WO2022222433A1 - 基于加速老化试验与实车工况的车用动力电池soh评估方法 - Google Patents

基于加速老化试验与实车工况的车用动力电池soh评估方法 Download PDF

Info

Publication number
WO2022222433A1
WO2022222433A1 PCT/CN2021/129474 CN2021129474W WO2022222433A1 WO 2022222433 A1 WO2022222433 A1 WO 2022222433A1 CN 2021129474 W CN2021129474 W CN 2021129474W WO 2022222433 A1 WO2022222433 A1 WO 2022222433A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery pack
vehicle
charging
discharge
Prior art date
Application number
PCT/CN2021/129474
Other languages
English (en)
French (fr)
Inventor
刘鹏
王震坡
周立涛
张照生
马慧敏
Original Assignee
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京理工大学 filed Critical 北京理工大学
Publication of WO2022222433A1 publication Critical patent/WO2022222433A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery

Definitions

  • the invention belongs to the technical field of battery state of health (SOH) testing and evaluation, and in particular relates to a method for evaluating the state of health of a vehicle power battery based on an aging test combined with actual vehicle operating conditions.
  • SOH battery state of health
  • the battery state of health estimation method at the single level is suitable for battery packs, and what data relationship exists in the transformation of relevant parameters, is rarely verified in the existing technology.
  • the existing SOH acquisition method is mainly estimated by using some characteristic parameters of new energy vehicles, and the real value of battery SOH cannot be directly obtained, so the accuracy and reliability of this evaluation index and system are low.
  • the present invention aims to solve the above-mentioned problems and defects in the SOH evaluation of the above-mentioned existing vehicle power batteries, by establishing between the test and calculation data of battery cells and battery packs, and the battery data used in real vehicles. contact to provide a more accurate and credible SOH assessment method.
  • the method specifically includes the following steps:
  • Step 1 For the power system actually used by a specific vehicle model, select the corresponding battery cell according to its power battery pack;
  • Step 2 In the test environment, connect and combine the selected battery cells according to the battery cell combination method of the battery pack used in the vehicle model, as a battery pack sample;
  • Step 3 Charge and discharge the battery pack sample to make it reach the initial state, and record the charge and discharge capacity during the process;
  • Step 4 Obtain the working condition data of n different target vehicles of the vehicle type, and obtain m aging state points represented by capacity values for each target vehicle;
  • Step 5 Accelerate the aging of the battery pack sample to make it reach the i-th aging state
  • Step 6 simulating the actual vehicle operating conditions of the vehicle model through the charging and discharging process
  • Step 7 Test the internal resistance of the battery pack sample after simulating the actual vehicle operating conditions and the power under different SOCs, so as to obtain the SOH of the battery pack sample;
  • Step 8 Repeat steps 6-7 to make the battery pack sample reach the i+1 th aging state, and finally traverse and complete m aging states.
  • the SOH of the battery pack sample obtained through the above steps and the SOH of the real vehicle in the same aging state are compared, and the relationship between the characteristic parameters of the battery cell and the SOH of the battery pack is analyzed to optimize the extraction of the SOH characteristic parameters of the real vehicle.
  • selecting the battery cells in the step 1 specifically includes: according to data such as the model, electrode material, nominal capacity, etc. of the battery cells used in the power battery pack;
  • connecting and combining the selected battery cells in the second step includes but is not limited to: combining in series or in parallel in the battery packs used in the vehicle model, and/or combining in a packaged manner of the battery packs.
  • step 3 specifically includes:
  • step 5 specifically includes:
  • simulating the actual vehicle operating conditions of the vehicle model in step 6 includes separately simulating the driving conditions, the slow charging process and the fast charging process for the battery pack samples based on the actual vehicle data, or comprehensively performing these three simulations;
  • the simulated driving conditions include:
  • the current of different driving segments of the real vehicle is extracted, and the mileage value of each state point corresponding to the m states is within 100 kilometers before and after the standard.
  • Three sets of experimental data are prepared for each mileage, a total of 3 times m, 3m sets of data; different state points Corresponding to the respective group currents.
  • the simulated slow charging process includes:
  • Extract the real vehicle data divide the slow charging current and the fast charging current by clustering, and use the slow charging current to charge to full power in a constant current-constant voltage manner;
  • the simulated fast charging process includes:
  • Extract the real vehicle data divide the slow charging current and the fast charging current by clustering, and use the fast charging current to charge to full power in a constant current-constant voltage manner.
  • step 7 specifically includes:
  • the power test begins after the SOC drops to a predetermined threshold.
  • the above-mentioned method provided by the present invention establishes the relationship between the algorithm output value and the real value for the battery pack of the real vehicle by combining the accelerated aging test in the test environment and the real vehicle data obtained from the real vehicle.
  • the relationship between the battery state of health characteristic parameters between the battery and the battery pack Connecting laboratory data and real vehicle data, analyzing the relationship between single cells and groups, overcoming the fact that in the prior art, the research on battery health state estimation is limited to battery cells and lacks the ability to estimate the health state of battery packs. limitation.
  • those skilled in the art can effectively determine which characteristic parameters are selected for SOH detection, which improves the accuracy and reliability of the calculation results of real vehicle data.
  • Figure 2 is a mixed pulse characteristic curve-current under general SOC.
  • the SOH evaluation method of vehicle power battery based on accelerated aging test and actual vehicle operating conditions provided by the present invention, as shown in Figure 1, specifically includes the following steps:
  • Step 1 For the power system actually used by a specific vehicle model, select the corresponding battery cell according to its power battery pack;
  • Step 2 In the test environment, connect and combine the selected battery cells according to the battery cell combination method of the battery pack used in the vehicle model, as a battery pack sample;
  • Step 3 Charge and discharge the battery pack sample to make it reach the initial state, and record the charge and discharge capacity during the process;
  • Step 4 Obtain the working condition data of n different target vehicles of the vehicle type, and obtain m aging state points represented by capacity values for each target vehicle;
  • Step 5 Accelerate the aging of the battery pack sample to make it reach the i-th aging state
  • Step 6 simulating the actual vehicle operating conditions of the vehicle model through the charging and discharging process
  • Step 7 Test the internal resistance of the battery pack sample after simulating the actual vehicle operating conditions and the power under different SOCs, so as to obtain the SOH of the battery pack sample;
  • Step 8 Repeat steps 6-7 to make the battery pack sample reach the i+1 th aging state, and finally traverse and complete m aging states.
  • the SOH of the battery pack sample obtained through the above steps and the SOH of the real vehicle in the same aging state are compared, and the relationship between the characteristic parameters of the battery cell and the SOH of the battery pack is analyzed to optimize the extraction of the SOH characteristic parameters of the real vehicle.
  • the battery cell and battery pack indicators shown in Tables 1 and 2 are selected:
  • Yutong bus is the research object of real vehicle data.
  • the sum value of the increase in soc during the charging process is dsoc
  • the increase in the capacity during the charging process is dc, which is converted into a capacity value cap whose soc is 100 during charging.
  • the specific method is to discharge with constant current after charging with constant current, and obtain the charging and discharging capacity by integrating over time. The average value is the capacity. If “state i" has been reached, the acceleration is over, and go to 4.2.6; if "state i" has not been reached, return to the discharge resting operation.
  • the clustering divides the fast and slow charging current, and the CC-CV is fully charged.
  • the clustering divides the fast and slow charging current, and the CC-CV is fully charged.
  • the battery pack samples are tested to collect information related to their health status, including:
  • Each battery pack uses 1/3C CC-CV (CC reaches the charge cut-off voltage and then turns to CV until the current is less than 0.05c), and records the current and voltage data of the single cell and the battery pack;

Abstract

一种基于加速老化试验与实车工况的车用动力电池SOH评估方法,其通过将试验环境中的加速老化试验以及由真实车辆得到的实车数据相结合,建立了用于实车电池包的算法输出值与真实值之间的关系,以及单体与成组电池之间电池健康状态特征参数的关系。连接了实验室数据与实车数据,解析单体电池与成组之间的关系,克服了现有技术中对电池健康状态估计研究局限于电池单体,而缺少对电池包的健康状态估计的局限性。使得能够有效地确定选用哪些特质参数进行SOH检测,提升了实车数据计算结果的准确度与可信度。

Description

基于加速老化试验与实车工况的车用动力电池SOH评估方法 技术领域
本发明属于电池健康状态(SOH)测试评估技术领域,尤其涉及基于老化试验并结合实车工况对车用动力电池的健康状态进行评估的方法。
背景技术
随着新能源汽车的迅猛发展,与其使用性能相关的动力电池健康状态成为消费者和生产厂家最关心的电池性能指标之一。我国迫切需要能够实时准确评估动力电池的健康状态的方法,以解决实车动力电池评价指标准确性和可信度低的问题。现有动力电池健康状态估计算法多局限于实验室内的电池单体,而实车上的动力电池均是以电池包为单位存在。各电池单体组合成电池包后的使用过程中,受组合形式、实际工况等的多方面条件影响,电池特性会发生诸多意想不到的变化。单体层面的电池健康状态估计方法是否适用于电池包,相关参数转化存在何种数据关系,现有技术中还鲜有验证。现有的SOH获取方式主要是利用新能源汽车的某些特征参数估算得到,电池SOH的真实值无法直接得到,因此这种评价指标和体系的准确性和可信度较低。
发明内容
有鉴于此,本发明旨在针对上述现有车用动力电池SOH评价中的上述问题与缺陷,通过在电池单体、电池组的试验和计算数据,以及实车中使用的电池数据之间建立联系,提供一种更精确、可信度更高的SOH评估方法。所述方法具体包括以下步骤:
步骤一、针对某种特定车型所实际采用的动力系统,根据其动力电池组选择对应的电池单体;
步骤二、在试验环境中,按照所述车型所使用电池组的电池单体组合方式,将所选择电池单体进行连接组合,作为电池组样本;
步骤三、对电池组样本进行充放电使其达到初始状态,并记录过程中的充电及放电容量;
步骤四、获取所述车型的n辆不同目标车辆的工况数据,对每一目标车辆均得到通过容量值表征的m个老化状态点;
步骤五、对电池组样本进行加速老化,使其达到第i个老化状态;
步骤六、通过充放电过程模拟所述车型的实车工况;
步骤七、对模拟实车工况后的电池组样本的内阻以及不同SOC下的功率进行测试,从而得到电池组样本的SOH;
步骤八、重复执行步骤六-七使电池组样本达到第i+1个老化状态,最终遍历完成m个老化状态。
将通过上述步骤得到的电池组样本SOH以及实车在相同老化状态的SOH相比较,解析电池单体与电池组SOH特征参数之间的相互关系,用于对实车SOH特征参数提取进行优化。
进一步地,所述步骤一中选择电池单体具体包括:根据动力电池组中所使用的电池单体的型号、电极材料、标称容量等数据;
进一步地,所述步骤二中将所选择电池单体进行连接组合包括但不限于:按照所述车型使用的电池组中串联或并联方式组合,和/或按照电池组的成包方式组合。
进一步地,所述步骤三具体包括:
3.1)将新电池单体先按照第一倍率放电特定时间,确保放空后静置一段时间;
3.2)将每个单体电池以第二倍率电流进行恒流-恒压充电,恒流充电达到截止电压后转恒压充电直到电流小于第三倍率,记录充电容量Q1后,静置一段时间
3.3)将电池单体以第二倍率恒流放电至放电截止电压,记录放电容量Q2后,静置一段时间;
3.4)重复执行步骤(2)-(3)若干次。
进一步地,所述步骤五具体包括:
5.1)采用相同的倍率和时间先充电后放电,并无间断循环进行若干次;
5.2)检测电池健康状态,将电池组样本容量与实车数据中的m个状态对比,电池组样本已达到“状态i”,则结束加速老化并进行模拟实车工况;若仍未达到“状态i”,则返回进行放电静置操作。
进一步地,步骤六中模拟所述车型的实车工况包括基于实车数据对电池组样本分别进行行驶工况、慢充过程和快充过程的模拟,或综合进行这三种模拟;
其中,模拟行驶工况包括:
提取实车不同行驶片段的电流,按m个状态各自对应车辆的状态点里程值前后100公里内为标准,每段里程准备3组实验数据,共3乘m,3m组数据;不同的状态点对应各自的组别电流。
模拟慢充过程包括:
提取实车数据,通过聚类划分慢充电流与快充电流,采用慢充电流以恒流-恒压方式充到满电;
模拟快充过程包括:
提取实车数据,通过聚类划分慢充电流与快充电流,采用快充电流以恒流-恒压方式充到满电。
进一步地,所述步骤七具体包括:
对电池组样本按照相同倍率放电和充电后,利用混合脉冲功率特征HPPC测试测量电池内阻多次;
在SOC下降到预定阈值后开始进行功率测试。
上述本发明所提供的方法,通过将试验环境中的加速老化试验以及由真实车辆得到的实车数据相结合,建立了用于实车电池包的算法输出值与真实值之间的关系,单体与成组电池之间电池健康状态特征参数的关系。连接了实验室数据与实车数据,解析单体电池与成组之间的关系,克服了现有技术中对电池健康状态估计研究局限于电池单体,而缺少对电池包的健康状态估计的局限性。使得本领域技术人员基于本发明的教导,能够有效地确定选用哪些特质参数进行SOH检测,提升了实车数据计算结果的准确度与可信度。
附图说明
图1为本发明所提供方法的流程示意图;
图2为一般SOC下混合脉冲特性曲线-电流。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明所提供的基于加速老化试验与实车工况的车用动力电池SOH评估方法,如图1所示,具体包括以下步骤:
步骤一、针对某种特定车型所实际采用的动力系统,根据其动力电池组选择对应的电池单体;
步骤二、在试验环境中,按照所述车型所使用电池组的电池单体组合方式,将所选择电池单体进行连接组合,作为电池组样本;
步骤三、对电池组样本进行充放电使其达到初始状态,并记录过程中的充电及放电容量;
步骤四、获取所述车型的n辆不同目标车辆的工况数据,对每一目标车辆均得到通过容量值表征的m个老化状态点;
步骤五、对电池组样本进行加速老化,使其达到第i个老化状态;
步骤六、通过充放电过程模拟所述车型的实车工况;
步骤七、对模拟实车工况后的电池组样本的内阻以及不同SOC下的功率进行测试,从而得到电池组样本的SOH;
步骤八、重复执行步骤六-七使电池组样本达到第i+1个老化状态,最终遍历完成m个老化状态。
将通过上述步骤得到的电池组样本SOH以及实车在相同老化状态的SOH相比较,解析电池单体与电池组SOH特征参数之间的相互关系,用于对实车SOH特征参数提取进行优化。
在本发明的一个优选实施方式中,以宇通某车型为例选择了如表1、2所示的电池单体及电池组组指标:
表1电池单体参数
Figure PCTCN2021129474-appb-000001
表2电池单体规格
型号 CATL磷酸铁锂(额定电压3.2V)
放电截止电压 2.5V
充电截止电压 3.65V
额定容量 86Ah
选择18块上述电池单体,经过1C充放电容量标定实验后,筛选出容量相近的12块作为实验样本,组成以下2组电池组样本:
a)2并3串,先串后并(与宇通客车成组连接方式相同,宇通客车为实车数据研究对象)。
b)2并3串,先并后串。
通过执行以下步骤,使电池组样本达到初始状态:
3.1)将新电池单体先1C放电1h,确保放空,然后静置1h;
3.2)每个单体电池以1/3C电流进行CC-CV充电,CC充电达到截止电压后转CV充电直到电流小于0.05C,记录充电容量Q1后,静置30min;
3.3)将电池单体以1/3C恒流放电至放电截止电压,记录放电容量Q2后,静置30min;
3.4)重复执行以上步骤(2)-(5)三次。
通过大数据平台网络读取n个目标车辆车载终端采集上传的数据,从中获取其历史信息中的车辆电池状态以及电池运行的电流工况曲线。针对每个车辆,取其每1万公里处的最近一次充电数据,安时积分计算其充电容量,换算为满充容 量:
cap=100*dc/dsoc       (1)
上式中,其充电过程soc增加的加和值为dsoc,以及充电过程中容量的增加值dc,换算为充电增加soc为100的容量值cap,如此共获得n个车的用容量值表征的m个老化状态点,状态从1到状态m。
对电池组样本进行加速老化具体操作如下:
5.1)1C倍率充电1h,之后1C倍率放电1h,无间断循环进行4次。
5.2)检测电池健康状态,具体方式为通过恒流充电后恒流放电,按时间上积分得到充电与放电容量,取均值即为其容量,与实车数据中的m个状态对比,若实验电池已达到“状态i”,则加速结束,进行4.2.6;若仍未达到“状态i”,则返回进行放电静置操作。
当实验电池组老化过程达到“状态i”时,执行工况模拟的步骤,此处设计了三种工况,以达到模拟实车工况目的:
a)行驶工况
从实车中提取500-1000帧不等的行驶片段电流,按m个状态各自对应车辆的状态点里程值前后100公里内为标准,每段里程准备3组实验数据,共3乘m,3m组数据。不同的状态点对应各自的组别电流。
b)慢充
根据实车数据,聚类划分快慢充电流,CC-CV充到满电。
c)快充
根据实车数据,聚类划分快慢充电流,CC-CV充到满电。
综合模拟三种工况的具体流程如下:
1)1C充电0.8h以上(模拟车辆行驶的起始soc,具有随机性,避免行驶工况过放,所以充电0.8h以上,也可以充满,即100%soc)
2)a)行驶工况+b)慢充
3)1C放电1h放空,1C充电0.8h以上(模拟车辆行驶的起始soc,具有随机性,避免行驶工况过放,所以充电0.8h以上,也可以充满,即100%soc)
4)a)行驶工况+c)快充
5)静置3h。
在进行完实车工况模拟后对电池组样本进行测试,采集其健康状态相关信息,具体包括:
1)电池组1C放电1h,确保放空,然后静置1h;
2)1C充电1h,每隔1/4h,静置10min后进行一次HPPC测试测量电池内阻,共5次测试,其中第三次测试(50%SOC下)加入30s的功率测试:
一般SOC下功率和内阻测试工况如表3和图2所示(放电电流为正,充电电流为负)。
表3一般SOC下功率和内阻测试工况步骤时间
时间增加量/s 累计时间/s 放电倍率/C
0 60 0
10 70 1
30 100 0
10 110 -0.75
30 140 0
3)每个电池组以1/3C CC-CV(CC达到有单体达到充电截止电压后转CV直到电流小于0.05c),记录单体与电池组的电流电压数据;
4)静置30min;
5)将电池组以1/3C恒流放电至有单体达到放电截止电压,记录单体与电池组的电流电压数据;
6)静置30min;
7)以上步骤(2)-(6)重复测试三次;
8)确认是否达到最后一个状态m,未达到则返回进行加速老化是电池组样本第i+1个老化状态;否则,方法结束。
应理解,本发明实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (7)

  1. 基于加速老化试验与实车工况的车用动力电池SOH评估方法,其特征在于:具体包括以下步骤:
    步骤一、针对某种特定车型所实际采用的动力系统,根据其动力电池组选择对应的电池单体;
    步骤二、在试验环境中,按照所述车型所使用电池组的电池单体组合方式,将所选择电池单体进行连接组合,作为电池组样本;
    步骤三、对电池组样本进行充放电使其达到初始状态,并记录过程中的充电及放电容量;
    步骤四、获取所述车型的n辆不同目标车辆的工况数据,对每一目标车辆均得到通过容量值表征的m个老化状态点;
    步骤五、对电池组样本进行加速老化,使其达到第i个老化状态;
    步骤六、通过充放电过程模拟所述车型的实车工况;
    步骤七、对模拟实车工况后的电池组样本的内阻以及不同SOC下的功率进行测试,从而得到电池组样本的SOH;
    步骤八、重复执行步骤六-七使电池组样本达到第i+1个老化状态,最终遍历完成m个老化状态。
  2. 如权利要求1所述的方法,其特征在于:所述步骤一中选择电池单体具体包括:根据动力电池组中所使用的电池单体的型号、电极材料、标称容量数据。
  3. 如权利要求1所述的方法,其特征在于:所述步骤二中将所选择电池单体进行连接组合包括:按照所述车型使用的电池组中串联或并联方式组合,和/或按照电池组的成包方式组合。
  4. 如权利要求1所述的方法,其特征在于:所述步骤三具体包括:
    3.1)将新电池单体先按照第一倍率放电特定时间,确保放空后静置一段时间;
    3.2)将每个单体电池以第二倍率电流进行恒流-恒压充电,恒流充电达到截止电压后转恒压充电直到电流小于第三倍率,记录充电容量Q1后,静置一段时间
    3.3)将电池单体以第二倍率恒流放电至放电截止电压,记录放电容量Q2后,静置一段时间;
    3.4)重复执行步骤(2)-(3)若干次。
  5. 如权利要求1所述的方法,其特征在于:所述步骤五具体包括:
    5.1)采用相同的倍率和时间先充电后放电,并无间断循环进行若干次;
    5.2)检测电池健康状态,将电池组样本容量与实车数据中的m个状态对比,电池组样本已达到“状态i”,则结束加速老化并进行模拟实车工况;若仍未达到“状态i”,则返回进行放电静置操作。
  6. 如权利要求1所述的方法,其特征在于:步骤六中模拟所述车型的实车工况包括基于实车数据对电池组样本分别进行行驶工况、慢充过程和快充过程的模拟,或综合进行这三种模拟;
    其中,模拟行驶工况包括:
    提取实车不同行驶片段的电流,按m个状态各自对应车辆的状态点里程值前后100公里内为标准,每段里程准备3组实验数据,共3乘m,3m组数据;不同的状态点对应各自的组别电流。
    模拟慢充过程包括:
    提取实车数据,通过聚类划分慢充电流与快充电流,采用慢充电流以恒流-恒压方式充到满电;
    模拟快充过程包括:
    提取实车数据,通过聚类划分慢充电流与快充电流,采用快充电流以恒流-恒压方式充到满电。
  7. 如权利要求1所述的方法,其特征在于:所述步骤七具体包括:
    对电池组样本按照相同倍率放电和充电后,利用混合脉冲功率特征HPPC测试测量电池内阻多次;
    在SOC下降到预定阈值后开始进行功率测试。
PCT/CN2021/129474 2021-04-19 2021-11-09 基于加速老化试验与实车工况的车用动力电池soh评估方法 WO2022222433A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110419370.9A CN113109729B (zh) 2021-04-19 2021-04-19 基于加速老化试验与实车工况的车用动力电池soh评估方法
CN202110419370.9 2021-04-19

Publications (1)

Publication Number Publication Date
WO2022222433A1 true WO2022222433A1 (zh) 2022-10-27

Family

ID=76718366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129474 WO2022222433A1 (zh) 2021-04-19 2021-11-09 基于加速老化试验与实车工况的车用动力电池soh评估方法

Country Status (2)

Country Link
CN (1) CN113109729B (zh)
WO (1) WO2022222433A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116430244A (zh) * 2023-06-14 2023-07-14 聊城大学 一种基于电压电流特征的动力电池健康状态估计方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113109729B (zh) * 2021-04-19 2022-02-22 北京理工大学 基于加速老化试验与实车工况的车用动力电池soh评估方法
CN113866655A (zh) * 2021-09-27 2021-12-31 北京理工新源信息科技有限公司 融合车联网运行数据与测试数据的动力电池容量评估方法
CN113954683A (zh) * 2021-11-25 2022-01-21 湖北德普电气股份有限公司 直流充检桩检测方法及控制系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012156605A1 (fr) * 2011-05-13 2012-11-22 Valeo Equipements Electriques Moteur Procede d'estimation de l'etat de sante d'une batterie et systeme de gestion de batterie adapte
CN103728564A (zh) * 2013-12-20 2014-04-16 惠州市亿能电子有限公司 一种混合动力汽车soh值估算方法
WO2015086753A1 (fr) * 2013-12-12 2015-06-18 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede d'estimation de l'etat de sante d'une batterie
CN104865445A (zh) * 2014-08-29 2015-08-26 北汽福田汽车股份有限公司 一种动力电池内阻检测方法及动力电池健康度诊断方法
CN106959420A (zh) * 2017-03-10 2017-07-18 南京航空航天大学 一种动力电池组soc和soh的自适应估计方法
CN108896913A (zh) * 2018-05-10 2018-11-27 燕山大学 一种锂离子电池健康状态的估算方法
CN112444754A (zh) * 2020-11-18 2021-03-05 国网上海市电力公司 基于动态阻抗的电池健康状态估算方法、系统
CN113109729A (zh) * 2021-04-19 2021-07-13 北京理工大学 基于加速老化试验与实车工况的车用动力电池soh评估方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502006008573D1 (de) * 2005-10-28 2011-02-03 Temic Auto Electr Motors Gmbh Verfahren und vorrichtung zur bestimmung eines alterungszustands einer batterie
CN106443474B (zh) * 2016-10-09 2019-03-26 北京理工大学 一种动力电池系统寿命衰退特征快速识别的方法
KR102035679B1 (ko) * 2016-11-29 2019-10-23 주식회사 엘지화학 배터리 노화상태 산출 방법 및 시스템

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012156605A1 (fr) * 2011-05-13 2012-11-22 Valeo Equipements Electriques Moteur Procede d'estimation de l'etat de sante d'une batterie et systeme de gestion de batterie adapte
WO2015086753A1 (fr) * 2013-12-12 2015-06-18 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede d'estimation de l'etat de sante d'une batterie
CN103728564A (zh) * 2013-12-20 2014-04-16 惠州市亿能电子有限公司 一种混合动力汽车soh值估算方法
CN104865445A (zh) * 2014-08-29 2015-08-26 北汽福田汽车股份有限公司 一种动力电池内阻检测方法及动力电池健康度诊断方法
CN106959420A (zh) * 2017-03-10 2017-07-18 南京航空航天大学 一种动力电池组soc和soh的自适应估计方法
CN108896913A (zh) * 2018-05-10 2018-11-27 燕山大学 一种锂离子电池健康状态的估算方法
CN112444754A (zh) * 2020-11-18 2021-03-05 国网上海市电力公司 基于动态阻抗的电池健康状态估算方法、系统
CN113109729A (zh) * 2021-04-19 2021-07-13 北京理工大学 基于加速老化试验与实车工况的车用动力电池soh评估方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI, XIAOYU ET AL.: "State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis", JOURNAL OF POWER SOURCES, vol. 410, 15 January 2019 (2019-01-15), pages 106 - 114, XP055851614, DOI: 10.1016/j.jpowsour.2018.10.069 *
NAN JINRUI, SUN LU: "Estimation of Lithium Battery SOH Under Actual Operating Conditions Based on Particle Swarm Optimization", BEIJING LIGONG DAXUE XUEBAO = TRANSACTION OF BEIJING INSTITUTE OF TECHNOLOGY, BEIJING LIGONG DAXUE, BEIJING, CN, vol. 41, no. 1, 31 January 2021 (2021-01-31), CN , pages 59 - 64, XP055978945, ISSN: 1001-0645 *
WANG LIMEI; PAN CHAOFENG; LIU LIANG; CHENG YONG; ZHAO XIULIANG: "On-board state of health estimation of LiFePO4battery pack through differential voltage analysis", APPLIED ENERGY., ELSEVIER SCIENCE PUBLISHERS., GB, vol. 168, 12 February 2016 (2016-02-12), GB , pages 465 - 472, XP029482516, ISSN: 0306-2619, DOI: 10.1016/j.apenergy.2016.01.125 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116430244A (zh) * 2023-06-14 2023-07-14 聊城大学 一种基于电压电流特征的动力电池健康状态估计方法
CN116430244B (zh) * 2023-06-14 2023-08-15 聊城大学 一种基于电压电流特征的动力电池健康状态估计方法

Also Published As

Publication number Publication date
CN113109729A (zh) 2021-07-13
CN113109729B (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
WO2022222433A1 (zh) 基于加速老化试验与实车工况的车用动力电池soh评估方法
CN107991623B (zh) 一种考虑温度和老化程度的电池安时积分soc估计方法
CN110208704B (zh) 一种基于电压滞后效应的锂电池建模方法和系统
CN112433169B (zh) 一种云端动力电池健康度评估系统及方法
CN109655754B (zh) 一种基于充电过程多维分阶的电池性能评估方法
CN103091642B (zh) 一种锂电池容量快速估计方法
CN102590751B (zh) 动力电池包一致性评估方法和装置
EP3594705B1 (en) Method and device for estimating service capacity and state of health of minimum battery cell and battery system
CN116298979A (zh) 锂离子电池的健康状态的估算方法及系统
CN104485474B (zh) 一种基于一致性指标的纯电动汽车电池组匹配方法
CN112180274B (zh) 一种动力电池组快速检测测评方法
CN105021996A (zh) 储能电站bms的电池soh估算方法
Zheng et al. Fault identification and quantitative diagnosis method for series-connected lithium-ion battery packs based on capacity estimation
CN113219351B (zh) 动力电池的监控方法及装置
CN110133525A (zh) 一种应用于电池管理系统的锂离子电池健康状态估计方法
CN109490790B (zh) 采用补偿脉冲法的锂动力电池功率特性测试方法及装置
CN110045291B (zh) 一种锂电池容量估计方法
CN103176137B (zh) 基于电池soc不均匀性的电池组健康状态评价方法
CN111665446A (zh) 一种退役动力电池性能评估方法及系统
CN113093027B (zh) 电池soc校准方法、装置、系统、介质及程序产品
CN111257770B (zh) 一种电池包功率估算方法
CN111366864B (zh) 一种基于固定压升区间的电池soh在线估计方法
CN111308381A (zh) 一种纯电动公交车动力电池健康状态评估方法
WO2022242058A1 (zh) 针对现实新能源汽车的电池健康状态估计方法
CN110780140A (zh) 一种用于储能电站的电池管理系统测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937655

Country of ref document: EP

Kind code of ref document: A1