WO2022222288A1 - 一种混流泵失速工况叶轮尾迹涡耗散装置 - Google Patents

一种混流泵失速工况叶轮尾迹涡耗散装置 Download PDF

Info

Publication number
WO2022222288A1
WO2022222288A1 PCT/CN2021/106645 CN2021106645W WO2022222288A1 WO 2022222288 A1 WO2022222288 A1 WO 2022222288A1 CN 2021106645 W CN2021106645 W CN 2021106645W WO 2022222288 A1 WO2022222288 A1 WO 2022222288A1
Authority
WO
WIPO (PCT)
Prior art keywords
wake vortex
holes
dissipation device
guide vane
dissipation
Prior art date
Application number
PCT/CN2021/106645
Other languages
English (en)
French (fr)
Inventor
李伟
季磊磊
周岭
朱勇
马斯卓
齐寒东
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US17/781,054 priority Critical patent/US11898572B2/en
Publication of WO2022222288A1 publication Critical patent/WO2022222288A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D31/00Pumping liquids and elastic fluids at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D11/00Other rotary non-positive-displacement pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/181Axial flow rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/445Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps
    • F04D29/448Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/669Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for liquid pumps

Definitions

  • the invention belongs to the technical field of fluid machinery (pump) internal flow, in particular to an impeller wake vortex dissipation device in a stalled working condition of a mixed-flow pump.
  • Mixed-flow pump is a pump type whose specific speed is between centrifugal pump and axial-flow pump. It has the characteristics of axial inflow and oblique outflow.
  • the design theory of the mixed-flow pump is not perfect, there is currently no ability to design a mixed-flow pump with the highest efficiency under full flow conditions.
  • the pump efficiency will decrease. Especially as the flow rate decreases, the efficiency of the mixed-flow pump will decrease, while the head will increase.
  • the impeller In the impeller, it is mainly due to the influence of the stall vortex and the rim leakage vortex, while in the guide vane, it is due to the influence of the impeller wake vortex and the return vortex. Therefore, in order to improve the stability of the mixed-flow pump in the stall condition and reduce the influence of the above-mentioned vortex structure on the flow field, it is necessary to develop a device or structure to eliminate or weaken the negative effects of the many vortex structures in the mixed-flow impeller and guide vanes on the flow field. influences.
  • the patent with the application number CN201820156382.0 injects high-pressure water into the water injection holes inside the guide vane body, and then the high-pressure water jets along the jet holes on the suction surface of the guide vane into the flow channel between the guide vane blades, and enters the flow channel between the guide vane blades.
  • the jet disperses the stall vortex, but this method is only suitable for pumps with thick guide vanes, and it is to eliminate the stall vortex in the guide vane, and cannot effectively improve the vortex structure generated by the impeller wake.
  • the present invention proposes an impeller wake vortex dissipating device in a stall condition of a mixed-flow pump.
  • the impeller wake vortex is dissipated in advance to achieve improvement.
  • An impeller wake vortex dissipating device in a stall condition of a mixed-flow pump comprising a guide vane and a wake vortex dissipating device; the inside of the pump is evenly divided into N guide vane flow passages by N evenly distributed guide vanes; Wake vortex dissipation devices are installed in the flow channels, and one end of the wake vortex dissipation devices is fixedly connected to the inner wall of the pump, so each wake vortex dissipation device is located in the middle and upper part of the guide vane flow channel, and does not occupy the lower guide vane flow channel;
  • the wake vortex dissipating device is provided with a pair of dissipating holes, and the pair of dissipating holes is used to dissipate the energy of the impeller wake vortex.
  • the wake vortex dissipating device includes a fixed part and an acting part; a pair of dissipation holes is arranged on the acting part to dissipate the energy of the wake vortex of the impeller; the fixed part is vertically arranged along the chord length side of the acting part, using The fasteners securely connect the fixing portion to the outer casing of the pump.
  • the pressure surface of one guide vane is opposite to the concave surface of the wake vortex dissipating device, and the suction surface of the other guide vane is the convex surface of the wake vortex dissipating device.
  • the distance L1 between the concave surface of the wake vortex dissipation device and the pressure surface facing the concave surface and the distance L2 between the convex surface and the suction surface facing the convex surface are all less than 10% of the guide vane channel width.
  • multiple rows of through-hole groups are radially arranged on the acting part of the wake vortex dissipation device; all through-holes in the same row of through-hole groups are arranged in the same direction, and the through-holes in two adjacent rows of through-hole groups are in opposite directions. , so the interval is set.
  • the through holes that are close to each other in the adjacent two rows of through hole groups form a pair of dissipation holes, and the central axes of the two through holes forming the pair of dissipation holes intersect with the convex surface of the wake vortex dissipation device;
  • the included angle is an acute angle.
  • the diameter of the through holes on the wake vortex dissipation device is the same.
  • the interval between two through holes in each pair of dissipation holes is not more than 3 times the diameter of the through holes, and the interval between adjacent pairs of dissipation holes is not greater than the diameter of the through holes.
  • the action portion of the wake vortex dissipation device is distributed in the same thickness along the main flow direction, and the thickness is not less than 5 mm.
  • the inlet edge of the wake vortex dissipation device is flush with the inlet edge of the guide vane, or the axial projection of the inlet edge of the wake vortex dissipation device falls to 20% of the guide vane chord from the inlet edge of the guide vane long range.
  • An impeller wake vortex dissipation device in a mixed-flow pump stall condition by arranging an impeller wake vortex dissipation device in a guide vane flow channel, a pair of through holes are machined on the wake vortex dissipation device to form a dissipation device. Hole pair; the dissipative hole pair is used to dissipate the energy of the impeller wake vortex in advance, thereby avoiding its influence on the flow field in the guide vane, improving the flow field structure in the guide vane of the mixed-flow pump under stall conditions, and improving the mixed flow.
  • the efficiency of the pump under the condition of deviation from the design flow expands the flow working range of the mixed-flow pump.
  • FIG. 1 is a general schematic diagram of an impeller wake vortex dissipation device in a stall condition of a mixed-flow pump according to the present invention.
  • Fig. 2 is an enlarged view of the structure of the wake vortex dissipation device of the impeller wake vortex dissipation device of the mixed-flow pump under stall conditions of the present invention.
  • FIG 3 is a cross-sectional view of the wake vortex dissipating device of the impeller wake vortex dissipating device in the stall condition of the mixed-flow pump of the present invention.
  • FIG. 4 is a schematic assembly diagram of the impeller wake vortex dissipation device in the stall condition of the mixed-flow pump according to the present invention.
  • Fig. 5 is an axial view of an impeller wake vortex dissipating device in a stall condition of a mixed-flow pump according to the present invention.
  • An impeller wake vortex dissipating device in a stall condition of a mixed-flow pump comprising a guide vane 2 , a wake vortex dissipating device 3 and an outer casing 11 .
  • the wake vortex dissipating device 3 is fixedly installed inside the outer casing 11 , and the wake vortex dissipating device 3 is located in the middle and upper part of the flow channel, and does not occupy the lower flow channel.
  • the radial height of the wake vortex dissipating device 3 does not exceed 1/2 the height of the guide vane 2 .
  • the wake vortex dissipation device 3 includes a fixed part and an action part.
  • the action part is used to dissipate the energy of the impeller wake vortex;
  • the fixed part is vertically arranged along the chord length side of the action part, and the fixed part is used to fix the wake vortex dissipation device 3 in the pump cavity.
  • the active portion of the wake vortex dissipating device 3 is distributed in the same thickness along the main flow direction, and the thickness is not less than 5 mm.
  • the pressure surface of one guide vane (blade a) is opposite to the concave surface of the wake vortex dissipation device, and the other guide vane (blade a) is opposite to the pressure surface of the wake vortex dissipation device.
  • the suction side of the blade b) is opposite the convex side of the wake vortex dissipation device.
  • the concave surface of the wake vortex dissipation device 3 Opposite to the pressure surface of the guide vane 2 is the concave surface of the wake vortex dissipation device 3 , and opposite to the suction surface of the guide vane 2 is the convex surface of the wake vortex dissipation device 3 . And the distance L1 between the concave surface and the pressure surface facing the concave surface and the distance L2 between the convex surface and the suction surface facing the convex surface are all less than 10% of the channel width.
  • multiple rows of through-hole groups are opened on the acting part of the wake vortex dissipation device 3 along the radial direction (dotted arrow in Figure 2); all through-holes in the same row of through-hole groups are arranged in the same direction, and two adjacent rows pass through
  • the through holes in the hole group have opposite directions and are arranged at intervals.
  • the first column of through-hole groups on the far left are B through-holes 6, and the adjacent column of through-hole groups on the right are A through-holes 5; the A through-holes that are close to each other in two adjacent through-hole groups 5 and B through holes 6 form a pair of dissipation holes 7 .
  • each dissipation hole pair 7 the central axis of the A through hole 5 and the central axis of the B through hole 6 intersect at the convex surface of the wake vortex dissipation device 3 to form an included angle ⁇ , and the included angle ⁇ is an acute angle. Due to the existence of the pair of dissipating holes 7, the fluid interacts after passing through the pair of dissipating holes 7, so that part of the energy can be consumed. Although the directions of the A through holes 5 and the B through holes 6 are different, the diameters of the A through holes 5 and the B through holes 6 are the same.
  • the distance L of the A through hole 5 and the B through hole 6 in each dissipation hole pair 7 on the concave surface is not more than 3 times the diameter of the through hole A5 (or the through hole B6).
  • the interval between adjacent pairs of dissipation holes 7 is not larger than the diameter of the through hole A5 (or the diameter of the through hole B6).
  • the pairs of dissipation holes 7 are also distributed evenly along the circumferential direction, and it is necessary to ensure that each pair of dissipation holes 7 with the shortest distance from the centerline of the guide vane, that is, the pair of dissipation holes 7 at the bottom of the wake vortex dissipation device 3 (such as The interval between the pair of dissipation holes 7) in the position shown by the dotted frame in FIG. 2 is not greater than the diameter of the through hole A5 or the through hole B6, in order to ensure that the through hole 5 in the pair of dissipation holes 7 at the bottom is It cannot overlap with the B through hole 6 .
  • the contour of the circumferential projection of the action portion is a straight line or a curved line.
  • the fixed part of the wake vortex dissipating device 3 is distributed with equal thickness along the main flow direction, but the thickness of the fixed part is larger than that of the action part.
  • the fixing part of the wake vortex dissipating device 7 is provided with a threaded hole 4 along the circumferential direction, and a through hole C9 is formed at a position corresponding to the fixing part of the outer casing 11 .
  • a boss 10 is processed on the outer side of the through hole of the outer casing 11, so that the fixing part and the outer casing 11 are fixed by bolts.
  • the inlet edge of the wake vortex dissipation device 3 is flush with the inlet edge of the guide vane 2, or the axial projection of the inlet edge of the wake vortex dissipation device 3 falls on the distance guide.
  • the inlet edge of the vane 2 is within the range of 20% of the chord length of the guide vane 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种混流泵失速工况叶轮尾迹涡耗散装置,包括导叶片(2)和尾迹涡耗散装置(3);由N个均匀分布的导叶片(2)将泵内部均匀分为N条导叶流道;在每条导叶流道内均设置尾迹涡耗散装置(3),尾迹涡耗散装置(3)的一端固定连接泵体内壁,故每个尾迹涡耗散装置(3)位于导叶流道的中上部,且不占用下方的导叶流道;尾迹涡耗散装置(3)上设有耗散孔对(7),利用耗散孔对(7)耗散叶轮尾迹涡的能量。该装置改善了失速工况下混流泵导叶内的流场结构,提高了混流泵在偏离设计流量工况下的效率,扩大了混流泵的流量工作区间。

Description

一种混流泵失速工况叶轮尾迹涡耗散装置 技术领域
本发明属于流体机械(泵)内部流动技术领域,尤其是涉及一种混流泵失速工况叶轮尾迹涡耗散装置。
背景技术
混流泵是一种比转速介于离心泵和轴流泵之间泵型,它具有轴向入流,斜向出流的特点。随着混流泵在污水处理、防洪排涝和农田灌溉等领域的广泛应用,对其性能的要求也逐渐提高。但由于混流泵设计理论还不够完善,目前还没有能力设计出一种在全流量工况下效率均处于最高值的混流泵。在一般情况下,当混流泵流量工况偏离设计点时,泵效率均会降低。特别是随着流量工况减小时,混流泵的效率会随之下降,而扬程却增加。但当混流泵的流量工况减小到在某段范围时,混流泵的流量-扬程曲线也会出现随流量减小而减小的现象,即“旋转失速”现象。在这期间,混流泵内部的流场非稳态流动增加,非定常特性更加明显,整个机组会出现异常振动和噪声,严重威胁这运行的安全。经过众多学者的研究发现,在失速工况时,混流泵叶轮和导叶内部的涡致能量损失增多,是导致泵扬程急剧减小的“元凶”。而在叶轮中主要是由于失速涡、轮缘泄漏涡的影响,而在导叶中则是由于叶轮尾迹涡和回流涡的影响。因此,为了提高混流泵在失速工况的稳定性,减小上述涡结构对流场的影响,有必要开发一种装置或结构消除或减弱混流叶轮和导叶内众多涡结构对流场的负面影响。
经检索,申请号为CN201820156382.0的专利通过向导叶体内部注水孔内注入高压水,然后高压水沿导叶吸力面的射流孔射流进入导叶叶片间到达流道内,进入导叶叶片间的射流打散了失速涡,但该种方式只适合导叶叶片厚度较厚的泵,且其是为了消除导叶内的失速涡,对于叶轮尾迹产生的涡结构无法有效地改善。
经检索,目前针对失速工况下混流泵叶轮尾迹涡的改善或消除还未有相关的申请专利及文献。
发明内容
针对现有技术中存在不足,本发明提出了一种混流泵失速工况叶轮尾迹涡耗散装置,通过在导叶流道中设置叶轮尾迹涡耗散装置,使得叶轮尾迹涡提前耗散从而达到改善混流泵导叶内流场的方式。
本发明所采用的技术方案如下:
一种混流泵失速工况叶轮尾迹涡耗散装置,包括导叶片和尾迹涡耗散装置;由N个均匀分布的导叶片将泵内部均匀分为N条导叶流道;在每条导叶流道内均设置尾迹涡耗散装置,尾迹涡耗散装置的一端固定连接泵体内壁,故每个尾迹涡耗散装置位于导叶流道的中上部,且不占用下方的导叶流道;尾迹涡耗散装置上设有耗散孔对,利用耗散孔对耗散叶轮尾迹涡的能量。
进一步,尾迹涡耗散装置包括固定部和作用部;在所述作用部设置耗散孔对,用于耗散叶轮尾迹涡的能量;所述固定部沿作用部的弦长边垂直设置,利用紧固件将固定部与泵的外壳体固定连接。
进一步,在相邻两片导叶片之间,与其中一片导叶片的压力面相对的是尾迹涡耗散装置的凹面,与另一片导叶片的吸力面相对的是尾迹涡耗散装置的凸面。
进一步,尾迹涡耗散装置的凹面与凹面相对的压力面之间的距离L1、凸面与凸面相对的吸力面之间的距离L2均小于10%的导叶流道宽度。
进一步,在尾迹涡耗散装置的作用部上沿径向开设多列通孔组;同一列通孔组中所有的通孔朝同一方向设置,相邻两列通孔组内的通孔方向相反,如此间隔设置。
进一步,相邻两列通孔组中相互靠近的通孔组成一个耗散孔对,且组成耗散孔对的两个通孔的中轴线相交于尾迹涡耗散装置的凸面;且中轴线的夹角为锐角。
进一步,尾迹涡耗散装置上的通孔直径相同。
进一步,每个耗散孔对中两个通孔之间的间隔不超过3倍的通孔直径,相邻耗散孔对之间的间隔不大于通孔直径。
进一步,所述尾迹涡耗散装置的作用部沿主流方向等厚分布,且厚度不小于5mm。
进一步,在安装时,尾迹涡耗散装置的进口边与导叶片的进口边齐平,或者尾迹涡耗散装置的进口边的轴面投影落在距离导叶片的进口边至20%导叶片弦长范围内。
本发明的有益效果:
本发明所述的一种混流泵失速工况叶轮尾迹涡耗散装置,通过在导叶流道中设置叶轮尾迹涡耗散装置,在尾迹涡耗散装置上加工出成对的通孔形成耗散孔对;利用耗散孔对将叶轮尾迹涡的能量提前耗散,从而避免了其对导叶内流场的影响,改善了失速工况下混流泵导叶内的流场结构,提高了混流泵在偏离设计流量工况下的效率,扩大了混流泵的流量工作区间。
附图说明
图1为本发明混流泵失速工况叶轮尾迹涡耗散装置的总示意图。
图2为本发明混流泵失速工况叶轮尾迹涡耗散装置的尾迹涡耗散装置结构放大图。
图3为本发明混流泵失速工况叶轮尾迹涡耗散装置的尾迹涡耗散装置的A向剖视图。
图4为本发明混流泵失速工况叶轮尾迹涡耗散装置的组装示意图。
图5为本发明混流泵失速工况叶轮尾迹涡耗散装置的轴视图。
图中:1、导叶轮毂,2、导叶片,3、尾迹涡耗散装置,4、螺纹孔,5、A通孔,6、B通孔,7、耗散孔对,8、叶轮,9、C通孔,10、凸台,11、外壳体。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。
一种混流泵失速工况叶轮尾迹涡耗散装置,包括导叶片2、尾迹涡耗散装置3和外壳体11。导叶轮毂1上均布有N个导叶片2;导叶片2将泵内部均匀分为N条流道;在由导叶片2划分出的每条流道内均设置尾迹涡耗散装置3,如图5所示。尾迹涡耗散装置3固定安装在外壳体11内部,尾迹涡耗散装置3位于流道的中上部,且不占用下方的流道。尾迹涡耗散装置3的径向高度不超过1/2的导叶片2的高度。
更具体地,尾迹涡耗散装置3的结构如图2所示,尾迹涡耗散装置3包括固定部和作用部。作用部用于耗散叶轮尾迹涡的能量;固定部沿作用部的弦长边垂直设置,固定部用于将尾迹涡耗散装置3固定安装在泵腔内。
如图1和4所示,尾迹涡耗散装置3的作用部沿主流方向等厚分布,且厚度不小于5mm。在相邻两片导叶片(如图5的叶片a和叶片b)之间,与其中一片导叶片(叶片a)的压力面相对的是尾迹涡耗散装置的凹面,与另一片导叶片(叶片b)的吸力面相对的是尾迹涡耗散装置的凸面。与导叶片2压力面相对的是尾迹涡耗散装置3的凹面,与导叶片2吸力面相对的是尾迹涡耗散装置3的凸面。且凹面与凹面相对的压力面之间的距离L1、凸面与凸面相对的吸力面之间的距离L2均小于10%的流道宽度。
如图2在尾迹涡耗散装置3的作用部上沿径向(图2虚线箭头)开设多列通孔组;同一列通孔组中所有的通孔朝同一方向设置,相邻两列通孔组内的通孔方向相反,如此间隔设置。如图3,最左侧第一列通孔组中是B通孔6,右侧相邻的一列通孔组中是A通孔5;相邻两列通孔组中相互靠近的A通孔5和B通孔6组成一个耗散孔对7。每个耗散孔对7中A通孔5的中轴线与B通孔6的中轴线在尾迹涡耗散装置3的凸面相交形成夹角θ,且 夹角θ为锐角。由于耗散孔对7的存在,流体经过耗散孔对7后发生交互,可以实现部分能量的消耗。虽然A通孔5和B通孔6的方向不同,但是A通孔5和B通孔6的直径相同。每个耗散孔对7中的A通孔5和B通孔6在凹面上的距离L不超过3倍的所述通孔A5(或通孔B6的直径)。相邻耗散孔对7之间的间隔不大于通孔A5(或通孔B6的直径)。所述耗散孔对7沿圆周方向也均匀分布,且要保证距导叶中心线最短距离的每个耗散孔对7,即尾迹涡耗散装置3最底部的耗散孔对7(如图2中虚线框所示位置的耗散孔对7)之间的间隔不大于所述通孔A5或通孔B6的直径,目的是为了保证最底部耗散孔对7中的A通孔5和B通孔6不能重合。作用部的周向投影的型线为直线或者曲线。
尾迹涡耗散装置3的固定部沿主流方向等厚分布,但固定部的厚度要大于作用部的厚度。尾迹涡耗散装置7的固定部沿着圆周方向上开设有螺纹孔4,在外壳体11与固定部对应的位置开设有通孔C9。同时,在外壳体11通孔的外侧加工有凸台10,以便将固定部和外壳体11通过螺栓固定。
关于尾迹涡耗散装置3的安装位置,要保证尾迹涡耗散装置3的进口边与导叶片2的进口边齐平,或者尾迹涡耗散装置3的进口边的轴面投影落在距离导叶片2的进口边至20%导叶片2弦长范围内。当每个导叶内都安装好所述尾迹涡耗散装置3后,需保证每个尾迹涡耗散装置3的轴面投影图互相重合。
以上实施例仅用于说明本发明的设计思想和特点,其目的在于使本领域内的技术人员能够了解本发明的内容并据以实施,本发明的保护范围不限于上述实施例。所以,凡依据本发明所揭示的原理、设计思路所作的等同变化或修饰,均在本发明的保护范围之内。

Claims (10)

  1. 一种混流泵失速工况叶轮尾迹涡耗散装置,其特征在于,包括导叶片(2)和尾迹涡耗散装置(3);由N个均匀分布的导叶片(2)将泵内部均匀分为N条导叶流道;在每条导叶流道内均设置尾迹涡耗散装置(3),尾迹涡耗散装置(3)的一端固定连接泵体内壁,故每个尾迹涡耗散装置(3)位于导叶流道的中上部,且不占用下方的导叶流道;尾迹涡耗散装置(3)上设有耗散孔对(7),利用耗散孔对(7)耗散叶轮尾迹涡的能量。
  2. 根据权利要求1所述的装置,其特征在于,尾迹涡耗散装置(3)包括固定部和作用部;在所述作用部设置耗散孔对(7),用于耗散叶轮尾迹涡的能量;所述固定部沿作用部的弦长边垂直设置,利用紧固件将固定部与泵的外壳体(11)固定连接。
  3. 根据权利要求1所述的装置,其特征在于,在相邻两片导叶片(2)之间,与其中一片导叶片(2)的压力面相对的是尾迹涡耗散装置(3)的凹面,与另一片导叶片(2)的吸力面相对的是尾迹涡耗散装置(3)的凸面。
  4. 根据权利要求3所述的装置,其特征在于,尾迹涡耗散装置(3)的凹面与凹面相对的压力面之间的距离L1、凸面与凸面相对的吸力面之间的距离L2均小于10%的导叶流道宽度。
  5. 根据权利要求4所述的装置,其特征在于,在尾迹涡耗散装置(3)的作用部上沿径向开设多列通孔组;同一列通孔组中所有的通孔朝同一方向设置,相邻两列通孔组内的通孔方向相反,如此间隔设置。
  6. 根据权利要求5所述的装置,其特征在于,相邻两列通孔组中相互靠近的通孔组成一个耗散孔对(7),且组成耗散孔对(7)的两个通孔的中轴线相交于尾迹涡耗散装置(3)的凸面;且中轴线的夹角为锐角。
  7. 根据权利要求5所述的装置,其特征在于,尾迹涡耗散装置(3)上的通孔直径相同。
  8. 根据权利要求5所述的装置,其特征在于,每个耗散孔对(7)中两个通孔之间的间隔不超过3倍的通孔直径,相邻耗散孔对(7)之间的间隔不大于通孔直径。
  9. 根据权利要求1-8中任意一项权利要求所述的装置,其特征在于,所述尾迹涡耗散装置(3)的作用部沿主流方向等厚分布,且厚度不小于5mm。
  10. 根据权利要求9所述的装置,其特征在于,在安装时,尾迹涡耗散装置(3)的进口边与导叶片(2)的进口边齐平,或者尾迹涡耗散装置(3)的进口边的轴面投影落在距 离导叶片(2)的进口边至20%导叶片(2)弦长范围内。
PCT/CN2021/106645 2021-04-21 2021-07-16 一种混流泵失速工况叶轮尾迹涡耗散装置 WO2022222288A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/781,054 US11898572B2 (en) 2021-04-21 2021-07-16 Impeller wake vortex dissipation device under stall condition of mixed flow pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110428441.1A CN113153803B (zh) 2021-04-21 2021-04-21 一种混流泵失速工况叶轮尾迹涡耗散装置
CN202110428441.1 2021-04-21

Publications (1)

Publication Number Publication Date
WO2022222288A1 true WO2022222288A1 (zh) 2022-10-27

Family

ID=76867496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106645 WO2022222288A1 (zh) 2021-04-21 2021-07-16 一种混流泵失速工况叶轮尾迹涡耗散装置

Country Status (3)

Country Link
US (1) US11898572B2 (zh)
CN (1) CN113153803B (zh)
WO (1) WO2022222288A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3845918A (en) * 1972-12-07 1974-11-05 Rochester Applied Science Ass Vortex dissipator
JP2006046168A (ja) * 2004-08-04 2006-02-16 Hitachi Ltd 軸流ポンプ及び斜流ポンプ
CN103452910A (zh) * 2013-06-25 2013-12-18 江苏大学 一种错列式离心泵空间导叶体
CN208024638U (zh) * 2018-01-30 2018-10-30 西安理工大学 一种可消除导叶内部失速涡的轴流泵

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227619A (ja) * 2014-05-30 2015-12-17 株式会社オティックス ターボチャージャ
JP6583789B2 (ja) * 2016-03-18 2019-10-02 三菱重工コンプレッサ株式会社 遠心圧縮機試験装置
CN105756975B (zh) * 2016-04-26 2018-02-27 浙江理工大学 一种叶片前缘带凹槽结构和叶根吹气的轴流风机
CN205639000U (zh) * 2016-04-26 2016-10-12 浙江理工大学 一种叶片前缘带凹槽结构和叶根吹气的轴流风机
CN208106824U (zh) * 2018-02-06 2018-11-16 西安理工大学 离心泵叶轮
CN109882444B (zh) * 2019-02-25 2020-08-28 江苏大学 一种流道内带阶梯整流装置的混流泵叶轮

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3845918A (en) * 1972-12-07 1974-11-05 Rochester Applied Science Ass Vortex dissipator
JP2006046168A (ja) * 2004-08-04 2006-02-16 Hitachi Ltd 軸流ポンプ及び斜流ポンプ
CN103452910A (zh) * 2013-06-25 2013-12-18 江苏大学 一种错列式离心泵空间导叶体
CN208024638U (zh) * 2018-01-30 2018-10-30 西安理工大学 一种可消除导叶内部失速涡的轴流泵

Also Published As

Publication number Publication date
US20240018969A1 (en) 2024-01-18
US11898572B2 (en) 2024-02-13
CN113153803B (zh) 2022-05-27
CN113153803A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
CN114396393B (zh) 一种灯泡贯流泵导叶自适应设计方法及灯泡贯流泵导叶
CN109209987B (zh) 一种抗空化离心泵叶轮及离心泵
CN201083177Y (zh) 一种新型尾水管
CN107956737B (zh) 低汽蚀余量低压力脉动离心泵
CN111536073A (zh) 叶顶布置间隙通道的离心泵半开式叶轮
CN109915418A (zh) 一种叶片前伸式立式离心泵导流栅及使用该导流栅的离心泵
CN110159586B (zh) 一种双层交错叶片式叶轮
CN112160941B (zh) 一种改善蜗壳式离心泵驼峰不稳定现象的导叶组合结构
WO2022222288A1 (zh) 一种混流泵失速工况叶轮尾迹涡耗散装置
CN112922678B (zh) 一种用于汽轮机的轴向出汽的进汽室
CN111271205A (zh) 一种具有抑制漩涡作用的水轮机转轮及使用方法
CN102182519B (zh) 汽轮机静叶自射流二次流控制结构
CN109882448B (zh) 一种具有圆弧形泵送槽的混流泵转轮室
CN114941602B (zh) 一种能够控制叶道涡产生的混流式水轮机
CN203009310U (zh) 一种抗汽蚀叶片泵
CN109882444B (zh) 一种流道内带阶梯整流装置的混流泵叶轮
CN105805046A (zh) 一种改善斜流泵内部流动稳定性的装置
CN112628192B (zh) 一种抑制轴流泵叶顶泄漏涡的叶片结构
CN115585140A (zh) 一种无轴式高抗空化低幅振动可逆式轴流式流体机械
CN203035616U (zh) 蜗壳式混流泵的压水室
CN206397809U (zh) 一种多段叶片离心泵叶轮
CN103850947A (zh) 一种抗汽蚀叶片泵
CN111927673A (zh) 一种带栅格网的中心管作抑涡装置的尾水管
CN213808193U (zh) 一种轴流泵叶轮
CN106015084B (zh) 一种减小流量的离心泵叶轮

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17781054

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937512

Country of ref document: EP

Kind code of ref document: A1