WO2022222928A1 - Ar镜架和ar眼镜 - Google Patents

Ar镜架和ar眼镜 Download PDF

Info

Publication number
WO2022222928A1
WO2022222928A1 PCT/CN2022/087729 CN2022087729W WO2022222928A1 WO 2022222928 A1 WO2022222928 A1 WO 2022222928A1 CN 2022087729 W CN2022087729 W CN 2022087729W WO 2022222928 A1 WO2022222928 A1 WO 2022222928A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical waveguide
grating
coupling
frame
Prior art date
Application number
PCT/CN2022/087729
Other languages
English (en)
French (fr)
Inventor
邓焯泳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022222928A1 publication Critical patent/WO2022222928A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present application relates to the technical field of wearable devices, in particular to AR frames and AR glasses.
  • AR glasses realize the display function through the optical waveguide solution, but at present, the grating area of the optical waveguide will not only block the real environment, but also have rainbow patterns, which hinder the user from observing the real environment and affect the user's daily activities, so it is difficult to wear for a long time.
  • the present application discloses an AR frame and AR glasses.
  • AR glasses can enable users to observe virtual images and real scenes at the same time.
  • the optical waveguide sheet is arranged on the upper frame of the frame to avoid the interference of the optical waveguide sheet to the real scene.
  • the AR glasses will not affect the daily life. Activities, can be worn for a long time.
  • the present application provides an AR mirror frame, including a light-emitting component for emitting display light; a mirror frame with an installation space for installing a lens, the mirror frame including an upper frame located above the installation space; and an optical waveguide sheet, fixed On the upper frame, the optical waveguide sheet is used to receive the display light and form the outgoing light.
  • the outgoing light is directed to the inner side of the installation space and deflected downward, so as to avoid blocking the user's field of vision when observing the real scene, and prevent rainbow patterns appearing in the field of view.
  • causes interference so that the user does not affect daily activities when wearing the electronic device, which is beneficial to the use of the electronic device in daily scenes.
  • the optical waveguide sheet includes a substrate and a coupling-in grating and an out-coupling grating fixed on the substrate, the coupling-in grating and the coupling-out grating are respectively located at two ends of the optical waveguide sheet, and the coupling-in grating is used for receiving.
  • the coupling-out grating is used to emit outgoing light, and the outgoing light forms an included angle with the third direction, and the third direction is the direction perpendicular to the lens.
  • the coupling grating may be disposed on the inner side of the substrate, and the extending direction may be parallel to the second direction, for receiving display light and changing the propagation direction of the light to form incident light.
  • the incident angle of the incident light is greater than the total reflection angle of the substrate, so that the incident light can be totally reflected when it encounters the surface of the substrate.
  • the coupling-in grating can use a surface relief grating, a holographic volume grating, or the like.
  • the substrate extends along the first direction, the second direction is perpendicular to the first direction, and the third direction is perpendicular to the direction of the lens, that is, the third direction is parallel to the optical axis direction of the lens.
  • the out-coupling grating and the in-coupling grating can be arranged on the same side of the substrate, that is, the out-coupling grating can also be arranged on the inner side of the substrate.
  • the out-coupling grating can also be arranged on the inner side of the substrate.
  • surface relief gratings, holographic volume gratings, etc. can also be used as the coupling-out grating.
  • the angle formed between the outgoing light and the third direction is greater than 10°.
  • the included angle may be the included angle between the center line of the field of view of the outgoing light and the third direction.
  • the included angle may be greater than 10°, for example, the included angle may be in the range of 20° to 40°. The larger the included angle is, the larger the range of the field of view of the outgoing light in the second direction is, and the size of the included angle can be adjusted as required, which is not limited in this embodiment.
  • the multiple out-coupling gratings include a first out-coupling grating and a second out-coupling grating arranged in layers, the second out-coupling grating is located on the side of the first out-coupling grating facing away from the substrate, and the first There is an included angle between the coupling-out grating and the second coupling-out grating, and the substrate extends along the first direction.
  • the first outcoupling grating may be disposed on the surface of the substrate to emit light and expand the range of the field of view of the emitted light in the first direction.
  • a first included angle exists between the first outcoupling grating and the second direction, the first included angle is less than 45°, and the second direction is perpendicular to the first direction.
  • the incident light propagating in the substrate encounters the first outcoupling grating on the surface of the substrate, part of the light is emitted from the optical waveguide sheet, and the other part is divided into two parts, which are respectively along the first direction
  • the second direction is zigzag propagation, so as to realize two-dimensional pupil dilation, so that the field of view of the outgoing light is expanded in the first direction and the second direction, and the field of view of the outgoing light is further expanded.
  • a second included angle exists between the second outcoupling grating and the first direction, and the second included angle is less than 20°.
  • the second out-coupling grating is disposed on the side of the first out-coupling grating facing away from the substrate, and the extending direction can be parallel to the first direction, so as to deflect the light downward to expand the field of view of the outgoing light in the second direction range.
  • the second outcoupling grating can change the propagation direction of the light through diffraction, so that the outgoing light is deflected downward, so as to realize the expansion of the field of view of the outgoing light in the second direction, so that the human eye can observe the light from the upper
  • the light emitted by the optical waveguide sheet of the frame can achieve the technical effect of not blocking the user's field of view to observe the real scene, but also seeing the virtual image, avoiding the impact on the user's daily activities, and being conducive to the user's long-term wearing.
  • the optical waveguide sheet includes a relay grating
  • the out-coupling grating is arranged on the inner side of the substrate
  • the relay grating is arranged on the outer side of the substrate and is opposite to the out-coupling grating
  • the in-coupling grating is arranged on the outer side of the substrate. The inner side of the substrate or the outer side of the substrate.
  • the height of the outcoupling grating in the second direction is in the range of 5 mm to 15 mm.
  • the height of the outcoupling grating may affect the range of the field of view of the outgoing light, for example, the range of the field of view of the outgoing light will increase with the increase of the height.
  • the height may be in the range of 8mm to 15mm.
  • the optical waveguide sheet includes a light-reflecting layer or a light-shielding layer, and the light-reflecting layer or the light-shielding layer is provided on the outer side of the optical waveguide sheet;
  • repeating like this can effectively reduce the light emitted from the outside of the optical waveguide sheet, improve the propagation efficiency of the light, and increase the brightness of the virtual image.
  • the shading layer can absorb the light emitted from the outside of the optical waveguide sheet to prevent the display light from spreading to the outside of the electronic device, so that other people in front of the user's field of vision cannot see the virtual image, preventing privacy leakage and effectively protecting the user's privacy.
  • a light shielding layer is provided on the upper side of the optical waveguide sheet to prevent ambient light from entering from the upper side of the optical waveguide sheet, which affects the display of the virtual image.
  • the light-reflecting layer or the light-shielding layer is provided on the outer side of the optical waveguide sheet, and the light-shielding layer is provided on the upper side of the optical waveguide sheet.
  • the optical waveguide sheet includes an optical waveguide body and an optical element
  • the optical waveguide body has an exit surface
  • the optical element is fixed on the exit surface
  • the optical element is used to deflect the exiting light downward.
  • the optical element adopts a prism structure, which is used to change the outgoing direction of the light, so that the light emitted from the outgoing surface is deflected downward to form the outgoing light.
  • the second out-coupling grating of the out-coupling grating in the first embodiment can be omitted by changing the optical path through the optical element.
  • the size of the optical element in the second direction is generally smaller than that of the second outcoupling grating, so that the size of the outcoupling grating can be further reduced, so that the upper frame of the electronic device can be designed to be narrower and closer to the glasses for daily use. The appearance is convenient for users to wear for a long time in daily scenes.
  • the number of optical waveguide sheets is multiple, and the multiple optical waveguide sheets are stacked in layers. It is understandable that the light rays can have different wavelength bands, and the light rays with different wavelength bands have different transmission speeds in the optical waveguide sheet. Exemplarily, at least one optical waveguide sheet in the plurality of optical waveguide sheets has a different refractive index from other optical waveguide sheets. Setting multiple optical waveguide sheets with different refractive indices can process light of different wavelength bands respectively, so as to avoid image distortion and ensure the display quality of the image.
  • the refractive indices of the plurality of optical waveguide sheets may also be the same as each other, and at least one optical waveguide sheet has a different grating structure from the other optical waveguide sheets, that is, the coupling-in grating, the coupling-out grating and/or the middle optical waveguide sheet. Following the grating structure is different.
  • the grating structure can be designed to correspond to light in different wavelength bands, so that a plurality of optical waveguide sheets with different grating structures can process light in different wavelength bands respectively.
  • the optical waveguide sheet is located above the installation space, which can fully ensure the upper field of view, further expand the field of view of the real scene, further reduce the interference to the user's daily activities, and make the wearing feeling of the electronic device closer to daily life.
  • the glasses used are easy for more users to accept and wear for a long time.
  • the optical waveguide sheet is located outside the installation space, and the outgoing light passes through the top area of the installation space.
  • the display light can enter the user's eyes after being processed by the lens, so as to prevent the user from being unable to see the virtual image clearly due to problems in vision, which affects the experience.
  • the mirror frame includes a fixing member, the fixing member is fixedly installed on the upper frame, and the optical waveguide sheet is fixed on the upper frame through the fixing member.
  • the fixture may include a top panel and side panels.
  • the top plate can be used to block the ambient light above the optical waveguide sheet, so as to avoid the influence of stray light on the display of the virtual image.
  • the side plate can be used to block the light from the outside of the optical waveguide sheet, improve the image display brightness, so that users can see clear virtual images in applications with high ambient light brightness, thereby reducing power consumption and prolonging the life of electronic equipment. battery life.
  • the light-emitting component includes a light source and an optical system, and the optical system is used to convert the light emitted by the light source into parallel light.
  • the optical system can be installed on the side of the light source close to the first mirror frame, and is used to convert the concentrated light emitted from the light source into substantially parallel light, so that each light in the display light can enter the substrate at the same incident angle, avoiding Part of the light cannot meet the conditions of being transmitted in the optical waveguide sheet, and thus cannot be transmitted to the human eye through the optical waveguide sheet, resulting in the problem of image distortion.
  • the AR frame further includes temples, and the light-emitting components are mounted on the temples.
  • the light-emitting assembly and the optical waveguide sheet can be arranged opposite to each other, so that the display light can enter the optical waveguide sheet in a substantially vertical manner, and the positional multiplexing of the light-emitting assembly and the optical waveguide sheet can also be realized, reducing the cost of electronic equipment. size.
  • the AR frame further includes one or more functional devices, the functional devices are fixed on the frame and/or the temples, and the one or more functional devices include a microphone, and/or a speaker, and/or a touch screen.
  • the AR mirror frame can receive the user's voice and/or motion instructions, and perform corresponding operations according to the instructions, or control external devices to perform corresponding operations.
  • the AR frame can realize functions such as adding schedules, map navigation, taking photos and videos, expanding video and voice calls, and can achieve wireless network access through mobile communication networks or WIFI; or through mobile Communication network, WIFI or bluetooth and other means to realize the communication connection with external devices.
  • the present application further provides AR glasses, including the above AR glasses frame and a lens, wherein the lens is fixedly mounted on the AR frame.
  • AR glasses can enable users to observe virtual images and real scenes at the same time.
  • the optical waveguide sheet is arranged on the upper frame of the frame to avoid the interference of the optical waveguide sheet to the real scene.
  • the AR glasses will not affect the daily life. Activities, can be worn for a long time.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by the present application in some embodiments.
  • FIG. 2 is a schematic structural diagram of the electronic device shown in FIG. 1 in some other embodiments;
  • FIG. 3A is a schematic structural diagram of the first mirror frame shown in FIG. 1 in some embodiments;
  • FIG. 3B is a schematic structural diagram of the first mirror frame shown in FIG. 3A at another angle;
  • FIG. 3C is a schematic structural diagram of the first mirror frame shown in FIG. 3A at another angle;
  • FIG. 4A is a schematic structural diagram of the optical waveguide sheet shown in FIG. 3B in some embodiments provided in the present application;
  • FIG. 4B is a schematic diagram showing the optical path of light propagating in the optical waveguide sheet shown in FIG. 3B;
  • FIG. 5 is a schematic diagram showing the light path of light propagating in the electronic device shown in FIG. 1;
  • FIG. 6 is a schematic structural diagram of the optical waveguide sheet shown in FIG. 4A in some other embodiments.
  • FIG. 7 is a schematic structural diagram of the optical waveguide sheet shown in FIG. 4A in still other embodiments.
  • FIG. 8 is a schematic structural diagram of the optical waveguide sheet shown in FIG. 7 in some other embodiments.
  • FIG. 9A is a schematic structural diagram of the optical waveguide sheet shown in FIG. 4A in other embodiments.
  • FIG. 9B is a schematic diagram showing the optical path of light propagating in the optical waveguide sheet shown in FIG. 9A;
  • FIG. 10A is a schematic structural diagram of the optical waveguide sheet shown in FIG. 9A in some other embodiments.
  • FIG. 10B is a schematic diagram showing the optical path of light propagating in the optical waveguide sheet shown in FIG. 10A;
  • FIG. 11 is a schematic structural diagram of the optical waveguide sheet shown in FIG. 4A in some further embodiments.
  • FIG. 12 is a schematic structural diagram of the optical waveguide sheet shown in FIG. 11 in some embodiments.
  • FIG. 13 is a schematic structural diagram of the electronic device shown in FIG. 3C in still other embodiments.
  • FIG. 14 is a schematic structural diagram of the electronic device shown in FIG. 3B in still other embodiments.
  • FIG. 15 is a schematic structural diagram of the electronic device shown in FIG. 1 in still other embodiments.
  • FIG. 16 is a schematic structural diagram of the electronic device shown in FIG. 1 in still other embodiments.
  • FIG. 1 is a schematic structural diagram of an electronic device 100 provided by the present application in some embodiments.
  • the electronic device 100 may be a smart wearable device, such as smart glasses, a smart helmet, and the like.
  • the electronic device 100 may be an in-vehicle device or the like.
  • the smart glasses may have an independent operating system and carry programs provided by software service providers.
  • smart glasses can implement functions such as adding schedules, map navigation, taking photos and videos, launching video and voice calls, and can achieve wireless network access through mobile communication networks or WIFI; or through mobile communication networks, WIFI or Bluetooth and other methods to achieve communication with external devices.
  • the smart glasses can receive the user's voice and/or motion instructions, and perform corresponding operations according to the instructions, or control external devices to perform corresponding operations.
  • the smart glasses may be AR (augmented reality, augmented reality) glasses or MR (mixed reality, mixed reality) glasses.
  • AR glasses can realize display functions, such as providing virtual images visible to the human eye through optical display technology.
  • users wear AR glasses they can observe the real scene and the virtual images provided by AR glasses at the same time, so that users can obtain a sensory experience beyond reality.
  • the embodiments of the present application are described by taking the electronic device 100 as an example of AR glasses.
  • the electronic device 100 may include a frame 1 and a lens 2 fixedly mounted on the frame 1 .
  • the lens 2 can be made of transparent optical materials such as glass and resin.
  • the lens 2 may have one or more curved surfaces for changing the optical path of light, such as vision correction lenses, etc., so that the user can obtain a clear vision when wearing the glasses.
  • the lens 2 can also be a sun lens, a polarized lens or an intelligent color-changing lens, etc., for blocking part of the light and blocking strong light.
  • the lens 2 can also be a flat lens.
  • the number of lenses 2 may be one, or two or more.
  • the lenses 2 can be respectively mounted on two frames, each frame can be mounted with multiple lenses 2, and the multiple lenses 2 can respectively implement different functions, such as correcting the user's vision, blocking part of the light, and the like.
  • a plurality of lenses 2 can be stacked to achieve superposition of functions.
  • at least one lens 2 of the plurality of lenses 2 is detachable, so as to be easily replaced with a lens 2 with other functions, so as to improve the applicability of the electronic device 100 to different application scenarios, thereby improving the user experience.
  • the user can match the lenses 2 with different functions according to their own needs, and the virtual display is compatible with functions such as vision correction and strong light shielding, which is convenient for the user to use in different scenarios.
  • the frame 1 can be unfolded to an open state (as shown in Figure 1).
  • the frame 1 may include a first frame 11 , a second frame 12 , a first temple 13 and a second temple 14 .
  • the two mirror frames (11, 12) are both located between the two mirror legs (13, 14), the ends of the two mirror frames (11, 12) that are close to each other are fixedly connected, and the other ends that are far away from each other are respectively connected to the mirror legs (13, 12). 14) Connect.
  • the two temples (13, 14) may also be substantially perpendicular to the frame (11, 12) (corresponding to the open state of the frame 1), that is, the space between the temples (13, 14) and the upper frame of the frame (11, 12).
  • the included angle is approximately 90°.
  • the shape of the frame 1 generally fits the shape of the user's head, and the frames ( 11 , 12 ) are respectively located in front of the user's eyes, and the display light is deflected downward and enters the eyes, realizing the display function of the electronic device 100 .
  • the angle between the temples (13, 14) and the upper frame of the mirror frame (11, 12) may also have a slight deviation from 90°, such as 85°, 87° or 95°. °, etc.
  • the temples (13, 14) are perpendicular to the frame (11, 12).
  • the spectacle frame 1 may also include a spectacle frame (11 or 12) and a corresponding temple (13 or 14), that is, when the user wears the electronic device 100, the spectacle frame (11 or 12) is located in front of one eye .
  • the structure of the spectacle frame 1 can be adaptively designed by referring to the description of the structures of the two spectacle frames (11, 12) and the two temple legs (13, 14).
  • the first temple 13 and/or the second temple 14 may also be a two-fold structure.
  • the first temple 13 may include a first portion and a second portion that are connected.
  • the first part and the second part can be unfolded or folded relative to each other for easy storage.
  • the first part and the second part can be relatively unfolded.
  • the structure of the second temple 14 may adopt the same two-fold structure as the first temple 13 , or may adopt a non-folding structure, which is not limited in this embodiment of the present application.
  • the first frame 11 may have an installation space 20 for installing the lens 2 .
  • the first mirror frame 11 includes an upper frame 111 and a lower frame 112 located above the installation space 20 , and the upper frame 111 and the lower frame 112 together constitute the first mirror frame 11 .
  • the terms “upper”, “lower”, “inner”, “outer” and other orientations involved in this application are descriptions with reference to the orientations of the attached drawings, not indicative or implied.
  • a device or element must have a particular orientation, be constructed and operate in a particular orientation, and therefore should not be construed as a limitation of the present application.
  • the mirror frame 1 may include an optical waveguide sheet 3 and a light emitting assembly 4 .
  • the optical waveguide sheet 3 can be used to receive display light and form outgoing light to realize the function of displaying virtual images.
  • the optical waveguide sheet 3 is used to realize the display function. Compared with the traditional solution using optical elements such as prisms, the volume and weight of the electronic device 100 are effectively reduced, which is beneficial to the user's long-term wearing.
  • the optical waveguide sheet 3 can be fixed on the upper frame 111 of the first mirror frame 11, and the outgoing light is directed to the inside of the installation space 20 and deflected downward, so as to avoid blocking the user's field of view when observing the real scene, and prevent rainbow pattern pairs from appearing in the field of view.
  • the real scene causes interference, so that when the user wears the electronic device 100 , the daily activities will not be affected, which is beneficial to the use of the electronic device 100 in the daily scene.
  • the optical waveguide sheet 3 is disposed on the first mirror frame 11 .
  • the optical waveguide sheet 3 may also be disposed on the second mirror frame 12 .
  • the number of the optical waveguide sheets 3 may be two, which are respectively fixed to the upper frame 111 of the first mirror frame 11 and the upper frame of the second mirror frame 12 .
  • the two optical waveguide sheets 3 can be used to display different virtual images, or alternately display virtual images to meet different needs.
  • the light emitting assembly 4 may be mounted on the first temple 13 .
  • the first temple 13 may be provided with a receiving cavity (not shown).
  • the opening of the accommodating cavity is located at one end of the first mirror leg 13 close to the first mirror frame 11 .
  • the opening of the receiving cavity faces the optical waveguide sheet 3 .
  • the light-emitting component 4 can be fixedly installed in the receiving cavity for emitting display light.
  • the display light emitted by the light emitting component 4 can enter the end of the optical waveguide sheet 3 close to the first temple 13 , and be conducted through the optical waveguide sheet 3 to the direction away from the first temple 13 . , and then emitted from the optical waveguide sheet 3 .
  • the light-emitting component 4 is installed in the receiving cavity of the first temple 13, which can avoid light leakage, prevent information leakage, and effectively protect the privacy of the user. In addition, it can also prevent the ambient light from interfering with the light and affecting the display effect of the virtual image.
  • the light-emitting component 4 and the optical waveguide sheet 3 can be disposed opposite to each other, so that the display light can enter the optical waveguide sheet 3 in a substantially vertical manner, and the light-emitting component 4 and the optical waveguide sheet can also be realized.
  • the location of the sheet 3 is reused, reducing the size of the electronic device 100 .
  • the number of light emitting assemblies 4 may be two, and the two light emitting assemblies 4 are respectively mounted on the first temple 13 and the second temple 14 .
  • the second temple 14 may also be provided with a second accommodating cavity (not shown), and the specific arrangement of the second accommodating cavity may refer to the first accommodating cavity.
  • the two light-emitting assemblies 4 are correspondingly fixed and installed in the first accommodating cavity and the second accommodating cavity.
  • the number of light-emitting assemblies 4 may also be multiple, and each receiving cavity may be installed with multiple light-emitting assemblies 4 to achieve different display effects.
  • the light-emitting assembly 4 may also be fixed to the first mirror frame 11 or the second mirror frame 12 .
  • the mirror frame 1 may include an optical component (not shown) for changing the optical path of the display light emitted from the light emitting component 4 so that the display light enters the optical waveguide sheet 3 in a substantially vertical manner.
  • the number of light-emitting assemblies 4 may be two, and the two light-emitting assemblies 4 are respectively mounted on the first mirror frame 11 and the second mirror frame 12 .
  • the number of light-emitting assemblies 4 may also be multiple, and each frame may be installed with multiple light-emitting assemblies 4 to achieve different display effects.
  • the mirror frame 1 may further include a control chip (not shown) fixedly installed in the first receiving cavity or the second receiving cavity.
  • the control chip can be electrically connected with the light-emitting component 4 to drive the light-emitting component 4 to emit light, and transmit information to the optical waveguide sheet 3 in the form of light.
  • the control chip may be electrically connected to the plurality of light-emitting assemblies 4 located in the first and second receiving chambers, respectively, for controlling the plurality of light-emitting assemblies 4 to emit light alternately, so that the displayed content can be periodically displayed on the left and right eyes. Switch between them to avoid eye health problems caused by long-term viewing of virtual images.
  • the control chip can also realize communication connection with external devices through mobile communication network, WIFI or Bluetooth, etc., and is used to drive external devices to realize functions such as adding schedules, map navigation, taking photos and videos, developing videos and voice calls.
  • the frame 1 may further include a microphone 5, a speaker 6, a touch screen 7, and the like.
  • the microphone 5 may be disposed at the connecting portion between the first mirror frame 11 and the second mirror frame 12 and electrically connected to the control chip.
  • the connecting portion may be provided with a cavity for accommodating the microphone 5 .
  • the microphone 5 can be used to receive a user's voice command, convert the voice command into an audio electrical signal and transmit it to the control chip, and the control chip completes the corresponding operation according to the voice command carried by the audio electrical signal.
  • the control chip can also control the external device to complete the corresponding operation according to the voice command. Therefore, in this embodiment, the user can control the electronic device 100 and/or the external device to implement corresponding functions through voice commands.
  • a sound-receiving hole (not shown in the figure) may be provided on the inner side of the connecting portion, so that the microphone 5 can receive more voice signals, improve the recognition ability of the user's voice command, and ensure the call quality.
  • the number of microphones 5 may also be multiple, such as two, which is not limited in this embodiment.
  • the speaker 6 may be fixed to the first temple 13 and/or the second temple 14 .
  • the number of speakers 6 may be two, and they are respectively disposed at the ends of the first temple 13 and the second temple 14 away from the mirror frame ( 11 , 12 ).
  • the first temple 13 and the second temple 14 may be respectively provided with cavities for accommodating the speaker 6 .
  • the speaker 6 can be electrically connected to the control chip for converting the audio electrical signal from the control chip into a sound signal recognizable by human ears.
  • the first temple 13 and the second temple 14 extend from the side of the frame (11, 12) to the vicinity of the ear.
  • the loudspeaker 6 is close to the human ear, so that the sound signal emitted by the loudspeaker 6 can be transmitted to the user's ear at a short distance, so that the user can hear more clearly.
  • the speaker 6 is arranged close to the user's ear, which can prevent the leakage of sound signals and effectively protect the privacy of the user.
  • the speaker 6 can transmit the sound signal to the human ear by means of air propagation.
  • the first temple 13 may be provided with a speaker hole 61 corresponding to the speaker 6 .
  • the speaker hole 61 may be located on the side of the first temple 13 close to the mirror frame (11, 12).
  • the speaker hole 61 can increase the transmission efficiency of the sound signal, so that the user can obtain the sound signal more clearly, and improve the experience.
  • the second temple 14 may also be provided with a speaker hole.
  • the speaker 6 can also adopt bone conduction technology, that is, the user's skull and other tissues are vibrated by the movement of a specific structure, and the sound signal is transmitted to the human ear by means of skull transmission, so as to avoid being affected by environmental factors , improve the sound quality, and effectively protect the user's privacy.
  • the number of speakers 6 may be one, which is provided on the first temple 13 or the second temple 14 .
  • the number of speakers 6 may also be three or more, for example, three, four, and the like.
  • a plurality of speakers 6 may be respectively disposed on the first temple 13 and/or the second temple 14 .
  • the number of speakers 6 can be adjusted according to actual needs, which is not limited in this embodiment of the present application.
  • the number of touch screens 7 can be two, and they are respectively fixedly installed on the side of the first temple 13 and the second temple 14 away from each other, that is, when the user wears the electronic device 100, the first temple 13 and The side of the second temple 14 facing away from the user's head.
  • the touch screen 7 can be electrically connected with the control chip.
  • the touch screen 7 can be used to receive the touch information applied by the user on the appearance surface of the touch screen 7, convert the touch information into electrical signals, and transmit them to the control chip. operate.
  • the appearance surface of the touch screen 7 is the side of the touch screen 7 facing away from the user's head.
  • the appearance surface of the touch screen 7 can form a part of the side of the temple, and smoothly transitions with the side of the temple, so as to improve the aesthetics of the electronic device 100 and make it closer to the appearance of the glasses that the user wears daily.
  • the appearance surface of the touch screen 7 may be raised relative to the outer side of the temple, which facilitates the user to perceive the position of the touch screen 7 and improves the operability.
  • the number of touch screens 7 may also be one, which is provided on the first temple 13 or the second temple 14 .
  • the number of touch screens 7 can also be more than three, for example, three, four, and so on.
  • a plurality of touch screens 7 may be respectively disposed on the first temple 13 and/or the second temple 14 .
  • the number of touch screens 7 can be adjusted according to actual needs, which is not limited in this embodiment of the present application.
  • the structure of the second mirror frame 12 may be the same as that of the first mirror frame 11 , or may be different from the first mirror frame 11 , which is not limited in this embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of the electronic device 100 shown in FIG. 1 in other embodiments.
  • the spectacle frame 1 may not include the lower frame 112 to enhance the aesthetics of the spectacle frame 1 and satisfy consumers' demands for product appearance.
  • the lens 2 can be fixed on the upper frame 111 .
  • optical waveguide sheet 3 fixed to the first mirror frame 11 as an example to introduce the display principle of the electronic device 100 and the structure of the optical waveguide sheet 3 in detail.
  • FIG. 3A is a schematic structural diagram of the first mirror frame 11 shown in FIG. 1 in some embodiments
  • FIG. 3B is a structural schematic diagram of the first mirror frame 11 shown in FIG. 3A at another angle.
  • the first frame 11 when the user wears the electronic device 100, the first frame 11 may be located in front of the user's eyes. At this time, other people can see the outside of the first mirror frame 11 .
  • the appearance of the first frame 11 is similar to that of ordinary glasses worn daily, and is a square or oval frame with rounded corners, which is easy for more users to accept and can be worn for a long time in daily use scenarios.
  • the optical waveguide sheet 3 may include a substrate 33 and an in-coupling grating 31 and an out-coupling grating 32 fixed on the substrate 33 .
  • the coupling-in grating 31 and the coupling-out grating 32 may be respectively located at two ends of the optical waveguide sheet 3 and arranged at intervals.
  • the coupling-in grating 31 is used for receiving display light
  • the coupling-out grating 32 is used for emitting outgoing light.
  • FIG. 3C is a schematic structural diagram of the first mirror frame 11 shown in FIG. 3A at another angle.
  • the first frame 11 when the user wears the electronic device 100, the first frame 11 can be placed on the front side of the eyes, and the optical waveguide sheet 3 can be placed above the installation space 20, which can fully ensure the upper field of vision and further improve the field of vision of the real scene.
  • the expansion further reduces the interference to the daily activities of the user, so that the wearing feeling of the electronic device 100 is closer to the glasses used in daily use, so that more users can easily accept and wear it for a long time.
  • the display light is guided and deflected by the optical waveguide sheet 3, and is directed to the inside of the installation space 20 and deflected downward. At this time, the user can see the virtual image and the real scene at the same time.
  • the outgoing light may form an included angle ⁇ with the third direction Z.
  • the substrate 33 extends along the first direction X
  • the second direction Y is perpendicular to the first direction X
  • the third direction Z is perpendicular to the direction of the lens 2 , that is, the third direction Z is parallel to the lens 2 direction of the optical axis.
  • the included angle ⁇ may be the included angle between the center line of the field of view of the outgoing light and the third direction Z.
  • the included angle ⁇ may be greater than 10°, for example, the included angle ⁇ may be in the range of 20° to 40°.
  • the area between the outgoing light emitted from the upper and lower edges of the coupling-out grating 32 is the outgoing light field of view.
  • the outgoing light may have a center line of the field of view of the outgoing light.
  • the outgoing light located in the middle of the area of the field of view of the outgoing light in the plane YZ may be the center line of the field of view of the outgoing light.
  • the outcoupling grating 32 may have a height h1 in the second direction Y.
  • the height h1 of the outcoupling grating 32 may affect the range of the field of view of the outgoing light on the plane YZ, for example, the range of the field of view of the outgoing light will increase as the height h1 increases.
  • the height h1 may be in the range of 8mm to 15mm.
  • FIG. 4A is a schematic structural diagram of the optical waveguide sheet 3 shown in FIG. 3B in some embodiments provided in this application.
  • the substrate 33 can be made of a single-color or multi-color material, so that the electronic device 100 is more beautiful, and the appearance of the optical waveguide sheet 3 and the upper frame 111 can be closer to the appearance of the glasses that users wear daily, which is convenient for User wear in daily scenes.
  • the coupling grating 31 may be disposed on the inner side of the substrate 33, and the extending direction may be parallel to the second direction Y, for receiving display light and changing the propagation direction of the light to form incident light.
  • the incident angle of the incident light is greater than the total reflection angle of the substrate 33 , so that the incident light can be totally reflected when it encounters the surface of the substrate 33 .
  • the coupling-in grating 31 can be a surface relief grating, a holographic volume grating, or the like.
  • the coupling-out grating 32 and the coupling-in grating 31 may be disposed on the same side of the substrate 33 , that is, the coupling-out grating 33 may also be disposed on the inner side of the substrate 33 .
  • the coupling-out grating 32 can also be a surface relief grating, a holographic volume grating, or the like.
  • the out-coupling grating 32 can be a double-layer grating, that is, it includes a first out-coupling grating 321 and a second out-coupling grating 322 arranged in layers, which are respectively used for emitting light and deflecting light to form outgoing light.
  • the first outcoupling grating 321 may be disposed on the surface of the substrate 33 to emit light and expand the range of the field of view of the emitted light in the first direction X.
  • a first included angle ⁇ may exist between the extending direction of the first outcoupling grating 321 and the second direction Y, for example, the first included angle ⁇ may be smaller than 45°.
  • FIG. 4B is a schematic diagram showing the optical path of light propagating in the optical waveguide sheet 3 shown in FIG. 3B .
  • a first angle ⁇ between the first outcoupling grating 321 and the second direction Y to realize a two-dimensional Dilated pupils.
  • the second out-coupling grating 322 is disposed on the side of the first out-coupling grating 322 facing away from the substrate 33, and the extending direction can be parallel to the first direction X, so as to deflect the light downward, so as to expand the field of view of the outgoing light in the The range in the second direction Y.
  • the second outcoupling grating 322 can change the propagation direction of the light through diffraction, so that the outgoing light is deflected downward, so as to realize the expansion of the field of view of the outgoing light in the second direction Y, so that the human eye can observe the light from the
  • the light emitted by the optical waveguide sheet 3 of the upper frame 111 achieves the technical effect of not blocking the user's field of view to observe the real scene, but also seeing the virtual image, avoiding the impact on the user's daily activities, and being beneficial to the user's long-term wearing.
  • FIG. 5 is a schematic diagram showing an optical path of light propagating in the electronic device 100 shown in FIG. 1 .
  • the display light enters the coupling grating 31 at a small angle with the third direction Z, passes through the coupling grating 31 to form incident light, and enters the substrate 33 at an incident angle greater than the total reflection angle.
  • the incident light is totally reflected when it encounters the surface of the substrate 33, and propagates along the first direction X.
  • it encounters the outcoupling grating 32, and then exits from the optical waveguide sheet 3 after passing through the outcoupling grating 32 to form an output light.
  • the outgoing light enters the human eye, and the outgoing light is directed to the inner side of the installation space 20 and is deflected downward.
  • the included angle may be less than 10°.
  • the coupling grating 31 is disposed on the outer side of the substrate 33, the display light enters the substrate 33 in a substantially vertical direction, which can avoid reflection of the incident light by the substrate 33 and improve the propagation efficiency of the light.
  • the substrate 33 can be made of a long strip of transparent optical material and has a total reflection angle. It is shown that the light enters the substrate 33 from the air. If the incident angle of the light entering the substrate 33 is greater than or equal to the total reflection angle, the incident light encounters the inner side or outer side of the substrate 33 when traveling along the substrate 33. When , total reflection can occur and continue to propagate to the other side at the same incident angle, so that the light propagates in a zigzag manner along the first direction X in the substrate 33 . In addition, the incident light propagates in the substrate 33 without loss and leakage, thereby avoiding image distortion and improving the brightness of the image.
  • the first coupling-out grating 321 of the coupling-out grating 32 can realize the expansion of the field of view of the outgoing light through the one-dimensional pupil dilation technique, so as to be compatible with more people with different interpupillary distances. Specifically, every time the incident light propagating in the substrate 33 encounters the first outcoupling grating 321 on the surface of the substrate 33, a part of the light is emitted from the optical waveguide sheet 3 under the diffraction effect of the grating, and another part of the light is emitted from the optical waveguide sheet 3 under the diffraction action of the grating.
  • a part of the light continues to propagate in the substrate 33 in a zigzag manner until it encounters the first outcoupling grating 321 on the surface of the substrate 33 next time, and the process repeats to realize the expansion of the field of view of the outgoing light in the first direction X.
  • the light-emitting component 4 may include a light source 41 and an optical system 42 .
  • the optical system 42 can be installed on the side of the light source 41 close to the first frame 11, and is used to convert the concentrated light emitted from the light source 41 into substantially parallel light, so that each light in the display light can be incident at the same angle of incidence.
  • the substrate 33 avoids that part of the light cannot meet the conditions of being transmitted in the optical waveguide sheet 3 , and thus cannot be transmitted to the human eye through the optical waveguide sheet 3 , resulting in the problem of image distortion.
  • the light source 41 may adopt an LCOS (liquid crystal on silicon) display screen, an OLED (organic light-emitting diode) display screen, a microLED display screen, an LCD display screen, etc., This embodiment does not limit this, and can be selected according to the requirements of parameters such as definition and brightness of the virtual image.
  • the optical system 42 may include optical structures such as prisms, lenses 2 and the like. The optical structure can have functions such as changing the light path, splitting light, filtering and filtering light. Understandably, the optical system 42 may include one or more optical structures for processing the light emitted from the light source 41 to obtain substantially parallel incident light.
  • FIG. 6 is a schematic structural diagram of the optical waveguide sheet 3 shown in FIG. 4A in other embodiments.
  • the second outcoupling grating 322 may include a plurality of optical members arranged in parallel and spaced apart from each other. The extending directions of the plurality of optical components may be parallel to the first direction X, or there may be a second included angle ⁇ with the first direction X, and the second included angle ⁇ may be less than 20°, which is not limited in this embodiment.
  • the out-coupling grating 32 can also use a single-layer grating, and in this case, the single-layer grating can have a two-dimensional grating structure, and simultaneously realize the output and deflection of light, so as to reduce the size of the out-coupling grating 32 .
  • the coupling-out grating 32 may also adopt a grating with more than three layers, which is not limited in this embodiment.
  • the optical waveguide sheet 3a may include a substrate 33a, an in-coupling grating 31a and an out-coupling grating 32a.
  • the optical waveguide sheet 3a may adopt a reflective structure, that is, the coupling-in grating 31a and the coupling-out grating 32a may be disposed outside the substrate 33a.
  • the optical waveguide sheet 3a may include a light-reflecting layer or a light-shielding layer, and the light-reflecting layer or the light-shielding layer may be provided outside the optical waveguide sheet 3a, that is, outside the coupling-in grating 31a and the coupling-out grating 32a.
  • the optical waveguide sheet 3a may also not include a light-reflecting layer or a light-shielding layer, which is not limited in this embodiment.
  • the optical waveguide sheet 3b may include a substrate 33b, an in-coupling grating 31b and an out-coupling grating 32b.
  • the optical waveguide sheet 3b may adopt a transmissive structure, that is, the coupling-in grating 31b and the coupling-out grating 32b may be disposed on the inner side surface of the substrate 33b.
  • FIG. 9A is a schematic structural diagram of the optical waveguide sheet 3 shown in FIG. 4A in other embodiments.
  • the optical waveguide sheet 3c may include a substrate 33c, an in-coupling grating 31c, an out-coupling grating 32c, and a relay grating 34c. Among them, most of the structure and positional relationship of the optical waveguide sheet 3c can be referred to the first embodiment, and details are not repeated here.
  • the out-coupling grating 32c may be disposed on the inner side of the substrate 33c, and the coupling-in grating 31c may be disposed on the inner side of the substrate 33c.
  • the relay grating 34c may be located on the outer side of the substrate 33c and disposed opposite to the coupling-in grating 32c.
  • the relay grating 34c is used to change the propagation direction of light so that it can exit from the substrate 33c.
  • a third included angle ⁇ 1 may exist between the relay grating 34c and the second direction Y, so as to expand the range of the field of view of the outgoing light in the first direction X and the second direction Y.
  • the third included angle ⁇ 1 may be smaller than 45°, such as 15°, 30°, etc., so as to realize the expansion of the field of view of the outgoing light in the first direction X and the second direction Y.
  • FIG. 9B is a schematic diagram showing the optical path of light propagating in the optical waveguide sheet 3 c shown in FIG. 9A .
  • the relay grating 34c is also used to expand the scope of the field of view of the outgoing light in the first direction X. Understandably, after the incident light encounters the relay grating 34c, the propagation direction of part of the light changes and exits from the substrate 33c, while the other part continues to propagate in the X-fold line in the first direction in the substrate 33c until it encounters the relay grating 34c again.
  • the relay grating 34c repeats the above process to realize the expansion of the field of view of the outgoing light in the first direction X.
  • the display light enters the substrate 33c, and changes direction after encountering the coupling grating 31c to form incident light.
  • Incident light propagates in a zigzag manner in the first direction X in the substrate 33c.
  • the relay grating 34c When the incident light encounters the relay grating 34c during propagation, it expands the propagation range, and propagates in the first direction X and the second direction Y respectively.
  • the other part continues to propagate along the first direction X in the original manner until it encounters the relay grating 34c again, and the process is repeated so as to transmit the display light to the human eye and realize the display function of the electronic device 100 .
  • FIG. 10A is a schematic structural diagram of the optical waveguide sheet 3 shown in FIG. 9A in other embodiments
  • FIG. 10B is a schematic diagram showing the optical path of light propagating in the optical waveguide sheet 3 d shown in FIG. 10A .
  • the optical waveguide sheet 3d may include a substrate 33d, an in-coupling grating 31d, an out-coupling grating 32d, and a relay grating 34d.
  • the coupling-in grating 31d and the coupling-out grating 32d may be disposed on two sides of the substrate 33d, respectively, that is, the coupling-in grating 31d may be disposed outside the substrate 33d.
  • the optical waveguide sheet 3e may include an optical waveguide body 33e and an optical element 35e.
  • the optical waveguide body 33e may include a substrate 33e, an in-coupling grating (not shown) and an out-coupling grating 32e.
  • the optical waveguide body 33e has an exit surface, and the optical element 35e can be fixed to the exit surface.
  • the optical element 35e may adopt a prism structure, which is used to change the exiting direction of the light, so that the light exiting from the exit surface is deflected downward to form the exiting light.
  • the second coupling-out grating of the coupling-out grating 32e in the first embodiment can be omitted.
  • the size of the optical element 35e in the second direction Y is generally smaller than that of the second coupling-out grating, so that the size of the coupling-out grating 32e can be further reduced, so that the upper frame of the electronic device 100 can be designed to be narrower and closer.
  • the outcoupling grating 32e can be used to emit light, and realize the expansion of the field of view of the emitted light in the first direction X. As shown in FIG. In some other embodiments, the outcoupling grating 32e can also realize the deflection of the outgoing light, and further correct the outgoing direction of the outgoing light through the optical element 35e, so as to control the outgoing direction more accurately and improve the display effect of the virtual image.
  • FIG. 12 is a schematic structural diagram of the optical waveguide sheet 3 shown in FIG. 11 in some embodiments.
  • the optical element 35f may include a plurality of prism structures connected to each other, and the inclined surfaces of the plurality of prisms are parallel to each other. It can be understood that the prism mainly deflects the light through an inclined plane.
  • a plurality of prisms are used to deflect the light, which effectively reduces the size of the optical element 35f in the third direction Z, and further reduces the optical waveguide sheet 3f.
  • the size of the electronic device 100 makes the appearance of the electronic device 100 more similar to glasses used in daily life.
  • the number of the optical waveguide sheets 3 may be more than three, for example, three, five, and the like.
  • a plurality of optical waveguide sheets 3 can be stacked and fixed to the same frame, for example, the upper frame 111 of the first frame 11 or the upper frame of the second frame 12 .
  • the plurality of optical waveguide sheets 3 are fixedly connected and connected in series with each other.
  • At least one of the optical waveguide sheets 3 has a refractive index different from that of the other optical waveguide sheets 3 .
  • the light rays may have different wavelength bands, and the light rays with different wavelength bands have different transmission speeds in the optical waveguide sheet 3 .
  • By setting a plurality of optical waveguide sheets 3 with different refractive indices light of different wavelength bands can be processed respectively, so as to avoid image distortion and ensure the display quality of the image.
  • the refractive indices of the plurality of optical waveguide sheets 3 may also be the same as each other, and at least one optical waveguide sheet 3 has a different grating structure from the other optical waveguide sheets 3 , that is, the coupling-in grating 31 and the coupling-out grating
  • the structures of 32 and/or relay gratings (34c, 34d) are different.
  • the grating structure can be designed to correspond to light in different wavelength bands, so that a plurality of optical waveguide sheets 3 with different grating structures can process light in different wavelength bands respectively.
  • FIG. 13 is a schematic structural diagram of the electronic device 100 shown in FIG. 3C in still other embodiments.
  • the optical waveguide sheet 3 may be located outside the installation space 20 , and the outgoing light may pass through the top area of the installation space 20 .
  • the display light can enter the user's eyes after being processed by the lens 2, so as to prevent the user from being unable to see the virtual image clearly due to problems in vision, which affects the experience.
  • the first mirror frame 11 may include a fixing member 113 fixedly mounted on the upper frame 111 .
  • the optical waveguide sheet 3 can be fixedly mounted on the inner side surface of the fixing member 113 .
  • the fixing member 113 may be a semi-wrapped structure, that is, it may include a top plate 1131 and a side plate 1132 that are fixedly connected.
  • the top surface of the top plate 1131 may smoothly transition with the top surface of the upper frame 111 , and the side plate 1132 may be disposed relative to the installation space 20 .
  • the optical waveguide sheet 3 is located between the side plate 1132 and the upper frame 111 , and is fixedly connected to the side plate 1132 and the top plate 1131 . At this time, the optical waveguide sheet 3 may be located outside the installation space 20 .
  • the fixing member 113 may not include the top plate 1131, and the side plate 1132 may be fixedly connected to the side edge of the first mirror frame 11 through a structural member (not shown).
  • a light shielding layer may be provided on the upper side of the optical waveguide sheet 3 to prevent ambient light from entering from the upper side of the optical waveguide sheet 3 and affect the display of the virtual image.
  • the optical waveguide sheet 3 may be located outside or above the installation space 20.
  • the fixing member 113 may not include the side plate 1132 , and the optical waveguide sheet 3 may be fixedly connected to the top plate 1131 . At this time, the optical waveguide sheet 3 may be located outside the installation space 20 .
  • the optical waveguide sheet 3 may include a light-reflecting layer or a light-shielding layer, and the light-reflecting layer or the light-shielding layer may be provided on the outer side of the optical waveguide sheet 3 .
  • the outside of the optical waveguide sheet 3 may refer to the outside of the in-coupling grating 31 and/or the out-coupling grating 32 .
  • the outside of the optical waveguide sheet 3 may refer to the outside of the substrate 33 .
  • the effect of the grating for emitting light is to change the propagation direction of the light after diffraction, and form two light beams whose propagation directions are symmetrical with respect to the grating, that is, the two light beams are emitted from the inside and the outside of the optical waveguide sheet 3 respectively.
  • the reflective layer can reflect the light emitted from the outside of the optical waveguide sheet 3 to make it re-enter the grating. Repeating this process effectively reduces the light emitted from the outside of the optical waveguide sheet 3, improves the propagation efficiency of the light, and increases the brightness of the virtual image.
  • the light shielding layer can absorb the light emitted from the outside of the optical waveguide sheet 3 to prevent the display light from propagating to the outside of the electronic device 100, so that other people in front of the user's field of vision cannot see the virtual image, preventing privacy leakage and effectively protecting the user's privacy.
  • the fixing member 113 may not include the top plate 1131 and the side plate 1132 .
  • the optical waveguide sheet 3 may be located outside or above the installation space 20 .
  • the fixing member 113 can fix the optical waveguide sheet 3 to the upper frame 111 by a fixing method such as a buckle.
  • the upper side of the optical waveguide sheet 3 may be provided with a light shielding layer, and the optical waveguide sheet 3 may include a reflective layer or a light shielding layer, and the reflective layer or the light shielding layer may be provided on the outer side of the optical waveguide sheet 3 .
  • the top plate 1131 and/or the side plate 1132 is omitted, and the volume of the fixing member 113 is reduced, so that the appearance of the electronic device 100 is closer to the glasses used in daily life, which is convenient for users to use in daily scenes.
  • the weight of the electronic device 100 is also reduced, which is convenient for users to wear for a long time.
  • the side plate 1132 and/or the top plate 1131 can be made of materials with approximately zero light transmittance, and the top plate 1131 can be used to block ambient light above the optical waveguide sheet 3 to prevent stray light from affecting the display of virtual images.
  • the side plate 1132 can be used to block the light from emitting from the outside of the optical waveguide sheet 3 to improve the image display brightness, so that the user can see a clear virtual image even in applications with high ambient light brightness, thereby reducing power consumption and extending the electronic The battery life of the device 100 .
  • the side plate 1132 and/or the top plate 1131 may also be made of a material with a light transmittance greater than zero, which is not limited in this application.
  • the side panels 1132 and/or the top panel 1131 may be made of materials with adjustable light transmittance, such as photochromic materials, electrochromic materials, and the like.
  • the light transmittance can be decreased with the increase of the ambient light intensity, which can reduce the light emitted from the outside of the optical waveguide sheet 3 , improve the image display brightness, reduce power consumption, and prolong the battery life of the electronic device 100 .
  • the transmittance can also be changed as required, for example, when the electronic device 100 is in the display state, the driver chip reduces the transmittance and improves the brightness of the displayed image by changing the voltage applied to the side plate 1132 and/or the top plate 1131; When the electronic device 100 is in a non-display state, the driving chip increases the light transmittance by changing the voltage applied to the side plate 1132 and/or the top plate 1131, so that the appearance of the electronic device 100 is closer to the glasses used in daily life, which is convenient for users to use in daily life. use in the scene.
  • the side plate 1132 and/or the top plate 1131 may also be made of a material with a fixed light transmittance, or a material with a light transmittance that changes along the second direction Y, which is not limited in this application.
  • FIG. 14 is a schematic structural diagram of the electronic device 100 shown in FIG. 3B in still other embodiments.
  • the size of the coupling-out grating 32 in the first direction X affects the range of the field of view of the outgoing light in the first direction X, and the size of the coupling-out grating 32 in the first direction X can be adjusted as required. For example, the size of the outcoupling grating 32 in the first direction X can be reduced, so that the optical waveguide sheet 3 has less influence on the appearance of the electronic device 100 and is more acceptable to consumers.
  • FIG. 15 is a schematic structural diagram of the electronic device 100 shown in FIG. 1 in still other embodiments.
  • the electronic device 100 may also not include the lens 2, which is not limited in this embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of the electronic device 100 shown in FIG. 1 in still other embodiments.
  • the spectacle frame 1 may also not include temples, and the spectacle frame (one or two) can be placed in front of the eyes of the person in the form of straps, adjustment straps, etc., so as to realize the display function, and it can also be used superimposed with the user's glasses.
  • the spectacle frame 1 is installed inside or above the spectacle frame of the spectacles. This embodiment does not limit the interaction mode between the spectacle frame 1 and the user, as long as the spectacle frame is placed in front of the human eye.

Abstract

一种AR镜架(1)和AR眼镜(100)。AR镜架(1)通过将光波导片(3)设置在镜框(11)的上边框,避免用户在观察现实场景时受到光波导片(3)的干扰,使用户在佩戴AR眼镜(100)时不会对日常活动产生影响。该AR眼镜(100)不受应用场景的限制,能够长期佩戴。

Description

AR镜架和AR眼镜
本申请要求于2021年04月22日提交中国专利局、申请号为202110438424.6、申请名称为“AR镜架和AR眼镜”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及可穿戴设备技术领域,尤其涉及AR镜架和AR眼镜。
背景技术
AR眼镜通过光波导方案实现显示功能,但由于目前光波导的光栅区域不但会遮挡现实环境,还会存在彩虹纹,妨碍使用者观察现实环境,影响用户的日常活动,故而难以长期佩戴。
发明内容
本申请公开一种AR镜架和AR眼镜。AR眼镜能够使用户同时观察到虚拟图像和现实场景,本申请通过将光波导片设置在镜框的上边框,避免光波导片对现实场景造成干扰,用户佩戴AR眼镜时,AR眼镜不会影响日常活动,能够长期佩戴。
第一方面,本申请提供一种AR镜架,包括发光组件,用于发射显示光线;镜框,具有用于安装镜片的安装空间,镜框包括位于安装空间上方的上边框;以及光波导片,固定于上边框,光波导片用于接收显示光线并形成出射光,出射光射向安装空间的内侧且向下偏转,避免遮挡用户观察现实场景时的视野,防止在视野中出现彩虹纹对现实场景造成干扰,使得用户在佩戴电子设备时不会对日常活动产生影响,有利于电子设备在日常场景中的使用。
一种可能的实现方式中,光波导片包括衬底以及固定于衬底的耦入光栅和耦出光栅,耦入光栅和耦出光栅分别位于光波导片的两端,耦入光栅用于接收显示光线,耦出光栅用于射出出射光,出射光与第三方向形成夹角,第三方向为垂直于镜片的方向。
在本申请中,耦入光栅可以设置于衬底的内侧面,且延伸方向可以平行于第二方向,用于接收显示光线并改变光线的传播方向形成入射光。入射光的入射角大于衬底的全反射角,从而使得入射光能够在遇到衬底的表面时,能够发生全反射。耦入光栅可以采用表面浮雕光栅、全息体光栅等。在本申请中,衬底沿第一方向延伸,第二方向垂直于第一方向,第三方向则垂直于镜片的方向,也即第三方向平行于镜片的光轴方向。
在本申请中,耦出光栅和耦入光栅可以设置于衬底的同侧,也即耦出光栅也可以设置于衬底的内侧面。示例性的,耦出光栅也可以采用表面浮雕光栅、全息体光栅等。
一种可能的实现方式中,出射光与第三方向形成的夹角大于10°。夹角可以是出射光视场中心线与第三方向之间的夹角。夹角可以大于10°,例如夹角可以在20°至40°的范围内。夹角越大,则出射光视场在第二方向上的范围越大,可以根据需要进行调整夹角的大小,本实施例对此不作限定。
一种可能的实现方式中,多个耦出光栅包括层叠设置的第一耦出光栅和第二耦出光栅,第二耦出光栅位于第一耦出光栅背向衬底的一侧,第一耦出光栅和第二耦出光栅之间存在夹角,衬底沿第一方向延伸。
在本申请中,第一耦出光栅可以设置于衬底的表面,用于射出光线,并扩大出射光视场在第一方向上的范围。
一种可能的实现方式中,第一耦出光栅与第二方向之间存在第一夹角,第一夹角小于45°,第二方向垂直于第一方向。具体地,在衬底里面传播的入射光在每次遇到衬底表面的第一耦出光栅的时候,部分光线从光波导片中射出,另一部分则分为两部分,分别沿第一方向和第二方向折线型传播,从而实现二维扩瞳,以使出射光视场在第一方向和第二方向两个方向上的扩大,进一步扩大了出射光的视场范围。
一种可能的实现方式中,第二耦出光栅与第一方向之间存在第二夹角,第二夹角小于20°。第二耦出光栅则设置于第一耦出光栅背向衬底的一侧,且延伸方向可以平行于第一方向,用于使光线向下偏转,以扩大出射光视场在第二方向上的范围。
在本申请中,第二耦出光栅可以通过衍射作用改变光线的传播方向,使出射光向下偏转,以实现出射光视场在第二方向上的扩大,使得人眼可以观察到从位于上边框的光波导片射出的光线,从而实现既不遮挡用户观察现实场景的视野,又能看到虚拟图像的技术效果,避免对用户的日常活动产生影响,有利于用户的长期佩戴。
一种可能的实现方式中,光波导片包括中继光栅,耦出光栅设置于衬底的内侧面,中继光栅设置于衬底的外侧面且与耦出光栅相对设置,耦入光栅设置于衬底的内侧面或衬底的外侧面。
一种可能的实现方式中,耦出光栅在第二方向上的高度在5mm至15mm的范围内。
在本申请中,耦出光栅的高度可以对出射光视场的范围产生影响,例如,出射光视场的范围会随高度的增大而增大。示例性的,高度可以在8mm至15mm的范围内。虽然增大耦出光栅的高度可以扩大出射光视场的范围,但过大的耦出光栅会遮挡用户观察现实场景时的视野。可以根据实际需要调整高度,本申请对此不作限定。
一种可能的实现方式中,光波导片包括反光层或遮光层,反光层或遮光层设于光波导片的外侧;反光层可以将从光波导片外侧射出的光线反射,使其再次进入光栅中,如此重复,有效减少从光波导片外侧射出的光线,提高光线的传播效率,增加虚拟图像的亮度。遮光层则可以吸收从光波导片外侧射出的光线,避免显示光线传播至电子设备外侧,使得位于用户的视野前方的其他人无法看到虚拟图像,防止隐私泄露,有效保护用户的隐私。
一种可能的实现方式中,光波导片的上侧设有遮光层,避免环境光从光波导片的上侧进入,对虚拟图像的显示造成影响。
一种可能的实现方式中,反光层或遮光层设于光波导片的外侧、且光波导片的上侧设有遮光层。
一种可能的实现方式中,光波导片包括光波导本体和光学元件,光波导本体具有出射面,光学元件固定于出射面,光学元件用于使出射光向下偏转。光学元件采用棱镜结构,用于改变光线的出射方向,使从出射面射出的光线向下偏转形成出射光。
在本申请中,通过光学元件改变光路,可以省去第一实施例中耦出光栅的第二耦出光栅。可理解地,光学元件在第二方向上的尺寸一般小于第二耦出光栅,从而能够进一步减小耦出光栅的尺寸,使得电子设备的上边框可以设计得更窄,更贴近日常使用的眼镜的外观,便于用户在日常场景中的长期佩戴。
一种可能的实现方式中,光波导片的数量为多个,多个光波导片层叠设置。可理解地,光线可以具有不同的波段,而波段不同的光线在光波导片中的传输速度不同。示例性的,多个光波导片中至少存在一个光波导片与其他光波导片的折射率不同。设置多个具有不同折射 率的光波导片可以分别对不同波段的光线进行处理,以避免图像失真,保证图像的显示质量。
在其他一些实现方式中,多个光波导片的折射率也可以彼此相同,且至少存在一个光波导片与其他光波导片的光栅结构不同,也即耦入光栅、耦出光栅和/或中继光栅的结构不同。光栅结构可以对应不同波段的光线进行设计,使得多个具有不同光栅结构的光波导片可以分别对不同波段的光线进行处理。
一种可能的实现方式中,光波导片位于安装空间的上方,能够充分确保上方的视野,使得现实场景的视野进一步扩大,进一步减少对用户日常活动的干扰,使得电子设备的佩戴感更贴近日常使用的眼镜,使更多的用户易于接受并长期佩戴。
一种可能的实现方式中,光波导片位于安装空间的外侧,出射光经过安装空间的顶部区域。此时,显示光线可以经过镜片的处理后进入用户的眼睛,避免用户因视力方面的问题无法看清虚拟图像,影响体验感。
一种可能的实现方式中,镜框包括固定件,固定件固定安装于上边框,光波导片通过固定件固定于上边框。固定件可以包括顶板和侧板。顶板可以用于遮挡光波导片上方的环境光,避免杂光对虚拟图像的显示造成影响。侧板可以用于阻挡光线从光波导片的外侧射出,提高图像显示亮度,使得用户在环境光亮度高的应用场合中,也能看到清晰的虚拟图像,从而降低功耗,延长电子设备的续航时间。
一种可能的实现方式中,发光组件包括光源和光学系统,光学系统用于将光源发出的光线变为平行光线。光学系统可以安装于光源靠近第一镜框的一侧,用于将从光源发出的聚集光线转化为大体平行的光线,使显示光线中的每束光线能够以相同的入射角射入衬底,避免部分光线无法满足在光波导片中传导的条件,进而无法通过光波导片传递至人眼,造成图像失真的问题。
一种可能的实现方式中,AR镜架还包括镜腿,发光组件安装于镜腿。当镜架处于打开状态时,发光组件和光波导片可以相对设置,使得显示光线可以以大致垂直的方式射入光波导片,也可以实现发光组件和光波导片的位置复用,减小电子设备的尺寸。
一种可能的实现方式中,AR镜架还包括一个或多个功能器件,功能器件固定于镜框和/或镜腿,一个或多个功能器件包括麦克风、和/或扬声器、和/或触摸屏。使得AR镜架能够接收用户的语音和/或动作指令,并根据指令执行相应操作,或控制外部设备执行相应操作。在本申请中,AR镜架可实现添加日程、地图导航、拍摄照片和视频、展开视频和语音通话等功能,并可以通过移动通讯网络或WI FI等方式来实现无线网络接入;或通过移动通讯网络、WI FI或蓝牙等方式实现与外部设备的通信连接。
第二方面,本申请还提供一种AR眼镜,包括上述AR镜架和镜片,镜片固定安装于AR镜架。AR眼镜能够使用户同时观察到虚拟图像和现实场景,本申请通过将光波导片设置在镜框的上边框,避免光波导片对现实场景造成干扰,用户佩戴AR眼镜时,AR眼镜不会影响日常活动,能够长期佩戴。
附图说明
图1是本申请提供的电子设备在一些实施例中的结构示意图;
图2是图1所示电子设备在其他一些实施例中的结构示意图;
图3A是图1所示第一镜框在一些实施例中的结构示意图;
图3B是图3A所示第一镜框在另一角度的结构示意图;
图3C是图3A所示第一镜框在又一角度的结构示意图;
图4A是图3B所示光波导片在本申请提供的一些实施例中的结构示意图;
图4B是显示光线在图3B所示光波导片中传播的光路示意图;
图5是显示光线在图1所示电子设备中传播的光路示意图;
图6是图4A所示光波导片在其他一些实施例中的结构示意图;
图7是图4A所示光波导片在还一些实施例中的结构示意图;
图8是图7所示光波导片在其他一些实施例中的结构示意图;
图9A是图4A所示光波导片在另一些实施例中的结构示意图;
图9B是显示光线在图9A所示光波导片中传播的光路示意图;
图10A是图9A所示光波导片在其他一些实施例中的结构示意图;
图10B是显示光线在图10A所示光波导片中传播的光路示意图;
图11是图4A所示光波导片在更一些实施例中的结构示意图;
图12是图11所示光波导片在多一些实施例中的结构示意图;
图13是图3C所示电子设备在又一些实施例中的结构示意图;
图14是图3B所示电子设备在再一些实施例中的结构示意图;
图15是图1所示电子设备在又一些实施例中的结构示意图;
图16是图1所示电子设备在还一些实施例中的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。其中,本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,在本申请实施例的描述中,除非另有说明,“多个”是指两个或多于两个。“以上”包括本数,例如,两个以上包括两个。
请参阅图1,图1是本申请提供的电子设备100在一些实施例中的结构示意图。电子设备100可以是智能可穿戴设备,例如智能眼镜、智能头盔等。电子设备100也可以是车载设备等。其中,智能眼镜可以具有独立的操作系统,并搭载软件服务商提供的程序。示例性的,智能眼镜可实现添加日程、地图导航、拍摄照片和视频、展开视频和语音通话等功能,并可以通过移动通讯网络或WIFI等方式来实现无线网络接入;或通过移动通讯网络、WIFI或蓝牙等方式实现与外部设备的通信连接。具体地,智能眼镜能够接收用户的语音和/或动作指令,并根据指令执行相应操作,或控制外部设备执行相应操作。
示例性的,智能眼镜可以是AR(augmented reality,增强现实)眼镜或MR(mixedreality,混合现实)眼镜。其中,AR眼镜可以实现显示功能,例如通过光学显示技术提供人眼可见的虚拟图像。用户佩戴AR眼镜时,能够同时观察到现实场景和AR眼镜提供的虚拟图像,使得用户获得超越现实的感官体验。
本申请实施例以电子设备100为AR眼镜为例进行说明。电子设备100可以包括镜架1和固定安装于镜架1的镜片2。
示例性的,镜片2可以采用玻璃、树脂等透明的光学材料。镜片2可以具有一个或多个曲面,用于改变光线的光路,例如视力矫正镜片等,使得用户在佩戴眼镜时能够获得清晰的视野。镜片2也可以是太阳镜片、偏光镜片或智能变色镜片等,用于阻挡部分光线,遮挡强光。当然,镜片2也可以是平光镜。镜片2的数量可以是一个,也可以是两个或两个以上。示例性的,镜片2可以分别安装于两个镜架,每个镜架可以安装多个镜片2,且多个镜片2可以分别实现不同的功能,例如纠正用户的视力,阻挡部分光线等。多个镜片2可以层叠设 置,以实现功能的叠加。示例性的,多个镜片2中至少一个镜片2是可拆卸的,以便于替换为具有其他功能的镜片2,以提高电子设备100对不同应用场景的适用性,从而提升用户的使用体验。
在本实施例中,用户可以根据需要自行匹配不同功能的镜片2,在实现虚拟显示同时兼容了视力矫正,遮蔽强光等功能,便于用户在不同场景中的使用。
请参阅图1,镜架1可以展开至打开状态(如图1所示)。镜架1可以包括第一镜框11、第二镜框12、第一镜腿13和第二镜腿14。两个镜框(11,12)均位于两个镜腿(13,14)之间,两个镜框(11,12)的相互靠近的一端固定连接,相互远离的另一端分别与镜腿(13,14)连接。两个镜腿(13,14)也可以与镜框(11,12)大体垂直(对应镜框1的打开状态),也即镜腿(13,14)与镜框(11,12)上边框之间的夹角大致呈90°。此时,镜架1的形状大体贴合用户的头部形状,镜框(11,12)分别位于用户眼睛的前方,显示光线向下偏转射入眼睛,实现电子设备100的显示功能。
可理解地,镜架1处于打开状态时,镜腿(13,14)与镜框(11,12)上边框之间的夹角也可以相对90°存在少许偏差,例如85°、87°或者95°等,这种情况也认为镜腿(13,14)与镜框(11,12)垂直。
示例性的,镜架1也可以包括一个镜框(11或12)和对应的一个镜腿(13或14),也即用户佩戴电子设备100时,镜框(11或12)位于单侧眼睛的前方。当镜架1采用单镜框和单镜腿结构时,镜架1的结构可以参阅两个镜框(11,12)和两个镜腿(13,14)结构的描述进行适应性设计。
示例性的,第一镜腿13和/或第二镜腿14也可以为两折结构。示例性的,第一镜腿13可以包括连接的第一部分和第二部分。第一部分和第二部分可以相对展开或相对折叠,以便于收容。当镜架1处于打开状态时,第一部分和第二部分可以相对展开。可理解地,第二镜腿14的结构可以采用与第一镜腿13相同的两折结构,也可以采用非折叠结构,本申请实施例对此不作限定。
示例性的,第一镜框11可以具有用于安装镜片2的安装空间20。第一镜框11包括位于安装空间20上方的上边框111和下边框112,上边框111和下边框112共同组成第一镜框11。可以理解的是,本申请中涉及的“上”、“下”、“内”、“外”等方位用词,是参考附加图式的方位进行的描述,并不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
示例性的,镜架1可以包括光波导片3和发光组件4。光波导片3可以用于接收显示光线,并形成出射光,实现显示虚拟图像的功能。本实施例中使用光波导片3实现显示功能,与传统采用棱镜等光学元件的方案相比,有效减小了电子设备100的体积和重量,有利于用户的长期佩戴。
此外,光波导片3可以固定于第一镜框11的上边框111,出射光射向安装空间20的内侧且向下偏转,避免遮挡用户观察现实场景时的视野,防止在视野中出现彩虹纹对现实场景造成干扰,使得用户在佩戴电子设备100时不会对日常活动产生影响,有利于电子设备100在日常场景中的使用。
示例性的,光波导片3设置于第一镜框11。在其他一些实施例中,光波导片3也可以设置于第二镜框12。在其他一些实施例中,光波导片3的数量可以为两个,分别固定于第一镜框11的上边框111和第二镜框12的上边框。两个光波导片3可以用于显示不同的虚拟图像,或交替地显示虚拟图像,以满足不同的需求。
示例性的,发光组件4可以安装于第一镜腿13。具体地,第一镜腿13可以设有收容腔(图未示)。收容腔的开口位于第一镜腿13靠近第一镜框11的一端。当镜架1处于打开状态时,收容腔的开口面向光波导片3。发光组件4可以固定安装于收容腔内,用于发射显示光线。当镜架1处于打开状态时,发光组件4发出的显示光线可以射入光波导片3靠近第一镜腿13的一端,并经由光波导片3传导、向远离第一镜腿13的方向传播,之后从光波导片3中射出。
本实施例中,发光组件4安装于第一镜腿13的收容腔内,能够避免光线外泄,防止信息泄露,有效保护用户的隐私。此外,也可以防止环境光对光线造成干扰,影响虚拟图像的显示效果。
在本实施例中,当镜架1处于打开状态时,发光组件4和光波导片3可以相对设置,使得显示光线可以以大致垂直的方式射入光波导片3,也可以实现发光组件4和光波导片3的位置复用,减小电子设备100的尺寸。
可理解地,发光组件4的数量可以为两个,两个发光组件4分别安装于第一镜腿13和第二镜腿14。相对地,第二镜腿14也可以设有第二收容腔(图未示),第二收容腔的具体设置可参考第一收容腔。两个发光组件4相应地固定安装于第一收容腔和第二收容腔。示例性的,发光组件4的数量也可以为多个、且每个收容腔可以安装多个发光组件4,以实现不同的显示效果。
在其他一些实施例中,发光组件4还可以固定于第一镜框11或第二镜框12。镜架1可以包括光学组件(图未示),用于改变从发光组件4发出的显示光线的光路,使得显示光线以大致垂直的方式射入光波导片3。
可理解地,发光组件4的数量可以为两个,两个发光组件4分别安装于第一镜框11和第二镜框12。发光组件4的数量也可以为多个、且每个镜框可以安装多个发光组件4,以实现不同的显示效果。
示例性的,镜架1还可以包括固定安装于第一收容腔或第二收容腔内的控制芯片(图未示)。控制芯片可以与发光组件4电连接,用于驱动发光组件4发出光线,将信息以光线形式传递至光波导片3。示例性的,控制芯片可以分别与位于第一收容腔和第二收容腔内的多个发光组件4电连接,用于控制多个发光组件4交替地发出光线,使得显示内容可以定期在左右眼之间切换,避免长期观看虚拟图像导致的用眼健康问题。此外,控制芯片还可以通过移动通讯网络、WIFI或蓝牙等方式实现与外部设备的通信连接,用于驱动外部设备实现添加日程、地图导航、拍摄照片和视频、展开视频和语音通话等功能。
示例性的,镜架1还可以包括麦克风5、扬声器6及触摸屏7等。
一些实施例中,麦克风5可以设置于第一镜框11和第二镜框12之间的连接部、且与控制芯片电连接。连接部可以设有空腔,用于容置麦克风5。麦克风5可以用于接收用户的语音指令,并将语音指令转化为音频电信号传递至控制芯片,控制芯片根据音频电信号携带的语音指令完成相应的操作。此外,控制芯片也可以根据语音指令控制外部设备完成相应的操作。因此,在本实施例中,用户可以通过语音指令控制电子设备100和/或外部设备实现相应功能。示例性的,连接部内侧可以设有收音孔(图未示),使得麦克风5能够接收到更多的语音信号,提升对用户语音指令的识别能力,保证通话质量。示例性的,麦克风5的数量也可以为多个,例如两个等,本实施例对此不作限定。
一些实施例中,扬声器6可以固定于第一镜腿13和/或第二镜腿14。示例性的,扬声器6的数量可以为两个,且分别设置于第一镜腿13和第二镜腿14远离镜框(11,12)的一端。 第一镜腿13和第二镜腿14可以分别设有空腔,用于容置扬声器6。扬声器6可以与控制芯片电连接,用于将来自控制芯片的音频电信号转化为人耳可识别的声音信号。当用户佩戴电子设备100时,第一镜腿13和第二镜腿14从镜框(11,12)的侧边延伸至耳朵附近。因此,扬声器6距人耳较近,使得由扬声器6发出的声音信号能够近距离地传递至用户的耳朵内,使得用户能够听得更清楚。此外,扬声器6贴近用户的耳朵设置,能够防止声音信号外泄,有效保护用户的隐私。
示例性的,扬声器6可以利用空气传播的方式将声音信号传递至人耳。此时,第一镜腿13可以对应扬声器6设有扬声孔61。扬声孔61可以位于第一镜腿13靠近镜框(11,12)的一侧。扬声孔61能够增大声音信号的传播效率,使得用户能够更清晰地获取声音信号,提升体验感。示例性的,第二镜腿14也可以设有扬声孔。
在其他一些实施例中,扬声器6也可以采用骨传导技术,也即通过特定结构的运动使得用户的颅骨等组织振动,利用颅骨传播的方式将声音信号传递至人耳,避免受到环境因素的影响,提高声音质量,并有效保护用户的隐私。
示例性的,扬声器6的数量可以为一个,设置于第一镜腿13或第二镜腿14。扬声器6的数量也可以为三个以上,例如三个、四个等。多个扬声器6可以分别设置于第一镜腿13和/或第二镜腿14。扬声器6的数量可根据实际需要进行调整,本申请实施例对此不作限定。
示例性的,触摸屏7的数量可以为两个,且分别固定安装于第一镜腿13和第二镜腿14远离对方的一侧,也即用户佩戴电子设备100时,第一镜腿13和第二镜腿14背向用户头部的一侧。触摸屏7可以与控制芯片电连接。触摸屏7可以用于接收用户施加在触摸屏7的外观面的触控信息,并将触控信息转化为电信号、传递至控制芯片,控制芯片根据电信号完成相应的操作或控制外部设备完成相应的操作。触摸屏7的外观面为触摸屏7背向用户头部的侧面。
本实施例中,触摸屏7的外观面可以组成镜腿侧面的一部分,且与镜腿的侧面平滑过渡,以提升电子设备100的美观性,使其更接近用户日常佩戴的眼镜的外观。在其他一些实施例中,触摸屏7的外观面可以相对于镜腿的外侧凸起,便于用户感知到触摸屏7的位置,提升可操作性。
示例性的,触摸屏7的数量也可以为一个,设置于第一镜腿13或第二镜腿14。触摸屏7的数量也可以是三个以上,例如三个、四个等。多个触摸屏7可以分别设置于第一镜腿13和/或第二镜腿14。触摸屏7的数量可根据实际需要进行调整,本申请实施例对此不作限定。
可理解地,第二镜框12的结构可以与第一镜框11相同,也可以与第一镜框11不同,本申请实施例对此不作限定。
请一并参阅图1和图2,图2是图1所示电子设备100在其他一些实施例中的结构示意图。在本实施例中,镜架1可以不包括下边框112以提升镜架1的美观性,满足消费者对于产品外观的需求。此时,镜片2可以固定于上边框111。
下面将以光波导片3固定于第一镜框11为例,对电子设备100的显示原理及光波导片3的结构进行具体介绍。
请参阅图3A和图3B,图3A是图1所示第一镜框11在一些实施例中的结构示意图,图3B是图3A所示第一镜框11在另一角度的结构示意图。在第一实施例中,当用户佩戴电子设备100时,第一镜框11可以位于用户的眼睛前方。此时,其他人能看到第一镜框11的外侧。如图3A所示,第一镜框11的外观与日常佩戴的普通眼镜的镜框相近,为圆角方形或椭圆形的边框,使得更多的用户易于接受并能够在日常使用场景中长期佩戴。
第一镜框11面向用户眼睛的内侧如图3B所示。示例性的,光波导片3可以包括衬底33以及固定于衬底33的耦入光栅31和耦出光栅32。耦入光栅31和耦出光栅32可以分别位于光波导片3的两端,且间隔设置。耦入光栅31用于接收显示光线,耦出光栅32用于射出出射光。
请一并参阅图3B和图3C,图3C是图3A所示第一镜框11在又一角度的结构示意图。在本申请中,当用户佩戴电子设备100时,第一镜框11可以置于眼睛的前侧,光波导片3可以位于安装空间20的上方,能够充分确保上方的视野,使得现实场景的视野进一步扩大,进一步减少对用户日常活动的干扰,使得电子设备100的佩戴感更贴近日常使用的眼镜,使更多的用户易于接受并长期佩戴。在本实施例中,显示光线经光波导片3的传导和偏转,射向安装空间20的内侧,并向下偏转,此时用户可以同时看到虚拟图像和现实场景。
示例性的,出射光可以与第三方向Z形成夹角α。在本申请实施例中,衬底33沿第一方向X延伸,第二方向Y垂直于第一方向X,第三方向Z则垂直于镜片2的方向,也即第三方向Z平行于镜片2的光轴方向。
示例性的,夹角α可以是出射光视场中心线与第三方向Z之间的夹角。夹角α可以大于10°,例如夹角α可以在20°至40°的范围内。夹角α越大,则出射光视场在第二方向Y上的范围越大,可以根据需要进行调整夹角α的大小,本实施例对此不作限定。在本实施例中,从耦出光栅32的上下边缘射出的出射光之间的区域为出射光视场。出射光可以具有出射光视场中心线,在本实施例中,位于出射光视场在平面YZ内的区域中部的出射光可以作为出射光视场中心线。
示例性的,耦出光栅32在第二方向Y上可以具有高度h1。示例性的,耦出光栅32的高度h1可以对出射光视场在平面YZ的范围产生影响,例如,出射光视场的范围会随高度h1的增大而增大。示例性的,高度h1可以在8mm至15mm的范围内。虽然增大耦出光栅32的高度h1可以扩大出射光视场的范围,但过大的耦出光栅32会遮挡用户观察现实场景时的视野。可以根据实际需要调整高度h1,本申请实施例对此不作限定。
请一并参阅图3B和图4A,图4A是图3B所示光波导片3在本申请提供的一些实施例中的结构示意图。在第一实施例中,衬底33可以采用单色或多色材料,使得电子设备100更美观,也可以使光波导片3的外观与上边框111更加接近用户日常佩戴的眼镜的外观,便于用户在日常场景中的佩戴。
示例性的,耦入光栅31可以设置于衬底33的内侧面,且延伸方向可以平行于第二方向Y,用于接收显示光线并改变光线的传播方向形成入射光。入射光的入射角大于衬底33的全反射角,从而使得入射光能够在遇到衬底33的表面时,能够发生全反射。耦入光栅31可以采用表面浮雕光栅、全息体光栅等。
示例性的,耦出光栅32和耦入光栅31可以设置于衬底33的同侧,也即耦出光栅33也可以设置于衬底33的内侧面。示例性的,耦出光栅32也可以采用表面浮雕光栅、全息体光栅等。
耦出光栅32可以采用双层光栅,也即包括层叠设置的第一耦出光栅321和第二耦出光栅322,分别用于射出光线和偏转光线,以形成出射光。
其中,第一耦出光栅321可以设置于衬底33的表面,用于射出光线,并扩大出射光视场在第一方向X上的范围。第一耦出光栅321的延伸方向与第二方向Y之间可以存在第一夹角θ,例如第一夹角θ可以小于45°。
请参阅图4B,图4B是显示光线在图3B所示光波导片3中传播的光路示意图,第一耦出 光栅321与第二方向Y之间可以存在第一夹角θ,以实现二维扩瞳。具体地,在衬底33里面传播的入射光在每次遇到衬底33表面的第一耦出光栅321的时候,部分光线从光波导片3中射出,另一部分则分为两部分,分别沿第一方向X和第二方向Y折线型传播,从而实现二维扩瞳,以使出射光视场在第一方向X和第二方向Y两个方向上的扩大,进一步扩大了出射光的视场范围。
请一并参阅图3C和图4B。第二耦出光栅322则设置于第一耦出光栅322背向衬底33的一侧,且延伸方向可以平行于第一方向X,用于使光线向下偏转,以扩大出射光视场在第二方向Y上的范围。
示例性的,第二耦出光栅322可以通过衍射作用改变光线的传播方向,使出射光向下偏转,以实现出射光视场在第二方向Y上的扩大,使得人眼可以观察到从位于上边框111的光波导片3射出的光线,从而实现既不遮挡用户观察现实场景的视野,又能看到虚拟图像的技术效果,避免对用户的日常活动产生影响,有利于用户的长期佩戴。
请一并参阅图4B和图5,图5是显示光线在图1所示电子设备100中传播的光路示意图。显示光线以与第三方向Z呈小角度夹角的方向射入耦入光栅31,经过耦入光栅31后形成入射光,以大于全反射角的入射角射入衬底33。入射光在遇到衬底33的表面时发生全反射,并沿第一方向X传播,在传播过程中遇到耦出光栅32,经耦出光栅32后从光波导片3中射出,形成出射光并进入人眼,出射光射向安装空间20的内侧且向下偏转。
示例性的,射入光波导片3的显示光线与第三方向Z之间可以存在夹角,夹角可以小于10°。可理解地,当耦入光栅31设置于衬底33的外侧面时,显示光线以大致垂直的方向射入衬底33,能够避免衬底33对射入光线的反射,提高光线的传播效率。
在本实施例中,衬底33可以采用长条形的透明光学材料,且具有全反射角。显示光线从空气中射入衬底33,若光线射入衬底33的入射角大于或等于全反射角,则入射光在衬底33中沿传播时遇到衬底33的内侧面或外侧面时,能够发生全反射,并以相同的入射角继续向另一侧面传播,使得光线在衬底33中沿第一方向X以折线型传播。此外,入射光在衬底33中传播的过程中无损失和泄露,从而避免图像的失真,并提升图像的亮度。
示例性的,耦出光栅32的第一耦出光栅321可以通过一维扩瞳技术实现出射光视场的扩大,以兼容更多不同瞳距大小的人群。具体地,在衬底33里面传播的入射光在每次遇到衬底33表面的第一耦出光栅321的时候,就有一部分光线在光栅的衍射作用下从光波导片3中射出,另一部分光线则继续以原方式在衬底33中折线型传播直到下一次遇到衬底33表面的第一耦出光栅321,如此重复,以实现出射光视场在第一方向X上的扩大。
请一并参阅图1和图5,示例性的,发光组件4可以包括光源41和光学系统42。光学系统42可以安装于光源41靠近第一镜框11的一侧,用于将从光源41发出的聚集光线转化为大体平行的光线,使显示光线中的每束光线能够以相同的入射角射入衬底33,避免部分光线无法满足在光波导片3中传导的条件,进而无法通过光波导片3传递至人眼,造成图像失真的问题。
在本实施例中,光源41可以采用LCOS(liquid crystal on silicon,液晶附硅)显示屏、OLED(organic light-emitting diode,有机电致激光二极管)显示屏、microLED显示屏、LCD显示屏等,本实施例对此不作限定,可以根据虚拟画面的清晰度、亮度等参数的要求进行选择。此外,光学系统42可以包括棱镜、镜片2等光学结构。光学结构可以具有改变光路、分光、过滤和筛选光线等功能。可理解地,光学系统42可以包括一个或多个光学结构,用于对从光源41发出的光线进行处理,获得大致平行的入射光线。
请一并参阅图4A和图6,图6是图4A所示光波导片3在其他一些实施例中的结构示意图。示例性的,第二耦出光栅322可以包括彼此平行且间隔设置的多个光学构件。多个光学构件的延伸方向可以平行于第一方向X,也可以与第一方向X之间存在第二夹角β,第二夹角β可以小于20°,本实施例对此不作限定。
示例性的,耦出光栅32也可以采用单层光栅,此时单层光栅可以具有二维光栅结构,同时实现光线的射出和偏转,以减小耦出光栅32的尺寸。耦出光栅32还可以采用三层以上的光栅,本实施例对此不作限定。
请参阅图7,图7是图4A所示光波导片3在还一些实施例中的结构示意图。在第二实施例中,光波导片3a可以包括衬底33a、耦入光栅31a和耦出光栅32a。光波导片3a的大部分结构可以参考第一实施例,在此不再赘述。在本实施例中,光波导片3a可以采用反射式结构,也即耦入光栅31a和耦出光栅32a可以设置于衬底33a的外侧。光波导片3a可以包括反光层或遮光层,反光层或遮光层可以设于光波导片3a的外侧,也即耦入光栅31a和耦出光栅32a的外侧。光波导片3a也可以不包括反光层或遮光层,本实施例对此不作限定。
请参阅图8,图8是图7所示光波导片3在其他一些实施例中的结构示意图。在第三实施例中,光波导片3b可以包括衬底33b、耦入光栅31b和耦出光栅32b。其中,光波导片3b的大部分结构可以参考第一实施例,在此不再赘述。在本实施例中,光波导片3b可以采用透射式结构,也即耦入光栅31b和耦出光栅32b可以设置于衬底33b的内侧面。
请参阅图9A,图9A是图4A所示光波导片3在另一些实施例中的结构示意图。在第四实施例中,光波导片3c可以包括衬底33c、耦入光栅31c、耦出光栅32c和中继光栅34c。其中,光波导片3c的大部分结构及位置关系可以参考第一实施例,在此不再赘述。耦出光栅32c可以设置于衬底33c的内侧面,耦入光栅31c可以设置于衬底33c的内侧面。在本实施例中,中继光栅34c可以位于衬底33c的外侧面、且与耦入光栅32c相对设置。中继光栅34c用于改变光线的传播方向,使其能够从衬底33c中射出。
示例性的,中继光栅34c可以与第二方向Y之间存在第三夹角θ1,用于扩大出射光视场在第一方向X和第二方向Y上的范围。示例性的,第三夹角θ1可以小于45°,例如15°,30°等,以实现出射光视场在第一方向X和第二方向Y上的扩大。
具体地,请一并参阅图9A和图9B,图9B是显示光线在图9A所示光波导片3c中传播的光路示意图。中继光栅34c还用于扩大出射光视场在第一方向X上的范围。可理解地,入射光遇到中继光栅34c后,部分光线的传播方向改变,从衬底33c中射出,另一部分仍在衬底33c内继续沿第一方向X折线型传播,直到再次遇到中继光栅34c,重复上述过程,以实现出射光视场在第一方向X上的扩大。
在第四实施例中,显示光线射入衬底33c,遇到耦入光栅31c后改变方向,形成入射光。入射光在衬底33c中沿第一方向X折线型传播。入射光传播过程中遇到中继光栅34c后,扩大传播范围,分别向第一方向X和第二方向Y传播,在遇到耦出光栅32c后射出衬底33c并向下偏转形成出射光。另一部分则继续以原方式沿第一方向X折线型传播,直到再次遇到中继光栅34c,如此反复进行,从而将显示光线传递至人眼,实现电子设备100的显示功能。
请一并参阅图10A和图10B,图10A是图9A所示光波导片3在其他一些实施例中的结构示意图,图10B是显示光线在图10A所示光波导片3d中传播的光路示意图。在第五实施例中,光波导片3d可以包括衬底33d、耦入光栅31d、耦出光栅32d和中继光栅34d。光波导片3d的大部分结构可以参考第四实施例,在此不再赘述。在本实施例中,耦入光栅31d可以与耦出光栅32d分别设置于衬底33d的两侧,也即耦入光栅31d可以设置于衬底33d的外侧。
请参阅图11,图11是图4A所示光波导片3在更一些实施例中的结构示意图。在第六实施例中,光波导片3e可以包括光波导本体33e和光学元件35e。光波导本体33e可以包括衬底33e、耦入光栅(图未示)和耦出光栅32e。其中,光波导片3e的大部分结构可以参考第一实施例,在此不再赘述。光波导本体33e具有出射面,光学元件35e可以固定于出射面。光学元件35e可以采用棱镜结构,用于改变光线的出射方向,使从出射面射出的光线向下偏转形成出射光。
本实施例中,通过光学元件35e改变光路,可以省去第一实施例中耦出光栅32e的第二耦出光栅。可理解地,光学元件35e在第二方向Y上的尺寸一般小于第二耦出光栅,从而能够进一步减小耦出光栅32e的尺寸,使得电子设备100的上边框可以设计得更窄,更贴近日常使用的眼镜的外观,便于用户在日常场景中的长期佩戴。
在本实施例中,耦出光栅32e可以用于射出光线,并实现出射光视场在第一方向X上的扩大。在其他一些实施例中,耦出光栅32e也可以实现出射光的偏转,并通过光学元件35e进一步校正出射光的出射方向,从而更精确地控制出射方向,提升虚拟图像的显示效果。
请一并参阅图12,图12是图11所示光波导片3在多一些实施例中的结构示意图。在第七实施例中,光波导片3f的大部分结构可以参考第六实施例,在此不再赘述。在本实施例中,光学元件35f可以包括多个彼此连接的棱镜结构,且多个棱镜的斜面彼此平行。可以理解地,棱镜主要通过斜面对光线进行偏转,本实施例通过多个棱镜实现对光线的偏转,有效减小了光学元件35f在第三方向Z上的尺寸,进一步降低了光波导片3f的尺寸,使得电子设备100的外观更贴近日常使用的眼镜。
在本申请实施例中,示例性的,光波导片3的数量可以为三个以上,例如三个,五个等。多个光波导片3可以层叠设置,且均固定于同一个镜框,例如第一镜框11的上边框111或第二镜框12的上边框。多个光波导片3固定连接,且彼此串联。多个光波导片3中至少存在一个光波导片3与其他光波导片3的折射率不同。可理解地,光线可以具有不同的波段,而波段不同的光线在光波导片3中的传输速度不同。设置多个具有不同折射率的光波导片3可以分别对不同波段的光线进行处理,以避免图像失真,保证图像的显示质量。
在其他一些实施例中,多个光波导片3的折射率也可以彼此相同,且至少存在一个光波导片3与其他光波导片3的光栅结构不同,也即耦入光栅31、耦出光栅32和/或中继光栅(34c,34d)的结构不同。光栅结构可以对应不同波段的光线进行设计,使得多个具有不同光栅结构的光波导片3可以分别对不同波段的光线进行处理。
请参阅图13,图13是图3C所示电子设备100在又一些实施例中的结构示意图。示例性的,光波导片3可以位于安装空间20的外侧,出射光可以经过安装空间20的顶部区域。此时,显示光线可以经过镜片2的处理后进入用户的眼睛,避免用户因视力方面的问题无法看清虚拟图像,影响体验感。
第一镜框11可以包括固定安装于上边框111的固定件113。具体地,光波导片3可以固定安装于固定件113的内侧面。固定件113可以是半包裹结构,也即可以包括固定连接的顶板1131和侧板1132,顶板1131的顶面可以与上边框111的顶面平滑过渡,侧板1132则可以相对安装空间20设置。光波导片3位于侧板1132和上边框111之间,并与侧板1132和顶板1131固定连接。此时,光波导片3可以位于安装空间20的外侧。
示例性的,固定件113可以不包括顶板1131,侧板1132可以通过结构件与第一镜框11的侧边固定连接(图未示)。光波导片3的上侧可以设有遮光层,避免环境光从光波导片3的上侧进入,对虚拟图像的显示造成影响。此时,光波导片3可以位于安装空间20的外侧或上 方。
示例性的,固定件113可以不包括侧板1132,光波导片3可以与顶板1131固定连接。此时,光波导片3可以位于安装空间20的外侧。光波导片3可以包括反光层或遮光层,反光层或遮光层可以设于光波导片3的外侧。在本申请实施例中,当衬底33的外侧设有耦入光栅31和/或耦出光栅32时,光波导片3的外侧可以指耦入光栅31和/或耦出光栅32的外侧。当衬底33的外侧未设有耦入光栅31和/或耦出光栅32时,光波导片3的外侧可以指衬底33的外侧。
可理解地,用于射出光线的光栅的效果是使光线在衍射后改变传播方向,并形成传播方向相对光栅对称的两束光线,也即两束光线分别从光波导片3内侧和外侧射出。反光层可以将从光波导片3外侧射出的光线反射,使其再次进入光栅中,如此重复,有效减少从光波导片3外侧射出的光线,提高光线的传播效率,增加虚拟图像的亮度。遮光层则可以吸收从光波导片3外侧射出的光线,避免显示光线传播至电子设备100外侧,使得位于用户的视野前方的其他人无法看到虚拟图像,防止隐私泄露,有效保护用户的隐私。
示例性的,固定件113可以不包括顶板1131和侧板1132。此时,光波导片3可以位于安装空间20的外侧或上方。固定件113可以采用卡扣等固定方式将光波导片3固定于上边框111。光波导片3的上侧可以设有遮光层,且光波导片3可以包括反光层或遮光层,反光层或遮光层可以设于光波导片3的外侧。本申请实施例省去了顶板1131和/或侧板1132,减小固定件113的体积,使得电子设备100的外观更接近于日常使用的眼镜,便于用户在日常场景中的使用。此外,还减小了电子设备100的重量,便于用户的长期佩戴。
示例性的,侧板1132和/或顶板1131可以采用透光率近似为零的材料,顶板1131可以用于遮挡光波导片3上方的环境光,避免杂光对虚拟图像的显示造成影响。侧板1132可以用于阻挡光线从光波导片3的外侧射出,提高图像显示亮度,使得用户在环境光亮度高的应用场合中,也能看到清晰的虚拟图像,从而降低功耗,延长电子设备100的续航时间。可理解地,侧板1132和/或顶板1131也可以采用透光率大于零的材料,本申请对此不作限定。
示例性的,侧板1132和/或顶板1131可以采用透光率可调的材料,例如光致变色材料,电致变色材料等。透光率可以随着环境光照强度的增强而降低,能够减少从光波导片3外侧射出的光线,提高图像显示亮度,并降低功耗,延长电子设备100的续航时间。
示例性的,透光率也可以根据需要而变化,例如电子设备100处于显示状态,驱动芯片通过改变施加于侧板1132和/或顶板1131的电压,降低透光率,提高显示图像的亮度;当电子设备100处于非显示状态,驱动芯片通过改变施加于侧板1132和/或顶板1131的电压,增大透光率,使得电子设备100的外观更接近于日常使用的眼镜,便于用户在日常场景中的使用。
在其他一些实施例中,侧板1132和/或顶板1131也可以采用固定透光率的材料,或透光率沿第二方向Y渐变的材料,本申请对此不作限定。
请一并参阅图5和图14,图14是图3B所示电子设备100在再一些实施例中的结构示意图。耦出光栅32在第一方向X上的尺寸影响出射光视场在第一方向X上的范围,可根据需要对耦出光栅32在第一方向X上的尺寸进行调节。例如,可以减小耦出光栅32在第一方向X上的尺寸,使得光波导片3对电子设备100外观的影响更小,更易被消费者接受。
请参阅图15,图15是图1所示电子设备100在又一些实施例中的结构示意图。示例性的,电子设备100也可以不包括镜片2,本申请实施例对此不作限定。
请参阅图16,图16是图1所示电子设备100在还一些实施例中的结构示意图。示例性 的,镜架1也可以不包括镜腿,采用绑带、调节带等形式将镜框(一个或两个)置于人眼前方,以实现显示功能,也可以与用户的眼镜叠加使用,例如将镜架1架设在眼镜的镜框内侧或上方等。本实施例对镜架1与用户的交互方式不作限定,只要将镜框置于人眼的前方即可。
以上描述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内;在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种AR镜架,其特征在于,包括:
    发光组件,用于发射显示光线;
    镜框,具有用于安装镜片的安装空间,所述镜框包括位于所述安装空间上方的上边框;以及,
    光波导片,固定于所述上边框,所述光波导片用于接收所述显示光线并形成出射光,所述出射光射向所述安装空间的内侧且向下偏转。
  2. 如权利要求1所述的AR镜架,其特征在于,所述光波导片包括衬底以及固定于所述衬底的耦入光栅和耦出光栅,所述耦入光栅和所述耦出光栅分别位于所述光波导片的两端,所述耦入光栅用于接收所述显示光线,所述耦出光栅用于射出所述出射光,所述出射光与第三方向形成夹角,所述第三方向为垂直于所述镜片的方向。
  3. 如权利要求2所述的AR镜架,其特征在于,所述夹角大于10°。
  4. 如权利要求3所述的AR镜架,其特征在于,多个所述耦出光栅包括层叠设置的第一耦出光栅和第二耦出光栅,所述第二耦出光栅位于所述第一耦出光栅背向所述衬底的一侧,所述第一耦出光栅和所述第二耦出光栅之间存在夹角,所述衬底沿第一方向延伸。
  5. 如权利要求4所述的AR镜架,其特征在于,所述第一耦出光栅与第二方向之间存在第一夹角,所述第一夹角小于45°,所述第二方向垂直于所述第一方向。
  6. 如权利要求4所述的AR镜架,其特征在于,所述第二耦出光栅与所述第一方向之间存在第二夹角,所述第二夹角小于20°。
  7. 如权利要求2所述的AR镜架,其特征在于,所述光波导片包括中继光栅,所述耦出光栅设置于所述衬底的内侧面,所述中继光栅设置于所述衬底的外侧面且与所述耦出光栅相对设置,所述耦入光栅设置于所述衬底的内侧面或所述衬底的外侧面。
  8. 如权利要求5所述的AR镜架,其特征在于,所述耦出光栅在所述第二方向上的高度在5mm至15mm的范围内。
  9. 如权利要求2至8中任一项所述的AR镜架,其特征在于,所述光波导片包括反光层或遮光层,所述反光层或遮光层设于所述光波导片的外侧;
    和/或,所述光波导片的上侧设有遮光层。
  10. 如权利要求1至9中任一项所述的AR镜架,其特征在于,所述光波导片包括光波导本体和光学元件,所述光波导本体具有出射面,所述光学元件固定于所述出射面,所述光学元件用于使所述出射光向下偏转。
  11. 如权利要求1至10中任一项所述的AR镜架,其特征在于,所述光波导片的数量为多个,多个所述光波导片层叠设置。
  12. 如权利要求1至11中任一项所述的AR镜架,其特征在于,所述光波导片位于所述安装空间的上方。
  13. 如权利要求1至11中任一项所述的AR镜架,其特征在于,所述光波导片位于所述安装空间的外侧,所述出射光经过所述安装空间的顶部区域。
  14. 如权利要求12或13所述的AR镜架,其特征在于,所述镜框包括固定件,所述固定件固定安装于所述上边框,所述光波导片通过所述固定件固定于所述上边框。
  15. 如权利要求14中任一项所述的AR镜架,其特征在于,所述发光组件包括光源和光学系统,所述光学系统用于将所述光源发出的光线变为平行光线。
  16. 如权利要求15中任一项所述的AR镜架,其特征在于,所述AR镜架还包括镜腿,所 述发光组件安装于所述镜腿。
  17. 如权利要求16所述的AR镜架,其特征在于,所述AR镜架还包括一个或多个功能器件,所述功能器件固定于所述镜框和/或镜腿,一个或多个功能器件包括麦克风、和/或扬声器、和/或触摸屏。
  18. 一种AR眼镜,其特征在于,包括如权利要求1至17中任一项所述的镜架和镜片,所述镜片固定安装于所述镜架。
PCT/CN2022/087729 2021-04-22 2022-04-19 Ar镜架和ar眼镜 WO2022222928A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110438424.6A CN115236854B (zh) 2021-04-22 2021-04-22 Ar镜架和ar眼镜
CN202110438424.6 2021-04-22

Publications (1)

Publication Number Publication Date
WO2022222928A1 true WO2022222928A1 (zh) 2022-10-27

Family

ID=83666130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087729 WO2022222928A1 (zh) 2021-04-22 2022-04-19 Ar镜架和ar眼镜

Country Status (2)

Country Link
CN (1) CN115236854B (zh)
WO (1) WO2022222928A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107111137A (zh) * 2015-01-05 2017-08-29 微软技术许可有限责任公司 具有弯曲光路的虚拟图像显示器
CN107250888A (zh) * 2015-02-09 2017-10-13 微软技术许可有限责任公司 显示系统
CN109031663A (zh) * 2013-09-27 2018-12-18 图茨技术股份有限公司 用于可装配于用户头上并产生图像的显示装置的眼镜片、及具备眼镜片的显示装置
US20190129183A1 (en) * 2016-12-08 2019-05-02 Snail Innovation Institute Integrated frames in wearable display devices
CN110376737A (zh) * 2019-05-28 2019-10-25 京东方科技集团股份有限公司 光学显示系统、显示控制装置和增强现实设备
CN110941089A (zh) * 2018-09-24 2020-03-31 苹果公司 具有交错式光重定向器的光学系统
CN111381377A (zh) * 2020-04-24 2020-07-07 深圳珑璟光电技术有限公司 一种近眼显示设备
CN111886447A (zh) * 2018-01-23 2020-11-03 脸谱科技有限责任公司 用于减少波导显示器中的彩虹的倾斜表面浮雕光栅

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2165234A1 (en) * 2007-06-07 2010-03-24 Panagiotis Pavlopoulos An eyewear comprising at least one display device
CN204903865U (zh) * 2015-07-28 2015-12-23 王志冲 增强现实眼镜的近眼显示器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031663A (zh) * 2013-09-27 2018-12-18 图茨技术股份有限公司 用于可装配于用户头上并产生图像的显示装置的眼镜片、及具备眼镜片的显示装置
CN107111137A (zh) * 2015-01-05 2017-08-29 微软技术许可有限责任公司 具有弯曲光路的虚拟图像显示器
CN107250888A (zh) * 2015-02-09 2017-10-13 微软技术许可有限责任公司 显示系统
US20190129183A1 (en) * 2016-12-08 2019-05-02 Snail Innovation Institute Integrated frames in wearable display devices
CN111886447A (zh) * 2018-01-23 2020-11-03 脸谱科技有限责任公司 用于减少波导显示器中的彩虹的倾斜表面浮雕光栅
CN110941089A (zh) * 2018-09-24 2020-03-31 苹果公司 具有交错式光重定向器的光学系统
CN110376737A (zh) * 2019-05-28 2019-10-25 京东方科技集团股份有限公司 光学显示系统、显示控制装置和增强现实设备
CN111381377A (zh) * 2020-04-24 2020-07-07 深圳珑璟光电技术有限公司 一种近眼显示设备

Also Published As

Publication number Publication date
CN115236854A (zh) 2022-10-25
CN115236854B (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
JP6804522B2 (ja) 回折バックライトディスプレイおよびシステム
EP2930552B1 (en) Display apparatus and optical apparatus
US9052506B2 (en) Virtual image display device and manufacturing method of virtual image display device
US8174569B2 (en) Image display apparatus
JP5156875B1 (ja) 表示装置
US9465217B2 (en) Virtual image display apparatus
JP6197864B2 (ja) ウェアラブルコンピューター
JPWO2018221026A1 (ja) 光学装置、画像表示装置及び表示装置
CN107111132A (zh) 通过超精细结构保护的紧凑型头戴式显示系统
CN103592763A (zh) 虚像显示装置
JP2003502714A (ja) 懸垂アイピースアセンブリを有する頭部取付式小型表示装置
CN104133293A (zh) 虚像显示装置
KR20190094306A (ko) 전자 디바이스
CN114341707A (zh) 近眼显示投影仪
WO2022222928A1 (zh) Ar镜架和ar眼镜
KR20190094305A (ko) 전자 디바이스
WO2021068855A1 (zh) 一种显示设备模组及头戴式显示设备
JP2006189643A (ja) 映像表示装置
WO2019077975A1 (ja) 映像表示装置と光学シースルーディスプレイ
KR20150056198A (ko) 곡선형 프리즘과 이를 이용한 헤드 마운트 디스플레이
CN218824977U (zh) Ar眼镜组件及ar眼镜
US11940639B2 (en) Optical device with one-way mirror
KR100762567B1 (ko) 씨-쓰루 형 머리 장착용 표시 장치
JP5266526B2 (ja) 映像表示装置
TW202411733A (zh) 一種新型近眼顯示器光學系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791035

Country of ref document: EP

Kind code of ref document: A1