WO2022222590A1 - 一种增材制造工艺、增材层、增材后的产品及复合激光器 - Google Patents
一种增材制造工艺、增材层、增材后的产品及复合激光器 Download PDFInfo
- Publication number
- WO2022222590A1 WO2022222590A1 PCT/CN2022/077354 CN2022077354W WO2022222590A1 WO 2022222590 A1 WO2022222590 A1 WO 2022222590A1 CN 2022077354 W CN2022077354 W CN 2022077354W WO 2022222590 A1 WO2022222590 A1 WO 2022222590A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- additive
- additive manufacturing
- layer
- powder
- Prior art date
Links
- 239000000654 additive Substances 0.000 title claims abstract description 145
- 230000000996 additive effect Effects 0.000 title claims abstract description 145
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 104
- 239000002131 composite material Substances 0.000 title claims abstract description 29
- 239000010410 layer Substances 0.000 claims abstract description 109
- 239000000843 powder Substances 0.000 claims abstract description 62
- 239000004065 semiconductor Substances 0.000 claims abstract description 55
- 238000000034 method Methods 0.000 claims abstract description 51
- 230000008569 process Effects 0.000 claims abstract description 38
- 238000007781 pre-processing Methods 0.000 claims abstract description 13
- 238000005728 strengthening Methods 0.000 claims abstract description 13
- 239000002344 surface layer Substances 0.000 claims abstract description 8
- 238000012805 post-processing Methods 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 230000001681 protective effect Effects 0.000 claims abstract 7
- 238000011179 visual inspection Methods 0.000 claims abstract 3
- 238000001816 cooling Methods 0.000 claims abstract 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 57
- 239000010949 copper Substances 0.000 claims description 55
- 229910052802 copper Inorganic materials 0.000 claims description 45
- 239000000463 material Substances 0.000 claims description 40
- 239000000835 fiber Substances 0.000 claims description 24
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 14
- 238000012545 processing Methods 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 13
- 230000008439 repair process Effects 0.000 claims description 12
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 238000000137 annealing Methods 0.000 claims description 9
- 238000001514 detection method Methods 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 230000035882 stress Effects 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 5
- 238000003856 thermoforming Methods 0.000 claims description 5
- 238000004140 cleaning Methods 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000013329 compounding Methods 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims description 2
- 230000000171 quenching effect Effects 0.000 claims description 2
- 230000003014 reinforcing effect Effects 0.000 claims description 2
- 239000012779 reinforcing material Substances 0.000 claims description 2
- 230000008646 thermal stress Effects 0.000 claims description 2
- 239000004579 marble Substances 0.000 claims 3
- 239000000428 dust Substances 0.000 claims 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 1
- 229910001873 dinitrogen Inorganic materials 0.000 claims 1
- 238000012423 maintenance Methods 0.000 abstract 1
- 239000000047 product Substances 0.000 description 17
- 238000005516 engineering process Methods 0.000 description 15
- 238000010521 absorption reaction Methods 0.000 description 12
- 239000007788 liquid Substances 0.000 description 12
- 239000011159 matrix material Substances 0.000 description 12
- 238000005253 cladding Methods 0.000 description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 229910000881 Cu alloy Inorganic materials 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000003466 welding Methods 0.000 description 8
- 230000007547 defect Effects 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000004372 laser cladding Methods 0.000 description 5
- 238000003801 milling Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 241001025261 Neoraja caerulea Species 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000012216 imaging agent Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000007712 rapid solidification Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910001339 C alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/44—Radiation means characterised by the configuration of the radiation means
- B22F12/45—Two or more
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
Definitions
- the invention belongs to the technical field of laser additive manufacturing and laser repair, and in particular relates to a laser additive manufacturing process, an additive layer and a compound laser.
- the distribution of power equipment is large and the operation is uninterrupted, and the probability of damage to its components is high.
- the components of power generation equipment are subjected to the test of gas, high temperature, high pressure and corrosive medium to varying degrees in the operating environment.
- Equipment used for a long time may be partially damaged due to aging, such as impellers, water turbines, axles, etc. in wind/hydro power generation equipment.
- surface remanufacturing technology can be used to repair them, especially The blades used in the generator set are often very expensive to manufacture. Reinstalling and reusing the repaired blades will greatly reduce the power generation cost of the power plant.
- Laser additive manufacturing technology is an important method of material surface modification technology, and it is also a process from scratch. It is a rapid solidification process in which an alloy layer with completely different composition and properties from the base material is formed on the surface of the base material. Under the action of rapid heating, the matrix is minimally affected by heat and has no deformation.
- the fusion layer alloy is a self-contained system, and its structure is dense, the grain is refined, the hardness and toughness are improved, and the surface properties are greatly improved.
- Laser additive manufacturing technology solves a series of technical problems such as thermal deformation and thermal fatigue damage that are unavoidable during thermal processing such as traditional electric welding and argon arc welding.
- the laser additive manufacturing technology is to irradiate the cladding powder and matrix by a laser beam, so that the cladding powder and the collective surface thin layer are rapidly melted, and rapidly solidified to form a metallurgically bonded surface coating to improve the surface resistance of the matrix. Grinding, heat resistance, corrosion resistance and other properties.
- the conventional laser cladding repair technology is used to repair the above-mentioned workpieces such as wind power, hydropower, molds, and rolls.
- the hardness of the coating required for the workpiece to be repaired is relatively high, and the high-thickness and large-area laser cladding repair is not suitable for powder. Material selection and specific processes have high requirements.
- the single-fiber additive manufacturing technology is currently used. Even if one optical fiber is used for additive manufacturing, the single-fiber technology can only be applied to some products, and some products cannot be applied to single-fiber technology.
- Fiber repair for example, copper material, copper rod, or copper alloy material has extremely low absorptivity for laser light, and the absorption rate of copper to conventional fiber lasers in the 1060 infrared band is lower than 15%, so a single fiber is used for copper material.
- copper alloy additive manufacturing the laser needs to use a 10,000-watt laser. Currently, the use of a 10,000-watt laser is expensive, difficult to maintain, and has poor equipment stability.
- the present invention aims to overcome the defects existing in the prior art, and proposes a laser additive manufacturing process, an additive layer and a compound laser.
- a multi-wavelength blue light laser composite additive manufacturing process includes a pre-processing process, an additive manufacturing process and a post-processing process.
- the preprocessing process includes:
- Step S10 Perform flaw detection and surface cleaning on the surface of the workpiece that needs to be subjected to additive manufacturing.
- the additive manufacturing process includes:
- Step S20 The laser beam scans along the groove direction of the workpiece to be additively repaired, and at the same time, powders that are optimally matched with the materials to be added are added.
- the described process is suitable for additive manufacturing of pure copper powder and copper materials, and also supports Iron-based powder, nickel-based, cobalt-based powder or ceramic powder and copper or other alloy materials are used for additive manufacturing, and copper powder is used to perform additive manufacturing to repair and level the damaged and missing parts, wherein the said The laser beam is a single blue laser or a composite laser of a blue laser and a semiconductor laser;
- Step S30 The laser beam scans the surface of the workpiece to be additively repaired, and simultaneously adds strengthening powder materials to form a strengthening layer on the surface of the workpiece, wherein the laser beam is a single blue laser or a composite laser of a blue laser and a semiconductor laser.
- the laser beam is a single blue laser:
- the wavelength of the blue laser is 430-470 nm
- the power of the blue laser is greater than or equal to 1000w;
- the core diameter of the blue laser is 800um
- the spot size of the blue laser is 4 mm.
- the laser beam is a composite laser of blue laser and semiconductor laser:
- the wavelength of the blue laser is 430-470 nm
- the power of the blue laser is greater than or equal to 1000w;
- the core diameter of the blue laser is 800um
- the wavelength of the semiconductor fiber laser is 890-990 nm
- the power of the semiconductor fiber laser is ⁇ 3000w;
- the core diameter of the semiconductor fiber laser 600um
- the spot size of the multi-wavelength compound laser after compounding can reach 4mm;
- the thickness of the additive manufacturing can reach 0.1 to 5.0 mm;
- the copper base material is a copper roller, and the material of the copper roller is copper, and the thickness of the additive manufacturing is ⁇ 2mm;
- the absorption rate of the blue laser to copper and copper alloy is 65%, and the comprehensive absorption of the composite laser is ⁇ 85%;
- the composite laser is a laser output coaxially by a semiconductor laser and a blue laser.
- the post-processing treatment process includes:
- Step S40 subtractive forming processing and crack detection.
- the preprocessing process also includes:
- Step S50 The treatment of the surface of the workpiece that needs to be added includes removing the fatigue layer on the surface of the workpiece, and after the removal, alcohol is used to remove the sticky grinding fluid on the surface.
- the preprocessing process also includes:
- Step S60 the pre-processing treatment also includes annealing the workpiece, so that the hardness at a position of 0.5 mm on the surface of the workpiece is reduced to HRC40-HRC45.
- the preprocessing process also includes:
- Step S70 Preheating and keeping the copper rod, the preheating temperature is 200 degrees Celsius, and the temperature is kept for 4 hours.
- the post-processing treatment process further includes:
- Step S80 Stress relief annealing heat treatment, the stress relief annealing heat treatment is to increase the defocus amount to increase the spot to achieve the laser quenching effect when the surface temperature of the workpiece does not drop after the laser additive manufacturing process. Melt laser additive manufacturing layers to relieve surface thermal stress.
- an additive layer can be obtained, and the additive layer can include one or more layers.
- the additive layer comprises three layers
- the three layers can be a bonding layer, a strengthening layer and a surface layer
- the bonding layer the components and weight percentages of iron-based powder C: 0.4-0.8%, Cr: 4.0-6.0%, B: 1.3-1.7%, Si: 2.5-3.5%, Ni: 28-32%, the rest is Cu;
- C and Si can improve the strength of the metallurgical bonding layer and improve the wear resistance of the additive manufacturing layer.
- the components and weight ratios of reinforcing materials in the reinforcing layer are C: ⁇ 0.1%, Cr: 17-19%, B: 1.5-2.5%, Si: 1.5-2.5%, Ni: 8-10%, Mo: 1- 1.5%, V: 0.5-1.5%, the rest is Cu.
- the surface powder name CuCrZr and the ratio: Cr: 0.75%, Zr: 0.077, the rest are Cu, specification 15-53um, particle size: D10: 20.5um, D50: 33.6.5um, D90: 52.8um.
- the thickness of the additive layer is 0.1-5.0 mm or ⁇ 2 mm.
- An additive product is also provided.
- the surface of the additive product is attached with any of the above-mentioned additive layers, or the additive product can be obtained by any of the above-mentioned additive manufacturing processes.
- the product after adding material is a product obtained by any of the above additive manufacturing processes, such as any one of the above-mentioned products with an additive layer attached to the surface, wherein the product to be added may be Cr12 material.
- Automotive thermoforming mold the surface of the automotive thermoforming mold of the Cr12 material after adding material has an additive layer for improving the heat resistance, impact resistance and wear resistance of the mold.
- a compound laser is also provided, and the laser beam output by the compound laser can be used in the above-mentioned additive manufacturing process, in the process of obtaining an additive layer, and in any one of the above-mentioned multi-wavelength blue light.
- the laser composite additive manufacturing process any one of the above-mentioned additive layers can be obtained, and it can also be used in any of the above-mentioned multi-wavelength blue-light laser composite additive manufacturing processes to obtain the added product. .
- the laser additive manufacturing process provided by the present invention has good controllability and is easy to realize automatic control, and neither the additive manufacturing layer nor the matrix layer has a coarse casting structure, and the additive manufacturing layer and its interface structure are dense ,
- the crystal is small, without holes, inclusions, cracks and other defects, which can effectively repair the loss of the workpiece and improve the wear resistance, corrosion resistance, heat resistance, oxidation resistance and other properties of the surface of the base material.
- FIG. 1 is a schematic flowchart of a multi-wavelength composite additive manufacturing method according to an embodiment of the present invention
- Figure 2 shows a schematic diagram of the corresponding absorption rates of seven metals of aluminum Al, copper Cu, gold Au, silver Ag, titanium Ti, nickel Ni and stainless steel 304 (SS304) at room temperature at different laser wavelengths;
- FIG. 3 is a schematic diagram of an optical composition structure using a semiconductor laser and a blue laser in the related art
- Figure 4 is a schematic diagram of the blue laser + semiconductor fiber laser additive manufacturing powder and beam focus in the present invention.
- Figure 5 is a schematic diagram of the absorption and reflection process of the laser on the surface of the material
- Figure 6 is a schematic diagram of additive manufacturing powder
- Fig. 7 is the metallographic schematic diagram of the metallurgical bonding layer after laser additive manufacturing
- Figure 8 is a schematic diagram of the three-layer metallurgical bonding layer structure of laser additive manufacturing.
- the thin layer on the surface of the base material is melted at the same time by laser irradiation, and after rapid solidification, a coating with extremely low dilution and metallurgical bonding with the base metal is formed, thereby significantly improving the wear resistance and resistance of the base material surface. Corrosion, heat resistance, oxidation resistance and other properties.
- the first step pretreatment of additive manufacturing, use laser cleaning to clean the visible oil stains, oxide layers and residues on the surface of the mold, or use a cleaning agent to remove the visible oil stains and residues on the surface; usually, the mold surface is heated at a low temperature, and the heating temperature is 100 °C, to remove the water vapor, oil stains and other impurities infiltrated in the shallow layer of the mold surface.
- the second step surface inspection, use the coloring flaw detection method to detect surface cracks and damage; the specific operations are: detect and record the original use conditions, hardness and mechanical performance parameters of the mold; The heat treatment state is recorded and filed; the parts that need to be strengthened are detected by methods such as coloring, ultrasonic or X-ray, and whether there are defects such as cracks and casting defects; the size of each part of the mold is detected, and the worn parts and missing sizes are determined.
- Step 3 Pretreatment of the surface of the mold, remove the fatigue layer of the mold by grinding, cutting or machining, grind the cracks and missing parts into regular grooves until the cracks disappear, and clean up.
- Step 4 Repair the wound, scan the laser along the groove direction and add iron-based powder for remanufacturing to melt the powder and a small amount of matrix, and fill the gap with the matrix; use the method of three-line wrapping to protect the edge of the cutting edge it is good.
- the composition and weight percentage of the alloy powder used are C: 0.4-0.8%, Cr: 4.0-6.0%, B: 1.3-1.7%, Si: 2.5-3.5%, Ni: 28-32%, and the rest are Fe.
- the semiconductor laser power P 1600W, and the blue laser power is set to 0W, that is, the semiconductor laser in the multi-wavelength compound laser is used for additive manufacturing.
- the scanning speed V 1000mm/min).
- the C content in the powder is controlled at 0.4-0.8%, which improves the yield point and tensile strength increase performance of the repaired part.
- an appropriate amount of B and Si are added as reducing agents and deoxidizers in the cladding process to improve the elastic limit, yield point and tensile strength of the cladding layer, and form austenite-based cladding after the cladding layer solidifies. matrix.
- Step 5 Manufacture the reinforcement layer of the overall out-of-tolerance ruler, use the manipulator to teach programming and plan the remanufacturing trajectory to match the shape of the mold surface.
- the surface of the mold is scanned by laser and the reinforcement material for remanufacturing (semiconductor laser power) is added through the synchronous air-borne powder feeder.
- composition and weight ratio of the alloy powder used are C: ⁇ 0.09%, Cr: 20-40%, B: 0.5-1.5%, Si: 1.5-2.5%, Ni: 5-8%, Mo: 1.5-5.5 %, V: 0.5-1.0%, the rest is Fe.
- the manipulator used can be ABB-IRB6700-1500 six-axis manipulator (action range 0.35m to 3.2M, repeatability accuracy 0.05mm), laser can be domestic self-developed semiconductor laser UW3000W semiconductor laser and domestic self-developed self-developed 1000 watt blue laser .
- Controlling the C content to ⁇ 0.1% is beneficial to improve the wetness performance of the additively manufactured layer and prevent cracks and pores during the additive manufacturing process.
- the Cr content is increased and an appropriate amount of Mo is added to carry out basic alloying strengthening of the iron-based powder. Even if the carbon content is reduced, the additive manufacturing layer can still reach more than 50HRC, which fully meets the requirements of the mold and has a high wear-resistant and anti-corrosion effect. .
- Step 6 After additive manufacturing, the additive manufacturing layer is inspected. Use a durometer to test the hardness of the additively manufactured surface layer, and use X-ray to detect whether there are any defects such as pores, slag inclusions, cracks, etc. that affect the mechanical properties of the mold, and check whether the quality is qualified.
- the invention adopts the multi-wavelength composite laser additive manufacturing technology for processing under the condition that the hardness of the matrix of the mold itself does not change HR30-40, so that the surface strength of the mold can be increased, and the surface hardness of the mold can reach HRC58-62.
- Laser processing and mechanical processing Combined, addition and subtraction, homogenization and local strengthening (functional surface), the performance of the products after additive manufacturing is even better than that of the original designed and manufactured products.
- the present invention provides a multi-wavelength additive manufacturing method, the method comprising:
- the laser test adopts pulse mode, that is, spot welding.
- the light is dotted on the small steel plate every 1mm, and the spot at a certain Z-axis coordinate is found to be the smallest, the dotted sound is the loudest, and the spot with the largest spark is the focus;
- the parts are installed and positioned according to the workpiece, the copper roller is installed on the positioner of the external shaft by the crane, and fixed by the three-jaw chuck. One side is supported and positioned, and the thimble also needs to be concentric with the copper roller and the three-jaw chuck;
- additive trajectory setting use the robot to edit the trajectory of the copper roller that needs to be additive.
- the laser output semiconductor laser acts on the surface of the liquid molten pool, so that the semiconductor fiber laser is absorbed on the surface of the liquid molten pool to form a completely molten state, so that the powder and the copper roller form a metallurgical bond;
- the laser output unit installed on the robot is driven by an external positioner to move to form an additive manufacturing trajectory, and finally the powder and the surface of the copper roll form a completed metallurgical bonding layer.
- the powder feeding amount is adjusted for additive manufacturing, and the thickness of this additive is 3mm.
- S111 use semiconductor power 3000W, blue laser power 1000W, and a large spot at a defocusing amount of 50mm for post-additive laser stress relief annealing.
- the additive temperature reaches about 200 degrees, use thermal insulation cotton for thermal insulation for 24 hours;
- the first layer of bonding layer the components and weight percentages of copper alloy powder materials are: C: 0.4-0.8%, Cr: 4.0-6.0%, B: 1.3-1.7%, Si: 2.5-3.5%, Ni: 28-32 %, and the rest is Cu.
- the components and weight ratios of the strengthening materials for the second layer of strengthening layer C ⁇ 0.1%, Cr: 17-19%, B: 1.5-2.5%, Si: 1.5-2.5%, Ni: 8-10%, Mo: 1- 1.5%, V: 0.5-1.5%, the rest is Cu.
- the third surface layer copper alloy powder CuCrZr and ratio: Cr: 0.75%, Zr: 0.077, the rest are Cu, specification 15-53um, particle size: D10: 20.5um, D50: 33.6.5um, D90: 52.8um ;
- the multi-wavelength composite additive manufacturing process is as follows:
- P1 semiconductor laser power KW
- P2 blue laser power KW: V: speed mm/min
- SFL powder feeding amount g/min
- PYL offset mm
- DW effective lap width mm
- H thickness mm
- CS Number of layers.
- the parameters of the first layer of bonding layer are selected: semiconductor power 1000, power 800W, speed 720mm/min, powder feeding amount 15, offset 1.2mm, effective width 2mm, bonding layer thickness 0.4mm;
- the additively manufactured surface layer is ground to the required size using a CNC milling machine.
- the flaw detection agent is used to detect flaws on the surface of additive manufacturing, and the surface of the processed copper roll is detected to detect whether there are pores, cracks, etc.
- the multi-wavelength composite laser additive manufacturing technology is used to obtain a cladding layer with a relatively high thickness, and the coating has few defects and excellent mechanical properties, and realizes the reuse of the scrap copper roll or copper rod and copper material, so that the Laser additive manufacturing technology is widely used in copper and copper alloy repair.
- the hardness of the copper roll surface within the thickness range of 1.5mm is reduced to 45HRC.
- the hardness of the cladding layer on the surface is 65HRC, thus forming a combined reinforcement layer of 1mm of the copper roll base.
- the high hardness of the matrix provides a strong support for the surface composite layer to cope with the strong stress on the surface.
- the surface annealing layer has good toughness to cope with elastic stress, and penetrates the strong compressive stress into the high-hard body to digest and subside.
- the base material is only micro-melted on the surface during the laser processing, and the micro-melted layer is 0.05-0.1mm.
- the heat affected zone of the substrate is extremely small, generally 0.1-0.2mm.
- the schematic diagram of the heat affected zone of laser cladding The heat affected zone of laser cladding is about one tenth of that of argon arc welding.
- the laser additive manufacturing layer and the matrix are metallurgically bonded, and the bonding strength is not lower than 90% of the original matrix material.
- the temperature rise of the substrate does not exceed 80°C, and there is basically no deformation after laser processing.
- the laser additive manufacturing technology has good controllability and is easy to realize automatic control.
- the cladding layer and the matrix have no coarse casting structure, the cladding layer and its interface are dense, the crystal is fine, and there are no holes, inclusions, cracks and other defects.
- the multi-wavelength composite additive manufacturing method provided by the present invention firstly integrates the blue laser and the semiconductor laser to output the laser coaxially, then outputs the blue laser to the surface of the copper roller through the blue laser, and the blue laser is irradiated on the copper powder and the On the surface of the copper roller, since the absorption of the blue laser by the copper substrate is as high as about 65%, the copper powder rapidly melts to form a liquid molten pool with a small depth-to-width ratio that is not completely melted. This process is carried out by heat conduction, and the molten pool is extremely stable. , no spatter is generated, and is not affected by slight changes in defocus amount.
- the depth of the molten state is shallow at this time, which cannot satisfy the complete molten state between the copper powder and the copper roll, and cannot achieve an effective connection of metallurgical bonding.
- the semiconductor laser output from the semiconductor laser acts on the surface of the incompletely molten liquid molten pool, so that the surface of the incompletely molten liquid molten pool absorbs the energy of the semiconductor laser to form a completely molten liquid state, and then adds a beam of high power density semiconductor fiber laser Acting on the surface of the liquid molten pool, the absorption rate of the liquid molten pool to the semiconductor fiber laser has increased from about 2% of the solid state to about 20%.
- the comprehensive absorption of the copper powder and the copper roller to the laser can reach more than 85%.
- the copper powder and the copper roll can be formed into an effective deep metallurgical bonding layer, which increases the depth and stability of the molten pool.
- the low power of the blue-off laser fiber plays the role of preheating and absorption, the excessive boiling of the molten pool is avoided, and the generation of spatter is effectively suppressed.
- the sixth axis of the robot drives the laser output unit of the laser to move to form a welding track.
- the sixth axis of the robot drives the laser output unit to move from the starting point of the welding track to the end point of the track.
- the material and powder in front of the moving direction begin to melt.
- the molten pool at the back begins to cool and solidify, and after solidification, a stable metallurgical bonding layer is formed, and finally a complete layer of additive surface layer is formed, so that the copper powder and the copper material are effectively combined.
- the present invention adopts the additive manufacturing method of blue laser and semiconductor laser, the overall laser utilization rate is high, the overall laser power can reach 4KW (semiconductor ⁇ 3KW, blue light ⁇ 1KW), and the comprehensive absorption rate of the material to the laser can reach 80 %, the laser application of laser additive manufacturing of copper materials can be completed with low total power, the process is stable, the problem of insufficient bonding layer strength is not easy to occur, and there is no splash during the additive process.
- the rate can reach 95%, which greatly improves the product performance of additive manufacturing.
- the laser emitting unit can output the semiconductor fiber laser and the blue laser simultaneously, and the output mode of the semiconductor fiber laser and the blue laser is coaxial output.
- the laser emitting unit realizes the function of connecting the laser and focusing the laser for adding materials.
- the laser emitting unit needs to meet the output of both the semiconductor fiber laser and the blue laser.
- the output mode is coaxial output, which can be used alone Blue lasers and semiconductor lasers can also be used in combination.
- the liquid molten pool formed by the blue laser outputting blue laser light to the surface of the copper powder and the copper substrate is an incompletely molten liquid molten pool, and then the semiconductor laser is used to output a high-energy laser to melt the molten pool.
- the liquid state in the incomplete molten state becomes the molten pool in the fully molten state, and finally the powder and the substrate form an effective metallurgical bonding layer, which improves the utilization rate and production efficiency of the laser.
- the wavelength of the blue laser is 430-470 nm.
- the power of the blue laser is greater than or equal to 1000w.
- the core diameter of the blue laser is 800um.
- the wavelength of the semiconductor fiber laser is 890-990 nm.
- the power of the semiconductor fiber laser is greater than or equal to 3000w.
- the core diameter of the semiconductor fiber laser 600um.
- the light spot size of the multi-wavelength compound laser after compounding can reach 4 mm.
- the thickness of the additive manufacturing can reach 0.1 to 5.0 mm.
- the copper base material is a copper roller, and the material of the copper roll is copper, and the thickness of the additively manufactured material is ⁇ 2 mm.
- the absorption rate of the blue laser to copper and copper alloys is 65%, and the comprehensive absorption of the composite laser is ⁇ 85%.
- the compound laser is a semiconductor laser and a blue laser, and emits light coaxially.
- the compound lasers can be used separately or simultaneously, and semiconductor lasers can be used alone in the additive manufacturing of non-copper and copper alloy products.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
一种增材制造工艺、增材层、增材后的产品及复合激光器,涉及激光合束技术领域。工艺包括加工前处理过程、增材制造加工处理过程和加工后处理过程。增材制造加工处理过程采用单独的蓝光激光或蓝光激光和半导体激光的复合激光。增材获得的增材层包括结合层、强化层和表层。产品包括该增材层。采用的复合激光器由单路同轴送粉器、保护气装置、CCD视觉检测系统、保护镜系统、水冷系统、半导体QBH接头以及蓝光QBH接头组成。解决了使用万瓦级别的激光器成本高、维修难度极大和设备稳定性差的技术问题。
Description
本申请要求于2021年4月21日提交中国专利局、申请号为2021104328890、发明名称为“一种增材制造工艺、增材层、增材后的产品及复合激光器”的中国专利申请的优先权,其全部内容通过引用结合在申请中。
本发明创造属于激光增材制造、激光修复技术领域,尤其是涉及一种激光增材制造工艺、增材层及复合激光器。
随着经济社会的发展,可再生能源被赋予了节能减排、温室气体排放控制和大气污染防治等新使命。风力和水力作为无公害、无污染的发电新能源,为电力行业做出了巨大贡献,针对航空航天领域、风力、水电、模具、轨道交通、石油勘探领域轧辊、煤炭开采行业以及工程机械行业的磨损修复,传统方法大多是采用普通堆焊进行修复,由于这些构件大多采用高碳合金钢或铸钢,普通堆焊会给工件带来变形量较大、硬度不足、易开裂等缺点,严重影响使用精度,造成所生产的产品质量下降,同时,工件本身的使用寿命也会降低。
目前因部分工业、能源、机械等相关制造厂生产环境恶劣,工业设备零件使用负荷大,导致一些附加值价高的金属零部件腐蚀和磨损。为了延长生产设备使用寿命,必须给这些零件的外表进行提前处理或修复,因此激光熔覆成为了修复金属表面最重要的技术之一。
而在电力行业中,电力设备分布量大、不间断运转,其零部件的损坏机率高。发电设备的零部件在作业环境中均不同程度地承受着燃气、高温、高压、腐蚀介质的考验。长期使用的设备可能会因为老化而出现局部破损,如风/水力发电设备中的叶轮,水轮机、轮轴等,为了延长昂贵的生产设备的使用寿命,使用表面再制造技术可以对其进行修复,尤其是用于发电机组的叶片往往造价极高,将修复后的叶片重装再利用,将大大地降低电厂的发电成本。
激光增材制造技术是材料表面改性技术的一种重要方法,也是一种从无到有的过程,即利用激光的高能密度的特性让激光束将具有不同成分、不同性能的合金粉末与基材表面进行快速熔化,在基材表面形成与基材具有完全不同成分和性能的合金层的快速凝固过程。在快速热作用下,基体受热影响极小,无变形。熔层合金自成体系,其组织致密,晶粒细化,硬度和强韧性提高,表面性能大大改善。激光增材制造技术解决了传统电焊、氩弧焊等热加工过程中不可避免的热变形、热疲劳损伤等一系列技术难题。
现有技术中,激光增材制造技术是通过激光束辐照熔覆粉末和基体,使熔覆粉末和集体表面薄层迅速熔化,并快速凝固形成冶金结合的表面涂层,以改善基体表面耐磨、耐热、耐蚀等性能。但采用常规的激光熔覆修复技术来修复上述的风力、水电、模具、轧辊等工件,对于待修复工件所要求的涂层硬度比较高,而高厚度、大面积的激光熔覆修复,对粉末材料选用和具体的工艺又都有很高的要求。
现有的激光增材制造技术中,目前采用的是单光纤进行增材制造技术,即使用一根光纤进行增材制造,单光纤技术目前只能存在适用部分产品,还有一部分产品无法适用单光纤进行修复,例如,铜材,铜棒,或者是铜合金材质对于激光的吸收率极低,铜对1060的红外波段的常规光纤激光器的吸收率低于15%,所以使用单光纤进行铜材或是铜合金增材制造,激光器需要使用万瓦级别的激光器,目前使用万瓦级别的激光器成本高,维修难度极大,设备稳定性差。
发明内容
有鉴于此,本发明创造旨在克服现有技术中存在的缺陷,提出一种激光增材制造工艺、增材层及复合激光器。
一种多波长蓝光激光复合增材制造工艺,包括加工前处理过程、增材制造加工处理过程和加工后处理过程。
可选的,所述加工前处理过程包括:
步骤S10:对需要进行增材制造的工件表面进行探伤检测和表面 清洗处理。
可选的,所述增材制造加工处理过程包括:
步骤S20:激光光束沿待需要增材修复工件坡口方向扫描,同时添加与待增材材质研制优配的粉末,该描述工艺适用于纯铜粉末和铜材的增材制造,同时也支持于铁基粉末、镍基、钴基粉末或者是陶瓷粉末与铜或者是其余合金材料的进行增材制造,并使用的是铜粉末将损伤缺失部位进行增材制造进行修复补平,其中,所述激光光束为单独的蓝光激光或为蓝光激光和半导体激光的复合激光;
步骤S30:激光光束扫描待增材修复工件表面,同步添加强化粉末材料,使工件表面形成强化层,其中,所述激光光束为单独的蓝光激光或为蓝光激光和半导体激光的复合激光。
可选的,当所述激光光束为单独的蓝光激光时:
所述蓝色激光的波长为430~470nm;
所述蓝色激光的功率≥1000w;
所述蓝色激光的芯径为800um;
所述蓝色激光的光斑大小为4mm。
可选的,当所述激光光束为蓝光激光和半导体激光的复合激光时:
所述蓝色激光的波长为430~470nm;
所述蓝色激光的功率≥1000w;
所述蓝色激光的芯径为800um;
所述半导体光纤激光的波长为890~990nm;
所述半导体光纤激光的功率≥3000w;
所述半导体光纤激光的芯径=600um;
所述多波长复合激光器复合后的光斑大小可达4mm;
所述增材制造的厚度可达为0.1~5.0mm;
所述铜基材为铜辊的材质为铜,所述增材制造的的厚度≥2mm;
所述蓝光激光器对铜以及铜合金的吸收率科大65%,复合后的激光器综合吸收≥85%;
所述复合激光为由半导体激光器和蓝光激光器同轴所输出的激光。
可选的,所述加工后处理过程包括:
步骤S40:减材成型加工及裂纹检测。
可选的,所述加工前处理过程还包括:
步骤S50:将需要增材工件表面的处理包括去除工件表面疲劳层,在去除后用酒精清除表面粘黏的磨削液。
可选的,所述加工前处理过程还包括:
步骤S60:加工前处理还包括对工件的退火,使工件表面0.5mm位置的硬度下降至HRC40-HRC45。
可选的,所述加工前处理过程还包括:
步骤S70:对铜棒预热及保温,预热温度200摄氏度,保温4小时。
可选的,所述加工后处理过程还包括:
步骤S80:去应力退火热处理,所述去应力退火热处理是在工件激光增材制造加工后,其表面温度没有下降时,采用增大离焦量的方式来加大光斑达到激光淬火效应快速扫描重熔激光增材制造层,来消除表面热应力。
通过上述工艺步骤可获得一种增材层,所述增材层可包括一层或多层。
可选的,当所述增材层包含三层的时,所述三层可为结合层、强化层和表层;
所述结合层:铁基粉料各成分及重量百分比C:0.4-0.8%,Cr:4.0-6.0%,B:1.3-1.7%,Si:2.5-3.5%,Ni:28-32%,其余为Cu;
增加C和Si可以提高冶金结合层的强度,提高增材制造层的耐磨性,也是结合层之间有过渡层间的作用,降低增材制造的裂纹产生或者是裂纹倾向。
所述强化层中强化材料各成分及重量比C:≤0.1%,Cr:17-19%,B:1.5-2.5%,Si:1.5-2.5%,Ni:8-10%,Mo:1-1.5%,V:0.5-1.5%,其余为Cu。
所述表层粉末名称CuCrZr以及配比:Cr:0.75%,Zr:0.077,其余都是Cu,规格15-53um,粒度大小:D10:20.5um,D50:33.6.5um,D90:52.8um。
可选的,所述增材层的厚度为0.1~5.0mm或厚度≥2mm。
还提供一种增材后的产品,所述增材后的产品表面附有如上述所述的任一种增材层,或所述增材后的产品可通过上述任一种增材制造工艺获得,或所述增材后的产品为通过上任意一种增材制造工艺所获得的如上述任意一种表面附有增材层的产品,其中,所述待增材的产品可为Cr12材料的汽车热成型模具,所述增材后的Cr12材料的汽车热成型模具表面具有用于提高模具抗热、抗冲击和抗磨效果的增材层。
还提供一种复合激光器,所述复合激光器所输出的激光光束可运用于在上述增材制造工艺中,也可运用于获取增材层的过程中,还可运用于上述任意一项多波长蓝光激光复合增材制造工艺中以获取上述任意一项增材层,还可运用于上述任意一项多波长蓝光激光复合增材制造工艺中以获取所述增材后的产品。。
本发明的有益效果为:本发明提供的激光增材制造工艺可控性好,易实现自动化控制,而增材制造层与基体层均无粗大的铸造组织,增材制层及其界面组织致密,晶体细小,无孔洞、夹杂、裂纹等缺陷,能够有效的修复工件损失,改善基体材料表面的耐磨、耐蚀、耐热、 抗氧化等性能。
图1是本发明一个实施例的多波长复合增材制造方法的流程示意图;
图2示出了铝Al、铜Cu、金Au、银Ag、钛Ti、镍Ni和不锈钢304(SS304)七种金属在常温下不同激光波长对应吸收率的示意图;
图3是相关技术中采用半导体激光器和蓝光激光器的光学组成结构示意图;
图4是本发明中蓝色激光+半导体光纤激光增材制造粉末和光束焦点示意图;
图5是是激光在材料表面的吸收和反射过程示意图;
图6是增材制造粉末示意图;
图7是激光增材制造后的冶金结合层金相示意图;
图8是激光增材制造的三层冶金结合层结构示意图。
为使本发明的内容更加清晰简洁、贴近实际,下面结合附图对本发明的具体实施例进行详细的说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明中的具体实施例中所涉及到的各种技术方案只要彼此之间无任何冲突就可以相互组合。
参照图1-图8,实施例1:
近年来随着我国汽车制造工业的飞速发展,我国在汽车模具行业发展也十分迅速,但与国外汽车模具制造先进水平相比,然存在着明显的差距。由于汽车模具制造在技术要求以及产品质量上的要求越来越高,所以模具精度差、寿命短、开发周期长是汽车模具制造的硬伤。在使用过程中不同程度的磨损,错误加工导致模具的报废率达到30%,造成了巨大的浪费。
而采用本发明工艺,经激光辐照使之和基体表面薄层同时熔化, 快速凝固后形成稀释度极低、与基体金属呈冶金结合的涂层,从而显著改善基体材料表面的耐磨、耐蚀、耐热、抗氧化等性能。
针对Cr12材料的汽车热成型模具进行增材制造,其步骤如下:
第一步:增材制造前处理,使用激光清洗对模具表面的可见油污、氧化层以及残渣进行清洗或者是使用清洗剂去除表面可见油污残渣;通常,对模具表面进行低温加热,加热温度为100℃,用以祛除模具表面浅层渗进的水气、油污以及其余杂质。
第二步:表面检测,使用着色探伤法检测表面裂纹以及损伤;具体操作是:检测并记录模具原始的使用条件、硬度和力学性能参数;对准备强化的模具寿命、基体材质、工作状态、原始热处理状态记录备案;通过着色、超声或X光等办法检测需要强化的部位,是否有裂纹和铸造缺陷砂眼等缺陷;检测模具各部位尺寸,确定磨损部位以及缺失尺寸。
第三步:模具表面预处理,通过打磨切割或机械加工的方式将模具的疲劳层去除,将裂纹以及缺失部分打磨成规则坡口直至裂纹消失,并进行清理。
第四步:修补伤口,激光延坡口方向扫描同时添加再制造用的铁基粉料,使粉末及少量基体熔化,将缺口与基体补平;采用三线包边的方法将刃口边间保护好。采用的合金粉末的成分及重量百分比是C:0.4-0.8%,Cr:4.0-6.0%,B:1.3-1.7%,Si:2.5-3.5%,Ni:28-32%,其余为Fe。(半导体激光功率P=1600W,蓝光激光器功率设置为0W,即用多波长复合激光器里面的半导体激光器进行增材制造使用。扫描速度V=1000mm/min)。
需要指出的是,该粉末中将C含量控制在0.4-0.8%,提高了修复部位的屈服点和抗拉强度升性能。同时添加适量的B、Si作为在熔覆过程中作为还原剂和脱氧剂,来提高熔覆层的弹性极限,屈服点和抗拉强度,并在覆层凝固后形成以奥氏体为主的基体。
第五步:整体超差尺强化层制造,使用机械手示教编程规划再制造运行轨迹与模具表面形状契合,激光扫描模具表面同时通过同步气载送粉器添加再制造用强化材料(半导体激光功率P=2000,蓝光激光器激光功率=0W,扫描速度V=1000mm/min),使模具表面具有一层激光制备强化层,提高模具的抗热、抗冲击、抗磨效果;
所采用的合金粉末的成分以及重量比是C:≤0.09%,Cr:20-40%,B:0.5-1.5%,Si:1.5-2.5%,Ni:5-8%,Mo:1.5-5.5%,V:0.5-1.0%,其余为Fe。
所采用的机械手可以为ABB-IRB6700-1500六轴机械手(作用范围0.35m至3.2M,重复精度精度0.05mm),激光器可以为国产自主研发半导体激光器UW3000W半导体激光器和国产自主研发自制1000瓦蓝光激光器。
将C含量控制在≤0.1%有利于提高增材制造层的润泽度性能,防止在增材制造过程中产生裂纹和气孔。Cr含量提升并加入适量的Mo对铁基粉料进行基本的合金化强化,即使降低碳含量依然使增材制造层也能达到50HRC以上,充分满足模具的要求并具有很高的耐磨防腐效果。
第六步:增材制造后,对增材制造层进行检测。使用硬度计对增材制造的表层进行硬度检测,使用X光检测强化层以及结合层是否存在是否有气孔、夹渣、裂痕等影响模具机械性能的缺陷,进行校检质量是否合格。
本发明在保持模具本身基体硬度HR30-40不发生改变的情况下,采用多波长复合激光增材制造技术进行处理,可使得模具表面强度,模具表面硬度可达HRC58-62,激光加工与机械加工相结合,加法与减法相结合,均质与局部强化(功能表面)相结合,增材制造后的产品在使用性能甚至优于原设计制造的产品。
参照图1-图8,实施例2:
下列实施例是对本发明的进一步解释和补充,对本发明不会构成任何限制。
如图1所示,本发明提供了一种多波长增材制造方法,该方法包括:
S101,将需要增材的工件材料表面进行清洗处理,处理后使用探伤显像剂进行检查工件表面是否存在裂纹等情况;
S102,对处理后的工件表面使用铣床对工件表面的疲劳层进行切屑,将疲劳层铣掉0.8mm的厚度,处理疲劳层后对工件表面再次进行清洗;
S103,对复合激光器进行激光出红光确认并且找焦点
在确认出红光正常后,则可以开始测试能否正常出激光。在激光器处于高压状态时,分别测试蓝光部分及半导体部分。
出激光测试采用脉冲模式,即打点焊接。
检查蓝光部分时,步骤如下:
①用0号波形,在蓝光波形数据页面设置功率100W,脉宽20ms,在半导体页面设置功率0W,脉宽0ms,即单独蓝光出光。
②在激光头下方放置一小块不锈钢板,调整激光头位置及高度,使红光处于小钢板上且红光直径处于最小值。
③触发出光并观察CCD图像是否有闪光,钢板是否有形成焊点。
检测半导体部分时,步骤如下:
①用1号波形,在蓝光波形数据页面设置功率0W,脉宽0ms,在半导体页面设置功率300W,脉宽20ms,即单独半导体出光。
②步骤与检查蓝光部分时相同。
③步骤与检查蓝光部分时相同。
通过使用上面方法调整Z轴数值每隔1mm出光在小钢板上打点一次,找到某一Z轴坐标处光斑最小,打点声音最响亮,火花最大处即为焦点;
S104,根据工件进行零件安装定位,使用天车将铜辊安装在外部轴的变位机上,通过三爪卡盘进行固定,三爪卡盘和铜辊需要同心,再使用顶针对铜辊的另一侧进行支撑定位,顶针也需要和铜辊以及三 爪卡盘同心;
S105,确定离焦量和粉末焦点,采用正离焦3mm作为增材面,粉末采用同轴送粉方式进行送粉,粉末焦点和激光束的焦点为同一平面;
S106,增材轨迹设定,使用机器人进行需要增材的铜辊进行轨迹编辑。
S107,工艺参数设定:蓝光激光器功率1000W,半导体激光器功率2600W,离焦量3mm,变位机旋转移动速度50mm/s,同轴四路送粉,送粉量为1转/分钟,送粉重复精度高度达+2%,能输送颗粒直径为900μm-90μm的各种涂覆粉末。送粉盘速度设置范围0.00—50.00(克/分钟),送粉速率连续可调;氩气8L/Min;
序号 | 实际值(转/分) | 送粉量(克/分) |
1 | 0.5 | 11.0 |
2 | 0.6 | 13.9 |
3 | 0.7 | 16.3 |
4 | 0.8 | 18.6 |
5 | 0.9 | 21.0 |
6 | 1.0 | 23.5 |
7 | 1.1 | 26.8 |
8 | 1.2 | 29.2 |
9 | 1.3 | 31.7 |
10 | 1.4 | 34.6 |
11 | 1.5 | 37.1 |
12 | 1.6 | 39.9 |
13 | 1.7 | 42.5 |
14 | 1.8 | 44.7 |
15 | 1.9 | 47.2 |
16 | 2.0 | 49.2 |
S108,通过激光器输出蓝色激光至铜辊表面和铜粉末表面,以使粉末和铜辊表面形成液态熔池表面;
S109,通过激光器输出半导体激光作用于液态熔池表面,以使在液态熔池表面吸收半导体光纤激光形成完全熔融状态使得粉末和铜辊形成冶金结合;
S110,通过外部变位机带动安装在机器人上的激光出射单元移动形成增材制造轨迹,最后使得粉末与铜辊表面形成完成的冶金结合层,单层可增材1.5~2mm厚,按照需求进行调整送粉量进行增材制造,本次增材厚度为3mm。
S111,使用半导体功率3000W,蓝光激光功率1000W,离焦量50mm下的大光斑进行增材后激光去应力退火,当增材温度达到200度左右后使用保温棉进行保温24小时;
S112,对增材后的表面进行观察,检测。使用放大镜观察增材后的表面是否有裂纹存在,再通过探伤剂和显像剂进行检测是否存在微裂纹;
S113,减材成型,将表面的增材粗糙层使用铣床进行处理,使用铣床对表面的粗糙层往下切铣0.3mm,确保表面光鲜亮丽;
S114,对表面再次进行清洗,检测是否有气孔、微裂纹的存在;
S115,使用硬度计对表面的增材层进行硬度校准,根据实际需求测量硬度为55HRC,硬度可根据粉末的硬度进行调配;
S116,粉末配置
第一层结合层:铜合金粉末材料各成分及重量百分比为,C:0.4-0.8%,Cr:4.0-6.0%,B:1.3-1.7%,Si:2.5-3.5%,Ni:28-32%,其余为Cu。
第二层强化层强化材料各成分及重量比C:≤0.1%,Cr:17-19%,B:1.5-2.5%,Si:1.5-2.5%,Ni:8-10%,Mo:1-1.5%,V:0.5-1.5%,其余为Cu。
第三层表层:铜合金粉末CuCrZr以及配比:Cr:0.75%,Zr:0.077,其余都是Cu,规格15-53um,粒度大小:D10:20.5um,D50:33.6.5um, D90:52.8um;
多波长复合增材制造工艺如下:
序号 | P1 | P2 | V | SFL | PYL | DW | H | CS |
1 | 1000 | 1000 | 600 | 34 | 1.2 | 2 | 1 | 1 |
2 | 1000 | 1000 | 300 | 25 | 1.2 | 2 | 1.4 | 1 |
3 | 1000 | 1000 | 360 | 25 | 1.2 | 2 | 1.5 | 1 |
4 | 1000 | 1000 | 720 | 22 | 1.2 | 2 | 1.1 | 1 |
5 | 1000 | 800 | 720 | 15 | 1.2 | 2 | 0.4 | 1 |
6 | 1500 | 1000 | 1500 | 30 | 1.2 | 2 | 0.8 | 1 |
7 | 2000 | 1000 | 1800 | 30 | 1.2 | 2 | 1 | 1 |
8 | 2500 | 1000 | 1800 | 30 | 1.2 | 2 | 1.3 | 1 |
9 | 2500 | 800 | 1500 | 30 | 1.2 | 2 | 1.5 | 1 |
10 | 2500 | 1000 | 1200 | 30 | 1.2 | 2 | 1.2 | 1 |
P1:半导体激光器功率KW;P2:蓝光激光器功率KW:V:速度mm/min;SFL:送粉量g/min;PYL:偏移量mm;DW:有效搭接宽度mm;H:厚度mm;CS:层数。
第一层结合层参数选择:半导体功率1000,功率800W,速度720mm/min送粉量15,偏移1.2mm,有效宽度2mm,结合层厚度0.4mm;
第二层强化层工艺参数选择:半导体功率2500,功率1000W,速度1200mm/min,送粉量30,偏移1.2mm,有效宽度2mm,结合层厚度1.2mm;
第三层表层工艺参数选择:半导体功率1500,功率1000W,速度1500mm/min,送粉量30,偏移1.2mm,有效宽度2mm,结合层厚度0.8mm;
复型加工;
采用数控铣床对增材制造表面层进行磨削至要求尺寸。
表面探伤;
采用探伤剂对增材制造表面进行探伤,对加工成型后的铜辊表面进行检测,检测是否有气孔、裂纹等情况。
本发明中采用多波长复合激光增材制造技术得到较高厚度的熔覆层,且涂层缺陷极少并具有优异的力学性能,实现即将报废铜辊或者是铜棒铜材的再利用,使激光增材制造技术在铜以及铜合金修复方面得以广发应用。
采用激光表面退火工艺,使铜辊表面1.5mm厚度范围内的硬度降至45HRC。表面的熔覆层硬度为65HRC,这样就形成了铜辊基体1mm的组合强化层。高硬度的基体,给表面复合层起到强大的支撑力,来应对表面强大的应力。表面退火层具有良好的韧性,来应对弹性应力,并把强大的压应力渗透到高硬的机体内部消化减退掉。
相较于氩弧焊,基体材料在激光加工过程中仅表面微熔,微熔层为0.05-0.1mm。基体热影响区极小,一般为0.1-0.2mm。如图1所示,激光熔覆热影响区示意图激光熔覆热影响区是氩弧焊的十分之一左右。
另外,激光增材制造层与基体为冶金结合,结合强度不低于原基体材料的90%。激光加工过程中基体温升不超过80℃,激光加工后基本无变形。
并且,激光增材制造技术可控性好,易实现自动化控制。而熔覆层与基体均无粗大的铸造组织,熔覆层及其界面组织致密,晶体细小,无孔洞、夹杂、裂纹等缺陷。
本发明所提供的多波长复合增材制造方法,首先将蓝光激光器与半导体激光器经过光束整合后进行同轴输出激光,通过蓝光激光器输出蓝色激光至铜辊表面,蓝色激光照射在铜粉末和铜辊的表面,由于铜基材对于蓝色激光的吸收高达65%左右,铜粉末迅速熔化形成非完 全熔融的深宽比较小的液态熔池,该过程通过热传导的方式进行,熔池极为稳定,无飞溅产生,并且不受离焦量的轻微变化影响。但此时熔融状态深度较浅,不能满足铜粉末和铜辊之间达到完全的熔融状态,起不到冶金结合的有效连接。随后,通过半导体激光器输出半导体激光作用于非完全熔融液态熔池表面,以使在非完全熔融液态熔池表面吸收半导体激光能量形成完全熔融状态的液态,再增加一束高功率密度的半导体光纤激光作用于液态熔池表面,液态熔池对于半导体光纤激光的吸收率已经由固态的2%左右上升至20%左右,此时铜粉和铜辊对激光的综合吸收可达到85%以上,只需增加光纤功率即可将铜粉和铜辊形成有效深度的冶金结合层,增加熔池深度和稳定度。由于蓝关激光器光纤功率的低起到预热吸收的作用避免了熔池的过度沸腾,有效抑制飞溅的产生。接着通过机器人第六轴带动激光器的激光出射单元移动形成焊接轨迹,机器人第六轴带动激光出射单元从焊接轨迹起点移动至轨迹终点,随着激光束的移动,运动方向前方的材料和粉末开始熔化,后方的熔池开始冷却凝固,凝固后形成稳定的冶金结合层,最终形成完整的一层增材表层,使得铜粉末与铜材有效的结合在一起。
本发明由于采用蓝色激光和半导体激光的增材制造方式,使得整体激光利用率较高,整体激光器功率可到4KW(半导体≥3KW,蓝光≥1KW),材料对激光的综合吸收率可到80%左右,利用较低的总功率即可完成铜材的激光增材制造激光应用,过程稳定,不易出现结合层强度不够虚焊问题,增材过程无飞溅产生,增材宽度可调节,粉末利用率可到95%,大幅提高了增材制造的产品性能。
在本发明提供的实施例中,优选地,激光出射单元可同时输出半导体光纤激光和蓝色激光,半导体光纤激光和蓝色激光输出方式为同轴输出。
在该技术方案中,激光出射单元实现连接激光器,并将激光聚焦后进行增材的功能,激光出射单元需要同时满足半导体光纤激光和蓝色激光的输出,输出方式为同轴输出,可单独使用蓝光激光器和半导体激光器,也可以复合使用。
在本发明提供的实施例中,优选地,蓝光激光器输出蓝色激光至铜粉和铜基材表面形成的液态熔池为非完全熔融的液态熔池,再使用半导体激光器输出高能量激光将其非完全熔融状态的液态变成完全熔融状态的熔池,最后使得粉末和基材形成有效的冶金结合层,提高激光器的利用率和生产效率。
述蓝色激光的波长为430~470nm。
所述蓝色激光的功率≥1000w。
所述蓝色激光的芯径为800um。
所述半导体光纤激光的波长为890~990nm。
所述半导体光纤激光的功率≥3000w。
所述半导体光纤激光的芯径=600um。
所述多波长复合激光器复合后的光斑大小可达4mm。
所述增材制造的厚度可达为0.1~5.0mm。
所述铜基材为铜辊的材质为铜,所述增材制造的的厚度≥2mm。
所述蓝光激光器对铜以及铜合金的吸收率科大65%,复合后的激光器综合吸收≥85%。
所述复合激光器为半导体激光器和蓝光激光器,同轴出光。
所述复合激光器可单独分开使用,也可以同时使用,在进行非铜以及铜合金产品进行增材制造时可单独使用半导体激光器。
尽管通过以上实施例对本发明进行了揭示,但是本发明的范围并不局限于此,在不偏离本发明构思的条件下,以上各构件可用所属技术领域人员了解的相似或等同元件来替换。
Claims (18)
- 一种增材制造工艺,其特征在于,包括加工前处理过程、增材制造加工处理过程和加工后处理过程。
- 如权利要求1所述的增材制造工艺,其特征在于,所述加工前处理过程包括:步骤S10:对需要进行增材制造的工件表面进行探伤检测和表面清洗处理。
- 如权利要求2所述的增材制造工艺,其特征在于,所述增材制造加工处理过程包括:步骤S20:激光光束沿待需要增材修复工件坡口方向扫描,同时添加与待增材材质研制优配的粉末,该描述工艺适用于纯铜粉末和铜材的增材制造,同时也支持于铁基粉末、镍基、钴基粉末或者是陶瓷粉末与铜或者是其余合金材料的进行增材制造,并使用的是铜粉末将损伤缺失部位进行增材制造进行修复补平,其中,所述激光光束为单独的蓝光激光或为蓝光激光和半导体激光的复合激光;步骤S30:激光光束扫描待增材修复工件表面,同步添加强化粉末材料,使工件表面形成强化层,其中,所述激光光束为单独的蓝光激光或为蓝光激光和半导体激光的复合激光。
- 如权利要求3所述的增材制造工艺,其特征在于,当所述激光光束为单独的蓝光激光时:所述蓝色激光的波长为430~470nm;所述蓝色激光的功率≥1000w;所述蓝色激光的芯径为800um;所述蓝色激光的光斑大小为4mm。
- 如权利要求4所述的增材制造工艺,其特征在于,当所述激光光束为蓝光激光和半导体激光的复合激光时:所述蓝色激光的波长为430~470nm;所述蓝色激光的功率≥1000w;所述蓝色激光的芯径为800um;所述半导体光纤激光的波长为890~990nm;所述半导体光纤激光的功率≥3000w;所述半导体光纤激光的芯径=600um;所述多波长复合激光器复合后的光斑大小可达4mm;所述复合激光为由半导体激光器和蓝光激光器同轴所输出的激光。
- 如权利要求3所述的增材制造工艺,其特征在于,所述加工后处理过程包括:步骤S40:减材成型加工及裂纹检测。
- 如权利要求6所述的增材制造工艺,其特征在于,所述加工前处理过程还包括:步骤S50:将需要增材工件表面的处理包括去除工件表面疲劳层,在去除后用酒精清除表面粘黏的磨削液。
- 如权利要求7所述的增材制造工艺,其特征在于,所述加工前处理过程还包括:步骤S60:加工前处理还包括对工件的退火,使工件表面0.5mm位置的硬度下降至HRC40-HRC45。
- 如权利要求8所述的增材制造工艺,其特征在于,所述加工前处理过程还包括:步骤S70:对铜棒预热及保温,预热温度200摄氏度,保温4小时。
- 如权利要求9所述的增材制造工艺,其特征在于,所述加工后处理过程还包括:步骤S80:去应力退火热处理,所述去应力退火热处理是在工件激光增材制造加工后,其表面温度没有下降时,采用增大离焦量的方式来加大光斑达到激光淬火效应快速扫描重熔激光增材制造层,来消除表面热应力。
- 一种增材层,其特征在于,所述增材层可通过所述权利要求1至10种任意一项或多项的增材制造工艺获得,所述增材层可包括一层或多层。
- 如权利要求11所述的增材层,其特征在于,当所述增材层包含三层的时,所述三层可为结合层、强化层和表层;所述结合层:铁基粉料各成分及重量百分比C:0.4-0.8%,Cr:4.0-6.0%,B:1.3-1.7%,Si:2.5-3.5%,Ni:28-32%,其余为Cu;增加C和Si可以提高冶金结合层的强度,提高增材制造层的耐磨性,也是结合层之间有过渡层间的作用,降低增材制造的裂纹产生或者是裂纹倾向。所述强化层中强化材料各成分及重量比C:≤0.1%,Cr:17-19%,B:1.5-2.5%,Si:1.5-2.5%,Ni:8-10%,Mo:1-1.5%,V:0.5-1.5%,其余为Cu。所述表层粉末名称CuCrZr以及配比:Cr:0.75%,Zr:0.077,其余都是Cu,规格15-53um,粒度大小:D10:20.5um,D50:33.6.5um,D90:52.8um。
- 如权利要求12所述的增材层,其特征在于,所述增材层的厚度为0.1~5.0mm或厚度≥2mm。
- 一种增材后的产品,其特征在于,所述增材后的产品表面附有如权利要求11-13中任一项所述的增材层,或所述增材后的产品可通过如权利要求1-10中任一项增材制造工艺获得,或所述增材后的产品为通过如权利要求1-10中任一项增材制造工艺所获得且表面附有如权利要求11-13中任一项所述的增材层的产品,其中,所述待增 材的产品可为Cr12材料的汽车热成型模具,所述增材后的Cr12材料的汽车热成型模具表面具有用于提高模具抗热、抗冲击和抗磨效果的增材层。
- 一种复合激光器,其特征在于,所述复合激光器所输出的激光光束可运用于权利要求1-10中任意一项增材制造工艺中,也可运用于在获取权利要求11-13中任意一项增材层的过程中,还可运用于权利要求1-10中任意一项增材制造工艺中以获取权利要求11-13中任意一项增材层,还可运用于权利要求1-10中任意一项增材制造工艺中以获取权利要求14所述的增材后的产品。
- 如权利要求15所述的复合激光器,其特征在于,复合激光器由单路同轴送粉器、保护气装置、CCD视觉检测系统、保护镜系统、水冷系统、半导体QBH接头以及蓝光QBH接头组成。一束或多束激光束通过QBH接头后通过多波长拟合系统后穿过保护镜系统到达增材制造的表面,单路同轴送粉头接通到送粉器上进行送粉,保护气装置接通氮气,通过CCD检测系统对轨迹的确认,当粉末通过单路同轴送粉头后,粉末落在待增材的表面上,再通过多波长激光束照射在粉末表面,使得粉末额增材表面快速形成冶金结合层达到增材效果。
- 一种增材制造设备,其特征在于,包括大理石平台、大理石龙门架以及组件、多波长复合增材制造头、多波长复合增材制造保护气装置、同轴送粉头、特殊夹具、运动平台和CCD视觉检测系统。
- 如权利要求17所述的增材制造设备,其特征在于,所述大理石龙门架上设有如权利要求16所述的复合激光器;所述特殊夹具由伺服电机运动平台系统、夹具安装板、正面定位系统、左侧定位系统、右侧定位系统、前侧定位挡板、运动导轨系统、前防尘罩保护系统以及后防尘罩保护系统组成,所述特殊夹具用于对需要增材制造的产品进行定位。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202120825640.1U CN215658420U (zh) | 2021-04-21 | 2021-04-21 | 一种复合激光设备及特殊夹具 |
CN202120825640.1 | 2021-04-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022222590A1 true WO2022222590A1 (zh) | 2022-10-27 |
Family
ID=79971377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/077354 WO2022222590A1 (zh) | 2021-04-21 | 2022-02-23 | 一种增材制造工艺、增材层、增材后的产品及复合激光器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN215658420U (zh) |
WO (1) | WO2022222590A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN215658420U (zh) * | 2021-04-21 | 2022-01-28 | 深圳市联赢激光股份有限公司 | 一种复合激光设备及特殊夹具 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018176213A (ja) * | 2017-04-11 | 2018-11-15 | 株式会社ジェイテクト | 重畳光ビーム加工装置及び重畳光ビーム加工装置を用いた加工方法 |
CN110273155A (zh) * | 2019-07-31 | 2019-09-24 | 天津玛斯特车身装备技术有限公司 | 一种激光熔覆再造工艺 |
WO2020041786A2 (en) * | 2018-08-24 | 2020-02-27 | Nuburu, Inc. | Blue laser metal additive manufacturing system |
CN111676476A (zh) * | 2020-06-02 | 2020-09-18 | 江西瑞曼增材科技有限公司 | 一种激光3d打印技术制备铜铬锆滑道的方法 |
CN112605401A (zh) * | 2020-12-17 | 2021-04-06 | 深圳光韵达光电科技股份有限公司 | 双波长金属3d打印光路装置及3d打印系统 |
CN113275745A (zh) * | 2021-04-21 | 2021-08-20 | 深圳市联赢激光股份有限公司 | 一种复合激光设备 |
WO2021182643A1 (ja) * | 2020-03-13 | 2021-09-16 | 古河電気工業株式会社 | 溶接方法、レーザ溶接システム、金属部材、電気部品、および電子機器 |
CN215658420U (zh) * | 2021-04-21 | 2022-01-28 | 深圳市联赢激光股份有限公司 | 一种复合激光设备及特殊夹具 |
CN114012111A (zh) * | 2021-11-25 | 2022-02-08 | 华南理工大学 | 一种蓝光红外双波长同轴复合激光增材制造装置与方法 |
-
2021
- 2021-04-21 CN CN202120825640.1U patent/CN215658420U/zh active Active
-
2022
- 2022-02-23 WO PCT/CN2022/077354 patent/WO2022222590A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018176213A (ja) * | 2017-04-11 | 2018-11-15 | 株式会社ジェイテクト | 重畳光ビーム加工装置及び重畳光ビーム加工装置を用いた加工方法 |
WO2020041786A2 (en) * | 2018-08-24 | 2020-02-27 | Nuburu, Inc. | Blue laser metal additive manufacturing system |
CN110273155A (zh) * | 2019-07-31 | 2019-09-24 | 天津玛斯特车身装备技术有限公司 | 一种激光熔覆再造工艺 |
WO2021182643A1 (ja) * | 2020-03-13 | 2021-09-16 | 古河電気工業株式会社 | 溶接方法、レーザ溶接システム、金属部材、電気部品、および電子機器 |
CN111676476A (zh) * | 2020-06-02 | 2020-09-18 | 江西瑞曼增材科技有限公司 | 一种激光3d打印技术制备铜铬锆滑道的方法 |
CN112605401A (zh) * | 2020-12-17 | 2021-04-06 | 深圳光韵达光电科技股份有限公司 | 双波长金属3d打印光路装置及3d打印系统 |
CN113275745A (zh) * | 2021-04-21 | 2021-08-20 | 深圳市联赢激光股份有限公司 | 一种复合激光设备 |
CN215658420U (zh) * | 2021-04-21 | 2022-01-28 | 深圳市联赢激光股份有限公司 | 一种复合激光设备及特殊夹具 |
CN114012111A (zh) * | 2021-11-25 | 2022-02-08 | 华南理工大学 | 一种蓝光红外双波长同轴复合激光增材制造装置与方法 |
Also Published As
Publication number | Publication date |
---|---|
CN215658420U (zh) | 2022-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110273155A (zh) | 一种激光熔覆再造工艺 | |
CN103451650A (zh) | 一种大型旋转机械轴瓦激光快速修复工艺方法 | |
CN101397663A (zh) | 一种带钢卷取机空心轴缺陷处理修复再造的新工艺方法 | |
CN111545918B (zh) | 焊接或增材修复区域的激光抛光与激光冲击强化制造方法 | |
CN104141129A (zh) | 一种螺杆的修复方法 | |
CN107723701A (zh) | 超高强度钢起落架构件裂纹的电磁搅拌激光熔覆修复方法 | |
CN112663051B (zh) | 一种飞机起落架轮轴外螺纹局部损伤激光熔覆修复方法 | |
CN109487265A (zh) | 一种大型旋转机械轴瓦激光快速修复工艺方法 | |
CN108213713B (zh) | 一种基于脉冲激光和连续激光增材的薄壁零部件复合修复方法 | |
WO2022222590A1 (zh) | 一种增材制造工艺、增材层、增材后的产品及复合激光器 | |
CN109207905B (zh) | 基于扫描振镜的激光氮化分区制备钛合金叶片防水蚀层的方法及装置 | |
CN111172529A (zh) | 一种铸造铝合金结构件在激光同轴送粉修复过程中的缺陷控制方法 | |
CN110052610A (zh) | 一种铸铁轧辊的增材制造方法 | |
CN113369728A (zh) | 钛合金大型复杂结构构件的制造方法 | |
CN106757011A (zh) | 一种蜗杆的激光熔覆再制造方法 | |
CN112139667A (zh) | 一种热冲压成形钢超声辅助摆动激光焊接方法 | |
CN110747462A (zh) | 一种高速激光熔覆工艺 | |
CN108326509A (zh) | 一种连铸机辊子的快速再制造方法 | |
CN111215829B (zh) | 搅拌摩擦焊辅助激光熔覆泵叶轮叶片的修复方法 | |
CN112981389A (zh) | 一种螺旋桨浆轴的激光修复方法 | |
CN114515837B (zh) | 一种单晶涡轮叶片叶尖的激光选区熔化修复方法 | |
CN101462203A (zh) | 铍铜合金模具激光焊接工艺 | |
CN115213408A (zh) | 一种增材制造工艺、增材层、增材后的产品及复合激光器 | |
CN115044900A (zh) | 一种矿用重载车辆柴油机凸轮轴再制造工艺 | |
CN215469320U (zh) | 一种激光熔覆复合辊压的辊道辊再制造装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22790700 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22790700 Country of ref document: EP Kind code of ref document: A1 |