、工程c1~c6について説明する。
(Second embodiment)
2 and 3 are schematic cross-sectional views for explaining a second embodiment of the wiring board manufacturing method. The wiring board manufacturing method of the second embodiment includes steps a1 and a2 as in the first embodiment. Step c1 of forming a layer of the insulating magnetic layer-forming composition 35 on the region; Step c2 of forming the magnetic layer 30; Step c3 of forming the photosensitive layer 7a on the opposite side of the substrate 10 of the insulating magnetic layer forming composition 35 or the insulating magnetic layer 30; A step c4 of forming a resist film 8a having openings H1 in at least part of the portions other than those on the conductor wiring 20 by exposing in a predetermined pattern and developing; Alternatively, a step c5 of removing a portion of the insulating magnetic layer 30 located between the substrate 10 and the opening H1 of the resist film 8a is included. Step a2 may further include step c6 of removing the resist film 8a. Steps c1 to c6 will be described below.
-工程c1
 工程c1では、互いに隣り合う導体配線20,20間の空隙が充填されるように、配線付き基板50の導体配線20が形成されている領域上(基板10上及び導体配線20上)に絶縁磁性層形成用組成物35からなる層を形成することで、導体配線20の上面S1及び一対の側面S3a,S3bを絶縁磁性層形成用組成物35により被覆する(図2の(a)参照)。
- step c1
In step c1, an insulating magnetic layer is formed on the region where the conductor wiring 20 of the substrate with wiring 50 is formed (on the substrate 10 and on the conductor wiring 20) so as to fill the gap between the conductor wiring 20, 20 adjacent to each other. By forming a layer made of the layer-forming composition 35, the upper surface S1 and the pair of side surfaces S3a and S3b of the conductor wiring 20 are covered with the insulating magnetic layer-forming composition 35 (see FIG. 2(a)).
 工程c1は、具体的には、絶縁磁性層形成用組成物35を上記領域に塗布する工程であってよく、絶縁磁性層形成用組成物35からなるシート(例えばフィルム状のシート)を上記領域にラミネートする工程であってもよい。絶縁磁性層形成用組成物35からなる層は、配線付き基板50の導体配線20が形成されている領域の一部を被覆するように形成されてよく、配線付き基板50の導体配線20が形成されている領域の全て(例えば配線付き基板50の全面)を被覆するように形成されてもよい。 Specifically, the step c1 may be a step of applying the insulating magnetic layer forming composition 35 to the above region, and a sheet (for example, a film-like sheet) made of the insulating magnetic layer forming composition 35 is applied to the above region. It may be a step of laminating to. The layer made of the insulating magnetic layer forming composition 35 may be formed so as to partially cover the region where the conductor wiring 20 of the substrate with wiring 50 is formed, and the conductor wiring 20 of the substrate with wiring 50 is formed. It may be formed so as to cover the entire region (for example, the entire surface of the wiring-equipped substrate 50).
 絶縁磁性層形成用組成物35の塗布方法は、特に制限はないが、スクリーン印刷、転写印刷、オフセット印刷、ジェットプリンティング法、ディスペンサー、ジェットディスペンサ、ニードルディスペンサ、カンマコータ、スリットコータ、ダイコータ、グラビアコータ、スリットコート、凸版印刷、凹版印刷、グラビア印刷、ステンシル印刷、ソフトリソグラフ、バーコート、アプリケータ、粒子堆積法、スプレーコータ、スピンコータ、ディップコータ等によって塗布する方法が挙げられる。 The method of applying the insulating magnetic layer forming composition 35 is not particularly limited, but may be screen printing, transfer printing, offset printing, jet printing, dispenser, jet dispenser, needle dispenser, comma coater, slit coater, die coater, gravure coater, Slit coating, letterpress printing, intaglio printing, gravure printing, stencil printing, soft lithography, bar coating, applicator, particle deposition method, spray coater, spin coater, dip coater and the like can be used.
 絶縁磁性層形成用組成物35からなるシートは、例えば、上記塗布方法で、支持フィルム上に絶縁磁性層形成用組成物35を塗布することで形成することができる。絶縁磁性層形成用組成物35からなるシートのラミネート方法は、特に制限はないが、ロールラミネータ、ダイヤフラム式ラミネータ、真空ロールラミネータ、真空ダイヤフラム式ラミネータ等を採用することができる。 A sheet composed of the insulating magnetic layer forming composition 35 can be formed, for example, by applying the insulating magnetic layer forming composition 35 onto a support film by the coating method described above. The method of laminating the sheet composed of the insulating magnetic layer forming composition 35 is not particularly limited, but a roll laminator, a diaphragm type laminator, a vacuum roll laminator, a vacuum diaphragm type laminator, or the like can be employed.
-工程c2
 工程c2では、絶縁磁性層形成用組成物35からなる層を硬化させて絶縁磁性層30を形成する(図2の(b)参照)。絶縁磁性層形成用組成物35からなる層の硬化は、第一実施形態の工程b2における絶縁磁性層形成用組成物の硬化と同様にして実施することができる。
- step c2
In step c2, the layer made of the insulating magnetic layer forming composition 35 is cured to form the insulating magnetic layer 30 (see (b) of FIG. 2). The layer composed of the insulating magnetic layer forming composition 35 can be cured in the same manner as the insulating magnetic layer forming composition in step b2 of the first embodiment.
 図2では、工程c2が工程c3の前に実施されているが、工程c2は、工程c3の後に実施されてもよい。工程c2は、例えば、工程c5の後に実施されてもよい。工程c2が工程c3の後に実施される場合、工程c3は、絶縁磁性層形成用組成物35からなる層の基板10とは反対側上に感光層7aを形成する工程であり、工程c2が工程c3の前に実施される場合、工程c3は、絶縁磁性層30の基板10とは反対側上に感光層7aを形成する工程である。同様に、工程c2が工程c5の後に実施される場合、工程c5は、絶縁磁性層形成用組成物35からなる層の基板10とレジスト膜8aの開口部H1との間に位置する部分を除去する工程であり、工程c2が工程c5の前に実施される場合、工程c5は、絶縁磁性層30の基板10とレジスト膜8aの開口部H1との間に位置する部分を除去する工程である。 Although step c2 is performed before step c3 in FIG. 2, step c2 may be performed after step c3. Step c2 may, for example, be performed after step c5. When step c2 is performed after step c3, step c3 is a step of forming the photosensitive layer 7a on the side opposite to the substrate 10 of the layer made of the insulating magnetic layer forming composition 35, and step c2 is the step. When performed before c3, step c3 is the step of forming the photosensitive layer 7a on the side of the insulating magnetic layer 30 opposite to the substrate 10. FIG. Similarly, when step c2 is performed after step c5, step c5 removes the portion of the layer made of the insulating magnetic layer forming composition 35 located between the substrate 10 and the opening H1 of the resist film 8a. If step c2 is performed before step c5, step c5 is a step of removing the portion of the insulating magnetic layer 30 located between the substrate 10 and the opening H1 of the resist film 8a. .
-工程c3
 工程c3では、絶縁磁性層30の基板10とは反対側上に感光層7aを形成する(図2の(b)参照)。
- step c3
In step c3, a photosensitive layer 7a is formed on the side of the insulating magnetic layer 30 opposite to the substrate 10 (see FIG. 2(b)).
 感光層7aは、感光性を有する層である。感光層7aは、例えば、バインダーポリマーと、光重合性化合物と、光重合開始剤と、を含む感光性樹脂組成物からなっていてよい。図2に示す感光層7aはネガ型であるが、ポジ型であってもよい。 The photosensitive layer 7a is a layer having photosensitivity. The photosensitive layer 7a may be made of, for example, a photosensitive resin composition containing a binder polymer, a photopolymerizable compound, and a photopolymerization initiator. Although the photosensitive layer 7a shown in FIG. 2 is of a negative type, it may be of a positive type.
 感光層7aは、絶縁磁性層30の基板10とは反対側上に感光性樹脂組成物を塗布すること、又は、感光性樹脂組成物からなるシート(例えばフィルム状のシート)をラミネートすることなどによって形成することができる。感光性樹脂組成物の塗布方法、及び、感光性樹脂組成物からなるシートのラミネート方法としては、上述した絶縁磁性層形成用組成物の塗布方法、及び、絶縁磁性層形成用組成物からなるシートのラミネート方法を採用することができる。 The photosensitive layer 7a is formed by coating a photosensitive resin composition on the side of the insulating magnetic layer 30 opposite to the substrate 10, or by laminating a sheet (for example, a film sheet) made of a photosensitive resin composition. can be formed by As a method for applying the photosensitive resin composition and a method for laminating a sheet made of the photosensitive resin composition, the method for applying the composition for forming the insulating magnetic layer and the sheet made of the composition for forming the insulating magnetic layer described above are used. lamination method can be adopted.
 感光層7aの厚さは、例えば、10~100μmである。 The thickness of the photosensitive layer 7a is, for example, 10-100 μm.
-工程c4
 工程c4では、感光層7aを所定のパターンで露光し、現像することにより、導体配線20上以外の部分の少なくとも一部に開口部H1を有するレジスト膜を形成する(図2の(c)参照)。
- step c4
In step c4, the photosensitive layer 7a is exposed in a predetermined pattern and developed to form a resist film having an opening H1 in at least a portion of the portion other than the conductor wiring 20 (see FIG. 2(c)). ).
 具体的には、まず、所定のマスクパターンを介して、感光層7aを所定のパターンで露光する。露光に用いられる活性光線としては、例えば、g線ステッパーを光源とする光線;低圧水銀灯、高圧水銀灯、メタルハライドランプ、i線ステッパー等を光源とする紫外線;電子線;レーザー光線などが挙げられる。露光量は、使用する光源、感光層7aの厚さ等によって適宜選定される。 Specifically, first, the photosensitive layer 7a is exposed in a predetermined pattern through a predetermined mask pattern. Actinic rays used for exposure include, for example, light rays using a g-line stepper as a light source; ultraviolet rays using a low-pressure mercury lamp, high-pressure mercury lamp, metal halide lamp, i-line stepper, etc. as a light source; electron beams; laser beams, and the like. The amount of exposure is appropriately selected depending on the light source used, the thickness of the photosensitive layer 7a, and the like.
 次いで、露光後の感光層7aを現像液により現像する。図2に示すように感光層7aがネガ型である場合、露光により露光部が硬化し、未露光部が現像により除去される。これにより、除去された未露光部に対応する形状の開口部H1を有するレジスト膜8aが形成される。感光層7aがポジ型である場合、露光により露光部が現像液に対して可溶化するため、露光部が現像により除去され、除去された露光部に対応する形状の開口部を有するレジスト膜が形成される。 Next, the exposed photosensitive layer 7a is developed with a developer. As shown in FIG. 2, when the photosensitive layer 7a is of a negative type, the exposed portion is cured by exposure, and the unexposed portion is removed by development. Thereby, a resist film 8a having an opening H1 having a shape corresponding to the removed unexposed portion is formed. When the photosensitive layer 7a is of a positive type, the exposed portions are made soluble in the developing solution by exposure, so that the exposed portions are removed by development, leaving a resist film having openings with shapes corresponding to the removed exposed portions. It is formed.
 現像液は、例えばアルカリ性現像液であり、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムヒドロキシド、コリン等のアルカリ性化合物を濃度が1~10質量%程度になるように水に溶解したアルカリ性水溶液、アンモニア水等のアルカリ性水溶液などを用いることができる。現像方法としては、シャワー現像法、スプレー現像法、浸漬現像法、パドル現像法等が挙げられる。 The developer is, for example, an alkaline developer, and an alkaline aqueous solution in which an alkaline compound such as sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, or choline is dissolved in water to a concentration of about 1 to 10% by mass, An alkaline aqueous solution such as ammonia water can be used. Examples of the developing method include a shower developing method, a spray developing method, an immersion developing method, a puddle developing method, and the like.
-工程c5
 工程c5では、絶縁磁性層30の基板10とレジスト膜8aの開口部H1との間に位置する部分を除去する(図3の(d)参照。)。
- step c5
In step c5, the portion of the insulating magnetic layer 30 located between the substrate 10 and the opening H1 of the resist film 8a is removed (see FIG. 3(d)).
 具体的には、塩化第二銅溶液、塩化第二鉄溶液等の公知のエッチング液を用いてウェットエッチングを行う。これにより、絶縁磁性層30の基板10とレジスト膜8aの開口部H1との間に位置する部分(レジスト膜によって保護されていない部分)が除去される。 Specifically, wet etching is performed using a known etchant such as a cupric chloride solution or a ferric chloride solution. As a result, the portion of the insulating magnetic layer 30 located between the substrate 10 and the opening H1 of the resist film 8a (the portion not protected by the resist film) is removed.
-工程c6
 工程c6では、レジスト膜8aを除去する(図3の(e)参照)。レジスト膜8aは、例えば、工程c4において現像に使用したアルカリ性現像液よりも更に強いアルカリ性の水溶液を用いることで除去することができる。レジスト膜8aの除去方式としては、浸漬方式、スプレー方式等が挙げられる。
- step c6
In step c6, the resist film 8a is removed (see (e) of FIG. 3). The resist film 8a can be removed, for example, by using an alkaline aqueous solution stronger than the alkaline developer used for development in step c4. Methods for removing the resist film 8a include an immersion method, a spray method, and the like.
 以上の操作により、図3の(d)に示す配線基板100B及び図3の(e)に示す配線基板100Cが得られる。配線基板100B,100Cの詳細は、導体配線20の上面S1側、側面S3a側及び側面S3b側の絶縁磁性層30が、それぞれ均一な被覆厚さで形成されていることを除き、第一実施形態で得られる配線基板100Aと同様である。導体配線20の上面S1側、底面S2側、側面S3a側及び側面S3b側において、絶縁磁性層30の被覆厚さは同じであっても異なっていてもよい。 By the above operations, the wiring board 100B shown in FIG. 3(d) and the wiring board 100C shown in FIG. 3(e) are obtained. The details of the wiring boards 100B and 100C are the same as in the first embodiment, except that the insulating magnetic layers 30 on the upper surface S1 side, the side surface S3a side, and the side surface S3b side of the conductor wiring 20 are each formed with a uniform coating thickness. It is the same as the wiring board 100A obtained in . The coating thickness of the insulating magnetic layer 30 may be the same or different on the upper surface S1 side, the lower surface S2 side, the side surface S3a side, and the side surface S3b side of the conductor wiring 20 .
 図3では、絶縁磁性層30が導体配線20の上面S1及び一対の側面S3a,S3bを被覆するように形成されているが、上面S1が絶縁磁性層30によって被覆され、一対の側面S3a,S3bの一方又は両方が絶縁磁性層30によって被覆されなくてもよい。また、一対の側面S3a,S3bのうちの一方又は両方が絶縁磁性層30によって被覆され、上面S1が絶縁磁性層30によって被覆されなくてもよい。例えば、工程c4では、導体配線20上以外の部分の全部が開口部H1となるようにレジスト膜8aを形成してよい。この場合、工程c5において、互いに隣り合う導体配線20,20間に位置する絶縁磁性層30が除去されるため、一対の側面S3a,S3bを被覆する絶縁磁性層30は形成されない。開口部H1の大きさ・形状を変更することで、一対の側面S3a,S3bのうちの一方を被覆する絶縁磁性層30を形成しつつ、他方を被覆する絶縁磁性層30を形成しないことも可能である。また、例えば、工程a2が、工程c2の後に、導体配線20の上面S1を被覆する絶縁磁性層30を研削又は研磨により除去する工程を更に含んでいてよい。この工程は、工程c6の後に実施してもよい。この方法によれば、導体配線20の上面S1を被覆する絶縁磁性層30は形成されない。研削方法及び研磨方法は特に限定されないが、例えば、フライカット法による研削、CMP(Chemical Mechanical Polishing)による研磨等であってよい。フライカット法では、ダイヤモンドバイトによる研削装置を使用することができ、例えば、300mmウェハ対応のオートマチックサーフェースプレーナ(株式会社ディスコ製、商品名「DAS8930」)を用いることができる。 In FIG. 3, the insulating magnetic layer 30 is formed so as to cover the upper surface S1 and the pair of side surfaces S3a and S3b of the conductor wiring 20. However, the upper surface S1 is covered with the insulating magnetic layer 30 and the pair of side surfaces S3a and S3b may not be covered with the insulating magnetic layer 30 . Alternatively, one or both of the pair of side surfaces S3a and S3b may be covered with the insulating magnetic layer 30, and the upper surface S1 may not be covered with the insulating magnetic layer 30. FIG. For example, in step c4, the resist film 8a may be formed so that the entire portion other than the conductor wiring 20 becomes the opening H1. In this case, since the insulating magnetic layer 30 positioned between the conductor wirings 20 adjacent to each other is removed in step c5, the insulating magnetic layer 30 covering the pair of side surfaces S3a and S3b is not formed. By changing the size and shape of the opening H1, it is possible to form the insulating magnetic layer 30 covering one of the pair of side surfaces S3a and S3b while not forming the insulating magnetic layer 30 covering the other. is. Further, for example, the step a2 may further include a step of removing the insulating magnetic layer 30 covering the upper surface S1 of the conductor wiring 20 by grinding or polishing after the step c2. This step may be performed after step c6. According to this method, the insulating magnetic layer 30 covering the upper surface S1 of the conductor wiring 20 is not formed. The grinding method and the polishing method are not particularly limited, but may be, for example, grinding by a fly-cut method, polishing by CMP (Chemical Mechanical Polishing), or the like. In the fly-cutting method, a grinder with a diamond bit can be used, for example, an automatic surface planer (manufactured by Disco Co., Ltd., trade name "DAS8930") compatible with 300 mm wafers can be used.
 以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to the examples.
<絶縁磁性層形成用組成物の調製>
 表1に示す組成で配合された軟膏容器内の全原料を、自公転撹拌機(シンキー株式会社製、「ARE-500」)で攪拌・混合することにより、バインダ樹脂ワニスIを得た。なお、攪拌・混合工程では、先ず、自公転撹拌機の公転速度を2000rpmに維持し、300秒攪拌・混合した。次に、自公転撹拌機の公転を止めて、薬さじを用いて容器内の混合物を撹拌した後、再び自公転撹拌機の公転速度を2000rpmに維持し、120秒攪拌・混合した。
<Preparation of composition for forming insulating magnetic layer>
A binder resin varnish I was obtained by stirring and mixing all the raw materials in the ointment container having the composition shown in Table 1 with a rotation-revolution stirrer ("ARE-500" manufactured by THINKY Co., Ltd.). In the stirring/mixing step, first, the revolution speed of the rotation/revolution stirrer was maintained at 2000 rpm, and stirring/mixing was performed for 300 seconds. Next, the rotation of the rotation-revolution stirrer was stopped, and the mixture in the container was stirred using a spatula, and then the revolution speed of the rotation-revolution stirrer was maintained at 2000 rpm again, and the mixture was stirred and mixed for 120 seconds.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
表1に示す各成分の詳細を以下に示す。
・YDF-8170C:日鉄ケミカル&マテリアル株式会社製の商品名、ビスフェノールF型エポキシ樹脂
・jERキュアWA(「jERキュア」は登録商標):三菱ケミカル株式会社製の商品名、アミン系エポキシ樹脂硬化剤
・2E4MZ:四国化成株式会社製の硬化促進剤、2-エチル-4-メチルイミダゾール
・テイサンレジン HTR-860-P3:ナガセケムテックス株式会社製の商品名、アクリル樹脂(シクロヘキサノン溶液)
・KBM-573:信越シリコーン株式会社製の商品名、N-フェニル-3-アミノプロピルトリメトキシシラン
Details of each component shown in Table 1 are shown below.
・ YDF-8170C: trade name manufactured by Nippon Steel Chemical & Materials Co., Ltd., bisphenol F type epoxy resin ・ jER Cure WA (“jER cure” is a registered trademark): trade name manufactured by Mitsubishi Chemical Corporation, amine-based epoxy resin curing Agent 2E4MZ: Curing accelerator manufactured by Shikoku Kasei Co., Ltd., 2-ethyl-4-methylimidazole Teisan Resin HTR-860-P3: Trade name manufactured by Nagase ChemteX Co., Ltd., acrylic resin (cyclohexanone solution)
・KBM-573: trade name manufactured by Shin-Etsu Silicone Co., Ltd., N-phenyl-3-aminopropyltrimethoxysilane
 次に、バインダ樹脂ワニスIを8.5質量部と、磁性粉(SAP-2D(C):新東工業製)を73質量部とを計り取り、これらを50mlの軟膏容器に容れた。軟膏容器内のバインダ樹脂ワニスI及び磁性粉を、自公転撹拌機を用いて公転速度2000rpmで45秒撹拌した。次に、自公転撹拌機の公転を止めて、薬さじを用いて容器内の混合物を撹拌後、自公転撹拌機の公転速度2000rpmで45秒2回撹拌した。これにより、ペースト状の絶縁磁性層形成用組成物を得た。 Next, 8.5 parts by mass of binder resin varnish I and 73 parts by mass of magnetic powder (SAP-2D (C): manufactured by Shinto Kogyo) were weighed out and placed in a 50 ml ointment container. The binder resin varnish I and the magnetic powder in the ointment container were stirred at a revolution speed of 2000 rpm for 45 seconds using a rotation-revolution stirrer. Next, the rotation of the rotation-revolution stirrer was stopped, and the mixture in the container was stirred using a scoop, and then stirred twice for 45 seconds at a revolution speed of 2000 rpm. As a result, a paste composition for forming an insulating magnetic layer was obtained.
<配線基板の作製>
(比較例1)
 基板であるプリプレグ(商品名:GEA-705G、昭和電工マテリアルズ株式会社製、厚さ:25μm)を銅箔(厚さ:30μm)と貼り合わせることで、積層体A(基板/銅箔)を得た。
<Production of wiring board>
(Comparative example 1)
Prepreg (trade name: GEA-705G, manufactured by Showa Denko Materials Co., Ltd., thickness: 25 μm), which is a substrate, is laminated with copper foil (thickness: 30 μm) to form laminate A (substrate/copper foil). Obtained.
 次に、積層体Aの銅箔側上にネガ型の感光性樹脂組成物溶液(商品名:PMER P-LA900PM、東京応化工業株式会社製)を塗布することにより、感光層(厚さ:50μm)を形成した。次いで、露光部が幅190μmの配線パターンとなるように、感光層をパターン露光し、現像した。現像液としては、PMER現像液P-7G(東京応化工業株式会社製)を用いた。これにより、銅箔上に、開口部を有するレジスト膜を形成した。このレジスト膜は、開口部以外の部分が幅190μmの配線パターンを有する。 Next, a negative photosensitive resin composition solution (trade name: PMER P-LA900PM, manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied onto the copper foil side of laminate A to form a photosensitive layer (thickness: 50 μm). ) was formed. Then, the photosensitive layer was pattern-exposed and developed so that the exposed portion had a wiring pattern with a width of 190 μm. As a developer, PMER developer P-7G (manufactured by Tokyo Ohka Kogyo Co., Ltd.) was used. Thus, a resist film having openings was formed on the copper foil. This resist film has a wiring pattern with a width of 190 μm except for the opening.
 次いで、CPE-700(三菱瓦斯化学株式会社製、商品名)を用いて、積層体Aの銅箔のうち、上記レジスト膜の開口部と積層体Aの基板との間に位置する部分を除去した後、メチルエチルケトンを用いてレジスト膜を除去した。こうして、基板と、基板上に設けられた導体配線(厚さ:30μm、幅:190μm)と、を備える配線基板を得た。 Next, using CPE-700 (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name), of the copper foil of the laminate A, the portion located between the opening of the resist film and the substrate of the laminate A is removed. After that, the resist film was removed using methyl ethyl ketone. In this way, a wiring board including a substrate and conductor wiring (thickness: 30 μm, width: 190 μm) provided on the substrate was obtained.
(実施例1)
 上記で得られた絶縁磁性層形成用組成物を、PETフィルムの表面にバーコーターによって塗布することで、PETフィルム上に絶縁磁性層形成用組成物からなるシートを形成した。得られたシートを、比較例1で得られた配線基板の導体配線が形成されている領域上にラミネートすることで、当該領域上に絶縁磁性層形成用組成物からなる層を形成し、導体配線の上面及び一対の側面を被覆した。
(Example 1)
The composition for forming an insulating magnetic layer obtained above was applied to the surface of a PET film using a bar coater to form a sheet of the composition for forming an insulating magnetic layer on the PET film. By laminating the obtained sheet on the region where the conductor wiring of the wiring board obtained in Comparative Example 1 is formed, a layer made of the composition for forming an insulating magnetic layer is formed on the region, and the conductor The top surface and a pair of side surfaces of the wiring were coated.
 次に、絶縁磁性層形成用組成物を硬化させて絶縁磁性層(厚さ:5μm)を形成した後、絶縁磁性層の基板とは反対側上に、比較例1と同様にして、感光層を形成した。次いで、感光層の、導体配線上に位置する部分を露光し、現像した。現像液としては、PMER現像液P-7G(東京応化工業株式会社製)を用いた。これにより、導体配線上に位置する部分以外の部分に開口部を有するレジスト膜を形成した。 Next, after curing the composition for forming an insulating magnetic layer to form an insulating magnetic layer (thickness: 5 μm), a photosensitive layer was formed on the opposite side of the insulating magnetic layer from the substrate in the same manner as in Comparative Example 1. formed. Then, the portion of the photosensitive layer located on the conductor wiring was exposed and developed. As a developer, PMER developer P-7G (manufactured by Tokyo Ohka Kogyo Co., Ltd.) was used. As a result, a resist film was formed having openings in portions other than the portions located on the conductor wiring.
 次に、CPE-700(三菱瓦斯化学株式会社製、商品名)を用いて、導体配線を被覆する絶縁磁性層のうち、上記レジスト膜の開口部と基板との間に位置する部分を除去した後、メチルエチルケトンを用いてレジスト膜を除去した。こうして、基板と、基板上に設けられた導体配線(厚さ:30μm、幅:190μm)と、導体配線の上面を被覆する厚さ5μmの絶縁磁性層と、を備える配線基板を得た。得られた配線基板を図4の(a)に示す。 Next, using CPE-700 (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name), of the insulating magnetic layer covering the conductor wiring, the portion located between the opening of the resist film and the substrate was removed. After that, the resist film was removed using methyl ethyl ketone. Thus, a wiring board was obtained, which included a substrate, conductor wiring (thickness: 30 μm, width: 190 μm) provided on the substrate, and a 5 μm-thick insulating magnetic layer covering the upper surface of the conductor wiring. The resulting wiring board is shown in FIG. 4(a).
(実施例2)
 導体配線上に形成した感光層の露光の際に、感光層の、導体配線上、及び、絶縁磁性層における導体配線の一対の側面に隣接する部分の一方上に位置する部分を露光したことを除き、実施例1と同様にして、基板と、基板上に設けられた導体配線(厚さ:30μm、幅:190μm)と、導体配線の上面及び一方の側面を被覆する厚さ5μmの絶縁磁性層と、を備える配線基板を得た。得られた配線基板を図4の(b)に示す。
(Example 2)
When the photosensitive layer formed on the conductor wiring is exposed, the photosensitive layer on the conductor wiring and the portion of the insulating magnetic layer located on one of the portions adjacent to the pair of side surfaces of the conductor wiring are exposed. In the same manner as in Example 1, except that the substrate, the conductor wiring (thickness: 30 μm, width: 190 μm) provided on the substrate, and the insulating magnetic material with a thickness of 5 μm covering the upper surface and one side surface of the conductor wiring A wiring board comprising a layer was obtained. The resulting wiring board is shown in FIG. 4(b).
(実施例3)
 導体配線上に形成した感光層の露光の際に、感光層の、導体配線上、及び、絶縁磁性層における導体配線の一対の側面に隣接する部分の両方上に位置する部分を露光したことを除き、実施例1と同様にして、基板と、基板上に設けられた導体配線(厚さ:30μm、幅:190μm)と、導体配線の上面及び一対の側面を被覆する厚さ5μmの絶縁磁性層と、を備える配線基板を得た。得られた配線基板を図4の(c)に示す。
(Example 3)
When exposing the photosensitive layer formed on the conductor wiring, the portions of the photosensitive layer located on both the conductor wiring and the portions adjacent to the pair of side surfaces of the conductor wiring in the insulating magnetic layer are exposed. In the same manner as in Example 1, except that the substrate, the conductor wiring (thickness: 30 μm, width: 190 μm) provided on the substrate, and the insulating magnetic material with a thickness of 5 μm covering the upper surface and the pair of side surfaces of the conductor wiring A wiring board comprising a layer was obtained. The resulting wiring board is shown in FIG. 4(c).
(実施例4)
 実施例2で得られた配線基板における導体配線の上面を被覆する絶縁磁性層をフライカット法により除去した。これにより、基板と、基板上に設けられた導体配線(厚さ:30μm、幅:190μm)と、導体配線の一方の側面を被覆する厚さ5μmの絶縁磁性層と、を備える配線基板を得た。得られた配線基板を図4の(d)に示す。
(Example 4)
The insulating magnetic layer covering the upper surface of the conductor wiring in the wiring board obtained in Example 2 was removed by a fly-cut method. As a result, a wiring board including a substrate, conductor wiring (thickness: 30 μm, width: 190 μm) provided on the substrate, and an insulating magnetic layer with a thickness of 5 μm covering one side surface of the conductor wiring is obtained. rice field. The resulting wiring board is shown in FIG. 4(d).
(実施例5)
 実施例3で得られた配線基板における導体配線の上面を被覆する絶縁磁性層をフライカット法により除去した。これにより、基板と、基板上に設けられた導体配線(厚さ:30μm、幅:190μm)と、導体配線の一対の側面を被覆する厚さ5μmの絶縁磁性層と、を備える配線基板を得た。得られた配線基板を図4の(e)に示す。
(Example 5)
The insulating magnetic layer covering the upper surface of the conductor wiring in the wiring board obtained in Example 3 was removed by a fly-cut method. As a result, a wiring board including a substrate, conductor wiring (thickness: 30 μm, width: 190 μm) provided on the substrate, and an insulating magnetic layer having a thickness of 5 μm covering a pair of side surfaces of the conductor wiring is obtained. rice field. The resulting wiring board is shown in FIG. 4(e).
<配線基板の伝送損失の評価>
 上記で作製した配線基板の伝送損失について、トリプレート線路共振器法により評価した。なお、トリプレート線路共振器法には、ベクトル型ネットワークアナライザー(キーサイト・テクノロジー社製、E8364B)を用いた。測定条件は、ライン幅:0.15mm、ライン長:10mm、特性インピーダンス:約50Ω、周波数:10、30、50GHz、測定温度:25℃とした。比較例1の測定値を基準として、伝送損失が小さくなった場合には〇と評価し、伝送損失が変わらない又は大きくなった場合には×と評価した。
<Evaluation of Transmission Loss of Wiring Board>
The transmission loss of the wiring board produced above was evaluated by the triplate line resonator method. A vector type network analyzer (E8364B manufactured by Keysight Technologies) was used in the triplate line resonator method. The measurement conditions were line width: 0.15 mm, line length: 10 mm, characteristic impedance: about 50Ω, frequencies: 10, 30, 50 GHz, and measurement temperature: 25°C. Based on the measured value of Comparative Example 1, when the transmission loss was reduced, it was evaluated as ◯, and when the transmission loss remained the same or increased, it was evaluated as x.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 7a…感光層、8a…レジスト膜、10…基板、20…導体配線、30…絶縁磁性層、35…絶縁磁性層形成用組成物、50…配線付き基板、100A,100B,100C…配線基板、H1…開口部。

 
7a... Photosensitive layer 8a... Resist film 10... Substrate 20... Conductive wiring 30... Insulating magnetic layer 35... Composition for forming insulating magnetic layer 50... Substrate with wiring 100A, 100B, 100C... Wiring substrate, H1... Opening.

Claims (8)

  1.  基板と、該基板上に設けられた導体配線と、該導体配線の該基板とは反対側に位置する上面、及び/又は、該上面と該基板側に位置する底面との間に位置する一対の側面のうちの少なくとも一方を被覆し、磁性材を含む絶縁体からなる絶縁磁性層と、を備える、配線基板の製造方法であって、
     前記基板と、前記基板上に設けられた前記導体配線と、を備える配線付き基板を用意する工程a1と、
     前記導体配線を、前記磁性材を含む絶縁磁性層形成用組成物で被覆し、絶縁磁性層形成用組成物を硬化させることにより、絶縁磁性層形成用組成物の硬化物からなる絶縁磁性層を形成する工程a2と、を備える、配線基板の製造方法。
    A pair of a substrate, a conductor wiring provided on the substrate, and a top surface of the conductor wiring located on the opposite side of the substrate, and/or between the top surface and a bottom surface located on the substrate side. and an insulating magnetic layer made of an insulator containing a magnetic material, covering at least one of the side surfaces of the wiring board, comprising:
    A step a1 of preparing a substrate with wiring comprising the substrate and the conductor wiring provided on the substrate;
    The conductor wiring is coated with the insulating magnetic layer-forming composition containing the magnetic material, and the insulating magnetic layer-forming composition is cured to form an insulating magnetic layer made of the cured product of the insulating magnetic layer-forming composition. A method of manufacturing a wiring board, comprising a forming step a2.
  2.  前記工程a2が、互いに隣り合う前記導体配線間の空隙が充填されることなく前記導体配線の前記上面が被覆されるように、前記絶縁磁性層形成用組成物を前記導体配線に塗布する工程b1と、該絶縁磁性層形成用組成物を硬化させて絶縁磁性層を形成する工程b2と、を含み、
     前記工程a2において、前記導体配線の前記上面を被覆する絶縁磁性層を形成しない場合、前記工程a2が、前記工程b2の後に、前記導体配線の前記上面を被覆する絶縁磁性層を研削又は研磨により除去する工程を更に含み、工程b1では、前記導体配線の前記上面に加えて、前記一対の側面のうちの少なくとも一方が被覆されるように前記絶縁磁性層形成用組成物を前記導体配線に塗布する、請求項1に記載の配線基板の製造方法。
    The step a2 is the step b1 of applying the composition for forming an insulating magnetic layer to the conductor wiring such that the upper surface of the conductor wiring is covered without filling the gap between the conductor wiring adjacent to each other. and a step b2 of curing the insulating magnetic layer forming composition to form an insulating magnetic layer,
    In the step a2, if the insulating magnetic layer covering the upper surface of the conductor wiring is not formed, the step a2 is performed by grinding or polishing the insulating magnetic layer covering the upper surface of the conductor wiring after the step b2. In the step b1, the insulating magnetic layer forming composition is applied to the conductor wiring such that at least one of the pair of side surfaces of the conductor wiring is coated in addition to the upper surface of the conductor wiring. The method for manufacturing a wiring board according to claim 1, wherein
  3.  前記工程a2が、前記配線付き基板の前記導体配線が形成されている領域上に前記絶縁磁性層形成用組成物からなる層を形成する工程c1と、
     絶縁磁性層形成用組成物からなる前記層を硬化させて絶縁磁性層形成用組成物の硬化物からなる絶縁磁性層を形成する工程c2と、
     前記絶縁磁性層形成用組成物からなる層又は前記絶縁磁性層の、前記基板とは反対側上に感光層を形成する工程c3と、
     前記感光層を所定のパターンで露光し、現像することにより、前記導体配線上以外の部分の少なくとも一部に開口部を有するレジスト膜を形成する工程c4と、
     前記絶縁磁性層形成用組成物からなる層又は前記絶縁磁性層の、前記基板と前記レジスト膜の前記開口部との間に位置する部分を除去する工程c5と、を含み、
     前記工程a2において、前記導体配線の前記上面を被覆する絶縁磁性層を形成しない場合、前記工程a2が、前記工程c2の後に、前記導体配線の前記上面を被覆する絶縁磁性層を研削又は研磨により除去する工程を更に含む、請求項1に記載の配線基板の製造方法。
    The step a2 is a step c1 of forming a layer made of the composition for forming an insulating magnetic layer on a region of the substrate with wiring where the conductor wiring is formed;
    a step c2 of curing the layer made of the composition for forming an insulating magnetic layer to form an insulating magnetic layer made of a cured product of the composition for forming an insulating magnetic layer;
    step c3 of forming a photosensitive layer on the side opposite to the substrate of the layer made of the insulating magnetic layer forming composition or the insulating magnetic layer;
    a step c4 of exposing the photosensitive layer in a predetermined pattern and developing it to form a resist film having an opening in at least a part of the portion other than the conductor wiring;
    a step c5 of removing a portion of the insulating magnetic layer-forming composition or the insulating magnetic layer located between the substrate and the opening of the resist film;
    In the step a2, if the insulating magnetic layer covering the top surface of the conductor wiring is not formed, the step a2 includes grinding or polishing the insulating magnetic layer covering the top surface of the conductor wiring after the step c2. 2. The method of manufacturing a wiring board according to claim 1, further comprising a step of removing.
  4.  前記工程c1が、前記絶縁磁性層形成用組成物を前記領域に塗布する工程である、請求項3に記載の配線基板の製造方法。 4. The method for manufacturing a wiring board according to claim 3, wherein said step c1 is a step of applying said composition for forming an insulating magnetic layer to said region.
  5.  前記工程c1が、前記絶縁磁性層形成用組成物からなるシートを前記領域にラミネートする工程である、請求項3に記載の配線基板の製造方法。 4. The method for manufacturing a wiring board according to claim 3, wherein said step c1 is a step of laminating a sheet made of said composition for forming an insulating magnetic layer on said region.
  6.  前記磁性材が、金属酸化物又はアモルファス金属である、請求項1~5のいずれか一項に記載の配線基板の製造方法。 The method for manufacturing a wiring board according to any one of claims 1 to 5, wherein the magnetic material is a metal oxide or an amorphous metal.
  7.  前記絶縁体の比透磁率が、2~1000である、請求項1~6のいずれか一項に記載の配線基板の製造方法。 The method for manufacturing a wiring board according to any one of claims 1 to 6, wherein the insulator has a relative magnetic permeability of 2 to 1,000.
  8.  前記絶縁体の比誘電率が、1~30である、請求項1~7のいずれか一項に記載の配線基板の製造方法。 The method for manufacturing a wiring board according to any one of claims 1 to 7, wherein the insulator has a dielectric constant of 1 to 30.
PCT/JP2021/042079 2021-04-21 2021-11-16 Method for producing wiring board WO2022224475A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023516029A JPWO2022224475A1 (en) 2021-04-21 2021-11-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021071942 2021-04-21
JP2021-071942 2021-04-21

Publications (1)

Publication Number Publication Date
WO2022224475A1 true WO2022224475A1 (en) 2022-10-27

Family

ID=83722232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042079 WO2022224475A1 (en) 2021-04-21 2021-11-16 Method for producing wiring board

Country Status (2)

Country Link
JP (1) JPWO2022224475A1 (en)
WO (1) WO2022224475A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786784A (en) * 1993-09-10 1995-03-31 Cmk Corp Printed wiring board having magnetic coating film and its manufacture
JP2000040893A (en) * 1998-07-23 2000-02-08 Nippon Paint Co Ltd Electromagnetic wave control lamination material and electronic equipment
JP2001284755A (en) * 2000-04-04 2001-10-12 Tokin Corp Wiring board
JP2008227147A (en) * 2007-03-13 2008-09-25 National Institute Of Advanced Industrial & Technology Conduction line path structure, its production method, and wiring substrate
JP2014160838A (en) * 2014-04-03 2014-09-04 Fujikura Ltd Printed-wiring board
JP2019165222A (en) * 2018-03-16 2019-09-26 日東電工株式会社 Wiring circuit board and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786784A (en) * 1993-09-10 1995-03-31 Cmk Corp Printed wiring board having magnetic coating film and its manufacture
JP2000040893A (en) * 1998-07-23 2000-02-08 Nippon Paint Co Ltd Electromagnetic wave control lamination material and electronic equipment
JP2001284755A (en) * 2000-04-04 2001-10-12 Tokin Corp Wiring board
JP2008227147A (en) * 2007-03-13 2008-09-25 National Institute Of Advanced Industrial & Technology Conduction line path structure, its production method, and wiring substrate
JP2014160838A (en) * 2014-04-03 2014-09-04 Fujikura Ltd Printed-wiring board
JP2019165222A (en) * 2018-03-16 2019-09-26 日東電工株式会社 Wiring circuit board and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2022224475A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
KR102228718B1 (en) Photosensitive resin composition
JP7392743B2 (en) magnetic paste
JP2022113767A (en) Method for manufacturing inductor substrate
JP7444154B2 (en) resin composition
JP6969692B2 (en) Magnetic paste
JP2023121767A (en) resin composition
JP2022179492A (en) resin composition
TWI775880B (en) resin composition
US20210395513A1 (en) Epoxy resin composition
WO2020189778A1 (en) Resin composition
TW202140642A (en) Resin sheet provided with a support and a resin composition layer containing a resin composition and arranged on the support
WO2020189692A1 (en) Circuit board manufacturing method
JP7081667B2 (en) Magnetic paste
TW202400678A (en) resin composition
WO2022224475A1 (en) Method for producing wiring board
WO2022224474A1 (en) Manufacturing method for wiring board, and laminate
WO2022224473A1 (en) Wiring substrate
JP7338443B2 (en) magnetic paste
CN113308167B (en) Resin composition
JP7287348B2 (en) resin composition
JP7298383B2 (en) Resin composition, cured product of resin composition, resin sheet, printed wiring board and semiconductor device
TW202235531A (en) resin composition
JP2022166615A (en) Manufacturing method of wiring board
KR20200107819A (en) Resin composition
WO2023176284A1 (en) Resin composition and production method for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937965

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023516029

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937965

Country of ref document: EP

Kind code of ref document: A1