WO2022224460A1 - Ventilation control device, ventilation control program, and ventilation control method - Google Patents

Ventilation control device, ventilation control program, and ventilation control method Download PDF

Info

Publication number
WO2022224460A1
WO2022224460A1 PCT/JP2021/016549 JP2021016549W WO2022224460A1 WO 2022224460 A1 WO2022224460 A1 WO 2022224460A1 JP 2021016549 W JP2021016549 W JP 2021016549W WO 2022224460 A1 WO2022224460 A1 WO 2022224460A1
Authority
WO
WIPO (PCT)
Prior art keywords
ventilation
room
circulator
target
control device
Prior art date
Application number
PCT/JP2021/016549
Other languages
French (fr)
Japanese (ja)
Inventor
勇人 堀江
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/016549 priority Critical patent/WO2022224460A1/en
Priority to JP2023516019A priority patent/JPWO2022224460A1/ja
Publication of WO2022224460A1 publication Critical patent/WO2022224460A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to a ventilation control device, a ventilation control program, and a ventilation control method.
  • Patent Documents 1 and 2 Conventionally, there are techniques for adjusting the wind direction and air volume of a circulator installed indoors so that the carbon dioxide concentration in the room is reduced (for example, Patent Documents 1 and 2).
  • the technology is to operate the circulator based on the detection of the carbon dioxide concentration, and there is no mention of control that maximizes the ventilation air volume when the window is open.
  • the present disclosure aims to provide a technique for determining the wind direction and wind speed of a circulator that minimizes the indoor carbon dioxide concentration, that is, maximizes the ventilation air volume, according to specific ventilation conditions.
  • the ventilation control device includes: Ventilation parameters including opening information including the position and area of the opening of a room having an opening for ventilation and outside air information including the wind speed and wind direction of the outside air taken into the room, and placement in the room an operating condition indicating the air blowing direction and air blowing volume of the circulator operating under the ventilation parameters; an acquisition unit that acquires a value; Using the ventilation parameter, the operating condition, and the measured value, learning the operating condition of the circulator in which the target index under the new ventilation parameter is a target state set as a target. Department and Prepare.
  • the ventilation air volume can be maximized when the window is opened for ventilation.
  • the carbon dioxide concentration in the room can be lowered and a healthy space can be provided.
  • FIG. 1 is a diagram of a first embodiment, showing a first type of ventilation system 600
  • FIG. FIG. 2 is a diagram of the first embodiment, showing the hardware configuration of the ventilation control device 100
  • FIG. 4 is a diagram of the first embodiment and is a flow chart showing the operation of the ventilation system 600.
  • FIG. FIG. 10 is a diagram according to the first embodiment and shows a learning result of a learning unit 112
  • FIG. 4 is a diagram of the first embodiment and is a diagram obtained by converting FIG. 4 into expression of Equation 1
  • FIG. 10 is a schematic plan view of a room 400 in a second type ventilation system 600 in the first embodiment
  • FIG. 10 is a diagram of the first embodiment, showing a second type learning result
  • Fig. 10 is a diagram of the first embodiment, showing changes in air temperature in the room 404
  • the diagram of the first embodiment shows the learning result of the second type.
  • unit may be read as “circuit”, “process”, “procedure”, “process” or “circuitry” as appropriate.
  • FIG. 1 shows a first type of ventilation system 600 .
  • FIG. 1 is a schematic plan view of a room 400.
  • FIG. Although there is a person 430 in the room 400, the presence of the person 430 is shown for the sake of convenience, and the person 430 is not shown in the plan view.
  • a first type ventilation system 600 includes an air conditioner 410 , a carbon dioxide sensor 411 , an indoor temperature sensor 412 , a circulator 420 , a ventilation control device 100 , an outdoor temperature sensor 512 and an outdoor air sensor 513 .
  • the outside air sensor 513 measures the wind direction and air volume of the outside air. Circulator 420 blows air in blowing direction 421 .
  • an air conditioner 410 As shown in FIG. 1 , an air conditioner 410 , a carbon dioxide sensor 411 , a room temperature sensor 412 and a circulator 420 are arranged in the room 404 .
  • the window 401 In the room 400, of the two windows 401 and 402, the window 401 is closed and the window 402 is open.
  • the air conditioner 410 In the case of the first type in which the carbon dioxide sensor 411 is present, the air conditioner 410 may be omitted.
  • the door 403 located opposite the opened window 402 is also opened. Outside air may exist outside the door 403, or it may be a common area such as a corridor.
  • the ventilation control device 100 is arranged in the room 404 . Note that the ventilation control device 100 does not have to be placed in the room 404 .
  • Outdoor air 521 and outdoor air 522 exist in the outdoor 504 . Outdoor airflow 522 enters the room 404 through the window 402 . Ventilation air 531 is generated in the room 404 . Ventilation air 531 goes out of the room 404 from the door 403 .
  • FIG. 2 shows the hardware configuration of the ventilation control device 100. As shown in FIG.
  • the ventilation control device 100 is a computer. Ventilation control device 100 includes processor 110 .
  • the ventilation control device 100 includes other hardware such as a memory 120 and a communication interface 130 in addition to the processor 110 .
  • the processor 110 is connected to other hardware via signal lines and controls the other hardware.
  • the ventilation control device 100 includes an acquisition unit 111, a learning unit 112, and a control unit 113 as functional elements. Functions of the acquisition unit 111 , the learning unit 112 and the control unit 113 are realized by the ventilation control program 121 .
  • the processor 110 is a device that executes the ventilation control program 121.
  • the processor 110 is an IC (Integrated Circuit) that performs arithmetic processing.
  • Specific examples of the processor 110 are a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a GPU (Graphics Processing Unit).
  • the memory 120 is realized by a main storage device and an auxiliary storage device.
  • the main memory are SRAM (Static Random Access Memory) and DRAM (Dynamic Random Access Memory).
  • a specific example of the auxiliary storage device is an HDD (Hard Disk Drive).
  • Memory 120 stores ventilation control program 121 , ventilation parameters 122 and learned information 123 .
  • the communication interface 130 is a communication port for the processor 110 to communicate with other devices.
  • a circulator 420 , an indoor temperature sensor 412 , a carbon dioxide sensor 411 , an air conditioner 410 , an outdoor temperature sensor 512 and an outdoor air sensor 513 are connected to the communication interface 130 .
  • Processor 110 can exchange data with circulator 420 connected to communication interface 130 via communication interface 130 .
  • the circulator 420 can control the amount and direction of air blowing by the controller 113 of the processor 110 .
  • Acquisition unit 111 can acquire data from circulator 420 , indoor temperature sensor 412 , carbon dioxide sensor 411 , air conditioner 410 , outdoor temperature sensor 512 , and outdoor air sensor 513 via communication interface 130 .
  • Control unit 113 can control circulator 420 via communication interface 130 .
  • the ventilation control program 121 is a program that causes a computer to execute each process, each procedure, or each process obtained by replacing the “units” of the acquisition unit 111, the learning unit 112, and the control unit 113 with “processing,” “procedure,” or “step.” is.
  • the ventilation control method is a method performed by the ventilation control device 100, which is a computer, executing the ventilation control program 121.
  • the ventilation control program 121 may be stored in a computer-readable recording medium and provided, or may be provided as a program product.
  • FIG. 3 is a flow chart showing the operation of ventilation system 600 .
  • the first type ventilation system 600 has two steps, a learning mode step S11 and a ventilation mode step S12.
  • the learning mode of step S11 is a mode for machine-learning the wind direction and wind speed of the circulator 420 for maximizing the ventilation rate of the room 400 by opening the window.
  • the ventilation mode of step S12 is a mode in which circulator 420 is operated with the wind direction and wind speed of circulator 420 learned in the learning mode of step S12.
  • Step S11 Learning Mode>
  • the learning mode operates the circulator 420 at a certain wind direction and wind speed when one or more persons 430 are present in the room 404 and the acquisition unit 111 senses the ventilation parameters 122 .
  • the acquisition unit 111 acquires (1) the ventilation parameter 122, (2) the operating conditions of the circulator 420 operating under the ventilation parameter 122, and (3) the measured value of the target index. Acquisition unit 111 outputs the acquired data to learning unit 112 .
  • the operation of the circulator 420 in the learning mode may be performed by the control unit 113 or may be performed by a person.
  • Ventilation parameters 122 include opening information including the position and area of openings in a room having openings for ventilation, and outside air information including the wind speed and direction of the outside air taken into the room. The opening corresponds to the window 402 and the door 403 in the room 400 shown in FIG. In the case of FIG.
  • the opening information includes the positions of the window 402 and the door 403 in the room 400 and the opening area of the window 402 and the door 403 in the open state.
  • Aperture information can be obtained from information such as CAD data.
  • the acquisition unit 111 can acquire outside air information including the wind speed and wind direction of the outside air from the outside air sensor 513 .
  • the operating conditions of circulator 420 operating under ventilation parameters 122 include the blowing direction and blowing amount of circulator 420 . Acquisition unit 111 acquires the operating conditions from circulator 420 via communication interface 130 .
  • a target indicator is one of the environmental indicators of the room when the circulator 420 operates under operating conditions in the learning mode. For the first type of ventilation system 600, an example target indicator is the concentration of carbon dioxide.
  • the target indicator is the temperature of the room 404 . Therefore, the measured value of the target index is the carbon dioxide concentration value for the first type, and the indoor temperature value for the second type.
  • the acquisition unit 111 can acquire the carbon dioxide concentration value from the carbon dioxide sensor 411 .
  • the acquisition unit 111 can acquire the room temperature from the room temperature sensor 412 .
  • the learning unit 112 obtains from the acquisition unit 111 (1) the ventilation parameter 122, (2) the operating conditions of the circulator 420 operating under the ventilation parameter 122, and (3) the measured value of the target index , the measured value of the concentration of carbon dioxide, is entered.
  • the learning unit 112 stores the concentration of carbon dioxide or the change in concentration of carbon dioxide per unit time in the memory 120 in association with (1) the ventilation parameter 122 and (2) the operating conditions of the circulator 420 .
  • FIG. 4 shows learning results of the learning unit 112 .
  • the learning unit 112 uses (1) the ventilation parameter 122, (2) the operating conditions of the circulator 420, and (3) the measured value of the target index to set the target index under the new ventilation parameter as a target. It learns the operating conditions of the circulator 420 which is the target state.
  • a first type of indicator of interest is the concentration of carbon dioxide in the room.
  • the target state is also the concentration minimum state in which the concentration of carbon dioxide is minimized under the new ventilation parameters by any of the operating conditions of the circulator. Specifically, it is as follows.
  • FIG. 4 shows a state in which the circulator 420 has a fixed airflow rate and a variable airflow direction between 0 degrees and 360 degrees.
  • the blowing vector is assumed to be parallel to the floor in FIG. 1, which is a plan view, and rotates once in a plane parallel to the floor.
  • the horizontal axis is the direction ⁇ [rad] of the airflow vector with respect to a certain direction in the room 404
  • the vertical axis is the carbon dioxide concentration D [ppm] in the room 404 .
  • the learning unit 112 learns to generate the graph of FIG. 4 when a new ventilation parameter 122 is provided.
  • FIG. 5 is a diagram obtained by converting FIG. 4 into the expression of Equation 1.
  • the learning unit 112 stores the operating conditions of the circulator at which the maximum ventilation volume is ⁇ (MAX) at which the concentration change rate of carbon dioxide is maximized in the ventilation parameters 122 from which the graph of FIG. 5 is obtained. do.
  • Step 12 Ventilation mode>
  • acquisition unit 111 acquires new ventilation parameters 122 .
  • the operating conditions of the circulator 420 for the new ventilation parameter 22 acquired by the control unit 113 and the acquisition unit 111 are determined based on the learning result of the learning unit 112 .
  • Control unit 113 operates the circulator via communication interface 130 under the determined operating conditions. Specifically, it is as follows. In the ventilation mode, the control unit 113 controls the amount of carbon dioxide on the basis of the newly detected ventilation parameter 122 and the "ventilation direction and amount of the circulator according to the ventilation parameter 122" learned by the learning unit 112 in the learning mode.
  • FIG. 6 is a schematic plan view of a room 400 in a second type of ventilation system 600.
  • the second type differs from the first type in that the carbon dioxide sensor 411 is not used and the target index is the room temperature, and that the person 430 is not allowed into the room 404 in the learning mode. Therefore, description of common processing is omitted.
  • the configuration of the ventilation control device 100 is the same as in FIG.
  • the second type does not require the carbon dioxide sensor 411 in FIG. Since other points are the same as those in FIG. 2, the drawing is omitted.
  • the operation flow is the same as that in FIG. 3, so it will be omitted.
  • ⁇ Learning mode> In the second type learning mode, first, when the person 430 is not in the room 404, the controller 113 operates the air conditioner 410 to keep the temperature in the room 404 constant.
  • the control unit 113 can know the temperature of the room 404 by obtaining the measured value of the room temperature sensor 412 via the communication interface 130 and the acquisition unit 111 . After confirming that the room temperature has reached the set temperature of air conditioner 410 and has been stabilized, control unit 113 stops the operation of air conditioner 410 .
  • the circulator 420 is operated with a certain blowing direction and blowing amount as in the first type. The operation of the circulator 420 may be performed by the controller 113 or by a person.
  • the acquisition unit 111 acquires (1) the ventilation parameter 122, (2) the operating conditions of the circulator 420 operating under the ventilation parameter 122, and (3) the measured value of the target index.
  • the measured value of the target indicator is the room temperature.
  • the acquisition unit 111 can acquire the room temperature from the room temperature sensor 412 .
  • the learning unit 112 detects the ventilation parameter 122 via the acquisition unit 111. As in the case of the first type, the learning unit 112 uses the indoor air temperature obtained from the indoor temperature sensor 412 or the indoor air temperature change per unit time obtained from the indoor temperature sensor 412 as the ventilation parameter 122, It is stored in association with the operating conditions with the circulator 420 .
  • Running the circulator 420 in learning mode for a period of time produces a graph such as that shown in FIG. FIG. 7 corresponds to FIG.
  • the horizontal axis is the direction ⁇ [rad] of the airflow vector with respect to a certain direction in the room 404
  • the vertical axis is the indoor air temperature [degC].
  • the learning unit 112 learns the relationship between the blowing direction and the blowing amount of the circulator 420 and the indoor air temperature. Therefore, by learning by the learning unit 112, when the ventilation parameter 122 takes a certain value, it is possible to determine the operating conditions of the circulator 420 at which the air temperature in the room 404 is closest to the outside air, that is, the ventilation volume is maximized.
  • the temperature obtained by Equation 2 may be used instead of the indoor air temperature.
  • Indoor air temperature change - ⁇ indoor air temperature after time t elapsed - initial indoor air temperature ⁇ (Equation 2)
  • the minus on the right side is to make the indoor air temperature change positive.
  • the learning unit 112 stores that the point at which the room air temperature change is maximum is the operating condition of the circulator with the largest ventilation amount.
  • FIG. 8 shows changes in air temperature in room 404 .
  • the horizontal axis is the same as in FIG. 7, and the vertical axis is the temperature change in Equation 2.
  • FIG. 1 The horizontal axis is the same as in FIG. 7, and the vertical axis is the temperature change in Equation 2.
  • Step S12 Ventilation Mode>
  • the ventilation mode is similar to the first type.
  • the control unit 113 determines whether the air temperature in the room 404 is closest to the outside air, or The circulator 420 is operated under the operating conditions of the circulator 420 that maximize the air temperature change.
  • FIG. 9 shows the second type of learning result, which is the same as in FIG.
  • the solid and dashed line graphs differ in ventilation parameters 122 .
  • FIG. 9 reveals the relationship between the ventilation parameters and the operating conditions of the circulator. Therefore, the control unit 113 can adjust the amount of ventilation to some extent to prevent the indoor temperature from becoming too cold by opening the windows in winter, for example, to prevent the indoor temperature from dropping excessively.
  • Embodiment 1 *** Effect of Embodiment 1 *** According to the ventilation system 600 of Embodiment 1, the air blowing direction and the air blowing amount of the circulator that maximize the ventilation air amount during window open ventilation can be determined according to the ventilation parameters. Therefore, it is possible to maximize the amount of ventilation when the windows are open, thereby reducing the concentration of carbon dioxide in the room and providing a healthy space.
  • the ventilation parameter 122 does not include the temperature difference between the indoor 404 and the outdoor 504 .
  • ventilation parameters 122 may also include the temperature difference between indoor 404 and outdoor 504 .
  • the obtaining unit 111 can obtain the temperature difference between the indoor temperature sensor 412 and the outdoor temperature sensor 512 from the measurement data of the indoor temperature sensor 412 and the outdoor temperature sensor 512 .
  • the first embodiment has been described above.
  • One of the technical matters of the first embodiment may be partially implemented.
  • Two or more technical matters may be combined for implementation.
  • 100 ventilation control device 110 processor, 111 acquisition unit, 112 learning unit, 113 control unit, 120 memory, 121 ventilation control program, 122 ventilation parameters, 123 learned information, 130 communication interface, 400 room, 401 window, 402 window, 403 door, 404 indoor, 410 air conditioner, 411 carbon dioxide sensor, 412 indoor temperature sensor, 420 circulator, 421 ventilation direction, 430 people, 504 outdoor, 512 outdoor temperature sensor, 513 outdoor air sensor, 521, 522 outdoor air, 531 , 532 ventilation, 600 ventilation system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fluid Mechanics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Ventilation (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This ventilation control device (100) comprises an acquisition unit (111) and a control unit (113). The acquisition unit (111) acquires: ventilation parameters; operation conditions indicating the blowing direction and blowing amount of a circulator (420) that is disposed in a room (400) and operates under the ventilation parameters; and a measurement value of a target index that is one of environmental indexes of the room (400) when the circulator (420) operates under the operation conditions. A learning unit (112) uses the ventilation parameters, the operation conditions, and the measurement value to learn the operation conditions of the circulator (420) under which the target index under a novel ventilation parameter is a target state set as a target.

Description

換気制御装置、換気制御プログラム及び換気制御方法Ventilation control device, ventilation control program and ventilation control method
 本開示は、換気制御装置、換気制御プログラム及び換気制御方法に関する。 The present disclosure relates to a ventilation control device, a ventilation control program, and a ventilation control method.
 近年、各種法令などにより室内の二酸化炭素濃度を一定値以下に維持するために、換気装置が設置される物件が大半である。一方、換気装置が無い場合はもちろん、換気装置が設置されている場合でも、窓開けによる換気を併用するケースが想定される。 In recent years, most properties have ventilation equipment installed in order to keep the indoor carbon dioxide concentration below a certain value according to various laws and regulations. On the other hand, it is conceivable that there is a case where there is no ventilation device, and even if a ventilation device is installed, ventilation by opening the window is also used.
 ここで窓開けによる換気は、窓の位置、窓の開放面積はもとより、外気風の風向及び風速などにより換気量が変化する。よって、窓を開けるだけでは室内の換気量が最大化される保証はない。 Here, for ventilation by opening windows, the amount of ventilation changes depending on the position of the window, the open area of the window, as well as the direction and speed of the outside air. Therefore, simply opening a window does not guarantee that the amount of ventilation in the room will be maximized.
 従来では、室内の二酸化炭素濃度が低下するように、室内に設置されたサーキュレータの風向及び風量を調整する技術がある(例えば、特許文献1、2)。 Conventionally, there are techniques for adjusting the wind direction and air volume of a circulator installed indoors so that the carbon dioxide concentration in the room is reduced (for example, Patent Documents 1 and 2).
 しかし、従来は、二酸化炭素濃度の検知からサーキュレータを動作させる技術であり、窓開け時に換気風量が最大になる制御に関しては言及がない。 However, conventionally, the technology is to operate the circulator based on the detection of the carbon dioxide concentration, and there is no mention of control that maximizes the ventilation air volume when the window is open.
特開2020-084946号公報JP 2020-084946 A 特開2012-013389号公報JP 2012-013389 A
 本開示は、特定の換気条件に応じて、室内の二酸化炭素濃度が最小、つまり換気風量が最大となるサーキュレータの風向及び風速を決定する技術の提供を目的とする。 The present disclosure aims to provide a technique for determining the wind direction and wind speed of a circulator that minimizes the indoor carbon dioxide concentration, that is, maximizes the ventilation air volume, according to specific ventilation conditions.
 本開示に係る換気制御装置は、
 換気のための開口部を有する部屋の前記開口部の位置と面積とを含む開口部情報と前記部屋に取り込まれる外気の風速と風向きとを含む外気情報とを含む換気パラメータと、前記部屋に配置されて前記換気パラメータのもとで動作するサーキュレータの送風方向と送風量とを示す動作条件と、前記サーキュレータが前記動作条件で動作するときの前記部屋の環境指標の一つである対象指標の計測値と、を取得する取得部と、
 前記換気パラメータと、前記動作条件と、前記計測値とを用いて、新たな換気パラメータのもとにおける前記対象指標が、目標として設定されている目標状態となる前記サーキュレータの動作条件を学習する学習部と、
を備える。
The ventilation control device according to the present disclosure includes:
Ventilation parameters including opening information including the position and area of the opening of a room having an opening for ventilation and outside air information including the wind speed and wind direction of the outside air taken into the room, and placement in the room an operating condition indicating the air blowing direction and air blowing volume of the circulator operating under the ventilation parameters; an acquisition unit that acquires a value;
Using the ventilation parameter, the operating condition, and the measured value, learning the operating condition of the circulator in which the target index under the new ventilation parameter is a target state set as a target. Department and
Prepare.
 本開示により、窓開け換気時の換気風量を最大化できる。それにより、室内の二酸化炭素濃度を下げ、健康な空間を提供できる。 With this disclosure, the ventilation air volume can be maximized when the window is opened for ventilation. As a result, the carbon dioxide concentration in the room can be lowered and a healthy space can be provided.
実施の形態1の図で、第1のタイプの換気システム600を示す図。1 is a diagram of a first embodiment, showing a first type of ventilation system 600; FIG. 実施の形態1の図で、換気制御装置100のハードウェア構成を示す図。FIG. 2 is a diagram of the first embodiment, showing the hardware configuration of the ventilation control device 100; FIG. 実施の形態1の図で、換気システム600の動作を示すフローチャート。4 is a diagram of the first embodiment and is a flow chart showing the operation of the ventilation system 600. FIG. 実施の形態1の図で、学習部112の学習結果を示す図。FIG. 10 is a diagram according to the first embodiment and shows a learning result of a learning unit 112; 実施の形態1の図で、図4を式1の表現に変換した図。FIG. 4 is a diagram of the first embodiment and is a diagram obtained by converting FIG. 4 into expression of Equation 1; 実施の形態1の図で、第2のタイプの換気システム600における部屋400の模式的な平面図。FIG. 10 is a schematic plan view of a room 400 in a second type ventilation system 600 in the first embodiment; 実施の形態1の図で、第2のタイプの学習結果を示す図。FIG. 10 is a diagram of the first embodiment, showing a second type learning result; 実施の形態1の図で、室内404の空気温度変化を示す図。Fig. 10 is a diagram of the first embodiment, showing changes in air temperature in the room 404; 実施の形態1の図で、第2のタイプの学習結果を示す。The diagram of the first embodiment shows the learning result of the second type.
 実施の形態の説明及び図面において、同じ要素及び対応する要素には同じ符号を付している。同じ符号が付された要素の説明は、適宜に省略又は簡略化する。以下の実施の形態では、「部」を、「回路」、「工程」、「手順」、「処理」又は「サーキットリー」に適宜読み替えてもよい。 In the description and drawings of the embodiments, the same elements and corresponding elements are given the same reference numerals. Descriptions of elements with the same reference numerals are omitted or simplified as appropriate. In the following embodiments, "unit" may be read as "circuit", "process", "procedure", "process" or "circuitry" as appropriate.
 実施の形態1.
 図1から図9を参照して実施の形態1の換気システム600を説明する。換気システム600には、二酸化炭素センサ411を使用する第1のタイプと、二酸化炭素センサ411を使用しない第2のタイプとがある。第1のタイプを説明し、次に第2のタイプを説明する。
 図1は、第1のタイプの換気システム600を示す。図1は部屋400の模式的な平面図である。部屋400には人430がいるが、人430の存在を便宜的に示しており平面図として人430を表してはいない。第1のタイプの換気システム600は、空気調和機410、二酸化炭素センサ411、室内温度センサ412、サーキュレータ420、換気制御装置100、室外温度センサ512、外気センサ513を備えている。外気センサ513は、外気の風向き及び風量を計測する。サーキュレータ420は送風方向421へ送風している。
Embodiment 1.
A ventilation system 600 according to Embodiment 1 will be described with reference to FIGS. 1 to 9. FIG. The ventilation system 600 has a first type that uses a carbon dioxide sensor 411 and a second type that does not use a carbon dioxide sensor 411 . The first type is described and then the second type.
FIG. 1 shows a first type of ventilation system 600 . FIG. 1 is a schematic plan view of a room 400. FIG. Although there is a person 430 in the room 400, the presence of the person 430 is shown for the sake of convenience, and the person 430 is not shown in the plan view. A first type ventilation system 600 includes an air conditioner 410 , a carbon dioxide sensor 411 , an indoor temperature sensor 412 , a circulator 420 , a ventilation control device 100 , an outdoor temperature sensor 512 and an outdoor air sensor 513 . The outside air sensor 513 measures the wind direction and air volume of the outside air. Circulator 420 blows air in blowing direction 421 .
<第1のタイプ>
 図1に示すように、室内404には、空気調和機410、二酸化炭素センサ411、室内温度センサ412、サーキュレータ420が配置されている。部屋400では、二枚ある窓401,402のうち、窓401は閉じており、窓402は開いている。二酸化炭素センサ411の存在す第1のタイプの場合は、空気調和機410は無くても良い。部屋400では、開放された窓402の対面に位置する扉403も開放されている。扉403の外側は外気が存在しても良いし、廊下のような共用部でも良い。また、室内404には換気制御装置100が配置されている。なお換気制御装置100は室内404に配置されなくても構わない。外気風521及び外気風522が室外504に存在する。外気風522は窓402から室内404へ入る。室内404には換気風531が生じる。換気風531は扉403から室内404の外へ出る。
<First type>
As shown in FIG. 1 , an air conditioner 410 , a carbon dioxide sensor 411 , a room temperature sensor 412 and a circulator 420 are arranged in the room 404 . In the room 400, of the two windows 401 and 402, the window 401 is closed and the window 402 is open. In the case of the first type in which the carbon dioxide sensor 411 is present, the air conditioner 410 may be omitted. In the room 400, the door 403 located opposite the opened window 402 is also opened. Outside air may exist outside the door 403, or it may be a common area such as a corridor. In addition, the ventilation control device 100 is arranged in the room 404 . Note that the ventilation control device 100 does not have to be placed in the room 404 . Outdoor air 521 and outdoor air 522 exist in the outdoor 504 . Outdoor airflow 522 enters the room 404 through the window 402 . Ventilation air 531 is generated in the room 404 . Ventilation air 531 goes out of the room 404 from the door 403 .
***構成の説明***
 図2は、換気制御装置100のハードウェア構成を示す。
*** Configuration description ***
FIG. 2 shows the hardware configuration of the ventilation control device 100. As shown in FIG.
 換気制御装置100は、コンピュータである。換気制御装置100は、プロセッサ110を備える。換気制御装置100は、プロセッサ110の他に、メモリ120、通信インタフェース130といった他のハードウェアを備える。プロセッサ110は信号線を介して他のハードウェアと接続され、他のハードウェアを制御する。 The ventilation control device 100 is a computer. Ventilation control device 100 includes processor 110 . The ventilation control device 100 includes other hardware such as a memory 120 and a communication interface 130 in addition to the processor 110 . The processor 110 is connected to other hardware via signal lines and controls the other hardware.
 換気制御装置100は、機能要素として、取得部111,学習部112及び制御部113を備える。取得部111,学習部112及び制御部113の機能は、換気制御プログラム121により実現される。 The ventilation control device 100 includes an acquisition unit 111, a learning unit 112, and a control unit 113 as functional elements. Functions of the acquisition unit 111 , the learning unit 112 and the control unit 113 are realized by the ventilation control program 121 .
 プロセッサ110は、換気制御プログラム121を実行する装置である。プロセッサ110は、演算処理を行うIC(Integrated Circuit)である。プロセッサ110の具体例は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)である。 The processor 110 is a device that executes the ventilation control program 121. The processor 110 is an IC (Integrated Circuit) that performs arithmetic processing. Specific examples of the processor 110 are a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a GPU (Graphics Processing Unit).
 メモリ120は、主記憶装置及び補助記憶装置で実現される。主記憶装置の具体例は、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)である。補助記憶装置の具体例は、HDD(Hard Disk Drive)である。メモリ120は、換気制御プログラム121、換気パラメータ122及び学習済み情報123を記憶している。 The memory 120 is realized by a main storage device and an auxiliary storage device. Specific examples of the main memory are SRAM (Static Random Access Memory) and DRAM (Dynamic Random Access Memory). A specific example of the auxiliary storage device is an HDD (Hard Disk Drive). Memory 120 stores ventilation control program 121 , ventilation parameters 122 and learned information 123 .
 通信インタフェース130は、プロセッサ110が他の装置と通信するための通信ポートである。通信インタフェース130にはサーキュレータ420、室内温度センサ412、二酸化炭素センサ411、空気調和機410、室外温度センサ512、外気センサ513が接続している。プロセッサ110は通信インタフェース130を介して、通信インタフェース130に接続しているサーキュレータ420とデータをやりとり可能である。サーキュレータ420は、プロセッサ110の制御部113によって、送風量及び送方向を制御できる。取得部111は、サーキュレータ420、室内温度センサ412、二酸化炭素センサ411、空気調和機410、室外温度センサ512、外気センサ513から通信インタフェース130を介してデータを取得できる。制御部113が通信インタフェース130を介してサーキュレータ420を制御できる。 The communication interface 130 is a communication port for the processor 110 to communicate with other devices. A circulator 420 , an indoor temperature sensor 412 , a carbon dioxide sensor 411 , an air conditioner 410 , an outdoor temperature sensor 512 and an outdoor air sensor 513 are connected to the communication interface 130 . Processor 110 can exchange data with circulator 420 connected to communication interface 130 via communication interface 130 . The circulator 420 can control the amount and direction of air blowing by the controller 113 of the processor 110 . Acquisition unit 111 can acquire data from circulator 420 , indoor temperature sensor 412 , carbon dioxide sensor 411 , air conditioner 410 , outdoor temperature sensor 512 , and outdoor air sensor 513 via communication interface 130 . Control unit 113 can control circulator 420 via communication interface 130 .
 換気制御プログラム121は、取得部111,学習部112及び制御部113の「部」を「処理」、「手順」あるいは「工程」に読み替えた各処理、各手順あるいは各工程をコンピュータに実行させるプログラムである。 The ventilation control program 121 is a program that causes a computer to execute each process, each procedure, or each process obtained by replacing the “units” of the acquisition unit 111, the learning unit 112, and the control unit 113 with “processing,” “procedure,” or “step.” is.
 また、換気制御方法は、コンピュータである換気制御装置100が換気制御プログラム121を実行することにより行われる方法である。換気制御プログラム121は、コンピュータ読み取り可能な記録媒体に格納されて提供されてもよいし、プログラムプロダクトとして提供されてもよい。 Also, the ventilation control method is a method performed by the ventilation control device 100, which is a computer, executing the ventilation control program 121. The ventilation control program 121 may be stored in a computer-readable recording medium and provided, or may be provided as a program product.
***動作の説明***
 図3は、換気システム600の動作を示すフローチャートである。第1のタイプの換気システム600は、学習モードのステップS11と、換気モードのステップS12との2つのステップを持つ。ステップS11の学習モードは、窓開けによる部屋400の換気量を最大化するためのサーキュレータ420の風向き及び風速を機械学習するモードである。ステップS12の換気モードは、ステップS12の学習モードで学習した、サーキュレータ420の風向および風速で、サーキュレータ420を運転するモードである。
***Description of operation***
FIG. 3 is a flow chart showing the operation of ventilation system 600 . The first type ventilation system 600 has two steps, a learning mode step S11 and a ventilation mode step S12. The learning mode of step S11 is a mode for machine-learning the wind direction and wind speed of the circulator 420 for maximizing the ventilation rate of the room 400 by opening the window. The ventilation mode of step S12 is a mode in which circulator 420 is operated with the wind direction and wind speed of circulator 420 learned in the learning mode of step S12.
<ステップS11:学習モード>
 学習モードは、図1に示すように、一人以上の人430が室内404に存在するときに、サーキュレータ420をある風向及び風速で運転させ、取得部111が換気パラメータ122を検知する。
<Step S11: Learning Mode>
The learning mode, as shown in FIG. 1, operates the circulator 420 at a certain wind direction and wind speed when one or more persons 430 are present in the room 404 and the acquisition unit 111 senses the ventilation parameters 122 .
<学習用データの取得>
 学習モードにおいて、取得部111は、(1)換気パラメータ122、(2)換気パラメータ122のもとで動作しているサーキュレータ420の動作条件及び(3)対象指標の計測値を取得する。取得部111は取得したデータを学習部112へ出力する。なお学習モードにおけるサーキュレータ420の運転は、制御部113が行ってもよいし、人が行ってもよい。
(1)換気パラメータ122は、換気のための開口部を有する部屋の開口部の位置と面積とを含む開口部情報と、部屋に取り込まれる外気の風速と風向きとを含む外気情報とを含む。開口部とは、図1に示す部屋400では、窓402、扉403が該当する。図1の場合、開口部情報は、部屋400における窓402、扉403の位置と、開いた状態での窓402,扉403の開口面積を含む。開口情報はCADデータのような情報から取得できる。取得部111は、外気の風速と風向きとを含む外気情報を、外気センサ513から取得できる。
(2)換気パラメータ122のもとで動作するサーキュレータ420の動作条件は、サーキュレータ420の送風方向と送風量とを含む。取得部111は、動作条件をサーキュレータ420から通信インタフェース130を介して取得する。
(3)対象指標とは、サーキュレータ420が学習モードにおいて動作条件で動作するときの部屋の環境指標の一つである。第1のタイプの換気システム600の場合、対象指標の例は二酸化炭素の濃度である。後述する第2のタイプの換気システム600の場合、対象指標の例は室内404の温度である。よって対象指標の計測値は第1のタイプであれば二酸化炭素濃度の値であり、第2のタイプであれば室内温度の値である。取得部111は、二酸化炭素濃度の値を二酸化炭素センサ411から取得できる。また第2のタイプ2であれば取得部111は、室内の温度を室内温度センサ412から取得できる。
<Acquisition of learning data>
In the learning mode, the acquisition unit 111 acquires (1) the ventilation parameter 122, (2) the operating conditions of the circulator 420 operating under the ventilation parameter 122, and (3) the measured value of the target index. Acquisition unit 111 outputs the acquired data to learning unit 112 . Note that the operation of the circulator 420 in the learning mode may be performed by the control unit 113 or may be performed by a person.
(1) Ventilation parameters 122 include opening information including the position and area of openings in a room having openings for ventilation, and outside air information including the wind speed and direction of the outside air taken into the room. The opening corresponds to the window 402 and the door 403 in the room 400 shown in FIG. In the case of FIG. 1, the opening information includes the positions of the window 402 and the door 403 in the room 400 and the opening area of the window 402 and the door 403 in the open state. Aperture information can be obtained from information such as CAD data. The acquisition unit 111 can acquire outside air information including the wind speed and wind direction of the outside air from the outside air sensor 513 .
(2) The operating conditions of circulator 420 operating under ventilation parameters 122 include the blowing direction and blowing amount of circulator 420 . Acquisition unit 111 acquires the operating conditions from circulator 420 via communication interface 130 .
(3) A target indicator is one of the environmental indicators of the room when the circulator 420 operates under operating conditions in the learning mode. For the first type of ventilation system 600, an example target indicator is the concentration of carbon dioxide. In the case of the second type ventilation system 600 described later, an example of the target indicator is the temperature of the room 404 . Therefore, the measured value of the target index is the carbon dioxide concentration value for the first type, and the indoor temperature value for the second type. The acquisition unit 111 can acquire the carbon dioxide concentration value from the carbon dioxide sensor 411 . For the second type 2, the acquisition unit 111 can acquire the room temperature from the room temperature sensor 412 .
 上記のように、学習部112は、取得部111から、(1)換気パラメータ122、(2)換気パラメータ122のもとで動作しているサーキュレータ420の動作条件、(3)対象指標の計測値として二酸化炭素の濃度の計測値、を入力される。学習部112は、二酸化炭素の濃度、あるいは単位時間あたりの二酸化炭素の濃度変化を、(1)換気パラメータ122、及び(2)サーキュレータ420の動作条件に対応付けて、メモリ120に記憶する。 As described above, the learning unit 112 obtains from the acquisition unit 111 (1) the ventilation parameter 122, (2) the operating conditions of the circulator 420 operating under the ventilation parameter 122, and (3) the measured value of the target index , the measured value of the concentration of carbon dioxide, is entered. The learning unit 112 stores the concentration of carbon dioxide or the change in concentration of carbon dioxide per unit time in the memory 120 in association with (1) the ventilation parameter 122 and (2) the operating conditions of the circulator 420 .
<学習の説明>
 図4は、学習部112の学習結果を示す。学習部112は、(1)換気パラメータ122、(2)サーキュレータ420の動作条件、(3)対象指標の計測値を用いて、新たな換気パラメータのもとにおける対象指標が、目標として設定されている目標状態となるサーキュレータ420の動作条件を学習する。第1のタイプの対象指標は、部屋の二酸化炭素の濃度である。また目標状態は、二酸化炭素の濃度が、サーキュレータの複数の動作条件のうちのいずれかの動作条件によって新たな換気パラメータのもとで最小になる濃度最小状態である。具体的には以下のようである。
<Description of learning>
FIG. 4 shows learning results of the learning unit 112 . The learning unit 112 uses (1) the ventilation parameter 122, (2) the operating conditions of the circulator 420, and (3) the measured value of the target index to set the target index under the new ventilation parameter as a target. It learns the operating conditions of the circulator 420 which is the target state. A first type of indicator of interest is the concentration of carbon dioxide in the room. The target state is also the concentration minimum state in which the concentration of carbon dioxide is minimized under the new ventilation parameters by any of the operating conditions of the circulator. Specifically, it is as follows.
 一定期間、学習モードにてサーキュレータ420を運転させると、学習部112は、図4に示すようなサーキュレータ420の動作条件である「送風方向及び送風量」と、室内404の二酸化炭素の濃度との関係を学習する。図4では簡単のため、サーキュレータ420について、送風量は固定し、送風方向を0度から360度の間で変更した状態を示す。送風方向を示す送風ベクトルを考えたとき、送風ベクトルは平面図である図1において床と平行であるとし、送風ベクトルは床と平行な面内を1回転する。図4において横軸は室内404のある方向を基準にしたときの送風ベクトルの向きθ[rad]であり、縦軸は室内404における二酸化炭素の濃度D[ppm]である。図4に示す学習部112による学習結果により、換気パラメータ122がある値、つまりある新たな状態をとる際に、室内404の二酸化炭素濃度Dが最も小さくなるサーキュレータ420の動作条件を決定できる。室内404の二酸化炭素濃度が最も小さくなるサーキュレータ420の動作条件は、換気量が最大となるサーキュレータ420の動作条件を意味する。
 学習部112は、あらゆる換気パラメータ122に対して図4のグラフが生成できるように学習する。つまり図4のグラフは換気パラメータ122ごとに異なるが、学習部112は、新たな換気パラメータ122が提供されたときに図4のグラフが生成できるように学習する。
 なお、二酸化炭素の濃度ではなく、以下の式1で求められる、二酸化炭素の濃度変化率を用いても良い。なお、マイナスをつけているのは二酸化炭素の濃度変化率を正にするためである。
二酸化炭素の濃度変化率=
-{時間t経過後の二酸化炭素濃度-初期の二酸化炭素濃度}÷初期の二酸化炭素濃度  (式1)。
When the circulator 420 is operated in the learning mode for a certain period of time, the learning unit 112 determines the operating conditions of the circulator 420 as shown in FIG. learn relationships. For simplicity, FIG. 4 shows a state in which the circulator 420 has a fixed airflow rate and a variable airflow direction between 0 degrees and 360 degrees. Considering a blowing vector indicating a blowing direction, the blowing vector is assumed to be parallel to the floor in FIG. 1, which is a plan view, and rotates once in a plane parallel to the floor. In FIG. 4 , the horizontal axis is the direction θ [rad] of the airflow vector with respect to a certain direction in the room 404 , and the vertical axis is the carbon dioxide concentration D [ppm] in the room 404 . Based on the results of learning by the learning unit 112 shown in FIG. 4, it is possible to determine the operating conditions of the circulator 420 where the carbon dioxide concentration D in the room 404 is minimized when the ventilation parameter 122 assumes a certain value, that is, a certain new state. The operating condition of circulator 420 that minimizes the carbon dioxide concentration in room 404 means the operating condition of circulator 420 that maximizes ventilation.
The learning unit 112 learns so that the graph of FIG. 4 can be generated for every ventilation parameter 122 . 4 differs for each ventilation parameter 122, the learning unit 112 learns to generate the graph of FIG. 4 when a new ventilation parameter 122 is provided.
It should be noted that instead of the carbon dioxide concentration, the carbon dioxide concentration change rate obtained by the following equation 1 may be used. Note that the reason for adding a negative number is to make the rate of change in concentration of carbon dioxide positive.
Concentration change rate of carbon dioxide =
−{carbon dioxide concentration after time t has elapsed−initial carbon dioxide concentration}÷initial carbon dioxide concentration (Formula 1).
 図5は、図4を式1の表現に変換した図である。図5の場合、学習部112は、図5のグラフが得られた換気パラメータ122において、二酸化炭素の濃度変化率が最大となるθ(MAX)が最も換気量が多くなるサーキュレータの動作条件と記憶する。 FIG. 5 is a diagram obtained by converting FIG. 4 into the expression of Equation 1. In the case of FIG. 5, the learning unit 112 stores the operating conditions of the circulator at which the maximum ventilation volume is θ (MAX) at which the concentration change rate of carbon dioxide is maximized in the ventilation parameters 122 from which the graph of FIG. 5 is obtained. do.
<ステップ12:換気モード>
 換気モードでは、取得部111は、新たな換気パラメータ122を取得する。制御部113、取得部111が取得した新たな換気パラメータ22に対するサーキュレータ420の動作条件を、学習部112が学習した結果に基づいて決定する。制御部113は、決定した動作条件で、通信インタフェース130を介してサーキュレータを動作させる。具体的には以下のようである。換気モードでは、制御部113は、学習モードで学習部112の学習した「換気パラメータ122に応じたサーキュレータの送風方向及び送風量」と、あらたに検知された換気パラメータ122とを基に、二酸化炭素濃度が最小、あるいは二酸化濃度変化率が最大となるサーキュレータ420の動作条件でサーキュレータ420を運転する。なお二酸化炭素濃度が最小となる動作条件=二酸化濃度変化率が最大となる動作条件、であるので一方の動作条件で運転すれば、同時に他方の動作条件でサーキュレータ420を運転することになる。
<Step 12: Ventilation mode>
In ventilation mode, acquisition unit 111 acquires new ventilation parameters 122 . The operating conditions of the circulator 420 for the new ventilation parameter 22 acquired by the control unit 113 and the acquisition unit 111 are determined based on the learning result of the learning unit 112 . Control unit 113 operates the circulator via communication interface 130 under the determined operating conditions. Specifically, it is as follows. In the ventilation mode, the control unit 113 controls the amount of carbon dioxide on the basis of the newly detected ventilation parameter 122 and the "ventilation direction and amount of the circulator according to the ventilation parameter 122" learned by the learning unit 112 in the learning mode. The circulator 420 is operated at the operating conditions of the circulator 420 where the concentration is minimal or the rate of change of the dioxide concentration is maximal. Since the operating condition at which the carbon dioxide concentration is minimized=the operating condition at which the carbon dioxide concentration change rate is maximized, operating under one operating condition simultaneously operates the circulator 420 under the other operating condition.
<第2のタイプの換気システム600>
 第2のタイプでは対象指標は、部屋400の空気温度である。また目標状態は、部屋400の空気温度が、サーキュレータ420の複数の動作条件のうちのいずれかの動作条件によって新たな換気パラメータのもとで外気の温度になる外気温度状態である。具体的には以下のようである。
 図6は、第2のタイプの換気システム600における部屋400の模式的な平面図である。第2のタイプは、二酸化炭素センサ411を使用せず対象指標が室内温度であること、及び学習モードにおいて室内404に人430を入れない点が第1のタイプと異なる。よって共通する処理の説明は省略する。換気制御装置100の構成は図2と同様である。第2のタイプでは図2において二酸化炭素センサ411は不要である。その他の点は図2と同じなので図面は省略する。動作フローは図3と同一であるので省略する。
<Second type ventilation system 600>
In the second type, the indicator of interest is the air temperature in room 400 . The target state is also the ambient temperature state in which the air temperature in the room 400 is the ambient temperature under the new ventilation parameters under any of the operating conditions of the circulator 420 . Specifically, it is as follows.
FIG. 6 is a schematic plan view of a room 400 in a second type of ventilation system 600. FIG. The second type differs from the first type in that the carbon dioxide sensor 411 is not used and the target index is the room temperature, and that the person 430 is not allowed into the room 404 in the learning mode. Therefore, description of common processing is omitted. The configuration of the ventilation control device 100 is the same as in FIG. The second type does not require the carbon dioxide sensor 411 in FIG. Since other points are the same as those in FIG. 2, the drawing is omitted. The operation flow is the same as that in FIG. 3, so it will be omitted.
<学習モード>
 第2のタイプの学習モードは、まず、人430が室内404にいないときに、制御部113が空気調和機410を運転して室内404の温度を一定に保つ。制御部113は、通信インタフェース130及び取得部111を介して室内温度センサ412の計測値を得ることで室内404の温度を知ることができる。室温が空気調和機410の設定温度に到達し、安定したのを確認した後、制御部113は空気調和機410の運転を止める。
 次に、第1のタイプとどうようにサーキュレータ420をある送風方向及び送風量で運転する。サーキュレータ420の運転は制御部113が行ってもよいし人が行ってもよい。
<Learning mode>
In the second type learning mode, first, when the person 430 is not in the room 404, the controller 113 operates the air conditioner 410 to keep the temperature in the room 404 constant. The control unit 113 can know the temperature of the room 404 by obtaining the measured value of the room temperature sensor 412 via the communication interface 130 and the acquisition unit 111 . After confirming that the room temperature has reached the set temperature of air conditioner 410 and has been stabilized, control unit 113 stops the operation of air conditioner 410 .
Next, the circulator 420 is operated with a certain blowing direction and blowing amount as in the first type. The operation of the circulator 420 may be performed by the controller 113 or by a person.
 学習モードにおいて、取得部111は、(1)換気パラメータ122、(2)換気パラメータ122のもとで動作しているサーキュレータ420の動作条件及び(3)対象指標の計測値を取得する。第2のタイプでは対象指標の計測値は室内温度である。取得部111は室内温度センサ412から室内温度を取得できる。 In the learning mode, the acquisition unit 111 acquires (1) the ventilation parameter 122, (2) the operating conditions of the circulator 420 operating under the ventilation parameter 122, and (3) the measured value of the target index. In the second type, the measured value of the target indicator is the room temperature. The acquisition unit 111 can acquire the room temperature from the room temperature sensor 412 .
 学習部112は、換気パラメータ122を取得部111を介して検知する。学習部112は第1のタイプの場合と同様に、室内温度センサ412から得られる室内の空気温度、あるいは室内温度センサ412から得られる単位時間あたりの室内空気の温度変化を、換気パラメータ122と、サーキュレータ420との動作条件に対応付けて記憶する。 The learning unit 112 detects the ventilation parameter 122 via the acquisition unit 111. As in the case of the first type, the learning unit 112 uses the indoor air temperature obtained from the indoor temperature sensor 412 or the indoor air temperature change per unit time obtained from the indoor temperature sensor 412 as the ventilation parameter 122, It is stored in association with the operating conditions with the circulator 420 .
 一定期間、学習モードにてサーキュレータ420を運転すると、図7に示すようなグラフが得られる。
 図7は、図4に対応する。図7において横軸は室内404のある方向を基準にしたときの送風ベクトルの向きθ[rad]であり、縦軸は室内の空気温度[degC]である。第1のタイプと同様に学習部112は、サーキュレータ420の送風方向及び送風量と、室内の空気温度との関係を学習する。従って、学習部112の学習によって、換気パラメータ122がある値をとる際に、最も室内404の空気温度が外気に近づく、つまり換気量が最大となるサーキュレータ420の動作条件を決定できる。
 ここで、室内空気温度ではなく式2で得られるを用いても良い。
室内空気温度変化=-{時間t経過後の室内空気温度-初期の室内空気温度} (式2)
右辺のマイナスは室内空気温度変化を正にするためである。式2の場合、学習部112は、室内空気温度変化が最大となる点が、最も換気量が多くなるサーキュレータの動作条件であると記憶する。
 図8は、室内404の空気温度変化を示す。横軸は図7と同じであり縦軸は式2の温度変化である。
Running the circulator 420 in learning mode for a period of time produces a graph such as that shown in FIG.
FIG. 7 corresponds to FIG. In FIG. 7, the horizontal axis is the direction θ [rad] of the airflow vector with respect to a certain direction in the room 404, and the vertical axis is the indoor air temperature [degC]. As in the first type, the learning unit 112 learns the relationship between the blowing direction and the blowing amount of the circulator 420 and the indoor air temperature. Therefore, by learning by the learning unit 112, when the ventilation parameter 122 takes a certain value, it is possible to determine the operating conditions of the circulator 420 at which the air temperature in the room 404 is closest to the outside air, that is, the ventilation volume is maximized.
Here, the temperature obtained by Equation 2 may be used instead of the indoor air temperature.
Indoor air temperature change = - {indoor air temperature after time t elapsed - initial indoor air temperature} (Equation 2)
The minus on the right side is to make the indoor air temperature change positive. In the case of Equation 2, the learning unit 112 stores that the point at which the room air temperature change is maximum is the operating condition of the circulator with the largest ventilation amount.
FIG. 8 shows changes in air temperature in room 404 . The horizontal axis is the same as in FIG. 7, and the vertical axis is the temperature change in Equation 2. FIG.
<ステップS12:換気モード>
 換気モードは第1のタイプと同様である。換気モードでは、制御部113は、学習モードで学習部112の学習したサーキュレータ420の動作条件と、新たに検知した換気パラメータ122を基に、室内404の空気温度が外気に最も近づく、あるいは室内の空気温度変化が最大となるサーキュレータ420の動作条件でサーキュレータ420を運転する。
<Step S12: Ventilation Mode>
The ventilation mode is similar to the first type. In the ventilation mode, the control unit 113 determines whether the air temperature in the room 404 is closest to the outside air, or The circulator 420 is operated under the operating conditions of the circulator 420 that maximize the air temperature change.
 図9は、図7と同じ、第2のタイプの学習結果を示す。実線と破線のグラフは換気パラメータ122が異なる。図9によれば、換気パラメータとサーキュレータの動作条件との関係が明らかになる。よって制御部113は、例えば冬期に窓開け換気によって、室内温度が寒くなりすぎないように、ある程度換気量を減らし、室内温度が過度に低下しないようにする、などの調整が可能になる。 FIG. 9 shows the second type of learning result, which is the same as in FIG. The solid and dashed line graphs differ in ventilation parameters 122 . FIG. 9 reveals the relationship between the ventilation parameters and the operating conditions of the circulator. Therefore, the control unit 113 can adjust the amount of ventilation to some extent to prevent the indoor temperature from becoming too cold by opening the windows in winter, for example, to prevent the indoor temperature from dropping excessively.
***実施の形態1の効果***
 実施の形態1の換気システム600によれば、窓開け換気時の換気風量が最大となるサーキュレータの送風方向及び送風量が、換気パラメータに応じて決定できる。従って、窓開け時の換気量を最大化できるので、室内の二酸化炭素の濃度を下げ、健康な空間を提供できる。
*** Effect of Embodiment 1 ***
According to the ventilation system 600 of Embodiment 1, the air blowing direction and the air blowing amount of the circulator that maximize the ventilation air amount during window open ventilation can be determined according to the ventilation parameters. Therefore, it is possible to maximize the amount of ventilation when the windows are open, thereby reducing the concentration of carbon dioxide in the room and providing a healthy space.
 なお実施の形態1では換気パラメータ122には、室内404と室外504との温度差を含めていない。しかし、換気パラメータ122に室内404と室外504との温度差を含めてもよい。取得部111は室内温度センサ412と室外温度センサ512との計測データから室内404と室外504との温度差を得ることができる。 In Embodiment 1, the ventilation parameter 122 does not include the temperature difference between the indoor 404 and the outdoor 504 . However, ventilation parameters 122 may also include the temperature difference between indoor 404 and outdoor 504 . The obtaining unit 111 can obtain the temperature difference between the indoor temperature sensor 412 and the outdoor temperature sensor 512 from the measurement data of the indoor temperature sensor 412 and the outdoor temperature sensor 512 .
 以上、実施の形態1について説明した。実施の形態1の複数の技術事項のうち、1つを部分的に実施しても構わない。2つ以上の技術事項を組み合わせて実施しても構わない。 The first embodiment has been described above. One of the technical matters of the first embodiment may be partially implemented. Two or more technical matters may be combined for implementation.
 100 換気制御装置、110 プロセッサ、111 取得部、112 学習部、113 制御部、120 メモリ、121 換気制御プログラム、122 換気パラメータ、123 学習済み情報、130 通信インタフェース、400 部屋、401 窓、402 窓、403 扉、404 室内、410 空気調和機、411 二酸化炭素センサ、412 室内温度センサ、420 サーキュレータ、421 送風方向、430 人、504 室外、512 室外温度センサ、513 外気センサ、521,522 外気風、531,532 換気風、600 換気システム。 100 ventilation control device, 110 processor, 111 acquisition unit, 112 learning unit, 113 control unit, 120 memory, 121 ventilation control program, 122 ventilation parameters, 123 learned information, 130 communication interface, 400 room, 401 window, 402 window, 403 door, 404 indoor, 410 air conditioner, 411 carbon dioxide sensor, 412 indoor temperature sensor, 420 circulator, 421 ventilation direction, 430 people, 504 outdoor, 512 outdoor temperature sensor, 513 outdoor air sensor, 521, 522 outdoor air, 531 , 532 ventilation, 600 ventilation system.

Claims (8)

  1.  換気のための開口部を有する部屋の前記開口部の位置と面積とを含む開口部情報と前記部屋に取り込まれる外気の風速と風向きとを含む外気情報とを含む換気パラメータと、前記部屋に配置されて前記換気パラメータのもとで動作するサーキュレータの送風方向と送風量とを示す動作条件と、前記サーキュレータが前記動作条件で動作するときの前記部屋の環境指標の一つである対象指標の計測値と、を取得する取得部と、
     前記換気パラメータと、前記動作条件と、前記計測値とを用いて、新たな換気パラメータのもとにおける前記対象指標が、目標として設定されている目標状態となる前記サーキュレータの動作条件を学習する学習部と、
    を備える換気制御装置。
    Ventilation parameters including opening information including the position and area of the opening of a room having an opening for ventilation and outside air information including the wind speed and wind direction of the outside air taken into the room, and placement in the room an operating condition indicating the air blowing direction and air blowing volume of the circulator operating under the ventilation parameters; an acquisition unit that acquires a value;
    Using the ventilation parameter, the operating condition, and the measured value, learning the operating condition of the circulator in which the target index under the new ventilation parameter is a target state set as a target. Department and
    ventilation control device.
  2.  前記取得部は、
    新たな換気パラメータを取得し、
     前記換気制御装置は、
    前記取得部が取得した前記新たな換気パラメータに対する前記サーキュレータの動作条件を、前記学習部が学習した結果に基づいて決定し、決定した前記動作条件で前記サーキュレータを動作させる制御部、
    を備える請求項1に記載の換気制御装置。
    The acquisition unit
    Get new ventilation parameters,
    The ventilation control device
    a control unit that determines operating conditions of the circulator for the new ventilation parameter acquired by the acquiring unit based on the results learned by the learning unit, and operates the circulator under the determined operating conditions;
    The ventilation control device of claim 1, comprising:
  3.  前記対象指標は、
    前記部屋の二酸化炭素の濃度であり、
     前記目標状態は、
    前記二酸化炭素の濃度が、前記サーキュレータの複数の動作条件のうちのいずれかの動作条件によって前記新たな換気パラメータのもとで最小になる濃度最小状態である請求項1または請求項2に記載の換気制御装置。
    The target index is
    is the concentration of carbon dioxide in the room;
    The target state is
    3. A concentration minimum state according to claim 1 or claim 2, wherein the concentration of carbon dioxide is at a minimum under the new ventilation parameters according to any one of a plurality of operating conditions of the circulator. Ventilation control device.
  4.  前記計測値は、
     前記部屋に人がいるときに計測される請求項3に記載の換気制御装置。
    The measured value is
    4. The ventilation control device according to claim 3, which is measured when there is a person in the room.
  5.  前記対象指標は、
    前記部屋の温度であり、
     前記目標状態は、
    前記部屋の温度が、前記サーキュレータの複数の動作条件のうちのいずれかの動作条件によって前記新たな換気パラメータのもとで前記外気の温度になる外気温度状態である請求項1または請求項2に記載の換気制御装置。
    The target index is
    is the temperature of the room;
    The target state is
    3. The method according to claim 1 or claim 2, wherein the temperature of the room is an outside air temperature condition resulting in the temperature of the outside air under the new ventilation parameters according to any one of a plurality of operating conditions of the circulator. Ventilation control device as described.
  6.  前記計測値は、
    前記部屋に人がいないときに計測される請求項5に記載の換気制御装置。
    The measured value is
    6. The ventilation control device according to claim 5, wherein the measurement is performed when there is no person in the room.
  7.  コンピュータに、
     換気のための開口部を有する部屋の前記開口部の位置と面積とを含む開口部情報と前記部屋に取り込まれる外気の風速と風向きとを含む外気情報とを含む換気パラメータと、前記部屋に配置されて前記換気パラメータのもとで動作するサーキュレータの送風方向と送風量とを示す動作条件と、前記サーキュレータが前記動作条件で動作するときの前記部屋の環境指標の一つである対象指標の計測値と、を取得する取得処理と、
     前記換気パラメータと、前記動作条件と、前記計測値とを用いて、新たな換気パラメータのもとにおける前記対象指標が、目標として設定されている目標状態となる前記サーキュレータの動作条件を学習する学習処理と、
    を実行させる換気制御プログラム。
    to the computer,
    Ventilation parameters including opening information including the position and area of the opening of a room having an opening for ventilation and outside air information including the wind speed and wind direction of the outside air taken into the room, and placement in the room an operating condition indicating the air blowing direction and air blowing volume of the circulator operating under the ventilation parameters; an acquisition process for acquiring a value;
    Using the ventilation parameter, the operating condition, and the measured value, learning the operating condition of the circulator in which the target index under the new ventilation parameter is a target state set as a target. processing;
    Ventilation control program to run
  8.  コンピュータが、
     換気のための開口部を有する部屋の前記開口部の位置と面積とを含む開口部情報と前記部屋に取り込まれる外気の風速と風向きとを含む外気情報とを含む換気パラメータと、前記部屋に配置されて前記換気パラメータのもとで動作するサーキュレータの送風方向と送風量とを示す動作条件と、前記サーキュレータが前記動作条件で動作するときの前記部屋の環境指標の一つである対象指標の計測値と、を取得し、
     前記換気パラメータと、前記動作条件と、前記計測値とを用いて、新たな換気パラメータのもとにおける前記対象指標が、目標として設定されている目標状態となる前記サーキュレータの動作条件を学習する、換気制御方法。
    the computer
    Ventilation parameters including opening information including the position and area of the opening of a room having an opening for ventilation and outside air information including the wind speed and wind direction of the outside air taken into the room, and placement in the room an operating condition indicating the air blowing direction and air blowing volume of the circulator operating under the ventilation parameters; get the value and
    Using the ventilation parameter, the operating condition, and the measured value, the operating condition of the circulator in which the target index under the new ventilation parameter is a target state set as a target is learned. Ventilation control method.
PCT/JP2021/016549 2021-04-23 2021-04-23 Ventilation control device, ventilation control program, and ventilation control method WO2022224460A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/016549 WO2022224460A1 (en) 2021-04-23 2021-04-23 Ventilation control device, ventilation control program, and ventilation control method
JP2023516019A JPWO2022224460A1 (en) 2021-04-23 2021-04-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/016549 WO2022224460A1 (en) 2021-04-23 2021-04-23 Ventilation control device, ventilation control program, and ventilation control method

Publications (1)

Publication Number Publication Date
WO2022224460A1 true WO2022224460A1 (en) 2022-10-27

Family

ID=83723278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016549 WO2022224460A1 (en) 2021-04-23 2021-04-23 Ventilation control device, ventilation control program, and ventilation control method

Country Status (2)

Country Link
JP (1) JPWO2022224460A1 (en)
WO (1) WO2022224460A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120022A (en) * 1993-10-26 1995-05-12 Sekisui Chem Co Ltd Automatic ventilation controller
JPH1163622A (en) * 1997-08-27 1999-03-05 Hitachi Metals Ltd Method of simulating air flow inside plant building
JP2001325308A (en) * 2000-05-15 2001-11-22 Sekisui House Ltd Ventilation evaluating method for building
JP2012013389A (en) * 2010-07-05 2012-01-19 Mitsubishi Electric Corp Circulator, and circulator system
JP2015102307A (en) * 2013-11-26 2015-06-04 大和ハウス工業株式会社 Air-conditioning control system and air-conditioning control method
JP2016109422A (en) * 2014-12-04 2016-06-20 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. Environmental comfort control system and its control method
CN107091514A (en) * 2017-03-27 2017-08-25 南京信息工程大学 A kind of system of indoor automatic window ventilation
US20190376715A1 (en) * 2018-06-11 2019-12-12 Broan-Nutone Llc Ventilation system with automatic flow balancing derived from a neural network and methods of use
US20210018208A1 (en) * 2019-07-16 2021-01-21 Lg Electronics Inc. Air conditioner and augmented reality apparatus for informing indoor air condition, and controlling method therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120022A (en) * 1993-10-26 1995-05-12 Sekisui Chem Co Ltd Automatic ventilation controller
JPH1163622A (en) * 1997-08-27 1999-03-05 Hitachi Metals Ltd Method of simulating air flow inside plant building
JP2001325308A (en) * 2000-05-15 2001-11-22 Sekisui House Ltd Ventilation evaluating method for building
JP2012013389A (en) * 2010-07-05 2012-01-19 Mitsubishi Electric Corp Circulator, and circulator system
JP2015102307A (en) * 2013-11-26 2015-06-04 大和ハウス工業株式会社 Air-conditioning control system and air-conditioning control method
JP2016109422A (en) * 2014-12-04 2016-06-20 台達電子工業股▲ふん▼有限公司Delta Electronics,Inc. Environmental comfort control system and its control method
CN107091514A (en) * 2017-03-27 2017-08-25 南京信息工程大学 A kind of system of indoor automatic window ventilation
US20190376715A1 (en) * 2018-06-11 2019-12-12 Broan-Nutone Llc Ventilation system with automatic flow balancing derived from a neural network and methods of use
US20210018208A1 (en) * 2019-07-16 2021-01-21 Lg Electronics Inc. Air conditioner and augmented reality apparatus for informing indoor air condition, and controlling method therefor

Also Published As

Publication number Publication date
JPWO2022224460A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
US12131828B2 (en) Devices, systems, and methods for assessing facility compliance with infectious disease guidance
US11674705B2 (en) Air conditioner providing information on time and/or power required to reach a desired temperature and method for control thereof
EP2971987B1 (en) Energy saving heating, ventilation, air conditioning control system
Wolf et al. Carbon dioxide-based occupancy estimation using stochastic differential equations
EP2957838A1 (en) Instruction device, and air conditioning system
EP2985540B1 (en) Air environment regulating system, and controlling device
CN112413812B (en) Refrigerant leakage detection method and system and air conditioner
CN111457571A (en) Method, equipment and system for controlling indoor relative temperature and humidity
CN111927810B (en) Charging and discharging information data processing method and device applied to handheld fan
WO2022224460A1 (en) Ventilation control device, ventilation control program, and ventilation control method
JP2005301582A (en) Process management device
Haque et al. Ensemble-based efficient anomaly detection for smart building control systems
Nienaber et al. Validation, optimisation and comparison of carbon dioxide-based occupancy estimation algorithms
Du et al. PCA-FDA-based fault diagnosis for sensors in VAV systems
Pan et al. Real-Time Control of the Air Volume in Ventilation Facilities by Limiting CO $ _ {2} $ Concentration With Cluster Algorithms
KR102601588B1 (en) A system for improving and maintaining noise and air quality conditions within an area
Hsu et al. Using the big data analysis and basic information from lecture Halls to predict air change rate
JP2004234302A (en) Process management device
CN115276231B (en) Intelligent regulation and control system based on 800V alternating current-direct current convergence equipment
CN114187738A (en) Safety early warning method, device, equipment and medium
CN114017905B (en) Air conditioner control method and device, air conditioner and storage medium
US20230375204A1 (en) Ventilation information display apparatus
Wolf et al. CO2-based grey-box model to estimate airflow rate and room occupancy
Zhang Building occupancy analytics based on deep learning through the use of environmental sensor data
WO2021038775A1 (en) Control method, control program, and air conditioning control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937951

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023516019

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937951

Country of ref document: EP

Kind code of ref document: A1