WO2022224458A1 - Wear-resistant steel sheet - Google Patents

Wear-resistant steel sheet Download PDF

Info

Publication number
WO2022224458A1
WO2022224458A1 PCT/JP2021/016546 JP2021016546W WO2022224458A1 WO 2022224458 A1 WO2022224458 A1 WO 2022224458A1 JP 2021016546 W JP2021016546 W JP 2021016546W WO 2022224458 A1 WO2022224458 A1 WO 2022224458A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
wear
content
steel plate
resistant steel
Prior art date
Application number
PCT/JP2021/016546
Other languages
French (fr)
Japanese (ja)
Inventor
仁秀 吉村
仁志 古谷
拓海 三宅
大司 中田
康哲 ▲高▼橋
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to PCT/JP2021/016546 priority Critical patent/WO2022224458A1/en
Priority to JP2022506528A priority patent/JP7239056B1/en
Publication of WO2022224458A1 publication Critical patent/WO2022224458A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Definitions

  • the present invention relates to a wear-resistant steel plate, and more particularly to a wear-resistant steel plate that is useful for use in members of machinery that requires wear resistance, such as industrial machinery and transportation machinery.
  • Industrial machinery and transportation machinery e.g., dump trucks, bulldozers, power shovels
  • steel materials with excellent wear resistance in order to extend their service life. ing.
  • the steel material becomes hard, it becomes difficult to cut, for example, and there is a problem that the productivity is lowered and the processing cost is increased.
  • Patent Document 1 In relation to improving the machinability of steel, for example, in mass%, C: 0.3 to 0.6%, Si: 1.0% or less, Mn: 1.0% or less, P : 0.04% or less, S: 0.005-0.2%, Cr: 4.0-11.0%, Al: 0.001-0.1%, Ca: 0.0005-0.02% , O: 3.3 mm 2 of a sulfide having an equivalent circle diameter of 5 ⁇ m or more containing 0.0005 to 0.01% O, the balance being substantially Fe, and containing 0.1 to 10% Ca
  • a martensitic stainless steel part is described which contains 5 or more per part and is characterized by induction hardening on the surface to be used.
  • S improves the machinability of steel, and a film that protects the tool during cutting is formed by setting the Ca content in the sulfide to the range of 0.1 to 10%. It is taught that
  • Patent Document 2 in terms of % by mass, C: 0.005-0.2%, Mn: 0.3-2.0%, P: 0.005-0.2%, S: 0.01-0. 7%, Pb: 0.03 to 0.5%, N: 0.004 to 0.02%, and O: 0.003 to 0.03%, the balance consists of Fe and impurities, in the steel of the MnS inclusions, Pb inclusions, and Pb—MnS inclusions containing Pb and MnS, the MnS inclusions, the Pb inclusions, and the Pb—MnS inclusions having an equivalent circle diameter of 5 ⁇ m or more
  • the ratio of the number of the Pb--MnS inclusions having an equivalent circle diameter of 5 ⁇ m or more to the total number is 5% or more, and the lengths of the MnS inclusions, the Pb inclusions and the Pb--MnS inclusions are 200 ⁇ m or less.
  • the average length of the MnS inclusions, the Pb inclusions and the Pb--MnS inclusions having an equivalent circle diameter of 5 ⁇ m or more is 50 ⁇ m or less, and the MnS inclusions, the Pb inclusions and the Pb- A lead free-cutting steel is described in which 500 inclusions/mm 2 or more of MnS inclusions have an equivalent circle diameter of 2 ⁇ m or more and an aspect ratio of 10 or less.
  • machinability is affected by the built-up edge that adheres to the cutting edge of the cutting tool during cutting, and free-cutting inclusions in steel (MnS inclusions, Pb inclusions, Pb-Mn inclusions ) is 200 ⁇ m or less, and the average length of the free-cutting inclusions having an equivalent circle diameter of 5 ⁇ m or more is 50 ⁇ m or less, the built-up edge becomes fine, and 10 or less of the free-cutting inclusions It is taught that when the number of elements having an aspect ratio is 500/mm 2 or more, a large number of fine built-up edges are uniformly formed, and the machinability is enhanced.
  • Patent Literatures 1 and 2 has necessarily made sufficient studies on achieving both machinability and low-temperature toughness in addition to wear resistance.
  • the present invention has been made in view of such circumstances, and its object is to have improved machinability while maintaining good wear resistance and low temperature toughness by a novel structure.
  • An object of the present invention is to provide a wear-resistant steel plate.
  • the inventors investigated the chemical composition and metallographic structure of the steel sheet.
  • the present inventors improved both wear resistance and low-temperature toughness by adjusting the Vickers hardness at a depth of 1 mm from the surface of the steel sheet while keeping the chemical composition of the steel sheet within a predetermined range.
  • the metal structure at a relatively high temperature during cutting.
  • the present invention which has achieved the above objects, is as follows. (1) in mass %, C: 0.140 to 0.250%, Si: 0.09% or less, Mn: 1.20-2.00%, P: 0.0200% or less, S: 0.0050% or less, Cr: 0.10 to 1.00%, Mo: 0.05-0.29%, Ti: 0.005 to 0.030%, B: 0.0003 to 0.0050%, Al: 0.0030 to 0.1000%, N: 0.0010 to 0.0080%, O: 0.0050% or less, Ni: 0 to 0.50%, Nb: 0 to 0.050%, Cu: 0-0.50%, V: 0 to 0.050, W: 0 to 0.50%, Ca: 0 to 0.0050%, Mg: 0-0.0050%, REM: 0 to 0.0050%, Balance: having a chemical composition of Fe and impurities, The Vickers hardness HV 10 (Hv) at a depth of 1 mm from the surface satisfies the following formula 1, The average circle
  • [C] is the C content (% by mass) of the wear-resistant steel plate.
  • the wear-resistant steel plate according to (1) above comprising one or more selected from the group consisting of: (3) The wear-resistant steel plate according to (1) or (2) above, which has a plate thickness of 6 to 150 mm.
  • the present invention it is possible to provide a wear-resistant steel plate having improved machinability while maintaining good wear resistance and low-temperature toughness. Therefore, by using the wear-resistant steel plate according to the present invention, it is possible to improve the productivity of cutting and significantly reduce the processing cost.
  • the wear-resistant steel plate according to the embodiment of the present invention is mass%, C: 0.140 to 0.250%, Si: 0.09% or less, Mn: 1.20-2.00%, P: 0.0200% or less, S: 0.0050% or less, Cr: 0.10 to 1.00%, Mo: 0.05-0.29%, Ti: 0.005 to 0.030%, B: 0.0003 to 0.0050%, Al: 0.0030 to 0.1000%, N: 0.0010 to 0.0080%, O: 0.0050% or less, Ni: 0 to 0.50%, Nb: 0 to 0.050%, Cu: 0-0.50%, V: 0 to 0.050, W: 0 to 0.50%, Ca: 0 to 0.0050%, Mg: 0-0.0050%, REM: 0 to 0.0050%, Balance: having a chemical composition of Fe and impurities, The Vickers hardness HV 10 (Hv) at a depth of 1 mm from the surface satisfies
  • the present inventors first set the chemical composition of the steel sheet within a predetermined range, and set the Vickers hardness at a depth of 1 mm from the steel sheet surface to an appropriate hardness particularly according to the C content of the steel sheet.
  • the Vickers hardness HV 10 (Hv) at a depth of 1 mm from the steel plate surface is expressed by formula 1: HV 10 ⁇ 634 ⁇ ⁇ [C] + 140 (where [C] is the C content of the wear-resistant steel plate (% by mass)), it is possible to improve the low-temperature toughness while maintaining the hardness of the surface layer portion of the steel sheet to ensure wear resistance. In order to improve the low-temperature toughness, it is effective to eliminate coarse grains by making the metallographic structure uniform.
  • the metal structure of the steel sheet is achieved by realizing a hardness that satisfies the above formula 1 while keeping the chemical composition of the steel sheet within the range described above.
  • the metal structure of the surface layer of the steel sheet can be made, for example, a uniform structure that is mainly composed of martensite and is closer to a single phase, so both wear resistance and low temperature toughness can be improved. It is considered to be.
  • the present inventors paid attention to the metal structure under high temperature conditions during cutting, and studied the effect of the metal structure on the machinability of steel sheets. As a result, the present inventors have found that the solute carbon (C) contained in the metal structure of the steel sheet precipitates as carbides at such high temperatures, and the precipitation of the carbides relaxes the deformation resistance during cutting. I found out.
  • the present inventors suppressed the Si content of the steel sheet to 0.09% or less and made the metal structure at a depth of 1 mm from the steel sheet surface finer. More specifically, by setting the average circle equivalent diameter of the crystal grains surrounded by the boundaries with a misorientation of 15° or more to 25 ⁇ m or less, the precipitation of carbides from the metal structure at a relatively high temperature during cutting is promoted. Furthermore, the size of the carbides precipitated at such high temperatures is within a predetermined range, more specifically, the average value of the major axis of the carbides is 0.25 to 5.00 ⁇ m. It has been found that by setting the content within the range, the deformation resistance during cutting can be reliably alleviated, and as a result, the machinability is remarkably improved.
  • the metal structure becomes finer, which is advantageous for the diffusion of solute carbon in the steel sheet. Since the number of fine grain boundaries can be increased, it is thought that the combination of such a fine structure and a low Si content can further promote the precipitation of carbides.
  • the carbides precipitated at high temperatures in this way reduce the hardness of the structure of the cut portion by precipitating within a specific size range, that is, in the direction of alleviating the deformation resistance during cutting. considered to work.
  • the wear-resistant steel sheet according to the present invention in which is precipitated, it is considered possible to significantly improve machinability while maintaining both wear resistance and low-temperature toughness.
  • Carbon (C) is an element necessary to increase hardness and improve wear resistance. In order to sufficiently obtain such effects, the C content is made 0.140% or more. The C content may be 0.150% or more, 0.160% or more, or 0.170% or more. On the other hand, when C is contained excessively, the deterioration of toughness may become remarkable, and the strength tends to be excessive. Therefore, the C content should be 0.250% or less. The C content may be 0.240% or less, 0.230% or less, or 0.220% or less.
  • Si is an element whose content in the steel sheet is suppressed in order to promote the precipitation of carbides during cutting and alleviate the deformation resistance during cutting. In order to sufficiently obtain the effect of accelerating the precipitation of carbides, it is extremely important to reduce the Si content in the steel sheet. If the Si content is high, the carbides are not sufficiently precipitated at high temperatures during cutting, so the average major axis of the carbides becomes small, and as a result, the deformation resistance during cutting cannot be sufficiently alleviated. From this point of view, the Si content is set to 0.09% or less. The Si content may be 0.08% or less, 0.07% or less, 0.06% or less, 0.05% or less, or 0.04% or less. For example, the Si content may be 0% because the lower the Si content, the higher the effect of accelerating the precipitation of carbides. However, from the viewpoint of manufacturing cost, the Si content may be 0.005% or more or 0.01% or more.
  • Mn manganese
  • Mn manganese
  • the Mn content should be 1.20% or more.
  • the Mn content may be 1.25% or more, 1.30% or more, or 1.40% or more.
  • the Mn content should be 2.00% or less.
  • the Mn content may be 1.90% or less, 1.80% or less, or 1.70% or less.
  • Phosphorus (P) is an impurity, and if it is contained excessively, it may segregate at grain boundaries and reduce toughness. Therefore, the P content should be 0.0200% or less.
  • the P content is preferably 0.0180% or less, more preferably 0.0150% or less, most preferably 0.0100% or less or 0.0080% or less.
  • the P content is preferably as small as possible, and therefore may be 0%. However, from the viewpoint of manufacturing cost, the P content may be 0.0001% or more, 0.0005% or more, or 0.0010% or more.
  • S Sulfur
  • S is an impurity, and when contained excessively, it promotes center segregation and may cause the formation of elongated MnS, which is the starting point of brittle fracture. Therefore, the S content should be 0.0050% or less.
  • the S content is preferably 0.0040% or less, more preferably 0.0030% or less, and most preferably 0.0020% or less. The lower the S content, the better, so it may be 0%. However, from the viewpoint of manufacturing cost, the S content may be 0.0001% or more, 0.0005% or more, or 0.0010% or more.
  • Chromium (Cr) is an element that improves hardenability and increases hardness. In order to sufficiently obtain such effects, the Cr content is set to 0.10% or more. The Cr content may be 0.20% or more, 0.30% or more, or 0.40% or more. On the other hand, if Cr is contained excessively, the hardenability becomes excessive, and the toughness may decrease. Therefore, the Cr content should be 1.00% or less. The Cr content may be 0.90% or less, 0.80% or less, or 0.70% or less.
  • Molybdenum is an element that improves hardenability and increases hardness. In order to sufficiently obtain such effects, the Mo content is set to 0.05% or more. Mo content may be 0.10% or more, 0.12% or more, or 0.15% or more. On the other hand, if Mo is contained excessively, the hardenability becomes excessive, and toughness may decrease. Therefore, Mo content shall be 0.29% or less. The Mo content may be 0.28% or less, 0.27% or less, or 0.25% or less.
  • Titanium (Ti) is an element that forms titanium nitride (TiN) as pinning particles, refines crystal grains, and improves toughness. Moreover, in order for B to function effectively in improving hardenability, it is necessary to prevent B from precipitating as boron nitride (BN), that is, to fix N. In addition to contributing to refinement of crystal grains as pinning particles, Ti consumes solute nitrogen in steel by forming TiN, so B combines with the solute nitrogen to form BN. It also has the function of inhibiting In order to sufficiently obtain these effects, the Ti content should be 0.005% or more. The Ti content may be 0.007% or more, 0.010% or more, or 0.015% or more. On the other hand, when Ti is contained excessively, TiC may precipitate and the toughness may decrease. Therefore, the Ti content should be 0.030% or less. The Ti content may be 0.027% or less, 0.025% or less, or 0.022% or less.
  • B Boron
  • B is an element that segregates at grain boundaries in a very small amount to improve hardenability and increase hardness.
  • the B content should be 0.0003% or more.
  • the B content may be 0.0005% or more, 0.0007% or more, 0.0010% or more, or 0.0015% or more.
  • BN may precipitate and the toughness may be lowered. Therefore, the B content should be 0.0050% or less.
  • the B content may be 0.0040% or less, 0.0030% or less, or 0.0020% or less.
  • Aluminum (Al) is an element necessary for deoxidizing molten steel. In order to sufficiently obtain such effects, the Al content is made 0.0030% or more.
  • the Al content may be 0.0050% or more, 0.0100% or more, 0.0150% or more, or 0.0300% or more.
  • the Al content should be 0.1000% or less.
  • the Al content may be 0.0900% or less, 0.0800% or less, 0.0700% or less, or 0.0500% or less.
  • N 0.0010 to 0.0080%
  • Nitrogen (N) is an element necessary for refining crystal grains and improving toughness by precipitating as TiN. In order to sufficiently obtain such effects, the N content is made 0.0010% or more. The N content may be 0.0015% or more, 0.0020% or more, or 0.0030% or more. On the other hand, when N is contained excessively, TiN is excessively precipitated, which may act as starting points of fracture and lower the toughness. Therefore, the N content should be 0.0080% or less. The N content may be 0.0070% or less, 0.0060% or less, or 0.0050% or less.
  • Oxygen (O) is an impurity, so its content is made 0.0050% or less.
  • the O content is preferably 0.0045% or less, more preferably 0.0040% or less, most preferably 0.0035% or less. It is preferable to reduce the O content as much as possible, so it may be 0%. However, from the viewpoint of deoxidation cost, the O content may be 0.0001% or more, 0.0002% or more, or 0.0003% or more.
  • the wear-resistant steel plate may contain one or more selected from the group consisting of the following optional elements, if necessary.
  • the wear-resistant steel plate may contain one or two selected from the group consisting of Ni: 0-0.50% and Nb: 0-0.050%.
  • the wear-resistant steel plate contains one or more selected from the group consisting of Cu: 0 to 0.50%, V: 0 to 0.050%, and W: 0 to 0.50%. You can stay.
  • the wear-resistant steel plate contains one or more selected from the group consisting of Ca: 0 to 0.0050%, Mg: 0 to 0.0050%, and REM: 0 to 0.0050%. You can stay. These optional elements are described in detail below.
  • Nickel (Ni) is an element that contributes to improving toughness.
  • the Ni content may be 0%, the Ni content is preferably 0.01% or more in order to obtain such effects.
  • the Ni content may be 0.03% or more, 0.05% or more, 0.10% or more, or 0.15% or more.
  • the Ni content should be 0.50% or less.
  • the Ni content may be 0.45% or less, 0.40% or less, or 0.35% or less.
  • Niobium is an element that contributes to the improvement of toughness by refining crystal grains by precipitating NbCN as pinning particles.
  • the Nb content may be 0%, the Nb content is preferably 0.001% or more in order to obtain such effects.
  • the Nb content may be 0.005% or more, 0.008% or more, 0.010% or more, or 0.015% or more.
  • the Nb content should be 0.050% or less.
  • the Nb content may be 0.045% or less, 0.040% or less, or 0.035% or less.
  • Copper (Cu) is an element that improves hardenability and increases hardness.
  • the Cu content may be 0%, but in order to obtain these effects, the Cu content is preferably 0.01% or more.
  • the Cu content may be 0.03% or more, 0.05% or more, 0.10% or more, or 0.15% or more.
  • the toughness may decrease. Therefore, the Cu content is set to 0.50% or less.
  • the Cu content may be 0.45% or less, 0.40% or less, or 0.35% or less.
  • V Vanadium
  • V is an element that improves hardenability and increases hardness.
  • the V content may be 0%, the V content is preferably 0.001% or more in order to obtain these effects.
  • the V content may be 0.005% or more, 0.008% or more, 0.010% or more, or 0.015% or more.
  • the V content should be 0.050% or less.
  • the V content may be 0.045% or less, 0.040% or less, or 0.035% or less.
  • Tungsten is an element that improves hardenability and increases hardness.
  • the W content may be 0%, the W content is preferably 0.01% or more in order to obtain these effects.
  • the W content may be 0.03% or more, 0.05% or more, 0.10% or more, or 0.15% or more.
  • an excessive W content may reduce the toughness. Therefore, the W content should be 0.50% or less.
  • the W content may be 0.45% or less, 0.40% or less, or 0.35% or less.
  • Ca is an element that controls the forms of oxides and sulfides.
  • the Ca content may be 0%, the Ca content is preferably 0.0001% or more in order to obtain such effects.
  • the Ca content may be 0.0005% or more, 0.0008% or more, 0.0010% or more, or 0.0015% or more.
  • the Ca content should be 0.0050% or less.
  • the Ca content may be 0.0045% or less, 0.0040% or less, or 0.0035% or less.
  • Magnesium (Mg) is an element that controls the forms of oxides and sulfides. Although the Mg content may be 0%, the Mg content is preferably 0.0001% or more in order to obtain such effects. The Mg content may be 0.0005% or more, 0.0008% or more, 0.0010% or more, or 0.0015% or more. On the other hand, even if Mg is contained excessively, the effect is saturated, and the formation of inclusions may impair the toughness. Therefore, the Mg content should be 0.0050% or less. The Mg content may be 0.0045% or less, 0.0040% or less, or 0.0035% or less.
  • Rare earth metals are elements that control the morphology of oxides and sulfides.
  • the REM content may be 0%, the REM content is preferably 0.0001% or more in order to obtain such effects.
  • the REM content may be 0.0005% or greater, 0.0008% or greater, 0.0010% or greater, or 0.0015% or greater.
  • the REM content should be 0.0050% or less.
  • the REM content may be 0.0045% or less, 0.0040% or less, or 0.0035% or less.
  • REM in this specification refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and the lanthanides lanthanum with atomic number 57 (La) to lutetium with atomic number 71 (Lu ), and the REM content is the total content of these elements.
  • the balance other than the above elements is Fe and impurities.
  • Impurities are components and the like that are mixed due to various factors in the manufacturing process, including raw materials such as ores and scraps, when the wear-resistant steel sheet is industrially manufactured.
  • Carbon equivalent (Ceq) is an index of hardenability.
  • Ceq is calculated by Equation 2 below.
  • Ceq [C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15 Equation 2
  • [C], [Mn], [Cr], [Mo], [V], [Cu] and [Ni] are the content (% by mass) of each element, and 0 when no element is contained. is.
  • the appropriate hardness of the wear-resistant steel plate (for example, Brinell hardness 360-490 HB) can be achieved. Therefore, the Ceq of the wear-resistant steel plate is not particularly limited, but from the viewpoint of obtaining more preferable hardness, the Ceq is preferably 0.86 or less, for example. Ceq may be 0.82 or less, 0.80 or less, or 0.75 or less. Although the lower limit of Ceq is not particularly limited, Ceq may be 0.37 or more, 0.40 or more, 0.45 or more, or 0.55 or more, for example.
  • Vc90 is a value known as the critical cooling rate (° C./sec) at which a 90% martensite structure is obtained, and is an index of hardenability as in the case of Ceq. Therefore, in general, the smaller the value of Vc90, the higher the hardenability of the steel, which tends to increase the hardness of the wear-resistant steel plate.
  • Vc90 is calculated according to the following formula 3 or 4 according to the B content of the steel plate, and in the wear resistant steel plate according to the embodiment of the present invention, the B content is 0.0003 to 0.0050%. It is calculated by the following formula 3.
  • Vc90 of the wear-resistant steel plate is not particularly limited, but from the viewpoint of obtaining more preferable hardness, Vc is preferably 2.0 to 30.0, for example.
  • Vc90 may be greater than or equal to 2.2, greater than or equal to 2.4, or greater than or equal to 2.6, and/or less than or equal to 28.0, less than or equal to 25.0, less than or equal to 20.0, or less than or equal to 15.0.
  • the Vickers hardness HV 10 (Hv) at a depth of 1 mm from the surface of the wear-resistant steel plate satisfies Formula 1 below.
  • [C] is the C content (% by mass) of the wear-resistant steel plate.
  • Sufficient wear resistance can be maintained by setting the hardness of the surface layer portion of the steel sheet so as to satisfy Expression 1 above. For example, simply increasing the hardness of the steel sheet may lead to a decrease in low-temperature toughness, although the wear resistance can be improved.
  • the Vickers hardness at a position 1 mm deep from the steel sheet surface is increased according to the C content that particularly contributes to the hardness of the steel sheet.
  • the metal structure of the steel plate, particularly the metal structure of the surface layer of the steel plate can be made, for example, a uniform structure that is closer to a single phase than is mainly composed of martensite, and is therefore wear resistant. It is thought that it becomes possible to improve both toughness and low temperature toughness.
  • the Vickers hardness HV 10 is, for example, HV 10 ⁇ 1.01 ⁇ f(C ), HV 10 ⁇ 1.02 ⁇ f(C), or HV 10 ⁇ 1.05 ⁇ f(C).
  • the metal structure at a depth of 1 mm from the steel plate surface is not particularly limited.
  • the metallographic structure is preferably hard and uniform.
  • the metal structure at a depth of 1 mm from the steel sheet surface is mainly composed of martensite. More specifically, the metal structure preferably contains 80% or more martensite in area ratio, more preferably 85% or 90% or more martensite, and 92% or more or 95% or more It is most preferable to contain martensite, particularly preferably 80% or more in terms of area ratio of martensite in observation with an optical microscope, more preferably 85% or 90% or more martensite, 92% or more or Most preferably it contains 95% or more martensite. Although the upper limit of the martensite area ratio is not particularly limited, it may be 100%, for example.
  • the metal structure at a depth of 1 mm from the steel plate surface is composed of 90% or more martensite, so that the Vickers hardness HV 10 (Hv) at the depth position satisfies the above formula 1 more reliably. be able to.
  • the area ratio of martensite is determined as follows. First, the L cross section (cross section parallel to the rolling direction and thickness direction of the wear resistant steel plate) at a depth of 1 mm from the surface of the wear resistant steel plate is mirror-polished, then corroded with nital, and an optical microscope is used at 500 times. It is determined by observing, randomly selecting three observation fields of 200 ⁇ m ⁇ 500 ⁇ m, measuring the area ratio of martensite in each observation field, and averaging them. In observation with an optical microscope, for example, it is sometimes difficult to clearly distinguish between so-called autotempered martensite in which cementite is precipitated by autotempering and such cementite-free martensite. Thus, the term martensite as used herein includes autotempered martensite.
  • the average equivalent circle diameter of grains surrounded by boundaries with a misorientation of 15° or more at a depth of 1 mm from the surface of the wear-resistant steel plate is 25 ⁇ m or less.
  • the average equivalent circle diameter of the crystal grains is preferably 24 ⁇ m or less, more preferably 22 ⁇ m or less, and most preferably 20 ⁇ m or less. Since the smaller the average equivalent circle diameter of the crystal grains, the better, the lower limit is not particularly defined. However, the average equivalent circle diameter of the grains may be, for example, 1 ⁇ m or more, or 3 ⁇ m or more.
  • the wear-resistant steel sheet according to the present invention is basically quenched, the surface layer, which is sufficiently quenched, is the hardest and most difficult part to cut compared to the inside of the steel sheet. . Therefore, when examining the machinability of a steel sheet, it is important to improve the machinability at a position 1 mm deep from the surface of the steel sheet, which corresponds to such a site that is most difficult to cut. This is because the hardness becomes softer than that of the surface layer portion toward the inner side of the steel sheet, and the machinability is improved. The same can be said for the "average value of the major axis of carbides" which will be described later.
  • the average equivalent circle diameter of crystal grains is determined as follows. First, the L cross section (cross section parallel to the rolling direction and thickness direction of the wear resistant steel plate) at a depth of 1 mm from the surface of the wear resistant steel plate is mirror-polished, and then any rolling is performed by electron beam backscatter diffraction (EBSD). The crystal orientation of a region of 1.0 mm in the direction ⁇ 0.4 mm in the depth direction is measured at one point, and the region where the orientation difference between adjacent grains is 15° or more is defined as one crystal grain, and the grain of each crystal grain. Calculate the diameter as a circle equivalent diameter.
  • EBSD electron beam backscatter diffraction
  • the average circle equivalent diameter of the crystal grains surrounded by the boundaries with a misorientation of 15 ° or more at a depth of 1 mm from the surface may be specified.
  • Other grain morphologies such as the aspect ratio are not particularly limited.
  • the aspect ratio of the prior austenite grains at a depth of 1 mm from the surface may be 1.0 to 1.8.
  • the aspect ratio of the prior austenite grains is determined as follows.
  • the L cross section (cross section parallel to the rolling direction and thickness direction of the wear resistant steel plate) at a depth of 1 mm from the surface of the wear resistant steel plate is mirror-polished, and then any rolling is performed by electron beam backscatter diffraction (EBSD).
  • EBSD electron beam backscatter diffraction
  • One crystal orientation in a region of 1.0 mm in the direction ⁇ 0.4 mm in the depth direction is measured, and the region where the orientation difference between adjacent grains is 20 ° or more and 45 ° or less is defined as one prior austenite grain, and each The rolling direction length and plate thickness direction length of the prior austenite grains are measured, and the aspect ratio of each prior austenite grain is calculated.
  • the arithmetic mean of the aspect ratios of all the calculated prior austenite grains is determined as the “aspect ratio of prior austenite grains”.
  • the long diameter of carbide precipitated from the metal structure, for example, as-quenched martensite under such a high temperature is within the range of 0.25 to 5.00 ⁇ m, the deformation resistance during cutting can be alleviated by the precipitation of carbides of appropriate size.
  • the average major axis of the carbide may be 0.27 ⁇ m or more, 0.28 ⁇ m or more, or 0.30 ⁇ m or more.
  • the average major axis of the carbide is 5.00 ⁇ m, and may be, for example, 4.00 ⁇ m or less, 3.00 ⁇ m or less, 2.00 ⁇ m or less, or 1.00 ⁇ m or less.
  • the average value of the major axis of carbide at a depth of 1 mm from the surface is determined as follows. First, the L cross section (cross section parallel to the rolling direction and thickness direction of the wear resistant steel plate) at a depth of 1 mm from the surface of the wear resistant steel plate after the heat treatment test is mirror-polished, then corroded with nital, and scanned electron Observe at 10,000 times using a microscope (SEM), and randomly select 10 observation fields of 10 ⁇ m ⁇ 6 ⁇ m.
  • the wear-resistant steel plate according to the embodiment of the present invention is not particularly limited, but may have a plate thickness of 6 to 150 mm, for example.
  • the plate thickness of the wear-resistant steel plate may be, for example, 8 mm or more, 10 mm or more, 15 mm or more, 20 mm or more, 25 mm or more, or 30 mm or more.
  • the thickness of the wear-resistant steel plate may be, for example, 120 mm or less, 100 mm or less, 90 mm or less, or 80 mm or less.
  • the wear-resistant steel plate according to the embodiment of the present invention can achieve excellent mechanical properties, for example, a Brinell hardness of 360 to 490 HB at a depth of 1 mm from the surface.
  • the Brinell hardness is preferably 380 HB or higher, more preferably 400 HB or higher.
  • the Brinell hardness may be 480 HB or less, or 460 HB or less.
  • excellent low-temperature toughness can be achieved, and more specifically, the Charpy impact absorption energy (vE - 20 ) is 27 J or more, preferably 30 J or more, more preferably 40 J or more, and most preferably 45 J or more.
  • the upper limit of the average value of the Charpy impact absorption energy (vE ⁇ 20 ) is not particularly limited, but may be 100J, for example. Furthermore, according to the wear-resistant steel plate according to the embodiment of the present invention, excellent machinability can be achieved. Cutting speed is 200m/min, depth of cut is 1mm, tool feed is 0.1mm/rev, and dry (no cutting oil). Excellent machinability of 200m or more, preferably 220m or more, more preferably 250m or more, most preferably 280m or more can be achieved when measured. Although the upper limit of the cutting distance is not particularly limited, it may be 500 m, for example. With conventional wear-resistant steel, the cutting distance to tool failure under the same conditions is less than 200 m.
  • the Brinell hardness is measured under a load of 3000 kgf using a hard tungsten ball with a diameter of 10 mm on the surface of the wear-resistant steel plate with 1 mm removed by grinding.
  • the average value of the Charpy impact absorption energy (vE -20 ) is based on the JIS No. 4 2 mm V-notch test piece taken from the 1/4 position of the plate thickness in the L direction of the wear-resistant steel plate, based on the provisions of JIS Z2242: 2005. Then, using an impact blade with a radius of 2 mm, three Charpy impact absorption energies are measured at -20°C, and calculated by averaging them.
  • the wear-resistant steel plate according to the embodiment of the present invention exhibits excellent wear resistance, low-temperature toughness and machinability. It is particularly suitable for use in beveling and drilling with a milling tip.
  • the manufacturing method of wear-resistant steel plates includes a hot rolling process and a quenching process. Each step will be described in more detail below.
  • the steel slab to be subjected to this manufacturing method is not particularly limited as long as it has the chemical composition described above, and a steel slab manufactured under any appropriate casting conditions known to those skilled in the art can be used. can be done.
  • the billet may be an ingot-blooming slab or a continuously cast slab. From the viewpoint of production efficiency, yield and energy saving, it is preferable to use a continuously cast slab as the billet.
  • a cast steel slab is reheated in a hot rolling process, and then hot rolled at a rolling reduction of 50% or more, for example.
  • the reheating temperature is preferably 1000° C. or higher from the viewpoint of reducing the load on the rolling rolls, and is preferably 1250° C. or lower from the viewpoint of suppressing coarsening of the metal structure, particularly the martensitic structure.
  • the rolling end temperature is preferably 1000° C. or higher from the viewpoint of productivity.
  • the metal structure is improved. It is possible to suppress coarsening, that is, it is possible to reliably make the average equivalent circle diameter of grains surrounded by boundaries with an orientation difference of 15° or more at a depth of 1 mm from the steel plate surface to 25 ⁇ m or less. If the parameter R is out of the above range, the grains become coarse, precipitation of carbides during cutting is not promoted, and sufficient machinability cannot be achieved. In particular, when the parameter R is 0.00 or less, austenitization during reheating is insufficient, so that the hardness of the steel sheet is lowered and the wear resistance is also lowered.
  • quenching is performed after reheating, so the old steel is elongated compared to the case of direct quenching (DQ) by water cooling immediately after hot rolling.
  • DQ direct quenching
  • the aspect ratio of the prior austenite grains is, for example, in the range of 1.0 to 1.8.
  • the aspect ratio of the prior austenite grains at a depth of 1 mm from the steel plate surface is relatively large, exceeding 2.0.
  • the measurement position of the average cooling rate is the plate thickness 1/2 position, and it can be calculated by a calculation simulation that considers the heat generated during processing from the line speed, the reduction rate, and the like.
  • wear-resistant steel plates according to embodiments of the present invention were produced under various conditions, and the mechanical properties of the obtained wear-resistant steel plates were investigated.
  • the Vickers hardness HV 10 (Hv) is determined by mechanically polishing the L cross section of the wear-resistant steel plate (the cross section parallel to the rolling direction and thickness direction of the steel plate), and then at a depth of 1 mm from the surface in the thickness direction.
  • the average circle-equivalent diameter of crystal grains was determined as follows. First, the L cross section (cross section parallel to the rolling direction and thickness direction of the wear resistant steel plate) at a depth of 1 mm from the surface of the wear resistant steel plate is mirror-polished, and then any rolling is performed by electron beam backscatter diffraction (EBSD). The crystal orientation of a region of 1.0 mm in the direction ⁇ 0.4 mm in the depth direction is measured at one point, and the region where the orientation difference between adjacent grains is 15° or more is defined as one crystal grain, and the grain of each crystal grain. The diameter was calculated as a circle equivalent diameter.
  • the average major axis of carbide at a depth of 1 mm from the surface was determined as follows. First, the L cross section (cross section parallel to the rolling direction and thickness direction of the wear resistant steel plate) at a depth of 1 mm from the surface of the wear resistant steel plate is mirror-polished, then corroded with nital, and scanned with a scanning electron microscope (SEM). Observation was performed at a magnification of 10,000 using the microscope, and 10 fields of observation of 10 ⁇ m ⁇ 6 ⁇ m were randomly selected.
  • the Brinell hardness was measured under a load of 3000 kgf using a hard tungsten ball with a diameter of 10 mm on the surface of the wear-resistant steel plate with 1 mm removed by grinding.
  • the average value of Charpy impact absorption energy (vE -20 ) is based on a JIS No. 4 2 mm V-notch test piece taken from the 1/4 position of the plate thickness in the L direction of the wear-resistant steel plate, in accordance with the provisions of JIS Z2242: 2005.
  • Charpy impact absorption energy at ⁇ 20° C. was measured three times using an impact blade with a radius of 2 mm, and calculated by averaging them.
  • the cutting distance to tool failure was measured using a cemented carbide tool P class (JIS B4053: 2013) chip at a cutting speed of 200 m / min, a depth of cut of 1 mm, a tool feed of 0.1 mm / rev, and a dry process (no cutting oil). It was determined by measuring the cutting distance from the surface of the wear-resistant steel plate to chipping by milling under the conditions of .
  • Comparative Examples 23 to 28 the C, Mn, Cr, Mo, Ti or B content was low, so sufficient Brinell hardness was not obtained and the wear resistance decreased. Especially in Comparative Example 27, since the Ti content was low, the solute nitrogen in the steel could not be sufficiently fixed, and BN precipitated, and it is considered that the effect of improving the hardenability of B was not sufficiently obtained. In Comparative Example 29, since the N content was low, precipitation of TiN as pinning particles was insufficient, and a sufficient grain refining effect was not obtained, resulting in a decrease in low-temperature toughness.
  • Comparative Examples 30, 32, 35 and 36 the low temperature toughness decreased due to the high C, Mn, Cr or Mo content.
  • Comparative Example 31 since the Si content was high, precipitation of carbides during cutting was insufficient, and the machinability deteriorated.
  • Comparative Examples 33, 34 and 37-40 the low temperature toughness decreased due to the high P, S, Ti, B, Al or N content.
  • Comparative Examples 41 and 42 since the reheating temperature T in the quenching treatment step was not appropriate, the value of the parameter R determined by the alloy elements and the reheating temperature deviated from the desired range. became coarse and the machinability decreased.
  • Comparative Example 41 the value of the parameter R was small, and thus the austenitization during reheating was considered to be insufficient.
  • Comparative Example 43 since the average cooling rate after the reheating temperature in the quenching treatment step was slow, the transformation of the metal structure did not proceed sufficiently, resulting in a decrease in hardness and wear resistance of the steel sheet.
  • the chemical composition of the wear-resistant steel plate, the Vickers hardness HV 10 at a depth of 1 mm from the surface and the average equivalent circle diameter of the grains, and the heat treatment test at a depth of 1 mm from the surface A wear-resistant steel sheet having improved machinability while maintaining good wear resistance and low-temperature toughness was obtained by optimizing the average value of the major axis of the carbides at the slant position.
  • the aspect ratio of the prior austenite grains at a depth of 1 mm from the surface was within the range of 1.0 to 1.8 in all the examples in Table 3.
  • the metal structure at a depth of 1 mm from the steel plate surface is mainly composed of martensite in all the wear-resistant steel plates according to the examples, and more specifically, the area ratio contained more than 90% martensite.

Abstract

Provided is a wear-resistant steel sheet having a predetermined chemical composition, wherein: the Vickers hardness HV10 (Hv) thereof at a position 1 mm deep from the surface satisfies expression 1: HV10 ≥ 634 x √[C] + 140; crystal grains surrounded by boundaries having a misorientation of 15˚ or greater at the 1 mm deep position from the surface have an average circle equivalent diameter of 25 μm or less; and carbides at the 1 mm deep position from the surface after a heat-treatment test at 300˚C for 10 minutes have a major axis average value of 0.25 to 5.00 μm.

Description

耐摩耗鋼板Wear-resistant steel plate
 本発明は、耐摩耗鋼板に関し、より詳しくは産業機械や運搬機械などの耐摩耗性が要求される機械の部材において使用するのに有用な耐摩耗鋼板に関する。 The present invention relates to a wear-resistant steel plate, and more particularly to a wear-resistant steel plate that is useful for use in members of machinery that requires wear resistance, such as industrial machinery and transportation machinery.
 鉱山での掘削や土木建設作業において使用される産業機械や運搬機械(例えば、ダンプ、ブルドーザー、パワーショベル)などでは、それらの使用寿命を長くするために、耐摩耗性に優れた鋼材が用いられている。鋼材の耐摩耗性を向上させるためには、鋼材に焼入れを施して組織を硬くする必要がある。しかしながら、鋼材が硬くなると、例えば切削加工がし難くなって生産性が低下し、加工コストも高くなるという問題がある。 Industrial machinery and transportation machinery (e.g., dump trucks, bulldozers, power shovels) used in mining excavation and civil engineering construction work use steel materials with excellent wear resistance in order to extend their service life. ing. In order to improve the wear resistance of steel, it is necessary to harden the structure by quenching the steel. However, when the steel material becomes hard, it becomes difficult to cut, for example, and there is a problem that the productivity is lowered and the processing cost is increased.
 鋼の被削性向上に関連して、例えば、特許文献1では、質量%で、C:0.3~0.6%、Si:1.0%以下、Mn:1.0%以下、P:0.04%以下、S:0.005~0.2%、Cr:4.0~11.0%、Al:0.001~0.1%、Ca:0.0005~0.02%、O:0.0005~0.01%を含有し、残部が実質的にFeからなり、かつ、0.1~10%のCaを含有する円相当径5μm以上の硫化物を3.3mm2当たり5個以上含有し、使用面に高周波焼入れをしたことを特徴とするマルテンサイト系ステンレス鋼部品が記載されている。また、特許文献1では、Sが鋼の被削性を向上させ、さらに硫化物中のCa含有率を0.1~10%の範囲にすることで切削加工時に工具を保護する膜が形成されることが教示されている。 In relation to improving the machinability of steel, for example, in Patent Document 1, in mass%, C: 0.3 to 0.6%, Si: 1.0% or less, Mn: 1.0% or less, P : 0.04% or less, S: 0.005-0.2%, Cr: 4.0-11.0%, Al: 0.001-0.1%, Ca: 0.0005-0.02% , O: 3.3 mm 2 of a sulfide having an equivalent circle diameter of 5 μm or more containing 0.0005 to 0.01% O, the balance being substantially Fe, and containing 0.1 to 10% Ca A martensitic stainless steel part is described which contains 5 or more per part and is characterized by induction hardening on the surface to be used. In addition, in Patent Document 1, S improves the machinability of steel, and a film that protects the tool during cutting is formed by setting the Ca content in the sulfide to the range of 0.1 to 10%. It is taught that
 特許文献2では、質量%で、C:0.005~0.2%、Mn:0.3~2.0%、P:0.005~0.2%、S:0.01~0.7%、Pb:0.03~0.5%、N:0.004~0.02%、及びO:0.003~0.03%を含有し、残部はFe及び不純物からなり、鋼中のMnS介在物、Pb介在物、及びPbとMnSとを含有するPb-MnS介在物のうち、5μm以上の円相当径を有する前記MnS介在物、前記Pb介在物及び前記Pb-MnS介在物の総数に対する5μm以上の円相当径を有する前記Pb-MnS介在物の個数の比率は5%以上であり、前記MnS介在物、前記Pb介在物及び前記Pb-MnS介在物の長さは200μm以下であり、前記5μm以上の円相当径を有する前記MnS介在物、前記Pb介在物及び前記Pb-MnS介在物の平均長さは50μm以下であり、前記MnS介在物、前記Pb介在物、前記Pb-MnS介在物のうち、2μm以上の円相当径を有し、10以下のアスペクト比を有するものが500個/mm2以上である鉛快削鋼が記載されている。また、特許文献2では、被削性は、切削中に切削工具の刃先に付着する構成刃先の影響を受け、鋼中の快削介在物(MnS介在物、Pb介在物、Pb-Mn介在物)の長さが200μm以下であり、5μm以上の円相当径を有する快削介在物の平均長さが50μm以下である場合に構成刃先が微細になり、さらに快削介在物のうち10以下のアスペクト比を有するものの個数が500個/mm2以上である場合に微細な構成刃先が均一に多数生成されて被削性が高まることが教示されている。 In Patent Document 2, in terms of % by mass, C: 0.005-0.2%, Mn: 0.3-2.0%, P: 0.005-0.2%, S: 0.01-0. 7%, Pb: 0.03 to 0.5%, N: 0.004 to 0.02%, and O: 0.003 to 0.03%, the balance consists of Fe and impurities, in the steel of the MnS inclusions, Pb inclusions, and Pb—MnS inclusions containing Pb and MnS, the MnS inclusions, the Pb inclusions, and the Pb—MnS inclusions having an equivalent circle diameter of 5 μm or more The ratio of the number of the Pb--MnS inclusions having an equivalent circle diameter of 5 μm or more to the total number is 5% or more, and the lengths of the MnS inclusions, the Pb inclusions and the Pb--MnS inclusions are 200 μm or less. The average length of the MnS inclusions, the Pb inclusions and the Pb--MnS inclusions having an equivalent circle diameter of 5 μm or more is 50 μm or less, and the MnS inclusions, the Pb inclusions and the Pb- A lead free-cutting steel is described in which 500 inclusions/mm 2 or more of MnS inclusions have an equivalent circle diameter of 2 μm or more and an aspect ratio of 10 or less. In addition, in Patent Document 2, machinability is affected by the built-up edge that adheres to the cutting edge of the cutting tool during cutting, and free-cutting inclusions in steel (MnS inclusions, Pb inclusions, Pb-Mn inclusions ) is 200 μm or less, and the average length of the free-cutting inclusions having an equivalent circle diameter of 5 μm or more is 50 μm or less, the built-up edge becomes fine, and 10 or less of the free-cutting inclusions It is taught that when the number of elements having an aspect ratio is 500/mm 2 or more, a large number of fine built-up edges are uniformly formed, and the machinability is enhanced.
特開2000-282185号公報JP-A-2000-282185 国際公開第2014/125779号WO2014/125779
 産業機械や運搬機械などの部材において用いられる耐摩耗鋼板では、過酷な使用環境等を考慮して低温靭性が要求されることが多い。しかしながら、特許文献1及び2のいずれも、耐摩耗性に加えて、被削性と低温靭性を両立することについて必ずしも十分な検討はなされていない。 Wear-resistant steel plates used in parts of industrial machinery and transportation machinery often require low-temperature toughness in consideration of harsh usage environments. However, neither of Patent Literatures 1 and 2 has necessarily made sufficient studies on achieving both machinability and low-temperature toughness in addition to wear resistance.
 本発明は、このような実情に鑑みてなされたものであり、その目的とするところは、新規な構成により、良好な耐摩耗性及び低温靭性を維持しつつ、改善された被削性を有する耐摩耗鋼板を提供することにある。 The present invention has been made in view of such circumstances, and its object is to have improved machinability while maintaining good wear resistance and low temperature toughness by a novel structure. An object of the present invention is to provide a wear-resistant steel plate.
 本発明者らは、上記目的を達成するために、鋼板の化学組成及び金属組織について検討を行った。その結果、本発明者らは、鋼板の化学組成を所定の範囲内としつつ、鋼板表面から1mm深さ位置におけるビッカース硬さを適切なものとすることにより耐摩耗性と低温靭性の両方を改善することができること、また、鋼板のSi含有量を0.09%以下に抑えかつ鋼板表面から1mm深さ位置の金属組織を微細なものとすることで、切削時の比較的高温下における金属組織からの炭化物の析出を促進させ、さらにはこのような高温下で析出される炭化物の大きさを所定の範囲内とすることで、切削時の変形抵抗が緩和されて被削性が向上することを見出し、本発明を完成させた。 In order to achieve the above objectives, the inventors investigated the chemical composition and metallographic structure of the steel sheet. As a result, the present inventors improved both wear resistance and low-temperature toughness by adjusting the Vickers hardness at a depth of 1 mm from the surface of the steel sheet while keeping the chemical composition of the steel sheet within a predetermined range. Also, by suppressing the Si content of the steel sheet to 0.09% or less and making the metal structure at a depth of 1 mm from the steel plate surface fine, the metal structure at a relatively high temperature during cutting. By promoting the precipitation of carbides from the steel and keeping the size of the carbides precipitated at such high temperatures within a predetermined range, the deformation resistance during cutting is alleviated and the machinability is improved. and completed the present invention.
 上記目的を達成し得た本発明は、以下のとおりである。
 (1)質量%で、
 C:0.140~0.250%、
 Si:0.09%以下、
 Mn:1.20~2.00%、
 P:0.0200%以下、
 S:0.0050%以下、
 Cr:0.10~1.00%、
 Mo:0.05~0.29%、
 Ti:0.005~0.030%、
 B:0.0003~0.0050%、
 Al:0.0030~0.1000%、
 N:0.0010~0.0080%、
 O:0.0050%以下、
 Ni:0~0.50%、
 Nb:0~0.050%、
 Cu:0~0.50%、
 V:0~0.050、
 W:0~0.50%、
 Ca:0~0.0050%、
 Mg:0~0.0050%、
 REM:0~0.0050%、
 残部:Fe及び不純物である化学組成を有し、
 表面から1mm深さ位置におけるビッカース硬さHV10(Hv)が下記式1を満たし、
 表面から1mm深さ位置における方位差15°以上の境界で囲まれた結晶粒の平均円相当直径が25μm以下であり、
 300℃で10分間の熱処理試験後の表面から1mm深さ位置における炭化物の長径の平均値であって、10μm×6μmの観察視野を無作為に10視野選択し、各観察視野において炭化物の長径が大きいものから10個選択した場合の合計100個の炭化物の長径の平均値が0.25~5.00μmである、耐摩耗鋼板。
 HV10≧634×√[C]+140   ・・・式1
 ここで、[C]は耐摩耗鋼板のC含有量(質量%)である。
 (2)前記化学組成が、質量%で、
 Ni:0.01~0.50%、
 Nb:0.001~0.050%、
 Cu:0.01~0.50%、
 V:0.001~0.050、
 W:0.01~0.50%、
 Ca:0.0001~0.0050%、
 Mg:0.0001~0.0050%、及び
 REM:0.0001~0.0050%
からなる群から選択される1種又は2種以上を含む、上記(1)に記載の耐摩耗鋼板。
 (3)6~150mmの板厚を有する、上記(1)又は(2)に記載の耐摩耗鋼板。
The present invention, which has achieved the above objects, is as follows.
(1) in mass %,
C: 0.140 to 0.250%,
Si: 0.09% or less,
Mn: 1.20-2.00%,
P: 0.0200% or less,
S: 0.0050% or less,
Cr: 0.10 to 1.00%,
Mo: 0.05-0.29%,
Ti: 0.005 to 0.030%,
B: 0.0003 to 0.0050%,
Al: 0.0030 to 0.1000%,
N: 0.0010 to 0.0080%,
O: 0.0050% or less,
Ni: 0 to 0.50%,
Nb: 0 to 0.050%,
Cu: 0-0.50%,
V: 0 to 0.050,
W: 0 to 0.50%,
Ca: 0 to 0.0050%,
Mg: 0-0.0050%,
REM: 0 to 0.0050%,
Balance: having a chemical composition of Fe and impurities,
The Vickers hardness HV 10 (Hv) at a depth of 1 mm from the surface satisfies the following formula 1,
The average circle equivalent diameter of crystal grains surrounded by boundaries with a misorientation of 15° or more at a depth of 1 mm from the surface is 25 μm or less,
The average value of the long axis of the carbide at a depth of 1 mm from the surface after a heat treatment test at 300 ° C. for 10 minutes. A wear-resistant steel plate in which the average value of the long diameters of 100 carbides selected from the largest ones is 0.25 to 5.00 μm.
HV 10 ≧634×√[C]+140 Formula 1
Here, [C] is the C content (% by mass) of the wear-resistant steel plate.
(2) the chemical composition, in mass %,
Ni: 0.01 to 0.50%,
Nb: 0.001 to 0.050%,
Cu: 0.01-0.50%,
V: 0.001 to 0.050,
W: 0.01 to 0.50%,
Ca: 0.0001 to 0.0050%,
Mg: 0.0001-0.0050%, and REM: 0.0001-0.0050%
The wear-resistant steel plate according to (1) above, comprising one or more selected from the group consisting of:
(3) The wear-resistant steel plate according to (1) or (2) above, which has a plate thickness of 6 to 150 mm.
 本発明によれば、良好な耐摩耗性及び低温靭性を維持しつつ、改善された被削性を有する耐摩耗鋼板を提供することができる。したがって、本発明に係る耐摩耗鋼板を使用することで、切削加工の生産性を向上させることができるとともに、加工コストも顕著に低減することが可能である。 According to the present invention, it is possible to provide a wear-resistant steel plate having improved machinability while maintaining good wear resistance and low-temperature toughness. Therefore, by using the wear-resistant steel plate according to the present invention, it is possible to improve the productivity of cutting and significantly reduce the processing cost.
<耐摩耗鋼板>
 本発明の実施形態に係る耐摩耗鋼板は、質量%で、
 C:0.140~0.250%、
 Si:0.09%以下、
 Mn:1.20~2.00%、
 P:0.0200%以下、
 S:0.0050%以下、
 Cr:0.10~1.00%、
 Mo:0.05~0.29%、
 Ti:0.005~0.030%、
 B:0.0003~0.0050%、
 Al:0.0030~0.1000%、
 N:0.0010~0.0080%、
 O:0.0050%以下、
 Ni:0~0.50%、
 Nb:0~0.050%、
 Cu:0~0.50%、
 V:0~0.050、
 W:0~0.50%、
 Ca:0~0.0050%、
 Mg:0~0.0050%、
 REM:0~0.0050%、
 残部:Fe及び不純物である化学組成を有し、
 表面から1mm深さ位置におけるビッカース硬さHV10(Hv)が下記式1を満たし、
 表面から1mm深さ位置における方位差15°以上の境界で囲まれた結晶粒の平均円相当直径が25μm以下であり、
 300℃で10分間の熱処理試験後の表面から1mm深さ位置における炭化物の長径の平均値であって、10μm×6μmの観察視野を無作為に10視野選択し、各観察視野において炭化物の長径が大きいものから10個選択した場合の合計100個の炭化物の長径の平均値が0.25~5.00μmであることを特徴としている。
 HV10≧634×√[C]+140   ・・・式1
 ここで、[C]は耐摩耗鋼板のC含有量(質量%)である。
<Abrasion-resistant steel plate>
The wear-resistant steel plate according to the embodiment of the present invention is mass%,
C: 0.140 to 0.250%,
Si: 0.09% or less,
Mn: 1.20-2.00%,
P: 0.0200% or less,
S: 0.0050% or less,
Cr: 0.10 to 1.00%,
Mo: 0.05-0.29%,
Ti: 0.005 to 0.030%,
B: 0.0003 to 0.0050%,
Al: 0.0030 to 0.1000%,
N: 0.0010 to 0.0080%,
O: 0.0050% or less,
Ni: 0 to 0.50%,
Nb: 0 to 0.050%,
Cu: 0-0.50%,
V: 0 to 0.050,
W: 0 to 0.50%,
Ca: 0 to 0.0050%,
Mg: 0-0.0050%,
REM: 0 to 0.0050%,
Balance: having a chemical composition of Fe and impurities,
The Vickers hardness HV 10 (Hv) at a depth of 1 mm from the surface satisfies the following formula 1,
The average circle equivalent diameter of crystal grains surrounded by boundaries with a misorientation of 15° or more at a depth of 1 mm from the surface is 25 μm or less,
The average value of the long axis of the carbide at a depth of 1 mm from the surface after a heat treatment test at 300 ° C. for 10 minutes. It is characterized in that the average value of the major diameters of a total of 100 carbides selected from the largest 10 is 0.25 to 5.00 μm.
HV 10 ≧634×√[C]+140 Formula 1
Here, [C] is the C content (% by mass) of the wear-resistant steel plate.
 先に述べたとおり、鋼材が硬くなると、切削加工がし難くなることから、耐摩耗性を維持しつつ、被削性を高め、さらには低温靭性をも向上させた耐摩耗鋼板を得ることは一般に困難である。そこで、本発明者らは、まず、鋼板の化学組成を所定の範囲内としつつ、鋼板表面から1mm深さ位置におけるビッカース硬さを特に鋼板のC含有量に応じた適切な硬さとすること、より具体的には鋼板表面から1mm深さ位置におけるビッカース硬さHV10(Hv)を式1:HV10≧634×√[C]+140(ここで、[C]は耐摩耗鋼板のC含有量(質量%)である)を満たすようにすることで、鋼板の表層部分の硬さを維持して耐摩耗性を確保しつつ、低温靭性を向上させることができることを見出した。低温靭性を向上させるためには、金属組織を均一な組織とすることで、粗大粒を無くすことが有効である。何ら特定の理論に束縛されることを意図するものではないが、鋼板の化学組成を先に記載した範囲内としつつ、上記式1を満たすような硬さを実現することで、鋼板の金属組織、特には鋼板の表層部の金属組織を例えば主としてマルテンサイトから構成される、より単相に近い均一な組織とすることができるため、耐摩耗性と低温靭性の両方を向上させることが可能になると考えられる。 As mentioned above, when the steel material becomes hard, it becomes difficult to cut it. Therefore, it is difficult to obtain a wear-resistant steel plate that maintains wear resistance, improves machinability, and further improves low-temperature toughness. Generally difficult. Therefore, the present inventors first set the chemical composition of the steel sheet within a predetermined range, and set the Vickers hardness at a depth of 1 mm from the steel sheet surface to an appropriate hardness particularly according to the C content of the steel sheet. More specifically, the Vickers hardness HV 10 (Hv) at a depth of 1 mm from the steel plate surface is expressed by formula 1: HV 10 ≥ 634 × √ [C] + 140 (where [C] is the C content of the wear-resistant steel plate (% by mass)), it is possible to improve the low-temperature toughness while maintaining the hardness of the surface layer portion of the steel sheet to ensure wear resistance. In order to improve the low-temperature toughness, it is effective to eliminate coarse grains by making the metallographic structure uniform. Although it is not intended to be bound by any particular theory, the metal structure of the steel sheet is achieved by realizing a hardness that satisfies the above formula 1 while keeping the chemical composition of the steel sheet within the range described above. In particular, the metal structure of the surface layer of the steel sheet can be made, for example, a uniform structure that is mainly composed of martensite and is closer to a single phase, so both wear resistance and low temperature toughness can be improved. It is considered to be.
 一方、鋼板を切削加工する際には、切削工具と鋼板との間の摩擦等により加工発熱が生じ、鋼板の切削部が例えば300℃程度の高温となる。そこで、鋼板の被削性向上に関連して、本発明者らは、切削時の高温下における金属組織に着目し、当該金属組織が鋼板の被削性に与える影響について検討した。その結果、本発明者らは、このような高温下で鋼板の金属組織中に含まれる固溶炭素(C)が炭化物として析出し、炭化物が析出することによって切削時の変形抵抗が緩和されることを見出した。このような知見に基づいてさらに検討を行った結果、本発明者らは、鋼板のSi含有量を0.09%以下に抑えかつ鋼板表面から1mm深さ位置の金属組織を微細なものとすること、より具体的には方位差15°以上の境界で囲まれた結晶粒の平均円相当直径を25μm以下とすることで、切削時の比較的高温下における金属組織からの炭化物の析出を促進させることができ、さらにはこのような高温下で析出される炭化物の大きさを所定の範囲内とすること、より具体的には当該炭化物の長径の平均値を0.25~5.00μmの範囲内とすることで、切削時の変形抵抗を確実に緩和することができ、その結果として被削性が顕著に向上することを見出した。 On the other hand, when cutting a steel plate, heat is generated due to friction between the cutting tool and the steel plate, and the cut portion of the steel plate reaches a high temperature of, for example, about 300°C. Therefore, in relation to the improvement of the machinability of steel sheets, the present inventors paid attention to the metal structure under high temperature conditions during cutting, and studied the effect of the metal structure on the machinability of steel sheets. As a result, the present inventors have found that the solute carbon (C) contained in the metal structure of the steel sheet precipitates as carbides at such high temperatures, and the precipitation of the carbides relaxes the deformation resistance during cutting. I found out. As a result of further studies based on such knowledge, the present inventors suppressed the Si content of the steel sheet to 0.09% or less and made the metal structure at a depth of 1 mm from the steel sheet surface finer. More specifically, by setting the average circle equivalent diameter of the crystal grains surrounded by the boundaries with a misorientation of 15° or more to 25 μm or less, the precipitation of carbides from the metal structure at a relatively high temperature during cutting is promoted. Furthermore, the size of the carbides precipitated at such high temperatures is within a predetermined range, more specifically, the average value of the major axis of the carbides is 0.25 to 5.00 μm. It has been found that by setting the content within the range, the deformation resistance during cutting can be reliably alleviated, and as a result, the machinability is remarkably improved.
 何ら特定の理論に束縛されることを意図するものではないが、結晶粒の平均円相当直径を25μm以下とすることで金属組織がより微細なものとなり、鋼板中の固溶炭素の拡散に有利な粒界の数を増加させることができるため、このような微細な組織と低Si含有量とを組み合わせることにより、炭化物の析出をさらに促進させることが可能になるものと考えられる。このようにして高温下で析出された炭化物は、それらが特定の大きさの範囲内で析出することにより、切削部の組織の硬さを低下させ、すなわち切削時の変形抵抗を緩和させる方向に働くものと考えられる。したがって、低Si含有量の所定の化学組成を有し、かつ切削部に対応する鋼板表面から1mm深さ位置において適切な硬さと微細な金属組織を有し、さらに高温時に適度な大きさの炭化物が析出される本発明に係る耐摩耗鋼板によれば、耐摩耗性と低温靭性の両方を維持しつつ、被削性を顕著に改善することが可能になるものと考えられる。 Although it is not intended to be bound by any particular theory, by setting the average circle equivalent diameter of the crystal grains to 25 μm or less, the metal structure becomes finer, which is advantageous for the diffusion of solute carbon in the steel sheet. Since the number of fine grain boundaries can be increased, it is thought that the combination of such a fine structure and a low Si content can further promote the precipitation of carbides. The carbides precipitated at high temperatures in this way reduce the hardness of the structure of the cut portion by precipitating within a specific size range, that is, in the direction of alleviating the deformation resistance during cutting. considered to work. Therefore, it has a predetermined chemical composition with a low Si content, has appropriate hardness and a fine metal structure at a depth of 1 mm from the steel plate surface corresponding to the cut part, and has an appropriate size at high temperatures. According to the wear-resistant steel sheet according to the present invention in which is precipitated, it is considered possible to significantly improve machinability while maintaining both wear resistance and low-temperature toughness.
 以下、本発明の実施形態に係る耐摩耗鋼板についてより詳しく説明する。以下の説明において、各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味するものである。また、本明細書において、数値範囲を示す「~」とは、特に断りがない場合、その前後に記載される数値を下限値及び上限値として含む意味で使用される。また、本明細書において、「√」はその直後に記載された文字又は数字のみにかかる。 The wear-resistant steel plates according to the embodiments of the present invention will be described in more detail below. In the following description, the unit of content of each element, "%", means "% by mass" unless otherwise specified. In addition, in this specification, the term "to" indicating a numerical range is used to include the numerical values before and after it as a lower limit and an upper limit, unless otherwise specified. Also, in this specification, "√" applies only to the letter or number immediately following it.
[C:0.140~0.250%]
 炭素(C)は、硬さを増加させて耐摩耗性を向上させるのに必要な元素である。このような効果を十分に得るために、C含有量は0.140%以上とする。C含有量は0.150%以上、0.160%以上又は0.170%以上であってもよい。一方で、Cを過度に含有すると、靭性劣化が顕著となる場合があり、また強度が過度となる傾向もある。したがって、C含有量は0.250%以下とする。C含有量は0.240%以下、0.230%以下又は0.220%以下であってもよい。
[C: 0.140 to 0.250%]
Carbon (C) is an element necessary to increase hardness and improve wear resistance. In order to sufficiently obtain such effects, the C content is made 0.140% or more. The C content may be 0.150% or more, 0.160% or more, or 0.170% or more. On the other hand, when C is contained excessively, the deterioration of toughness may become remarkable, and the strength tends to be excessive. Therefore, the C content should be 0.250% or less. The C content may be 0.240% or less, 0.230% or less, or 0.220% or less.
[Si:0.09%以下]
 ケイ素(Si)は、切削時の炭化物の析出を促進して切削時の変形抵抗を緩和するために鋼板への含有が抑制される元素である。このような炭化物析出の促進効果を十分に得るためには、鋼板中のSi含有量を低減することが極めて重要である。Si含有量が高いと、切削時の高温下で炭化物が十分に析出されないために、炭化物の長径の平均値が小さくなり、その結果として切削時の変形抵抗を十分に緩和させることができなくなる。このような観点から、Si含有量は0.09%以下とする。Si含有量は0.08%以下、0.07%以下、0.06%以下、0.05%以下又は0.04%以下であってもよい。Si含有量が低いほど炭化物析出の促進効果を高めることができるため、例えばSi含有量は0%であってもよい。しかしながら、製造コストの観点から、Si含有量は0.005%以上又は0.01%以上であってもよい。
[Si: 0.09% or less]
Silicon (Si) is an element whose content in the steel sheet is suppressed in order to promote the precipitation of carbides during cutting and alleviate the deformation resistance during cutting. In order to sufficiently obtain the effect of accelerating the precipitation of carbides, it is extremely important to reduce the Si content in the steel sheet. If the Si content is high, the carbides are not sufficiently precipitated at high temperatures during cutting, so the average major axis of the carbides becomes small, and as a result, the deformation resistance during cutting cannot be sufficiently alleviated. From this point of view, the Si content is set to 0.09% or less. The Si content may be 0.08% or less, 0.07% or less, 0.06% or less, 0.05% or less, or 0.04% or less. For example, the Si content may be 0% because the lower the Si content, the higher the effect of accelerating the precipitation of carbides. However, from the viewpoint of manufacturing cost, the Si content may be 0.005% or more or 0.01% or more.
[Mn:1.20~2.00%]
 Mn(マンガン)は、溶鋼を脱酸する元素であり、また焼入れ性を向上させて硬さを増加させる元素でもある。これらの効果を十分に得るために、Mn含有量は1.20%以上とする。Mn含有量は1.25%以上、1.30%以上又は1.40%以上であってもよい。一方で、Mnを過度に含有すると、偏析が増加し、焼入れ性が過剰となるため、強度が過度に上昇して靱性が低下する場合がある。したがって、Mn含有量は2.00%以下とする。Mn含有量は1.90%以下、1.80%以下又は1.70%以下であってもよい。
[Mn: 1.20 to 2.00%]
Mn (manganese) is an element that deoxidizes molten steel, and is also an element that improves hardenability and increases hardness. In order to sufficiently obtain these effects, the Mn content should be 1.20% or more. The Mn content may be 1.25% or more, 1.30% or more, or 1.40% or more. On the other hand, when Mn is contained excessively, segregation increases and hardenability becomes excessive, so strength may excessively increase and toughness may decrease. Therefore, the Mn content should be 2.00% or less. The Mn content may be 1.90% or less, 1.80% or less, or 1.70% or less.
[P:0.0200%以下]
 リン(P)は不純物であり、過度に含有すると粒界に偏析して靭性を低下させる場合がある。したがって、P含有量は0.0200%以下とする。P含有量は、好ましくは0.0180%以下、より好ましくは0.0150%以下、最も好ましくは0.0100%以下又は0.0080%以下である。P含有量は少ないほど好ましく、それゆえ0%であってもよい。しかしながら、製造コストの観点から、P含有量は0.0001%以上、0.0005%以上又は0.0010%以上であってもよい。
[P: 0.0200% or less]
Phosphorus (P) is an impurity, and if it is contained excessively, it may segregate at grain boundaries and reduce toughness. Therefore, the P content should be 0.0200% or less. The P content is preferably 0.0180% or less, more preferably 0.0150% or less, most preferably 0.0100% or less or 0.0080% or less. The P content is preferably as small as possible, and therefore may be 0%. However, from the viewpoint of manufacturing cost, the P content may be 0.0001% or more, 0.0005% or more, or 0.0010% or more.
[S:0.0050%以下]
 硫黄(S)は不純物であり、過度に含有すると中心偏析を助長し、脆性破壊の起点となる延伸形状のMnSが生成する原因となることがある。したがって、S含有量は0.0050%以下とする。S含有量は、好ましくは0.0040%以下、より好ましくは0.0030%以下、最も好ましくは0.0020%以下である。S含有量は少ないほど好ましく、それゆえ0%であってもよい。しかしながら、製造コストの観点から、S含有量は0.0001%以上、0.0005%以上又は0.0010%以上であってもよい。
[S: 0.0050% or less]
Sulfur (S) is an impurity, and when contained excessively, it promotes center segregation and may cause the formation of elongated MnS, which is the starting point of brittle fracture. Therefore, the S content should be 0.0050% or less. The S content is preferably 0.0040% or less, more preferably 0.0030% or less, and most preferably 0.0020% or less. The lower the S content, the better, so it may be 0%. However, from the viewpoint of manufacturing cost, the S content may be 0.0001% or more, 0.0005% or more, or 0.0010% or more.
[Cr:0.10~1.00%]
 クロム(Cr)は、焼入れ性を向上させて硬さを増加させる元素である。このような効果を十分に得るために、Cr含有量は0.10%以上とする。Cr含有量は0.20%以上、0.30%以上又は0.40%以上であってもよい。一方で、Crを過度に含有すると、焼入れ性が過剰となるため、靱性が低下する場合がある。したがって、Cr含有量は1.00%以下とする。Cr含有量は0.90%以下、0.80%以下又は0.70%以下であってもよい。
[Cr: 0.10 to 1.00%]
Chromium (Cr) is an element that improves hardenability and increases hardness. In order to sufficiently obtain such effects, the Cr content is set to 0.10% or more. The Cr content may be 0.20% or more, 0.30% or more, or 0.40% or more. On the other hand, if Cr is contained excessively, the hardenability becomes excessive, and the toughness may decrease. Therefore, the Cr content should be 1.00% or less. The Cr content may be 0.90% or less, 0.80% or less, or 0.70% or less.
[Mo:0.05~0.29%]
 モリブデン(Mo)は、焼入れ性を向上させて硬さを増加させる元素である。このような効果を十分に得るために、Mo含有量は0.05%以上とする。Mo含有量は0.10%以上、0.12%以上又は0.15%以上であってもよい。一方で、Moを過度に含有すると、焼入れ性が過剰となるため、靱性が低下する場合がある。したがって、Mo含有量は0.29%以下とする。Mo含有量は0.28%以下、0.27%以下又は0.25%以下であってもよい。
[Mo: 0.05-0.29%]
Molybdenum (Mo) is an element that improves hardenability and increases hardness. In order to sufficiently obtain such effects, the Mo content is set to 0.05% or more. Mo content may be 0.10% or more, 0.12% or more, or 0.15% or more. On the other hand, if Mo is contained excessively, the hardenability becomes excessive, and toughness may decrease. Therefore, Mo content shall be 0.29% or less. The Mo content may be 0.28% or less, 0.27% or less, or 0.25% or less.
[Ti:0.005~0.030%]
 チタン(Ti)は、ピン止め粒子である窒化チタン(TiN)を形成して結晶粒を微細化し、靭性を向上させる元素である。また、Bを焼入れ性向上において有効に機能させるためには、Bを窒化ホウ素(BN)として析出させないこと、すなわちNを固定する必要がある。Tiは、ピン止め粒子として結晶粒の微細化に寄与する以外にも、TiNを形成することで鋼中の固溶窒素を消費するため、Bが当該固溶窒素と結びついてBNを形成するのを阻害する機能も有する。これらの効果を十分に得るために、Ti含有量は0.005%以上とする。Ti含有量は0.007%以上、0.010%以上又は0.015%以上であってもよい。一方で、Tiを過度に含有すると、TiCが析出して靭性が低下する場合がある。したがって、Ti含有量は0.030%以下とする。Ti含有量は0.027%以下、0.025%以下又は0.022%以下であってもよい。
[Ti: 0.005 to 0.030%]
Titanium (Ti) is an element that forms titanium nitride (TiN) as pinning particles, refines crystal grains, and improves toughness. Moreover, in order for B to function effectively in improving hardenability, it is necessary to prevent B from precipitating as boron nitride (BN), that is, to fix N. In addition to contributing to refinement of crystal grains as pinning particles, Ti consumes solute nitrogen in steel by forming TiN, so B combines with the solute nitrogen to form BN. It also has the function of inhibiting In order to sufficiently obtain these effects, the Ti content should be 0.005% or more. The Ti content may be 0.007% or more, 0.010% or more, or 0.015% or more. On the other hand, when Ti is contained excessively, TiC may precipitate and the toughness may decrease. Therefore, the Ti content should be 0.030% or less. The Ti content may be 0.027% or less, 0.025% or less, or 0.022% or less.
[B:0.0003~0.0050%]
 ホウ素(B)は、微量で粒界に偏析し焼入れ性を向上させて硬さを増加させる元素である。このような効果を十分に得るために、B含有量は0.0003%以上とする。B含有量は0.0005%以上、0.0007%以上、0.0010%以上又は0.0015%以上であってもよい。一方で、Bを過度に含有すると、BNが析出して靭性が低下する場合がある。したがって、B含有量は0.0050%以下とする。B含有量は0.0040%以下、0.0030%以下又は0.0020%以下であってもよい。
[B: 0.0003 to 0.0050%]
Boron (B) is an element that segregates at grain boundaries in a very small amount to improve hardenability and increase hardness. In order to sufficiently obtain such effects, the B content should be 0.0003% or more. The B content may be 0.0005% or more, 0.0007% or more, 0.0010% or more, or 0.0015% or more. On the other hand, when B is contained excessively, BN may precipitate and the toughness may be lowered. Therefore, the B content should be 0.0050% or less. The B content may be 0.0040% or less, 0.0030% or less, or 0.0020% or less.
[Al:0.0030~0.1000%]
 アルミニウム(Al)は、溶鋼を脱酸するために必要な元素である。このような効果を十分に得るために、Al含有量は0.0030%以上とする。Al含有量は0.0050%以上、0.0100%以上、0.0150%以上又は0.0300%以上であってもよい。一方で、Alを過度に含有すると、鋼の清浄度を低下させ、靭性が低下する場合がある。したがって、Al含有量は0.1000%以下とする。Al含有量は0.0900%以下、0.0800%以下、0.0700%以下又は0.0500%以下であってもよい。
[Al: 0.0030 to 0.1000%]
Aluminum (Al) is an element necessary for deoxidizing molten steel. In order to sufficiently obtain such effects, the Al content is made 0.0030% or more. The Al content may be 0.0050% or more, 0.0100% or more, 0.0150% or more, or 0.0300% or more. On the other hand, if Al is contained excessively, the cleanliness of the steel may be lowered and the toughness may be lowered. Therefore, the Al content should be 0.1000% or less. The Al content may be 0.0900% or less, 0.0800% or less, 0.0700% or less, or 0.0500% or less.
[N:0.0010~0.0080%]
 窒素(N)は、TiNとして析出することで結晶粒を微細化し、靭性を向上させるために必要な元素である。このような効果を十分に得るために、N含有量は0.0010%以上とする。N含有量は0.0015%以上、0.0020%以上又は0.0030%以上であってもよい。一方で、Nを過度に含有すると、TiNが過剰に析出し、破壊の起点として靭性を低下させる場合がある。したがって、N含有量は0.0080%以下とする。N含有量は0.0070%以下、0.0060%以下又は0.0050%以下であってもよい。
[N: 0.0010 to 0.0080%]
Nitrogen (N) is an element necessary for refining crystal grains and improving toughness by precipitating as TiN. In order to sufficiently obtain such effects, the N content is made 0.0010% or more. The N content may be 0.0015% or more, 0.0020% or more, or 0.0030% or more. On the other hand, when N is contained excessively, TiN is excessively precipitated, which may act as starting points of fracture and lower the toughness. Therefore, the N content should be 0.0080% or less. The N content may be 0.0070% or less, 0.0060% or less, or 0.0050% or less.
[O:0.0050%以下]
 酸素(O)は不純物であり、このため0.0050%以下とする。O含有量は、好ましくは0.0045%以下、より好ましくは0.0040%以下、最も好ましくは0.0035%以下である。O含有量は可能な限り低減することが好ましく、それゆえ0%であってもよい。しかしながら、脱酸コストの観点から、O含有量は0.0001%以上、0.0002%以上又は0.0003%以上であってもよい。
[O: 0.0050% or less]
Oxygen (O) is an impurity, so its content is made 0.0050% or less. The O content is preferably 0.0045% or less, more preferably 0.0040% or less, most preferably 0.0035% or less. It is preferable to reduce the O content as much as possible, so it may be 0%. However, from the viewpoint of deoxidation cost, the O content may be 0.0001% or more, 0.0002% or more, or 0.0003% or more.
 本発明の実施形態に係る耐摩耗性鋼板の基本化学組成は上記のとおりである。さらに、当該耐摩耗性鋼板は、必要に応じて以下の任意選択元素からなる群から選択される1種又は2種以上を含んでいてもよい。例えば、耐摩耗性鋼板は、Ni:0~0.50%及びNb:0~0.050%からなる群から選択される1種又は2種を含んでいてもよい。また、耐摩耗性鋼板は、Cu:0~0.50%、V:0~0.050%、及びW:0~0.50%からなる群から選択される1種又は2種以上を含んでいてもよい。また、耐摩耗性鋼板は、Ca:0~0.0050%、Mg:0~0.0050%、及びREM:0~0.0050%からなる群から選択される1種又は2種以上を含んでいてもよい。以下、これらの任意選択元素について詳しく説明する。 The basic chemical composition of the wear-resistant steel sheet according to the embodiment of the present invention is as described above. Furthermore, the wear-resistant steel plate may contain one or more selected from the group consisting of the following optional elements, if necessary. For example, the wear-resistant steel plate may contain one or two selected from the group consisting of Ni: 0-0.50% and Nb: 0-0.050%. In addition, the wear-resistant steel plate contains one or more selected from the group consisting of Cu: 0 to 0.50%, V: 0 to 0.050%, and W: 0 to 0.50%. You can stay. In addition, the wear-resistant steel plate contains one or more selected from the group consisting of Ca: 0 to 0.0050%, Mg: 0 to 0.0050%, and REM: 0 to 0.0050%. You can stay. These optional elements are described in detail below.
[Ni:0~0.50%]
 ニッケル(Ni)は、靭性の向上に寄与する元素である。Ni含有量は0%であってもよいが、このような効果を得るためには、Ni含有量は0.01%以上であることが好ましい。Ni含有量は0.03%以上、0.05%以上、0.10%以上又は0.15%以上であってもよい。一方で、Niを過度に含有しても効果が飽和し、それゆえNiを必要以上に鋼板中に含有させることは合金コストの単なる上昇を招く虞がある。したがって、Ni含有量は0.50%以下とする。Ni含有量は0.45%以下、0.40%以下又は0.35%以下であってもよい。
[Ni: 0 to 0.50%]
Nickel (Ni) is an element that contributes to improving toughness. Although the Ni content may be 0%, the Ni content is preferably 0.01% or more in order to obtain such effects. The Ni content may be 0.03% or more, 0.05% or more, 0.10% or more, or 0.15% or more. On the other hand, even if Ni is contained excessively, the effect is saturated. Therefore, containing more Ni than necessary in the steel sheet may simply increase the alloy cost. Therefore, the Ni content should be 0.50% or less. The Ni content may be 0.45% or less, 0.40% or less, or 0.35% or less.
[Nb:0~0.050%]
 ニオブ(Nb)は、ピン止め粒子としてNbCNを析出することで結晶粒を微細化し、靭性の向上に寄与する元素である。Nb含有量は0%であってもよいが、このような効果を得るためには、Nb含有量は0.001%以上であることが好ましい。Nb含有量は0.005%以上、0.008%以上、0.010%以上又は0.015%以上であってもよい。一方で、Nbを過度に含有しても、結晶粒の細粒化効果が飽和するか、及び/又は粗大なNbCNが析出して破壊の起点として靭性を低下させる場合がある。したがって、Nb含有量は0.050%以下とする。Nb含有量は0.045%以下、0.040%以下又は0.035%以下であってもよい。
[Nb: 0 to 0.050%]
Niobium (Nb) is an element that contributes to the improvement of toughness by refining crystal grains by precipitating NbCN as pinning particles. Although the Nb content may be 0%, the Nb content is preferably 0.001% or more in order to obtain such effects. The Nb content may be 0.005% or more, 0.008% or more, 0.010% or more, or 0.015% or more. On the other hand, even if Nb is contained excessively, the grain refining effect may be saturated, and/or coarse NbCN may be precipitated to act as a starting point of fracture and reduce toughness. Therefore, the Nb content should be 0.050% or less. The Nb content may be 0.045% or less, 0.040% or less, or 0.035% or less.
[Cu:0~0.50%]
 銅(Cu)は、焼入れ性を向上させて硬さを増加させる元素である。Cu含有量は0%であってもよいが、これらの効果を得るためには、Cu含有量は0.01%以上であることが好ましい。Cu含有量は0.03%以上、0.05%以上、0.10%以上又は0.15%以上であってもよい。一方で、Cuを過度に含有すると、靱性が低下する場合がある。したがって、Cu含有量は0.50%以下とする。Cu含有量は0.45%以下、0.40%以下又は0.35%以下であってもよい。
[Cu: 0 to 0.50%]
Copper (Cu) is an element that improves hardenability and increases hardness. The Cu content may be 0%, but in order to obtain these effects, the Cu content is preferably 0.01% or more. The Cu content may be 0.03% or more, 0.05% or more, 0.10% or more, or 0.15% or more. On the other hand, when Cu is contained excessively, the toughness may decrease. Therefore, the Cu content is set to 0.50% or less. The Cu content may be 0.45% or less, 0.40% or less, or 0.35% or less.
[V:0~0.050%]
 バナジウム(V)は、焼入れ性を向上させて硬さを増加させる元素である。V含有量は0%であってもよいが、これらの効果を得るためには、V含有量は0.001%以上であることが好ましい。V含有量は0.005%以上、0.008%以上、0.010%以上又は0.015%以上であってもよい。一方で、Vを過度に含有すると、炭窒化物を形成して靱性を低下させる場合がある。したがって、V含有量は0.050%以下とする。V含有量は0.045%以下、0.040%以下又は0.035%以下であってもよい。
[V: 0 to 0.050%]
Vanadium (V) is an element that improves hardenability and increases hardness. Although the V content may be 0%, the V content is preferably 0.001% or more in order to obtain these effects. The V content may be 0.005% or more, 0.008% or more, 0.010% or more, or 0.015% or more. On the other hand, if V is contained excessively, carbonitrides may be formed and the toughness may be lowered. Therefore, the V content should be 0.050% or less. The V content may be 0.045% or less, 0.040% or less, or 0.035% or less.
[W:0~0.50%]
 タングステン(W)は、焼入れ性を向上させて硬さを増加させる元素である。W含有量は0%であってもよいが、これらの効果を得るためには、W含有量は0.01%以上であることが好ましい。W含有量は0.03%以上、0.05%以上、0.10%以上又は0.15%以上であってもよい。一方で、Wを過度に含有すると、靱性が低下する場合がある。したがって、W含有量は0.50%以下とする。W含有量は0.45%以下、0.40%以下又は0.35%以下であってもよい。
[W: 0 to 0.50%]
Tungsten (W) is an element that improves hardenability and increases hardness. Although the W content may be 0%, the W content is preferably 0.01% or more in order to obtain these effects. The W content may be 0.03% or more, 0.05% or more, 0.10% or more, or 0.15% or more. On the other hand, an excessive W content may reduce the toughness. Therefore, the W content should be 0.50% or less. The W content may be 0.45% or less, 0.40% or less, or 0.35% or less.
[Ca:0~0.0050%]
 カルシウム(Ca)は、酸化物や硫化物の形態を制御する元素である。Ca含有量は0%であってもよいが、このような効果を得るためには、Ca含有量は0.0001%以上であることが好ましい。Ca含有量は0.0005%以上、0.0008%以上、0.0010%以上又は0.0015%以上であってもよい。一方で、Caを過度に含有しても効果が飽和し、介在物の形成によって靭性を損なう場合がある。したがって、Ca含有量は0.0050%以下とする。Ca含有量は0.0045%以下、0.0040%以下又は0.0035%以下であってもよい。
[Ca: 0 to 0.0050%]
Calcium (Ca) is an element that controls the forms of oxides and sulfides. Although the Ca content may be 0%, the Ca content is preferably 0.0001% or more in order to obtain such effects. The Ca content may be 0.0005% or more, 0.0008% or more, 0.0010% or more, or 0.0015% or more. On the other hand, even if Ca is contained excessively, the effect is saturated, and the formation of inclusions may impair the toughness. Therefore, the Ca content should be 0.0050% or less. The Ca content may be 0.0045% or less, 0.0040% or less, or 0.0035% or less.
[Mg:0~0.0050%]
 マグネシウム(Mg)は、酸化物や硫化物の形態を制御する元素である。Mg含有量は0%であってもよいが、このような効果を得るためには、Mg含有量は0.0001%以上であることが好ましい。Mg含有量は0.0005%以上、0.0008%以上、0.0010%以上又は0.0015%以上であってもよい。一方で、Mgを過度に含有しても効果が飽和し、介在物の形成によって靭性を損なう場合がある。したがって、Mg含有量は0.0050%以下とする。Mg含有量は0.0045%以下、0.0040%以下又は0.0035%以下であってもよい。
[Mg: 0 to 0.0050%]
Magnesium (Mg) is an element that controls the forms of oxides and sulfides. Although the Mg content may be 0%, the Mg content is preferably 0.0001% or more in order to obtain such effects. The Mg content may be 0.0005% or more, 0.0008% or more, 0.0010% or more, or 0.0015% or more. On the other hand, even if Mg is contained excessively, the effect is saturated, and the formation of inclusions may impair the toughness. Therefore, the Mg content should be 0.0050% or less. The Mg content may be 0.0045% or less, 0.0040% or less, or 0.0035% or less.
[REM:0~0.0050%]
 希土類金属(REM)は、酸化物や硫化物の形態を制御する元素である。REM含有量は0%であってもよいが、このような効果を得るためには、REM含有量は0.0001%以上であることが好ましい。REM含有量は0.0005%以上、0.0008%以上、0.0010%以上又は0.0015%以上であってもよい。一方で、REMを過度に含有しても効果が飽和し、介在物の形成によって靭性を損なう場合がある。したがって、REM含有量は0.0050%以下とする。REM含有量は0.0045%以下、0.0040%以下又は0.0035%以下であってもよい。本明細書におけるREMとは、原子番号21番のスカンジウム(Sc)、原子番号39番のイットリウム(Y)、及びランタノイドである原子番号57番のランタン(La)~原子番号71番のルテチウム(Lu)の17元素の総称であり、REM含有量はこれら元素の合計含有量である。
[REM: 0 to 0.0050%]
Rare earth metals (REMs) are elements that control the morphology of oxides and sulfides. Although the REM content may be 0%, the REM content is preferably 0.0001% or more in order to obtain such effects. The REM content may be 0.0005% or greater, 0.0008% or greater, 0.0010% or greater, or 0.0015% or greater. On the other hand, even if the REM content is excessive, the effect is saturated, and the formation of inclusions may impair the toughness. Therefore, the REM content should be 0.0050% or less. The REM content may be 0.0045% or less, 0.0040% or less, or 0.0035% or less. REM in this specification refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and the lanthanides lanthanum with atomic number 57 (La) to lutetium with atomic number 71 (Lu ), and the REM content is the total content of these elements.
 本発明の実施形態に係る耐摩耗鋼板において、上記の元素以外の残部は、Fe及び不純物である。不純物とは、耐摩耗鋼板を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分等である。 In the wear-resistant steel sheet according to the embodiment of the present invention, the balance other than the above elements is Fe and impurities. Impurities are components and the like that are mixed due to various factors in the manufacturing process, including raw materials such as ores and scraps, when the wear-resistant steel sheet is industrially manufactured.
[炭素当量(Ceq):0.86以下]
 炭素当量(Ceq)は焼入れ性の指標である。一般的には、Ceqが高くなるほど、耐摩耗鋼板の硬さが増加する傾向がある。本発明の実施形態に係る耐摩耗鋼板では、Ceqは下記式2によって算出される。
 Ceq=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15   ・・・式2
 ここで、[C]、[Mn]、[Cr]、[Mo]、[V]、[Cu]及び[Ni]は各元素の含有量(質量%)であり、元素を含有しない場合は0である。本発明の実施形態に係る耐摩耗鋼板では、化学組成及び鋼板表面から1mm深さ位置におけるビッカース硬さを上で説明した範囲内とすることで耐摩耗鋼板の適切な硬さ(例えばブリネル硬さ360~490HB)を達成することが可能である。したがって、耐摩耗鋼板のCeqは特に限定されないが、より好ましい硬さを得る観点からは、例えば、Ceqは0.86以下であることが好ましい。Ceqは0.82以下、0.80以下又は0.75以下であってもよい。Ceqの下限は特に限定されないが、例えば、Ceqは0.37以上、0.40以上、0.45以上又は0.55以上であってもよい。
[Carbon equivalent (Ceq): 0.86 or less]
Carbon equivalent (Ceq) is an index of hardenability. In general, the higher the Ceq, the higher the hardness of the wear-resistant steel plate. In the wear-resistant steel plate according to the embodiment of the present invention, Ceq is calculated by Equation 2 below.
Ceq=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Cu]+[Ni])/15 Equation 2
Here, [C], [Mn], [Cr], [Mo], [V], [Cu] and [Ni] are the content (% by mass) of each element, and 0 when no element is contained. is. In the wear-resistant steel plate according to the embodiment of the present invention, the appropriate hardness of the wear-resistant steel plate (for example, Brinell hardness 360-490 HB) can be achieved. Therefore, the Ceq of the wear-resistant steel plate is not particularly limited, but from the viewpoint of obtaining more preferable hardness, the Ceq is preferably 0.86 or less, for example. Ceq may be 0.82 or less, 0.80 or less, or 0.75 or less. Although the lower limit of Ceq is not particularly limited, Ceq may be 0.37 or more, 0.40 or more, 0.45 or more, or 0.55 or more, for example.
[Vc90:2.0~30.0]
 Vc90は、90%マルテンサイト組織が得られる臨界冷却速度(℃/秒)として知られる値であり、Ceqの場合と同様に焼入れ性の指標である。したがって、一般的には、Vc90の値が小さいほど、鋼の焼入れ性が高くなり、耐摩耗鋼板の硬さが増加する傾向がある。Vc90は鋼板のB含有量に応じて下記式3又は4によって算出され、本発明の実施形態に係る耐摩耗鋼板では、B含有量が0.0003~0.0050%であることから、Vc90は下記式3によって算出される。
 (B含有量≧0.0003%)
 logVc90=2.94-0.75×(2.7[C]+0.4[Si]+[Mn]+0.45[Ni]+0.45[Cu]+0.8[Cr]+2[Mo])   ・・・式3
 (B含有量<0.0003%)
 logVc90=3.69-0.75×(2.7[C]+0.4[Si]+[Mn]+0.45[Ni]+0.45[Cu]+0.8[Cr]+[Mo])    ・・・式4
 式3及び式4中、[C]、[Si]、[Mn]、[Ni]、[Cu]、[Cr]及び[Mo]は各元素の含有量(質量%)であり、元素を含有しない場合は0である。本発明の実施形態に係る耐摩耗鋼板では、化学組成及び鋼板表面から1mm深さ位置におけるビッカース硬さを上で説明した範囲内とすることで耐摩耗鋼板の適切な硬さ(例えばブリネル硬さ360~490HB)を達成することが可能である。したがって、耐摩耗鋼板のVc90は特に限定されないが、より好ましい硬さを得る観点からは、例えば、Vcは2.0~30.0であることが好ましい。Vc90は2.2以上、2.4以上若しくは2.6以上であってもよく、及び/又は28.0以下、25.0以下、20.0以下若しくは15.0以下であってもよい。
[Vc90: 2.0 to 30.0]
Vc90 is a value known as the critical cooling rate (° C./sec) at which a 90% martensite structure is obtained, and is an index of hardenability as in the case of Ceq. Therefore, in general, the smaller the value of Vc90, the higher the hardenability of the steel, which tends to increase the hardness of the wear-resistant steel plate. Vc90 is calculated according to the following formula 3 or 4 according to the B content of the steel plate, and in the wear resistant steel plate according to the embodiment of the present invention, the B content is 0.0003 to 0.0050%. It is calculated by the following formula 3.
(B content ≥ 0.0003%)
logVc90=2.94−0.75×(2.7[C]+0.4[Si]+[Mn]+0.45[Ni]+0.45[Cu]+0.8[Cr]+2[Mo])・・・Formula 3
(B content <0.0003%)
logVc90=3.69−0.75×(2.7[C]+0.4[Si]+[Mn]+0.45[Ni]+0.45[Cu]+0.8[Cr]+[Mo])・・・Equation 4
In formulas 3 and 4, [C], [Si], [Mn], [Ni], [Cu], [Cr] and [Mo] are the contents (mass%) of each element, and contain the elements 0 if not. In the wear-resistant steel plate according to the embodiment of the present invention, the appropriate hardness of the wear-resistant steel plate (for example, Brinell hardness 360-490 HB) can be achieved. Therefore, Vc90 of the wear-resistant steel plate is not particularly limited, but from the viewpoint of obtaining more preferable hardness, Vc is preferably 2.0 to 30.0, for example. Vc90 may be greater than or equal to 2.2, greater than or equal to 2.4, or greater than or equal to 2.6, and/or less than or equal to 28.0, less than or equal to 25.0, less than or equal to 20.0, or less than or equal to 15.0.
[表面から1mm深さ位置におけるビッカース硬さHV10
 本発明の実施形態に係る耐摩耗鋼板では、当該耐摩耗鋼板の表面から1mm深さ位置におけるビッカース硬さHV10(Hv)は下記式1を満たす。
 HV10≧634×√[C]+140   ・・・式1
 ここで、[C]は耐摩耗鋼板のC含有量(質量%)である。鋼板の表層部分の硬さを上記式1を満たすようにすることで十分な耐摩耗性を維持することが可能となる。例えば、単に鋼板の硬さを高くしたにすぎない場合には、耐摩耗性を向上させることはできても低温靭性の低下を招く虞がある。これに対し、本発明の実施形態では、鋼板の化学組成を上で説明した範囲内としつつ、鋼板表面から1mm深さ位置におけるビッカース硬さを特に鋼板の硬さに寄与するC含有量に応じた適切な硬さとすることで、鋼板の金属組織、特には鋼板の表層部の金属組織を例えば主としてマルテンサイトから構成されるより単相に近い均一な組織とすることができ、それゆえ耐摩耗性と低温靭性の両方を向上させることが可能になると考えられる。上記式1の右辺をf(C)と表した場合、すなわちf(C)=634×√[C]+140とした場合、ビッカース硬さHV10は、例えばHV10≧1.01×f(C)、HV10≧1.02×f(C)、又はHV10≧1.05×f(C)を満たすものとしてもよい。
[Vickers hardness HV 10 at a depth of 1 mm from the surface]
In the wear-resistant steel plate according to the embodiment of the present invention, the Vickers hardness HV 10 (Hv) at a depth of 1 mm from the surface of the wear-resistant steel plate satisfies Formula 1 below.
HV 10 ≧634×√[C]+140 Formula 1
Here, [C] is the C content (% by mass) of the wear-resistant steel plate. Sufficient wear resistance can be maintained by setting the hardness of the surface layer portion of the steel sheet so as to satisfy Expression 1 above. For example, simply increasing the hardness of the steel sheet may lead to a decrease in low-temperature toughness, although the wear resistance can be improved. On the other hand, in the embodiment of the present invention, while the chemical composition of the steel sheet is within the range described above, the Vickers hardness at a position 1 mm deep from the steel sheet surface is increased according to the C content that particularly contributes to the hardness of the steel sheet. By setting the hardness to an appropriate level, the metal structure of the steel plate, particularly the metal structure of the surface layer of the steel plate, can be made, for example, a uniform structure that is closer to a single phase than is mainly composed of martensite, and is therefore wear resistant. It is thought that it becomes possible to improve both toughness and low temperature toughness. When the right side of the above formula 1 is represented as f(C), that is, when f(C)=634×√[C]+140, the Vickers hardness HV 10 is, for example, HV 10 ≧1.01×f(C ), HV 10 ≧1.02×f(C), or HV 10 ≧1.05×f(C).
 本発明において、鋼板表面から1mm深さ位置におけるビッカース硬さHV10(Hv)は、まず、耐摩耗鋼板のL断面(鋼板の圧延方向及び板厚方向に平行な断面)を機械研磨し、次いで表面から板厚方向に1mm深さの位置においてJIS Z2244:2009に準拠したビッカース硬さ試験を行ってビッカース硬さ(測定荷重10kgf=98.07N)を3点測定し、それらを平均することにより決定される。 In the present invention, the Vickers hardness HV 10 (Hv) at a depth of 1 mm from the steel plate surface is determined by first mechanically polishing the L cross section of the wear resistant steel plate (the cross section parallel to the rolling direction and thickness direction of the steel plate), and then Vickers hardness test conforming to JIS Z2244: 2009 is performed at a position 1 mm deep from the surface in the plate thickness direction, Vickers hardness (measurement load 10 kgf = 98.07 N) is measured at three points, and the values are averaged. It is determined.
[表面から1mm深さ位置における金属組織]
 本発明の実施形態に係る耐摩耗鋼板では、上記のとおり、鋼板の化学組成を上で説明した範囲内としつつ、鋼板表面から1mm深さ位置におけるビッカース硬さHV10を上記式1を満たすようにすることで耐摩耗性と低温靭性の両方を向上させることができる。したがって、鋼板表面から1mm深さ位置における金属組織は特に限定はされない。一方で、上で説明した化学組成の範囲内でかつ上記式1を満たす耐摩耗鋼板を確実に得るためには、当該金属組織は硬質で均一なものとすることが好ましい。このような観点から、鋼板表面から1mm深さ位置における金属組織は、主としてマルテンサイトから構成することが好ましい。より具体的には、当該金属組織は、面積率で80%以上のマルテンサイトを含むことが好ましく、85%又は90%以上のマルテンサイトを含むことがより好ましく、92%以上又は95%以上のマルテンサイトを含むことが最も好ましく、とりわけ光学顕微鏡による観察において面積率で80%以上のマルテンサイトを含むことが好ましく、85%又は90%以上のマルテンサイトを含むことがより好ましく、92%以上又は95%以上のマルテンサイトを含むことが最も好ましい。マルテンサイト面積率の上限は特に限定されないが、例えば100%であってよい。とりわけ、鋼板表面から1mm深さ位置における金属組織を90%以上のマルテンサイトで構成することで、当該深さ位置におけるビッカース硬さHV10(Hv)が上記式1を満たすことをより確実にすることができる。
[Metal structure at a depth of 1 mm from the surface]
As described above, in the wear-resistant steel plate according to the embodiment of the present invention, while the chemical composition of the steel plate is within the range described above, the Vickers hardness HV at a position 1 mm deep from the steel plate surface is such that it satisfies the above formula 1. Both wear resistance and low temperature toughness can be improved by Therefore, the metal structure at a depth of 1 mm from the steel plate surface is not particularly limited. On the other hand, in order to reliably obtain a wear-resistant steel sheet that satisfies the above formula 1 within the chemical composition range described above, the metallographic structure is preferably hard and uniform. From this point of view, it is preferable that the metal structure at a depth of 1 mm from the steel sheet surface is mainly composed of martensite. More specifically, the metal structure preferably contains 80% or more martensite in area ratio, more preferably 85% or 90% or more martensite, and 92% or more or 95% or more It is most preferable to contain martensite, particularly preferably 80% or more in terms of area ratio of martensite in observation with an optical microscope, more preferably 85% or 90% or more martensite, 92% or more or Most preferably it contains 95% or more martensite. Although the upper limit of the martensite area ratio is not particularly limited, it may be 100%, for example. In particular, the metal structure at a depth of 1 mm from the steel plate surface is composed of 90% or more martensite, so that the Vickers hardness HV 10 (Hv) at the depth position satisfies the above formula 1 more reliably. be able to.
 マルテンサイトの面積率は、以下のようにして決定される。まず、耐摩耗鋼板の表面から1mm深さ位置のL断面(耐摩耗鋼板の圧延方向及び板厚方向に平行な断面)を鏡面研磨し、次いでナイタールで腐食させ、光学顕微鏡を用いて500倍で観察し、200μm×500μmの観察視野を無作為に3視野選択し、各観察視野においてマルテンサイトの面積率を測定し、それらを平均することにより決定される。光学顕微鏡による観察では、例えば、オートテンパーによってセメンタイトが析出したいわゆるオートテンパードマルテンサイトとこのようなセメンタイトを含まないマルテンサイトとを明確に区別することが難しい場合がある。このため、本明細書において用いられる場合には、マルテンサイトの用語は、オートテンパードマルテンサイトを包含するものである。 The area ratio of martensite is determined as follows. First, the L cross section (cross section parallel to the rolling direction and thickness direction of the wear resistant steel plate) at a depth of 1 mm from the surface of the wear resistant steel plate is mirror-polished, then corroded with nital, and an optical microscope is used at 500 times. It is determined by observing, randomly selecting three observation fields of 200 μm×500 μm, measuring the area ratio of martensite in each observation field, and averaging them. In observation with an optical microscope, for example, it is sometimes difficult to clearly distinguish between so-called autotempered martensite in which cementite is precipitated by autotempering and such cementite-free martensite. Thus, the term martensite as used herein includes autotempered martensite.
[表面から1mm深さ位置における結晶粒の平均円相当直径:25μm以下]
 本発明の実施形態に係る耐摩耗鋼板では、当該耐摩耗鋼板の表面から1mm深さ位置における方位差15°以上の境界で囲まれた結晶粒の平均円相当直径は25μm以下である。結晶粒の平均円相当直径を25μm以下とすることで金属組織がより微細なものとなり、鋼板中の固溶炭素の拡散に有利な粒界の数を増加させることができる。したがって、このような微細な組織と低Si含有量とを組み合わせることにより、切削時の高温下における金属組織からの炭化物の析出をより促進させて切削時の変形抵抗を確実に緩和することが可能となる。上記結晶粒の平均円相当直径は、好ましくは24μm以下、より好ましくは22μm以下、最も好ましくは20μm以下である。結晶粒の平均円相当直径は小さいほど好ましいため、下限は特に規定しない。しかしながら、結晶粒の平均円相当直径は、例えば1μm以上又は3μm以上であってもよい。本発明に係る耐摩耗鋼板では、基本的に焼入処理が施されているため、鋼板の内部に比べて焼入処理が十分に施されている表層部が最も硬く切削が困難な部位となる。したがって、鋼板の被削性を検討する場合には、このような切削が最も困難な部位に対応する鋼板表面から1mm深さ位置の被削性を改善することが重要となる。鋼板の内側に進むほど表層部よりも硬さが軟らかくなり、被削性が改善されるためである。後で説明する「炭化物の長径の平均値」についても同様のことが言える。
[Average circle equivalent diameter of crystal grains at a depth of 1 mm from the surface: 25 μm or less]
In the wear-resistant steel plate according to the embodiment of the present invention, the average equivalent circle diameter of grains surrounded by boundaries with a misorientation of 15° or more at a depth of 1 mm from the surface of the wear-resistant steel plate is 25 μm or less. By setting the average equivalent circle diameter of the crystal grains to 25 μm or less, the metal structure becomes finer, and the number of grain boundaries that are advantageous for the diffusion of solute carbon in the steel sheet can be increased. Therefore, by combining such a fine structure with a low Si content, it is possible to further promote the precipitation of carbides from the metal structure at high temperatures during cutting, thereby reliably alleviating the deformation resistance during cutting. becomes. The average equivalent circle diameter of the crystal grains is preferably 24 μm or less, more preferably 22 μm or less, and most preferably 20 μm or less. Since the smaller the average equivalent circle diameter of the crystal grains, the better, the lower limit is not particularly defined. However, the average equivalent circle diameter of the grains may be, for example, 1 μm or more, or 3 μm or more. Since the wear-resistant steel sheet according to the present invention is basically quenched, the surface layer, which is sufficiently quenched, is the hardest and most difficult part to cut compared to the inside of the steel sheet. . Therefore, when examining the machinability of a steel sheet, it is important to improve the machinability at a position 1 mm deep from the surface of the steel sheet, which corresponds to such a site that is most difficult to cut. This is because the hardness becomes softer than that of the surface layer portion toward the inner side of the steel sheet, and the machinability is improved. The same can be said for the "average value of the major axis of carbides" which will be described later.
 本発明において、結晶粒の平均円相当直径は以下のように決定される。まず、耐摩耗鋼板の表面から1mm深さ位置のL断面(耐摩耗鋼板の圧延方向及び板厚方向に平行な断面)を鏡面研磨し、次いで電子線後方散乱回折法(EBSD)により任意の圧延方向1.0mm×深さ方向0.4mmの領域の結晶方位を1箇所測定し、隣接する粒の方位差が15°以上ある領域を1つの結晶粒と定義して、個々の結晶粒の粒径を円相当直径として算出する。算出された全ての結晶粒に基づいて算出される面積平均を「結晶粒の平均円相当直径」として決定する。より具体的には、面積平均(d)は、各結晶粒が占める面積(ai)と各結晶粒の円相当直径(di)とから下記式5によって算出される。
 d=Σ(ai×di)/Σai   ・・・式5
In the present invention, the average equivalent circle diameter of crystal grains is determined as follows. First, the L cross section (cross section parallel to the rolling direction and thickness direction of the wear resistant steel plate) at a depth of 1 mm from the surface of the wear resistant steel plate is mirror-polished, and then any rolling is performed by electron beam backscatter diffraction (EBSD). The crystal orientation of a region of 1.0 mm in the direction × 0.4 mm in the depth direction is measured at one point, and the region where the orientation difference between adjacent grains is 15° or more is defined as one crystal grain, and the grain of each crystal grain. Calculate the diameter as a circle equivalent diameter. The area average calculated based on all the calculated crystal grains is determined as the "average circle-equivalent diameter of the crystal grains." More specifically, the area average (d) is calculated from the area occupied by each crystal grain (a i ) and the circle-equivalent diameter (d i ) of each crystal grain by Equation 5 below.
d=Σ(a i ×d i )/Σa i Expression 5
[表面から1mm深さ位置における旧オーステナイト粒のアスペクト比:1.0~1.8]
 本発明の実施形態に係る耐摩耗鋼板では、表面から1mm深さ位置における方位差15°以上の境界で囲まれた結晶粒の平均円相当直径を規定すればよく、当該結晶粒や旧オーステナイト粒などの他の結晶粒の形態、例えばアスペクト比などは特に限定されない。しかしながら、例えば、表面から1mm深さ位置における旧オーステナイト粒のアスペクト比は1.0~1.8であってもよい。当該旧オーステナイト粒のアスペクト比は以下のように決定される。まず、耐摩耗鋼板の表面から1mm深さ位置のL断面(耐摩耗鋼板の圧延方向及び板厚方向に平行な断面)を鏡面研磨し、次いで電子線後方散乱回折法(EBSD)により任意の圧延方向1.0mm×深さ方向0.4mmの領域の結晶方位を1箇所測定し、隣接する粒の方位差が20°以上45°以下である領域を1つの旧オーステナイト粒と定義して、個々の旧オーステナイト粒の圧延方向長さ及び板厚方向長さを測定し、各旧オーステナイト粒のアスペクト比を算出する。算出された全ての旧オーステナイト粒のアスペクト比の算術平均を「旧オーステナイト粒のアスペクト比」として決定する。
[Aspect ratio of prior austenite grains at a depth of 1 mm from the surface: 1.0 to 1.8]
In the wear-resistant steel plate according to the embodiment of the present invention, the average circle equivalent diameter of the crystal grains surrounded by the boundaries with a misorientation of 15 ° or more at a depth of 1 mm from the surface may be specified. Other grain morphologies such as the aspect ratio are not particularly limited. However, for example, the aspect ratio of the prior austenite grains at a depth of 1 mm from the surface may be 1.0 to 1.8. The aspect ratio of the prior austenite grains is determined as follows. First, the L cross section (cross section parallel to the rolling direction and thickness direction of the wear resistant steel plate) at a depth of 1 mm from the surface of the wear resistant steel plate is mirror-polished, and then any rolling is performed by electron beam backscatter diffraction (EBSD). One crystal orientation in a region of 1.0 mm in the direction × 0.4 mm in the depth direction is measured, and the region where the orientation difference between adjacent grains is 20 ° or more and 45 ° or less is defined as one prior austenite grain, and each The rolling direction length and plate thickness direction length of the prior austenite grains are measured, and the aspect ratio of each prior austenite grain is calculated. The arithmetic mean of the aspect ratios of all the calculated prior austenite grains is determined as the “aspect ratio of prior austenite grains”.
[300℃で10分間の熱処理試験後の表面から1mm深さ位置における炭化物の長径の平均値:0.25~5.00μm]
 本発明の実施形態に係る耐摩耗鋼板では、300℃で10分間の熱処理試験後、当該耐摩耗鋼板の表面から1mm深さ位置における炭化物の長径の平均値は0.25~5.00μmである。鋼板を切削加工する際には、切削工具と鋼板との間の摩擦等により加工発熱が生じ、鋼板の切削部が例えば300℃程度の高温となる。本発明の実施形態に係る耐摩耗鋼板では、切削加工を模擬した300℃で10分間の熱処理試験後に、このような高温下で金属組織、例えば焼入れたままのマルテンサイトから析出された炭化物の長径の平均値が0.25~5.00μmの範囲内となるため、このような適度な大きさの炭化物が析出することによって切削時の変形抵抗を緩和することができる。その結果として、被削性を顕著に向上させることが可能となる。例えば、炭化物の長径の平均値は0.27μm以上、0.28μm以上又は0.30μm以上であってもよい。一方で、炭化物の長径の平均値が大きすぎると、鋼板の硬さが過度に低下して耐摩耗性を低下させる場合がある。したがって、炭化物の長径の平均値は5.00μmとし、例えば4.00μm以下、3.00μm以下、2.00μm以下又は1.00μm以下であってもよい。
[Average major diameter of carbide at 1 mm depth from surface after heat treatment test at 300° C. for 10 minutes: 0.25 to 5.00 μm]
In the wear-resistant steel plate according to the embodiment of the present invention, after the heat treatment test at 300 ° C. for 10 minutes, the average value of the major axis of the carbide at a depth of 1 mm from the surface of the wear-resistant steel plate is 0.25 to 5.00 μm. . When cutting a steel plate, heat is generated during processing due to friction between the cutting tool and the steel plate, and the cut portion of the steel plate reaches a high temperature of, for example, about 300°C. In the wear-resistant steel plate according to the embodiment of the present invention, after a heat treatment test at 300 ° C. for 10 minutes simulating cutting, the long diameter of carbide precipitated from the metal structure, for example, as-quenched martensite under such a high temperature is within the range of 0.25 to 5.00 μm, the deformation resistance during cutting can be alleviated by the precipitation of carbides of appropriate size. As a result, machinability can be significantly improved. For example, the average major axis of the carbide may be 0.27 μm or more, 0.28 μm or more, or 0.30 μm or more. On the other hand, if the average value of the major axis of the carbide is too large, the hardness of the steel sheet may be excessively decreased, resulting in decreased wear resistance. Therefore, the average major axis of the carbide is 5.00 μm, and may be, for example, 4.00 μm or less, 3.00 μm or less, 2.00 μm or less, or 1.00 μm or less.
 本発明において、300℃で10分間の熱処理試験後の表面から1mm深さ位置における炭化物の長径の平均値は以下のように決定される。まず、当該熱処理試験後の耐摩耗鋼板の表面から1mm深さ位置のL断面(耐摩耗鋼板の圧延方向及び板厚方向に平行な断面)を鏡面研磨し、次いでナイタールで腐食させ、走査型電子顕微鏡(SEM)を用いて10000倍で観察し、10μm×6μmの観察視野を無作為に10視野選択する。次に、各観察視野において炭化物の長径(炭化物を横断する最大線分長さ)が大きいものから10個選択し、10視野における合計100個の炭化物の長径を平均することにより炭化物の長径の平均値が決定される。 In the present invention, after a heat treatment test at 300°C for 10 minutes, the average value of the major axis of carbide at a depth of 1 mm from the surface is determined as follows. First, the L cross section (cross section parallel to the rolling direction and thickness direction of the wear resistant steel plate) at a depth of 1 mm from the surface of the wear resistant steel plate after the heat treatment test is mirror-polished, then corroded with nital, and scanned electron Observe at 10,000 times using a microscope (SEM), and randomly select 10 observation fields of 10 μm×6 μm. Next, select 10 carbides with the largest major axis (maximum line segment length across the carbide) in each observation field, and average the major axis of the carbides by averaging the major axis of a total of 100 carbides in the 10 fields of view. value is determined.
[板厚:6~150mm]
 本発明の実施形態に係る耐摩耗鋼板は、特に限定されないが、例えば6~150mmの板厚を有するものであってよい。耐摩耗鋼板の化学組成及び組織を上で説明した範囲内とすることで、このような厚い鋼板においても、耐摩耗性及び低温靭性を維持しつつ、優れた被削性を達成することが可能となる。耐摩耗鋼板の板厚は、例えば8mm以上、10mm以上、15mm以上、20mm以上、25mm以上又は30mm以上であってもよい。同様に、耐摩耗鋼板の板厚は、例えば120mm以下、100mm以下、90mm以下又は80mm以下であってもよい。
[Thickness: 6 to 150mm]
The wear-resistant steel plate according to the embodiment of the present invention is not particularly limited, but may have a plate thickness of 6 to 150 mm, for example. By setting the chemical composition and structure of the wear-resistant steel plate within the ranges described above, it is possible to achieve excellent machinability while maintaining wear resistance and low-temperature toughness even with such a thick steel plate. becomes. The plate thickness of the wear-resistant steel plate may be, for example, 8 mm or more, 10 mm or more, 15 mm or more, 20 mm or more, 25 mm or more, or 30 mm or more. Similarly, the thickness of the wear-resistant steel plate may be, for example, 120 mm or less, 100 mm or less, 90 mm or less, or 80 mm or less.
[機械特性]
 本発明の実施形態に係る耐摩耗鋼板によれば、優れた機械特性、例えば表面から1mm深さ位置において360~490HBのブリネル硬さを達成することができる。当該ブリネル硬さは好ましくは380HB以上であり、より好ましくは400HB以上である。同様に、当該ブリネル硬さは480HB以下又は460HB以下であってもよい。また、本発明の実施形態に係る耐摩耗鋼板によれば、優れた低温靭性を達成することができ、より具体的には-20℃でのJIS4号シャルピー試験片によるシャルピー衝撃吸収エネルギー(vE-20)の平均値が27J以上、好ましくは30J以上、より好ましくは40J以上、最も好ましくは45J以上の低温靭性を達成することができる。当該シャルピー衝撃吸収エネルギー(vE-20)の平均値の上限は、特に限定されないが、例えば100Jであってよい。さらに、本発明の実施形態に係る耐摩耗鋼板によれば、優れた被削性を達成することができ、より具体的には超硬工具P種(JIS B4053:2013)のチップを用いて、切削速度200m/min、切込み量1mm、工具送り0.1mm/rev、及び乾式(切削油なし)の条件下で耐摩耗鋼板の表面からフライス加工を実施してチップが欠損するまでの切削距離を測定した場合に、200m以上、好ましくは220m以上、より好ましくは250m以上、最も好ましくは280m以上の優れた被削性を達成することができる。当該切削距離の上限は、特に限定されないが、例えば500mであってよい。従来の耐摩耗鋼では、同じ条件下での工具欠損までの切削距離は200m未満であるため、本発明の実施形態に係る耐摩耗鋼板は、従来の耐摩耗鋼と比較して非常に優れた被削性を有することがわかる。上記のブリネル硬さ、シャルピー衝撃吸収エネルギー、及び工具欠損までの切削距離のいずれも、300℃で10分間の熱処理試験を行っていない耐摩耗鋼板において測定されるものである。
[Mechanical properties]
The wear-resistant steel plate according to the embodiment of the present invention can achieve excellent mechanical properties, for example, a Brinell hardness of 360 to 490 HB at a depth of 1 mm from the surface. The Brinell hardness is preferably 380 HB or higher, more preferably 400 HB or higher. Similarly, the Brinell hardness may be 480 HB or less, or 460 HB or less. In addition, according to the wear-resistant steel plate according to the embodiment of the present invention, excellent low-temperature toughness can be achieved, and more specifically, the Charpy impact absorption energy (vE - 20 ) is 27 J or more, preferably 30 J or more, more preferably 40 J or more, and most preferably 45 J or more. The upper limit of the average value of the Charpy impact absorption energy (vE −20 ) is not particularly limited, but may be 100J, for example. Furthermore, according to the wear-resistant steel plate according to the embodiment of the present invention, excellent machinability can be achieved. Cutting speed is 200m/min, depth of cut is 1mm, tool feed is 0.1mm/rev, and dry (no cutting oil). Excellent machinability of 200m or more, preferably 220m or more, more preferably 250m or more, most preferably 280m or more can be achieved when measured. Although the upper limit of the cutting distance is not particularly limited, it may be 500 m, for example. With conventional wear-resistant steel, the cutting distance to tool failure under the same conditions is less than 200 m. It can be seen that it has machinability. All of the above Brinell hardness, Charpy impact absorption energy, and cutting distance to tool failure are measured on wear-resistant steel plates that have not been subjected to a heat treatment test at 300° C. for 10 minutes.
 ブリネル硬さは、耐摩耗鋼板の表面から1mmを研削除去した面において直径10mmのタングステン硬球を用いて荷重3000kgfで測定される。また、シャルピー衝撃吸収エネルギー(vE-20)の平均値は、耐摩耗鋼板のL方向の板厚1/4位置から採取したJIS4号2mmVノッチ試験片に基づいて、JIS Z2242:2005の規定に準拠して、半径2mmの衝撃刃を用いて-20℃でのシャルピー衝撃吸収エネルギーを3本測定し、それらを平均することにより算出される。 The Brinell hardness is measured under a load of 3000 kgf using a hard tungsten ball with a diameter of 10 mm on the surface of the wear-resistant steel plate with 1 mm removed by grinding. In addition, the average value of the Charpy impact absorption energy (vE -20 ) is based on the JIS No. 4 2 mm V-notch test piece taken from the 1/4 position of the plate thickness in the L direction of the wear-resistant steel plate, based on the provisions of JIS Z2242: 2005. Then, using an impact blade with a radius of 2 mm, three Charpy impact absorption energies are measured at -20°C, and calculated by averaging them.
 本発明の実施形態に係る耐摩耗鋼板は、上記のように、優れた耐摩耗性、低温靭性及び被削性を示すため、例えば、これらの機械特性が要求される産業機械や運搬機械の部材において使用するのに有用であり、とりわけ開先加工やフライスチップで穴あけ加工を行う用途にも好適である。 As described above, the wear-resistant steel plate according to the embodiment of the present invention exhibits excellent wear resistance, low-temperature toughness and machinability. It is particularly suitable for use in beveling and drilling with a milling tip.
[耐摩耗鋼板の製造方法]
 次に、本発明の実施形態に係る耐摩耗鋼板の好ましい製造方法について説明する。以下の説明は、本発明の実施形態に係る耐摩耗鋼板を製造するための特徴的な方法の例示を意図するものであって、当該耐摩耗鋼板を以下に説明するような製造方法によって製造されるものに限定することを意図するものではない。
[Method for producing wear-resistant steel plate]
Next, a preferred method for manufacturing a wear-resistant steel plate according to an embodiment of the present invention will be described. The following description is intended to exemplify the characteristic method for manufacturing the wear-resistant steel plate according to the embodiment of the present invention, and the wear-resistant steel plate is manufactured by the manufacturing method described below. It is not intended to be limited to
 耐摩耗鋼板の製造方法は、熱間圧延工程、及び焼入処理工程を含む。以下、各工程についてより詳細に説明する。本製造方法に供する鋼片としては、先に説明した化学組成を有するものであれば特には限定されず、当業者に公知の任意の適切な鋳造条件下で製造された鋼片を使用することができる。例えば、鋼片は、造塊-分塊スラブであってもよいし、連続鋳造スラブであってもよい。製造効率、歩留り及び省エネルギーの観点からは、鋼片としては連続鋳造スラブを用いることが好ましい。 The manufacturing method of wear-resistant steel plates includes a hot rolling process and a quenching process. Each step will be described in more detail below. The steel slab to be subjected to this manufacturing method is not particularly limited as long as it has the chemical composition described above, and a steel slab manufactured under any appropriate casting conditions known to those skilled in the art can be used. can be done. For example, the billet may be an ingot-blooming slab or a continuously cast slab. From the viewpoint of production efficiency, yield and energy saving, it is preferable to use a continuously cast slab as the billet.
[熱間圧延工程]
 まず、鋳造後の鋼片が、熱間圧延工程において再加熱され、次いで例えば圧下率50%以上で熱間圧延される。再加熱の温度は、圧延ロールの負荷を低減する観点から1000℃以上とすることが好ましく、金属組織、特にはマルテンサイト組織の粗大化を抑制する観点から1250℃以下とすることが好ましい。圧延終了温度は、生産性の観点から1000℃以上とすることが好ましい。
[Hot rolling process]
First, a cast steel slab is reheated in a hot rolling process, and then hot rolled at a rolling reduction of 50% or more, for example. The reheating temperature is preferably 1000° C. or higher from the viewpoint of reducing the load on the rolling rolls, and is preferably 1250° C. or lower from the viewpoint of suppressing coarsening of the metal structure, particularly the martensitic structure. The rolling end temperature is preferably 1000° C. or higher from the viewpoint of productivity.
[焼入処理工程]
 熱間圧延工程後、鋼板は一旦200℃以下まで放冷により冷却され、次いで下記式6及び7を満たす再加熱温度T℃まで再加熱され、最後に5.0℃/秒以上の平均冷却速度で200℃以下まで水冷される。
 0.00<R<1.00    ・・・式6
 R=(T―AC)/130   ・・・式7
 ここで、ACは鋼板中の合金元素から決定される係数であり、下記式8で求められる。
 AC=937-476[C]+56[Si]-20[Mn]-16[Cu]-27[Ni]-5[Cr]+38[Mo]+125[V]+136[Ti]-19[Nb]+3315[B]           ・・・式8
 ここで、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[Ti]、[Nb]及び[B]は各元素の含有量(質量%)であり、元素を含有しない場合は0である。
[Quenching process]
After the hot rolling process, the steel sheet is once cooled to 200 ° C. or less, then reheated to a reheating temperature T ° C. that satisfies the following formulas 6 and 7, and finally an average cooling rate of 5.0 ° C./sec or more. is water-cooled to 200°C or less.
0.00<R<1.00 Formula 6
R=(T-AC)/130 Expression 7
Here, AC is a coefficient determined from the alloying elements in the steel sheet, and is obtained by Equation 8 below.
AC=937-476[C]+56[Si]-20[Mn]-16[Cu]-27[Ni]-5[Cr]+38[Mo]+125[V]+136[Ti]-19[Nb]+3315 [B] Formula 8
Here, [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V], [Ti], [Nb] and [B] are It is the content (% by mass), and is 0 when no element is contained.
 この焼入処理工程において、合金元素と再加熱温度によって決定されるパラメータRが0.00超1.00未満の範囲内となるような再加熱温度T℃まで再加熱することにより、金属組織の粗大化を抑制することができ、すなわち鋼板表面から1mm深さ位置における方位差15°以上の境界で囲まれた結晶粒の平均円相当直径を確実に25μm以下とすることが可能となる。パラメータRが上記の範囲外となる場合には、当該結晶粒が粗大化してしまい、切削時の炭化物の析出が促進されず、十分な被削性を達成することができなくなる。とりわけ、パラメータRが0.00以下の場合には、再加熱時のオーステナイト化が不十分となるために鋼板の硬さが低下して耐摩耗性も低下する。 In this quenching treatment step, by reheating to a reheating temperature T ° C. where the parameter R determined by the alloying element and the reheating temperature is in the range of more than 0.00 and less than 1.00, the metal structure is improved. It is possible to suppress coarsening, that is, it is possible to reliably make the average equivalent circle diameter of grains surrounded by boundaries with an orientation difference of 15° or more at a depth of 1 mm from the steel plate surface to 25 μm or less. If the parameter R is out of the above range, the grains become coarse, precipitation of carbides during cutting is not promoted, and sufficient machinability cannot be achieved. In particular, when the parameter R is 0.00 or less, austenitization during reheating is insufficient, so that the hardness of the steel sheet is lowered and the wear resistance is also lowered.
 また、本製造方法における焼入処理工程では、上記のように再加熱後に焼入れ(RQ)を行っているため、熱間圧延後直ちに水冷によって直接焼入れ(DQ)した場合と比較して伸長した旧オーステナイト粒がないか又はほとんどなく、それゆえ鋼板表面から1mm深さ位置における旧オーステナイト粒は比較的球に近くなる。このため、当該旧オーステナイト粒のアスペクト比は、例えば1.0~1.8の範囲となる。一方で、直接焼入れの場合には、扁平な旧オーステナイト粒が形成されるため、鋼板表面から1mm深さ位置における旧オーステナイト粒のアスペクト比は2.0を超える比較的大きなものとなる。 In addition, in the quenching treatment step in the present manufacturing method, as described above, quenching (RQ) is performed after reheating, so the old steel is elongated compared to the case of direct quenching (DQ) by water cooling immediately after hot rolling. There are no or almost no austenite grains, and therefore the prior austenite grains at a depth of 1 mm from the steel plate surface are relatively spherical. Therefore, the aspect ratio of the prior austenite grains is, for example, in the range of 1.0 to 1.8. On the other hand, in the case of direct quenching, since flat prior austenite grains are formed, the aspect ratio of the prior austenite grains at a depth of 1 mm from the steel plate surface is relatively large, exceeding 2.0.
 再加熱温度T(℃)への再加熱後、上記のとおり5.0℃/秒以上の平均冷却速度で200℃以下まで水冷することにより、金属組織を適切に変態させて最終的に得られる鋼板において十分な硬さを達成することが可能となる。平均冷却速度が5.0℃/秒未満の場合又は冷却停止温度が200℃よりも高い場合には、金属組織の変態が十分でないために鋼板の硬さが低下して耐摩耗性が低下する場合がある。平均冷却速度の測定位置は板厚1/2位置であり、ラインスピードや圧下率などから加工発熱等を考慮した計算シミュレーションにより算出することができる。 After reheating to the reheating temperature T (° C.), water cooling to 200° C. or less at an average cooling rate of 5.0° C./sec or more as described above, thereby appropriately transforming the metal structure. It becomes possible to achieve sufficient hardness in the steel plate. If the average cooling rate is less than 5.0°C/sec or if the cooling stop temperature is higher than 200°C, the transformation of the metallographic structure is insufficient, resulting in a decrease in the hardness of the steel sheet and a decrease in wear resistance. Sometimes. The measurement position of the average cooling rate is the plate thickness 1/2 position, and it can be calculated by a calculation simulation that considers the heat generated during processing from the line speed, the reduction rate, and the like.
 以下、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
 以下の実施例では、本発明の実施形態に係る耐摩耗鋼板を種々の条件下で製造し、得られた耐摩耗鋼板の機械特性について調べた。 In the following examples, wear-resistant steel plates according to embodiments of the present invention were produced under various conditions, and the mechanical properties of the obtained wear-resistant steel plates were investigated.
[耐摩耗鋼板の製造]
 まず、連続鋳造法により表1に示す化学組成を有するスラブを鋳造した。次いで、これらのスラブを表2に示す条件下で熱間圧延した後、鋼板を一旦200℃以下まで放冷により冷却し、次いで表2に示す条件下で焼入処理を行い、板厚10~100mmの耐摩耗鋼板を製造した。結果を表3に示す。なお、製造された耐摩耗鋼板の1mm深さ位置におけるビッカース硬さHV10(Hv)及び結晶粒の平均円相当直径、300℃で10分間の熱処理試験後の炭化物の長径の平均値、並びに機械特性は下記の方法により決定した。
[Manufacture of wear-resistant steel plate]
First, slabs having chemical compositions shown in Table 1 were cast by a continuous casting method. Next, after these slabs were hot rolled under the conditions shown in Table 2, the steel sheets were once cooled to 200° C. or less, and then quenched under the conditions shown in Table 2 to achieve a thickness of 10 to 10. A 100 mm wear-resistant steel plate was produced. Table 3 shows the results. In addition, the Vickers hardness HV 10 (Hv) at a depth of 1 mm of the manufactured wear-resistant steel plate, the average circle equivalent diameter of the grains, the average value of the long diameter of the carbide after the heat treatment test at 300 ° C. for 10 minutes, and the mechanical Properties were determined by the following methods.
[表面から1mm深さ位置におけるビッカース硬さHV10(Hv)]
 ビッカース硬さHV10(Hv)は、まず、耐摩耗鋼板のL断面(鋼板の圧延方向及び板厚方向に平行な断面)を機械研磨し、次いで表面から板厚方向に1mm深さの位置においてJIS Z2244:2009に準拠したビッカース硬さ試験を行ってビッカース硬さ(測定荷重10kgf=98.07N)を3点測定し、それらを平均することにより決定した。表3には、下記式1に関連して、f(C)=634×√[C]+140の値を併せて示している。
 HV10≧634×√[C]+140   ・・・式1
[Vickers hardness HV 10 (Hv) at a depth of 1 mm from the surface]
The Vickers hardness HV 10 (Hv) is determined by mechanically polishing the L cross section of the wear-resistant steel plate (the cross section parallel to the rolling direction and thickness direction of the steel plate), and then at a depth of 1 mm from the surface in the thickness direction. A Vickers hardness test based on JIS Z2244:2009 was performed to measure Vickers hardness (measurement load 10 kgf=98.07 N) at three points, and the values were averaged. Table 3 also shows the value of f(C)=634×√[C]+140 in relation to Equation 1 below.
HV 10 ≧634×√[C]+140 Formula 1
[表面から1mm深さ位置における結晶粒の平均円相当直径]
 結晶粒の平均円相当直径は以下のように決定した。まず、耐摩耗鋼板の表面から1mm深さ位置のL断面(耐摩耗鋼板の圧延方向及び板厚方向に平行な断面)を鏡面研磨し、次いで電子線後方散乱回折法(EBSD)により任意の圧延方向1.0mm×深さ方向0.4mmの領域の結晶方位を1箇所測定し、隣接する粒の方位差が15°以上ある領域を1つの結晶粒と定義して、個々の結晶粒の粒径を円相当直径として算出した。算出された全ての結晶粒に基づいて算出される面積平均を「結晶粒の平均円相当直径」として決定し、より具体的には、面積平均(d)は、各結晶粒が占める面積(ai)と各結晶粒の円相当直径(di)とから下記式5によって算出した。
 d=Σ(ai×di)/Σai   ・・・式5
[Average circle equivalent diameter of crystal grains at a depth of 1 mm from the surface]
The average circle-equivalent diameter of crystal grains was determined as follows. First, the L cross section (cross section parallel to the rolling direction and thickness direction of the wear resistant steel plate) at a depth of 1 mm from the surface of the wear resistant steel plate is mirror-polished, and then any rolling is performed by electron beam backscatter diffraction (EBSD). The crystal orientation of a region of 1.0 mm in the direction × 0.4 mm in the depth direction is measured at one point, and the region where the orientation difference between adjacent grains is 15° or more is defined as one crystal grain, and the grain of each crystal grain. The diameter was calculated as a circle equivalent diameter. The area average calculated based on all the calculated crystal grains is determined as the “average circle equivalent diameter of the crystal grains”, and more specifically, the area average (d) is the area occupied by each crystal grain (a i ) and the circle-equivalent diameter (d i ) of each crystal grain were calculated by the following formula 5.
d=Σ(a i ×d i )/Σa i Expression 5
[熱処理試験後の表面から1mm深さ位置における炭化物の長径の平均値]
 300℃で10分間の熱処理試験後の表面から1mm深さ位置における炭化物の長径の平均値は以下のように決定した。まず、耐摩耗鋼板の表面から1mm深さ位置のL断面(耐摩耗鋼板の圧延方向及び板厚方向に平行な断面)を鏡面研磨し、次いでナイタールで腐食させ、走査型電子顕微鏡(SEM)を用いて10000倍で観察し、10μm×6μmの観察視野を無作為に10視野選択した。次に、各観察視野において炭化物の長径(炭化物を横断する最大線分長さ)が大きいものから10個選択し、10視野における合計100個の炭化物の長径を平均することにより炭化物の長径の平均値を決定した。
[Average major diameter of carbide at a depth of 1 mm from the surface after heat treatment test]
After a heat treatment test at 300° C. for 10 minutes, the average major axis of carbide at a depth of 1 mm from the surface was determined as follows. First, the L cross section (cross section parallel to the rolling direction and thickness direction of the wear resistant steel plate) at a depth of 1 mm from the surface of the wear resistant steel plate is mirror-polished, then corroded with nital, and scanned with a scanning electron microscope (SEM). Observation was performed at a magnification of 10,000 using the microscope, and 10 fields of observation of 10 μm×6 μm were randomly selected. Next, select 10 carbides with the largest major axis (maximum line segment length across the carbide) in each observation field, and average the major axis of the carbides by averaging the major axis of a total of 100 carbides in the 10 fields of view. determined the value.
[機械特性]
 ブリネル硬さは、耐摩耗鋼板の表面から1mmを研削除去した面において直径10mmのタングステン硬球を用いて荷重3000kgfで測定した。シャルピー衝撃吸収エネルギー(vE-20)の平均値は、耐摩耗鋼板のL方向の板厚1/4位置から採取したJIS4号2mmVノッチ試験片に基づいて、JIS Z2242:2005の規定に準拠して、半径2mmの衝撃刃を用いて-20℃でのシャルピー衝撃吸収エネルギーを3本測定し、それらを平均することにより算出した。工具欠損までの切削距離は、超硬工具P種(JIS B4053:2013)のチップを用いて、切削速度200m/min、切込み量1mm、工具送り0.1mm/rev、及び乾式(切削油なし)の条件下で耐摩耗鋼板の表面からフライス加工を実施してチップが欠損するまでの切削距離を測定することにより決定した。
[Mechanical properties]
The Brinell hardness was measured under a load of 3000 kgf using a hard tungsten ball with a diameter of 10 mm on the surface of the wear-resistant steel plate with 1 mm removed by grinding. The average value of Charpy impact absorption energy (vE -20 ) is based on a JIS No. 4 2 mm V-notch test piece taken from the 1/4 position of the plate thickness in the L direction of the wear-resistant steel plate, in accordance with the provisions of JIS Z2242: 2005. , Charpy impact absorption energy at −20° C. was measured three times using an impact blade with a radius of 2 mm, and calculated by averaging them. The cutting distance to tool failure was measured using a cemented carbide tool P class (JIS B4053: 2013) chip at a cutting speed of 200 m / min, a depth of cut of 1 mm, a tool feed of 0.1 mm / rev, and a dry process (no cutting oil). It was determined by measuring the cutting distance from the surface of the wear-resistant steel plate to chipping by milling under the conditions of .
 ブリネル硬さが360~490HBであり、シャルピー衝撃吸収エネルギー(vE-20)の平均値が27J以上であり、工具欠損までの切削距離が200m以上である場合を、良好な耐摩耗性及び低温靭性を維持しつつ、改善された被削性を有する耐摩耗鋼板として評価した。 Good wear resistance and low-temperature toughness when the Brinell hardness is 360 to 490 HB, the average value of Charpy impact absorption energy (vE -20 ) is 27 J or more, and the cutting distance to tool failure is 200 m or more. was evaluated as a wear-resistant steel sheet having improved machinability while maintaining
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1~3を参照すると、比較例23~28では、C、Mn、Cr、Mo、Ti又はB含有量が低かったために十分なブリネル硬さが得られず、耐摩耗性が低下した。特に比較例27はTi含有量が低かったために鋼中の固溶窒素を十分に固定できずにBNが析出してしまい、Bの焼入れ性向上効果が十分に得られなかったものと考えられる。比較例29では、N含有量が低かったためにピン止め粒子としてのTiNの析出が十分でなく、結晶粒の細粒化効果が十分に得られず低温靭性が低下した。 Referring to Tables 1 to 3, in Comparative Examples 23 to 28, the C, Mn, Cr, Mo, Ti or B content was low, so sufficient Brinell hardness was not obtained and the wear resistance decreased. Especially in Comparative Example 27, since the Ti content was low, the solute nitrogen in the steel could not be sufficiently fixed, and BN precipitated, and it is considered that the effect of improving the hardenability of B was not sufficiently obtained. In Comparative Example 29, since the N content was low, precipitation of TiN as pinning particles was insufficient, and a sufficient grain refining effect was not obtained, resulting in a decrease in low-temperature toughness.
 比較例30、32、35及び36では、C、Mn、Cr又はMo含有量が高かったために低温靭性が低下した。比較例31では、Si含有量が高かったために切削時における炭化物の析出が十分でなく、被削性が低下した。比較例33、34及び37~40では、P、S、Ti、B、Al又はN含有量が高かったために低温靭性が低下した。比較例41及び42では、焼入処理工程における再加熱温度Tが適切でなかったために合金元素と再加熱温度によって決定されるパラメータRの値が所望の範囲内から外れてしまい、結果として結晶粒が粗大化して被削性が低下した。特に比較例41では、パラメータRの値が小さいために再加熱時のオーステナイト化が不十分であったと考えられ、結果として鋼板の硬さが低下して耐摩耗性も低下した。比較例43では、焼入処理工程における再加熱温度後の平均冷却速度が遅かったために金属組織の変態が十分に進まず、結果として鋼板の硬さが低下して耐摩耗性が低下した。 In Comparative Examples 30, 32, 35 and 36, the low temperature toughness decreased due to the high C, Mn, Cr or Mo content. In Comparative Example 31, since the Si content was high, precipitation of carbides during cutting was insufficient, and the machinability deteriorated. In Comparative Examples 33, 34 and 37-40, the low temperature toughness decreased due to the high P, S, Ti, B, Al or N content. In Comparative Examples 41 and 42, since the reheating temperature T in the quenching treatment step was not appropriate, the value of the parameter R determined by the alloy elements and the reheating temperature deviated from the desired range. became coarse and the machinability decreased. In particular, in Comparative Example 41, the value of the parameter R was small, and thus the austenitization during reheating was considered to be insufficient. In Comparative Example 43, since the average cooling rate after the reheating temperature in the quenching treatment step was slow, the transformation of the metal structure did not proceed sufficiently, resulting in a decrease in hardness and wear resistance of the steel sheet.
 これとは対照的に、全ての実施例において、耐摩耗鋼板の化学組成、表面から1mm深さ位置におけるビッカース硬さHV10及び結晶粒の平均円相当直径、並びに熱処理試験後の表面から1mm深さ位置における炭化物の長径の平均値を適切なものとすることにより、良好な耐摩耗性及び低温靭性を維持しつつ、改善された被削性を有する耐摩耗鋼板を得ることができた。また、表3には示していないが、表面から1mm深さ位置における旧オーステナイト粒のアスペクト比は、表3中の全ての実施例において1.0~1.8の範囲内であった。さらに、光学顕微鏡による組織分析の結果から、全ての実施例に係る耐摩耗鋼板において、鋼板表面から1mm深さ位置における金属組織は、主としてマルテンサイトから構成されており、より具体的には面積率で90%以上のマルテンサイトを含んでいた。 In contrast, in all examples, the chemical composition of the wear-resistant steel plate, the Vickers hardness HV 10 at a depth of 1 mm from the surface and the average equivalent circle diameter of the grains, and the heat treatment test at a depth of 1 mm from the surface A wear-resistant steel sheet having improved machinability while maintaining good wear resistance and low-temperature toughness was obtained by optimizing the average value of the major axis of the carbides at the slant position. Although not shown in Table 3, the aspect ratio of the prior austenite grains at a depth of 1 mm from the surface was within the range of 1.0 to 1.8 in all the examples in Table 3. Furthermore, from the results of structural analysis with an optical microscope, the metal structure at a depth of 1 mm from the steel plate surface is mainly composed of martensite in all the wear-resistant steel plates according to the examples, and more specifically, the area ratio contained more than 90% martensite.

Claims (3)

  1.  質量%で、
     C:0.140~0.250%、
     Si:0.09%以下、
     Mn:1.20~2.00%、
     P:0.0200%以下、
     S:0.0050%以下、
     Cr:0.10~1.00%、
     Mo:0.05~0.29%、
     Ti:0.005~0.030%、
     B:0.0003~0.0050%、
     Al:0.0030~0.1000%、
     N:0.0010~0.0080%、
     O:0.0050%以下、
     Ni:0~0.50%、
     Nb:0~0.050%、
     Cu:0~0.50%、
     V:0~0.050、
     W:0~0.50%、
     Ca:0~0.0050%、
     Mg:0~0.0050%、
     REM:0~0.0050%、
     残部:Fe及び不純物である化学組成を有し、
     表面から1mm深さ位置におけるビッカース硬さHV10(Hv)が下記式1を満たし、
     表面から1mm深さ位置における方位差15°以上の境界で囲まれた結晶粒の平均円相当直径が25μm以下であり、
     300℃で10分間の熱処理試験後の表面から1mm深さ位置における炭化物の長径の平均値であって、10μm×6μmの観察視野を無作為に10視野選択し、各観察視野において炭化物の長径が大きいものから10個選択した場合の合計100個の炭化物の長径の平均値が0.25~5.00μmである、耐摩耗鋼板。
     HV10≧634×√[C]+140   ・・・式1
     ここで、[C]は耐摩耗鋼板のC含有量(質量%)である。
    in % by mass,
    C: 0.140 to 0.250%,
    Si: 0.09% or less,
    Mn: 1.20-2.00%,
    P: 0.0200% or less,
    S: 0.0050% or less,
    Cr: 0.10 to 1.00%,
    Mo: 0.05-0.29%,
    Ti: 0.005 to 0.030%,
    B: 0.0003 to 0.0050%,
    Al: 0.0030 to 0.1000%,
    N: 0.0010 to 0.0080%,
    O: 0.0050% or less,
    Ni: 0 to 0.50%,
    Nb: 0 to 0.050%,
    Cu: 0-0.50%,
    V: 0 to 0.050,
    W: 0 to 0.50%,
    Ca: 0 to 0.0050%,
    Mg: 0-0.0050%,
    REM: 0 to 0.0050%,
    Balance: having a chemical composition of Fe and impurities,
    The Vickers hardness HV 10 (Hv) at a depth of 1 mm from the surface satisfies the following formula 1,
    The average circle equivalent diameter of crystal grains surrounded by boundaries with a misorientation of 15° or more at a depth of 1 mm from the surface is 25 μm or less,
    The average value of the long axis of the carbide at a depth of 1 mm from the surface after a heat treatment test at 300 ° C. for 10 minutes. A wear-resistant steel plate in which the average value of the long diameters of 100 carbides selected from the largest ones is 0.25 to 5.00 μm.
    HV 10 ≧634×√[C]+140 Formula 1
    Here, [C] is the C content (% by mass) of the wear-resistant steel plate.
  2.  前記化学組成が、質量%で、
     Ni:0.01~0.50%、
     Nb:0.001~0.050%、
     Cu:0.01~0.50%、
     V:0.001~0.050、
     W:0.01~0.50%、
     Ca:0.0001~0.0050%、
     Mg:0.0001~0.0050%、及び
     REM:0.0001~0.0050%
    からなる群から選択される1種又は2種以上を含む、請求項1に記載の耐摩耗鋼板。
    The chemical composition, in mass %,
    Ni: 0.01 to 0.50%,
    Nb: 0.001 to 0.050%,
    Cu: 0.01-0.50%,
    V: 0.001 to 0.050,
    W: 0.01 to 0.50%,
    Ca: 0.0001 to 0.0050%,
    Mg: 0.0001-0.0050%, and REM: 0.0001-0.0050%
    The wear-resistant steel plate according to claim 1, comprising one or more selected from the group consisting of
  3.  6~150mmの板厚を有する、請求項1又は2に記載の耐摩耗鋼板。 The wear-resistant steel plate according to claim 1 or 2, having a plate thickness of 6 to 150 mm.
PCT/JP2021/016546 2021-04-23 2021-04-23 Wear-resistant steel sheet WO2022224458A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/016546 WO2022224458A1 (en) 2021-04-23 2021-04-23 Wear-resistant steel sheet
JP2022506528A JP7239056B1 (en) 2021-04-23 2021-04-23 Wear-resistant steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/016546 WO2022224458A1 (en) 2021-04-23 2021-04-23 Wear-resistant steel sheet

Publications (1)

Publication Number Publication Date
WO2022224458A1 true WO2022224458A1 (en) 2022-10-27

Family

ID=83723460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016546 WO2022224458A1 (en) 2021-04-23 2021-04-23 Wear-resistant steel sheet

Country Status (2)

Country Link
JP (1) JP7239056B1 (en)
WO (1) WO2022224458A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290554A (en) * 2004-03-11 2005-10-20 Nippon Steel Corp Steel plate excellent in machinability, toughness and weldability, and method for production thereof
JP2014194042A (en) * 2013-03-28 2014-10-09 Jfe Steel Corp Abrasion resistant steel plate having low-temperature toughness, and manufacturing method thereof
JP2017186634A (en) * 2016-04-08 2017-10-12 新日鐵住金株式会社 Hot rolled steel sheet and manufacturing method therefor
WO2019181130A1 (en) * 2018-03-22 2019-09-26 日本製鉄株式会社 Wear-resistant steel and method for producing same
US20200157651A1 (en) * 2017-05-24 2020-05-21 Tata Steel Uk Limited High-strength, hot rolled abrasive wear resistant steel strip

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290554A (en) * 2004-03-11 2005-10-20 Nippon Steel Corp Steel plate excellent in machinability, toughness and weldability, and method for production thereof
JP2014194042A (en) * 2013-03-28 2014-10-09 Jfe Steel Corp Abrasion resistant steel plate having low-temperature toughness, and manufacturing method thereof
JP2017186634A (en) * 2016-04-08 2017-10-12 新日鐵住金株式会社 Hot rolled steel sheet and manufacturing method therefor
US20200157651A1 (en) * 2017-05-24 2020-05-21 Tata Steel Uk Limited High-strength, hot rolled abrasive wear resistant steel strip
WO2019181130A1 (en) * 2018-03-22 2019-09-26 日本製鉄株式会社 Wear-resistant steel and method for producing same

Also Published As

Publication number Publication date
JPWO2022224458A1 (en) 2022-10-27
JP7239056B1 (en) 2023-03-14

Similar Documents

Publication Publication Date Title
RU2627826C2 (en) Wear-resistant sheet steel with excellent low-temperature impact strength and resistance to hydrogen attack and method of its manufacture
CN110546290B (en) Austenitic wear-resistant steel plate
RU2627830C2 (en) Wear-resistant heavy plates with excellent low-temperature impact strength and method of their production
CN111727267B (en) Austenitic wear-resistant steel plate
JP5186809B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP6729823B2 (en) Method of manufacturing wear-resistant steel
KR20120096111A (en) Steel material for quenching and method of producing same
JP2018204109A (en) Abrasion resistant thick steel plate
WO2020054553A1 (en) Steel material and production method therefor
JP7135465B2 (en) Wear-resistant thick steel plate
JP5217191B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP7239056B1 (en) Wear-resistant steel plate
JP2020132914A (en) Wear-resistant thick steel plate
JP2007262429A (en) Wear-resistant steel sheet excellent in bendability
JP2023506822A (en) High-hardness wear-resistant steel with excellent low-temperature impact toughness and method for producing the same
JP2020132913A (en) Wear-resistant thick steel plate and method for manufacturing the same
JP2020132912A (en) Wear-resistant thick steel plate
JP2021172875A (en) Manufacturing method of abrasion resistant steel
KR20230024381A (en) wear resistant steel
JP2020193380A (en) Abrasion resistant steel plate and method for producing the same
JP2007277590A (en) Wear resistant steel sheet having excellent bending workability

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022506528

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE