WO2022224406A1 - Refrigeration cycle apparatur and indoor unit - Google Patents

Refrigeration cycle apparatur and indoor unit Download PDF

Info

Publication number
WO2022224406A1
WO2022224406A1 PCT/JP2021/016303 JP2021016303W WO2022224406A1 WO 2022224406 A1 WO2022224406 A1 WO 2022224406A1 JP 2021016303 W JP2021016303 W JP 2021016303W WO 2022224406 A1 WO2022224406 A1 WO 2022224406A1
Authority
WO
WIPO (PCT)
Prior art keywords
damper
heat exchange
suction port
indoor
air
Prior art date
Application number
PCT/JP2021/016303
Other languages
French (fr)
Japanese (ja)
Inventor
真哉 東井上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US18/546,499 priority Critical patent/US20240133576A1/en
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023515977A priority patent/JP7466764B2/en
Priority to PCT/JP2021/016303 priority patent/WO2022224406A1/en
Priority to EP21937899.9A priority patent/EP4328512A4/en
Priority to CN202180097105.1A priority patent/CN117157493A/en
Publication of WO2022224406A1 publication Critical patent/WO2022224406A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0073Indoor units, e.g. fan coil units with means for purifying supplied air characterised by the mounting or arrangement of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/003Ventilation in combination with air cleaning

Definitions

  • the present disclosure relates to a refrigeration cycle device and an indoor unit.
  • This disclosure was made to solve such problems. It is an object of the present invention to provide a refrigerating cycle device for cooling and heating, in which the presence or absence of ventilation can be set, and a decrease in efficiency can be suppressed when ventilation is not performed.
  • the indoor unit is provided with a first suction port that communicates with the room and a second suction port that communicates with the outside, and the first suction port and the air outlet are connected.
  • a first heat exchange section arranged in the first air passage and a second air passage connecting a second suction port and an air outlet, and the first heat exchange portion is arranged in the refrigeration cycle device during heating operation.
  • a second heat exchange section connected to the first heat exchange section so as to be located downstream of the section; and a first damper capable of adjusting the amount of air flowing from the first air passage to the second air passage. and a second damper provided at the second suction port and capable of adjusting the amount of air sucked from the second suction port.
  • the refrigeration cycle device of the present disclosure it is possible to set the presence or absence of ventilation, and compared with the indoor heat exchanger installed in the conventional refrigeration cycle device, it is possible to exhibit the same performance even without ventilation. . As a result, a decrease in efficiency of the refrigeration cycle device can be suppressed regardless of the usage conditions.
  • FIG. 1 is a diagram showing the configuration of a refrigeration cycle apparatus according to Embodiment 1;
  • FIG. 4 is a diagram showing the operation of the indoor unit according to Embodiment 1.
  • FIG. 4 is a diagram showing the state of the indoor heat exchanger during heating operation in Embodiment 1.
  • FIG. 4 is a diagram showing another configuration of the indoor unit according to Embodiment 1.
  • FIG. 4A and 4B are diagrams showing the structure, operation, and air flow of the indoor unit in Embodiment 1.
  • FIG. FIG. 8 is a diagram showing the structure, operation, and air flow of an indoor unit in Example 2;
  • FIG. 10 is a diagram showing the structure, operation, and airflow of an indoor unit in Example 3;
  • FIG. 11 is a diagram showing operating means of a second damper in Example 3;
  • FIG. 5 is a diagram showing a modification of the indoor unit in Embodiment 1;
  • FIG. 10 is a diagram showing a modification of the indoor unit in Embodiment 2;
  • FIG. 1 is a diagram showing the configuration of a refrigeration cycle apparatus 100 according to this embodiment.
  • a refrigeration cycle device 100 includes a compressor 1 , a four-way valve 2 , an indoor unit 3 , an expansion valve 9 and an outdoor heat exchanger 10 .
  • the indoor unit 3 accommodates a first indoor heat exchange section 4 , a second indoor heat exchange section 5 and a first indoor fan 6 .
  • the outdoor heat exchanger 10 is housed in an outdoor unit (not shown), and the outdoor unit also houses an outdoor fan.
  • the refrigeration cycle device 100 includes a control device 50 .
  • the control device 50 commands the compressor 1, the four-way valve 2, the first air blowing means 6, the expansion valve 9, the first damper 11 and the second damper 12 to be described later, and the outdoor blower (not shown). to control each action.
  • the compressor 1, the four-way valve 2, the first indoor heat exchange section 4, the second indoor heat exchange section 5, the expansion valve 9, and the outdoor heat exchanger 10 are connected by piping to form a refrigerant circuit.
  • a refrigerant such as R32 (difluoromethane) circulates in the refrigerant circuit.
  • the type of refrigerant enclosed in refrigeration cycle device 100 is not limited.
  • the refrigerant flows in the direction indicated by the dashed arrow in cooling operation. That is, the refrigerant discharged from the compressor 1 is condensed in the outdoor heat exchanger 10 , decompressed in the expansion valve 9 , and evaporated in the second indoor heat exchange section 5 and the first indoor heat exchange section 4 . Evaporated refrigerant returns to the compressor 1 .
  • the refrigerant flows in the direction indicated by the solid arrow. That is, the refrigerant discharged from the compressor 1 is condensed in the first indoor heat exchange section 4 and the second indoor heat exchange section 5 , decompressed in the expansion valve 9 , and evaporated in the outdoor heat exchanger 10 . Evaporated refrigerant returns to the compressor 1 . Switching between the cooling operation and the heating operation is performed by changing the connection of the refrigerant circuit with the four-way valve 2 .
  • the compressor 1 is, for example, a rotary compressor.
  • the capacity, rated frequency, and the like of the compressor 1 are determined by the type of refrigerant sealed in the refrigerant circuit, the capacity of the refrigeration cycle device 100, and the like.
  • the compressor 1 may be a piston type or scroll type compressor. Further, the compressor 1 may be operated at the rated frequency by the control device 50, or the frequency may be variably controlled by an inverter mounted on the control device 50. FIG.
  • the four-way valve 2 has a function of switching the flow path, and switches the flow path depending on whether the refrigeration cycle device 100 performs cooling operation or heating operation.
  • the four-way valve 2 connects the outlet of the compressor 1 and the outdoor heat exchanger 10 and connects the first indoor heat exchanger 4 and the suction port of the compressor 1 .
  • the four-way valve 2 connects the discharge port of the compressor 1 and the first indoor heat exchange section 4 , and connects the outdoor heat exchange 10 and the suction port of the compressor 1 . Connection of the four-way valve 2 is switched by the controller 50 .
  • the indoor unit 3 accommodates a first indoor heat exchange section 4, a second indoor heat exchange section 5, and a first indoor fan 6.
  • the first indoor heat exchange section 4 and the second indoor heat exchange section 5 may be the same indoor heat exchanger, or may be separate indoor heat exchangers.
  • the structural relationship between the first indoor heat exchange section 4 and the second indoor heat exchange section 5 is the following two points.
  • the first point is that the first indoor heat exchange unit 4 is positioned upstream in the refrigerant flow when the refrigeration cycle device 100 performs heating operation, and the second indoor heat exchange unit 5 is positioned upstream during the heating operation. It is positioned downstream of one indoor heat exchange section 4 .
  • the second point is that the indoor air always flows through the first indoor heat exchange section 4, but the outside air or the indoor air flows through the second indoor heat exchange section 5, as will be described later.
  • the first indoor heat exchange section 4 and the second indoor heat exchange section 5 are, for example, fin-tube heat exchangers composed of copper pipes and aluminum fins fixed to the copper pipes. Coolant flows inside the copper tube, and the heat of the coolant is transferred to the fins. Thereby, heat exchange is performed between the air flowing between the fins and the refrigerant.
  • refrigerant flows through many branched copper pipes (hereinafter referred to as paths). It may be the same as or different from the heat exchange section 5 . Further, the density and shape of the fins may be the same or different between the first indoor heat exchange section 4 and the second indoor heat exchange section 5 .
  • the volume of the first heat exchange section 4 is larger than the volume of the second heat exchange section 5 .
  • the refrigeration cycle device 100 performs a heating operation
  • a large amount of refrigerant in a gas state and a gas-liquid two-phase state flows through the first indoor heat exchange section 4a, and a liquid refrigerant flows through the second indoor heat exchange section 4b.
  • a lot of refrigerant in the state flows.
  • the volume occupied by the refrigerant in the gas state and the gas-liquid two-phase state is generally large. be.
  • the first indoor heat exchange section 4 and the second indoor heat exchange section 5 are connected by copper pipes.
  • the first indoor heat exchange section 4 and the second indoor heat exchange section 5 may be connected in any way. For example, if the number of paths of the first indoor heat exchange section 4 and the number of paths of the second indoor heat exchange section 5 are the same, the respective paths may be connected. Alternatively, when the number of paths in the first indoor heat exchange section 4 is greater than the number of paths in the second indoor heat exchange section 5, some of the paths in the first indoor heat exchange section 4 are merged to form the second You may make it join the path
  • the first indoor fan 6 is, for example, a cross-flow fan provided inside the indoor unit 3.
  • the first indoor fan 6 generates an airflow for blowing out the air temperature-controlled by the first indoor heat exchange section 4 and the second indoor heat exchange section 5 from the indoor unit 3 .
  • the first indoor fan 6 is controlled by the controller 50 .
  • the first indoor blower 6 not only a cross-flow fan but also any means such as a propeller fan or a sirocco fan can be used.
  • the indoor unit 3 is formed with a first intake port 13 for sucking indoor air, a second intake port 14 for sucking outside air, and a blowout port 15 for blowing out temperature-controlled air.
  • the second suction port 14 sucks outside air from, for example, a ventilation hole provided in the wall of the room or a duct connected to the outside.
  • the indoor air sucked into the indoor unit 3 through the first inlet 13 passes through the first indoor heat exchange section 4 and is blown out through the outlet 15 .
  • outside air sucked into the indoor unit 3 through the second inlet 14 passes through the second indoor heat exchange section 5 and is blown out from the outlet 15 .
  • the passage through which the indoor air flows that is, the route connecting the first suction port 13 and the discharge port 15
  • the passage through which the indoor air flows that is, the route connecting the first suction port 13 and the discharge port 15
  • a second air passage 8 an air passage through which outside air flows
  • FIGS. 2(a) to 2(d) are diagrams showing the states of the first damper 11 and the second damper 12 and the air flow in the first air passage 7 and the second air passage 8.
  • the first damper 11 is attached in the first air passage at a position where the amount of indoor air branched from the first air passage 7 and flowing into the second air passage can be adjusted.
  • the second damper 12 is attached to a position such as the vicinity of the second suction port 14 where the amount of outside air sucked from the suction port 14 can be adjusted.
  • a partition wall 18 may be provided inside the indoor unit 3 to separate the first air passage 7 and the second air passage 8 from each other.
  • a part of the partition wall 18 has a hole communicating between the first air passage 7 and the second air passage 8, and the first damper 11 is attached at a position capable of opening and closing the hole.
  • the partition wall 18 is provided inside the indoor unit 3 . good.
  • the purpose of providing the partition wall 18 is to prevent indoor air from flowing into the second heat exchange section 5 when the first damper 11 is in the closed state. Therefore, the structure of the partition wall 18 is not limited to the example in which the first air passage 7 and the second air passage 8 are separated from each other as described above and a part of the partition wall 18 has a hole communicating between the two air passages.
  • the air flow inside the indoor unit 3 will be explained in more detail.
  • the first damper 11 is closed and the second damper 12 is open.
  • the indoor air sucked from the first suction port 13 flows into the first indoor heat exchange section 4 from the first air passage 7 .
  • Outside air sucked from the second suction port 14 flows into the second indoor heat exchange section 5 from the second air passage 8 .
  • the first damper 11 is open and the second damper 12 is closed.
  • the indoor air sucked from the first suction port 13 flows through the first air passage 7 .
  • the first damper 11 is in an open state, part of the sucked indoor air branches in the first air passage 7 and also flows into the second air passage 8 . In this case, indoor air flows into both the first indoor heat exchange section 4 and the second indoor heat exchange section 5 .
  • the first damper 11 is in the closed state and the second damper 12 is in the half-open state.
  • the indoor air sucked from the first suction port 13 flows through the first air passage 7 .
  • Outside air sucked from the second suction port 14 flows through the second air passage 8 .
  • the second damper 12 is in a half-open state, and the opening area of the second suction port 14 is smaller than that in FIG. 2(a). Therefore, the amount of outside air sucked from the second suction port 14 is smaller than in the case of FIG. 2(a).
  • both the first damper 11 and the second damper 12 are in a half-open state.
  • the room air sucked from the first suction port 13 passes through the first air passage 7 .
  • the first damper 11 is in a half-open state, part of the sucked indoor air flows into the second air passage 8 .
  • the outside air sucked from the second suction port 14 and part of the indoor air flow through the second air passage 8 .
  • the expansion valve 9 is, for example, an electromagnetic valve whose opening can be controlled.
  • the expansion valve 9 decompresses the high-pressure refrigerant that has flowed into it to a low-pressure refrigerant.
  • the degree of opening of the solenoid valve is controlled by the controller 50 .
  • the outdoor heat exchanger 10 is, for example, a fin-tube heat exchanger. Although one outdoor heat exchanger 10 is illustrated in FIG. 1, for example, the number of passes may be changed in the middle, or the density and shape of the fins may be changed.
  • the control device 50 is composed of, for example, a CPU (Central Processing Unit), a storage medium such as a ROM (Read Only Memory) storing a control program, a working memory such as a RAM (Random Access Memory), and a communication circuit.
  • the control device 50 operates the compressor 1, the four-way valve 2, the first air blowing means 6, the expansion valve 9, the first damper 11 according to a pre-stored operation program or a signal input by the user of the refrigeration cycle apparatus. , the second damper 12 and the outdoor fan to control their operations.
  • the first damper 11 and the second damper 12 automatically operate by detecting the indoor environment with a sensor or the like. In this case, the state of the first damper 11 and the second damper 12 in FIGS. According to.
  • first damper 11 and the second damper 12 are operated according to a signal input by the user of the refrigeration cycle device 100 by means of a remote control or the like. It may be operated or may be manually operated by the user.
  • outside air is supplied to the room, so indoor air pollution is alleviated.
  • the polluted air in the room is exhausted to the outside through windows, ventilation openings, or gaps provided in the room.
  • FIG. 3 is a diagram showing the states of the first indoor heat exchange section 4 and the second indoor heat exchange section 5. As shown in FIG. In addition, in FIG. 3, the states of the first indoor heat exchange section 4 and the second indoor heat exchange section 5 in FIG. 2(a) are indicated by solid lines.
  • the high-temperature, high-pressure gas refrigerant compressed by the compressor 1 flows into the first indoor heat exchange section 4 .
  • the high-temperature, high-pressure gas refrigerant exchanges heat with the room air to become a gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant further exchanges heat with the room air to become a liquid refrigerant.
  • the liquid refrigerant flows into the second indoor heat exchange section 5 .
  • the temperature difference between the refrigerant and the outside air increases in the second indoor heat exchange section 5, increasing the amount of heat exchange.
  • the refrigerant that has become a supercooled liquid due to heat exchange flows out from the second indoor heat exchange section 5 .
  • the difference between the state of the first indoor heat exchange unit 4 and the second indoor heat exchange unit 5 in the present disclosure and the indoor heat exchanger of a conventional refrigeration cycle device that does not take outside air into the indoor unit will be described. do.
  • the state of the conventional indoor heat exchanger is indicated by dotted lines.
  • heat is exchanged between indoor air having a high temperature and the refrigerant even in a region where the refrigerant is liquid. That is, since the temperature difference between the air and the refrigerant is small, the amount of heat exchange is reduced.
  • the supercooled region inside the heat exchanger expands and the gas-liquid two-phase region shrinks.
  • the in-tube heat transfer coefficient in a heat exchanger is higher in the gas-liquid two-phase region than in the supercooled region. Therefore, in a conventional heat exchanger with a large subcooling region, the efficiency of the heat exchanger decreases and the pressure inside the heat exchanger increases.
  • the temperature difference between the refrigerant and the outside air is large in the second indoor heat exchange unit 5, A sufficient amount of heat exchange can be secured even in the supercooled region.
  • the gas-liquid two-phase region in the heat exchanger is larger than that of conventional heat exchangers, and the efficiency of the heat exchanger is good. This results in a lower pressure in the heat exchanger compared to conventional heat exchangers.
  • the high-to-low pressure ratio of the refrigerating cycle formed in the refrigerating cycle device 100 that is, the compression ratio in the compressor 1 decreases, so the efficiency of the compressor 1 improves, leading to energy saving. Furthermore, since the supercooled liquid area becomes smaller, the amount of refrigerant charged in the entire refrigeration cycle apparatus 100 is reduced.
  • the second damper 12 is closed and the first damper 11 is open as shown in FIG. 2(b).
  • the indoor air flows through the first indoor heat exchange section 4 and the second indoor heat exchange section 5 .
  • the states of the first indoor heat exchange unit 4 and the second indoor heat exchange unit 5 are the same as those of a conventional heat exchanger that does not take in outside air into the indoor unit, so description thereof will be omitted.
  • the second damper 12 is in a half-open state and the first damper 11 is in a closed state, as shown in FIG. 2(c).
  • outside air flows through the second air passage 8 and the second indoor heat exchange section 5, but the amount of the outside air is compared to the amount of outside air when the second damper 12 is open as shown in FIG. 2(a). less. This is because the second damper 12 is in a half-open state and acts as a ventilation resistance.
  • the first damper 11 may be in a half-open state as shown in FIG. 2(d). In this case, part of the room air sucked from the first suction port 13 flows into the second air passage 8 . In the second air passage 8, the indoor air and the outside air sucked from the second suction port 14 are mixed. At this time, the temperature of the indoor air is lower than the temperature of the outside air, so the temperature of the mixed air is lower than the temperature of the outside air. The mixed air flows into the second indoor heat exchange section 5 .
  • FIGS. 2(a) to 2(d) do not limit the operation of the refrigeration cycle apparatus 100, and the refrigeration cycle apparatus 100 is shown in FIGS. 2(a) to 2(d).
  • Other operations can also be performed.
  • both the first damper 11 and the second damper 12 may be opened. In this case, even when the temperature of the outside air is high, it is possible to reduce the decrease in the heat exchange amount of the second indoor heat exchange section 5 after increasing the ventilation amount.
  • the first damper 11 and the second damper 12 are either in an open state, a closed state, or a half-open state.
  • the damper 12 can be in an intermediate state between the open state and the half-open state, and an intermediate state between the closed state and the half-open state. In this way, by enabling fine setting of the opening degrees of the first damper 11 and the second damper 12, it is possible to adjust the amount of ventilation according to the indoor conditions and optimize the efficiency of the heat exchanger. .
  • the refrigeration cycle device 100 can also perform the cooling operation.
  • the cooling operation consider a situation in which the temperature of the outside air is higher than the temperature of the indoor air, and the indoor air is polluted.
  • the second damper 12 is in an open state and the first damper 11 is in a closed state. Outside air flows through the exchange portion 5 .
  • the refrigeration cycle device 100 switches the states of the first damper 11 and the second damper 12 according to the contamination status of the indoor air and the temperatures of the outside air and the indoor air even during the cooling operation. As a result, an appropriate amount of ventilation can be performed while maintaining the cooling capacity and the efficiency of the refrigeration cycle apparatus 100 in various situations.
  • the refrigeration cycle device 100 operates the first damper 11 and the second damper 12 according to the indoor air contamination status, the outside air temperature, the indoor air temperature, and the like. After suppressing the fluctuation
  • the refrigeration cycle device 100 when the refrigeration cycle device 100 does not perform ventilation, indoor air can flow to the second indoor heat exchange section 5 by operating the first damper 11 and the second damper 12 .
  • the state of the air inside the indoor unit 3, that is, the heat exchange mechanism between the air and the refrigerant is the same as the heat exchange mechanism between the air and the refrigerant in the indoor unit of the conventional refrigeration cycle apparatus. Therefore, even if ventilation is not required, the refrigeration cycle device 100 can achieve efficiency similar to that of conventional refrigeration cycle devices.
  • the configuration of the refrigeration cycle device 100 described above is an example of the configuration of the refrigeration cycle device 100 in the present disclosure, and can be variously modified within the scope of the present disclosure.
  • FIG. 4 is a diagram showing another configuration example of the indoor unit 3.
  • the second indoor fan 16 is provided, and the amount of indoor air flowing into the first indoor heat exchange section 4 and the amount of outdoor air flowing into the second indoor heat exchange section 5 are controlled independently. can be adjusted by
  • a filter 17 is attached to the second suction port 14 in FIG. Filter 17 removes dust contained in the outside air. This makes it possible to supply cleaner outside air to the room.
  • Example 1 An embodiment of the structure and operation of the indoor unit 3 will be described below. In addition, the flow of air inside the indoor unit 3 will also be described.
  • FIGS. 5(a) to 5(e) are diagrams showing the structure and operation of the indoor unit 3 of the refrigeration cycle apparatus 100 in Embodiment 1, and the flow of air inside the indoor unit 3.
  • FIG. 5(a) is a perspective view showing the overall structure of the indoor unit 3a
  • FIG. 5(b) is a front view of the indoor unit 3a as seen from the front
  • FIG. 5(c) is a rear view of the indoor unit 3a as seen from the rear
  • 5(d) and 5(e) are left views of the indoor unit 3a viewed from the left.
  • a first suction port 13 for sucking indoor air is provided on the upper surface of the indoor unit 3a, and a second suction port 14a for sucking outside air is provided on the rear surface.
  • a blowout port 15 provided with a wind direction adjusting means for adjusting the wind direction of the airflow blown out from the indoor unit 3a is provided at the lower front portion of the indoor unit 3a.
  • the first indoor heat exchange units 4a and 4b, the second indoor heat exchange unit 5a, and the first indoor fan 6 are housed inside the indoor unit 3a.
  • a first damper 11a and a second damper 12a are accommodated inside the indoor unit 3a.
  • the second damper 12a is arranged close to the second suction port 14a.
  • the shape of the second damper 12a is substantially the same as the shape of the second suction port 14a, and the second damper 12a is slightly larger than the second suction port 14a.
  • the second damper 12a is arranged immediately below the second suction port 14a.
  • the second damper 12a is also rectangular, and the width and height of the second damper 12a are larger than the width and height of the second suction port 14a.
  • the second damper 12a has an operation means (not shown), and has an open state that does not block the outside air flowing into the indoor unit 3a from the second suction port 14a, and an open state that blocks the second suction port 14a and prevents outside air from flowing into the indoor unit 3a. It operates to take a closed state that blocks inflow and a half-open state between the open and closed states. When the second damper 12a is in the closed state, the second damper 12a is larger than the second suction port 14a, so the second suction port 14a can be completely blocked.
  • the second damper 12a may be operated by attaching a rotating shaft to one end of the second damper 12a and rotating the rotating shaft by power.
  • the first damper 11a is arranged inside the indoor unit 3a between the first suction port 13 and the second indoor heat exchange section 5a. In the example shown in FIGS. 5(a) and 5(d), the first damper 11a is attached below the first suction port 13 on the rear side of the indoor unit 3a.
  • the shape of the first damper 11a is not particularly limited. It is as large as it can be.
  • the width of the first damper 11a is greater than the width of the first suction port 13, and the length of the first damper 11a is the rear surface of the indoor unit 3a. to the second indoor heat exchange section 5a. Since the first damper 11a has such a size, the indoor air is prevented from flowing into the second indoor heat exchange section 5a when the first damper 11a is in a closed state described later. be able to.
  • the first damper 11a has an operation means (not shown), and is closed to prevent the indoor air sucked from the first suction port 13 from flowing into the second indoor heat exchange section 5a. It operates to take an open state that does not hinder the flow into the heat exchanging portion 5a and a half-open state between the open state and the closed state.
  • the width of the first damper 11a is longer than the width of the first suction port 13, and the length of the first damper 11a is two seconds from the rear surface of the indoor unit 3a. Since it is larger than the length up to the indoor heat exchange section 5a, it is possible to prevent the indoor air from flowing into the second indoor heat exchange section 5a.
  • any means can be used as the operation means for switching the state of the first damper 11a regardless of its type.
  • the first damper 11a may be operated by attaching a rotating shaft to one end of the first damper 11a and rotating the rotating shaft by power.
  • FIGS. 5(d) and 5(e) show the airflow in the indoor unit 3a when the indoor unit 3a is viewed from the left.
  • the second damper 12a is open and the first damper 11a is closed.
  • the second damper 12a is closed and the first damper 11a is open.
  • the state of the first indoor heat exchange units 4a and 4b and the second indoor heat exchange unit 5a is such that outside air is not taken in as indicated by dotted lines in FIG. It is in the state of a conventional heat exchanger.
  • FIGS. 6(a) to 6(c) are diagrams showing the structure and operation of the indoor unit 3 and the flow of air inside the indoor unit 3 according to the second embodiment.
  • Fig.6 (a) is a perspective view which shows the structure of the whole indoor unit 3b
  • FIG.6(b) and FIG.6(c) are the rear views which looked at the indoor unit 3b from the back.
  • Example 1 shown in FIGS. 5A to 5E and Example 2 shown in FIGS. 6A to 6C will be described.
  • the indoor unit 3b shown in FIGS. 6(a) to 6(c) is provided with a second suction port 14b for sucking outside air on the rear surface.
  • Example 2 differs in the location and shape of the second suction port 14b.
  • the first indoor heat exchange units 4a, 4b, and 4c and the second indoor heat exchange units 5b and 5c are accommodated inside the indoor unit 3b.
  • Example 2 differs in the shapes of the first indoor heat exchange section 4 and the second indoor heat exchange section 5 .
  • a first damper 11b and a second damper 12b are accommodated inside the indoor unit 3b.
  • the second damper 12b is arranged close to the second suction port 14b.
  • the shape of the second damper 12b is substantially the same as the shape of the second suction port 14b, and the second damper 12b is larger than the second suction port 14b.
  • the second damper 12b is arranged on the right side of the second suction port 14b along the rear surface of the indoor unit 3b.
  • the second damper 12b is also substantially square with respect to the substantially square second suction port 14b, and the width and length of the second damper 12b are greater than the width and length of the second suction port 14b.
  • the second damper 12b has an operation means (not shown), and has an open state that does not block the outside air flowing into the indoor unit 3b from the second suction port 14b, and an open state that blocks the second suction port 14b and prevents outside air from flowing into the indoor unit 3b. It operates to take a closed state that blocks inflow and a half-open state between the open and closed states.
  • the second damper 12b is positioned on the right side of the second suction port 14b and is in an open state not blocking the second suction port 14b.
  • FIG. 6(b) the example shown in FIG.
  • the second damper 12b has moved to a position where it blocks the second suction port 14b from the inside, and is in a closed state blocking the second suction port 14b.
  • the second damper 12b is in the closed state, the second damper 12b is larger than the second suction port 14b, so the second suction port 14b can be completely blocked.
  • Any type of operation means can be used as the operation means for switching the state of the second damper 12b.
  • a rail may be attached to the second damper 12b and the second damper 12b may be moved along the rail.
  • the first damper 11b is arranged inside the indoor unit 3b between the first suction port 13 and the second indoor heat exchange parts 5b and 5c. In the example shown in FIGS. 6(a) and 6(b), the first damper 11b is attached below the first suction port 13 and on the rear side of the indoor unit 3b.
  • the size of the first damper 11b is such that the indoor air sucked from the first suction port 13 flows into the second indoor heat exchange portions 5b and 5c. It is large enough to prevent
  • the width of the first damper 11b is greater than the width of the second indoor heat exchange section 5b
  • the length of the first damper 11b is It is greater than the distance from the rear surface of the machine 3b to the front end of the second indoor heat exchange section 5b. Since the first damper 11b has such a size, it is possible to prevent indoor air from flowing into the second indoor heat exchange portions 5b and 5c when the first damper 11b is in a closed state described later. can be prevented.
  • the first damper 11b has an operation means (not shown), and has a closed state that prevents the indoor air sucked from the first suction port 13 from flowing into the second indoor heat exchange portions 5b and 5c. and a half-open state between the open state and the closed state.
  • the first damper 11b is in the closed state.
  • the width of the first damper 11b is larger than the width of the second indoor heat exchange section 5b, and the length of the first damper 11b is from the rear surface of the indoor unit 3b to the second indoor heat exchange section 5b. Greater than the distance to the front edge. Therefore, it is possible to prevent the indoor air from flowing into the second indoor heat exchange portions 5b and 5c.
  • the first damper 11b is in the open state. At this time, since the first damper 11b is not located between the first suction port 13 and the second indoor heat exchange portions 5b, 5c, the indoor air is not transferred to the second indoor heat exchange portions 5b, 5c. It does not impede inflow.
  • Any means can be used as the operation means for switching the state of the first damper 11b regardless of its type.
  • a rail may be attached to the first damper 11b and the first damper 12b may be moved along the rail.
  • FIGS. 6(b) and 6(c) show the air flow inside the indoor unit 3b when the indoor unit 3b is viewed from behind.
  • the second damper 12b is open and the first damper 11b is closed.
  • the second damper 12b is closed and the first damper 11b is open.
  • the second damper 12b is closed and the first damper 11b is open.
  • the second damper 12b blocks the second suction port 14b, so outside air flows from the second suction port 14b. does not flow.
  • the indoor air that has flowed in from the first suction port 13 flows into the first indoor heat exchange sections 4a, 4b and 4c and the second indoor heat exchange sections 5b and 5c.
  • the refrigeration cycle apparatus 100 is operating in heating operation, the states of the first indoor heat exchange units 4a, 4b, and 4c and the second indoor heat exchange units 5b and 5c are indicated by dotted lines in FIG. It is in the state of a conventional heat exchanger that does not take in the outside air as indicated by .
  • Example 3. 7(a) to 7(c) are diagrams showing the structure and operation of the indoor unit 3 and the flow of air inside the indoor unit 3 according to the third embodiment.
  • FIG. 7(a) is a perspective view showing the overall structure of the indoor unit 3c
  • FIGS. 7(b) and 7(c) are front views of the indoor unit 3c as seen from the front. 5(a) to 5(e)
  • FIGS. 7(a) to 7(c) The difference between the third embodiment shown in FIG.
  • a second suction port 14c for sucking outside air is provided on the right side of the indoor unit 3c.
  • the third embodiment differs in the position where the second suction port 14c is provided. Further, inside the indoor unit 3c, similarly to the second embodiment, first indoor heat exchange units 4a, 4b, and 4c and second indoor heat exchange units 5b and 5c are accommodated.
  • a first damper 11c and a second damper 12c are accommodated inside the indoor unit 3c.
  • the second damper 12c is arranged close to the second suction port 14c.
  • the shape of the second damper 12c is substantially the same as the shape of the second suction port 14c, and the second damper 12c is larger than the second suction port 14c.
  • the second damper 12c is arranged below the second suction port 14c along the right surface of the indoor unit 3c.
  • the second damper 12c is also square with respect to the square second suction port 14c, and the width and length of the second damper 12c are larger than the width and length of the second suction port 14c.
  • the second damper 12c has an operation means (not shown), and has an open state that does not block the outside air flowing into the indoor unit 3c from the second suction port 14c, and an open state that blocks the second suction port 14c and prevents outside air from flowing into the indoor unit 3c. It operates to take a closed state that blocks inflow and a half-open state between the open and closed states.
  • the second damper 12c is positioned below the second suction port 14c and is in an open state not blocking the second suction port 14c.
  • the second damper 12c is in a closed state in which the second suction port 14c is blocked.
  • the second damper 12c is larger than the second suction port 14c, so the second suction port 14c can be completely blocked.
  • FIGS. 8(a) and 8(b) are diagrams showing an example in which the operating means of the second damper 12c is manual. As shown in FIGS. 8(a) and 8(b), a notch 20 with a protrusion is provided on the right side of the indoor unit 3c, and a knob 21 movable along the notch 20 is attached to the second damper 12c, The user may move the knob 21 to operate the second damper 12c.
  • FIG. 8(a) is a view of the operating means when the second damper 12c is in an open state
  • FIG. 8(b) is a view of the operating means when the second damper 12c is in a closed state.
  • a protrusion is also provided in the middle of the notch 20, but if the knob 21 is moved to the protrusion in the middle, the second damper 12c can be moved. It can be half open.
  • the first damper 11c is arranged inside the indoor unit 3c between the first suction port 13 and the second indoor heat exchange parts 5b and 5c. In the example shown in FIGS. 7(a) and 7(b), the first damper 11c is attached below the first suction port 13 on the rear side of the indoor unit 3c.
  • the first damper 11c of this embodiment has substantially the same shape and operation as the first damper 11b of the second embodiment, but it is necessary not to interfere with the second damper 12c as described later. .
  • the shape of the first damper 11c is not particularly limited. It is large enough to prevent In the examples of FIGS. 7A and 7B, the width of the first damper 11c is larger than the width of the second indoor heat exchange section 5b, and the width of the first damper 11c is greater than that of the second indoor heat exchange section 5b, as in the second embodiment.
  • the length is greater than the distance from the rear surface of the indoor unit 3c to the front end of the second indoor heat exchange section 5b.
  • the size of the first damper 11c is such that when the second damper 12c is in a closed state and the first damper 11c is in an open state, which will be described later, the first damper 11c is larger than the second damper 11c. It must be of a size that does not interfere with the damper 12c.
  • the first damper 11c has an operation means (not shown), and has a closed state that prevents the indoor air sucked from the first suction port 13 from flowing into the second indoor heat exchange portions 5b and 5c. and a half-open state between the open state and the closed state.
  • the first damper 11c is closed.
  • the first damper 11c is in the open state.
  • Any type of operation means can be used for switching the state of the first damper 11c.
  • the operation means of the first damper 11c is such that when the second damper 12c is in the closed state and the first damper 11c is in the open state, the first damper 11c moves to the second damper 12c. It must be of a size that does not interfere.
  • FIGS. 7(b) and 7(c) show the air flow inside the indoor unit 3c when the indoor unit 3c is viewed from the front.
  • the second damper 12c is open and the first damper 11c is closed.
  • the second damper 12c is closed and the first damper 11c is open.
  • FIG. 7(c) the second damper 12c is closed and the first damper 11c is open.
  • the second damper 12c blocks the second suction port 14c, so outside air flows from the second suction port 14c. does not flow.
  • the indoor air that has flowed in from the first suction port 13 flows into the first indoor heat exchange sections 4a, 4b and 4c and the second indoor heat exchange sections 5b and 5c.
  • the refrigeration cycle apparatus 100 is operating in heating operation, the states of the first indoor heat exchange units 4a, 4b, and 4c and the second indoor heat exchange units 5b and 4c are indicated by dotted lines in FIG. It is in the state of a conventional heat exchanger that does not take in the outside air as indicated by .
  • the refrigeration cycle device 100 in the present disclosure has the first indoor heat exchange section 4 and the second indoor heat exchange section 5. Further, the indoor unit 3 is provided with a first suction port 13 for sucking indoor air and a second suction port 14 for sucking outside air. Furthermore, a first damper 11 and a second damper 12 are attached to the indoor unit 3 .
  • the second indoor heat exchange unit 5 When the refrigerating cycle device 100 is performing heating operation, the second indoor heat exchange unit 5 is kept in a low temperature state by opening the second damper 12 and closing the first damper 11. Outside air can be introduced. As a result, ventilation is performed by taking outside air into the room. In addition, since the amount of heat exchanged between the refrigerant and the outside air increases in the indoor heat exchange section 5, the temperature of the outside air flowing into the indoor unit can be rapidly increased. Therefore, there is little possibility that the heating capacity will be lowered even though the room is ventilated by letting the outside air flow into the room.
  • the efficiency of the second indoor heat exchange section 5 is increased, and the high-to-low pressure ratio of the refrigerating cycle device 100 is reduced, so that energy saving of the refrigerating cycle device 100 is achieved.
  • the second damper 12 is closed and the first damper 11 is opened. Operation similar to that of the cycle device can be performed.
  • the first damper 11 and the second damper 12 are open or closed, but the first damper 11 and the second damper 12 are half-open. It can also be a state. Thereby, the amount of outside air and the amount of indoor air flowing into the second indoor heat exchange section 5 can be adjusted.
  • a partition wall 18 can be provided in order to more reliably separate the indoor air flowing through the indoor unit 3 from the outside air.
  • FIGS. 9(a), (b), and (c) are diagrams showing the structure of the indoor unit 3a of Embodiment 1 when a partition wall 18 is provided inside the indoor unit 3a.
  • a partition wall 18 is attached to the rear surface of the indoor unit 3a, and the first damper 11a is arranged at the tip portion thereof. Therefore, in FIGS. 9(a), (b), and (c), both the partition wall 18 and the first damper 11a are arranged between the first suction port 13 and the second indoor heat exchange section 5a. be.
  • the first damper 11a operates so as to rotate around the connection portion with the partition wall 18, for example.
  • the first damper 11a is in a closed state, and the first damper 11a prevents the indoor air sucked from the first suction port 13 from flowing to the second heat exchange section 5.
  • the first damper 11a rotates around the connecting portion with the partition wall 18 and is in an open state. Therefore, the first damper 11 a does not prevent the indoor air sucked from the first suction port 13 from flowing into the second heat exchange section 5 .
  • FIGS. 10(a) and 10(b) are diagrams showing the structure of the indoor unit 3b of Embodiment 2 when a partition wall 18 is provided inside the indoor unit 3b.
  • FIGS. 10(a) and 10(b) a partition 18 is provided on the left side of the second suction port 14b.
  • the second damper 12b is in an open state, and outside air is sucked into the indoor unit 3b from the second suction port 14 and flows to the second heat exchange section 5.
  • the indoor air is sucked into the indoor unit 3b from the first suction port 13, but the flow direction of this indoor air is limited by the first damper 11b and the partition wall 18, and the second heat exchange section The flow to 5 becomes extremely small.
  • the 1st damper 11b is an open state. Comparing FIG. 10(a) and FIG. 10(b), the first damper 11b moves left and right in the figure, but the partition wall 18 is provided so as not to hinder the movement of the first damper 11b. . Therefore, even if the partition wall 18 is provided, the function of the first damper 11b can be exhibited without any problem, and the flow of the indoor air and the outdoor air in the indoor unit 3b can be reliably controlled. It becomes easier to perform.
  • the refrigeration cycle apparatus of the present disclosure is particularly suitable for performing heating operation while ventilating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Air-Flow Control Members (AREA)

Abstract

In the refrigeration cycle apparatus according to the present disclosure, an indoor unit comprises: a first heat exchanger that is provided with a first suction port communicating with the inside of a room and a second suction port communicating with the outside of the room, and that is disposed in a first air passage joining the first suction port and the second suction port; a second heat exchanger that is disposed in a second air passage joining the second suction port and a blow-out port, and that is connected to the first heat exchanger so as to be positioned downstream of the first heat exchanger when the refrigeration cycle apparatus is in heating operation; a first damper capable of adjusting the amount of air flowing into the second air passage from the first air passage; and a second damper that is provided to the second suction port and that is capable of adjusting the amount of air sucked in from the second suction port.

Description

冷凍サイクル装置及び室内機Refrigeration cycle device and indoor unit
 本開示は、冷凍サイクル装置及び室内機に関する。 The present disclosure relates to a refrigeration cycle device and an indoor unit.
 従来の冷凍サイクル装置においては、室内空気と熱交換器内を流れる冷媒との熱交換により、空気を冷却もしくは加熱する。また、近年室内機に外気を取り込み、換気をしながら冷房、暖房する技術を備えた冷凍サイクル装置がある。(例えば、特許文献1参照)。 In conventional refrigeration cycle devices, the air is cooled or heated by heat exchange between the room air and the refrigerant flowing through the heat exchanger. Also, in recent years, there is a refrigeration cycle device equipped with a technology for taking in outside air into an indoor unit and performing cooling and heating while ventilating. (See Patent Document 1, for example).
特開平11-257793Japanese Patent Laid-Open No. 11-257793
 しかしながら特許文献1に示される冷凍サイクル装置においては、室内機に換気専用の熱交換器が設けられるため、換気をせずに冷房、暖房を行うときに使用できる熱交換器の大きさが制限され、冷凍サイクル装置の効率が低下する虞がある。 However, in the refrigeration cycle apparatus disclosed in Patent Document 1, since the indoor unit is provided with a heat exchanger exclusively for ventilation, the size of the heat exchanger that can be used for cooling and heating without ventilation is limited. , the efficiency of the refrigeration cycle apparatus may be lowered.
 本開示はこのような課題を解決するためになされた。その目的は冷房、暖房を行う冷凍サイクル装置において、換気の有無を設定可能であり、かつ、換気を行わない場合の効率低下を抑えることが可能な冷凍サイクル装置を提供することにある。 This disclosure was made to solve such problems. It is an object of the present invention to provide a refrigerating cycle device for cooling and heating, in which the presence or absence of ventilation can be set, and a decrease in efficiency can be suppressed when ventilation is not performed.
 本開示に係る冷凍サイクル装置は、室内機に、室内と連通する第一の吸い込み口と、室外と連通する第二の吸い込み口と、が設けられ、第一の吸い込み口と吹き出し口とを結ぶ第一の風路に配置された第一の熱交換部と、第二の吸い込み口と吹き出し口とを結ぶ第二の風路に配置され、冷凍サイクル装置が暖房運転時に、第一の熱交換部の下流に位置するよう第一の熱交換部に接続される第二の熱交換部と、第一の風路から第二の風路への空気の流入量を調整可能な第一のダンパと、第二の吸い込み口に設けられ、第二の吸い込み口から吸い込まれる空気の量を調整可能な第二のダンパと、を備える。 In the refrigeration cycle apparatus according to the present disclosure, the indoor unit is provided with a first suction port that communicates with the room and a second suction port that communicates with the outside, and the first suction port and the air outlet are connected. A first heat exchange section arranged in the first air passage and a second air passage connecting a second suction port and an air outlet, and the first heat exchange portion is arranged in the refrigeration cycle device during heating operation. a second heat exchange section connected to the first heat exchange section so as to be located downstream of the section; and a first damper capable of adjusting the amount of air flowing from the first air passage to the second air passage. and a second damper provided at the second suction port and capable of adjusting the amount of air sucked from the second suction port.
 本開示の冷凍サイクル装置によれば、換気の有無を設定可能であり、しかも従来の冷凍サイクル装置に搭載された室内熱交換器と比較して、換気を行わない場合でも同等の性能を発揮できる。これにより、使用状況に関係なく冷凍サイクル装置の効率低下を抑制することができる。 According to the refrigeration cycle device of the present disclosure, it is possible to set the presence or absence of ventilation, and compared with the indoor heat exchanger installed in the conventional refrigeration cycle device, it is possible to exhibit the same performance even without ventilation. . As a result, a decrease in efficiency of the refrigeration cycle device can be suppressed regardless of the usage conditions.
実施の形態1における冷凍サイクル装置の構成を示す図である。1 is a diagram showing the configuration of a refrigeration cycle apparatus according to Embodiment 1; FIG. 実施の形態1における室内機の動作を示す図である。4 is a diagram showing the operation of the indoor unit according to Embodiment 1. FIG. 実施の形態1における暖房運転時の室内熱交換器の状態を示す図である。4 is a diagram showing the state of the indoor heat exchanger during heating operation in Embodiment 1. FIG. 実施の形態1における室内機の別の構成を示す図である。4 is a diagram showing another configuration of the indoor unit according to Embodiment 1. FIG. 実施例1における室内機の構造、動作、及び空気の流れを示す図である。4A and 4B are diagrams showing the structure, operation, and air flow of the indoor unit in Embodiment 1. FIG. 実施例2における室内機の構造、動作、及び空気の流れを示す図である。FIG. 8 is a diagram showing the structure, operation, and air flow of an indoor unit in Example 2; 実施例3における室内機の構造、動作、及び空気の流れを示す図である。FIG. 10 is a diagram showing the structure, operation, and airflow of an indoor unit in Example 3; 実施例3における第二のダンパの動作手段を示す図である。FIG. 11 is a diagram showing operating means of a second damper in Example 3; 実施例1における室内機の変形例を示す図である。FIG. 5 is a diagram showing a modification of the indoor unit in Embodiment 1; 実施例2における室内機の変形例を示す図である。FIG. 10 is a diagram showing a modification of the indoor unit in Embodiment 2;
 本開示を実施するための形態について、添付の図面を参照しながら説明する。各図において、同一又は相当する部分には同一の符号を付して、重複する説明は適宜簡略化又は省略する。なお、以下の実施の形態は本開示の範囲を限定するものではない。 A mode for carrying out the present disclosure will be described with reference to the attached drawings. In each figure, the same or corresponding parts are denoted by the same reference numerals, and overlapping descriptions are appropriately simplified or omitted. It should be noted that the following embodiments do not limit the scope of the present disclosure.
実施の形態1.
 図1は本実施の形態における冷凍サイクル装置100の構成を示す図である。冷凍サイクル装置100は、圧縮機1、四方弁2、室内機3、膨張弁9、室外熱交換器10を備える。さらに図1において、室内機3には第一の室内熱交換部4と、第二の室内熱交換部5と、第一の室内送風機6とが収容されている。なお室外熱交換器10は、図示しない室外機に収容され、室外機には室外送風機も収容されている。
Embodiment 1.
FIG. 1 is a diagram showing the configuration of a refrigeration cycle apparatus 100 according to this embodiment. A refrigeration cycle device 100 includes a compressor 1 , a four-way valve 2 , an indoor unit 3 , an expansion valve 9 and an outdoor heat exchanger 10 . Further, in FIG. 1 , the indoor unit 3 accommodates a first indoor heat exchange section 4 , a second indoor heat exchange section 5 and a first indoor fan 6 . The outdoor heat exchanger 10 is housed in an outdoor unit (not shown), and the outdoor unit also houses an outdoor fan.
 さらに冷凍サイクル装置100は、制御装置50を備える。制御装置50は圧縮機1と、四方弁2と、第一の送風手段6と、膨張弁9と、後述する第一のダンパ11及び第二のダンパ12と、図示しない室外送風機と、に指令を発し、それぞれの動作を制御する。 Furthermore, the refrigeration cycle device 100 includes a control device 50 . The control device 50 commands the compressor 1, the four-way valve 2, the first air blowing means 6, the expansion valve 9, the first damper 11 and the second damper 12 to be described later, and the outdoor blower (not shown). to control each action.
 圧縮機1と、四方弁2と、第一の室内熱交換部4と、第二の室内熱交換部5と、膨張弁9と、室外熱交換器10と、は配管によって接続され冷媒回路を構成する。冷媒回路内には、例えばR32(ジフルオロメタン)などの冷媒が循環する。なお冷凍サイクル装置100に封入される冷媒の種類は限定されない。 The compressor 1, the four-way valve 2, the first indoor heat exchange section 4, the second indoor heat exchange section 5, the expansion valve 9, and the outdoor heat exchanger 10 are connected by piping to form a refrigerant circuit. Configure. A refrigerant such as R32 (difluoromethane) circulates in the refrigerant circuit. The type of refrigerant enclosed in refrigeration cycle device 100 is not limited.
 図1において、冷房運転では冷媒は破線矢印で示される方向に流れる。すなわち、圧縮機1から吐出された冷媒が、室外熱交換器10で凝縮し、膨張弁9で減圧され、第二の室内熱交換部5及び第一の室内熱交換部4で蒸発する。蒸発した冷媒は圧縮機1に戻る。 In FIG. 1, the refrigerant flows in the direction indicated by the dashed arrow in cooling operation. That is, the refrigerant discharged from the compressor 1 is condensed in the outdoor heat exchanger 10 , decompressed in the expansion valve 9 , and evaporated in the second indoor heat exchange section 5 and the first indoor heat exchange section 4 . Evaporated refrigerant returns to the compressor 1 .
 一方暖房運転では、冷媒は実線矢印で示される方向に流れる。すなわち、圧縮機1から吐出された冷媒が、第一の室内熱交換部4及び第二の室内熱交換部5で凝縮し、膨張弁9で減圧され、室外熱交換器10で蒸発する。蒸発した冷媒は圧縮機1に戻る。冷房運転と暖房運転の切り替えは、四方弁2で冷媒回路の接続を変更することで行われる。 On the other hand, in heating operation, the refrigerant flows in the direction indicated by the solid arrow. That is, the refrigerant discharged from the compressor 1 is condensed in the first indoor heat exchange section 4 and the second indoor heat exchange section 5 , decompressed in the expansion valve 9 , and evaporated in the outdoor heat exchanger 10 . Evaporated refrigerant returns to the compressor 1 . Switching between the cooling operation and the heating operation is performed by changing the connection of the refrigerant circuit with the four-way valve 2 .
 圧縮機1は、例えばロータリー式の圧縮機である。圧縮機1の容量、定格周波数等は、冷媒回路に封入される冷媒種や、冷凍サイクル装置100の能力等によって決定される。なお圧縮機1はピストン式やスクロール式の圧縮機でもよい。また圧縮機1は制御装置50によって定格周波数で運転されるようにしてもよいし、制御装置50に搭載されたインバータによって周波数が可変に制御されるようにしてもよい。 The compressor 1 is, for example, a rotary compressor. The capacity, rated frequency, and the like of the compressor 1 are determined by the type of refrigerant sealed in the refrigerant circuit, the capacity of the refrigeration cycle device 100, and the like. The compressor 1 may be a piston type or scroll type compressor. Further, the compressor 1 may be operated at the rated frequency by the control device 50, or the frequency may be variably controlled by an inverter mounted on the control device 50. FIG.
 四方弁2は、流路を切り替える機能を持ち冷凍サイクル装置100が冷房運転を行うか、暖房運転を行うかによって流路を切り替える。冷房運転を行うとき、四方弁2は圧縮機1の吐出口と室外熱交換10とを接続し、また第一の室内熱交換部4と圧縮機1の吸入口とを接続する。一方暖房運転を行うとき、四方弁2は圧縮機1の吐出口と第一の室内熱交換部4とを接続し、室外熱交換10と圧縮機1の吸入口とを接続する。四方弁2の接続は制御装置50によって切り替えられる。 The four-way valve 2 has a function of switching the flow path, and switches the flow path depending on whether the refrigeration cycle device 100 performs cooling operation or heating operation. During cooling operation, the four-way valve 2 connects the outlet of the compressor 1 and the outdoor heat exchanger 10 and connects the first indoor heat exchanger 4 and the suction port of the compressor 1 . On the other hand, when performing heating operation, the four-way valve 2 connects the discharge port of the compressor 1 and the first indoor heat exchange section 4 , and connects the outdoor heat exchange 10 and the suction port of the compressor 1 . Connection of the four-way valve 2 is switched by the controller 50 .
 室内機3は、第一の室内熱交換部4と、第二の室内熱交換部5と、第一の室内送風機6と、を収容する。なお第一の室内熱交換部4と、第二の室内熱交換部5と、は同一の室内熱交換器であってもよく、別の室内熱交換器であってもよい。第一の室内熱交換部4と、第二の室内熱交換部5と、の構造上の関係は以下の2点である。一つ目の点は、第一の室内熱交換部4は冷凍サイクル装置100が暖房運転を行うとき、冷媒の流れにおいて上流に位置し、第二の室内熱交換部5は暖房運転時において第一の室内熱交換部4の下流に位置することである。二つ目の点は、後述するように、第一の室内熱交換部4には常に室内空気が流れるが、第二の室内熱交換部5は、外気あるいは室内空気が流れるという点である。 The indoor unit 3 accommodates a first indoor heat exchange section 4, a second indoor heat exchange section 5, and a first indoor fan 6. The first indoor heat exchange section 4 and the second indoor heat exchange section 5 may be the same indoor heat exchanger, or may be separate indoor heat exchangers. The structural relationship between the first indoor heat exchange section 4 and the second indoor heat exchange section 5 is the following two points. The first point is that the first indoor heat exchange unit 4 is positioned upstream in the refrigerant flow when the refrigeration cycle device 100 performs heating operation, and the second indoor heat exchange unit 5 is positioned upstream during the heating operation. It is positioned downstream of one indoor heat exchange section 4 . The second point is that the indoor air always flows through the first indoor heat exchange section 4, but the outside air or the indoor air flows through the second indoor heat exchange section 5, as will be described later.
 第一の室内熱交換部4と、第二の室内熱交換部5とは、例えば銅管と銅管に固着されたアルミニウムのフィンによって構成されるフィンチューブ式熱交換器である。銅管内部に冷媒が流れ、冷媒の熱がフィンに伝達する。これによりフィンの間を流れる空気と冷媒との間で熱交換が行われる。なお、一般にフィンチューブ式熱交換器では多数分岐した銅管(以下パス)内を冷媒が流れるが、銅管の分岐数(以下パス数)は第一の室内熱交換部4と第二の室内熱交換部5とで同一でもよく、違っていてもよい。また、フィンの密度や形状も第一の室内熱交換部4と第二の室内熱交換部5とで同一でもよく、違っていてもよい。なお第一の熱交換部4と第二の熱交換部5の容積を考えると、第一の熱交換部4の容積は第二の熱交換部5の容積より大きい。後述するように、冷凍サイクル装置100が暖房運転を行う際、第一の室内熱交換部4aにはガス状態及び気液二相状態の冷媒が多く流れ、第二の室内熱交換部4bは液状態の冷媒が多く流れる。冷凍サイクルの熱交換器においては、一般にガス状態及び気液二相状態の冷媒が占める容積が多いため、第一の熱交換部4の容積は第二の熱交換部5の容積より大きい必要がある。 The first indoor heat exchange section 4 and the second indoor heat exchange section 5 are, for example, fin-tube heat exchangers composed of copper pipes and aluminum fins fixed to the copper pipes. Coolant flows inside the copper tube, and the heat of the coolant is transferred to the fins. Thereby, heat exchange is performed between the air flowing between the fins and the refrigerant. In general, in a finned-tube heat exchanger, refrigerant flows through many branched copper pipes (hereinafter referred to as paths). It may be the same as or different from the heat exchange section 5 . Further, the density and shape of the fins may be the same or different between the first indoor heat exchange section 4 and the second indoor heat exchange section 5 . Considering the volumes of the first heat exchange section 4 and the second heat exchange section 5 , the volume of the first heat exchange section 4 is larger than the volume of the second heat exchange section 5 . As will be described later, when the refrigeration cycle device 100 performs a heating operation, a large amount of refrigerant in a gas state and a gas-liquid two-phase state flows through the first indoor heat exchange section 4a, and a liquid refrigerant flows through the second indoor heat exchange section 4b. A lot of refrigerant in the state flows. In the heat exchanger of the refrigeration cycle, the volume occupied by the refrigerant in the gas state and the gas-liquid two-phase state is generally large. be.
 第一の室内熱交換部4と第二の室内熱交換部5とは、銅管により接続されている。なお第一の室内熱交換部4と第二の室内熱交換部5はどのような接続を行ってもよい。例えば、第一の室内熱交換部4と第二の室内熱交換部5のパス数が同一であれば、それぞれのパスを接続するようにしてもよい。あるいは第一の室内熱交換部4のパス数が、第二の室内熱交換部5のパス数より多い場合は、第一の室内熱交換部4のパスのいくつかを合流させ、第二の室内熱交換部5のパスに合流させるようにしてもよい。 The first indoor heat exchange section 4 and the second indoor heat exchange section 5 are connected by copper pipes. The first indoor heat exchange section 4 and the second indoor heat exchange section 5 may be connected in any way. For example, if the number of paths of the first indoor heat exchange section 4 and the number of paths of the second indoor heat exchange section 5 are the same, the respective paths may be connected. Alternatively, when the number of paths in the first indoor heat exchange section 4 is greater than the number of paths in the second indoor heat exchange section 5, some of the paths in the first indoor heat exchange section 4 are merged to form the second You may make it join the path|path of the indoor heat exchange part 5. FIG.
 第一の室内送風機6は、例えば室内機3の内部に備えられたクロスフローファンである。第一の室内送風機6は、第一の室内熱交換部4と第二の室内熱交換部5とによって温度調節された空気を、室内機3から吹き出すための気流を発生させる。第一の室内送風機6は制御装置50によって制御される。なお第一の室内送風機6としては、クロスフローファンに限らずプロペラファン、シロッコファンなど任意の手段を使用することができる。 The first indoor fan 6 is, for example, a cross-flow fan provided inside the indoor unit 3. The first indoor fan 6 generates an airflow for blowing out the air temperature-controlled by the first indoor heat exchange section 4 and the second indoor heat exchange section 5 from the indoor unit 3 . The first indoor fan 6 is controlled by the controller 50 . As the first indoor blower 6, not only a cross-flow fan but also any means such as a propeller fan or a sirocco fan can be used.
 また室内機3には室内の空気を吸い込む第一の吸い込み口13と、外気を吸い込む第二の吸い込み口14と、温度調節した空気を吹き出す吹き出し口15が形成されている。ここで、第二の吸い込み口14は、例えば室内の壁に設けられた通風孔や、室外と接続するダクトから外気を吸い込む。 Also, the indoor unit 3 is formed with a first intake port 13 for sucking indoor air, a second intake port 14 for sucking outside air, and a blowout port 15 for blowing out temperature-controlled air. Here, the second suction port 14 sucks outside air from, for example, a ventilation hole provided in the wall of the room or a duct connected to the outside.
 第一の吸い込み口13から室内機3に吸い込まれた室内空気は、第一の室内熱交換部4を通過して吹き出し口15から吹き出される。一方、第二の吸い込み口14から室内機3に吸い込まれた外気は、第二の室内熱交換部5を通過して吹き出し口15から吹き出される。ここでは、上記室内空気が流れる風路、すなわち第一の吸い込み口13と吹き出し口15とを結ぶ経路を第一の風路7とする。同様に外気が流れる風路、すなわち第二の吸い込み口14と吹き出し口15とを結ぶ経路を第二の風路8とする。 The indoor air sucked into the indoor unit 3 through the first inlet 13 passes through the first indoor heat exchange section 4 and is blown out through the outlet 15 . On the other hand, outside air sucked into the indoor unit 3 through the second inlet 14 passes through the second indoor heat exchange section 5 and is blown out from the outlet 15 . Here, the passage through which the indoor air flows, that is, the route connecting the first suction port 13 and the discharge port 15 is referred to as the first air passage 7 . Similarly, an air passage through which outside air flows, that is, a route connecting the second suction port 14 and the air outlet 15 is referred to as a second air passage 8 .
 図2(a)から図2(d)は第一のダンパ11及び第二のダンパ12の状態と、第一の風路7及び第二の風路8の空気の流れを示す図である。ここで第一のダンパ11は第一の風路において、第一の風路7から分岐して第二の風路に流れる室内空気の量を調整可能な位置に取り付けられる。一方、第二のダンパ12は第二の吸い込み口14の近傍など、吸い込み口14から吸い込まれる外気の量を調整可能な位置に取り付けられている。 FIGS. 2(a) to 2(d) are diagrams showing the states of the first damper 11 and the second damper 12 and the air flow in the first air passage 7 and the second air passage 8. FIG. Here, the first damper 11 is attached in the first air passage at a position where the amount of indoor air branched from the first air passage 7 and flowing into the second air passage can be adjusted. On the other hand, the second damper 12 is attached to a position such as the vicinity of the second suction port 14 where the amount of outside air sucked from the suction port 14 can be adjusted.
 ここで、第一のダンパ11の取り付け位置の例についてより詳しく説明する。図2(a)、(b)に示すように、室内機3の内部には第一の風路7と第二の風路8とを隔てる隔壁18が設けられていてもよい。この場合隔壁18の一部には、第一の風路7と第二の風路8とを連通する孔が存在し、第一のダンパ11はその孔を開閉可能な位置に取り付けられる。第一のダンパ11がこのように取り付けられていることで、第一のダンパ11は第一の風路7を流れる室内空気が第二の熱交換部5に流れることを阻害、あるいは、上記室内空気が第二の熱交換部5に流れるよう調整することができる。 Here, an example of the mounting position of the first damper 11 will be described in more detail. As shown in FIGS. 2(a) and 2(b), a partition wall 18 may be provided inside the indoor unit 3 to separate the first air passage 7 and the second air passage 8 from each other. In this case, a part of the partition wall 18 has a hole communicating between the first air passage 7 and the second air passage 8, and the first damper 11 is attached at a position capable of opening and closing the hole. By attaching the first damper 11 in this way, the first damper 11 inhibits the indoor air flowing through the first air passage 7 from flowing to the second heat exchange section 5, or Air can be arranged to flow to the second heat exchange section 5 .
 なお、上記の説明では室内機3内に隔壁18を設ける例を示したが、隔壁18を設けずとも第一のダンパ11だけで室内空気の流れを調整できるならば、隔壁18は設けなくともよい。また隔壁18を設ける目的は、第一のダンパ11が閉状態のときに室内空気が第二の熱交換部5に流入しないようにすることである。したがって、隔壁18の構造は、上記のように第一の風路7と第二の風路8とを隔し、かつ一部において両風路を連通する孔を有するという例に限定されない。 In the above description, an example in which the partition wall 18 is provided inside the indoor unit 3 is shown. good. The purpose of providing the partition wall 18 is to prevent indoor air from flowing into the second heat exchange section 5 when the first damper 11 is in the closed state. Therefore, the structure of the partition wall 18 is not limited to the example in which the first air passage 7 and the second air passage 8 are separated from each other as described above and a part of the partition wall 18 has a hole communicating between the two air passages.
 ここからは、室内機3内の空気の流れについてより詳しく説明する。図2(a)では、第一のダンパ11が閉状態、第二のダンパ12が開状態である。この場合、第一の吸い込み口13から吸い込まれた室内空気は、第一の風路7から第一の室内熱交換部4に流入する。また第二の吸い込み口14から吸い込まれた外気は、第二の風路8から第二の室内熱交換部5に流入する。 From here on, the air flow inside the indoor unit 3 will be explained in more detail. In FIG. 2A, the first damper 11 is closed and the second damper 12 is open. In this case, the indoor air sucked from the first suction port 13 flows into the first indoor heat exchange section 4 from the first air passage 7 . Outside air sucked from the second suction port 14 flows into the second indoor heat exchange section 5 from the second air passage 8 .
 一方図2(b)では、第一のダンパ11が開状態であり、第二のダンパ12が閉状態である。この場合、第一の風路7には第一の吸い込み口13から吸い込まれる室内空気が流れる。さらに、第一のダンパ11が開状態であるため、吸い込まれた室内空気の一部は第一の風路7内で分岐して第二の風路8にも流れる。この場合、第一の室内熱交換部4と第二の室内熱交換部5との両方に室内空気が流入する。 On the other hand, in FIG. 2(b), the first damper 11 is open and the second damper 12 is closed. In this case, the indoor air sucked from the first suction port 13 flows through the first air passage 7 . Furthermore, since the first damper 11 is in an open state, part of the sucked indoor air branches in the first air passage 7 and also flows into the second air passage 8 . In this case, indoor air flows into both the first indoor heat exchange section 4 and the second indoor heat exchange section 5 .
 一方図2(c)では、第一のダンパ11が閉状態であり、第二のダンパ12が半開状態である。この場合、第一の風路7には第一の吸い込み口13から吸い込まれる室内空気が流れる。また第二の風路8には、第二の吸い込み口14から吸い込まれる外気が流れる。なお、第二のダンパ12は半開状態であり、図2(a)と比べて第二の吸い込み口14の開口面積が小さい。そのため第二の吸い込み口14から吸い込まれる外気の量は、図2(a)の場合より少なくなる。 On the other hand, in FIG. 2(c), the first damper 11 is in the closed state and the second damper 12 is in the half-open state. In this case, the indoor air sucked from the first suction port 13 flows through the first air passage 7 . Outside air sucked from the second suction port 14 flows through the second air passage 8 . The second damper 12 is in a half-open state, and the opening area of the second suction port 14 is smaller than that in FIG. 2(a). Therefore, the amount of outside air sucked from the second suction port 14 is smaller than in the case of FIG. 2(a).
 一方図2(d)では、第一のダンパ11と第二のダンパ12とがともに半開状態である。この場合、第一の風路7には第一の吸い込み口13から吸い込まれた室内空気が通過する。なお、第一のダンパ11が半開状態であるため、吸い込まれた室内空気の一部は第二の風路8に流れる。また第二の風路8には、第二の吸い込み口14から吸い込まれた外気と、上記室内空気の一部が流れる。 On the other hand, in FIG. 2(d), both the first damper 11 and the second damper 12 are in a half-open state. In this case, the room air sucked from the first suction port 13 passes through the first air passage 7 . Since the first damper 11 is in a half-open state, part of the sucked indoor air flows into the second air passage 8 . Also, the outside air sucked from the second suction port 14 and part of the indoor air flow through the second air passage 8 .
 膨張弁9は、例えば開度を制御可能な電磁弁である。膨張弁9は流入した高圧の冷媒を低圧の冷媒に減圧する。電磁弁の開度は制御装置50により制御される。 The expansion valve 9 is, for example, an electromagnetic valve whose opening can be controlled. The expansion valve 9 decompresses the high-pressure refrigerant that has flowed into it to a low-pressure refrigerant. The degree of opening of the solenoid valve is controlled by the controller 50 .
 室外熱交換器10は、例えばフィンチューブ式熱交換器である。図1において室外熱交換器10は一つとして例示しているが、例えば途中でパス数が変化するようにしてもよいし、フィンの密度及び形状が変化するようにしてもよい。 The outdoor heat exchanger 10 is, for example, a fin-tube heat exchanger. Although one outdoor heat exchanger 10 is illustrated in FIG. 1, for example, the number of passes may be changed in the middle, or the density and shape of the fins may be changed.
 制御装置50は、例えばCPU(Central Processing Unit)、制御プログラムを格納したROM(Read Only Memory)等の記憶媒体、RAM(Random Access Memory)等の作業用メモリ、および通信回路から構成される。制御装置50は、あらかじめ記憶された運転プログラムや、冷凍サイクル装置の使用者が入力した信号にしたがって、圧縮機1、四方弁2、第一の送風手段6、膨張弁9、第一のダンパ11、第二のダンパ12、及び室外送風機に指令を発し、それぞれの動作を制御する。 The control device 50 is composed of, for example, a CPU (Central Processing Unit), a storage medium such as a ROM (Read Only Memory) storing a control program, a working memory such as a RAM (Random Access Memory), and a communication circuit. The control device 50 operates the compressor 1, the four-way valve 2, the first air blowing means 6, the expansion valve 9, the first damper 11 according to a pre-stored operation program or a signal input by the user of the refrigeration cycle apparatus. , the second damper 12 and the outdoor fan to control their operations.
 続いて、本実施の形態における動作と効果について説明する。まず、本開示の冷凍サイクル装置100の効果が特に大きく発揮される暖房運転について説明する。 Next, the operation and effects of this embodiment will be described. First, the heating operation in which the effect of the refrigeration cycle device 100 of the present disclosure is particularly large will be described.
 また以下の説明では第一のダンパ11及び第二のダンパ12は、室内の環境をセンサ等により検知して自動で動作する。この場合、図2(a)から図2(d)において、第一のダンパ11と、第二のダンパ12とがどの状態をとるかは、外気と室内空気の温度と、室内空気の汚染状況とによる。 Also, in the following description, the first damper 11 and the second damper 12 automatically operate by detecting the indoor environment with a sensor or the like. In this case, the state of the first damper 11 and the second damper 12 in FIGS. According to.
 なおこのことは本開示における冷凍サイクル装置100の構成を限定するものではなく、第一のダンパ11及び第二のダンパ12は、冷凍サイクル装置100の使用者がリモコン等の手段により入力した信号に従って動作してもよく、使用者が手動で動作させるようにしてもよい。 Note that this does not limit the configuration of the refrigeration cycle device 100 in the present disclosure, and the first damper 11 and the second damper 12 are operated according to a signal input by the user of the refrigeration cycle device 100 by means of a remote control or the like. It may be operated or may be manually operated by the user.
 まず、外気温度が室内空気の温度より低く、室内の空気が汚染されている状況を考える。この場合図2(a)のように第一のダンパ11は閉状態、第二のダンパ12は開状態となる。この場合、第一の風路7及び第一の室内熱交換部4には室内空気が流れ、第二の風路8及び第二の室内熱交換部5には外気が流れる。 First, consider a situation where the outside air temperature is lower than the indoor air temperature and the indoor air is polluted. In this case, the first damper 11 is closed and the second damper 12 is open as shown in FIG. 2(a). In this case, indoor air flows through the first air passage 7 and the first indoor heat exchange section 4 , and outside air flows through the second air passage 8 and the second indoor heat exchange section 5 .
 この場合、外気が室内に給気されるため室内の空気の汚染が緩和される。なお、室内の汚染された空気は室内に設けられた窓、換気口、あるいは隙間から室外に排気される。 In this case, outside air is supplied to the room, so indoor air pollution is alleviated. The polluted air in the room is exhausted to the outside through windows, ventilation openings, or gaps provided in the room.
 この時、第一の室内熱交換部4には温度の高い室内空気が、第二の室内熱交換部5には温度の低い外気が流れる。図3は第一の室内熱交換部4及び第二の室内熱交換部5の状態を示す図である。なお、図3では図2(a)における第一の室内熱交換部4及び第二の室内熱交換部5の状態は実線で示されている。図3において、圧縮機1で圧縮された高温、高圧のガス冷媒は、第一の室内熱交換部4に流入する。高温、高圧のガス冷媒は室内空気と熱交換することで気液二相冷媒となる。気液二相冷媒はさらに室内空気と熱交換を行い、液冷媒となる。 At this time, high-temperature indoor air flows through the first indoor heat exchange section 4 and low-temperature outdoor air flows through the second indoor heat exchange section 5 . FIG. 3 is a diagram showing the states of the first indoor heat exchange section 4 and the second indoor heat exchange section 5. As shown in FIG. In addition, in FIG. 3, the states of the first indoor heat exchange section 4 and the second indoor heat exchange section 5 in FIG. 2(a) are indicated by solid lines. In FIG. 3 , the high-temperature, high-pressure gas refrigerant compressed by the compressor 1 flows into the first indoor heat exchange section 4 . The high-temperature, high-pressure gas refrigerant exchanges heat with the room air to become a gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant further exchanges heat with the room air to become a liquid refrigerant.
 液冷媒となった冷媒は、第二の室内熱交換部5に流入する。ここで、外気の温度は室内空気の温度より低いため、第二の室内熱交換部5において冷媒と外気との温度差が大きくなり、熱交換量が増大する。熱交換により過冷却液となった冷媒は第二の室内熱交換部5から流出する。 The liquid refrigerant flows into the second indoor heat exchange section 5 . Here, since the temperature of the outside air is lower than the temperature of the indoor air, the temperature difference between the refrigerant and the outside air increases in the second indoor heat exchange section 5, increasing the amount of heat exchange. The refrigerant that has become a supercooled liquid due to heat exchange flows out from the second indoor heat exchange section 5 .
 ここで、本開示における第一の室内熱交換部4及び第二の室内熱交換部5の状態と、室内機に外気を取り入れない従来の冷凍サイクル装置の室内熱交換器と、の差異を説明する。図3において従来の室内熱交換器の状態は点線で示されている。従来の熱交換器では、冷媒が液となっている領域でも、温度の高い室内空気と冷媒とで熱交換が行われる。すなわち、空気と冷媒との温度差が小さいので、熱交換量が減少する。 Here, the difference between the state of the first indoor heat exchange unit 4 and the second indoor heat exchange unit 5 in the present disclosure and the indoor heat exchanger of a conventional refrigeration cycle device that does not take outside air into the indoor unit will be described. do. In FIG. 3, the state of the conventional indoor heat exchanger is indicated by dotted lines. In a conventional heat exchanger, heat is exchanged between indoor air having a high temperature and the refrigerant even in a region where the refrigerant is liquid. That is, since the temperature difference between the air and the refrigerant is small, the amount of heat exchange is reduced.
 この場合、液領域での熱交換量を確保するために、熱交換器内の過冷却領域が拡大し、気液二相領域が縮小する。一般に、熱交換器における管内熱伝達率は過冷却領域より気液二相領域の方が大きい。そのため、過冷却領域が大きい従来の熱交換器では熱交換器の効率が低下し、熱交換器内の圧力が上昇する。 In this case, in order to secure the amount of heat exchanged in the liquid region, the supercooled region inside the heat exchanger expands and the gas-liquid two-phase region shrinks. In general, the in-tube heat transfer coefficient in a heat exchanger is higher in the gas-liquid two-phase region than in the supercooled region. Therefore, in a conventional heat exchanger with a large subcooling region, the efficiency of the heat exchanger decreases and the pressure inside the heat exchanger increases.
 これに対し実線で示される本開示の第一の室内熱交換部4及び第二の室内熱交換部5であれば、第二の室内熱交換部5で冷媒と外気との温度差が大きく、過冷却領域でも十分な熱交換量が確保できる。結果、熱交換器における気液二相領域が従来の熱交換器と比べて大きく、熱交換器の効率が良い。これにより従来の熱交換器と比べて熱交換器内の圧力が低くなる。熱交換器内の圧力が低下すると、冷凍サイクル装置100内で形成される冷凍サイクルの高低圧比、すなわち圧縮機1での圧縮比が小さくなるため、圧縮機1の効率が良化し省エネルギーにつながる。さらに、過冷却液領域が小さくなるため、冷凍サイクル装置100全体における封入冷媒量が減少する。 On the other hand, in the case of the first indoor heat exchange unit 4 and the second indoor heat exchange unit 5 of the present disclosure indicated by solid lines, the temperature difference between the refrigerant and the outside air is large in the second indoor heat exchange unit 5, A sufficient amount of heat exchange can be secured even in the supercooled region. As a result, the gas-liquid two-phase region in the heat exchanger is larger than that of conventional heat exchangers, and the efficiency of the heat exchanger is good. This results in a lower pressure in the heat exchanger compared to conventional heat exchangers. When the pressure in the heat exchanger decreases, the high-to-low pressure ratio of the refrigerating cycle formed in the refrigerating cycle device 100, that is, the compression ratio in the compressor 1 decreases, so the efficiency of the compressor 1 improves, leading to energy saving. Furthermore, since the supercooled liquid area becomes smaller, the amount of refrigerant charged in the entire refrigeration cycle apparatus 100 is reduced.
 加えて冷媒と外気との温度差が大きい第二の室内熱交換部5では、冷媒と外気との熱交換量が大きくなるため、室内機に流入した外気の温度を急速に高めることができる。これにより、外気を室内に流入させて換気を行うにも関わらず、暖房能力の低下や、吹き出し温度の低下といった問題が生じる虞が少ない。 In addition, in the second indoor heat exchange section 5, where the temperature difference between the refrigerant and the outside air is large, the amount of heat exchanged between the refrigerant and the outside air is large, so the temperature of the outside air flowing into the indoor unit can be rapidly raised. As a result, problems such as a decrease in heating capacity and a decrease in blow-out temperature are less likely to occur despite the fact that ventilation is performed by allowing the outside air to flow into the room.
 続いて、室内の空気が汚染されていない状況を考える。この場合図2(b)のように第二のダンパ12は閉状態、第一のダンパ11は開状態となる。この場合、第一の室内熱交換部4及び第二の室内熱交換部5には室内空気が流れる。この時、第一の室内熱交換部4及び第二の室内熱交換部5の状態は、室内機に外気を取り入れない従来の熱交換器と同一であるので説明を省略する。 Next, consider a situation where the indoor air is not polluted. In this case, the second damper 12 is closed and the first damper 11 is open as shown in FIG. 2(b). In this case, the indoor air flows through the first indoor heat exchange section 4 and the second indoor heat exchange section 5 . At this time, the states of the first indoor heat exchange unit 4 and the second indoor heat exchange unit 5 are the same as those of a conventional heat exchanger that does not take in outside air into the indoor unit, so description thereof will be omitted.
 続いて、室内の空気が汚染されているものの、その程度が軽い場合について説明する。この場合図2(c)のように第二のダンパ12は半開状態、第一のダンパ11は閉状態となる。この場合、第二の風路8及び第二の室内熱交換部5には外気が流れるが、その量は図2(a)に示す第二のダンパ12が開状態の場合の外気量と比べて少ない。これは、第二のダンパ12が半開状態であり、通風抵抗となるためである。 Next, I will explain the case where the indoor air is polluted, but the degree is light. In this case, the second damper 12 is in a half-open state and the first damper 11 is in a closed state, as shown in FIG. 2(c). In this case, outside air flows through the second air passage 8 and the second indoor heat exchange section 5, but the amount of the outside air is compared to the amount of outside air when the second damper 12 is open as shown in FIG. 2(a). less. This is because the second damper 12 is in a half-open state and acts as a ventilation resistance.
 図2(c)に示す状態では、室内の換気が図2(a)に示す場合と比べて緩やかに行われる。この場合でも、第二の室内熱交換部5では冷媒と外気との温度差が大きくなり、図3に示すように熱交換器全体の効率が向上する。加えて外気の量が少ないため、暖房能力の低下や、吹き出し温度の低下といった問題が生じる虞がさらに少なくなる。 In the state shown in FIG. 2(c), the indoor ventilation is performed more slowly than in the case shown in FIG. 2(a). Even in this case, the temperature difference between the refrigerant and the outside air increases in the second indoor heat exchange section 5, and the efficiency of the entire heat exchanger improves as shown in FIG. In addition, since the amount of outside air is small, problems such as a decrease in heating capacity and a decrease in blowout temperature are less likely to occur.
 さらに外気の温度が室内空気の温度よりも高い場合、図2(d)のように第一のダンパ11を半開状態にしてもよい。この場合、第一の吸い込み口13から吸い込まれた室内空気の一部が、第二の風路8に流入する。第二の風路8では、上記室内空気と第二の吸い込み口14から吸い込まれた外気が混合する。このとき室内空気の温度は外気の温度より低いため、混合した空気の温度は外気の温度より低い。上記混合した空気は第二の室内熱交換部5に流入する。 Furthermore, when the temperature of the outside air is higher than the temperature of the room air, the first damper 11 may be in a half-open state as shown in FIG. 2(d). In this case, part of the room air sucked from the first suction port 13 flows into the second air passage 8 . In the second air passage 8, the indoor air and the outside air sucked from the second suction port 14 are mixed. At this time, the temperature of the indoor air is lower than the temperature of the outside air, so the temperature of the mixed air is lower than the temperature of the outside air. The mixed air flows into the second indoor heat exchange section 5 .
 外気の温度が高い場合に、第二の室内熱交換部5に外気を流入させると、冷媒と外気との温度差が小さいために、熱交換量が減少する。しかしながら、図2(d)のように室内空気と外気とを混合させることで、温度を下げた混合空気を第二の室内熱交換部5に流入させることができる。これにより熱交換量の減少を抑制しながら換気を行うことができる。 When the temperature of the outside air is high, if the outside air is allowed to flow into the second indoor heat exchange section 5, the amount of heat exchange is reduced because the temperature difference between the refrigerant and the outside air is small. However, by mixing the indoor air and the outdoor air as shown in FIG. Thereby, ventilation can be performed while suppressing a decrease in heat exchange amount.
 以上冷凍サイクル装置100の動作を説明した。しかしながら、図2(a)から図2(d)で示した例は冷凍サイクル装置100の動作を限定するものではなく、冷凍サイクル装置100は図2(a)から図2(d)に示した以外の動作を行うこともできる。例えば、第一のダンパ11及び第二のダンパ12をともに開状態にしてもよい。この場合、外気の温度が高い場合でも、換気量を大きくしたうえで第二の室内熱交換部5の熱交換量の減少を少なくすることができる。 The operation of the refrigeration cycle device 100 has been described above. However, the examples shown in FIGS. 2(a) to 2(d) do not limit the operation of the refrigeration cycle apparatus 100, and the refrigeration cycle apparatus 100 is shown in FIGS. 2(a) to 2(d). Other operations can also be performed. For example, both the first damper 11 and the second damper 12 may be opened. In this case, even when the temperature of the outside air is high, it is possible to reduce the decrease in the heat exchange amount of the second indoor heat exchange section 5 after increasing the ventilation amount.
 また、図2(a)から図2(d)において、第一のダンパ11及び第二のダンパ12は開状態、閉状態、半開状態のいずれかであるが、第一のダンパ11及び第二のダンパ12は開状態と半開状態との中間、及び閉状態と半開状態との中間の状態をとることも可能である。このように、第一のダンパ11及び第二のダンパ12の開度を細かく設定できるようにすることで、室内の状況に応じた換気量の調整や熱交換器の効率の最適化が達成できる。 2(a) to 2(d), the first damper 11 and the second damper 12 are either in an open state, a closed state, or a half-open state. The damper 12 can be in an intermediate state between the open state and the half-open state, and an intermediate state between the closed state and the half-open state. In this way, by enabling fine setting of the opening degrees of the first damper 11 and the second damper 12, it is possible to adjust the amount of ventilation according to the indoor conditions and optimize the efficiency of the heat exchanger. .
 なお、上記説明では暖房運転の場合について説明したが、冷凍サイクル装置100は冷房運転も行うことができる。その場合、外気の温度が室内空気の温度より高く、室内の空気が汚染されている状況を考える。この場合、図2(a)のように第二のダンパ12は開状態、第一のダンパ11は閉状態となり、第一の室内熱交換部4には室内空気が流れ、第二の室内熱交換部5には外気が流れる。 In addition, although the case of the heating operation has been described above, the refrigeration cycle device 100 can also perform the cooling operation. In that case, consider a situation in which the temperature of the outside air is higher than the temperature of the indoor air, and the indoor air is polluted. In this case, as shown in FIG. 2A, the second damper 12 is in an open state and the first damper 11 is in a closed state. Outside air flows through the exchange portion 5 .
 このとき第二の室内熱交換部5には、膨張弁9で減圧された低温の気液二相状態の冷媒が流れている。第二の室内熱交換部5に温度の高い外気が流入すると、冷媒と外気との温度差が大きくなるため、熱交換量が大きくなる。このとき温度の高い外気は、熱交換により急速に温度が低くなる。したがって、冷凍サイクル装置100は冷房能力の低下や吹き出し温度の上昇を防いだうえで、外気による換気を行うことができる。 At this time, a low-temperature gas-liquid two-phase refrigerant decompressed by the expansion valve 9 is flowing through the second indoor heat exchange section 5 . When outside air having a high temperature flows into the second indoor heat exchange section 5, the temperature difference between the refrigerant and the outside air increases, so the amount of heat exchange increases. At this time, the outside air, which has a high temperature, rapidly cools down due to heat exchange. Therefore, the refrigerating cycle device 100 can ventilate with outside air while preventing a decrease in cooling capacity and an increase in blowing temperature.
 冷凍サイクル装置100は、冷房運転においても第一のダンパ11及び第二のダンパ12の状態を室内空気の汚染状況や、外気温度と室内空気の温度に応じて切り替える。これにより、様々な状況において冷房能力や冷凍サイクル装置100の効率を維持したうえで、適切な量の換気を行うことができる。 The refrigeration cycle device 100 switches the states of the first damper 11 and the second damper 12 according to the contamination status of the indoor air and the temperatures of the outside air and the indoor air even during the cooling operation. As a result, an appropriate amount of ventilation can be performed while maintaining the cooling capacity and the efficiency of the refrigeration cycle apparatus 100 in various situations.
 以上説明したように、本実施の形態において冷凍サイクル装置100は、室内空気の汚染状況、外気温度、室内空気温度等に応じて第一のダンパ11及び第二のダンパ12を動作させる。これにより冷凍サイクル装置100の吹き出し温度の変動を抑制したうえで、適切な量の換気を行うことができる。 As described above, in the present embodiment, the refrigeration cycle device 100 operates the first damper 11 and the second damper 12 according to the indoor air contamination status, the outside air temperature, the indoor air temperature, and the like. After suppressing the fluctuation|variation of the blowing temperature of the refrigerating-cycle apparatus 100 by this, an appropriate amount of ventilation can be performed.
 また、冷凍サイクル装置100が換気を行わない場合、第一のダンパ11及び第二のダンパ12を動作させることで第二の室内熱交換部5に室内空気を流すことができる。この場合、室内機3内部の空気の状態、すなわち空気と冷媒の熱交換の機構は、従来の冷凍サイクル装置における室内機での空気と冷媒の熱交換の機構と同一である。したがって、換気が必要にない場合でも冷凍サイクル装置100は従来の冷凍サイクル装置と同様の効率を達成できる。 In addition, when the refrigeration cycle device 100 does not perform ventilation, indoor air can flow to the second indoor heat exchange section 5 by operating the first damper 11 and the second damper 12 . In this case, the state of the air inside the indoor unit 3, that is, the heat exchange mechanism between the air and the refrigerant is the same as the heat exchange mechanism between the air and the refrigerant in the indoor unit of the conventional refrigeration cycle apparatus. Therefore, even if ventilation is not required, the refrigeration cycle device 100 can achieve efficiency similar to that of conventional refrigeration cycle devices.
 なお以上説明した冷凍サイクル装置100の構成は、本開示における冷凍サイクル装置100の構成の一例であり、本開示の趣旨を逸脱しない範囲で種々変形することが可能である。 The configuration of the refrigeration cycle device 100 described above is an example of the configuration of the refrigeration cycle device 100 in the present disclosure, and can be variously modified within the scope of the present disclosure.
 図4は室内機3の別の構成例を示す図である。図4では第二の室内送風機16が備えられており、第一の室内熱交換部4に流入する室内空気の量と、第二の室内熱交換部5に流入する外気の量と、を独立して調整することができる。加えて、図4では第二の吸い込み口14にフィルタ17が取り付けられている。フィルタ17は外気に含まれる塵埃を除去する。これにより、室内により清浄な外気を供給することができる。 FIG. 4 is a diagram showing another configuration example of the indoor unit 3. FIG. In FIG. 4, the second indoor fan 16 is provided, and the amount of indoor air flowing into the first indoor heat exchange section 4 and the amount of outdoor air flowing into the second indoor heat exchange section 5 are controlled independently. can be adjusted by In addition, a filter 17 is attached to the second suction port 14 in FIG. Filter 17 removes dust contained in the outside air. This makes it possible to supply cleaner outside air to the room.
実施例1.
 以下では、室内機3の構造及び動作の実施例を説明する。なお、合わせて室内機3内部の空気の流れについても説明する。
Example 1.
An embodiment of the structure and operation of the indoor unit 3 will be described below. In addition, the flow of air inside the indoor unit 3 will also be described.
 図5(a)から図5(e)は実施例1における冷凍サイクル装置100の室内機3の構造、動作、及び室内機3内部の空気の流れを示す図である。図5(a)は室内機3aの全体の構造を示す斜視図、図5(b)は室内機3aを前方から見た前方図、図5(c)は室内機3aを後方から見た後方図、図5(d)及び(e)は室内機3aを左方から見た左方図である。 FIGS. 5(a) to 5(e) are diagrams showing the structure and operation of the indoor unit 3 of the refrigeration cycle apparatus 100 in Embodiment 1, and the flow of air inside the indoor unit 3. FIG. 5(a) is a perspective view showing the overall structure of the indoor unit 3a, FIG. 5(b) is a front view of the indoor unit 3a as seen from the front, and FIG. 5(c) is a rear view of the indoor unit 3a as seen from the rear. 5(d) and 5(e) are left views of the indoor unit 3a viewed from the left.
 図5(a)から図5(e)に示す室内機3aでは、室内機3aの上面に室内空気を吸い込む第一の吸い込み口13、後面に外気を吸い込む第二の吸い込み口14aが設けられている。また、室内機3aの前面下部には、室内機3aから吹き出される気流の風向を調整する風向調整手段が設けられた吹き出し口15が設けられている。さらに、室内機3aの内部には第一の室内熱交換部4a及び4bと、第二の室内熱交換部5aと、第一の室内送風機6と、が収容されている。 In the indoor unit 3a shown in FIGS. 5(a) to 5(e), a first suction port 13 for sucking indoor air is provided on the upper surface of the indoor unit 3a, and a second suction port 14a for sucking outside air is provided on the rear surface. there is A blowout port 15 provided with a wind direction adjusting means for adjusting the wind direction of the airflow blown out from the indoor unit 3a is provided at the lower front portion of the indoor unit 3a. Furthermore, the first indoor heat exchange units 4a and 4b, the second indoor heat exchange unit 5a, and the first indoor fan 6 are housed inside the indoor unit 3a.
 さらに室内機3aの内部には第一のダンパ11aと、第二のダンパ12aとが収容されている。第二のダンパ12aは第二の吸い込み口14aに近接して配置される。第二のダンパ12aの形状は、第二の吸い込み口14aの形状と概同一形状であり、さらに第二のダンパ12aは第二の吸い込み口14aよりわずかに大きい。図5(c)に示す例では、第二のダンパ12aは第二の吸い込み口14aのすぐ下に配置される。また長方形の第二の吸い込み口14aに対し、第二のダンパ12aも長方形であり、第二のダンパ12aの横幅、高さは第二の吸い込み口14aの横幅、高さよりも大きい。 Furthermore, a first damper 11a and a second damper 12a are accommodated inside the indoor unit 3a. The second damper 12a is arranged close to the second suction port 14a. The shape of the second damper 12a is substantially the same as the shape of the second suction port 14a, and the second damper 12a is slightly larger than the second suction port 14a. In the example shown in FIG. 5(c), the second damper 12a is arranged immediately below the second suction port 14a. Further, the second damper 12a is also rectangular, and the width and height of the second damper 12a are larger than the width and height of the second suction port 14a.
 さらに第二のダンパ12aは図示しない動作手段を有し、第二の吸い込み口14aから室内機3aに流れ込む外気を妨げない開状態と、第二の吸い込み口14aを塞ぎ室内機3aへの外気の流入を阻止する閉状態と、開状態と閉状態の間の半開状態をとるように動作する。第二のダンパ12aが閉状態の場合、第二のダンパ12aは第二の吸い込み口14aより大きいため、第二の吸い込み口14aを完全に封鎖することができる。 Further, the second damper 12a has an operation means (not shown), and has an open state that does not block the outside air flowing into the indoor unit 3a from the second suction port 14a, and an open state that blocks the second suction port 14a and prevents outside air from flowing into the indoor unit 3a. It operates to take a closed state that blocks inflow and a half-open state between the open and closed states. When the second damper 12a is in the closed state, the second damper 12a is larger than the second suction port 14a, so the second suction port 14a can be completely blocked.
 なお、第二のダンパ12aの状態を切り替えるための動作手段は、その種類を問わず任意の手段を用いることができる。例えば、第二のダンパ12aの一端に回転軸を取り付け、上記回転軸を動力により回転させることにより、第二のダンパ12aを動作させるようにしてもよい。 Any type of operation means can be used for switching the state of the second damper 12a. For example, the second damper 12a may be operated by attaching a rotating shaft to one end of the second damper 12a and rotating the rotating shaft by power.
 第一のダンパ11aは室内機3aの内部において、第一の吸い込み口13と第二の室内熱交換部5aとの間に配置される。図5(a)及び(d)に示す例では、第一のダンパ11aは第一の吸い込み口13の下方の、室内機3aの後方側に取り付けられている。 The first damper 11a is arranged inside the indoor unit 3a between the first suction port 13 and the second indoor heat exchange section 5a. In the example shown in FIGS. 5(a) and 5(d), the first damper 11a is attached below the first suction port 13 on the rear side of the indoor unit 3a.
 第一のダンパ11aの形状は特に限定されないが、第一のダンパ11aの大きさは、第一の吸い込み口13から吸い込まれる室内空気が、第二の室内熱交換部5aに流入することを阻止できる大きさである。例えば、図5(a)及び(d)の例では、第一のダンパ11aの横幅は第一の吸い込み口13の横幅よりも大きく、第一のダンパ11aの長さは、室内機3aの後面から第二の室内熱交換部5aまでの距離より大きい。第一のダンパ11aがこのような大きさを有することで、第一のダンパ11aが後述する閉状態になった場合に、室内空気が第二の室内熱交換部5aに流入することを阻止することができる。 The shape of the first damper 11a is not particularly limited. It is as large as it can be. For example, in the examples of FIGS. 5(a) and (d), the width of the first damper 11a is greater than the width of the first suction port 13, and the length of the first damper 11a is the rear surface of the indoor unit 3a. to the second indoor heat exchange section 5a. Since the first damper 11a has such a size, the indoor air is prevented from flowing into the second indoor heat exchange section 5a when the first damper 11a is in a closed state described later. be able to.
 さらに第一のダンパ11aは図示しない動作手段を有し、第一の吸い込み口13から吸い込まれる室内空気の、第二の室内熱交換部5aへの流入を阻止する閉状態と、第二の室内熱交換部5aへの流入を妨げない開状態と、開状態と閉状態の間の半開状態をとるように動作する。第一のダンパ11aが閉状態の場合、第一のダンパ11aの横幅は第一の吸い込み口13の横幅より長く、かつ、第一のダンパ11aの長さは、室内機3aの後面から第二の室内熱交換部5aまでの長さより大きいため、室内空気の第二の室内熱交換部5aへの流入を阻止することができる。 Further, the first damper 11a has an operation means (not shown), and is closed to prevent the indoor air sucked from the first suction port 13 from flowing into the second indoor heat exchange section 5a. It operates to take an open state that does not hinder the flow into the heat exchanging portion 5a and a half-open state between the open state and the closed state. When the first damper 11a is in the closed state, the width of the first damper 11a is longer than the width of the first suction port 13, and the length of the first damper 11a is two seconds from the rear surface of the indoor unit 3a. Since it is larger than the length up to the indoor heat exchange section 5a, it is possible to prevent the indoor air from flowing into the second indoor heat exchange section 5a.
 なお、第一のダンパ11aの状態を切り替えるための動作手段は、その種類を問わず任意の手段を用いることができる。例えば、第一のダンパ11aの一端に回転軸を取り付け、上記回転軸を動力により回転させることにより、第一のダンパ11aを動作させるようにしてもよい。 Any means can be used as the operation means for switching the state of the first damper 11a regardless of its type. For example, the first damper 11a may be operated by attaching a rotating shaft to one end of the first damper 11a and rotating the rotating shaft by power.
 図5(d)及び(e)には、室内機3aを左方向から見た場合の室内機3a内の気流の流れが示されている。図5(d)では第二のダンパ12aは開状態、かつ、第一のダンパ11aは閉状態である。一方、図5(e)では第二のダンパ12aは閉状態、第一のダンパ11aは開状態となっている。 FIGS. 5(d) and 5(e) show the airflow in the indoor unit 3a when the indoor unit 3a is viewed from the left. In FIG. 5(d), the second damper 12a is open and the first damper 11a is closed. On the other hand, in FIG. 5(e), the second damper 12a is closed and the first damper 11a is open.
 図5(d)に示す状態において、室内機3aには第一の吸い込み口13から室内空気が、第二の吸い込み口14aから外気が流入する。なお、第一の吸い込み口13から吸い込まれる室内空気は、第一のダンパ11aにより妨げられ、第二の室内熱交換部5aに流入せず第一の室内熱交換部4a、4bに流入する。また、第二のダンパ12aが開状態であるため、第二の吸い込み口14aからは外気が吸入され、第二の室内熱交換部5aに流入する。 In the state shown in FIG. 5(d), indoor air flows into the indoor unit 3a from the first suction port 13, and outside air flows from the second suction port 14a. The indoor air sucked from the first suction port 13 is blocked by the first damper 11a and does not flow into the second indoor heat exchange section 5a but flows into the first indoor heat exchange sections 4a and 4b. Also, since the second damper 12a is in the open state, outside air is sucked from the second suction port 14a and flows into the second indoor heat exchange section 5a.
 このとき冷凍サイクル装置100が暖房運転で動作しているならば、第一の室内熱交換部4a、4b及び第二の室内熱交換部5aの状態は、図3に実線で示すような過冷却領域が小さく熱交換器全体の効率が高い状態となっている。 At this time, if the refrigeration cycle apparatus 100 is operating in heating operation, the state of the first indoor heat exchange units 4a and 4b and the second indoor heat exchange unit 5a is supercooled as indicated by the solid line in FIG. The area is small and the efficiency of the whole heat exchanger is high.
 一方、図5(e)では第二のダンパ12aは閉状態、第一のダンパ11aは開状態となっている。図5(e)に示す状態では、第一の吸い込み口13から室内空気が流入する一方、第二の吸い込み口14aからは、第二のダンパ12aが第二の吸い込み口14aを封鎖しているため外気は流入しない。第一の吸い込み口13から流入した室内空気は、第一の室内熱交換部4a、4b及び第二の室内熱交換部5aに流入する。 On the other hand, in FIG. 5(e), the second damper 12a is closed and the first damper 11a is open. In the state shown in FIG. 5(e), while room air flows in from the first suction port 13, the second suction port 14a is blocked by the second damper 12a. Therefore, outside air does not enter. The indoor air that has flowed in from the first suction port 13 flows into the first indoor heat exchange sections 4a and 4b and the second indoor heat exchange section 5a.
 このとき冷凍サイクル装置100が暖房運転で動作しているならば、第一の室内熱交換部4a、4b及び第二の室内熱交換部5aの状態は、図3に点線で示す外気を取り入れない従来の熱交換器の状態となっている。 At this time, if the refrigeration cycle device 100 is operating in the heating operation, the state of the first indoor heat exchange units 4a and 4b and the second indoor heat exchange unit 5a is such that outside air is not taken in as indicated by dotted lines in FIG. It is in the state of a conventional heat exchanger.
実施例2.
 図6(a)から図6(c)は実施例2における室内機3の構造、動作、及び室内機3内部の空気の流れを示す図である。図6(a)は室内機3bの全体の構造を示す斜視図、図6(b)及び図6(c)は室内機3bを後方から見た後方図である。なお、以下では図5(a)から図5(e)に示す実施例1と、図6(a)から図6(c)に示す実施例2と、の違いについて説明する。
Example 2.
FIGS. 6(a) to 6(c) are diagrams showing the structure and operation of the indoor unit 3 and the flow of air inside the indoor unit 3 according to the second embodiment. Fig.6 (a) is a perspective view which shows the structure of the whole indoor unit 3b, FIG.6(b) and FIG.6(c) are the rear views which looked at the indoor unit 3b from the back. In addition, below, the difference between Example 1 shown in FIGS. 5A to 5E and Example 2 shown in FIGS. 6A to 6C will be described.
 図6(a)から図6(c)に示す室内機3bでは、後面に外気を吸い込む第二の吸い込み口14bが設けられている。実施例1と比較した場合、実施例2では第二の吸い込み口14bの場所と形状が異なる。また室内機3bの内部には第一の室内熱交換部4a、4b、及び4cと、第二の室内熱交換部5b及び5cと、が収容されている。実施例1と比較した場合、実施例2では第一の室内熱交換部4及び第二の室内熱交換部5の形状が異なる。 The indoor unit 3b shown in FIGS. 6(a) to 6(c) is provided with a second suction port 14b for sucking outside air on the rear surface. When compared with Example 1, Example 2 differs in the location and shape of the second suction port 14b. Further, the first indoor heat exchange units 4a, 4b, and 4c and the second indoor heat exchange units 5b and 5c are accommodated inside the indoor unit 3b. When compared with Example 1, Example 2 differs in the shapes of the first indoor heat exchange section 4 and the second indoor heat exchange section 5 .
 さらに室内機3bの内部には第一のダンパ11bと第二のダンパ12bとが収容されている。第二のダンパ12bは第二の吸い込み口14bに近接して配置される。第二のダンパ12bの形状は、第二の吸い込み口14bの形状と概同一形状であり、さらに第二のダンパ12bは第二の吸い込み口14bより大きい。図6(b)に示す例では、第二のダンパ12bは第二の吸い込み口14bの右側に、室内機3bの後面に沿って配置される。また概正方形の第二の吸い込み口14bに対し、第二のダンパ12bも概正方形であり、第二のダンパ12bの横幅、長さは第二の吸い込み口14bの横幅、長さよりも大きい。 Furthermore, a first damper 11b and a second damper 12b are accommodated inside the indoor unit 3b. The second damper 12b is arranged close to the second suction port 14b. The shape of the second damper 12b is substantially the same as the shape of the second suction port 14b, and the second damper 12b is larger than the second suction port 14b. In the example shown in FIG. 6(b), the second damper 12b is arranged on the right side of the second suction port 14b along the rear surface of the indoor unit 3b. Further, the second damper 12b is also substantially square with respect to the substantially square second suction port 14b, and the width and length of the second damper 12b are greater than the width and length of the second suction port 14b.
 さらに第二のダンパ12bは図示しない動作手段を有し、第二の吸い込み口14bから室内機3bに流れ込む外気を妨げない開状態と、第二の吸い込み口14bを塞ぎ室内機3bへの外気の流入を阻止する閉状態と、開状態と閉状態の間の半開状態をとるように動作する。図6(b)に示す例では、第二のダンパ12bは第二の吸い込み口14bの右側に位置し、第二の吸い込み口14bを塞いでいない開状態である。一方、図6(c)に示す例では、第二のダンパ12bは第二の吸い込み口14bを内側から塞ぐ位置に移動しており、第二の吸い込み口14bを塞いでいる閉状態である。なお、第二のダンパ12bが閉状態の場合、第二のダンパ12bは第二の吸い込み口14bより大きいため、第二の吸い込み口14bを完全に封鎖することができる。 Furthermore, the second damper 12b has an operation means (not shown), and has an open state that does not block the outside air flowing into the indoor unit 3b from the second suction port 14b, and an open state that blocks the second suction port 14b and prevents outside air from flowing into the indoor unit 3b. It operates to take a closed state that blocks inflow and a half-open state between the open and closed states. In the example shown in FIG. 6(b), the second damper 12b is positioned on the right side of the second suction port 14b and is in an open state not blocking the second suction port 14b. On the other hand, in the example shown in FIG. 6(c), the second damper 12b has moved to a position where it blocks the second suction port 14b from the inside, and is in a closed state blocking the second suction port 14b. When the second damper 12b is in the closed state, the second damper 12b is larger than the second suction port 14b, so the second suction port 14b can be completely blocked.
 なお、第二のダンパ12bの状態を切り替えるための動作手段は、その種類を問わず任意の手段を用いることができる。例えば、第二のダンパ12bにレールを取り付け、レールに沿って第二のダンパ12bを移動させるようにしてもよい。 Any type of operation means can be used as the operation means for switching the state of the second damper 12b. For example, a rail may be attached to the second damper 12b and the second damper 12b may be moved along the rail.
 第一のダンパ11bは室内機3bの内部において、第一の吸い込み口13と第二の室内熱交換部5b、5cとの間に配置される。図6(a)及び図6(b)に示す例では、第一のダンパ11bは第一の吸い込み口13の下方に、室内機3bの後方側に取り付けられている。 The first damper 11b is arranged inside the indoor unit 3b between the first suction port 13 and the second indoor heat exchange parts 5b and 5c. In the example shown in FIGS. 6(a) and 6(b), the first damper 11b is attached below the first suction port 13 and on the rear side of the indoor unit 3b.
 なお、第一のダンパ11bの形状は特に限定されないが、第一のダンパ11bの大きさは、第一の吸い込み口13から吸い込まれる室内空気が、第二の室内熱交換部5b、5cに流入することを阻止できる大きさである。例えば、図6(a)及び図6(b)の例では、第一のダンパ11bの横幅は第二の室内熱交換部5bの横幅よりも大きく、第一のダンパ11bの長さは、室内機3bの後面から第二の室内熱交換部5bの前方側の端部までの距離より大きい。第一のダンパ11bがこのような大きさを有することで、第一のダンパ11bが後述する閉状態になった場合に、室内空気が第二の室内熱交換部5b、5cに流入することを阻止することができる。 Although the shape of the first damper 11b is not particularly limited, the size of the first damper 11b is such that the indoor air sucked from the first suction port 13 flows into the second indoor heat exchange portions 5b and 5c. It is large enough to prevent For example, in the example of FIGS. 6A and 6B, the width of the first damper 11b is greater than the width of the second indoor heat exchange section 5b, and the length of the first damper 11b is It is greater than the distance from the rear surface of the machine 3b to the front end of the second indoor heat exchange section 5b. Since the first damper 11b has such a size, it is possible to prevent indoor air from flowing into the second indoor heat exchange portions 5b and 5c when the first damper 11b is in a closed state described later. can be prevented.
 さらに第一のダンパ11bは図示しない動作手段を有し、第一の吸い込み口13から吸い込まれる室内空気の、第二の室内熱交換部5b、5cへの流入を阻止する閉状態と、第二の室内熱交換部5b、5cへの流入を妨げない開状態と、開状態と閉状態の間の半開状態をとるように動作する。図6(a)、図6(b)に示す例では、第一のダンパ11bは閉状態である。このとき、第一のダンパ11bの横幅は第二の室内熱交換部5bの横幅よりも大きく、第一のダンパ11bの長さは、室内機3bの後面から第二の室内熱交換部5bの前方側の端部までの距離より大きい。そのため、室内空気の第二の室内熱交換部5b、5cへの流入を阻止することができる。一方、図6(c)に示す例では、第一のダンパ11bは開状態である。このとき、第一のダンパ11bは第一の吸い込み口13と第二の室内熱交換部5b、5cとの間には位置しないため、室内空気の第二の室内熱交換部5b、5cへの流入を阻害することはない。 Furthermore, the first damper 11b has an operation means (not shown), and has a closed state that prevents the indoor air sucked from the first suction port 13 from flowing into the second indoor heat exchange portions 5b and 5c. and a half-open state between the open state and the closed state. In the example shown in FIGS. 6(a) and 6(b), the first damper 11b is in the closed state. At this time, the width of the first damper 11b is larger than the width of the second indoor heat exchange section 5b, and the length of the first damper 11b is from the rear surface of the indoor unit 3b to the second indoor heat exchange section 5b. Greater than the distance to the front edge. Therefore, it is possible to prevent the indoor air from flowing into the second indoor heat exchange portions 5b and 5c. On the other hand, in the example shown in FIG. 6(c), the first damper 11b is in the open state. At this time, since the first damper 11b is not located between the first suction port 13 and the second indoor heat exchange portions 5b, 5c, the indoor air is not transferred to the second indoor heat exchange portions 5b, 5c. It does not impede inflow.
 なお、第一のダンパ11bの状態を切り替えるための動作手段は、その種類を問わず任意の手段を用いることができる。例えば、第一のダンパ11bにレールを取り付け、レールに沿って第一のダンパ12bを移動させるようにしてもよい。 Any means can be used as the operation means for switching the state of the first damper 11b regardless of its type. For example, a rail may be attached to the first damper 11b and the first damper 12b may be moved along the rail.
 また図6(b)、図6(c)には、室内機3bを後方から見た場合の室内機3b内の空気の流れが示されている。図6(b)では第二のダンパ12bは開状態、かつ、第一のダンパ11bは閉状態である。一方、図6(c)では第二のダンパ12bは閉状態、第一のダンパ11bは開状態となっている。 Also, FIGS. 6(b) and 6(c) show the air flow inside the indoor unit 3b when the indoor unit 3b is viewed from behind. In FIG. 6B, the second damper 12b is open and the first damper 11b is closed. On the other hand, in FIG. 6(c), the second damper 12b is closed and the first damper 11b is open.
 図6(b)に示す状態において、室内機3bには第一の吸い込み口13から室内空気が、第二の吸い込み口14bから外気が流入する。なお、第一の吸い込み口13から吸い込まれる室内空気は、第一のダンパ11bにより妨げられ、第二の室内熱交換部5b、5cに流入せず第一の室内熱交換部4a、4b、及び4cに流入する。また、第二のダンパ12bが開状態であるため、第二の吸い込み口14bからは外気が吸入され、第二の室内熱交換部5b、5cに流入する。 In the state shown in FIG. 6(b), indoor air flows into the indoor unit 3b from the first suction port 13, and outside air flows from the second suction port 14b. In addition, the indoor air sucked from the first suction port 13 is blocked by the first damper 11b and does not flow into the second indoor heat exchange units 5b and 5c, and the first indoor heat exchange units 4a, 4b, and Flow into 4c. Also, since the second damper 12b is in the open state, outside air is sucked from the second suction port 14b and flows into the second indoor heat exchange portions 5b and 5c.
 このとき冷凍サイクル装置100が暖房運転で動作しているならば、第一の室内熱交換部4a、4b、4c及び第二の室内熱交換部5b、5cの状態は、図3に実線で示すような過冷却領域が小さく熱交換器全体の効率が高い状態となっている。 At this time, if the refrigeration cycle apparatus 100 is operating in heating operation, the states of the first indoor heat exchange units 4a, 4b, 4c and the second indoor heat exchange units 5b, 5c are indicated by solid lines in FIG. Such a supercooling region is small and the efficiency of the entire heat exchanger is high.
 一方、図6(c)では第二のダンパ12bは閉状態、第一のダンパ11bは開状態となっている。図6(c)に示す状態では、第一の吸い込み口13から室内空気が流入する一方、第二のダンパ12bが第二の吸い込み口14bを封鎖しているため第二の吸い込み口14bから外気は流入しない。第一の吸い込み口13から流入した室内空気は、第一の室内熱交換部4a、4b及び4cと、第二の室内熱交換部5b、5cに流入する。 On the other hand, in FIG. 6(c), the second damper 12b is closed and the first damper 11b is open. In the state shown in FIG. 6(c), while room air flows in from the first suction port 13, the second damper 12b blocks the second suction port 14b, so outside air flows from the second suction port 14b. does not flow. The indoor air that has flowed in from the first suction port 13 flows into the first indoor heat exchange sections 4a, 4b and 4c and the second indoor heat exchange sections 5b and 5c.
 このとき冷凍サイクル装置100が暖房運転で動作しているならば、第一の室内熱交換部4a、4b、及び4cと、第二の室内熱交換部5b、5cの状態は、図3に点線で示す外気を取り入れない従来の熱交換器の状態となっている。 At this time, if the refrigeration cycle apparatus 100 is operating in heating operation, the states of the first indoor heat exchange units 4a, 4b, and 4c and the second indoor heat exchange units 5b and 5c are indicated by dotted lines in FIG. It is in the state of a conventional heat exchanger that does not take in the outside air as indicated by .
実施例3.
 図7(a)から図7(c)は実施例3における室内機3の構造、動作、及び室内機3内部の空気の流れを示す図である。図7(a)は室内機3cの全体の構造を示す斜視図、図7(b)、図7(c)は室内機3cを前方から見た前方図である。なお、以下では図5(a)から図5(e)に示す実施例1及び図6(a)から図6(c)に示す実施例2と、図7(a)から図7(c)に示す実施例3と、の違いについて説明する。
Example 3.
7(a) to 7(c) are diagrams showing the structure and operation of the indoor unit 3 and the flow of air inside the indoor unit 3 according to the third embodiment. FIG. 7(a) is a perspective view showing the overall structure of the indoor unit 3c, and FIGS. 7(b) and 7(c) are front views of the indoor unit 3c as seen from the front. 5(a) to 5(e), Example 2 shown in FIGS. 6(a) to 6(c), and FIGS. 7(a) to 7(c). The difference between the third embodiment shown in FIG.
 図7(a)から図7(c)に示す室内機3cでは、室内機3cの右方に外気を吸い込む第二の吸い込み口14cが設けられている。実施例1及び実施例2と比較した場合、実施例3では第二の吸い込み口14cが設けられている位置が異なる。また室内機3cの内部には、実施例2と同様に第一の室内熱交換部4a、4b、及び4cと、第二の室内熱交換部5b及び5cと、が収容されている。 In the indoor unit 3c shown in FIGS. 7(a) to 7(c), a second suction port 14c for sucking outside air is provided on the right side of the indoor unit 3c. When compared with the first and second embodiments, the third embodiment differs in the position where the second suction port 14c is provided. Further, inside the indoor unit 3c, similarly to the second embodiment, first indoor heat exchange units 4a, 4b, and 4c and second indoor heat exchange units 5b and 5c are accommodated.
 さらに室内機3cの内部には第一のダンパ11cと第二のダンパ12cとが収容されている。第二のダンパ12cは第二の吸い込み口14cに近接して配置される。第二のダンパ12cの形状は、第二の吸い込み口14cの形状と概同一形状であり、さらに第二のダンパ12cは第二の吸い込み口14cより大きい。図7(a)に示す例では、第二のダンパ12cは第二の吸い込み口14cの下側に、室内機3cの右面に沿って配置される。また正方形である第二の吸い込み口14cに対し、第二のダンパ12cも正方形であり、第二のダンパ12cの横幅、長さは第二の吸い込み口14cの横幅、長さよりも大きい。 Further, a first damper 11c and a second damper 12c are accommodated inside the indoor unit 3c. The second damper 12c is arranged close to the second suction port 14c. The shape of the second damper 12c is substantially the same as the shape of the second suction port 14c, and the second damper 12c is larger than the second suction port 14c. In the example shown in FIG. 7A, the second damper 12c is arranged below the second suction port 14c along the right surface of the indoor unit 3c. Further, the second damper 12c is also square with respect to the square second suction port 14c, and the width and length of the second damper 12c are larger than the width and length of the second suction port 14c.
 さらに第二のダンパ12cは図示しない動作手段を有し、第二の吸い込み口14cから室内機3cに流れ込む外気を妨げない開状態と、第二の吸い込み口14cを塞ぎ室内機3cへの外気の流入を阻止する閉状態と、開状態と閉状態の間の半開状態をとるように動作する。図7(b)に示す例では、第二のダンパ12cは第二の吸い込み口14cの下方に位置し、第二の吸い込み口14cを塞いでいない開状態である。一方、図7(c)に示す例では、第二のダンパ12cは移動しており、第二の吸い込み口14cを塞いでいる閉状態である。なお、第二のダンパ12cが閉状態の場合、第二のダンパ12cは第二の吸い込み口14cより大きいため、第二の吸い込み口14cを完全に封鎖することができる。 Furthermore, the second damper 12c has an operation means (not shown), and has an open state that does not block the outside air flowing into the indoor unit 3c from the second suction port 14c, and an open state that blocks the second suction port 14c and prevents outside air from flowing into the indoor unit 3c. It operates to take a closed state that blocks inflow and a half-open state between the open and closed states. In the example shown in FIG. 7(b), the second damper 12c is positioned below the second suction port 14c and is in an open state not blocking the second suction port 14c. On the other hand, in the example shown in FIG. 7(c), the second damper 12c is in a closed state in which the second suction port 14c is blocked. When the second damper 12c is in the closed state, the second damper 12c is larger than the second suction port 14c, so the second suction port 14c can be completely blocked.
 なお、第二のダンパ12cの状態を切り替えるための動作手段は、その種類を問わず任意の手段を用いることができる。例えば第二のダンパ12cの動作手段は使用者が手動で行うものであってもよい。図8(a)、図8(b)は第二のダンパ12cの動作手段が、手動である場合の一例を示す図である。図8(a)、図8(b)に示すように、室内機3cの右面に凸部付きの切り込み20を設け、第二のダンパ12cに切り込み20に沿って移動可能なつまみ21を取り付け、つまみ21を使用者が移動させることで第二のダンパ12cを動作させるようにしてもよい。 Any type of operation means can be used for switching the state of the second damper 12c. For example, the operating means of the second damper 12c may be manually operated by the user. FIGS. 8(a) and 8(b) are diagrams showing an example in which the operating means of the second damper 12c is manual. As shown in FIGS. 8(a) and 8(b), a notch 20 with a protrusion is provided on the right side of the indoor unit 3c, and a knob 21 movable along the notch 20 is attached to the second damper 12c, The user may move the knob 21 to operate the second damper 12c.
 図8(a)は上記動作手段において、第二のダンパ12cを開状態とした場合、図8(b)は上記動作手段において、第二のダンパ12cを閉状態とした場合の図である。なお、図8(a)、図8(b)には切り込み20の真ん中にも凸部が設けられているが、つまみ21を上記真ん中の凸部に移動させれば、第二のダンパ12cを半開状態にすることができる。 FIG. 8(a) is a view of the operating means when the second damper 12c is in an open state, and FIG. 8(b) is a view of the operating means when the second damper 12c is in a closed state. 8(a) and 8(b), a protrusion is also provided in the middle of the notch 20, but if the knob 21 is moved to the protrusion in the middle, the second damper 12c can be moved. It can be half open.
 第一のダンパ11cは室内機3cの内部において、第一の吸い込み口13と第二の室内熱交換部5b、5cとの間に配置される。図7(a)、図7(b)に示す例では、第一のダンパ11cは第一の吸い込み口13の下方の、室内機3cの後方側に取り付けられている。本実施例の第一のダンパ11cは、その形状や動作は実施例2の第一のダンパ11bと概ね同一であるが、後述するように第二のダンパ12cと干渉しないようにする必要がある。 The first damper 11c is arranged inside the indoor unit 3c between the first suction port 13 and the second indoor heat exchange parts 5b and 5c. In the example shown in FIGS. 7(a) and 7(b), the first damper 11c is attached below the first suction port 13 on the rear side of the indoor unit 3c. The first damper 11c of this embodiment has substantially the same shape and operation as the first damper 11b of the second embodiment, but it is necessary not to interfere with the second damper 12c as described later. .
 なお、第一のダンパ11cの形状は特に限定されないが、第一のダンパ11cの大きさは、第一の吸い込み口13から吸い込まれる室内空気が、第二の室内熱交換部5b、5cに流入することを阻止できる大きさである。図7(a)、図7(b)の例では、実施例2と同様に、第一のダンパ11cの横幅は第二の室内熱交換部5bの横幅よりも大きく、第一のダンパ11cの長さは、室内機3cの後面から第二の室内熱交換部5bの前方側の端部までの距離より大きい。 The shape of the first damper 11c is not particularly limited. It is large enough to prevent In the examples of FIGS. 7A and 7B, the width of the first damper 11c is larger than the width of the second indoor heat exchange section 5b, and the width of the first damper 11c is greater than that of the second indoor heat exchange section 5b, as in the second embodiment. The length is greater than the distance from the rear surface of the indoor unit 3c to the front end of the second indoor heat exchange section 5b.
 加えて、第一のダンパ11cの大きさは、第二のダンパ12cが閉状態で、かつ、第一のダンパ11cが後述する開状態となった場合に、第一のダンパ11cが第二のダンパ12cに干渉しない大きさである必要がある。 In addition, the size of the first damper 11c is such that when the second damper 12c is in a closed state and the first damper 11c is in an open state, which will be described later, the first damper 11c is larger than the second damper 11c. It must be of a size that does not interfere with the damper 12c.
 さらに第一のダンパ11cは図示しない動作手段を有し、第一の吸い込み口13から吸い込まれる室内空気の、第二の室内熱交換部5b、5cへの流入を阻止する閉状態と、第二の室内熱交換部5b、5cへの流入を妨げない開状態と、開状態と閉状態の間の半開状態をとるように動作する。図7(a)、図7(b)に示す例では、第一のダンパ11cは閉状態である。一方、図7(c)に示す例では、第一のダンパ11cは開状態である。 Furthermore, the first damper 11c has an operation means (not shown), and has a closed state that prevents the indoor air sucked from the first suction port 13 from flowing into the second indoor heat exchange portions 5b and 5c. and a half-open state between the open state and the closed state. In the example shown in FIGS. 7(a) and 7(b), the first damper 11c is closed. On the other hand, in the example shown in FIG. 7(c), the first damper 11c is in the open state.
 第一のダンパ11cの状態を切り替えるための動作手段は、その種類を問わず任意の手段を用いることができる。なお、第一のダンパ11cの動作手段は、第二のダンパ12cが閉状態で、かつ、第一のダンパ11cが開状態になったときに、第一のダンパ11cが第二のダンパ12cに干渉しない大きさである必要がある。 Any type of operation means can be used for switching the state of the first damper 11c. The operation means of the first damper 11c is such that when the second damper 12c is in the closed state and the first damper 11c is in the open state, the first damper 11c moves to the second damper 12c. It must be of a size that does not interfere.
 図7(b)、図7(c)は、室内機3cを前方から見た場合の室内機3c内の空気の流れを示している。図7(b)では第二のダンパ12cは開状態、かつ、第一のダンパ11cは閉状態である。一方、図7(c)では第二のダンパ12cは閉状態、第一のダンパ11cは開状態となっている。 FIGS. 7(b) and 7(c) show the air flow inside the indoor unit 3c when the indoor unit 3c is viewed from the front. In FIG. 7B, the second damper 12c is open and the first damper 11c is closed. On the other hand, in FIG. 7C, the second damper 12c is closed and the first damper 11c is open.
 図7(b)に示す状態において、室内機3cには第一の吸い込み口13から室内空気が、第二の吸い込み口14cから外気が流入する。なお、第一の吸い込み口13から吸い込まれる室内空気は、第一のダンパ11cにより妨げられ、第二の室内熱交換部5b、5cに流入せず第一の室内熱交換部4a、4b、及び4cに流入する。また、第二のダンパ12cが開状態であるため、第二の吸い込み口14cからは外気が吸入され、第二の室内熱交換部5b、5cに流入する。 In the state shown in FIG. 7(b), indoor air flows into the indoor unit 3c from the first suction port 13, and outside air flows from the second suction port 14c. In addition, the indoor air sucked from the first suction port 13 is blocked by the first damper 11c and does not flow into the second indoor heat exchange units 5b and 5c, and the first indoor heat exchange units 4a, 4b, and Flow into 4c. Also, since the second damper 12c is in the open state, outside air is sucked from the second suction port 14c and flows into the second indoor heat exchange portions 5b and 5c.
 このとき冷凍サイクル装置100が暖房運転で動作しているならば、第一の室内熱交換部4a、4b、4c及び第二の室内熱交換部5b、5cの状態は、図3に実線で示すような過冷却領域が小さく熱交換器全体の効率が高い状態となっている。 At this time, if the refrigeration cycle apparatus 100 is operating in heating operation, the states of the first indoor heat exchange units 4a, 4b, 4c and the second indoor heat exchange units 5b, 5c are indicated by solid lines in FIG. Such a supercooling region is small and the efficiency of the entire heat exchanger is high.
 一方、図7(c)では第二のダンパ12cは閉状態、第一のダンパ11cは開状態となっている。図7(c)に示す状態では、第一の吸い込み口13から室内空気が流入する一方、第二のダンパ12cが第二の吸い込み口14cを封鎖しているため第二の吸い込み口14cから外気は流入しない。第一の吸い込み口13から流入した室内空気は、第一の室内熱交換部4a、4b及び4cと、第二の室内熱交換部5b、5cに流入する。 On the other hand, in FIG. 7(c), the second damper 12c is closed and the first damper 11c is open. In the state shown in FIG. 7(c), while room air flows in from the first suction port 13, the second damper 12c blocks the second suction port 14c, so outside air flows from the second suction port 14c. does not flow. The indoor air that has flowed in from the first suction port 13 flows into the first indoor heat exchange sections 4a, 4b and 4c and the second indoor heat exchange sections 5b and 5c.
 このとき冷凍サイクル装置100が暖房運転で動作しているならば、第一の室内熱交換部4a、4b、及び4cと、第二の室内熱交換部5b、4cの状態は、図3に点線で示す外気を取り入れない従来の熱交換器の状態となっている。 At this time, if the refrigeration cycle apparatus 100 is operating in heating operation, the states of the first indoor heat exchange units 4a, 4b, and 4c and the second indoor heat exchange units 5b and 4c are indicated by dotted lines in FIG. It is in the state of a conventional heat exchanger that does not take in the outside air as indicated by .
 以上説明した通り、本開示における冷凍サイクル装置100は、第一の室内熱交換部4と、第二の室内熱交換部5を有する。また、その室内機3に室内空気を吸い込む第一の吸い込み口13と、外気を吸い込む第二の吸い込み口14と、が設けられている。さらに室内機3には、第一のダンパ11と、第二のダンパ12が取り付けられている。 As described above, the refrigeration cycle device 100 in the present disclosure has the first indoor heat exchange section 4 and the second indoor heat exchange section 5. Further, the indoor unit 3 is provided with a first suction port 13 for sucking indoor air and a second suction port 14 for sucking outside air. Furthermore, a first damper 11 and a second damper 12 are attached to the indoor unit 3 .
 冷凍サイクル装置100が暖房運転を行っている場合に、第二のダンパ12を開状態、かつ、第一のダンパ11を閉状態とすることで、第二の室内熱交換部5に温度の低い外気を流入させることができる。これにより、外気を室内に取り入れる換気が行われる。加えて、室内熱交換部5では冷媒と外気との熱交換量が大きくなるため、室内機に流入した外気の温度を急速に高めることができる。したがって、外気を室内に流入させて換気を行うにも関わらず、暖房能力の低下が生じる虞が少ない。 When the refrigerating cycle device 100 is performing heating operation, the second indoor heat exchange unit 5 is kept in a low temperature state by opening the second damper 12 and closing the first damper 11. Outside air can be introduced. As a result, ventilation is performed by taking outside air into the room. In addition, since the amount of heat exchanged between the refrigerant and the outside air increases in the indoor heat exchange section 5, the temperature of the outside air flowing into the indoor unit can be rapidly increased. Therefore, there is little possibility that the heating capacity will be lowered even though the room is ventilated by letting the outside air flow into the room.
 さらに、第二の室内熱交換部5の効率が上昇し、冷凍サイクル装置100の高低圧比が小さくなるため、冷凍サイクル装置100の省エネルギー化が達成される。なお、外気の温度が室温と同程度、あるいは、外気が汚染されている場合などは、第二のダンパ12を閉状態、かつ、第一のダンパ11を開状態とすることで、従来の冷凍サイクル装置と同様の動作を行うことができる。 Furthermore, the efficiency of the second indoor heat exchange section 5 is increased, and the high-to-low pressure ratio of the refrigerating cycle device 100 is reduced, so that energy saving of the refrigerating cycle device 100 is achieved. When the temperature of the outside air is about the same as the room temperature, or when the outside air is polluted, the second damper 12 is closed and the first damper 11 is opened. Operation similar to that of the cycle device can be performed.
 なお、実施例1、2、及び3では、第一のダンパ11及び第二のダンパ12が開状態もしくは閉状態である場合を説明したが、第一のダンパ11及び第二のダンパ12は半開状態とすることもできる。これにより、第二の室内熱交換部5に流入する外気の量及び室内空気の量を調整することができる。 In the first, second, and third embodiments, the first damper 11 and the second damper 12 are open or closed, but the first damper 11 and the second damper 12 are half-open. It can also be a state. Thereby, the amount of outside air and the amount of indoor air flowing into the second indoor heat exchange section 5 can be adjusted.
 また、実施例1、2、及び3では、室内機3内を流れる室内空気と外気とをより確実に隔てるために、隔壁18を設けることもできる。 In addition, in Embodiments 1, 2, and 3, a partition wall 18 can be provided in order to more reliably separate the indoor air flowing through the indoor unit 3 from the outside air.
 図9(a)、(b)、(c)は実施例1の室内機3aの内部に隔壁18を設けた場合の、室内機3aの構造を示す図である。 9(a), (b), and (c) are diagrams showing the structure of the indoor unit 3a of Embodiment 1 when a partition wall 18 is provided inside the indoor unit 3a.
 図9(a)、(b)、(c)に示す例では室内機3aの後面に隔壁18が取り付けられており、その先端部分に第一のダンパ11aが配置される。したがって、図9(a)、(b)、(c)では隔壁18と、第一のダンパ11aとの両方が第一の吸い込み口13と第二の室内熱交換部5aとの間に配置される。 In the examples shown in FIGS. 9(a), (b), and (c), a partition wall 18 is attached to the rear surface of the indoor unit 3a, and the first damper 11a is arranged at the tip portion thereof. Therefore, in FIGS. 9(a), (b), and (c), both the partition wall 18 and the first damper 11a are arranged between the first suction port 13 and the second indoor heat exchange section 5a. be.
 なお図9(a)、(b)、(c)に示す場合、第一のダンパ11aは例えば隔壁18との接続部分を中心に回転するように動作する。具体的には、図9(b)では第一のダンパ11aは閉状態で、第一のダンパ11aは第一の吸い込み口13から吸い込まれた室内空気が第二の熱交換部5に流れることを阻害している。一方、図9(c)では第一のダンパ11aが隔壁18との接続部分を中心に回転し開状態となっている。したがって、第一のダンパ11aは第一の吸い込み口13から吸い込まれた室内空気が、第二の熱交換部5に流入することを阻害しない。 In addition, in the case shown in FIGS. 9(a), (b), and (c), the first damper 11a operates so as to rotate around the connection portion with the partition wall 18, for example. Specifically, in FIG. 9(b), the first damper 11a is in a closed state, and the first damper 11a prevents the indoor air sucked from the first suction port 13 from flowing to the second heat exchange section 5. impede On the other hand, in FIG. 9(c), the first damper 11a rotates around the connecting portion with the partition wall 18 and is in an open state. Therefore, the first damper 11 a does not prevent the indoor air sucked from the first suction port 13 from flowing into the second heat exchange section 5 .
 このように隔壁18と第一のダンパ11aとを配置することで、室内機3a内の空気の流れを制御しやすくなり、冷凍サイクル装置の能力を設計通りに発揮させることが容易になる。 By arranging the partition wall 18 and the first damper 11a in this way, it becomes easier to control the flow of air in the indoor unit 3a, and it becomes easier to exhibit the performance of the refrigeration cycle device as designed.
 図10(a)、(b)は実施例2の室内機3bの内部に隔壁18を設けた場合の、室内機3bの構造を示す図である。 FIGS. 10(a) and 10(b) are diagrams showing the structure of the indoor unit 3b of Embodiment 2 when a partition wall 18 is provided inside the indoor unit 3b.
 図10(a)、(b)では第二の吸い込み口14bの図中左方に隔壁18が設けられている。図10(a)では第二のダンパ12bが開状態であり、第二の吸い込み口14から外気が室内機3bに吸い込まれ、第二の熱交換部5に流れている。このとき、第一の吸い込み口13からは室内空気が室内機3bに吸い込まれているが、この室内空気は第一のダンパ11bと隔壁18とによって流れる方向が限定され、第二の熱交換部5へ流れることが極めて少なくなる。 In FIGS. 10(a) and 10(b), a partition 18 is provided on the left side of the second suction port 14b. In FIG. 10(a), the second damper 12b is in an open state, and outside air is sucked into the indoor unit 3b from the second suction port 14 and flows to the second heat exchange section 5. In FIG. At this time, the indoor air is sucked into the indoor unit 3b from the first suction port 13, but the flow direction of this indoor air is limited by the first damper 11b and the partition wall 18, and the second heat exchange section The flow to 5 becomes extremely small.
 また図10(b)では、第一のダンパ11bは開状態となっている。図10(a)と図10(b)とを比較すると、第一のダンパ11bは図中左右に動作するが、隔壁18は第一のダンパ11bの上記動作を阻害することがないよう設けられる。したがって、隔壁18を設けた場合でも第一のダンパ11bの機能は問題なく発揮され、しかも室内機3b内の室内空気及び外気の流れを確実に制御できるので、冷凍サイクル装置の能力を設計通りに発揮させることが容易になる。
Moreover, in FIG.10(b), the 1st damper 11b is an open state. Comparing FIG. 10(a) and FIG. 10(b), the first damper 11b moves left and right in the figure, but the partition wall 18 is provided so as not to hinder the movement of the first damper 11b. . Therefore, even if the partition wall 18 is provided, the function of the first damper 11b can be exhibited without any problem, and the flow of the indoor air and the outdoor air in the indoor unit 3b can be reliably controlled. It becomes easier to perform.
 本開示の冷凍サイクル装置は、換気をしながら暖房運転を行う場合に特に適している。
The refrigeration cycle apparatus of the present disclosure is particularly suitable for performing heating operation while ventilating.
1 圧縮機、 2 四方弁、3、3、3b、3c 室内機、 
4、4a、4b、4c 第一の室内熱交換部、
5、5a、5b、5c 第二の室内熱交換部、6 第一の室内送風機、 7 第一の風路、
8 第二の風路、 9 膨張弁、 10 室外熱交換器、 
11、11a、11b、11c 第一のダンパ、 
12、12a、12b、12c 第二のダンパ、
13 第一の吸い込み口、 14、14a、14b、14c 第二の吸い込み口、
15 吹き出し口、 16 第二の室内送風機、 17 フィルタ、 18 隔壁、
20 切り込み、 21 つまみ、 50 制御装置、 100 冷凍サイクル装置
1 compressor, 2 four-way valve, 3, 3, 3b, 3c indoor unit,
4, 4a, 4b, 4c first indoor heat exchange section,
5, 5a, 5b, 5c second indoor heat exchange section, 6 first indoor fan, 7 first air passage,
8 second air passage, 9 expansion valve, 10 outdoor heat exchanger,
11, 11a, 11b, 11c a first damper;
12, 12a, 12b, 12c second damper,
13 first suction port, 14, 14a, 14b, 14c second suction port,
15 outlet, 16 second indoor fan, 17 filter, 18 partition,
20 Notch 21 Knob 50 Control Device 100 Refrigerating Cycle Device

Claims (8)

  1.  室内機を備える冷凍サイクル装置であって、
     前記室内機には、室内と連通する第一の吸い込み口と、室外と連通する第二の吸い込み口と、が設けられ、
      前記第一の吸い込み口と吹き出し口とを結ぶ第一の風路に配置された第一の熱交換部と、
     前記第二の吸い込み口と前記吹き出し口とを結ぶ第二の風路に配置され、前記冷凍サイクル装置が暖房運転時に、前記第一の熱交換部の下流に位置するよう前記第一の熱交換部に接続される第二の熱交換部と、
     前記第一の風路から前記第二の風路への空気の流入量を調整可能な第一のダンパと、
     前記第二の吸い込み口に設けられ、前記第二の吸い込み口から吸い込まれる空気の量を調整可能な第二のダンパと、
     を備える冷凍サイクル装置。
    A refrigeration cycle device comprising an indoor unit,
    The indoor unit is provided with a first suction port communicating with the room and a second suction port communicating with the outdoor,
    a first heat exchange section arranged in a first air passage connecting the first inlet and the outlet;
    The first heat exchanger is arranged in a second air passage connecting the second suction port and the outlet, and positioned downstream of the first heat exchange unit during heating operation of the refrigeration cycle device. a second heat exchange section connected to the section;
    a first damper capable of adjusting the amount of air flowing from the first air passage to the second air passage;
    a second damper provided at the second suction port and capable of adjusting the amount of air sucked from the second suction port;
    refrigeration cycle device.
  2.  前記室内機の内部には、前記第一の風路と前記第二の風路とを隔する隔壁が設けられ、
     前記隔壁には、前記第一の風路と前記第二の風路とを連通する連通部が設けられ、
     前記第一のダンパは、前記連通部に取り付けられ、前記連通部を流れる空気の量を調整可能である
     請求項1に記載の冷凍サイクル装置。
    A partition wall separating the first air passage and the second air passage is provided inside the indoor unit,
    The partition wall is provided with a communicating portion that communicates the first air passage and the second air passage,
    The refrigeration cycle apparatus according to claim 1, wherein the first damper is attached to the communicating portion and is capable of adjusting the amount of air flowing through the communicating portion.
  3.  前記第一の吸い込み口から空気を吸い込み、前記第一の熱交換部に空気を流す第一の送風機と、前記第二の吸い込み口から外気を吸い込み、前記第二の熱交換部に空気を流す第二の送風機と
     を備える請求項1または2に記載の冷凍サイクル装置。
    a first blower that sucks air from the first suction port and flows the air to the first heat exchange section; and a first blower that sucks outside air from the second suction port and flows the air to the second heat exchange section. The refrigeration cycle apparatus according to claim 1 or 2, comprising a second air blower.
  4.  前記第二の吸い込み口には、集塵フィルタが取り付けられている
     請求項1から3のいずれか一項に記載の冷凍サイクル装置。
    The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein a dust collection filter is attached to the second suction port.
  5.  前記第二のダンパは、前記第二の吸い込み口より大きい
     請求項1から4のいずれか一項に記載の冷凍サイクル装置。
    The refrigeration cycle apparatus according to any one of claims 1 to 4, wherein the second damper is larger than the second suction port.
  6.  前記第一の熱交換部の容積は、前記第二の熱交換部の容積より大きい
     請求項1から5のいずれか一項に記載の冷凍サイクル装置。
    The refrigeration cycle apparatus according to any one of claims 1 to 5, wherein the volume of the first heat exchange section is larger than the volume of the second heat exchange section.
  7.  前記第二の吸い込み口は、前記室内機の後面に設けられている
     請求項1から6のいずれか一項に記載の冷凍サイクル装置。
    The refrigeration cycle apparatus according to any one of claims 1 to 6, wherein the second suction port is provided on a rear surface of the indoor unit.
  8.  前記第二の吸い込み口は、前記室内機の側面に設けられている
     請求項1から6のいずれか一項に記載の冷凍サイクル装置。
    The refrigeration cycle apparatus according to any one of claims 1 to 6, wherein the second suction port is provided on a side surface of the indoor unit.
PCT/JP2021/016303 2021-04-22 2021-04-22 Refrigeration cycle apparatur and indoor unit WO2022224406A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/546,499 US20240133576A1 (en) 2021-04-22 2021-04-21 Refrigeration cycle apparatus and indoor unit
JP2023515977A JP7466764B2 (en) 2021-04-22 2021-04-22 Refrigeration cycle device and indoor unit
PCT/JP2021/016303 WO2022224406A1 (en) 2021-04-22 2021-04-22 Refrigeration cycle apparatur and indoor unit
EP21937899.9A EP4328512A4 (en) 2021-04-22 2021-04-22 Refrigeration cycle apparatur and indoor unit
CN202180097105.1A CN117157493A (en) 2021-04-22 2021-04-22 Refrigeration cycle device and indoor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/016303 WO2022224406A1 (en) 2021-04-22 2021-04-22 Refrigeration cycle apparatur and indoor unit

Publications (1)

Publication Number Publication Date
WO2022224406A1 true WO2022224406A1 (en) 2022-10-27

Family

ID=83722104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016303 WO2022224406A1 (en) 2021-04-22 2021-04-22 Refrigeration cycle apparatur and indoor unit

Country Status (5)

Country Link
US (1) US20240133576A1 (en)
EP (1) EP4328512A4 (en)
JP (1) JP7466764B2 (en)
CN (1) CN117157493A (en)
WO (1) WO2022224406A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914690A (en) * 1995-06-27 1997-01-17 Mitsubishi Electric Corp Indoor unit of air conditioning equipment
JPH11257793A (en) 1998-03-12 1999-09-24 Hitachi Ltd Air conditioner with ventilating function
JP2004294026A (en) * 2003-03-28 2004-10-21 Fujitsu General Ltd Air conditioner
US20180335222A1 (en) * 2016-01-28 2018-11-22 Hisense Kelon Electrical Holdings Co., Ltd. Air conditioner indoor unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100519306B1 (en) * 2003-05-28 2005-10-10 엘지전자 주식회사 Air-conditioner system with ventilation
JP5199041B2 (en) * 2008-11-27 2013-05-15 シャープ株式会社 Air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914690A (en) * 1995-06-27 1997-01-17 Mitsubishi Electric Corp Indoor unit of air conditioning equipment
JPH11257793A (en) 1998-03-12 1999-09-24 Hitachi Ltd Air conditioner with ventilating function
JP2004294026A (en) * 2003-03-28 2004-10-21 Fujitsu General Ltd Air conditioner
US20180335222A1 (en) * 2016-01-28 2018-11-22 Hisense Kelon Electrical Holdings Co., Ltd. Air conditioner indoor unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4328512A4

Also Published As

Publication number Publication date
CN117157493A (en) 2023-12-01
US20240133576A1 (en) 2024-04-25
EP4328512A4 (en) 2024-05-22
JPWO2022224406A1 (en) 2022-10-27
EP4328512A1 (en) 2024-02-28
JP7466764B2 (en) 2024-04-12

Similar Documents

Publication Publication Date Title
AU2005303286B2 (en) Indoor unit of an air conditioner
JP2009257709A (en) Air conditioner
JP5484919B2 (en) air conditioner
JP4857776B2 (en) Heat exchanger
KR20080063576A (en) Air conditioner and controlling method thereof
WO2022224406A1 (en) Refrigeration cycle apparatur and indoor unit
JP2002267204A (en) Dehumidifier
JP2004360951A (en) Air conditioner
JP2007285628A (en) Air conditioning system
CN215001903U (en) Indoor unit of air conditioner
CN215001922U (en) Indoor unit of air conditioner
CN214949389U (en) Indoor unit of air conditioner
CN216481274U (en) Indoor unit of air conditioner
JP2003214723A (en) Air conditioner
JP6847328B1 (en) Indoor unit of air conditioner and air conditioner
JP3724011B2 (en) Air conditioner
JP4632919B2 (en) Exhaust hood for outdoor unit
JP5195135B2 (en) Air conditioner
CN215001902U (en) Indoor unit of air conditioner
US20200348030A1 (en) Air conditioner
JP7229392B2 (en) indoor unit of air conditioner
JP3726796B2 (en) Integrated air conditioner for wall installation
JP2020063860A (en) Air conditioning system
JP3811953B2 (en) Air heat source heat pump air conditioner for agricultural industry
JPH05306822A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937899

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023515977

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18546499

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021937899

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021937899

Country of ref document: EP

Effective date: 20231122