WO2022224331A1 - Aircraft - Google Patents

Aircraft Download PDF

Info

Publication number
WO2022224331A1
WO2022224331A1 PCT/JP2021/015968 JP2021015968W WO2022224331A1 WO 2022224331 A1 WO2022224331 A1 WO 2022224331A1 JP 2021015968 W JP2021015968 W JP 2021015968W WO 2022224331 A1 WO2022224331 A1 WO 2022224331A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
generator unit
frame
aircraft
connecting portion
Prior art date
Application number
PCT/JP2021/015968
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 田中
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2021576080A priority Critical patent/JP7081060B1/en
Priority to PCT/JP2021/015968 priority patent/WO2022224331A1/en
Publication of WO2022224331A1 publication Critical patent/WO2022224331A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/33Supply or distribution of electrical power generated by combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/04Aircraft characterised by the type or position of power plant of piston type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/10Aircraft characterised by the type or position of power plant of gas-turbine type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • B64D27/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems

Definitions

  • the present invention relates to an aircraft.
  • a flying object that has a plurality of rotors that generate lift, including an electric motor and a propeller that is rotationally driven by the electric motor.
  • a flying object for example, as disclosed in Patent Document 1, a flying object including an airframe, a flight motor unit, a power generation unit, and a power generation unit suspension mechanism is known.
  • the power generation unit has a generator that supplies power to the flight motor unit and an engine that drives the generator.
  • the power generation unit suspension mechanism suspends the power generation unit below the airframe.
  • the power generation unit suspending mechanism has a vibration-retaining member, a frame member, and a suspending member, and is constructed using a lightweight carbon fiber material or the like.
  • the power generation unit suspension mechanism absorbs vibrations caused by driving the power generation unit with a damper member provided on the frame member.
  • an aircraft having multiple rotors for example, as disclosed in Patent Document 2, it includes a fuselage, rotors, an engine module, a generator module, a head assembly, and a plurality of damping assemblies.
  • Unmanned aerial vehicles are known.
  • the plurality of damping assemblies are provided between the airframe and the engine module and the generator module.
  • the plurality of damping assemblies including cushion rubber dampers or damping springs, have a damping effect on vibrations generated by the engine module and the generator module.
  • the flying objects disclosed in Patent Documents 1 and 2 above have a configuration capable of absorbing vibrations caused by the driving of the engine and generator.
  • a configuration capable of absorbing vibrations caused by driving the engine-generator unit is desired.
  • a lightweight configuration is desired. That is, the flying object is required to have a lightweight structure capable of absorbing vibrations generated by driving the engine-generator unit.
  • An object of the present invention is to realize a configuration of a lightweight aircraft capable of absorbing vibrations generated by driving an engine generator unit.
  • the inventor studied the configuration of a lightweight aircraft capable of absorbing the vibrations caused by the driving of the engine-generator unit. As a result of intensive studies, the inventors came up with the following configuration.
  • a flying object includes an electric motor and a propeller rotationally driven by the electric motor, a plurality of rotors that generate lift, and electric power supplied to the electric motors of the plurality of rotors.
  • An aircraft comprising: an engine-generator unit that generates a rotor; a frame that supports the plurality of rotors and the engine-generator unit; and a plurality of connecting portions that connect the engine-generator unit and the frame.
  • Each of the plurality of connecting portions is arranged such that the natural frequency of the connecting portion when the engine-generator unit is supported on the frame is lower than the vibration frequency generated by driving the engine-generator unit. includes fabrics in which multiple fibers are woven.
  • the engine generator unit is connected to the frame, and the natural frequency of the connecting portion in a state in which the engine generator unit is supported with respect to the frame is lower than the vibration frequency generated by driving the engine generator unit.
  • the connecting portion including the fabric in which a plurality of fibers are woven can suppress transmission of vibrations generated by driving the engine-generator unit to the frame.
  • the connecting portion includes a fabric in which a plurality of fibers are woven, compared with the case where the connecting portion is made of metal or the like, the structure of the connecting portion can be obtained with a higher degree of freedom in design, and the aircraft can be made lighter.
  • the flying object of the present invention preferably includes the following configurations.
  • the fabric is woven such that the plurality of fibers are relatively displaceable so that at least part of the vibration of the engine-generator unit is damped.
  • connection including the woven fabric in which a plurality of fibers are relatively displaceable so that at least part of the vibration of the engine-generator unit is damped at least part of the vibration generated by the driving of the engine-generator unit.
  • the connection including the woven fabric in which a plurality of fibers are relatively displaceable so that at least part of the vibration of the engine-generator unit is damped at least part of the vibration generated by the driving of the engine-generator unit.
  • the connection including the woven fabric in which a plurality of fibers are relatively displaceable so that at least part of the vibration of the engine-generator unit is damped at least part of the vibration generated by the driving of the engine-generator unit.
  • the flying object of the present invention preferably includes the following configurations.
  • the flying object has at least three connecting portions.
  • the engine-generator unit is connected to the frame via at least three of the connecting portions.
  • the engine-generator unit can be connected to the frame in a more stable posture by means of at least three connecting portions each including a fabric.
  • the at least three joints can more effectively absorb vibrations caused by the driving of the engine-generator unit, and the weight of the flying object can be reduced compared to the case where the joints are made of metal or the like. can be done.
  • the flying object of the present invention preferably includes the following configurations. At least some of the plurality of connecting portions include a woven fabric having fibers extending in different directions in a plan view of the aircraft.
  • the engine-generator unit is connected to the frame via the at least one connecting portion that includes a woven fabric having fibers extending in different directions in a plan view of the aircraft.
  • the engine-generator unit can be connected to the frame with higher strength via the connecting portion including the fabric with fibers extending in different directions in plan view of the aircraft.
  • the connecting portion including the fabric with fibers extending in different directions in a plan view of the flying object can more absorb the vibration caused by the driving of the engine generator unit, and compared to the case where the connecting portion is made of metal or the like, It is possible to reduce the weight of the aircraft.
  • the flying object of the present invention preferably includes the following configurations.
  • the woven fabric included in each of the plurality of connecting portions includes a woven fabric woven with fibers whose base material is mainly composed of an organic substance.
  • the engine-generator unit can be more reliably connected to the frame by the connecting portion including the fabric.
  • the connecting portion including the fabric woven with fibers whose base material is mainly composed of an organic substance can absorb the vibration caused by the driving of the engine-generator unit, and when the connecting portion is made of metal or the like, In comparison, the aircraft can be made lighter.
  • the flying object of the present invention preferably includes the following configurations.
  • the engine-generator unit includes an engine-generator unit connecting portion, which is a connection portion between the engine-generator unit and the connecting portion, and a connecting portion between the connecting portion and the frame during flight of the aircraft. It is connected to the frame by the connection portion such that the shortest distance to the frame connection portion is longer than the horizontal distance between the engine generator unit connection portion and the frame connection portion.
  • the spring constant of the connection portion including the fabric in which a plurality of fibers are woven is determined by the shortest distance between the engine generator unit connection portion and the frame connection portion. can be smaller than the spring constant equal to the horizontal distance between Therefore, the natural frequency of the connecting portion can be made lower than the frequency of vibration caused by driving the engine-generator unit. Therefore, the connecting portion can effectively absorb vibrations caused by driving the engine-generator unit.
  • the aircraft can be made lighter than when the connecting portion is made of metal or the like. can be done.
  • the flying object of the present invention preferably includes the following configurations.
  • the engine-generator unit connection portion which is the connection portion between the engine-generator unit and the connection portion, is the connection portion between the connection portion and the frame during flight of the aircraft. It is connected to the frame by the connecting portion so as to be located below the frame connecting portion.
  • the engine-generator unit can be supported by the frame during the flight of the aircraft by means of the connecting portion including the fabric woven with a plurality of fibers.
  • the connecting portion including the fabric can absorb the vibration caused by the driving of the engine-generator unit, and the weight of the aircraft can be reduced compared to the case where the connecting portion is made of metal or the like.
  • attachment As used herein, “attached,” “connected,” “coupled,” and/or equivalents thereof are used broadly and include “direct and indirect” attachment, It includes both connection and coupling. Furthermore, “connected” and “coupled” are not limited to physical or mechanical connections or couplings, but can include direct or indirect electrical connections or couplings.
  • the flying object is a moving object that can move in the air by a driving force obtained by a driving source such as a motor.
  • the aircraft means, for example, a multicopter having a plurality of rotors.
  • the rotating shafts of the plurality of rotors extend vertically.
  • the plurality of rotors are driven by an electric motor.
  • the aircraft is equipped with at least a generator, and is configured to be able to supply electric power generated by the generator to the electric motor.
  • the air vehicles include both unmanned air vehicles and manned air vehicles.
  • an engine-generator unit is a device that generates power by driving a generator with various reciprocating engines such as a diesel engine and a gasoline engine.
  • the engine generator unit generates power by controlling the output of the engine in response to an electric power generation request from the outside.
  • a fiber is an elongated material from which textiles are woven.
  • the fibers are twisted in the longitudinal direction to form threads. That is, the fiber is the raw material of the thread.
  • Said fibers include both natural and synthetic fibers.
  • a woven fabric is a fabric obtained by weaving fibers or threads of twisted fibers.
  • a state in which the engine generator unit is supported by the connecting portion means a state in which the engine generator unit is supported by the frame via the connecting portion.
  • the state in which the connecting portion supports the engine-generator unit is a state in which at least part of the weight of the engine-generator unit acts on the connecting portion to generate a tensile force.
  • the base material is mainly composed of organic substances
  • the expression that the base material is mainly composed of an organic substance means that a component accounting for half or more of the components contained in the fiber is composed of an organic substance.
  • FIG. 1 is a plan view showing a schematic configuration of an aircraft according to Embodiment 1.
  • FIG. FIG. 2 is a side view showing a schematic configuration of the aircraft according to Embodiment 1.
  • FIG. FIG. 3 is a plan view showing a schematic configuration of an aircraft according to Embodiment 2.
  • FIG. 4 is a side view showing a schematic configuration of an aircraft according to Embodiment 2.
  • FIG. 5 is a side view showing a schematic configuration of an aircraft according to another embodiment.
  • FIG. 6 is a side view showing a schematic configuration of an aircraft according to another embodiment.
  • FIG. 7 is a plan view showing a schematic configuration of an aircraft according to another embodiment.
  • FIG. 1 is a plan view showing a schematic configuration of an aircraft 1.
  • FIG. 2 is a side view showing a schematic configuration of the aircraft 1.
  • FIG. 1 is a plan view showing a schematic configuration of an aircraft 1.
  • the flying object 1 according to Embodiment 1 of the present invention is a multicopter that flies with a plurality of rotors 5.
  • the flying object 1 is configured to be capable of wireless remote control and autonomous flight using various sensors.
  • the aircraft 1 includes a body frame 2 , an engine generator unit 3 , a plurality of connecting sections 4 , a plurality of rotors 5 and an aircraft control device 6 .
  • the fuselage frame 2 supports an engine generator unit 3, a battery (not shown), a rotor 5, and an aircraft controller 6.
  • the body frame 2 has a frame body portion 21 and a plurality of rotor support portions 26 .
  • the body frame 2 is made of, for example, an aluminum alloy pipe material.
  • a body frame 2 corresponds to the frame.
  • the frame main body 21 supports the engine generator unit 3.
  • the frame main body portion 21 has, for example, a loop shape in a plan view of the aircraft 1 .
  • the frame main body 21 may have any shape, such as a rectangular shape, an annular shape, or a polygonal shape, when viewed from above the aircraft 1 .
  • At least part of the frame main body 21 is configured by a rod-shaped or pipe-shaped member.
  • the frame body portion 21 may have a shape other than the loop shape, such as a beam shape, as long as it is a shape capable of supporting the engine generator unit 3 .
  • At least part of the frame main body 21 may be configured by a plate-like member.
  • the rotor support portion 26 supports the rotor 5.
  • the rotor support portion 26 is connected to the frame body portion 21 .
  • the plurality of rotor support portions 26 radially extend with respect to the frame body portion 21 in a plan view of the aircraft 1 .
  • the plurality of rotor support portions 26 are preferably arranged point-symmetrically with respect to the center of the frame main body portion 21 in a plan view of the aircraft 1 .
  • the engine generator unit 3 is a device dedicated to power generation that drives the generator 31 with the driving force of the power generation engine 32 to generate power.
  • the engine generator unit 3 has a generator 31 and a generator engine 32 .
  • the power generator 31 is rotated by the power supplied from the power generation engine 32 to generate power.
  • the generator 31 is, for example, an AC generator.
  • the generator 31 converts the generated AC power into DC power and outputs it to a battery (not shown). Note that the generator 31 may supply the converted DC power to the electric motor 51 of the rotor 5, which will be described later.
  • the generator 31 has a rotor (not shown).
  • the rotor of the generator 31 is connected to the power generation engine 32 so as to be driven by the power output from the power generation engine 32 .
  • the power generation engine 32 is a power source that drives the generator 31 .
  • the power generation engine 32 has a piston (not shown) connected to a crankshaft (not shown) via a connecting rod (not shown).
  • the power generation engine 32 reciprocates the piston to rotate the crankshaft.
  • the power generation engine 32 is, for example, a two-cylinder horizontally opposed engine.
  • the generator engine may be an engine other than a two-cylinder horizontally opposed engine.
  • the rotors of the generator 31 are connected to both ends of the crankshaft of the power generation engine 32, respectively. That is, the two power generators 31 are drivably connected to the power generation engine 32 .
  • the power generation engine 32 drives the two power generators 31 by rotational motion of the crankshaft.
  • the generator 31 and the generator engine 32 are controlled by a generator control device and an engine control device (not shown) based on an external power command, power generation amount, remaining battery capacity, and the like.
  • the number of generators driven by the power generation engine may be one or three or more.
  • the engine generator unit 3 is supported by the frame main body 21 via a plurality of connecting portions 4. As shown in FIG. The plurality of connecting portions 4 are connected to the engine generator unit 3 and also connected to the frame body portion 21 . That is, each connecting portion 4 has one end connected to the engine generator unit 3 and the other end connected to the engine generator unit 3 . In this embodiment, the engine generator unit 3 is connected to the frame main body 21 by four connecting portions 4 .
  • Two of the four connecting portions are connected to a portion of the engine-generator unit 3 located on one side of the crankshaft (not shown) in the axial direction of the power-generating engine 32.
  • the connecting portion is connected to a portion located on the other side in the axial direction of the power generation engine 32 .
  • the four connecting portions are connected to the engine-generator unit 3 at symmetrical positions with respect to the center of gravity of the engine-generator unit 3 in the plane view of the aircraft 1 in the axial direction and in the direction orthogonal to the axial direction. preferably A detailed configuration of the connecting portion 4 will be described later.
  • Each connecting portion 4 and the engine generator unit 3 may be directly connected, or may be connected via a connecting member such as a metal fitting. Each connecting portion 4 may have a connection fitting connected to the engine generator unit 3 . Each connecting portion 4 and the frame main body portion 21 may be directly connected, or may be connected via a connecting member such as a metal fitting. Each connecting portion 4 may have a connection fitting connected to the frame body portion 21 .
  • connection positions of the plurality of connecting portions 4 with respect to the engine generator unit 3 are not limited to the above-described positions, and any position where the engine generator unit 3 can be supported on the frame main body portion 21 by the plurality of connecting portions 4 can be used. position.
  • the flying object control device 6 controls the position, attitude, speed, flight direction, etc. of the flying object 1 by controlling the driving of the plurality of rotors 5 based on externally input control signals and the like.
  • the aircraft control device 6 may have a configuration in which, for example, a CPU, ROM, RAM, HDD, etc. are connected by a bus. Further, the flying object control device 6 may be configured by a one-chip LSI or the like.
  • Various programs and programs for controlling the rotation speed of each rotor 5, controlling the operation of the power generating engine 32, the generator 31, the battery (not shown), the measuring device (not shown), etc. data is stored.
  • the flying object control device 6 has an inertial measurement device, a direction sensor, an altitude sensor, and the like.
  • the inertial measurement device is a device that measures the triaxial angular velocity and angular acceleration of the flying object 1 . Since the inertial measurement device accurately measures the angular velocity and angular acceleration of the flying object 1 during flight, it is necessary to suppress the vibration velocity and vibration acceleration applied to the inertial measurement device below threshold values.
  • the aircraft control device 6 is configured to be able to transmit a generator control signal to the engine control device and the generator control device described above.
  • the aircraft control device 6 is configured to be able to transmit a drive control signal to the power conversion device 53 of the rotor 5 .
  • the flying object control device 6 obtains measured values of the angular velocity and angular acceleration of the flying object 1 from the inertial measurement device, obtains measured values of the heading of the flying object 1 from the orientation sensor, and obtains measured values of the heading of the flying object 1 from the altitude sensor. altitude measurements can be obtained.
  • the flying object control device 6 can generate the power generation control signal and the drive control signal from the acquired measurement values.
  • the aircraft control device does not have to have an inertial measurement device.
  • the aircraft control device does not have to have an orientation sensor.
  • the aircraft control device may not have an altitude sensor.
  • the flying body control device 6 is supported by the flying body control device support section 7 .
  • the aircraft control device support portion 7 is fixed to the frame body portion 21 .
  • the aircraft control device support section 7 has a plurality of support legs 71 and a mounting plate 72 .
  • a plurality of support legs 71 are connected to the frame main body 21 and support the mounting plate 72 .
  • the aircraft control device support section 7 has two support legs 71 .
  • the aircraft control device support section may have one support leg, or may have three or more support legs.
  • the mounting plate 72 is a rectangular plate-like member supported by a plurality of support legs 71 .
  • the aircraft control device 6 is fixed on the mounting plate 72 .
  • the mounting plate 72 is positioned at the center of the frame main body 21 in plan view of the aircraft 1 .
  • the connecting portion 4 is a woven fabric formed by weaving fibers whose base material is mainly composed of an organic substance. A plurality of the fibers are woven in the fabric so that the fibers are relatively displaceable so that at least part of the vibration generated by driving the engine-generator unit 3 is damped.
  • the woven fabric is, for example, a strip-shaped belt.
  • the woven fabric is, for example, a woven fabric obtained by plain weaving in which threads obtained by twisting fibers are woven one by one in the vertical and horizontal directions. A woven fabric obtained by such a plain weave has high tensile strength and is resistant to friction.
  • the woven fabric may be a woven fabric obtained by twill weaving.
  • Twill weave is a weave in which warp yarns pass over two or three weft yarns and then under one weft yarn repeatedly.
  • a woven fabric obtained by such a twill weave has excellent stretchability and is less prone to wrinkles.
  • the fibers are, for example, natural fibers, synthetic fibers, and the like.
  • the fibers include, for example, fibers composed of polyester, nylon, aramid, vinylon, polyvinyl chloride, acrylic, polyethylene, polypropylene, polyurethane, polyclar, polylactic acid, and the like.
  • the Young's modulus of polyester is, for example, 2100 to 4200 MPa
  • the Young's modulus of nylon is, for example, 1000 to 2600 MPa.
  • the base material is mainly organic matter
  • the base material means that more than half of the components contained in the fiber are organic matter.
  • the connecting portion 4 has an engine generator unit connecting portion 41 and a frame connecting portion 42 .
  • the engine generator unit connecting portion 41 is a portion of the connecting portion 4 that is connected to the engine generator unit 3 .
  • the frame connecting portion 42 is a portion of the connecting portion 4 that is connected to the frame body portion 21 of the body frame 2 .
  • the engine generator unit 3 is a device that generates electric power, so it does not receive a driving reaction force unlike an engine that outputs driving force. Therefore, the engine-generator unit 3 can be supported with respect to the frame body portion 21 by the connection portion 4 including the fabric.
  • the engine-generator unit connecting portion 41 is located inside the frame main body portion 21 rather than the frame connecting portion 42.
  • a plurality of connecting portions 4 extend in different directions between the engine generator unit 3 and the frame main body portion 21 .
  • the fibers extend, for example, in the longitudinal direction. Therefore, at least some of the connecting portions 4 of the plurality of connecting portions 4 include fabrics in which fibers extend in different directions in plan view of the aircraft 1 .
  • the engine-generator unit 3 is connected to the body frame 2 via a connecting portion 4 including a fabric having fibers extending in different directions in a plan view of the aircraft 1 .
  • the engine-generator unit 3 can be connected with higher strength to the body frame 2 via the connecting portion 4 including the fabric with fibers extending in different directions in plan view of the aircraft 1 .
  • the connecting portion 4 including fabrics with fibers extending in different directions in a plan view of the aircraft 1 can absorb vibrations caused by the driving of the engine-generator unit 3, and the connecting portion 4 can be made of metal or the like. In comparison, the aircraft 1 can be made lighter.
  • connection part 4 In a state in which the engine-generator unit 3 is supported with respect to the frame main body 21 by the connection part 4, the natural frequency of the connection part 4 including the fabric woven with a plurality of fibers is generated by driving the engine-generator unit 3. lower than the frequency of vibration.
  • the natural frequency fe (Hz) of the connecting portion 4 can be obtained.
  • the connecting portion 4 has the effect of suppressing the transmission of vibration generated by driving the engine generator unit 3.
  • the engine-generator unit 3 is suspended from the frame main body 21 via the connecting portion 4. Therefore, during flight of the aircraft 1 , a tensile force due to the load of the engine-generator unit 3 is generated in the connecting portion 4 .
  • the connecting portion 4 extends from the frame main body portion 21 to the engine generator unit 3 in a direction inclined with respect to the vertical direction. That is, when the aircraft 1 is in flight, the connecting portion 4 extends inward from the frame body portion 21 in a plan view of the aircraft 1 .
  • In-flight of the flying object 1 means a state in which the load of the engine-generator unit 3 causes a tensile force to the connecting portion 4 due to the flying object 1 floating up, as shown in FIG. 2, for example.
  • the shortest distance L between the engine-generator unit connection portion 41 and the frame connection portion 42 of the connecting portion 4 is the horizontal direction between the engine-generator unit connection portion 41 and the frame connection portion 42.
  • the engine-generator unit 3 is supported with respect to the frame main body 21 so as to be larger than the distance D of .
  • the spring constant K of the connection portion 4 including the fabric in which a plurality of fibers are woven is determined by the shortest distance L between the engine-generator unit connection portion 41 and the frame connection portion 42. It can be smaller than the spring constant equal to the horizontal distance D to the portion 42 . Therefore, the natural frequency fe of the connecting portion 4 can be made lower than the frequency of vibration caused by driving the engine generator unit 3 . Therefore, the connecting portion 4 can effectively absorb vibrations caused by driving the engine generator unit 3 .
  • the engine-generator unit 3 is connected to the fuselage frame 2 by the connection part 4 including fabric such that the engine-generator unit connection part 41 is positioned below the frame connection part 42.
  • the engine-generator unit 3 can be connected to the body frame 2 by means of the connecting portion 4 including a fabric woven with a plurality of fibers.
  • the connecting portion 4 including the fabric can absorb the vibration caused by the driving of the engine-generator unit 3, and the weight of the aircraft 1 can be reduced as compared with the case where the connecting portion is made of metal or the like.
  • the aircraft 1 includes an electric motor 51 and a propeller 52 that is rotationally driven by the electric motor 51, and includes a plurality of rotors 5 that generate lift, and electric power that is supplied to the electric motors 51 in the plurality of rotors 5, respectively.
  • an engine-generator unit 3 that generates a power
  • a fuselage frame 2 that supports a plurality of rotors 5 and the engine-generator unit 3
  • a plurality of connecting portions 4 that connect the engine-generator unit 3 and the fuselage frame 2.
  • Each of the plurality of connecting portions 4 has a natural frequency lower than the excitation frequency generated by driving the engine-generator unit 3 when the engine-generator unit 3 is supported on the body frame 2 . As such, it includes a fabric in which multiple fibers are woven.
  • the engine-generator unit 3 is connected to the body frame 2, and the natural frequency of the connection part 4 in a state in which the engine-generator unit 3 is supported on the body frame 2 is vibration generated by driving the engine-generator unit 3. Vibration generated by driving the engine-generator unit 3 can be suppressed from being transmitted to the body frame 2 by the connecting portion 4 including a fabric in which a plurality of fibers are woven so as to be lower than the frequency.
  • the connecting portion 4 since the connecting portion 4 includes a fabric woven with a plurality of fibers, the connecting portion 4 can be configured with a higher degree of freedom in design than when the connecting portion is made of metal or the like. can be made lighter.
  • the woven fabric constituting at least part of the connecting part 4 is woven with a plurality of fibers so as to be relatively displaceable so that at least part of the vibration of the engine generator unit 3 is damped.
  • the coupling part 4 allows effective damping.
  • the weight of the aircraft 1 can be reduced as compared with the case where the connecting portion is made of metal or the like. .
  • the aircraft 1 has at least three connecting parts 4 .
  • the engine generator unit 3 is connected to the body frame 2 via at least three connecting portions 4 .
  • the engine-generator unit 3 can be connected in a more stable posture to the body frame 2 by means of at least three connecting portions 4 each including fabric.
  • the at least three connecting portions 4, each of which is made of fabric can absorb vibrations caused by the driving of the engine-generator unit 3, and the weight of the flying object 1 can be reduced as compared with the case where the connecting portions 4 are made of metal or the like. can do.
  • the engine-generator unit 3 can be more reliably connected to the airframe 2, and the vibration caused by the driving of the engine-generator unit 3 can be more effectively absorbed, and the aircraft 1 is lightweight. configuration can be realized.
  • the woven fabric included in each of the plurality of connecting portions 4 includes a woven fabric in which fibers whose base material is mainly composed of an organic substance are woven.
  • the engine-generator unit 3 can be more reliably connected to the frame by the connecting portion 4 including the fabric.
  • connection portion 4 including the fabric woven with fibers whose base material is mainly composed of organic matter can absorb the vibration caused by the driving of the engine generator unit 3, and when the connection portion is made of metal or the like.
  • the weight of the flying object 1 can be reduced as compared with .
  • the engine-generator unit 3 can be more reliably connected to the fuselage frame 2, and the configuration of the aircraft 1 that is capable of absorbing vibrations generated by driving the engine-generator unit 3 and is lightweight is realized. can do.
  • FIG. 3 is a plan view showing a schematic configuration of an aircraft 101 according to Embodiment 2.
  • FIG. 4 is a side view showing a schematic configuration of an aircraft 101 according to Embodiment 2.
  • FIG. The configuration of the aircraft 101 according to the second embodiment differs from the configuration of the aircraft 1 according to the first embodiment in the configuration of the body frame 102, the number of rotors 5, and the like.
  • configurations similar to those of the first embodiment are denoted by the same reference numerals, descriptions thereof are omitted, and only portions different from the first embodiment are described.
  • the body frame 102 has a frame body portion 121 and a plurality of rotor support portions 126.
  • the frame main body 121 has a first annular frame 122 , a second annular frame 123 , and a plurality of struts 124 connecting the first frame 122 and the second frame 123 .
  • the first frame 122 and the second frame 123 are hexagonal in plan view.
  • the first frame 122 and the second frame 123 are arranged such that their centers, sides and vertices overlap each other in plan view. Opposing vertices of the first frame 122 and the second frame 123 are connected to each other by supports 124 .
  • the frame body portion 121 is formed in a hexagonal prism shape.
  • the strut 124 extends vertically.
  • the rotor support portion 126 supports the rotor 5.
  • the rotor support portion 126 has six support arms 127 and six rib members 128 .
  • a base end of each support arm 127 is connected to each vertex of the second frame 123 of the frame main body 121 .
  • Each support arm 127 is arranged to radially extend from each vertex of the second frame 123 .
  • Each support arm 127 is supported by the frame main body 121 via each rib member 128 .
  • the tip of the rib member 128 is connected to the central portion of the support arm 127 in the longitudinal direction.
  • the base end of the rib member 128 is connected to the vertex of the first frame 122 facing the vertex of the second frame 123 to which the support arm 127 is connected. Note that each support arm 127 does not have to be supported by the frame main body 121 via the rib member 128 .
  • the rotors 5 are provided on the support arms 127 of the rotor support portion 126 respectively.
  • the rotor 5 has an electric motor 51 , a propeller 52 and a power conversion device 53 .
  • the electric motor 51 is provided at a portion of the support arm 127 to which the rib member 128 is connected. That is, the electric motor 51 is supported by the support arm 127 and the rib member 128 .
  • the rotor 5 By rotating the propeller 52 with the electric motor 51 , the rotor 5 generates lift in the axial direction of the strut 124 of the frame main body 121 .
  • the power conversion device 53 is fixed to the support arm 127.
  • the power conversion device 53 is arranged at a position through which the downwash of the propeller 52 (the air current that blows downward when the propeller 52 rotates) passes. Thereby, the power conversion device 53 is cooled by the downwash.
  • the flying object control device 6 is supported by the flying object control device support section 107 .
  • the aircraft control device support section 107 has four support legs 171 and a mounting plate 172 .
  • Each of the four support legs 171 is connected to the apex of the first frame 122 of the frame main body 121 .
  • the four support legs 171 are connected to the adjacent support legs 171 or the first frame 122 so as to form a truss structure.
  • the flying object control device support section 107 has a support rigidity capable of suppressing vibrations transmitted to the flying object control device 6 .
  • the configuration of the aircraft control device support section is not limited to the configuration described above, and any configuration that can support the aircraft control device 6 so as to suppress vibration transmitted to the aircraft control device 6 can be used. It may be a configuration. That is, the aircraft control device support section may have three or less or five or more support legs, and may not have a truss structure. Further, the aircraft control device support section may have a plate-like member, a net-like member, and the like.
  • the mounting plate 172 is a rectangular plate-like member and supported by four support legs 171 .
  • the aircraft control device 6 is fixed to the mounting plate 172 .
  • the mounting plate 172 is positioned at the center of the frame main body 121 in plan view of the aircraft 1 .
  • each of the plurality of connecting portions 4 is configured such that the natural frequency of the connecting portions 4 when the engine-generator unit 3 is supported on the body frame 102 is driven by the engine-generator unit 3 . It contains a fabric in which a plurality of fibers are woven so that it is lower than the excitation frequency that occurs.
  • the shortest distance L between the engine-generator unit connection portion 41 and the frame connection portion 42 of the connecting portion 4 is The engine-generator unit 3 is supported with respect to the frame main body 121 so as to be larger than the horizontal distance D between the machine unit connecting portion 41 and the frame connecting portion 42 .
  • the engine-generator unit 3 is configured so that the engine-generator unit connecting portion 41 is positioned below the frame connecting portion 42 during flight of the aircraft 101 . In addition, it is connected to the body frame 102 by the connection part 4 containing fabric.
  • the flying object 1 has four rotors 5 .
  • the aircraft may have three or fewer rotors, or five or more rotors.
  • the flying object 101 has six rotors 5 .
  • the aircraft may have less than 5 rotors or more than 7 rotors.
  • the aircraft 1 and 101 may have a grounding portion for landing under the engine generator unit 3 .
  • a grounding portion 208 is fixed to the lower portion of the engine generator unit 3 . Accordingly, when the flying object 201 is not in flight, the grounding portion 208 is in contact with the ground or the like. Therefore, the engine generator unit 3 can be prevented from coming into direct contact with the ground or the like.
  • the engine-generator unit 3 is connected to the body frame 2 by the connection part 4 including the fabric. Therefore, even if the airframe 2 lands at an angle to the ground when the flying object 1 lands or if the flying object 201 lands on an uneven ground, the bending of the connecting portion 4 will cause the engine generator to operate. Multiple locations of the grounding portion 208 can be grounded before the load of the entire unit 3 is applied to the grounding portion 208 . As a result, the local impact input to the ground portion 208 is mitigated. Therefore, by connecting the engine-generator unit 3 and the body frame 2 with the connecting part 4 as described above, the weight of the aircraft 201 can be reduced while reducing damage to the grounding part 208 and damage to the body frame 2. can be done.
  • ground portion 208 may function as a payload support.
  • a payload support section may be provided at the bottom of the engine generator unit 3 separately from the ground section 208 .
  • Air vehicle 201 may have a payload support section separate from ground section 208 .
  • the weight of the fuselage frame 2 can be reduced. A position can support the load. As a result, the movement performance of the flying object 201 can be improved by centralizing the mass.
  • the ground part 208 may have any shape as long as it can support the engine generator unit 3 on the ground or the like.
  • a grounding portion 308 is fixed to the lower portion of the engine generator unit 3 .
  • the grounding portion 308 is grounded when the aircraft 301 is landing. Therefore, it is possible to prevent the engine generator unit 3 from being grounded.
  • the connecting portion 4 including the fabric in which a plurality of fibers are woven is bent, so that the frame grounding portion 309 positioned below the frame body portion 121 is grounded. Therefore, the body frame 102 can be supported on the ground or the like by the frame contact portion 309 .
  • the lower end of the ground contact portion 308 is positioned below the lower end of the frame contact portion 309 during flight of the aircraft 301 .
  • the engine-generator unit 3 is connected to the machine body frame 2 by the connecting part 4 including the fabric, like the configuration shown in FIG. , the weight of the aircraft 301 can be reduced. Moreover, when the connection portion 4 is bent due to the grounding of the grounding portion 308 as described above, the frame grounding portion 309 of the frame body portion 121 is also grounded. Therefore, it is possible to make the ground portion 308 simple and lightweight.
  • ground portion 308 may function as a payload support portion.
  • a payload support section may be provided at the bottom of the engine generator unit 3 separately from the ground section 308 .
  • Air vehicle 301 may have a payload support section separate from ground section 308 .
  • the weight of the fuselage frame 102 can be reduced. A position can support the load. As a result, the movement performance of the flying object 301 can be improved by centralizing the mass.
  • the engine generator unit 3 is supported by the four connecting portions 4 with respect to the frame body portions 21 and 121 of the body frames 2 and 102 .
  • the engine-generator unit may be supported by three or less or five or more connections to the frame body.
  • the plurality of connecting parts may be arranged parallel to each other or may be arranged so as to intersect with each other in a plan view of the aircraft.
  • the plurality of connecting parts may be arranged like crossing when the aircraft is viewed from above.
  • FIG. 7 shows a schematic configuration of the flying object 401 when a plurality of connecting parts 4 are arranged like crossing in plan view of the flying object 401 .
  • the same reference numerals are assigned to the same configurations as in the first embodiment, and the following description is omitted.
  • illustration of the aircraft control device and the aircraft control device support section is omitted for explanation.
  • the flying object 401 has, for example, 12 connecting parts 4.
  • the twelve connecting portions 4 include six pairs of connecting portions 4 .
  • One end of the pair of connecting portions 4 is connected to the frame body portion 21 at the same position in the circumferential direction.
  • the pair of connecting parts 4 are arranged so that the distance between them widens from one end to the other end in a plan view of the flying object 401 .
  • the other end of the pair of connecting portions 4 is connected to the engine-generator unit 3 while vertically overlapping one of the other pair of connecting portions 4 .
  • the plurality of connecting portions 4 support the engine-generator unit 3 with respect to the frame main body portion 21 in a state in which two connecting portions 4 partially overlap each other in the thickness direction.
  • the configuration of crossing the connecting portion 4 as described above may be applied to a flying object having another configuration such as the flying object 101 of the second embodiment.
  • another damping mechanism may be provided in the portion where the connecting portion 4 overlaps in the thickness direction as described above.
  • a contact portion made of a material having a large coefficient of friction and damping (such as rubber) may be provided in the portion where the connecting portion 4 overlaps in the thickness direction.
  • the damping mechanism may be provided in a portion where the connecting portion 4 does not overlap in the thickness direction.
  • the damping mechanism may be provided in the connecting portion 4 in a configuration in which a portion of the connecting portion 4 does not overlap in the thickness direction.
  • the connecting portion 4 is a woven fabric in which a plurality of fibers are woven, and is, for example, a strip-shaped belt.
  • the connecting portion may be in the form of a string, a rope, or the like, as long as it is a woven fabric.
  • at least some of the plurality of connecting portions may have the same direction in which the fibers extend in a plan view of the aircraft.
  • a base material of the fiber may be mainly composed of a material other than an organic substance.
  • the fiber may contain a material other than an organic substance in the base material.
  • the engine-generator unit 3 has the shortest distance L between the engine-generator unit connection portion 41 and the frame connection portion 42 during flight of the aircraft 1, 101. It is connected to the fuselage frame 2 by the connection part 4 including the fabric so that the distance D in the horizontal direction to the frame connection part 42 is larger.
  • the shortest distance between the engine-generator unit connection and the frame connection is the same as the horizontal distance between the engine-generator unit connection and the frame connection during flight of the aircraft. It may be connected to the body frame by a connecting part so as to be.
  • the engine-generator unit may be supported in any posture on the body frame by the connecting portion. As long as the connecting portion can support the engine generator unit with respect to the body frame, the extending direction of the connecting portion is not limited to the extending direction of the connecting portion in each of the above-described embodiments.
  • the engine-generator unit 3 has a connection portion including fabric so that the engine-generator unit connection portion 41 is positioned below the frame connection portion 42 during flight of the aircraft 1, 101. 4 to the fuselage frame 2,102.
  • the engine-generator unit is coupled to the airframe by a coupling such that the engine-generator unit connection is at or above the frame connection during flight of the aircraft. may be
  • the frame main body 121 is formed in a hexagonal prism shape by a plurality of first frame bodies 122, a plurality of second frame bodies 123, and a plurality of struts 124.
  • the frame main body may have other shapes such as a columnar shape, other polygonal columnar shapes, and a spherical shape. At least part of the frame main body may be configured by a plate-like member.
  • Aircraft 2 1, 101, 201, 301, 401 Aircraft 2, 102 Airframe frame (frame) 3 Engine Generator Unit 4 Connection Portion 5 Rotor 6 Airplane Control Device 7, 107 Airplane Control Device Supporting Portion 21, 121 Frame Body Portion 26, 126 Rotor Supporting Portion 31 Generator 32 Power Generation Engine 41 Engine Generator Unit Connecting Portion 42 Frame connection part 51 Electric motor 52 Propeller 53 Power conversion device 71, 171 Support legs 72, 172 Mounting plate 122 First frame 123 Second frame 124 Strut 127 Support arm 128 Rib members 208, 308 Ground part 309 Frame ground part

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Remote Sensing (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Provided is a configuration of an aircraft, the configuration being lightweight and capable of absorbing vibration generated by driving of an engine-generator unit. An aircraft 1 comprises: a plurality of rotors 5 which generate a lift and include electric motors 51 and propellers 52; an engine-generator unit 3 which generates electric power supplied to each of the electric motors 51; an airframe 2 which supports the plurality of rotors 5 and the engine-generator unit 3; and a plurality of coupling units 4 which couple the engine-generator unit 3 and the airframe 2 to each other. Each of the plurality of coupling units 4 includes a woven material into which a plurality of fibers are woven so that the natural frequency of the coupling unit 4 is lower than the frequency of excitation generated by driving of the engine-generator unit 3 in the state in which the coupling units 4 support the engine-generator unit 3 on the airframe 2.

Description

飛行体flying object
 本発明は、飛行体に関する。 The present invention relates to an aircraft.
 電動モータ及び前記電動モータによって回転駆動されるプロペラを含み、揚力を発生する複数のロータを有する飛行体が知られている。このような飛行体として、例えば特許文献1に開示されているように、機体と、飛行用モータユニットと、発電ユニットと、発電ユニット吊り下げ機構とを備えた飛行体が知られている。 A flying object is known that has a plurality of rotors that generate lift, including an electric motor and a propeller that is rotationally driven by the electric motor. As such a flying object, for example, as disclosed in Patent Document 1, a flying object including an airframe, a flight motor unit, a power generation unit, and a power generation unit suspension mechanism is known.
 前記特許文献1に開示されている飛行体では、前記発電ユニットは、前記飛行用モータユニットへ電力を供給する発電機と、前記発電機を駆動するエンジンとを有する。前記発電ユニット吊り下げ機構は、前記発電ユニットを前記機体の下方に吊り下げる。前記発電ユニット吊り下げ機構は、振れ止め部材と、フレーム部材と、吊り下げ部材とを有し、軽量カーボンファイバー素材などを利用して構成されている。前記発電ユニット吊り下げ機構は、前記フレーム部材に設けられたダンパー部材により、前記発電ユニットの駆動によって生じる振動を吸収する。 In the aircraft disclosed in Patent Document 1, the power generation unit has a generator that supplies power to the flight motor unit and an engine that drives the generator. The power generation unit suspension mechanism suspends the power generation unit below the airframe. The power generation unit suspending mechanism has a vibration-retaining member, a frame member, and a suspending member, and is constructed using a lightweight carbon fiber material or the like. The power generation unit suspension mechanism absorbs vibrations caused by driving the power generation unit with a damper member provided on the frame member.
 また、複数のロータを有する飛行体として、例えば特許文献2に開示されているように、機体と、ロータと、エンジンモジュールと、発電機モジュールと、ヘッドアセンブリと、複数の減衰アセンブリとを備えた無人飛行機が知られている。 Further, as an aircraft having multiple rotors, for example, as disclosed in Patent Document 2, it includes a fuselage, rotors, an engine module, a generator module, a head assembly, and a plurality of damping assemblies. Unmanned aerial vehicles are known.
 前記複数の減衰アセンブリは、前記機体と前記エンジンモジュール及び前記発電機モジュールとの間に設けられている。前記複数の減衰アセンブリは、クッションゴムダンパーまたはダンピングスプリング等を有しており、前記エンジンモジュール及び前記発電機モジュールによって生じる振動に対して緩衝効果を有する。 The plurality of damping assemblies are provided between the airframe and the engine module and the generator module. The plurality of damping assemblies, including cushion rubber dampers or damping springs, have a damping effect on vibrations generated by the engine module and the generator module.
特許6575834号公報Japanese Patent No. 6575834 中国特許出願公開第108609168号明細書Chinese Patent Application Publication No. 108609168
 上述の特許文献1、2に開示されている飛行体は、エンジン及び発電機の駆動によって生じる振動を吸収可能な構成を有する。このように、複数のロータを有する飛行体では、エンジン発電機ユニットの駆動によって生じる振動を吸収可能な構成が望まれている。また、前記飛行体では、重量が飛行性能に影響を及ぼすため、軽量な構成も望まれている。すなわち、前記飛行体では、前記エンジン発電機ユニットの駆動によって生じる振動を吸収可能で且つ軽量な構成が求められている。 The flying objects disclosed in Patent Documents 1 and 2 above have a configuration capable of absorbing vibrations caused by the driving of the engine and generator. Thus, in an aircraft having a plurality of rotors, a configuration capable of absorbing vibrations caused by driving the engine-generator unit is desired. In addition, since the flight performance of the aircraft is affected by its weight, a lightweight configuration is desired. That is, the flying object is required to have a lightweight structure capable of absorbing vibrations generated by driving the engine-generator unit.
 本発明は、エンジン発電機ユニットの駆動によって生じる振動を吸収可能で且つ軽量な飛行体の構成を実現することを目的とする。 An object of the present invention is to realize a configuration of a lightweight aircraft capable of absorbing vibrations generated by driving an engine generator unit.
 本発明者は、エンジン発電機ユニットの駆動によって生じる振動を吸収可能で且つ軽量な飛行体の構成について検討した。鋭意検討の結果、本発明者は、以下のような構成に想到した。 The inventor studied the configuration of a lightweight aircraft capable of absorbing the vibrations caused by the driving of the engine-generator unit. As a result of intensive studies, the inventors came up with the following configuration.
 本発明の一実施形態に係る飛行体は、電動モータ及び前記電動モータによって回転駆動されるプロペラを含み、揚力を発生する複数のロータと、前記複数のロータにおける前記電動モータにそれぞれ供給する電力を発生するエンジン発電機ユニットと、前記複数のロータ及び前記エンジン発電機ユニットを支持するフレームと、前記エンジン発電機ユニットと前記フレームとを連結する複数の連結部と、を備えた飛行体である。前記複数の連結部は、それぞれ、前記フレームに対して前記エンジン発電機ユニットを支持した状態での前記連結部の固有振動数が前記エンジン発電機ユニットの駆動によって生じる加振周波数よりも低くなるように、複数の繊維が編み込まれた織物を含む。 A flying object according to an embodiment of the present invention includes an electric motor and a propeller rotationally driven by the electric motor, a plurality of rotors that generate lift, and electric power supplied to the electric motors of the plurality of rotors. An aircraft comprising: an engine-generator unit that generates a rotor; a frame that supports the plurality of rotors and the engine-generator unit; and a plurality of connecting portions that connect the engine-generator unit and the frame. Each of the plurality of connecting portions is arranged such that the natural frequency of the connecting portion when the engine-generator unit is supported on the frame is lower than the vibration frequency generated by driving the engine-generator unit. includes fabrics in which multiple fibers are woven.
 エンジン発電機ユニットをフレームに連結するとともに、前記フレームに対して前記エンジン発電機ユニットを支持した状態での前記連結部の固有振動数が前記エンジン発電機ユニットの駆動によって生じる加振周波数よりも低くなるように、複数の繊維が編み込まれた織物を含む連結部により、前記エンジン発電機ユニットの駆動によって生じた振動が、前記フレームに伝達されるのを抑制できる。 The engine generator unit is connected to the frame, and the natural frequency of the connecting portion in a state in which the engine generator unit is supported with respect to the frame is lower than the vibration frequency generated by driving the engine generator unit. Thus, the connecting portion including the fabric in which a plurality of fibers are woven can suppress transmission of vibrations generated by driving the engine-generator unit to the frame.
 しかも、前記連結部は、複数の繊維が編み込まれた織物を含むため、金属等によって連結部を構成する場合に比べて、設計自由度が高い連結部の構成が得られるとともに、飛行体を軽量化することができる。 Moreover, since the connecting portion includes a fabric in which a plurality of fibers are woven, compared with the case where the connecting portion is made of metal or the like, the structure of the connecting portion can be obtained with a higher degree of freedom in design, and the aircraft can be made lighter. can be
 したがって、上述の構成により、エンジン発電機ユニットの駆動によって生じる振動を吸収可能で且つ軽量な飛行体の構成を実現することができる。 Therefore, with the above configuration, it is possible to realize a configuration of a lightweight flying object that is capable of absorbing vibrations generated by driving the engine generator unit.
 他の観点によれば、本発明の飛行体は、以下の構成を含むことが好ましい。前記織物は、前記エンジン発電機ユニットの振動の少なくとも一部が減衰されるように、前記複数の繊維同士が相対的に変位可能に編み込まれている。 From another point of view, the flying object of the present invention preferably includes the following configurations. The fabric is woven such that the plurality of fibers are relatively displaceable so that at least part of the vibration of the engine-generator unit is damped.
 これにより、エンジン発電機ユニットの駆動によって生じた振動を、前記エンジン発電機ユニットの振動の少なくとも一部が減衰されるように複数の繊維同士が相対的に変位可能に編み込まれた織物を含む連結部によって、効果的に減衰させることができる。しかも、前記繊維を含む連結部を用いて前記エンジン発電機ユニットをフレームに連結することにより、金属等によって前記連結部を構成する場合に比べて、飛行体を軽量化することができる。 Thus, the connection including the woven fabric in which a plurality of fibers are relatively displaceable so that at least part of the vibration of the engine-generator unit is damped at least part of the vibration generated by the driving of the engine-generator unit. can be effectively attenuated by the part. Moreover, by connecting the engine-generator unit to the frame using the connecting portion containing the fiber, the weight of the aircraft can be reduced as compared with the case where the connecting portion is made of metal or the like.
 したがって、上述の構成により、エンジン発電機ユニットの駆動によって生じる振動を効果的に吸収可能で且つ軽量な飛行体の構成を実現することができる。 Therefore, with the above configuration, it is possible to realize a configuration of a lightweight flying object that can effectively absorb vibrations caused by driving the engine-generator unit.
 他の観点によれば、本発明の飛行体は、以下の構成を含むことが好ましい。飛行体は、前記連結部を少なくとも3つ有する。前記エンジン発電機ユニットは、少なくとも3つの前記連結部を介して前記フレームに連結されている。 From another point of view, the flying object of the present invention preferably includes the following configurations. The flying object has at least three connecting portions. The engine-generator unit is connected to the frame via at least three of the connecting portions.
 これにより、それぞれ織物を含む少なくとも3つの連結部によって、エンジン発電機ユニットをフレームにより安定した姿勢で連結できる。 As a result, the engine-generator unit can be connected to the frame in a more stable posture by means of at least three connecting portions each including a fabric.
 しかも、それぞれ織物を含む前記少なくとも3つの連結部によって、前記エンジン発電機ユニットの駆動によって生じる振動をより吸収できるとともに、金属等によって連結部を構成する場合に比べて、飛行体を軽量化することができる。 In addition, the at least three joints, each of which includes fabric, can more effectively absorb vibrations caused by the driving of the engine-generator unit, and the weight of the flying object can be reduced compared to the case where the joints are made of metal or the like. can be done.
 したがって、上述の構成により、エンジン発電機ユニットをフレームに対してより確実に連結しつつ、エンジン発電機ユニットの駆動によって生じる振動をより効果的に吸収可能で且つ軽量な飛行体の構成を実現することができる。 Therefore, with the above-described configuration, it is possible to realize a configuration of a lightweight flying object that can more effectively absorb vibrations caused by the driving of the engine-generator unit while connecting the engine-generator unit to the frame more reliably. be able to.
 他の観点によれば、本発明の飛行体は、以下の構成を含むことが好ましい。前記複数の連結部のうち少なくとも一部の連結部は、前記飛行体の平面視で繊維の延びる方向が異なる織物を含む。前記エンジン発電機ユニットは、前記飛行体の平面視で繊維の延びる方向が異なる織物を含む前記少なくとも一部の連結部を介してフレームに連結されている。 From another point of view, the flying object of the present invention preferably includes the following configurations. At least some of the plurality of connecting portions include a woven fabric having fibers extending in different directions in a plan view of the aircraft. The engine-generator unit is connected to the frame via the at least one connecting portion that includes a woven fabric having fibers extending in different directions in a plan view of the aircraft.
 これにより、エンジン発電機ユニットを、飛行体の平面視で繊維の延びる方向が異なる織物を含む連結部を介して、フレームに対してより高い強度で連結することができる。 As a result, the engine-generator unit can be connected to the frame with higher strength via the connecting portion including the fabric with fibers extending in different directions in plan view of the aircraft.
 しかも、飛行体の平面視で繊維の延びる方向が異なる織物を含む連結部によって、前記エンジン発電機ユニットの駆動によって生じる振動をより吸収できるとともに、金属等によって連結部を構成する場合に比べて、飛行体を軽量化することができる。 In addition, the connecting portion including the fabric with fibers extending in different directions in a plan view of the flying object can more absorb the vibration caused by the driving of the engine generator unit, and compared to the case where the connecting portion is made of metal or the like, It is possible to reduce the weight of the aircraft.
 したがって、上述の構成により、エンジン発電機ユニットをフレームに対してより確実に連結しつつ、エンジン発電機ユニットの駆動によって生じる振動を吸収可能で且つ軽量な飛行体の構成を実現することができる。 Therefore, with the above-described configuration, it is possible to realize a configuration of a lightweight aircraft capable of absorbing vibrations caused by driving the engine-generator unit while more reliably connecting the engine-generator unit to the frame.
 他の観点によれば、本発明の飛行体は、以下の構成を含むことが好ましい。前記複数の連結部にそれぞれ含まれる前記織物は、母材が主に有機物によって構成されている繊維が編み込まれた織物を含む。 From another point of view, the flying object of the present invention preferably includes the following configurations. The woven fabric included in each of the plurality of connecting portions includes a woven fabric woven with fibers whose base material is mainly composed of an organic substance.
 これにより、軽量で且つ高い強度を有する織物が得られる。よって、前記織物を含む連結部によって、エンジン発電機ユニットをフレームに対してより確実に連結することができる。 As a result, a woven fabric that is lightweight and has high strength can be obtained. Therefore, the engine-generator unit can be more reliably connected to the frame by the connecting portion including the fabric.
 しかも、母材が主に有機物によって構成されている繊維が編み込まれた織物を含む連結部によって、前記エンジン発電機ユニットの駆動によって生じる振動を吸収できるとともに、金属等によって連結部を構成する場合に比べて、飛行体を軽量化することができる。 Moreover, the connecting portion including the fabric woven with fibers whose base material is mainly composed of an organic substance can absorb the vibration caused by the driving of the engine-generator unit, and when the connecting portion is made of metal or the like, In comparison, the aircraft can be made lighter.
 したがって、上述の構成により、エンジン発電機ユニットをフレームに対してより確実に連結しつつ、エンジン発電機ユニットの駆動によって生じる振動を吸収可能で且つ軽量な飛行体の構成を実現することができる。 Therefore, with the above-described configuration, it is possible to realize a configuration of a lightweight aircraft capable of absorbing vibrations caused by driving the engine-generator unit while more reliably connecting the engine-generator unit to the frame.
 他の観点によれば、本発明の飛行体は、以下の構成を含むことが好ましい。前記エンジン発電機ユニットは、前記飛行体の飛行中において、前記エンジン発電機ユニットと前記連結部との接続部であるエンジン発電機ユニット接続部と、前記連結部と前記フレームとの接続部であるフレーム接続部との最短距離が、前記エンジン発電機ユニット接続部と前記フレーム接続部との水平方向の距離よりも大きくなるように、前記連結部によって前記フレームに連結されている。 From another point of view, the flying object of the present invention preferably includes the following configurations. The engine-generator unit includes an engine-generator unit connecting portion, which is a connection portion between the engine-generator unit and the connecting portion, and a connecting portion between the connecting portion and the frame during flight of the aircraft. It is connected to the frame by the connection portion such that the shortest distance to the frame connection portion is longer than the horizontal distance between the engine generator unit connection portion and the frame connection portion.
 これにより、複数の繊維が編み込まれた織物を含む連結部のバネ定数を、前記エンジン発電機ユニット接続部と前記フレーム接続部との最短距離が、前記エンジン発電機ユニット接続部と前記フレーム接続部との水平方向の距離と等しい場合のバネ定数に比べて小さくすることができる。よって、前記連結部の固有振動数を、エンジン発電機ユニットの駆動によって生じる振動の周波数よりも低くすることができる。したがって、前記連結部により、エンジン発電機ユニットの駆動によって生じる振動を効果的に吸収することができる。 As a result, the spring constant of the connection portion including the fabric in which a plurality of fibers are woven is determined by the shortest distance between the engine generator unit connection portion and the frame connection portion. can be smaller than the spring constant equal to the horizontal distance between Therefore, the natural frequency of the connecting portion can be made lower than the frequency of vibration caused by driving the engine-generator unit. Therefore, the connecting portion can effectively absorb vibrations caused by driving the engine-generator unit.
 しかも、複数の繊維が編み込まれた織物を含む前記連結部によってエンジン発電機ユニットをフレームに対して連結することにより、金属等によって連結部を構成する場合に比べて、飛行体を軽量化することができる。 Moreover, by connecting the engine-generator unit to the frame by means of the connecting portion including the fabric in which a plurality of fibers are woven, the aircraft can be made lighter than when the connecting portion is made of metal or the like. can be done.
 したがって、上述の構成により、エンジン発電機ユニットの駆動によって生じる振動をより効果的に吸収可能で且つ軽量な飛行体の構成を実現することができる。 Therefore, with the above configuration, it is possible to realize a configuration of a lightweight flying object that can more effectively absorb vibrations caused by driving the engine generator unit.
 他の観点によれば、本発明の飛行体は、以下の構成を含むことが好ましい。前記エンジン発電機ユニットは、前記飛行体の飛行中において、前記エンジン発電機ユニットと前記連結部との接続部であるエンジン発電機ユニット接続部が、前記連結部と前記フレームとの接続部であるフレーム接続部よりも下に位置するように、前記連結部によって前記フレームに連結されている。 From another point of view, the flying object of the present invention preferably includes the following configurations. In the engine-generator unit, the engine-generator unit connection portion, which is the connection portion between the engine-generator unit and the connection portion, is the connection portion between the connection portion and the frame during flight of the aircraft. It is connected to the frame by the connecting portion so as to be located below the frame connecting portion.
 これにより、飛行体の飛行中において、複数の繊維が編み込まれた織物を含む連結部によって、フレームに対してエンジン発電機ユニットを支持できる。 As a result, the engine-generator unit can be supported by the frame during the flight of the aircraft by means of the connecting portion including the fabric woven with a plurality of fibers.
 しかも、前記織物を含む連結部によって、前記エンジン発電機ユニットの駆動によって生じる振動を吸収できるとともに、金属等によって連結部を構成する場合に比べて、飛行体を軽量化することができる。 Moreover, the connecting portion including the fabric can absorb the vibration caused by the driving of the engine-generator unit, and the weight of the aircraft can be reduced compared to the case where the connecting portion is made of metal or the like.
 したがって、上述の構成により、エンジン発電機ユニットの駆動によって生じる振動を吸収可能で且つ軽量な飛行体の構成を実現することができる。 Therefore, with the above configuration, it is possible to realize a configuration of a lightweight flying object that is capable of absorbing vibrations generated by driving the engine generator unit.
 本明細書で使用される専門用語は、特定の実施形態のみを定義する目的で使用されるのであって、前記専門用語によって発明を制限する意図はない。 The technical terms used in this specification are used for the purpose of defining specific embodiments only, and are not intended to limit the invention by the technical terms.
 本明細書で使用される「及び/または」は、一つまたは複数の関連して列挙された構成物のすべての組み合わせを含む。 As used herein, "and/or" includes all combinations of one or more of the associated listed constructs.
 本明細書において、「含む、備える(including)」「含む、備える(comprising)」または「有する(having)」及びそれらの変形の使用は、記載された特徴、工程、操作、要素、成分、及び/または、それらの等価物の存在を特定するが、ステップ、動作、要素、コンポーネント、及び/または、それらのグループのうちの1つまたは複数を含むことができる。 As used herein, the use of "including," "comprising," or "having," and variations thereof, refers to the features, steps, operations, elements, components, and /or may include one or more of steps, acts, elements, components and/or groups thereof, although specifying the presence of equivalents thereof.
 本明細書において、「取り付けられた」、「接続された」、「結合された」、及び/または、それらの等価物は、広義の意味で使用され、“直接的及び間接的な”取り付け、接続及び結合の両方を包含する。さらに、「接続された」及び「結合された」は、物理的または機械的な接続または結合に限定されず、直接的または間接的な電気的接続または結合を含むことができる。 As used herein, "attached," "connected," "coupled," and/or equivalents thereof are used broadly and include "direct and indirect" attachment, It includes both connection and coupling. Furthermore, "connected" and "coupled" are not limited to physical or mechanical connections or couplings, but can include direct or indirect electrical connections or couplings.
 他に定義されない限り、本明細書で使用される全ての用語(技術用語及び科学用語を含む)は、本発明が属する技術分野の当業者によって一般的に理解される意味と同じ意味を有する。 Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by a person skilled in the art to which this invention belongs.
 一般的に使用される辞書に定義された用語は、関連する技術及び本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的または過度に形式的な意味で解釈されることはない。 Terms defined in commonly used dictionaries are to be construed to have a meaning consistent with their meaning in the context of the relevant art and this disclosure, unless explicitly defined herein. , is not to be interpreted in an idealized or overly formal sense.
 本発明の説明においては、いくつもの技術および工程が開示されていると理解される。これらの各々は、個別の利益を有し、他に開示された技術の1つ以上、または、場合によっては全てと共に使用することもできる。 It is understood that a number of techniques and processes are disclosed in the description of the present invention. Each of these has individual benefits and can also be used in conjunction with one or more, or possibly all, of the other disclosed techniques.
 したがって、明確にするために、本発明の説明では、不要に個々のステップの可能な組み合わせをすべて繰り返すことを控える。しかしながら、本明細書及び特許請求の範囲は、そのような組み合わせがすべて本発明の範囲内であることを理解して読まれるべきである。 Therefore, for the sake of clarity, the description of the present invention refrains from unnecessarily repeating all possible combinations of individual steps. However, the specification and claims should be read with the understanding that all such combinations are within the scope of the present invention.
 本明細書では、本発明に係る飛行体の実施形態について説明する。 This specification describes an embodiment of an aircraft according to the present invention.
 以下の説明では、本発明の完全な理解を提供するために多数の具体的な例を述べる。しかしながら、当業者は、これらの具体的な例がなくても本発明を実施できることが明らかである。 In the following description, a number of specific examples are set forth to provide a thorough understanding of the invention. However, it will be obvious to one skilled in the art that the invention may be practiced without these specific examples.
 よって、以下の開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面または説明によって示される特定の実施形態に限定することを意図するものではない。 Accordingly, the following disclosure should be considered illustrative of the invention and is not intended to limit the invention to the specific embodiments illustrated by the following drawings or description.
 [飛行体]
 本明細書において、飛行体とは、モータなどの駆動源によって得られる駆動力により空中を移動可能な移動体である。前記飛行体は、例えば、複数のロータを有するマルチコプターを意味する。前記複数のロータの回転軸は、鉛直方向に延びている。前記複数のロータは、電動モータによって駆動される。また、前記飛行体は、少なくとも発電機を搭載しており、前記発電機が発電した電力を前記電動モータに供給可能に構成されている。前記飛行体は、無人飛行体及び有人飛行体の両方を含む。
[Aircraft]
In this specification, the flying object is a moving object that can move in the air by a driving force obtained by a driving source such as a motor. The aircraft means, for example, a multicopter having a plurality of rotors. The rotating shafts of the plurality of rotors extend vertically. The plurality of rotors are driven by an electric motor. Further, the aircraft is equipped with at least a generator, and is configured to be able to supply electric power generated by the generator to the electric motor. The air vehicles include both unmanned air vehicles and manned air vehicles.
 [エンジン発電機ユニット]
 本明細書において、エンジン発電機ユニットとは、ディーゼルエンジン、ガソリンエンジンなどの各種のレシプロエンジンによって、発電機を駆動して発電する装置である。前記エンジン発電機ユニットは、外部からの電力発電要求に応じて、前記エンジンの出力を制御して発電する。
[Engine generator unit]
In this specification, an engine-generator unit is a device that generates power by driving a generator with various reciprocating engines such as a diesel engine and a gasoline engine. The engine generator unit generates power by controlling the output of the engine in response to an electric power generation request from the outside.
 [繊維]
 本明細書において、繊維とは、織物を織る材料となる細長い素材である。前記繊維は、長手方向に撚られることにより糸になる。すなわち、前記繊維は、糸の素材である。前記繊維は、天然繊維及び化学繊維の両方を含む。
[fiber]
As used herein, a fiber is an elongated material from which textiles are woven. The fibers are twisted in the longitudinal direction to form threads. That is, the fiber is the raw material of the thread. Said fibers include both natural and synthetic fibers.
 [織物]
 本明細書において、織物とは、繊維または繊維を撚り合わせた糸を編み込むことによって得られる布地である。
[fabric]
As used herein, a woven fabric is a fabric obtained by weaving fibers or threads of twisted fibers.
 [連結部がエンジン発電機ユニットを支持した状態]
 本明細書において、連結部がエンジン発電機ユニットを支持した状態とは、エンジン発電機ユニットが連結部を介してフレームに支持されている状態を意味する。すなわち、前記連結部が前記エンジン発電機ユニットを支持した状態は、前記連結部に、前記エンジン発電機ユニットの重量の少なくとも一部が作用して引張力が生じている状態である。
[State in which the connecting part supports the engine-generator unit]
In this specification, a state in which the engine generator unit is supported by the connecting portion means a state in which the engine generator unit is supported by the frame via the connecting portion. In other words, the state in which the connecting portion supports the engine-generator unit is a state in which at least part of the weight of the engine-generator unit acts on the connecting portion to generate a tensile force.
 [母材が主に有機物によって構成]
 本明細書において、母材が主に有機物によって構成とは、繊維に含まれる成分の半分以上の割合を占める成分が、有機物によって構成されていることを意味する。
[The base material is mainly composed of organic substances]
In the present specification, the expression that the base material is mainly composed of an organic substance means that a component accounting for half or more of the components contained in the fiber is composed of an organic substance.
 本発明の一実施形態によれば、エンジン発電機ユニットの駆動によって生じる振動を吸収可能で且つ軽量な飛行体の構成を実現することができる。 According to one embodiment of the present invention, it is possible to realize a configuration of a lightweight aircraft capable of absorbing vibrations caused by driving the engine-generator unit.
図1は、実施形態1に係る飛行体の概略構成を示す平面図である。FIG. 1 is a plan view showing a schematic configuration of an aircraft according to Embodiment 1. FIG. 図2は、実施形態1に係る飛行体の概略構成を示す側面図である。FIG. 2 is a side view showing a schematic configuration of the aircraft according to Embodiment 1. FIG. 図3は、実施形態2に係る飛行体の概略構成を示す平面図である。FIG. 3 is a plan view showing a schematic configuration of an aircraft according to Embodiment 2. FIG. 図4は、実施形態2に係る飛行体の概略構成を示す側面図である。FIG. 4 is a side view showing a schematic configuration of an aircraft according to Embodiment 2. FIG. 図5は、その他の実施形態に係る飛行体の概略構成を示す側面図である。FIG. 5 is a side view showing a schematic configuration of an aircraft according to another embodiment. 図6は、その他の実施形態に係る飛行体の概略構成を示す側面図である。FIG. 6 is a side view showing a schematic configuration of an aircraft according to another embodiment. 図7は、その他の実施形態に係る飛行体の概略構成を示す平面図である。FIG. 7 is a plan view showing a schematic configuration of an aircraft according to another embodiment.
 以下で、各実施形態について、図面を参照しながら説明する。各図において、同一部分には同一の符号を付して、その同一部分の説明は繰り返さない。なお、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。 Each embodiment will be described below with reference to the drawings. In each figure, the same parts are denoted by the same reference numerals, and the description of the same parts will not be repeated. Note that the dimensions of the constituent members in each drawing do not faithfully represent the actual dimensions of the constituent members, the dimensional ratios of the respective constituent members, and the like.
 [実施形態1]
 <飛行体1の全体構成>
 図1及び図2を用いて本発明の実施形態1に係る飛行体1について説明する。図1は、飛行体1の概略構成を示す平面図である。図2は、飛行体1の概略構成を示す側面図である。
[Embodiment 1]
<Overall Configuration of Aircraft 1>
An aircraft 1 according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 and 2. FIG. FIG. 1 is a plan view showing a schematic configuration of an aircraft 1. FIG. FIG. 2 is a side view showing a schematic configuration of the aircraft 1. FIG.
 図1及び図2に示すように、本発明の実施形態1に係る飛行体1は、複数のロータ5によって飛行するマルチコプターである。飛行体1は、無線による遠隔操縦及び各種センサによる自律飛行が可能に構成されている。飛行体1は、機体フレーム2と、エンジン発電機ユニット3と、複数の連結部4と、複数のロータ5と、飛行体制御装置6とを備える。 As shown in FIGS. 1 and 2, the flying object 1 according to Embodiment 1 of the present invention is a multicopter that flies with a plurality of rotors 5. The flying object 1 is configured to be capable of wireless remote control and autonomous flight using various sensors. The aircraft 1 includes a body frame 2 , an engine generator unit 3 , a plurality of connecting sections 4 , a plurality of rotors 5 and an aircraft control device 6 .
 機体フレーム2は、エンジン発電機ユニット3、図示しないバッテリー、ロータ5及び飛行体制御装置6を支持する。機体フレーム2は、フレーム本体部21と、複数のロータ支持部26とを有する。機体フレーム2は、例えば、アルミニウム合金製のパイプ材から構成されている。機体フレーム2が、フレームに対応する。 The fuselage frame 2 supports an engine generator unit 3, a battery (not shown), a rotor 5, and an aircraft controller 6. The body frame 2 has a frame body portion 21 and a plurality of rotor support portions 26 . The body frame 2 is made of, for example, an aluminum alloy pipe material. A body frame 2 corresponds to the frame.
 フレーム本体部21は、エンジン発電機ユニット3を支持する。フレーム本体部21は、飛行体1の平面視で、例えばループ状である。フレーム本体部21は、飛行体1の平面視で、例えば、矩形状、円環状、多角形状など、どのような形状を有していてもよい。フレーム本体部21の少なくとも一部は、棒状またはパイプ状の部材によって構成されている。なお、フレーム本体部21は、エンジン発電機ユニット3を支持可能な形状であれば、梁状などのように、ループ状以外の形状を有していてもよい。フレーム本体部21の少なくとも一部は、板状の部材によって構成されていてもよい。 The frame main body 21 supports the engine generator unit 3. The frame main body portion 21 has, for example, a loop shape in a plan view of the aircraft 1 . The frame main body 21 may have any shape, such as a rectangular shape, an annular shape, or a polygonal shape, when viewed from above the aircraft 1 . At least part of the frame main body 21 is configured by a rod-shaped or pipe-shaped member. Note that the frame body portion 21 may have a shape other than the loop shape, such as a beam shape, as long as it is a shape capable of supporting the engine generator unit 3 . At least part of the frame main body 21 may be configured by a plate-like member.
 ロータ支持部26は、ロータ5を支持する。ロータ支持部26は、フレーム本体部21に接続されている。複数のロータ支持部26は、飛行体1の平面視で、フレーム本体部21に対して放射状に延びている。複数のロータ支持部26は、飛行体1の平面視で、フレーム本体部21の中心に対して点対称に配置されるのが好ましい。 The rotor support portion 26 supports the rotor 5. The rotor support portion 26 is connected to the frame body portion 21 . The plurality of rotor support portions 26 radially extend with respect to the frame body portion 21 in a plan view of the aircraft 1 . The plurality of rotor support portions 26 are preferably arranged point-symmetrically with respect to the center of the frame main body portion 21 in a plan view of the aircraft 1 .
 エンジン発電機ユニット3は、発電用エンジン32の駆動力によって発電機31を駆動させて発電する発電専用の装置である。エンジン発電機ユニット3は、発電機31と、発電用エンジン32とを有する。 The engine generator unit 3 is a device dedicated to power generation that drives the generator 31 with the driving force of the power generation engine 32 to generate power. The engine generator unit 3 has a generator 31 and a generator engine 32 .
 発電機31は、発電用エンジン32から供給される動力によって回転して発電する。発電機31は、例えば交流発電機である。発電機31は、発電した交流電力を直流電力に変換して、図示しないバッテリーに出力する。なお、発電機31は、変換した直流電力を、後述するロータ5の電動モータ51に供給してもよい。 The power generator 31 is rotated by the power supplied from the power generation engine 32 to generate power. The generator 31 is, for example, an AC generator. The generator 31 converts the generated AC power into DC power and outputs it to a battery (not shown). Note that the generator 31 may supply the converted DC power to the electric motor 51 of the rotor 5, which will be described later.
 発電機31は、図示しない回転子を有する。発電機31の回転子は、発電用エンジン32から出力される動力によって駆動可能なように、発電用エンジン32に連結されている。 The generator 31 has a rotor (not shown). The rotor of the generator 31 is connected to the power generation engine 32 so as to be driven by the power output from the power generation engine 32 .
 発電用エンジン32は、発電機31を駆動する動力源である。発電用エンジン32は、図示しないクランク軸に図示しないコンロッドを介して図示しないピストンが連結されている。発電用エンジン32は、前記ピストンを往復運動させて前記クランク軸を回転運動させる。発電用エンジン32は、例えば、2気筒の水平対向エンジンである。発電用エンジンは、2気筒の水平対向エンジン以外のエンジンであってもよい。 The power generation engine 32 is a power source that drives the generator 31 . The power generation engine 32 has a piston (not shown) connected to a crankshaft (not shown) via a connecting rod (not shown). The power generation engine 32 reciprocates the piston to rotate the crankshaft. The power generation engine 32 is, for example, a two-cylinder horizontally opposed engine. The generator engine may be an engine other than a two-cylinder horizontally opposed engine.
 発電用エンジン32の前記クランク軸の両端部には、発電機31の回転子がそれぞれ連結されている。つまり、発電用エンジン32には、2台の発電機31が駆動可能に連結されている。発電用エンジン32は、前記クランク軸の回転運動によって2台の発電機31を駆動する。また、発電機31と発電用エンジン32とは、図示しない発電機制御装置及びエンジン制御装置によって、外部からの電力指令、発電量及びバッテリーの残量等に基づいて制御が行われる。なお、発電用エンジンによって駆動される発電機は、1台または3台以上であってもよい。 The rotors of the generator 31 are connected to both ends of the crankshaft of the power generation engine 32, respectively. That is, the two power generators 31 are drivably connected to the power generation engine 32 . The power generation engine 32 drives the two power generators 31 by rotational motion of the crankshaft. The generator 31 and the generator engine 32 are controlled by a generator control device and an engine control device (not shown) based on an external power command, power generation amount, remaining battery capacity, and the like. In addition, the number of generators driven by the power generation engine may be one or three or more.
 図1及び図2に示すように、エンジン発電機ユニット3は、複数の連結部4を介して、フレーム本体部21によって支持されている。複数の連結部4は、それぞれ、エンジン発電機ユニット3に接続されているとともにフレーム本体部21にも接続されている。すなわち、各連結部4は、一端がエンジン発電機ユニット3に接続されていて、他端がエンジン発電機ユニット3に接続されている。本実施形態では、エンジン発電機ユニット3は、4つの連結部4によって、フレーム本体部21に接続されている。 As shown in FIGS. 1 and 2, the engine generator unit 3 is supported by the frame main body 21 via a plurality of connecting portions 4. As shown in FIG. The plurality of connecting portions 4 are connected to the engine generator unit 3 and also connected to the frame body portion 21 . That is, each connecting portion 4 has one end connected to the engine generator unit 3 and the other end connected to the engine generator unit 3 . In this embodiment, the engine generator unit 3 is connected to the frame main body 21 by four connecting portions 4 .
 4つの連結部のうち2つの連結部は、エンジン発電機ユニット3において、発電用エンジン32よりもクランク軸(図示省略)の軸方向の一方に位置する部分に接続されていて、残りの2つの連結部は、発電用エンジン32よりも前記軸方向の他方に位置する部分に接続されている。4つの連結部は、飛行体1の平面視で、エンジン発電機ユニット3の重心に対して前記軸方向及び前記軸方向に直交する方向にそれぞれ対称の位置で、エンジン発電機ユニット3に接続されるのが好ましい。連結部4の詳しい構成は後述する。 Two of the four connecting portions are connected to a portion of the engine-generator unit 3 located on one side of the crankshaft (not shown) in the axial direction of the power-generating engine 32. The connecting portion is connected to a portion located on the other side in the axial direction of the power generation engine 32 . The four connecting portions are connected to the engine-generator unit 3 at symmetrical positions with respect to the center of gravity of the engine-generator unit 3 in the plane view of the aircraft 1 in the axial direction and in the direction orthogonal to the axial direction. preferably A detailed configuration of the connecting portion 4 will be described later.
 なお、各連結部4とエンジン発電機ユニット3とは、直接接続されていてもよいし、金具等の接続部材を介して接続されていてもよい。各連結部4は、エンジン発電機ユニット3に接続される接続金具を有していてもよい。各連結部4とフレーム本体部21とは、直接接続されていてもよいし、金具等の接続部材を介して接続されていてもよい。各連結部4は、フレーム本体部21に接続される接続金具を有していてもよい。 Each connecting portion 4 and the engine generator unit 3 may be directly connected, or may be connected via a connecting member such as a metal fitting. Each connecting portion 4 may have a connection fitting connected to the engine generator unit 3 . Each connecting portion 4 and the frame main body portion 21 may be directly connected, or may be connected via a connecting member such as a metal fitting. Each connecting portion 4 may have a connection fitting connected to the frame body portion 21 .
 エンジン発電機ユニット3に対する複数の連結部4の接続位置も、上述の位置に限らず、エンジン発電機ユニット3を複数の連結部4によってフレーム本体部21に支持可能な位置であれば、どのような位置であってもよい。 The connection positions of the plurality of connecting portions 4 with respect to the engine generator unit 3 are not limited to the above-described positions, and any position where the engine generator unit 3 can be supported on the frame main body portion 21 by the plurality of connecting portions 4 can be used. position.
 飛行体制御装置6は、外部から入力される制御信号等に基づいて、複数のロータ5の駆動を制御することにより、飛行体1の位置、姿勢、速度、飛行方向等を制御する。飛行体制御装置6は、例えば、CPU、ROM、RAM、HDD等がバスによって接続された構成であってもよい。また、飛行体制御装置6は、ワンチップのLSI等からなる構成であってもよい。飛行体制御装置6には、各ロータ5の回転速度を制御したり、発電用エンジン32、発電機31、図示しないバッテリー、図示しない計測装置等の動作を制御したりするための種々のプログラム及びデータが格納されている。 The flying object control device 6 controls the position, attitude, speed, flight direction, etc. of the flying object 1 by controlling the driving of the plurality of rotors 5 based on externally input control signals and the like. The aircraft control device 6 may have a configuration in which, for example, a CPU, ROM, RAM, HDD, etc. are connected by a bus. Further, the flying object control device 6 may be configured by a one-chip LSI or the like. Various programs and programs for controlling the rotation speed of each rotor 5, controlling the operation of the power generating engine 32, the generator 31, the battery (not shown), the measuring device (not shown), etc. data is stored.
 飛行体制御装置6は、慣性計測装置、方位センサ、高度センサなどを有する。前記慣性計測装置は、飛行体1の3軸の角速度及び角加速度を計測する装置である。前記慣性計測装置は、飛行中の飛行体1の角速度及び角加速度を精度よく計測するため、前記慣性計測装置に加わる振動速度及び振動加速度を閾値以下に抑制する必要がある。 The flying object control device 6 has an inertial measurement device, a direction sensor, an altitude sensor, and the like. The inertial measurement device is a device that measures the triaxial angular velocity and angular acceleration of the flying object 1 . Since the inertial measurement device accurately measures the angular velocity and angular acceleration of the flying object 1 during flight, it is necessary to suppress the vibration velocity and vibration acceleration applied to the inertial measurement device below threshold values.
 飛行体制御装置6は、既述のエンジン制御装置及び発電機制御装置に発電機制御信号を送信可能に構成されている。飛行体制御装置6は、ロータ5の電力変換装置53に駆動制御信号を送信可能に構成されている。飛行体制御装置6は、前記慣性計測装置から飛行体1の角速度及び角加速度の計測値を取得し、前記方位センサから飛行体1の方位の計測値を取得し、前記高度センサから飛行体1の高度の計測値を取得することができる。飛行体制御装置6は、取得した各計測値から、前記発電制御信号及び前記駆動制御信号を生成することができる。 The aircraft control device 6 is configured to be able to transmit a generator control signal to the engine control device and the generator control device described above. The aircraft control device 6 is configured to be able to transmit a drive control signal to the power conversion device 53 of the rotor 5 . The flying object control device 6 obtains measured values of the angular velocity and angular acceleration of the flying object 1 from the inertial measurement device, obtains measured values of the heading of the flying object 1 from the orientation sensor, and obtains measured values of the heading of the flying object 1 from the altitude sensor. altitude measurements can be obtained. The flying object control device 6 can generate the power generation control signal and the drive control signal from the acquired measurement values.
 なお、飛行体制御装置は、慣性計測装置を有していなくてもよい。飛行体制御装置は、方位センサを有していなくてもよい。飛行体制御装置は、高度センサを有していなくてもよい。 It should be noted that the aircraft control device does not have to have an inertial measurement device. The aircraft control device does not have to have an orientation sensor. The aircraft control device may not have an altitude sensor.
 飛行体制御装置6は、飛行体制御装置支持部7によって支持されている。飛行体制御装置支持部7は、フレーム本体部21に固定されている。飛行体制御装置支持部7は、複数の支持脚71と、取付板72とを有する。複数の支持脚71は、フレーム本体部21に接続されていて、取付板72を支持する。本実施形態では、飛行体制御装置支持部7は、2つの支持脚71を有する。飛行体制御装置支持部は、1つの支持脚を有していてもよいし、3つ以上の支持脚を有していてもよい。 The flying body control device 6 is supported by the flying body control device support section 7 . The aircraft control device support portion 7 is fixed to the frame body portion 21 . The aircraft control device support section 7 has a plurality of support legs 71 and a mounting plate 72 . A plurality of support legs 71 are connected to the frame main body 21 and support the mounting plate 72 . In this embodiment, the aircraft control device support section 7 has two support legs 71 . The aircraft control device support section may have one support leg, or may have three or more support legs.
 取付板72は、長方形の板状部材であり、複数の支持脚71によって支持されている。取付板72上には、飛行体制御装置6が固定されている。取付板72は、飛行体1の平面視で、フレーム本体部21の中心に位置する。 The mounting plate 72 is a rectangular plate-like member supported by a plurality of support legs 71 . The aircraft control device 6 is fixed on the mounting plate 72 . The mounting plate 72 is positioned at the center of the frame main body 21 in plan view of the aircraft 1 .
 <連結部>
 連結部4は、母材が主に有機物によって構成された繊維を、編み込むことによって形成された織物である。前記織物は、エンジン発電機ユニット3の駆動によって生じた振動の少なくとも一部が減衰されるように、複数の前記繊維同士が相対的に変位可能に編み込まれている。本実施形態では、前記織物は、例えば帯状のベルトである。前記織物は、例えば、繊維を撚って得られた糸を縦横1本ずつ編み込む平織りによって得られた織物である。このような平織りによって得られた織物は、引張強度が高く、摩擦に強い特長を有する。
<Connector>
The connecting portion 4 is a woven fabric formed by weaving fibers whose base material is mainly composed of an organic substance. A plurality of the fibers are woven in the fabric so that the fibers are relatively displaceable so that at least part of the vibration generated by driving the engine-generator unit 3 is damped. In this embodiment, the woven fabric is, for example, a strip-shaped belt. The woven fabric is, for example, a woven fabric obtained by plain weaving in which threads obtained by twisting fibers are woven one by one in the vertical and horizontal directions. A woven fabric obtained by such a plain weave has high tensile strength and is resistant to friction.
 なお、前記織物は、綾織りによって得られた織物であってもよい。綾織りは、縦糸が、2本または3本の横糸の上を通過した後に、1本の横糸の下を通過することを繰り返す織り方である。このような綾織りによって得られた織物は、伸縮性に優れていて、しわが発生しにくい特長を有する。 The woven fabric may be a woven fabric obtained by twill weaving. Twill weave is a weave in which warp yarns pass over two or three weft yarns and then under one weft yarn repeatedly. A woven fabric obtained by such a twill weave has excellent stretchability and is less prone to wrinkles.
 前記繊維は、例えば天然繊維、合成繊維などである。前記繊維が合成繊維の場合、前記繊維は、例えば、ポリエステル、ナイロン、アラミド、ビニロン、ポリ塩化ビニル、アクリル、ポリエチレン、ポリプロピレン、ポリウレタン、ポリクラール、ポリ乳酸などによって構成される繊維を含む。なお、ポリエステルのヤング率は、例えば、2100から4200MPaであり、ナイロンのヤング率は、例えば1000から2600MPaである。 The fibers are, for example, natural fibers, synthetic fibers, and the like. When the fibers are synthetic fibers, the fibers include, for example, fibers composed of polyester, nylon, aramid, vinylon, polyvinyl chloride, acrylic, polyethylene, polypropylene, polyurethane, polyclar, polylactic acid, and the like. The Young's modulus of polyester is, for example, 2100 to 4200 MPa, and the Young's modulus of nylon is, for example, 1000 to 2600 MPa.
 前記母材が主に有機物とは、繊維に含まれる成分の半分以上の割合を占める成分が、有機物であることを意味している。 "The base material is mainly organic matter" means that more than half of the components contained in the fiber are organic matter.
 連結部4は、エンジン発電機ユニット接続部41と、フレーム接続部42とを有する。エンジン発電機ユニット接続部41は、連結部4において、エンジン発電機ユニット3に接続される部分である。フレーム接続部42は、連結部4において、機体フレーム2のフレーム本体部21に接続される部分である。既述のように、エンジン発電機ユニット3は、電力を発生する装置であるため、駆動力を出力するエンジンのように駆動反力を受けない。そのため、織物を含む連結部4によって、フレーム本体部21に対してエンジン発電機ユニット3を支持することができる。 The connecting portion 4 has an engine generator unit connecting portion 41 and a frame connecting portion 42 . The engine generator unit connecting portion 41 is a portion of the connecting portion 4 that is connected to the engine generator unit 3 . The frame connecting portion 42 is a portion of the connecting portion 4 that is connected to the frame body portion 21 of the body frame 2 . As described above, the engine generator unit 3 is a device that generates electric power, so it does not receive a driving reaction force unlike an engine that outputs driving force. Therefore, the engine-generator unit 3 can be supported with respect to the frame body portion 21 by the connection portion 4 including the fabric.
 飛行体1の平面視で、エンジン発電機ユニット接続部41は、フレーム接続部42よりもフレーム本体部21の内方に位置する。 In a plan view of the aircraft 1, the engine-generator unit connecting portion 41 is located inside the frame main body portion 21 rather than the frame connecting portion 42.
 複数の連結部4は、エンジン発電機ユニット3とフレーム本体部21との間に、異なる方向に延びている。各連結部4では、繊維は、例えば長手方向に延びている。よって、複数の連結部4の少なくとも一部の連結部4は、飛行体1の平面視で繊維の延びる方向が異なる織物を含んでいる。エンジン発電機ユニット3は、飛行体1の平面視で繊維の延びる方向が異なる織物を含む連結部4を介して機体フレーム2に連結されている。 A plurality of connecting portions 4 extend in different directions between the engine generator unit 3 and the frame main body portion 21 . At each connection 4, the fibers extend, for example, in the longitudinal direction. Therefore, at least some of the connecting portions 4 of the plurality of connecting portions 4 include fabrics in which fibers extend in different directions in plan view of the aircraft 1 . The engine-generator unit 3 is connected to the body frame 2 via a connecting portion 4 including a fabric having fibers extending in different directions in a plan view of the aircraft 1 .
 これにより、エンジン発電機ユニット3を、飛行体1の平面視で繊維の延びる方向が異なる織物を含む連結部4を介して、機体フレーム2に対してより高い強度で連結することができる。 As a result, the engine-generator unit 3 can be connected with higher strength to the body frame 2 via the connecting portion 4 including the fabric with fibers extending in different directions in plan view of the aircraft 1 .
 しかも、飛行体1の平面視で繊維の延びる方向が異なる織物を含む連結部4によって、エンジン発電機ユニット3の駆動によって生じる振動をより吸収できるとともに、金属等によって連結部4を構成する場合に比べて、飛行体1を軽量化することができる。 Moreover, the connecting portion 4 including fabrics with fibers extending in different directions in a plan view of the aircraft 1 can absorb vibrations caused by the driving of the engine-generator unit 3, and the connecting portion 4 can be made of metal or the like. In comparison, the aircraft 1 can be made lighter.
 連結部4によってエンジン発電機ユニット3をフレーム本体部21に対して支持した状態で、複数の繊維が編み込まれた織物を含む連結部4の固有振動数は、エンジン発電機ユニット3の駆動によって生じる振動の周波数よりも低い。 In a state in which the engine-generator unit 3 is supported with respect to the frame main body 21 by the connection part 4, the natural frequency of the connection part 4 including the fabric woven with a plurality of fibers is generated by driving the engine-generator unit 3. lower than the frequency of vibration.
 なお、連結部4のヤング率、長さ及び断面積から求められる連結部4のバネ定数K(N/mm)と、エンジン発電機ユニット3の質量M(kg)とを用いて、下式によって、連結部4の固有振動数fe(Hz)を求めることができる。
Figure JPOXMLDOC01-appb-M000001
Using the spring constant K (N/mm) of the connecting portion 4 obtained from the Young's modulus, length, and cross-sectional area of the connecting portion 4, and the mass M (kg) of the engine generator unit 3, , the natural frequency fe (Hz) of the connecting portion 4 can be obtained.
Figure JPOXMLDOC01-appb-M000001
 求めた連結部4の固有振動数feが、エンジン発電機ユニット3の駆動によって生じる振動の周波数よりも小さければ、連結部4は、エンジン発電機ユニット3の駆動によって生じる振動の伝達を抑制する効果を有する。一般的に、連結部4の固有振動数feに対してエンジン発電機ユニット3の駆動によって生じる振動の周波数の比が大きいほど、振動吸収率は大きくなる。よって、連結部4の固有振動数feは、より低いのが好ましい。 If the determined natural frequency fe of the connecting portion 4 is smaller than the frequency of vibration generated by driving the engine generator unit 3, the connecting portion 4 has the effect of suppressing the transmission of vibration generated by driving the engine generator unit 3. have In general, the greater the ratio of the frequency of vibration generated by driving the engine generator unit 3 to the natural frequency fe of the connecting portion 4, the greater the vibration absorption rate. Therefore, it is preferable that the natural frequency fe of the connecting portion 4 is lower.
 飛行体1の飛行中において、エンジン発電機ユニット3は、連結部4を介して、フレーム本体部21に対して吊り下げられる。よって、飛行体1の飛行中において、連結部4には、エンジン発電機ユニット3の荷重による引張力が生じる。飛行体1の飛行中において、連結部4は、フレーム本体部21からエンジン発電機ユニット3まで、鉛直方向に対して傾斜する方向に延びている。すなわち、飛行体1の飛行中において、連結部4は、飛行体1の平面視で、フレーム本体部21からその内方に向かって延びている。飛行体1の飛行中とは、例えば図2に示すように、飛行体1が浮き上がることにより、エンジン発電機ユニット3の荷重によって連結部4に引張力が生じている状態を意味する。 During the flight of the aircraft 1, the engine-generator unit 3 is suspended from the frame main body 21 via the connecting portion 4. Therefore, during flight of the aircraft 1 , a tensile force due to the load of the engine-generator unit 3 is generated in the connecting portion 4 . During the flight of the aircraft 1, the connecting portion 4 extends from the frame main body portion 21 to the engine generator unit 3 in a direction inclined with respect to the vertical direction. That is, when the aircraft 1 is in flight, the connecting portion 4 extends inward from the frame body portion 21 in a plan view of the aircraft 1 . In-flight of the flying object 1 means a state in which the load of the engine-generator unit 3 causes a tensile force to the connecting portion 4 due to the flying object 1 floating up, as shown in FIG. 2, for example.
 したがって、飛行体1の飛行中において、連結部4は、エンジン発電機ユニット接続部41とフレーム接続部42との最短距離Lが、エンジン発電機ユニット接続部41とフレーム接続部42との水平方向の距離Dよりも大きくなるように、フレーム本体部21に対してエンジン発電機ユニット3を支持している。 Therefore, during flight of the aircraft 1, the shortest distance L between the engine-generator unit connection portion 41 and the frame connection portion 42 of the connecting portion 4 is the horizontal direction between the engine-generator unit connection portion 41 and the frame connection portion 42. The engine-generator unit 3 is supported with respect to the frame main body 21 so as to be larger than the distance D of .
 これにより、複数の繊維が編み込まれた織物を含む連結部4のバネ定数Kを、エンジン発電機ユニット接続部41とフレーム接続部42との最短距離Lがエンジン発電機ユニット接続部41とフレーム接続部42との水平方向の距離Dと等しい場合のバネ定数に比べて小さくすることができる。よって、連結部4の固有振動数feを、エンジン発電機ユニット3の駆動によって生じる振動の周波数よりも低くすることができる。したがって、連結部4により、エンジン発電機ユニット3の駆動によって生じる振動を効果的に吸収することができる。 As a result, the spring constant K of the connection portion 4 including the fabric in which a plurality of fibers are woven is determined by the shortest distance L between the engine-generator unit connection portion 41 and the frame connection portion 42. It can be smaller than the spring constant equal to the horizontal distance D to the portion 42 . Therefore, the natural frequency fe of the connecting portion 4 can be made lower than the frequency of vibration caused by driving the engine generator unit 3 . Therefore, the connecting portion 4 can effectively absorb vibrations caused by driving the engine generator unit 3 .
 飛行体1の飛行中において、エンジン発電機ユニット3は、エンジン発電機ユニット接続部41がフレーム接続部42よりも下に位置するように、織物を含む連結部4によって機体フレーム2に連結されている。 During flight of the aircraft 1, the engine-generator unit 3 is connected to the fuselage frame 2 by the connection part 4 including fabric such that the engine-generator unit connection part 41 is positioned below the frame connection part 42. there is
 これにより、飛行体1の飛行中において、複数の繊維が編み込まれた織物を含む連結部4によって、機体フレーム2に対してエンジン発電機ユニット3を連結できる。しかも、前記織物を含む連結部4によって、エンジン発電機ユニット3の駆動によって生じる振動を吸収できるとともに、金属等によって連結部を構成する場合に比べて、飛行体1を軽量化することができる。 As a result, during flight of the aircraft 1, the engine-generator unit 3 can be connected to the body frame 2 by means of the connecting portion 4 including a fabric woven with a plurality of fibers. Moreover, the connecting portion 4 including the fabric can absorb the vibration caused by the driving of the engine-generator unit 3, and the weight of the aircraft 1 can be reduced as compared with the case where the connecting portion is made of metal or the like.
 本実施形態では、飛行体1は、電動モータ51及び電動モータ51によって回転駆動されるプロペラ52を含み、揚力を発生する複数のロータ5と、複数のロータ5における電動モータ51にそれぞれ供給する電力を発生するエンジン発電機ユニット3と、複数のロータ5及びエンジン発電機ユニット3を支持する機体フレーム2と、エンジン発電機ユニット3と機体フレーム2とを連結する複数の連結部4と、を備えている。複数の連結部4は、それぞれ、機体フレーム2に対してエンジン発電機ユニット3を支持した状態での連結部4の固有振動数がエンジン発電機ユニット3の駆動によって生じる加振周波数よりも低くなるように、複数の繊維が編み込まれた織物を含む。 In this embodiment, the aircraft 1 includes an electric motor 51 and a propeller 52 that is rotationally driven by the electric motor 51, and includes a plurality of rotors 5 that generate lift, and electric power that is supplied to the electric motors 51 in the plurality of rotors 5, respectively. an engine-generator unit 3 that generates a power, a fuselage frame 2 that supports a plurality of rotors 5 and the engine-generator unit 3, and a plurality of connecting portions 4 that connect the engine-generator unit 3 and the fuselage frame 2. ing. Each of the plurality of connecting portions 4 has a natural frequency lower than the excitation frequency generated by driving the engine-generator unit 3 when the engine-generator unit 3 is supported on the body frame 2 . As such, it includes a fabric in which multiple fibers are woven.
 エンジン発電機ユニット3を機体フレーム2に連結するとともに、機体フレーム2に対してエンジン発電機ユニット3を支持した状態での連結部4の固有振動数がエンジン発電機ユニット3の駆動によって生じる加振周波数よりも低くなるように、複数の繊維が編み込まれた織物を含む連結部4により、エンジン発電機ユニット3の駆動によって生じた振動が、機体フレーム2に伝達されるのを抑制できる。 The engine-generator unit 3 is connected to the body frame 2, and the natural frequency of the connection part 4 in a state in which the engine-generator unit 3 is supported on the body frame 2 is vibration generated by driving the engine-generator unit 3. Vibration generated by driving the engine-generator unit 3 can be suppressed from being transmitted to the body frame 2 by the connecting portion 4 including a fabric in which a plurality of fibers are woven so as to be lower than the frequency.
 しかも、連結部4は、複数の繊維が編み込まれた織物を含むため、金属等によって連結部を構成する場合に比べて、設計自由度が高い連結部4の構成が得られるとともに、飛行体1を軽量化することができる。 Moreover, since the connecting portion 4 includes a fabric woven with a plurality of fibers, the connecting portion 4 can be configured with a higher degree of freedom in design than when the connecting portion is made of metal or the like. can be made lighter.
 したがって、上述の構成により、エンジン発電機ユニット3の駆動によって生じる振動を吸収可能で且つ軽量な飛行体1の構成を実現することができる。 Therefore, with the above-described configuration, it is possible to realize a configuration of the flying object 1 that is capable of absorbing vibrations generated by driving the engine-generator unit 3 and that is lightweight.
 また、本実施形態では、連結部4の少なくとも一部を構成する織物は、エンジン発電機ユニット3の振動の少なくとも一部が減衰されるように、複数の繊維同士が相対的に変位可能に編み込まれている。 Further, in the present embodiment, the woven fabric constituting at least part of the connecting part 4 is woven with a plurality of fibers so as to be relatively displaceable so that at least part of the vibration of the engine generator unit 3 is damped. is
 これにより、エンジン発電機ユニット3の駆動によって生じた振動を、エンジン発電機ユニット3の振動の少なくとも一部が減衰されるように複数の繊維同士が相対的に変位可能に編み込まれた織物を含む連結部4によって、効果的に減衰させることができる。しかも、前記繊維を含む連結部4を用いてエンジン発電機ユニット3を機体フレーム2に連結することにより、金属等によって連結部を構成する場合に比べて、飛行体1を軽量化することができる。 This includes a fabric in which a plurality of fibers are woven in such a manner that a plurality of fibers are relatively displaceable so that at least part of the vibration of the engine-generator unit 3 is attenuated at least part of the vibration generated by driving the engine-generator unit 3 . The coupling part 4 allows effective damping. Moreover, by connecting the engine-generator unit 3 to the airframe 2 using the connecting portion 4 containing the fiber, the weight of the aircraft 1 can be reduced as compared with the case where the connecting portion is made of metal or the like. .
 したがって、上述の構成により、エンジン発電機ユニットの駆動によって生じる振動を効果的に吸収可能で且つ軽量な飛行体の構成を実現することができる。 Therefore, with the above configuration, it is possible to realize a configuration of a lightweight flying object that can effectively absorb vibrations caused by driving the engine-generator unit.
 また、本実施形態では、飛行体1は、連結部4を少なくとも3つ有する。エンジン発電機ユニット3は、少なくとも3つの連結部4を介して機体フレーム2に連結されている。 In addition, in this embodiment, the aircraft 1 has at least three connecting parts 4 . The engine generator unit 3 is connected to the body frame 2 via at least three connecting portions 4 .
 これにより、それぞれ織物を含む少なくとも3つの連結部4によって、エンジン発電機ユニット3を機体フレーム2により安定した姿勢で連結できる。 Thereby, the engine-generator unit 3 can be connected in a more stable posture to the body frame 2 by means of at least three connecting portions 4 each including fabric.
 しかも、それぞれ織物を含む少なくとも3つの連結部4によって、エンジン発電機ユニット3の駆動によって生じる振動をより吸収できるとともに、金属等によって連結部4を構成する場合に比べて、飛行体1を軽量化することができる。 In addition, the at least three connecting portions 4, each of which is made of fabric, can absorb vibrations caused by the driving of the engine-generator unit 3, and the weight of the flying object 1 can be reduced as compared with the case where the connecting portions 4 are made of metal or the like. can do.
 したがって、上述の構成により、エンジン発電機ユニット3を機体フレーム2に対してより確実に連結しつつ、エンジン発電機ユニット3の駆動によって生じる振動をより効果的に吸収可能で且つ軽量な飛行体1の構成を実現することができる。 Therefore, with the above configuration, the engine-generator unit 3 can be more reliably connected to the airframe 2, and the vibration caused by the driving of the engine-generator unit 3 can be more effectively absorbed, and the aircraft 1 is lightweight. configuration can be realized.
 また、本実施形態では、複数の連結部4にそれぞれ含まれる織物は、母材が主に有機物によって構成されている繊維が編み込まれた織物を含む。 In addition, in the present embodiment, the woven fabric included in each of the plurality of connecting portions 4 includes a woven fabric in which fibers whose base material is mainly composed of an organic substance are woven.
 これにより、軽量で且つ高い強度を有する織物が得られる。よって、前記織物を含む連結部4によって、エンジン発電機ユニット3をフレームに対してより確実に連結することができる。 As a result, a woven fabric that is lightweight and has high strength can be obtained. Therefore, the engine-generator unit 3 can be more reliably connected to the frame by the connecting portion 4 including the fabric.
 しかも、母材が主に有機物によって構成されている繊維が編み込まれた織物を含む連結部4によって、エンジン発電機ユニット3の駆動によって生じる振動を吸収できるとともに、金属等によって連結部を構成する場合に比べて、飛行体1を軽量化することができる。 In addition, the connection portion 4 including the fabric woven with fibers whose base material is mainly composed of organic matter can absorb the vibration caused by the driving of the engine generator unit 3, and when the connection portion is made of metal or the like. The weight of the flying object 1 can be reduced as compared with .
 したがって、上述の構成により、エンジン発電機ユニット3を機体フレーム2に対してより確実に連結しつつ、エンジン発電機ユニット3の駆動によって生じる振動を吸収可能で且つ軽量な飛行体1の構成を実現することができる。 Therefore, with the above-described configuration, the engine-generator unit 3 can be more reliably connected to the fuselage frame 2, and the configuration of the aircraft 1 that is capable of absorbing vibrations generated by driving the engine-generator unit 3 and is lightweight is realized. can do.
 [実施形態2]
 図3は、実施形態2に係る飛行体101の概略構成を示す平面図である。図4は、実施形態2に係る飛行体101の概略構成を示す側面図である。実施形態2に係る飛行体101の構成は、機体フレーム102の構成、ロータ5の数等が実施形態1に係る飛行体1の構成と異なる。以下では、実施形態1と同様の構成については同一の符号を付して説明を省略し、実施形態1と異なる部分についてのみ説明する。
[Embodiment 2]
FIG. 3 is a plan view showing a schematic configuration of an aircraft 101 according to Embodiment 2. FIG. FIG. 4 is a side view showing a schematic configuration of an aircraft 101 according to Embodiment 2. FIG. The configuration of the aircraft 101 according to the second embodiment differs from the configuration of the aircraft 1 according to the first embodiment in the configuration of the body frame 102, the number of rotors 5, and the like. In the following, configurations similar to those of the first embodiment are denoted by the same reference numerals, descriptions thereof are omitted, and only portions different from the first embodiment are described.
 機体フレーム102は、フレーム本体部121と、複数のロータ支持部126とを有する。 The body frame 102 has a frame body portion 121 and a plurality of rotor support portions 126.
 フレーム本体部121は、環状の第1枠体122と、環状の第2枠体123と、第1枠体122と第2枠体123とを連結する複数の支柱124とを有する。第1枠体122及び第2枠体123は、平面視で六角形に形成されている。第1枠体122及び第2枠体123は、平面視で、それらの中心、各辺及び各頂点が互いに重複するように配置されている。第1枠体122及び第2枠体123は、対向する頂点同士が支柱124によってそれぞれ連結されている。このように、フレーム本体部121は、六角柱状に形成されている。本実施形態では、支柱124は、上下方向に延びている。 The frame main body 121 has a first annular frame 122 , a second annular frame 123 , and a plurality of struts 124 connecting the first frame 122 and the second frame 123 . The first frame 122 and the second frame 123 are hexagonal in plan view. The first frame 122 and the second frame 123 are arranged such that their centers, sides and vertices overlap each other in plan view. Opposing vertices of the first frame 122 and the second frame 123 are connected to each other by supports 124 . Thus, the frame body portion 121 is formed in a hexagonal prism shape. In this embodiment, the strut 124 extends vertically.
 ロータ支持部126は、ロータ5を支持する。ロータ支持部126は、6本の支持アーム127と6本のリブ部材128とを有する。各支持アーム127の基端部は、フレーム本体部121の第2枠体123の各頂点に連結されている。各支持アーム127は、第2枠体123の各頂点から放射状に延びるように配置されている。 The rotor support portion 126 supports the rotor 5. The rotor support portion 126 has six support arms 127 and six rib members 128 . A base end of each support arm 127 is connected to each vertex of the second frame 123 of the frame main body 121 . Each support arm 127 is arranged to radially extend from each vertex of the second frame 123 .
 各支持アーム127は、各リブ部材128を介してフレーム本体部121に支持されている。リブ部材128の先端部は、支持アーム127の長手方向中央部に連結されている。リブ部材128の基端部は、支持アーム127が連結されている第2枠体123の頂点と対向する第1枠体122の頂点に連結されている。なお、各支持アーム127は、リブ部材128を介してフレーム本体部121に支持されていなくてもよい。 Each support arm 127 is supported by the frame main body 121 via each rib member 128 . The tip of the rib member 128 is connected to the central portion of the support arm 127 in the longitudinal direction. The base end of the rib member 128 is connected to the vertex of the first frame 122 facing the vertex of the second frame 123 to which the support arm 127 is connected. Note that each support arm 127 does not have to be supported by the frame main body 121 via the rib member 128 .
 ロータ5は、ロータ支持部126における支持アーム127にそれぞれ設けられている。ロータ5は、電動モータ51と、プロペラ52と、電力変換装置53とを有する。電動モータ51は、支持アーム127においてリブ部材128が連結されている部分に設けられている。つまり、電動モータ51は、支持アーム127とリブ部材128とによって支持されている。 The rotors 5 are provided on the support arms 127 of the rotor support portion 126 respectively. The rotor 5 has an electric motor 51 , a propeller 52 and a power conversion device 53 . The electric motor 51 is provided at a portion of the support arm 127 to which the rib member 128 is connected. That is, the electric motor 51 is supported by the support arm 127 and the rib member 128 .
 ロータ5は、電動モータ51によってプロペラ52を回転させることにより、フレーム本体部121の支柱124の軸方向に揚力を発生させる。 By rotating the propeller 52 with the electric motor 51 , the rotor 5 generates lift in the axial direction of the strut 124 of the frame main body 121 .
 電力変換装置53は、支持アーム127に固定されている。本実施形態では、電力変換装置53は、プロペラ52のダウンウォッシュ(プロペラ52の回転時に下方向に吹き下ろす気流)が通過する位置に配置されている。これにより、電力変換装置53は、前記ダウンウォッシュにより冷却される。 The power conversion device 53 is fixed to the support arm 127. In this embodiment, the power conversion device 53 is arranged at a position through which the downwash of the propeller 52 (the air current that blows downward when the propeller 52 rotates) passes. Thereby, the power conversion device 53 is cooled by the downwash.
 飛行体制御装置6は、飛行体制御装置支持部107によって支持されている。飛行体制御装置支持部107は、4本の支持脚171と、取付板172とを有する。4本の支持脚171は、それぞれ、フレーム本体部121の第1枠体122の頂点に接続されている。また、4本の支持脚171は、トラス構造を構成するように、隣り合う支持脚171または第1枠体122に接続されている。これにより、飛行体制御装置支持部107は、飛行体制御装置6に伝達される振動を抑制可能な支持剛性を有する。 The flying object control device 6 is supported by the flying object control device support section 107 . The aircraft control device support section 107 has four support legs 171 and a mounting plate 172 . Each of the four support legs 171 is connected to the apex of the first frame 122 of the frame main body 121 . Also, the four support legs 171 are connected to the adjacent support legs 171 or the first frame 122 so as to form a truss structure. As a result, the flying object control device support section 107 has a support rigidity capable of suppressing vibrations transmitted to the flying object control device 6 .
 なお、飛行体制御装置支持部の構成は、上述の構成に限らず、飛行体制御装置6に伝達される振動を抑制可能に、飛行体制御装置6を支持できる構成であれば、どのような構成であってもよい。すなわち、飛行体制御装置支持部は、3本以下または5本以上の支持脚を有していてもよいし、トラス構造を有していなくてもよい。また、飛行体制御装置支持部は、板状部材及び網状部材などを有していてもよい。 The configuration of the aircraft control device support section is not limited to the configuration described above, and any configuration that can support the aircraft control device 6 so as to suppress vibration transmitted to the aircraft control device 6 can be used. It may be a configuration. That is, the aircraft control device support section may have three or less or five or more support legs, and may not have a truss structure. Further, the aircraft control device support section may have a plate-like member, a net-like member, and the like.
 取付板172は、長方形の板状部材であり、4本の支持脚171によって支持されている。取付板172には、飛行体制御装置6が固定されている。取付板172は、飛行体1の平面視で、フレーム本体部121の中心に位置する。 The mounting plate 172 is a rectangular plate-like member and supported by four support legs 171 . The aircraft control device 6 is fixed to the mounting plate 172 . The mounting plate 172 is positioned at the center of the frame main body 121 in plan view of the aircraft 1 .
 本実施形態の構成においても、複数の連結部4は、それぞれ、機体フレーム102に対してエンジン発電機ユニット3を支持した状態での連結部4の固有振動数がエンジン発電機ユニット3の駆動によって生じる加振周波数よりも低くなるように、複数の繊維が編み込まれた織物を含む。 Also in the configuration of this embodiment, each of the plurality of connecting portions 4 is configured such that the natural frequency of the connecting portions 4 when the engine-generator unit 3 is supported on the body frame 102 is driven by the engine-generator unit 3 . It contains a fabric in which a plurality of fibers are woven so that it is lower than the excitation frequency that occurs.
 これにより、エンジン発電機ユニット3の駆動によって生じる振動を吸収可能で且つ軽量な飛行体101の構成を実現することができる。 As a result, it is possible to realize a configuration of the flying object 101 that is capable of absorbing vibrations generated by driving the engine generator unit 3 and that is lightweight.
 また、本実施形態の構成においても、実施形態1と同様、飛行体101の飛行中において、連結部4は、エンジン発電機ユニット接続部41とフレーム接続部42との最短距離Lが、エンジン発電機ユニット接続部41とフレーム接続部42との水平方向の距離Dよりも大きくなるように、フレーム本体部121に対してエンジン発電機ユニット3を支持している。 Also in the configuration of the present embodiment, as in the first embodiment, during the flight of the aircraft 101, the shortest distance L between the engine-generator unit connection portion 41 and the frame connection portion 42 of the connecting portion 4 is The engine-generator unit 3 is supported with respect to the frame main body 121 so as to be larger than the horizontal distance D between the machine unit connecting portion 41 and the frame connecting portion 42 .
 また、本実施形態の構成においても、実施形態1と同様、飛行体101の飛行中において、エンジン発電機ユニット3は、エンジン発電機ユニット接続部41がフレーム接続部42よりも下に位置するように、織物を含む連結部4によって機体フレーム102に連結されている。 Also in the configuration of the present embodiment, as in the first embodiment, the engine-generator unit 3 is configured so that the engine-generator unit connecting portion 41 is positioned below the frame connecting portion 42 during flight of the aircraft 101 . In addition, it is connected to the body frame 102 by the connection part 4 containing fabric.
 [その他の実施形態]
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
[Other embodiments]
Although the embodiments of the present invention have been described above, the above-described embodiments are merely examples for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit of the present invention.
 前記実施形態1では、飛行体1は、4つのロータ5を有する。しかしながら、飛行体は、3つ以下のロータを有していてもよいし、5つ以上のロータを有していてもよい。前記実施形態2では、飛行体101は、6つのロータ5を有する。しかしながら、飛行体は、5つ以下のロータを有していてもよいし、7つ以上のロータを有していてもよい。 In Embodiment 1, the flying object 1 has four rotors 5 . However, the aircraft may have three or fewer rotors, or five or more rotors. In Embodiment 2, the flying object 101 has six rotors 5 . However, the aircraft may have less than 5 rotors or more than 7 rotors.
 前記各実施形態に係る飛行体1,101は、エンジン発電機ユニット3の下部に着地用の接地部を有してもよい。これにより、飛行体1,101が着地している際に、機体フレーム2,102のフレーム本体部21,121に連結部4によって支持されたエンジン発電機ユニット3が、地面等に接触するのを防止できる。 The aircraft 1 and 101 according to each of the above embodiments may have a grounding portion for landing under the engine generator unit 3 . This prevents the engine-generator unit 3, which is supported by the connection part 4 on the frame body parts 21, 121 of the body frames 2, 102, from coming into contact with the ground or the like when the aircraft 1, 101 is on the ground. can be prevented.
 以下で、実施形態1の飛行体1のエンジン発電機ユニット3に接地部208を設けた場合を、図5を用いて説明する。なお、図5において、実施形態1の飛行体1と同様の構成には同一の符号を付している。 A case in which the grounding portion 208 is provided in the engine generator unit 3 of the aircraft 1 of Embodiment 1 will be described below with reference to FIG. In addition, in FIG. 5, the same code|symbol is attached|subjected to the structure similar to the aircraft 1 of Embodiment 1. As shown in FIG.
 図5に示すように、エンジン発電機ユニット3の下部には、接地部208が固定されている。これにより、飛行体201が飛行していないときには、接地部208が地面等に接触している。よって、エンジン発電機ユニット3が、地面等に直接接触することを防止できる。 As shown in FIG. 5 , a grounding portion 208 is fixed to the lower portion of the engine generator unit 3 . Accordingly, when the flying object 201 is not in flight, the grounding portion 208 is in contact with the ground or the like. Therefore, the engine generator unit 3 can be prevented from coming into direct contact with the ground or the like.
 しかも、エンジン発電機ユニット3は、機体フレーム2に対して、織物を含む連結部4によって連結されている。よって、飛行体1の着陸時に機体フレーム2が地面に対して斜めに傾いた状態で接地したり、飛行体201が不整地に着地したりする場合でも、連結部4の撓みによって、エンジン発電機ユニット3全体の荷重が接地部208に加わる前に接地部208の複数箇所を接地させることができる。これにより、接地部208に対する局所的な衝撃の入力が緩和される。したがって、上述のように連結部4によってエンジン発電機ユニット3と機体フレーム2とを連結することにより、接地部208の破損及び機体フレーム2の破損を軽減しつつ、飛行体201を軽量化することができる。 Moreover, the engine-generator unit 3 is connected to the body frame 2 by the connection part 4 including the fabric. Therefore, even if the airframe 2 lands at an angle to the ground when the flying object 1 lands or if the flying object 201 lands on an uneven ground, the bending of the connecting portion 4 will cause the engine generator to operate. Multiple locations of the grounding portion 208 can be grounded before the load of the entire unit 3 is applied to the grounding portion 208 . As a result, the local impact input to the ground portion 208 is mitigated. Therefore, by connecting the engine-generator unit 3 and the body frame 2 with the connecting part 4 as described above, the weight of the aircraft 201 can be reduced while reducing damage to the grounding part 208 and damage to the body frame 2. can be done.
 なお、図5に示す飛行体201の機体フレーム2には、機体フレーム2を地面等に対して支持するための図示しない接地部が設けられている。接地部208は、ペイロード支持部として機能してもよい。エンジン発電機ユニット3の下部に、接地部208とは別にペイロード支持部が設けられていてもよい。飛行体201は、接地部208とは別にペイロード支持部を有していてもよい。 In addition, the body frame 2 of the aircraft 201 shown in FIG. 5 is provided with a grounding portion (not shown) for supporting the body frame 2 on the ground or the like. Ground portion 208 may function as a payload support. A payload support section may be provided at the bottom of the engine generator unit 3 separately from the ground section 208 . Air vehicle 201 may have a payload support section separate from ground section 208 .
 エンジン発電機ユニット3の下部にペイロード支持部が設けられている場合には、機体フレーム2の軽量化を実現できるとともに、ペイロード支持部によって積載物を支持する場合には飛行体201の重心に近い位置で前記積載物を支持することができる。これにより、マスの集中化による飛行体201の運動性能向上を図れる。 When the payload support section is provided in the lower part of the engine generator unit 3, the weight of the fuselage frame 2 can be reduced. A position can support the load. As a result, the movement performance of the flying object 201 can be improved by centralizing the mass.
 接地部208の形状は、エンジン発電機ユニット3を地面等に対して支持可能な形状であれば、どのような形状であってもよい。 The ground part 208 may have any shape as long as it can support the engine generator unit 3 on the ground or the like.
 実施形態2の飛行体101のエンジン発電機ユニット3に接地部308を設けた場合を、図6を用いて説明する。なお、図6において、実施形態2の飛行体101と同様の構成には同一の符号を付している。 A case where the engine generator unit 3 of the aircraft 101 of Embodiment 2 is provided with the grounding portion 308 will be described with reference to FIG. In addition, in FIG. 6, the same code|symbol is attached|subjected to the structure similar to the flying object 101 of Embodiment 2. As shown in FIG.
 図6に示すように、エンジン発電機ユニット3の下部には、接地部308が固定されている。これにより、飛行体301が着陸している際には、接地部308が接地している。よって、エンジン発電機ユニット3が接地することを防止できる。接地部308が接地した後、複数の繊維が織り込まれた織物を含む連結部4は撓むため、フレーム本体部121の下部に位置するフレーム接地部309が接地する。よって、フレーム接地部309により、機体フレーム102を地面等に対して支持することができる。なお、飛行体301の飛行中では、接地部308の下端部は、フレーム接地部309の下端部よりも下に位置する。 As shown in FIG. 6, a grounding portion 308 is fixed to the lower portion of the engine generator unit 3 . As a result, the grounding portion 308 is grounded when the aircraft 301 is landing. Therefore, it is possible to prevent the engine generator unit 3 from being grounded. After the grounding portion 308 is grounded, the connecting portion 4 including the fabric in which a plurality of fibers are woven is bent, so that the frame grounding portion 309 positioned below the frame body portion 121 is grounded. Therefore, the body frame 102 can be supported on the ground or the like by the frame contact portion 309 . Note that the lower end of the ground contact portion 308 is positioned below the lower end of the frame contact portion 309 during flight of the aircraft 301 .
 エンジン発電機ユニット3は、機体フレーム2に対して、織物を含む連結部4によって連結されているため、図5に示す構成と同様、接地部308の破損及び機体フレーム102の破損を軽減しつつ、飛行体301を軽量化することができる。しかも、上述のように接地部308の接地によって連結部4が撓んでいる場合、フレーム本体部121のフレーム接地部309も接地する。よって、接地部308を簡素で軽量な構成にすることも可能である。 Since the engine-generator unit 3 is connected to the machine body frame 2 by the connecting part 4 including the fabric, like the configuration shown in FIG. , the weight of the aircraft 301 can be reduced. Moreover, when the connection portion 4 is bent due to the grounding of the grounding portion 308 as described above, the frame grounding portion 309 of the frame body portion 121 is also grounded. Therefore, it is possible to make the ground portion 308 simple and lightweight.
 なお、接地部308は、ペイロード支持部として機能してもよい。エンジン発電機ユニット3の下部に、接地部308とは別にペイロード支持部が設けられていてもよい。飛行体301は、接地部308とは別にペイロード支持部を有していてもよい。 Note that the ground portion 308 may function as a payload support portion. A payload support section may be provided at the bottom of the engine generator unit 3 separately from the ground section 308 . Air vehicle 301 may have a payload support section separate from ground section 308 .
 エンジン発電機ユニット3の下部にペイロード支持部が設けられている場合には、機体フレーム102の軽量化を実現できるとともに、ペイロード支持部によって積載物を支持する場合には飛行体301の重心に近い位置で前記積載物を支持することができる。これにより、マスの集中化による飛行体301の運動性能向上を図れる。 When the payload support is provided in the lower part of the engine generator unit 3, the weight of the fuselage frame 102 can be reduced. A position can support the load. As a result, the movement performance of the flying object 301 can be improved by centralizing the mass.
 前記各実施形態では、エンジン発電機ユニット3は、機体フレーム2,102のフレーム本体部21,121に対して4つの連結部4によって支持されている。しかしながら、エンジン発電機ユニットは、フレーム本体部に対して3つ以下または5つ以上の連結部によって支持されていてもよい。 In each of the above-described embodiments, the engine generator unit 3 is supported by the four connecting portions 4 with respect to the frame body portions 21 and 121 of the body frames 2 and 102 . However, the engine-generator unit may be supported by three or less or five or more connections to the frame body.
 また、複数の連結部は、飛行体の平面視で、互いに平行に配置されていてもよいし、互いに交差するように配置されていてもよい。例えば、複数の連結部は、飛行体の平面視で、たすき掛けのように配置されていてもよい。 In addition, the plurality of connecting parts may be arranged parallel to each other or may be arranged so as to intersect with each other in a plan view of the aircraft. For example, the plurality of connecting parts may be arranged like crossing when the aircraft is viewed from above.
 図7に、飛行体401の平面視で、複数の連結部4をたすき掛けのように配置した場合の飛行体401の概略構成を示す。図7において、実施形態1と同様の構成については、同一の符号を付して以下の説明を省略する。なお、図7では、説明のために、飛行体制御装置及び飛行体制御装置支持部の図示を省略している。 FIG. 7 shows a schematic configuration of the flying object 401 when a plurality of connecting parts 4 are arranged like crossing in plan view of the flying object 401 . In FIG. 7, the same reference numerals are assigned to the same configurations as in the first embodiment, and the following description is omitted. In addition, in FIG. 7, illustration of the aircraft control device and the aircraft control device support section is omitted for explanation.
 図7に示すように、飛行体401は、例えば12本の連結部4を有する。12本の連結部4は、一対の連結部4を6組、含む。一対の連結部4における一方の端部は、フレーム本体部21に対して周方向の同じ位置に接続されている。一対の連結部4は、飛行体401の平面視で、一方の端部から他方の端部に向かって間隔が広がるように配置されている。一対の連結部4における他方の端部は、他の一対の連結部4のうち一方の連結部4と上下方向に重なりつつ、エンジン発電機ユニット3に接続されている。これにより、複数の連結部4は、2つの連結部4の一部が厚み方向に重なった状態で、フレーム本体部21に対してエンジン発電機ユニット3を支持している。 As shown in FIG. 7, the flying object 401 has, for example, 12 connecting parts 4. The twelve connecting portions 4 include six pairs of connecting portions 4 . One end of the pair of connecting portions 4 is connected to the frame body portion 21 at the same position in the circumferential direction. The pair of connecting parts 4 are arranged so that the distance between them widens from one end to the other end in a plan view of the flying object 401 . The other end of the pair of connecting portions 4 is connected to the engine-generator unit 3 while vertically overlapping one of the other pair of connecting portions 4 . As a result, the plurality of connecting portions 4 support the engine-generator unit 3 with respect to the frame main body portion 21 in a state in which two connecting portions 4 partially overlap each other in the thickness direction.
 このように連結部4が厚み方向に重なることによって、エンジン発電機ユニット3の駆動によって生じる振動を減衰する効果が得られる。これにより、エンジン発電機ユニット3の駆動によって生じた振動が機体フレーム2に伝達するのをより確実に抑制することができる。 By overlapping the connecting portions 4 in the thickness direction in this way, it is possible to obtain the effect of damping the vibration caused by the driving of the engine generator unit 3 . As a result, it is possible to more reliably suppress transmission of vibrations generated by driving the engine-generator unit 3 to the body frame 2 .
 なお、上述のような連結部4のたすき掛けの構成は、実施形態2の飛行体101などのように他の構成を有する飛行体に対して適用してもよい。 It should be noted that the configuration of crossing the connecting portion 4 as described above may be applied to a flying object having another configuration such as the flying object 101 of the second embodiment.
 また、上述のように連結部4が厚み方向に重なる部分に、他の減衰機構を設けてもよい。例えば、連結部4が厚み方向に重なる部分に、摩擦係数及び減衰係数が大きい材料(例えばゴム等)によって構成された接触部を設けてもよい。なお、減衰機構は、連結部4が厚み方向に重ならない部分に設けてもよい。また、減衰機構は、連結部4の一部が厚み方向に重ならない構成において、連結部4に設けてもよい。 Further, another damping mechanism may be provided in the portion where the connecting portion 4 overlaps in the thickness direction as described above. For example, a contact portion made of a material having a large coefficient of friction and damping (such as rubber) may be provided in the portion where the connecting portion 4 overlaps in the thickness direction. The damping mechanism may be provided in a portion where the connecting portion 4 does not overlap in the thickness direction. Further, the damping mechanism may be provided in the connecting portion 4 in a configuration in which a portion of the connecting portion 4 does not overlap in the thickness direction.
 前記各実施形態では、連結部4は、複数の繊維が編み込まれた織物であり、例えば帯状のベルトである。しかしながら、連結部は、織物であれば、ひも状、ロープ状などであってもよい。また、複数の連結部のうち少なくとも一部の連結部は、飛行体の平面視で、繊維の延びる方向が同じであってもよい。前記繊維は、母材が主に有機物以外の材料によって構成されていてもよい。前記繊維は、母材に有機物以外の材料を含んでいてもよい。 In each of the above-described embodiments, the connecting portion 4 is a woven fabric in which a plurality of fibers are woven, and is, for example, a strip-shaped belt. However, the connecting portion may be in the form of a string, a rope, or the like, as long as it is a woven fabric. In addition, at least some of the plurality of connecting portions may have the same direction in which the fibers extend in a plan view of the aircraft. A base material of the fiber may be mainly composed of a material other than an organic substance. The fiber may contain a material other than an organic substance in the base material.
 前記各実施形態では、エンジン発電機ユニット3は、飛行体1,101の飛行中において、エンジン発電機ユニット接続部41とフレーム接続部42との最短距離Lが、エンジン発電機ユニット接続部41とフレーム接続部42との水平方向の距離Dよりも大きくなるように、織物を含む連結部4によって機体フレーム2に連結されている。しかしながら、エンジン発電機ユニットは、飛行体の飛行中において、エンジン発電機ユニット接続部とフレーム接続部との最短距離が、エンジン発電機ユニット接続部とフレーム接続部との水平方向の距離と同じになるように、連結部によって機体フレームに連結されていてもよい。エンジン発電機ユニットは、連結部によって機体フレームにどのような姿勢で支持されていてもよい。連結部によって機体フレームに対してエンジン発電機ユニットを支持可能であれば、前記連結部が延びる方向も、前記各実施形態において連結部が延びる方向に限定されない。 In each of the above-described embodiments, the engine-generator unit 3 has the shortest distance L between the engine-generator unit connection portion 41 and the frame connection portion 42 during flight of the aircraft 1, 101. It is connected to the fuselage frame 2 by the connection part 4 including the fabric so that the distance D in the horizontal direction to the frame connection part 42 is larger. However, in the engine-generator unit, the shortest distance between the engine-generator unit connection and the frame connection is the same as the horizontal distance between the engine-generator unit connection and the frame connection during flight of the aircraft. It may be connected to the body frame by a connecting part so as to be. The engine-generator unit may be supported in any posture on the body frame by the connecting portion. As long as the connecting portion can support the engine generator unit with respect to the body frame, the extending direction of the connecting portion is not limited to the extending direction of the connecting portion in each of the above-described embodiments.
 前記各実施形態では、エンジン発電機ユニット3は、飛行体1,101の飛行中において、エンジン発電機ユニット接続部41が、フレーム接続部42よりも下に位置するように、織物を含む連結部4によって機体フレーム2,102に連結されている。しかしながら、エンジン発電機ユニットは、飛行体の飛行中において、エンジン発電機ユニット接続部が、フレーム接続部と同じ高さかフレーム接続部よりも上に位置するように、連結部によって機体フレームに連結されていてもよい。 In each of the above-described embodiments, the engine-generator unit 3 has a connection portion including fabric so that the engine-generator unit connection portion 41 is positioned below the frame connection portion 42 during flight of the aircraft 1, 101. 4 to the fuselage frame 2,102. However, the engine-generator unit is coupled to the airframe by a coupling such that the engine-generator unit connection is at or above the frame connection during flight of the aircraft. may be
 前記実施形態2では、フレーム本体部121は、複数の第1枠体122と複数の第2枠体123と複数の支柱124とによって六角柱状に形成されている。しかしながら、フレーム本体部は、円柱状、他の多角柱状、球状などの他の形状であってもよい。フレーム本体部の少なくとも一部は、板状部材によって構成されていてもよい。 In the second embodiment, the frame main body 121 is formed in a hexagonal prism shape by a plurality of first frame bodies 122, a plurality of second frame bodies 123, and a plurality of struts 124. However, the frame main body may have other shapes such as a columnar shape, other polygonal columnar shapes, and a spherical shape. At least part of the frame main body may be configured by a plate-like member.
1、101、201、301、401 飛行体
2、102 機体フレーム(フレーム)
3 エンジン発電機ユニット
4 連結部
5 ロータ
6 飛行体制御装置
7、107 飛行体制御装置支持部
21、121 フレーム本体部
26、126 ロータ支持部
31 発電機
32 発電用エンジン
41 エンジン発電機ユニット接続部
42 フレーム接続部
51 電動モータ
52 プロペラ
53 電力変換装置
71、171 支持脚
72、172 取付板
122 第1枠体
123 第2枠体
124 支柱
127 支持アーム
128 リブ部材
208、308 接地部
309 フレーム接地部
1, 101, 201, 301, 401 Aircraft 2, 102 Airframe frame (frame)
3 Engine Generator Unit 4 Connection Portion 5 Rotor 6 Airplane Control Device 7, 107 Airplane Control Device Supporting Portion 21, 121 Frame Body Portion 26, 126 Rotor Supporting Portion 31 Generator 32 Power Generation Engine 41 Engine Generator Unit Connecting Portion 42 Frame connection part 51 Electric motor 52 Propeller 53 Power conversion device 71, 171 Support legs 72, 172 Mounting plate 122 First frame 123 Second frame 124 Strut 127 Support arm 128 Rib members 208, 308 Ground part 309 Frame ground part

Claims (7)

  1.  電動モータ及び前記電動モータによって回転駆動されるプロペラを含み、揚力を発生する複数のロータと、
     前記複数のロータにおける前記電動モータにそれぞれ供給する電力を発生するエンジン発電機ユニットと、
     前記複数のロータ及び前記エンジン発電機ユニットを支持するフレームと、
     前記エンジン発電機ユニットと前記フレームとを連結する複数の連結部と、
    を備えた飛行体であって、
     前記複数の連結部は、それぞれ、
      前記フレームに対して前記エンジン発電機ユニットを支持した状態での前記連結部の固有振動数が前記エンジン発電機ユニットの駆動によって生じる振動の周波数よりも低くなるように、複数の繊維が編み込まれた織物を含む、飛行体。
    a plurality of rotors that generate lift, including an electric motor and a propeller that is rotationally driven by the electric motor;
    an engine generator unit that generates electric power to be supplied to the electric motors of the plurality of rotors;
    a frame that supports the plurality of rotors and the engine-generator unit;
    a plurality of connecting portions that connect the engine generator unit and the frame;
    An aircraft comprising
    Each of the plurality of connecting parts is
    A plurality of fibers are woven so that the natural frequency of the connecting portion when the engine-generator unit is supported on the frame is lower than the frequency of vibration caused by driving the engine-generator unit. Aircraft, including textiles.
  2.  請求項1に記載の飛行体において、
     前記織物は、
     前記エンジン発電機ユニットの振動の少なくとも一部が減衰されるように、前記複数の繊維同士が相対的に変位可能に編み込まれている、飛行体。
    In the aircraft according to claim 1,
    The woven fabric is
    An aircraft, wherein the plurality of fibers are woven so as to be relatively displaceable so that at least part of vibration of the engine-generator unit is damped.
  3.  請求項1または2に記載の飛行体において、
     前記連結部を少なくとも3つ有し、
     前記エンジン発電機ユニットは、少なくとも3つの前記連結部を介して前記フレームに連結されている、飛行体。
    In the aircraft according to claim 1 or 2,
    having at least three connecting portions;
    The flying object, wherein the engine-generator unit is connected to the frame via at least three of the connecting portions.
  4.  請求項1から3のいずれか一つに記載の飛行体において、
     前記複数の連結部のうち少なくとも一部の連結部は、前記飛行体の平面視で繊維の延びる方向が異なる織物を含み、
     前記エンジン発電機ユニットは、前記飛行体の平面視で繊維の延びる方向が異なる織物を含む前記少なくとも一部の連結部を介してフレームに連結されている、飛行体。
    In the aircraft according to any one of claims 1 to 3,
    at least some of the plurality of connecting portions include a woven fabric having fibers extending in different directions in a plan view of the flying object;
    The engine-generator unit is connected to the frame via the at least one connecting portion including a fabric having fibers extending in different directions in a plan view of the flying object.
  5.  請求項1から4のいずれか一つに記載の飛行体において、
     前記複数の連結部にそれぞれ含まれる前記織物は、母材が主に有機物によって構成されている繊維が編み込まれた織物を含む、飛行体。
    In the aircraft according to any one of claims 1 to 4,
    The aircraft according to claim 1, wherein the woven fabric included in each of the plurality of connecting portions includes a woven fabric woven with fibers whose base material is mainly composed of an organic substance.
  6.  請求項1から5のいずれか一つに記載の飛行体において、
     前記エンジン発電機ユニットは、
      前記飛行体の飛行中において、前記エンジン発電機ユニットと前記連結部との接続部であるエンジン発電機ユニット接続部と、前記連結部と前記フレームとの接続部であるフレーム接続部との最短距離が、前記エンジン発電機ユニット接続部と前記フレーム接続部との水平方向の距離よりも大きくなるように、前記織物を含む前記連結部によって前記フレームに連結されている、飛行体。
    In the aircraft according to any one of claims 1 to 5,
    The engine generator unit includes:
    The shortest distance between the engine-generator unit connecting portion, which is the connecting portion between the engine-generator unit and the connecting portion, and the frame connecting portion, which is the connecting portion between the connecting portion and the frame, during the flight of the aircraft. is connected to the frame by the connecting portion including the fabric such that the horizontal distance between the engine generator unit connecting portion and the frame connecting portion is greater than the horizontal distance.
  7.  請求項1から6のいずれか一つに記載の飛行体において、
     前記エンジン発電機ユニットは、
      前記飛行体の飛行中において、前記エンジン発電機ユニットと前記連結部との接続部であるエンジン発電機ユニット接続部が、前記連結部と前記フレームとの接続部であるフレーム接続部よりも下に位置するように、前記織物を含む前記連結部によって前記フレームに連結されている、飛行体。
    In the aircraft according to any one of claims 1 to 6,
    The engine generator unit includes:
    During flight of the aircraft, the engine-generator unit connection portion, which is the connection portion between the engine-generator unit and the connection portion, is positioned below the frame connection portion, which is the connection portion between the connection portion and the frame. an air vehicle connected to said frame by said connecting portion including said fabric so as to be in position.
PCT/JP2021/015968 2021-04-20 2021-04-20 Aircraft WO2022224331A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021576080A JP7081060B1 (en) 2021-04-20 2021-04-20 Flying object
PCT/JP2021/015968 WO2022224331A1 (en) 2021-04-20 2021-04-20 Aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015968 WO2022224331A1 (en) 2021-04-20 2021-04-20 Aircraft

Publications (1)

Publication Number Publication Date
WO2022224331A1 true WO2022224331A1 (en) 2022-10-27

Family

ID=81892210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015968 WO2022224331A1 (en) 2021-04-20 2021-04-20 Aircraft

Country Status (2)

Country Link
JP (1) JP7081060B1 (en)
WO (1) WO2022224331A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101876346B1 (en) * 2018-01-24 2018-07-10 (주) 에이티디랩 Unmanned air vehicle
US20190256218A1 (en) * 2018-02-17 2019-08-22 Juan Manuel CORREA HAMILL Transmission system for aircraft structure
CN210133292U (en) * 2018-12-18 2020-03-10 广州市华科尔科技股份有限公司 Plant protection unmanned aerial vehicle's damper assembly
JP2020100387A (en) * 2018-12-21 2020-07-02 株式会社プロドローン Unmanned aircraft
JP2020183210A (en) * 2019-05-09 2020-11-12 愛三工業株式会社 Multicopter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10899461B2 (en) * 2017-01-10 2021-01-26 Aurora Flight Sciences Corporation Vertical lift by series hybrid-propulsion
JP7229874B2 (en) * 2019-02-07 2023-02-28 愛三工業株式会社 multicopter
CN211893633U (en) * 2020-03-05 2020-11-10 无锡智上新材料科技有限公司 Carbon fiber unmanned aerial vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101876346B1 (en) * 2018-01-24 2018-07-10 (주) 에이티디랩 Unmanned air vehicle
US20190256218A1 (en) * 2018-02-17 2019-08-22 Juan Manuel CORREA HAMILL Transmission system for aircraft structure
CN210133292U (en) * 2018-12-18 2020-03-10 广州市华科尔科技股份有限公司 Plant protection unmanned aerial vehicle's damper assembly
JP2020100387A (en) * 2018-12-21 2020-07-02 株式会社プロドローン Unmanned aircraft
JP2020183210A (en) * 2019-05-09 2020-11-12 愛三工業株式会社 Multicopter

Also Published As

Publication number Publication date
JP7081060B1 (en) 2022-06-06
JPWO2022224331A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
US20180038439A1 (en) Rotorcraft vibration suppression system in a four corner pylon mount configuration
CN102245472B (en) System for attaching two components together, such as aircraft engine and mounting pylon thereof
KR101389124B1 (en) An aircraft provided with a device for reducing vibration, and a method therefor
US9279471B2 (en) Mechanically optimized liquid inertia vibration eliminator and aircraft pylon system
CN106379532B (en) A kind of change of flapping wing is fluttered angle changing mechanism
US5190244A (en) Antiresonant suspension device for a helicopter
WO2011073659A1 (en) Resonance engine
US3845917A (en) Helicopter vibration isolation
US20130105621A1 (en) Pylon mounting system with vibration isolation
CN104229135A (en) Rotor system of a rotary wing aircraft
WO2022224331A1 (en) Aircraft
EP3712062B1 (en) Vibration attenuation system for electric and hybrid electric vehicles
US20110147512A1 (en) Rotor carrier structure, a flying machine provided with such a carrier structure, and a method of avoiding unstable coupling between resonant vibration modes
CN207191481U (en) A kind of unmanned plane is tethered at test platform
EP3421353A1 (en) Damping structures for tiltrotor aircraft wings
CN106051034B (en) A kind of electric power reconnoitres flying robot and stops charging equipment vibration-damped table
CN107672780A (en) A kind of load configuration structure of the dynamic unmanned plane of oil
CN109996727A (en) Compound applied to aircraft of fluttering its wings up and down is fluttered its wings up and down and comprising the compound machine of fluttering its wings up and down fluttered its wings up and down
US10597150B2 (en) Articulated rotor systems with blade-to-blade damping
CN113335493A (en) Six-rod tensioning integral frame and impact-resistant unmanned aerial vehicle
WO2023100259A1 (en) Flight vehicle
KR101683155B1 (en) Vibration conversion device
GB2209832A (en) Gyroscopic propulsion and levitation
CN109484637A (en) A kind of rotor pulp distance varying mechanism of the dynamic unmanned plane of improved oil
CN109484655A (en) A kind of engine vibration-damping structure of the dynamic unmanned plane of oil

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021576080

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937829

Country of ref document: EP

Kind code of ref document: A1