WO2022222391A1 - 一种模拟深海环境的管线盾构施工装置 - Google Patents

一种模拟深海环境的管线盾构施工装置 Download PDF

Info

Publication number
WO2022222391A1
WO2022222391A1 PCT/CN2021/123679 CN2021123679W WO2022222391A1 WO 2022222391 A1 WO2022222391 A1 WO 2022222391A1 CN 2021123679 W CN2021123679 W CN 2021123679W WO 2022222391 A1 WO2022222391 A1 WO 2022222391A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
valve
air bag
shield construction
construction device
Prior art date
Application number
PCT/CN2021/123679
Other languages
English (en)
French (fr)
Inventor
胡俊
熊辉
曾晖
李亮
曾东灵
周文
任军昊
林小淇
李珂
Original Assignee
海南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南大学 filed Critical 海南大学
Publication of WO2022222391A1 publication Critical patent/WO2022222391A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B25/00Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes

Definitions

  • the invention relates to the technical field of simulated shield tunnel construction devices, in particular to a pipeline shield tunnel tunnel construction device for simulating a deep sea environment.
  • the shield method is a fully mechanized construction method in the underground excavation method. It pushes the shield machine into the ground, and supports the surrounding rock through the shield shell and segment to prevent collapse into the tunnel. At the same time, the soil is excavated with a cutting device in front of the excavation front, and is transported out of the hole by the excavation machine, and is pushed in by the jack at the rear, and the precast concrete segments are assembled to form a mechanized construction method of the tunnel structure.
  • the current simulated shield construction is mainly on land or in the shallow sea, and there is a lack of relevant data research on shield construction in the deep sea.
  • the simulated soil box used for the simulated shield tunneling machine test with the announcement number of CN100343485C can simulate various typical strata with a depth of 22m in the simulated soil box, but it cannot simulate the deep sea environment.
  • the existing technology currently cannot simulate construction in a deep sea environment, so there is a lack of research on the adaptability of shield boring machines in deep sea strata, and it is impossible to ensure that shield boring machines can be confirmed before being applied in deep sea environments.
  • the present invention is to provide a pipeline shield construction device for simulating a deep-sea environment, using a high-pressure chamber to dive into the deep sea to load ultra-high-pressure seawater, and then pouring the ultra-high-pressure seawater into a simulated soil tank, which can simulate the ultra-high-pressure seawater.
  • the high-pressure deep-sea environment provides a simulated experimental environment for deep-sea shield construction.
  • a pipeline shield construction device for simulating a deep-sea environment comprising a simulated soil box and a hyperbaric chamber, a counterweight is arranged at the bottom of the hyperbaric chamber, a vertical isolation plate is arranged in the hyperbaric chamber, and the isolation plate separates the
  • the high-pressure chamber is divided into several independent air chambers, the bottom of the air chamber is provided with a first valve, the first valve is connected with the first connecting pipe, and the side wall of the first connecting pipe is provided with a first valve.
  • the check valve is provided with a first connecting head at the end, seawater enters the first connecting pipe from the first check valve, and the simulated soil box is provided with a second connecting head, and the first connecting head is connected with the first connecting head.
  • the two connectors are detachably connected, the first connector and the second connector are both provided with a second valve, the first valve is connected to a control system, and the control system controls the first valves to open one by one, and each Only one of the first valves is communicated at a time.
  • the first valve is an electromagnetic control valve
  • the control system is a controller
  • the electromagnetic control valve is signally connected to the controller.
  • the pressurized cabin includes a piston cylinder, a water-pushing plunger and a pushing mechanism, one end of the piston cylinder is provided with an opening, and the other end is provided with a first cover, where the water-pushing piston is located.
  • the piston cylinder slides inside, a pressurized water cavity is formed between the first cover and the water-pushing plunger, the pressurized water cavity communicates with the high-pressure chamber through a second check valve, and the water-pushing plunger and the piston
  • a water flow gap is arranged between the cylinders, and the pushing mechanism is arranged on the piston cylinder to push the water pushing plunger to move toward the first cover.
  • the pushing mechanism includes a sleeve, a sliding rod, an explosive pack and a detonating device, one end of the sleeve is provided with an opening, and the other end is provided with a second cover, and the sliding rod is slidably connected to the sleeve and Protruding from the opening and connected to the side of the water-pushing plunger, the explosive pack is arranged in the sleeve between the sliding rod and the second cover, the explosive pack is covered with a waterproof membrane, and the detonating device is used for on detonating the explosive charge.
  • the second cover is provided with a double U-shaped exhaust port, the exhaust port is communicated with the airbag, the second cover is provided with a storage box, and the airbag is folded in the storage box.
  • the detonation device includes a power supply, an ignition electrode and a control switch, the power supply, the control switch and the ignition electrode are connected in series, the control switch includes an elastic air bag, a first electrode and a second electrode, and the first electrode is fixed. In the middle of the elastic air bag, the second electrode is fixed on the inner wall of the elastic air bag, and the first electrode is in contact with the second electrode when the elastic air bag is compressed.
  • the elastic airbag is a retractable airbag
  • the first electrode is arranged in the retractable airbag
  • the second electrode is arranged on the inner wall of the end portion of the retractable airbag.
  • the telescopic airbag is provided with a gas nozzle, and the sidewall of the telescopic airbag is provided with a plurality of reinforcing rings at equal intervals.
  • the beneficial effect of the invention is that: the soil layer is filled in the simulated soil box according to the composition of the deep sea environment, and the shield tunneling device is used to carry out simulated construction experiments.
  • the hyperbaric chamber was put into the deep seawater.
  • the hyperbaric chamber sinks to the preset depth, the seawater pressure and gas pressure in the hyperbaric chamber are the same as the water pressure at the location.
  • the hyperbaric chamber is pulled out of the water surface by the lifting device, the first connecting head and the second connecting head at the end of the first connecting pipe are connected, and the second valve is opened to connect the first connecting pipe to the simulated soil tank.
  • the first valves are opened one by one through the control system, so that the air chambers are connected with the simulated soil box one by one, and one air chamber is communicated with the simulated soil box each time.
  • the air cavities are connected to the simulated soil box one by one, the water pressure in the simulated soil box is close to that of the deep sea. Since the air cavities are connected to the simulated soil box one by one, the pressure connected later will not be transmitted to the front air cavities, so that the pressure in the simulated soil box after all connections is closer to the pressure in the deep sea. Due to the presence of gas in the air cavity, the volume change caused when the first valve is opened is compensated.
  • FIG. 1 is a cross-sectional structural diagram of a pipeline shield construction device for simulating a deep-sea environment according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of the connection between the first valve and the controller in Embodiment 1 of the present invention
  • FIG. 3 is a cross-sectional structural diagram of a pipeline shield construction device for simulating a deep-sea environment according to Embodiment 2 of the present invention
  • FIG. 4 is a cross-sectional structural view of a pressurized cabin according to Embodiment 2 of the present invention.
  • 1 simulated soil box 2 high pressure chamber, 3 counterweight, 4 isolation plate, 5 air cavity, 6 first valve, 7 first connecting pipe, 8 first check valve, 9 first connecting head, 10 Second connector, 11 Second valve, 12 Controller, 13 Pressurized chamber, 14 Piston cylinder, 15 Water plunger, 16 Push mechanism, 17 First cover, 18 Second check valve, 19 Water flow gap, 20 Sleeve, 21 Slide Bar, 22 Explosive Pack, 23 Detonating Device, 24 Second Cover, 25 Waterproof Membrane, 26 Air Vent, 27 Airbag, 28 Storage Box, 29 Power Supply, 30 Ignition Electrode, 31 Control Switch, 32 Elastic Airbag, 33 first electrode, 34 second electrode, 35 air nozzle, 36 reinforcing ring.
  • a pipeline shield construction device for simulating a deep-sea environment includes a simulated soil box 1 and a hyperbaric chamber 2, the bottom of the hyperbaric chamber 2 is provided with a counterweight 3, and the hyperbaric chamber 2 is provided with vertical A straight isolation plate 4, the isolation plate 4 divides the high pressure chamber 2 into several independent air chambers 5, the bottom of the air chamber 5 is provided with a first valve 6, and the first valve 6 is connected to the air chamber 5.
  • the first connecting pipe 7 communicates with each other.
  • the side wall of the first connecting pipe 7 is provided with a first check valve 8, and the end is provided with a first connecting head 9. Seawater enters the first check valve 8 from the first check valve 8.
  • a connecting pipe 7, the simulated soil box 1 is provided with a second connecting head 10, the first connecting head 9 and the second connecting head 10 are detachably connected, and both the first connecting head 9 and the second connecting head are provided with The second valve 11, the first valve 6 is connected to the control system, the control system controls the first valves 6 to be opened one by one, and only one of the first valves 6 is connected at a time.
  • the soil layer is filled in the simulated soil box 1 according to the composition of the deep-sea environment, and a simulated construction experiment is performed using a shield machine.
  • the hyperbaric chamber 2 is put into the deep sea water, and a vertical isolation plate 4 is arranged in the hyperbaric chamber 2.
  • the isolation plate 4 divides the hyperbaric chamber 2 into several mutually independent air chambers 5. There is gas in the cavity 5.
  • the high-pressure chamber 2 sinks into the seawater, since the bottom of the air cavity 5 is provided with a first valve 6, the first valve 6 is connected with the first connecting pipe 7, and the first connecting pipe 7
  • the side wall is provided with a first check valve 8 , and seawater is poured into the first connecting pipe 7 from the first check valve 8 .
  • the counterweight 3 at the bottom of the hyperbaric chamber 2 makes the isolation plate 4 in a vertical state. Since the density of seawater is greater than the density of air, the seawater in the air chamber 5 is located at the bottom and the gas is located at the upper part. As the depth of the hyperbaric chamber 2 continues, The high-pressure seawater continuously enters the air cavity 5, and the air in the upper part of the air cavity 5 is continuously compressed. When the hyperbaric chamber 2 sinks to a preset depth, the seawater pressure and gas pressure in the hyperbaric chamber 2 are the same as the water pressure at the position.
  • the hyperbaric chamber 2 is pulled out of the water surface by the lifting device, the first connecting head 9 and the second connecting head 10 at the end of the first connecting pipe 7 are connected, and the second valve 11 is opened to connect the first connecting pipe 7 to the simulated soil. Box 1.
  • the first valves 6 are opened one by one through the control system, so that the air chambers 5 are communicated with the simulated soil box 1 one by one, and one air chamber 5 is communicated with the simulated soil box 1 each time.
  • the first valve 6 of the previously connected air chamber 5 is closed, and then the next first valve 6 is opened.
  • the seawater in the air cavity 5 flows into the simulated soil box 1 , thereby adding seawater into the simulated soil box 1 .
  • the pressure of the seawater in the simulated soil box 1 is relatively small.
  • the next first valve 6 is opened, and the seawater in the next air cavity 5
  • the water flows into the simulated soil box 1 , so that the seawater pressure in the simulated soil box 1 is further increased.
  • the water pressure in the simulated soil box 1 is close to that of the deep sea. Since the air chambers 5 are connected to the simulated soil box 1 one by one, the pressure connected later will not be transmitted to the front air chamber 5, so that the pressure in the simulated soil box 1 after all connections is closer to the pressure in the deep sea. Due to the presence of gas in the air chamber 5, the volume change caused when the first valve 6 is opened is compensated.
  • the first valve 6 is an electromagnetic control valve
  • the control system is a controller 12
  • the electromagnetic control valve is signally connected to the controller 12 .
  • the opening and closing of the electromagnetic control valves are controlled by the controller 12 to ensure that the electromagnetic control valves are opened one by one, and only one of the electromagnetic control valves is connected at a time.
  • Embodiment 1 the difference between this embodiment and Embodiment 1 is that it further includes a pressurized chamber 13 .
  • the pressurized chamber 13 includes a piston cylinder 14 , a water pushing plunger 15 and a pushing mechanism 16 .
  • One end of the piston cylinder 14 is There is an opening, and the other end is provided with a first cover 17, the water pushing piston slides in the piston cylinder 14, and a pressurized water cavity is formed between the first cover 17 and the water pushing plunger 15.
  • the pressurized water chamber communicates with the high pressure chamber 2 through the second check valve 18 , a water flow gap 19 is provided between the water pushing plunger 15 and the piston cylinder 14 , and the pushing mechanism 16 is provided on the piston cylinder 14 It is used to push the water pushing plunger 15 to move toward the first cover 17 .
  • Seawater is contained in the pressurized tank 13 , and the pressurized tank 13 sinks to the seabed together with the high-pressure tank 2 . When the pressure of the seawater increases, the seawater slowly flows into the piston cylinder 14 from the water flow gap 19 . Under the seabed, the pushing mechanism 16 is used to push the water pushing plunger 15 to move along the piston cylinder 14.
  • the seawater in the piston cylinder 14 is pressurized, and the pressure of the seawater is increased. sea water pressure.
  • the push mechanism works, the seawater cannot be discharged from the water flow gap in time, so that the pressure in the pressurized chamber rises rapidly, and the seawater in the pressurized chamber 13 flows to the high pressure chamber 2 through the second check valve 18 . Since one side of the water pushing plunger 15 is in contact with the seawater in the deep sea, the pressure in the pressurized chamber 13 is equal to the sum of the seawater pressure plus the pressure generated by the action of the pushing mechanism 16 .
  • the pushing mechanism 16 includes a sleeve 20 , a sliding rod 21 , an explosive pack 22 and a detonating device 23 , one end of the sleeve 20 is provided with an opening, and the other end is provided with a second cover 24 , the sliding rod 21 It is slidably connected to the sleeve 20 and protrudes from the opening to be connected to the side of the water-pushing plunger 15.
  • the explosive pack 22 is arranged in the sleeve 20 between the sliding rod 21 and the second cover 24, so the The explosive pack 22 is covered with a waterproof membrane 25 , and the detonating device 23 is used for detonating the explosive pack 22 .
  • the explosive pack 22 is detonated by the detonating device 23, and a large amount of gas is generated during the explosion, which pushes the sliding rod 21 to slide out of the opening of the sleeve 20, thereby pushing the water-pushing plunger 15 to move.
  • the sliding rod 21 is connected with the side surface of the water-pushing plunger 15 , which can reduce the impact force generated at the moment of the explosion and hit the sliding rod 21 on the water-pushing plunger 15 .
  • the volume of the pushing mechanism 16 is small, and a strong pushing force can be generated to increase the seawater pressure in the hyperbaric chamber 2 .
  • the waterproof membrane 25 improves the waterproof performance of the explosive pack 22 . When the hyperbaric chamber 2 is submerged into deeper seawater, the detonating device 23 detonates the explosive charge 22 .
  • the second cover 24 is provided with a double U-shaped exhaust port 26, the exhaust port 26 communicates with the airbag 27, the second cover 24 is provided with a storage box 28, and the airbag 27 is folded in the storage box 28 .
  • the exhaust port 26 is in a double U shape, that is, two U-shaped pipes are connected in series, so that the gas generated by the explosion cannot be discharged in time under the impact force, thereby pushing the sliding rod 21 to slide.
  • the gas in the airbag 27 increases to generate buoyancy, and the hyperbaric chamber 2 and the pressurized chamber 13 are surfaced.
  • the airbag 27 is folded and stored in the storage box 28 when not in use.
  • a GPS locator can be installed in the hyperbaric chamber 2 or the pressurized chamber 13 , and the position of the device can be determined by the GPS locator after the device is inflated.
  • the detonation device 23 includes a power source 29, an ignition electrode 30 and a control switch 31, the power source 29, the control switch 31 and the ignition electrode 30 are connected in series, and the control switch 31 includes an elastic airbag 32, a first electrode 33 and The second electrode 34, the first electrode 33 is fixed in the middle of the elastic air bag 32, the second electrode 34 is fixed on the inner wall of the elastic air bag 32, the first electrode 33 and the elastic air bag 32 are compressed when the elastic air bag 32 is compressed. The second electrode 34 is in contact. According to the seawater pressure required by the hyperbaric chamber 2 , an appropriate amount of gas is filled in the elastic airbag 32 .
  • the elastic airbag 32 is subjected to seawater pressure in the seawater, and the elastic airbag 32 shrinks under the action of the pressure. When the preset depth is reached, the elastic airbag 32 shrinks so that the first electrode 33 and the second electrode 34 are connected, and the circuit of the control switch 31 is connected.
  • the power source 29 supplies power to the ignition electrode 30, so that the ignition electrode 30 ignites the explosive pack 22, and the pushing mechanism 16 starts to work.
  • the elastic airbag 32 is a retractable airbag 27
  • the first electrode 33 is provided in the retractable airbag 27
  • the second electrode 34 is provided on the inner wall of the end of the retractable airbag 27 .
  • the telescopic air bag 27 is provided with a gas nozzle 35, and the side wall of the telescopic air bag 27 is provided with a plurality of reinforcing rings 36 at equal intervals. Gas is filled into the telescopic air bag 27 through the gas nozzle 35, which is convenient for operation. A plurality of reinforcing rings 36 are arranged at equal distances on the side wall of the telescopic air bag 27 to improve the radial strength and expand and contract with the telescopic air bag 27 in the axial direction.

Abstract

本发明公开了一种模拟深海环境的管线盾构施工装置,包括模拟土箱和高压舱,高压舱底部设有配重块,高压舱内设有竖直的隔离板,隔离板将高压舱分割为若干个相互独立的气腔,气腔的底部设有第一阀门,第一阀门均与第一连接管连通,第一连接管侧壁设有第一止回阀,端部设有第一连接头,海水从第一止回阀进入第一连接管,模拟土箱设有第二连接头,第一连接头与第二连接头可拆卸连接,第一连接头和第二连接头均设有第二阀门,第一阀门与控制系统连接,控制系统控制第一阀门逐个开启,且每次仅连通一个第一阀门。利用高压舱潜入深海装入超高压海水,再将超高压海水灌入在模拟土箱内,可以模拟出超高压的深海环境,为深海盾构施工提供模拟的实验环境。

Description

一种模拟深海环境的管线盾构施工装置 技术领域
本发明涉及模拟盾构施工装置技术领域,特别涉及一种模拟深海环境的管线盾构施工装置。
背景技术
盾构法是暗挖法施工中的一种全机械化施工方法。它是将盾构机械在地中推进,通过盾构外壳和管片支承四周围岩防止发生往隧道内的坍塌。同时在开挖面前方用切削装置进行土体开挖,通过出土机械运出洞外,靠千斤顶在后部加压顶进,并拼装预制混凝土管片,形成隧道结构的一种机械化施工方法。
目前的模拟盾构施工主要是陆地或者浅海中,对深海的盾构施工缺乏相关的数据研究。例如公告号为CN100343485C的模拟盾构掘进机试验用的模拟土箱,在模拟土箱内实现22m深的多种典型地层的模拟,但是没有能够模拟深海环境。现有技术目前无法为深海环境下进行施工进行模拟,从而缺乏盾构掘进机的在深海地层适应性研究,无法确保盾构掘进机在深海环境应用之前能够得到可靠性的确认。
发明内容
针对上述现有技术,本发明在于提供一种模拟深海环境的管线盾构施工装置,利用高压舱潜入深海装入超高压海水,再将超高压海水灌入在模拟土箱内, 可以模拟出超高压的深海环境,为深海盾构施工提供模拟的实验环境。
本发明的技术方案是这样实现的:
一种模拟深海环境的管线盾构施工装置,包括模拟土箱和高压舱,所述高压舱底部设有配重块,所述高压舱内设有竖直的隔离板,所述隔离板将所述高压舱分割为若干个相互独立的气腔,所述气腔的底部设有第一阀门,所述第一阀门均与第一连接管连通,所述第一连接管侧壁设有第一止回阀,端部设有第一连接头,海水从所述第一止回阀进入所述第一连接管,所述模拟土箱设有第二连接头,所述第一连接头与第二连接头可拆卸连接,所述第一连接头和第二连接头均设有第二阀门,所述第一阀门与控制系统连接,所述控制系统控制所述第一阀门逐个开启,且每次仅连通一个所述第一阀门。
进一步的,所述第一阀门为电磁控制阀,所述控制系统为控制器,所述电磁控制阀与所述控制器信号连接。
进一步的,还包括加压舱,所述加压舱包括活塞筒、推水柱塞和推动机构,所述活塞筒一端设有开口,另一端设有第一封盖,所述推水活塞在所述活塞筒内滑动,所述第一封盖与推水柱塞之间构成加压水腔,所述加压水腔通过第二止回阀与所述高压舱连通,所述推水柱塞与活塞筒之间设有水流间隙,所述推动机构设于所述活塞筒上用于推动所述推水柱塞向所述第一封盖移动。
进一步的,所述推动机构包括套筒、滑杆、炸药包和引爆装置,所述套筒一端设有开口,另一端设有第二封盖,所述滑杆与所述套筒滑动连接并从开口伸出连接在所述推水柱塞侧面,所述滑杆与第二封盖之间的套筒内设有所述炸药包,所述炸药包包覆有防水膜,所述引爆装置用于引爆所述炸药包。
进一步的,所述第二封盖设有双U形的排气口,所述排气口与气囊连通,所述第二封盖设有收纳盒,所述气囊折叠在所述收纳盒内。
进一步的,所述引爆装置包括电源、点火电极和控制开关,所述电源、控制开关和点火电极串联连接,所述控制开关包括弹性气囊、第一电极和第二电极,所述第一电极固定在所述弹性气囊的中部,所述第二电极固定在所述弹性气囊的内壁,所述弹性气囊受压缩小时第一电极与第二电极接触。
进一步的,所述弹性气囊为伸缩气囊,所述第一电极设于所述伸缩气囊内,所述第二电极设于所述伸缩气囊端部的内壁。
进一步的,所述伸缩气囊设有气嘴,所述伸缩气囊的侧壁等距设有若干加强圈。
本发明的有益效果在于:在模拟土箱内按照深海环境的成分装填土层,并使用盾构装置进行模拟施工实验。在进行模拟施工前,将高压舱放入海水深层中,当高压舱下沉到预设的深度时,高压舱内的海水压力和气体压力与该位置的水压相同。接着利用起吊装置将高压舱拉出水面,将第一连接管的端部的第一连接头和第二连接头连接,开启第二阀门是第一连接管接通模拟土箱。接着通过控制系统将第一阀门逐个开启,使得气腔逐个与模拟土箱连通,每次都是一个气腔与模拟土箱连通。当所有的气腔全部逐个与模拟土箱连通后,模拟土箱内的水压接近与深海的水压。由于气腔是逐个与模拟土箱连通,因此后面接通的压力不会传导到前面的气腔内,从而使得全部连通后的模拟土箱内的压力更接近与深海的压力。由于气腔内存在气体,补偿在开启第一阀门时引起的容积变化。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明 的优选实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1的一种模拟深海环境的管线盾构施工装置剖面结构图;
图2为本发明实施例1的第一阀门与控制器连接示意图;
图3为本发明实施例2的一种模拟深海环境的管线盾构施工装置剖面结构图;
图4为本发明实施例2的加压舱剖面结构图;
图中,1模拟土箱,2高压舱,3配重块,4隔离板,5气腔,6第一阀门,7第一连接管,8第一止回阀,9第一连接头,10第二连接头,11第二阀门,12控制器,13加压舱,14活塞筒,15推水柱塞,16推动机构,17第一封盖,18第二止回阀,19水流间隙,20套筒,21滑杆,22炸药包,23引爆装置,24第二封盖,25防水膜,26排气口,27气囊,28收纳盒,29电源,30点火电极,31控制开关,32弹性气囊,33第一电极,34第二电极,35气嘴,36加强圈。
具体实施方式
为了更好理解本发明技术内容,下面提供具体实施例,并结合附图对本发明做进一步的说明。
实施例1
参见图1~2,一种模拟深海环境的管线盾构施工装置,包括模拟土箱1和高压舱2,所述高压舱2底部设有配重块3,所述高压舱2内设有竖直的隔离板4,所述隔离板4将所述高压舱2分割为若干个相互独立的气腔5,所述气腔5的底部设有第一阀门6,所述第一阀门6均与第一连接管7连通,所述第一连接管7 侧壁设有第一止回阀8,端部设有第一连接头9,海水从所述第一止回阀8进入所述第一连接管7,所述模拟土箱1设有第二连接头10,所述第一连接头9与第二连接头10可拆卸连接,所述第一连接头9和第二连接头均设有第二阀门11,所述第一阀门6与控制系统连接,所述控制系统控制所述第一阀门6逐个开启,且每次仅连通一个所述第一阀门6。
在模拟土箱1内按照深海环境的成分装填土层,并使用盾构装置进行模拟施工实验。在进行模拟施工前,将高压舱2放入海水深层中,高压舱2内设有竖直的隔离板4,隔离板4将所述高压舱2分割为若干个相互独立的气腔5,气腔5内存有气体,在高压舱2沉入海水后,由于气腔5的底部设有第一阀门6,所述第一阀门6均与第一连接管7连通,所述第一连接管7侧壁设有第一止回阀8,海水从第一止回阀8灌入第一连接管7内。高压舱2底部的配重块3使得隔离板4处于竖直状态,由于海水的密度大于空气的密度,因此在气腔5内的海水位于底部,气体位于上部,随着高压舱2的深度不断提高,高压海水不断的进入气腔5内,气腔5内上部的空气不断被压缩。当高压舱2下沉到预设的深度时,高压舱2内的海水压力和气体压力与该位置的水压相同。接着利用起吊装置将高压舱2拉出水面,将第一连接管7的端部的第一连接头9和第二连接头10连接,开启第二阀门11是第一连接管7接通模拟土箱1。接着通过控制系统将第一阀门6逐个开启,使得气腔5逐个与模拟土箱1连通,每次都是一个气腔5与模拟土箱1连通。将原先连通的气腔5的第一阀门6关闭后再开启下一个第一阀门6。在第一阀门6开启后,气腔5内的海水流向模拟土箱1内,从而向模拟土箱1内加入海水。当第一个气腔5内的海水流入模拟土箱1后,模拟土箱1内的海水压力较小,关闭第一阀门6后开启下一个第一阀门6,下一个气腔5内的海水流入模拟土箱1内,使得模拟土箱1内的海水压力进一步升 高。当所有的气腔5全部逐个与模拟土箱1连通后,模拟土箱1内的水压接近与深海的水压。由于气腔5是逐个与模拟土箱1连通,因此后面接通的压力不会传导到前面的气腔5内,从而使得全部连通后的模拟土箱1内的压力更接近与深海的压力。由于气腔5内存在气体,补偿在开启第一阀门6时引起的容积变化。
具体的,所述第一阀门6为电磁控制阀,所述控制系统为控制器12,所述电磁控制阀与所述控制器12信号连接。通过控制器12控制电磁控制阀开启和关闭,确保电磁控制阀逐个开启,且每次仅连通一个所述电磁控制阀。
实施例2
参见图3~4,本实施例与实施例1的区别在于,还包括加压舱13,所述加压舱13包括活塞筒14、推水柱塞15和推动机构16,所述活塞筒14一端设有开口,另一端设有第一封盖17,所述推水活塞在所述活塞筒14内滑动,所述第一封盖17与推水柱塞15之间构成加压水腔,所述加压水腔通过第二止回阀18与所述高压舱2连通,所述推水柱塞15与活塞筒14之间设有水流间隙19,所述推动机构16设于所述活塞筒14上用于推动所述推水柱塞15向所述第一封盖17移动。在加压舱13内装有海水,在加压舱13随着高压舱2一起下沉到海底,在海水的压力升高时海水从水流间隙19缓慢流入活塞筒14内。在还海底下利用推动机构16推动推水柱塞15沿着活塞筒14移动,推水柱塞15沿着活塞筒14移动时将活塞筒14内的海水加压,提高海水的压力,压力升高的海水压力。当推动机构工作时,海水来不及从水流间隙排出,使得加压腔内的压力快速升高,加压舱13内的海水通过第二止回阀18流向高压舱2。由于推水柱塞15一侧与深海的海水接触,因此加压舱13内的压力等于海水压力加上推动机构16 作用产生的压力之和。充分利用深海环境的压力,利用较小的推动力即可在活塞筒14内获得高压海水。
具体的,所述推动机构16包括套筒20、滑杆21、炸药包22和引爆装置23,所述套筒20一端设有开口,另一端设有第二封盖24,所述滑杆21与所述套筒20滑动连接并从开口伸出连接在所述推水柱塞15侧面,所述滑杆21与第二封盖24之间的套筒20内设有所述炸药包22,所述炸药包22包覆有防水膜25,所述引爆装置23用于引爆所述炸药包22。通过引爆装置23将炸药包22引爆,爆炸过程产生大量的气体,推动滑杆21移动从套筒20的开口滑出,从而推动推水柱塞15移动。滑杆21与所述推水柱塞15侧面连接,可以减小爆炸瞬间产生的冲击力将滑杆21打在推水柱塞15上。使得推动机构16的体积狭小,且能够产生强大的推动力,提高高压舱2内的海水压力。防水膜25提高炸药包22的防水性能。当高压舱2潜入较深的海水后,引爆装置23将炸药包22引爆。
具体的,所述第二封盖24设有双U形的排气口26,所述排气口26与气囊27连通,所述第二封盖24设有收纳盒28,所述气囊27折叠在所述收纳盒28内。排气口26呈双U形,即两个U形管串联,使得爆炸产生的气体不能够在冲击力下及时排出,从而推动滑杆21滑动。当滑杆21滑动结束后,气体缓慢的从排气口26排入气囊27内,气囊27的气体增大产生浮力,将高压舱2和加压舱13浮出水面。气囊27在不使用时折叠收纳在收纳盒28内。可以在高压舱2或者加压舱13内装在GPS定位器,当装置服气后通过GPS定位器确定其位置。
具体的,所述引爆装置23包括电源29、点火电极30和控制开关31,所述电源29、控制开关31和点火电极30串联连接,所述控制开关31包括弹性气囊32、第一电极33和第二电极34,所述第一电极33固定在所述弹性气囊32的中 部,所述第二电极34固定在所述弹性气囊32的内壁,所述弹性气囊32受压缩小时第一电极33与第二电极34接触。根据高压舱2需要的海水压力情况,在弹性气囊32内充入适量的气体。弹性气囊32在海水中受到海水压力,在压力作用下弹性气囊32缩小,当达到预设深度后弹性气囊32缩小使得第一电极33和第二电极34接通,控制开关31的电路接通。电源29向点火电极30供电,使得点火电极30点燃炸药包22,推动机构16开始工作。
具体的,所述弹性气囊32为伸缩气囊27,所述第一电极33设于所述伸缩气囊27内,所述第二电极34设于所述伸缩气囊27端部的内壁。在弹性气囊32受到压力时,在伸缩方向的移动形变增大,便于第一电极33和第二电极34接触和分离。
具体的,所述伸缩气囊27设有气嘴35,所述伸缩气囊27的侧壁等距设有若干加强圈36。通过气嘴35向伸缩气囊27内充入气体,方便操作。在伸缩气囊27的侧壁等距设有若干加强圈36,提高径向的强度,并与伸缩气囊27在轴向伸缩。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种模拟深海环境的管线盾构施工装置,其特征在于,包括模拟土箱和高压舱,所述高压舱底部设有配重块,所述高压舱内设有竖直的隔离板,所述隔离板将所述高压舱分割为若干个相互独立的气腔,所述气腔的底部设有第一阀门,所述第一阀门均与第一连接管连通,所述第一连接管侧壁设有第一止回阀,端部设有第一连接头,海水从所述第一止回阀进入所述第一连接管,所述模拟土箱设有第二连接头,所述第一连接头与第二连接头可拆卸连接,所述第一连接头和第二连接头均设有第二阀门,所述第一阀门与控制系统连接,所述控制系统控制所述第一阀门逐个开启,且每次仅连通一个所述第一阀门。
  2. 根据权利要求1所述的一种模拟深海环境的管线盾构施工装置,其特征在于,所述第一阀门为电磁控制阀,所述控制系统为控制器,所述电磁控制阀与所述控制器信号连接。
  3. 根据权利要求1所述的一种模拟深海环境的管线盾构施工装置,其特征在于,还包括加压舱,所述加压舱包括活塞筒、推水柱塞和推动机构,所述活塞筒一端设有开口,另一端设有第一封盖,所述推水活塞在所述活塞筒内滑动,所述第一封盖与推水柱塞之间构成加压水腔,所述加压水腔通过第二止回阀与所述高压舱连通,所述推水柱塞与活塞筒之间设有水流间隙,所述推动机构设于所述活塞筒上用于推动所述推水柱塞向所述第一封盖移动。
  4. 根据权利要求3所述的一种模拟深海环境的管线盾构施工装置,其特征在于,所述推动机构包括套筒、滑杆、炸药包和引爆装置,所述套筒一端设有开口,另一端设有第二封盖,所述滑杆与所述套筒滑动连接并从开口伸出连接在所述推水柱塞侧面,所述滑杆与第二封盖之间的套筒内设有所述炸药包,所述炸药包包覆有防水膜,所述引爆装置用于引爆所述炸药包。
  5. 根据权利要求3所述的一种模拟深海环境的管线盾构施工装置,其特征在于,所述第二封盖设有双U形的排气口,所述排气口与气囊连通,所述第二封盖设有收纳盒,所述气囊折叠在所述收纳盒内。
  6. 根据权利要求3所述的一种模拟深海环境的管线盾构施工装置,其特征在于,所述引爆装置包括电源、点火电极和控制开关,所述电源、控制开关和点火电极串联连接,所述控制开关包括弹性气囊、第一电极和第二电极,所述第一电极固定在所述弹性气囊的中部,所述第二电极固定在所述弹性气囊的内壁,所述弹性气囊受压缩小时第一电极与第二电极接触。
  7. 根据权利要求5所述的一种模拟深海环境的管线盾构施工装置,其特征在于,所述弹性气囊为伸缩气囊,所述第一电极设于所述伸缩气囊内,所述第二电极设于所述伸缩气囊端部的内壁。
  8. 根据权利要求6所述的一种模拟深海环境的管线盾构施工装置,其特征在于,所述伸缩气囊设有气嘴,所述伸缩气囊的侧壁等距设有若干加强圈。
PCT/CN2021/123679 2021-04-23 2021-10-14 一种模拟深海环境的管线盾构施工装置 WO2022222391A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110442536.9 2021-04-23
CN202110442536.9A CN113409670B (zh) 2021-04-23 2021-04-23 一种模拟深海环境的管线盾构施工装置

Publications (1)

Publication Number Publication Date
WO2022222391A1 true WO2022222391A1 (zh) 2022-10-27

Family

ID=77677697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123679 WO2022222391A1 (zh) 2021-04-23 2021-10-14 一种模拟深海环境的管线盾构施工装置

Country Status (2)

Country Link
CN (1) CN113409670B (zh)
WO (1) WO2022222391A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113409670B (zh) * 2021-04-23 2023-03-31 海南大学 一种模拟深海环境的管线盾构施工装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104005947A (zh) * 2014-04-13 2014-08-27 北京工业大学 深海高背压环境下海水液压泵的性能测试装置及方法
CN104280232A (zh) * 2014-10-16 2015-01-14 中国海洋大学 一种高背压海水液压摩擦磨损试验台
CN109667589A (zh) * 2019-02-01 2019-04-23 上海隧道工程有限公司 超深地层盾构同步注浆全截面可视化模拟试验装置及方法
CN209015565U (zh) * 2018-06-08 2019-06-21 四川锦绣山河交通工程有限公司 一种盾构机实验装置
CN110685706A (zh) * 2019-10-31 2020-01-14 中铁工程装备集团有限公司 一种盾构机机器人换刀实验装置
CN111255471A (zh) * 2020-01-15 2020-06-09 中南大学 多工况土压平衡盾构渣土工作性测试模拟试验系统
CN113409670A (zh) * 2021-04-23 2021-09-17 海南大学 一种模拟深海环境的管线盾构施工装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343650C (zh) * 2004-12-09 2007-10-17 上海隧道工程股份有限公司 大型盾构掘进模拟试验平台
CN205477604U (zh) * 2016-04-12 2016-08-17 河海大学 一种模拟泥水盾构泥浆在地层中渗透的可视化装置
CN106406141B (zh) * 2016-10-10 2023-06-02 中国电建集团华东勘测设计研究院有限公司 一种用于海底地震波法探测的模型试验系统及方法
JP6781026B2 (ja) * 2016-12-01 2020-11-04 藤森工業株式会社 トンネル用空気抜き・止水装置及びトンネル施工方法
CN207717497U (zh) * 2017-12-19 2018-08-10 天津大学 考虑深海埋地管受轴向力及管土耦合作用下的试验装置
CN108318270A (zh) * 2018-03-23 2018-07-24 北京交通大学 一种高水压盾构施工环境模拟试验装置
CN108374667A (zh) * 2018-03-23 2018-08-07 北京交通大学 泥水平衡式盾构模型机及其安装方法
CN208969089U (zh) * 2018-09-30 2019-06-11 海南大学 漏点位置、漏缝宽度可控的海底盾构隧道模型试验装置
CN110068473A (zh) * 2019-05-29 2019-07-30 苏州大学 一种大直径土压盾构隧道掘进界面模拟试验方法及其系统
CN111206932A (zh) * 2020-01-07 2020-05-29 哈尔滨工业大学 一种盾构施工对场地扰动的模拟装置与方法
CN111551390B (zh) * 2020-03-26 2023-03-03 广东工业大学 具有原位取样装置的高压海底模拟系统及其控制方法
CN112067793B (zh) * 2020-09-22 2022-11-11 山东科技大学 一种模拟临海采矿时地层沉陷规律的实验装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104005947A (zh) * 2014-04-13 2014-08-27 北京工业大学 深海高背压环境下海水液压泵的性能测试装置及方法
CN104280232A (zh) * 2014-10-16 2015-01-14 中国海洋大学 一种高背压海水液压摩擦磨损试验台
CN209015565U (zh) * 2018-06-08 2019-06-21 四川锦绣山河交通工程有限公司 一种盾构机实验装置
CN109667589A (zh) * 2019-02-01 2019-04-23 上海隧道工程有限公司 超深地层盾构同步注浆全截面可视化模拟试验装置及方法
CN110685706A (zh) * 2019-10-31 2020-01-14 中铁工程装备集团有限公司 一种盾构机机器人换刀实验装置
CN111255471A (zh) * 2020-01-15 2020-06-09 中南大学 多工况土压平衡盾构渣土工作性测试模拟试验系统
CN113409670A (zh) * 2021-04-23 2021-09-17 海南大学 一种模拟深海环境的管线盾构施工装置

Also Published As

Publication number Publication date
CN113409670A (zh) 2021-09-17
CN113409670B (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
CN103148748B (zh) 一种可调承压膨胀塑胶管深孔爆破控制方法
CN104535728A (zh) 深埋隧道突水灾害二维物理模拟试验系统及其试验方法
WO2022222391A1 (zh) 一种模拟深海环境的管线盾构施工装置
AU2017201969B2 (en) Propellant driven accumulator
CN104819670B (zh) 预钻中孔竖井开挖爆破方法
US2689008A (en) Method for cementing wells
CN108756845B (zh) 一种扩容增量爆燃压裂方法
CN115522905B (zh) 一种页岩气储层甲烷燃爆压裂装置及其控制方法
CN108625859B (zh) 一种冻结法凿井二氧化碳相变致裂辅助掘进方法及其装置
CN111765820A (zh) 一种坚硬顶板弱扰动定向爆破造缝方法
CN102808621A (zh) 急倾斜厚矿体的爆破方法
CN109405687B (zh) 基于不耦合装药的水下切缝药包爆破装置及其施工方法
CN101235639B (zh) 砼灌注孔底爆扩桩的爆扩装置及成桩方法
US3744579A (en) Erosion well drilling method and apparatus
CN111721169B (zh) 海上嵌岩桩基爆破开挖损伤控制方法
KR20160091291A (ko) 수중암반의 발파공법
CN109458214A (zh) 一种低透气性煤层静态爆破增透瓦斯抽采方法
US5791821A (en) Shaped-charge cutting device for piles and underwater tubular members
CN109520384B (zh) 基于轴向不耦合的水下切缝药包爆破装置及其施工方法
CN107024153B (zh) 水下岩塞爆破陀螺分布式药室法
CN211012690U (zh) 一种隧道工程高压富水段抗水流冲击爆破结构
CN207556379U (zh) 一种水下爆破施工装药辅助装置
RU2306523C1 (ru) Способ формирования рассредоточенных зарядов в обводненных скважинах
RU2306522C1 (ru) Способ формирования рассредоточенных зарядов в обводненных скважинах
SU1739053A1 (ru) Устройство дл локализации выбросов угл и газа

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937613

Country of ref document: EP

Kind code of ref document: A1