WO2022220340A1 - Method for manufacturing translucent polymer composite material, and translucent polymer composite material manufactured thereby - Google Patents

Method for manufacturing translucent polymer composite material, and translucent polymer composite material manufactured thereby Download PDF

Info

Publication number
WO2022220340A1
WO2022220340A1 PCT/KR2021/009825 KR2021009825W WO2022220340A1 WO 2022220340 A1 WO2022220340 A1 WO 2022220340A1 KR 2021009825 W KR2021009825 W KR 2021009825W WO 2022220340 A1 WO2022220340 A1 WO 2022220340A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
polymer composite
carbon
conductive polymer
translucent conductive
Prior art date
Application number
PCT/KR2021/009825
Other languages
French (fr)
Korean (ko)
Inventor
이민욱
황지영
김희진
박상유
양철민
강승범
Original Assignee
재단법인 한국탄소산업진흥원
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국탄소산업진흥원, 한국과학기술연구원 filed Critical 재단법인 한국탄소산업진흥원
Publication of WO2022220340A1 publication Critical patent/WO2022220340A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced

Definitions

  • the present invention relates to a method for producing a translucent conductive polymer composite material having translucency, high conductivity, and exothermic properties, and to a translucent conductive polymer composite material manufactured thereby.
  • Carbon nanotubes were discovered by a Japanese scientist in 1991, and it took 20 years to mass-produce and apply a material with electrical properties higher than copper, thermal properties higher than diamond, and mechanical properties thousands of times that of steel. It has become an abnormality, and foreign substances are being applied as additives to various substances.
  • Carbon nanotubes mainly use materials containing carbon nanotubes, and development of materials having functions such as tensile strength, antistatic properties, conductivity, thermal conductivity, far-infrared emission and electromagnetic wave shielding is being actively conducted.
  • materials having functions such as tensile strength, antistatic properties, conductivity, thermal conductivity, far-infrared emission and electromagnetic wave shielding
  • a polymer such as polyamide, polyester, polyether or polyimide, silicone, rubber, or an inorganic material such as glass or ceramic material
  • an inorganic material such as glass or ceramic material
  • carbon-based materials have been widely used as materials for heating elements, but carbon-based materials are opaque materials and have a disadvantage in that they are difficult to apply to windows of houses or automobiles, or parts that require transparency of displays or touch panel elements.
  • carbon-based composite materials are opaque and have a problem in that their properties change when they have transparency.
  • bromobutyl rubber As one of the rubber-based polymers, bromobutyl rubber (BIIR) has characteristics such as high tensile strength, vibration reduction, low permeability, and high resistance to aging and weathering. The reality is that the technology and application method for stably dispersing in the polymer matrix are lacking, so it cannot be applied in more various fields.
  • the present invention provides a method for producing a semi-transparent conductive polymer composite material having excellent translucency and heat generation property by forming uniform holes using a laser in order to solve the transparency limitation of the conventional carbon material, and a semi-transparent conductive polymer composite material manufactured according to the method To provide a transparent conductive polymer composite material.
  • the present invention in one embodiment, (A) mixing bromobutyl rubber (BIIR) and hexane; (B) after mixing the carbon-based filler and isopropyl alcohol, sonicating by adding a dimethyl silicone oil (MEP) solution; (C) adding the mixture mixed in step (A) to the mixture mixed in step (B) and stirring; (D) hardening by injecting the mixture mixed in step (C) into a hot press; And, (E) provides a method for producing a translucent conductive polymer composite material comprising the step of forming a plurality of holes using a laser after the curing.
  • BIIR bromobutyl rubber
  • MEP dimethyl silicone oil
  • bromobutyl rubber may be mixed in a composition ratio of 1 to 10 w/v%.
  • step (B) the carbon-based filler and isopropyl alcohol may be mixed in a weight ratio of 1:50 to 1:500.
  • the content of the carbon-based filler in step (B) may be 1 to 35 wt%.
  • the step (C) may further include the step of additionally adding hexane so that the volume ratio of hexane and isopropyl alcohol to the mixture mixed in step (C) becomes 5:1 to 1:1.
  • the holes may be uniformly formed in a side-by-side arrangement or a staggered arrangement.
  • the carbon-based filler may be one selected from the group consisting of carbon nanotubes (CNT), graphene, artificial graphite, activated carbon, carbon black, and carbon fibers.
  • CNT carbon nanotubes
  • graphene graphene
  • artificial graphite artificial graphite
  • activated carbon carbon black
  • carbon fibers carbon fibers
  • the present invention provides a translucent conductive polymer composite material manufactured according to the method for manufacturing the translucent conductive polymer composite material.
  • the semi-transparent conductive polymer composite material prepared according to the method for producing a semi-transparent conductive polymer composite material of the present invention has high conductivity, which is an excellent property of both carbon-based fillers (especially carbon nanotubes) and bromobutyl rubber (BIIR). And it is possible to solve the limitations of transparency of the conventional carbon material by producing a translucent composite material having high conductivity and heat-generating properties as it is by forming uniform holes and having exothermic properties.
  • the translucent conductive polymer composite material according to the present invention can be attached or used as a curtain, which has visibility to see the outside landscape, can block the view from the outside, and serves as a planar heating element in winter for the purpose of cold protection can be used as
  • FIG. 1 is a flowchart showing a method of manufacturing a translucent conductive polymer composite material according to the present invention.
  • FIG. 2 is a schematic view showing the arrangement of holes in the translucent conductive polymer composite material according to the present invention.
  • Example 6 is a graph showing the exothermic temperature and exothermic cycle characteristics of the specimens prepared according to Comparative Example 1 and Example 1 in the present invention [(a) Comparative Example 1, (b) Example 1, (c) Comparison Example 1 vs Example 1].
  • FIG. 8 is a photograph taken according to the focal point by installing the translucent conductive polymer composite material according to the present invention on a window.
  • the present invention relates to a method for manufacturing a translucent composite material having high conductivity and heat-generating properties as it is by forming a hole in a carbon-based rubber composite material, and to a translucent conductive polymer composite material manufactured according to the method.
  • the present invention comprises the steps of (A) mixing bromobutyl rubber (BIIR) and hexane; (B) after mixing the carbon-based filler and isopropyl alcohol, sonicating by adding a dimethyl silicone oil (MEP) solution; (C) adding the mixture mixed in step (A) to the mixture mixed in step (B) and stirring; (D) hardening by injecting the mixture mixed in step (C) into a hot press; And, (E) provides a method for producing a translucent conductive polymer composite material comprising the step of forming a plurality of holes using a laser after the curing.
  • BIIR bromobutyl rubber
  • MEP dimethyl silicone oil
  • bromobutyl rubber hexane
  • carbon nanotube CNT
  • carbon black carbon black
  • metal fiber isopropyl alcohol and dimethyl silicone oil (MEP)
  • BIIR bromobutyl rubber
  • CNT carbon nanotube
  • MEP dimethyl silicone oil
  • FIG. 1 is a schematic view showing a method of manufacturing a translucent conductive polymer composite material according to the present invention.
  • the method for producing a translucent conductive polymer composite material comprises the steps of (A) mixing bromobutyl rubber (BIIR) and hexane; (B) after mixing the carbon-based filler and isopropyl alcohol, sonicating by adding a dimethyl silicone oil (MEP) solution; (C) adding the mixture mixed in step (A) to the mixture mixed in step (B) and stirring; (D) hardening by injecting the mixture mixed in step (C) into a hot press; and (E) forming a plurality of holes using a laser after the curing.
  • BIIR bromobutyl rubber
  • MEP dimethyl silicone oil
  • step (A) bromobutyl rubber (BIIR) is added to hexane and mixed by stirring.
  • BIIR bromobutyl rubber
  • the bromobutyl rubber is one of the polymers with excellent flexibility, elasticity, chemical stability and solubility, and in particular, has excellent self-healing properties and is used as a material for filling cracks or irregular holes in tires or ships.
  • the hexane is one of the non-polar solvents and is used as a solvent for uniformly dispersing the bromobutyl rubber (BIIR).
  • bromobutyl rubber may be mixed in a composition ratio of 1 to 10 w/v%, preferably in a composition ratio of 4 w/v%.
  • the dispersion degree of bromobutyl rubber (BIIR) in hexane is high and handling is easy, so that bromobutyl rubber (BIIR) can be more effectively dispersed uniformly.
  • step (B) the carbon-based filler and isopropyl alcohol may be mixed and sonicated, and then dimethyl silicone oil (MEP) may be added and mixed.
  • MEP dimethyl silicone oil
  • the carbon-based filler After mixing the carbon-based filler with isopropyl alcohol, it is treated with ultrasonic waves for 10 to 60 minutes, preferably for 30 minutes.
  • the carbon-based filler may be one selected from the group consisting of carbon nanotubes (CNT), graphene, artificial graphite, activated carbon, carbon black, and carbon fibers.
  • CNT carbon nanotubes
  • the dried carbon-based filler tends to agglomerate strongly, which is caused by van der Waals force to form bundles and aggregate, thereby minimizing surface energy by minimizing interfacial contact with the solvent. is the action to do.
  • the agglomerated carbon-based filler in order to disperse the agglomerated carbon-based filler, is mixed with isopropyl alcohol and then sonicated to disperse the carbon-based filler.
  • isopropyl alcohol Since the solvent mixed with the carbon-based filler should be evaporated without leaving air for excellent conductivity when the solvent is evaporated later, it is preferable to use isopropyl alcohol.
  • the isopropyl alcohol has a stable structure composed of three carbons and one oxygen, so that a material having a hydrophobic part or a hydrophilic part easily contacts the surface of the carbon-based filler.
  • the carbon-based filler partially dissolved in isopropyl alcohol is completely mixed through ultrasonic waves.
  • the ultrasonic treatment breaks the van der Waals force between the mutual surfaces of the aggregated carbon-based filler bundle by applying a physical force, and separates the carbon-based filler into a single carbon-based filler.
  • the ultrasonic treatment method is a bath sonication method in which the ultrasonic treatment is performed while maintaining the temperature below room temperature, preferably 10 to 23 ° C. within a time of 10 to 60 minutes to minimize damage to the carbon-based filler as well as to stabilize the dispersion.
  • the ultrasonic wave intensity (spatial peak pulse average intensity: ISPPA) in the frequency range of about 40 to 5,000 kHz by using ultrasonic waves that vary between about 50 to 1,000 mW, it is possible to obtain a stable dispersion in which the carbon-based filler is evenly dispersed.
  • ISPPA spatial peak pulse average intensity
  • the carbon-based filler cannot be completely separated and stably dispersed in the solvent, so isopropyl alcohol and ultrasonication are performed together It is preferable to do
  • the carbon-based filler and isopropyl alcohol are mixed in a weight ratio of 1:50 to 1:500, preferably 1:95 to 1:450 by weight.
  • the weight ratio of isopropyl alcohol based on the carbon-based filler is out of the above range, the aggregated carbon-based filler may not be separated and the separated carbon-based filler may not be stably dispersed in isopropyl alcohol.
  • the carbon-based filler is carbon nanotube (CNT)
  • the content of carbon nanotube (CNT) in the mixture is 1 to 35 wt%, preferably 5 to 20 wt%. It is possible to prepare a self-healing conductive rubber composite material in which carbon nanotubes (CNTs) are uniformly dispersed within the above range, and maintain properties such as excellent electrical conductivity, thermal conductivity and elasticity of carbon nanotubes (CNTs).
  • the ultrasonic treatment is performed under the same conditions as the ultrasonic treatment performed on the carbon-based filler and isopropyl alcohol, but for 5 to 20 minutes, preferably 10 to 15 minutes. If the ultrasonic treatment time is less than the lower limit, dimethyl silicone oil (MEP) cannot wrap the carbon-based filler, and if it exceeds the upper limit, it may rather prevent the dimethyl silicone oil (MEP) from wrapping the carbon-based filler, and in the future Immiscible with bromobutyl rubber (BIIR).
  • MEP dimethyl silicone oil
  • BIIR bromobutyl rubber
  • the dimethyl silicone oil (MEP) comes into contact with the hydrophobic part of isopropyl alcohol, and surrounds the dispersed carbon-based filler by ultrasonication.
  • the viscosity of the dimethyl silicone oil (MEP) is 70 to 200 cSt, preferably 100 to 150 cSt, and when the viscosity is less than the lower limit, the carbon-based filler cannot be wrapped, and when it exceeds the upper limit, the carbon-based filler is added to the solution It can be difficult to disperse within.
  • the dimethyl silicone oil (MEP) solution is a dimethyl silicone oil (MEP) solution having a concentration of 0.1 to 1%, preferably 0.2 to 0.5%.
  • concentration of the dimethyl silicone oil (MEP) solution is less than the lower limit, the carbon-based filler cannot be wrapped, and when it exceeds the upper limit, a more stable dispersion cannot be obtained.
  • step (C) the mixture mixed in step (A) is added to the mixture mixed in step (B) and stirred.
  • step (C) stir the mixture mixed in step (C) at 500 to 1,500 rpm for 30 minutes so that excess hexane and isopropyl alcohol are first mixed and bromobutyl rubber (BIIR) is completely dissolved in the carbon-based filler solution.
  • BIIR bromobutyl rubber
  • the mixture mixed in step (C) may be injected into a hot press and then cured.
  • the mixture mixed in step (C) may be injected into a hot press, which is a molding die, and then cured at 120° C. and 4,000 psi for 10 minutes.
  • the translucent conductive polymer composite material according to the present invention can be attached to a window or used as a curtain, and a planar heating element in winter It can be used for cold weather purposes.
  • step (C) the step of evaporating the solvent present in the mixture mixed in step (B) may be further included.
  • step (E) a plurality of holes may be formed in the cured composite material using a laser. By forming the hole, a translucent conductive polymer composite material can be manufactured.
  • the laser may be using a CO 2 laser cutting system.
  • the size (diameter) of the holes may be 0.5 to 2 mm, preferably 1 mm, and the spacing between the holes may be 0.5 to 2 mm, preferably 1 mm.
  • the holes may be uniformly formed in a side-by-side arrangement or a staggered arrangement.
  • FIG. 2 is a schematic view showing the arrangement of holes in the translucent conductive polymer composite material.
  • holes are formed in the same column in all rows, and in a staggered arrangement, holes are formed by alternating rows between rows.
  • the holes may have similar tensile strength according to the side-by-side arrangement or the staggered arrangement, but in the case of the staggered arrangement, the tensile strain may be greater than that of the side-by-side arrangement of the composite material.
  • the translucent conductive polymer composite material is manufactured in a solution method, so it is easy to handle. It has a low cost effect.
  • the semi-transparent conductive polymer composite material prepared according to the method for producing the semi-transparent conductive polymer composite material of the present invention has excellent properties of high conductivity and By producing a translucent composite material that has exothermic properties and uniform holes to form high conductivity and heat-generating properties as it is, it is possible to solve the limitations of transparency of conventional carbon materials.
  • the present invention provides a translucent conductive polymer composite material manufactured according to the method for manufacturing the translucent conductive polymer composite material.
  • the translucent conductive polymer composite material according to the present invention can be attached or used as a curtain, which has visibility to see the outside landscape, can block the view from the outside, and is used as a planar heating element in winter for cold protection purposes This is possible.
  • Example 1 Preparation of Translucent Conductive Polymer Composite Material Containing 5% by Weight of CNTs (Forming Holes in Staggered Arrangement)
  • a 4% (w/v) solution of bromobutyl rubber (BIIR) in hexane was prepared. Then, 5% (w / w) of carbon nanotubes (CNT) was added to isopropyl alcohol to disperse, and 4% (w / w) of dimethyl silicone oil (MEP) solution was added to the carbon nanotube (CNT) solution. added and sonicated. Then, the bromobutyl rubber (BIIR) solution was slowly added to the carbon nanotube (CNT) solution and mixed at the maximum speed for 30 minutes.
  • BIIR bromobutyl rubber
  • a translucent conductive polymer composite material was prepared by forming a plurality of holes in a staggered arrangement using a laser (CO 2 laser cutting system, hole diameter 1 mm, spacing 1 mm) in the cured composite material.
  • a translucent conductive polymer composite material was prepared in the same manner as in Example 1, except that 10% (w/w) carbon nanotube (CNT) was used.
  • a translucent conductive polymer composite material was prepared in the same manner as in Example 1, except that 15% (w/w) carbon nanotube (CNT) was used.
  • a translucent conductive polymer composite material was prepared in the same manner as in Example 1, except that 20% (w/w) carbon nanotube (CNT) was used.
  • a translucent conductive polymer composite material was prepared in the same manner as in Example 1, except that a plurality of holes were formed in a side by side arrangement in the cured composite material using a laser.
  • a translucent conductive polymer composite material was prepared in the same manner as in Example 5, except that 10% (w/w) carbon nanotube (CNT) was used.
  • Example 7 Preparation of Translucent Conductive Polymer Composite Material Containing 15% by Weight of CNTs (Positioning Holes in Side by Side Arrangement)
  • a translucent conductive polymer composite material was prepared in the same manner as in Example 5, except that 15% (w/w) carbon nanotube (CNT) was used.
  • Example 8 Preparation of Translucent Conductive Polymer Composite Material Containing 20% by Weight of CNTs (Positioning Holes in Side by Side Arrangement)
  • a translucent conductive polymer composite material was prepared in the same manner as in Example 5, except that 20% (w/w) carbon nanotubes (CNT) were used.
  • Comparative Example 1 Preparation of a conductive polymer composite material without pores containing 5 wt% of CNT
  • Comparative Example 2 Preparation of non-porous conductive polymer composite material containing 10% by weight of CNT
  • Comparative Example 3 Preparation of non-porous conductive polymer composite material containing 15% by weight of CNT
  • Comparative Example 4 Preparation of a conductive polymer composite material without pores containing 20 wt% of CNT
  • Table 1 below is a table showing the surface resistance and electrical conductivity of the carbon-based conductive polymer composite materials prepared according to Comparative Examples 1 to 4, respectively (in the case of Examples, it is difficult to measure the surface resistance due to holes).
  • the specimens according to Examples 1 to 5 were tested at a size of 20 ⁇ 50 mm and a head speed of 500 mm/min.
  • Figure 3 shows the results of tensile strength and tensile strain (Tensile strain) measurement according to the hole arrangement according to Examples 1 and 5 and photographs of the specimen after the tensile test.
  • Heating condition After cutting Comparative Examples 1 and 1 to a size of 150 ⁇ 210 mm 2 and attaching conductive copper tape to both ends to connect them, a voltage of 20 to 58V and a current of 0.34 to 0.91A were supplied with a DC power supply. It was heated at 10-50W of power.
  • Temperature change measurement An infrared thermal image was taken using a FLIR IR camera to measure temperature change.
  • Heating rate measurement The heating rate of Comparative Example 1 and Example 1 was measured at an average of 40W by supplying an average voltage of 50V and an average current of 0.8A as a DC power supply, and the measurement environment was an average of 25°C, 42-48% relative humidity. was measured in
  • Example 5 is an image showing photographs and exothermic characteristics of specimens prepared according to Comparative Example 1 and Example 1.
  • FIG. It was confirmed that the translucency was exhibited in Example 1 with uniform interlacing holes as compared with Comparative Example 1 without holes, and it was confirmed that the highest heating temperature was higher and the heating uniformity was also better.
  • FIG. 6 is a graph comparing the heating rate while heating the specimens prepared according to Comparative Example 1 and Example 1 at 10 to 50 W, respectively [control is Comparative Example 1, ST (semi transparency) is Example 1, at this time One heating temperature is within a 150 ⁇ 150 mm box. average exothermic temperature].
  • ST sin transparency
  • One heating temperature is within a 150 ⁇ 150 mm box. average exothermic temperature.
  • the maximum heating temperature is higher and the heat generation rate and cooling rate are faster due to the uniform transfer of heat due to the uniform arrangement of the holes. could It was found that this was an ideal shape as a heating element.
  • Example 7 is a graph showing the exothermic rate and exothermic cycle at 40W of the specimens prepared according to Comparative Examples 1 and 1 [(a) Comparative Example 1, (b) Example 1, (c) Comparative Example 1 vs. Example 1 (control is Comparative Example 1, ST (semi transparency) is Example 1), at this time, the indicated exothermic temperature is within a 150 ⁇ 150 mm box average exothermic temperature]. This shows a high heating effect even at a low power of 40W, and the thermal stability according to the heating cycle was the same for both samples.
  • Translucency was confirmed by installing the translucent conductive polymer composite material prepared in Example 1 on a window.
  • FIG. 8 shows a photograph according to the focus of the translucent conductive polymer composite material installed on the window.
  • the translucent conductive polymer composite material according to the present invention has translucency in the photograph taken with the focus on the composite material and the photograph with the focus on the landscape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a method for manufacturing a translucent conductive polymer composite material having translucent properties, high conductivity, and exothermic properties, and to a translucent conductive polymer composite material manufactured thereby. The translucent conductive polymer composite material manufactured according to the method for manufacturing a translucent conductive polymer composite material of the present invention has high conductivity and exothermic properties that are excellent properties of a carbon-based filler (especially carbon nanotube) and bromobutyl rubber (BIIR). In addition, it is possible to address the limitations in terms of transparency of a conventional carbon composite material by manufacturing a translucent composite material having high conductivity and exothermic properties by forming uniform holes.

Description

반투명성 고분자 복합소재의 제조방법 및 이에 따라 제조된 반투명성 고분자 복합소재Manufacturing method of translucent polymer composite material and translucent polymer composite material prepared accordingly
본 발명은 반투명성, 고전도성 및 발열 특성을 갖는 반투명성 전도성 고분자 복합소재의 제조방법 및 이에 따라 제조된 반투명성 전도성 고분자 복합소재에 관한 것이다.The present invention relates to a method for producing a translucent conductive polymer composite material having translucency, high conductivity, and exothermic properties, and to a translucent conductive polymer composite material manufactured thereby.
탄소나노튜브(CNT)는 1991년 일본인 과학자에 의해서 발견되어 특성이 구리보다 높은 전기적 특성과 다이아몬드보다 높은 열적특성, 강철의 수 천 배되는 기계적 특성을 가지는 물질을 양산하고 적용하기 위한 기간이 20년 이상이 되었으며 이물질은 다양한 물질의 첨가제로 응용되고 있다.Carbon nanotubes (CNTs) were discovered by a Japanese scientist in 1991, and it took 20 years to mass-produce and apply a material with electrical properties higher than copper, thermal properties higher than diamond, and mechanical properties thousands of times that of steel. It has become an abnormality, and foreign substances are being applied as additives to various substances.
탄소나노튜브는 주로 탄소나노튜브를 함유하는 재료를 이용해, 인장강도, 대전 방지성, 도전성, 열전도성, 원적외선 방출 및 전자파 차폐 등의 기능을 가지는 재료의 개발이 활발히 행해지고 있다. 예를 들면, 폴리아미드, 폴리에스테르, 폴리에테르 또는 폴리이미드, 실리콘, 고무 등의 폴리머, 혹은 유리나 세라믹 재료 등의 무기 재료 등을 매트릭스로서 이용해, 이들의 매트릭스 중 탄소나노튜브를 분산시키는 것에 의해서, 대전 방지, 도전성, 열전도성 및 전자파 차폐 등의 기능을 가지는 복합재 및 이 복합재를 적층한 적층체에 관하는 검토가 많이 행해지고 있다.Carbon nanotubes mainly use materials containing carbon nanotubes, and development of materials having functions such as tensile strength, antistatic properties, conductivity, thermal conductivity, far-infrared emission and electromagnetic wave shielding is being actively conducted. For example, by using a polymer such as polyamide, polyester, polyether or polyimide, silicone, rubber, or an inorganic material such as glass or ceramic material as a matrix, and dispersing carbon nanotubes in the matrix, Many studies have been made regarding a composite material having functions such as antistatic, electrical conductivity, thermal conductivity and electromagnetic wave shielding, and a laminate in which the composite material is laminated.
특히, 최근에는 발열체의 소재로 탄소계 재료가 많이 사용되고 있으나, 탄소계 소재는 불투명한 소재로서 주택이나 자동차의 창호나 디스플레이나 터치패널 소자의 투명성을 요구하는 부분에서 적용이 어려운 단점이 있으며, 기존의 탄소계 복합소재는 불투명하며 투명성을 갖게 되면 특성이 달라지는 문제가 있다.In particular, recently, carbon-based materials have been widely used as materials for heating elements, but carbon-based materials are opaque materials and have a disadvantage in that they are difficult to apply to windows of houses or automobiles, or parts that require transparency of displays or touch panel elements. of carbon-based composite materials are opaque and have a problem in that their properties change when they have transparency.
또한, 고무계 폴리머 중 하나로서 Bromobutyl rubber(BIIR)는 높은 인장강도, 진동의 감소, 낮은 투과성, 노화 및 풍화에 대한 높은 저항성 등의 특성을 가지고 있어서 산업분야에 폭넓게 사용되고 있는 고분자 물질로, 탄소나노튜브를 고분자 매트릭스 내에 안정적으로 분산하는 기술과 적용방법의 개발이 부족하여, 좀 더 다방면에 적용하지 못하고 있는 것이 현실이다.In addition, as one of the rubber-based polymers, bromobutyl rubber (BIIR) has characteristics such as high tensile strength, vibration reduction, low permeability, and high resistance to aging and weathering. The reality is that the technology and application method for stably dispersing in the polymer matrix are lacking, so it cannot be applied in more various fields.
이에 따라, 탄소나노튜브를 고분자 내에 균일하고 안정된 상태로 분산시켜 보다 높은 전도성, 발열 특성 및 기계적 특성을 가지면서도 반투명성을 가지는 복합소재에 대한 개발이 절실히 요구되고 있다.Accordingly, there is an urgent need for the development of a composite material having translucency while having higher conductivity, heat generation and mechanical properties by dispersing carbon nanotubes in a uniform and stable state in a polymer.
(선행기술문헌) 대한민국공개특허 제10-2019-0083551호(Prior art document) Republic of Korea Patent Publication No. 10-2019-0083551
본 발명은 종래 탄소소재의 투명성의 한계점을 해결하고자, 레이저를 이용하여 균일한 구멍을 형성하여 반투명성을 갖는 고전도성 및 발열성이 우수한 반투명성 전도성 고분자 복합소재의 제조방법 및 이에 따라 제조된 반투명성 전도성 고분자 복합소재를 제공하고자 한다.The present invention provides a method for producing a semi-transparent conductive polymer composite material having excellent translucency and heat generation property by forming uniform holes using a laser in order to solve the transparency limitation of the conventional carbon material, and a semi-transparent conductive polymer composite material manufactured according to the method To provide a transparent conductive polymer composite material.
상기 과제를 해결하기 위하여, In order to solve the above problem,
본 발명은 일실시예에서, (A) 브로모부틸고무(BIIR)와 헥산을 혼합하는 단계; (B) 탄소계 필러와 이소프로필알코올을 혼합한 후, 디메틸 실리콘 오일(MEP) 용액을 첨가하여 초음파 처리하는 단계; (C) 상기 (B)단계에서 혼합된 혼합물에 상기 (A)단계에서 혼합된 혼합물을 첨가하여 교반하는 단계; (D) 상기 (C)단계에서 혼합된 혼합물을 핫프레스에 주입하여 경화하는 단계; 및, (E) 상기 경화 후 레이저를 이용하여 다수의 구멍을 형성하는 단계를 포함하는 반투명성 전도성 고분자 복합소재의 제조방법을 제공한다.The present invention in one embodiment, (A) mixing bromobutyl rubber (BIIR) and hexane; (B) after mixing the carbon-based filler and isopropyl alcohol, sonicating by adding a dimethyl silicone oil (MEP) solution; (C) adding the mixture mixed in step (A) to the mixture mixed in step (B) and stirring; (D) hardening by injecting the mixture mixed in step (C) into a hot press; And, (E) provides a method for producing a translucent conductive polymer composite material comprising the step of forming a plurality of holes using a laser after the curing.
상기 (A)단계에서 브로모부틸고무(BIIR)는 1 내지 10 w/v% 조성비로 혼합되는 것일 수 있다.In step (A), bromobutyl rubber (BIIR) may be mixed in a composition ratio of 1 to 10 w/v%.
상기 (B)단계에서 탄소계 필러와 이소프로필알코올은 1:50 내지 1:500의 중량비로 혼합되는 것일 수 있다.In step (B), the carbon-based filler and isopropyl alcohol may be mixed in a weight ratio of 1:50 to 1:500.
상기 (B)단계의 탄소계 필러의 함량은 1 내지 35 wt%인 것일 수 있다.The content of the carbon-based filler in step (B) may be 1 to 35 wt%.
상기 (C)단계에서 혼합된 혼합물에 헥산과 이소프로필알코올의 부피비가 5:1 내지 1:1이 되도록 헥산을 추가적으로 첨가하는 단계를 더 포함하는 것일 수 있다.The step (C) may further include the step of additionally adding hexane so that the volume ratio of hexane and isopropyl alcohol to the mixture mixed in step (C) becomes 5:1 to 1:1.
상기 (D)단계에서 구멍은 나란한 배열 또는 엇갈림의 배열로 균일하게 형성하는 것일 수 있다.In the step (D), the holes may be uniformly formed in a side-by-side arrangement or a staggered arrangement.
상기 탄소계 필러는 탄소나노튜브(CNT), 그래핀, 인조흑연, 활성탄소, 카본블랙, 탄소섬유로 이루어진 군에서 선택된 1종인 것일 수 있다.The carbon-based filler may be one selected from the group consisting of carbon nanotubes (CNT), graphene, artificial graphite, activated carbon, carbon black, and carbon fibers.
또한, 본 발명은 일실시예에서, 상기 반투명성 전도성 고분자 복합소재의 제조방법에 따라 제조된 반투명성 전도성 고분자 복합소재를 제공한다.In addition, in one embodiment, the present invention provides a translucent conductive polymer composite material manufactured according to the method for manufacturing the translucent conductive polymer composite material.
본 발명의 반투명성 전도성 고분자 복합소재의 제조방법에 따라 제조된 반투명성 전도성 고분자 복합소재는 탄소계 필러(특히, 탄소나노튜브) 및 브로모부틸고무(BIIR) 두 가지 물질의 우수한 특성인 높은 전도성 및 발열성을 가지며, 균일한 구멍을 형성하여 높은 전도성과 발열 특성을 그대로 갖는 반투명한 복합소재를 제조함으로써 종래 탄소소재의 투명성의 한계점을 해결할 수 있다.The semi-transparent conductive polymer composite material prepared according to the method for producing a semi-transparent conductive polymer composite material of the present invention has high conductivity, which is an excellent property of both carbon-based fillers (especially carbon nanotubes) and bromobutyl rubber (BIIR). And it is possible to solve the limitations of transparency of the conventional carbon material by producing a translucent composite material having high conductivity and heat-generating properties as it is by forming uniform holes and having exothermic properties.
또한, 본 발명에 따른 반투명성 전도성 고분자 복합소재는 부착하거나 커튼으로 사용할 수 있으며, 이는 외부의 풍경을 볼 수 있는 가시성이 있고, 외부에서 안이 안보이는 시선차단이 가능하며, 겨울에는 면상발열체로서 방한 목적으로 사용이 가능하다.In addition, the translucent conductive polymer composite material according to the present invention can be attached or used as a curtain, which has visibility to see the outside landscape, can block the view from the outside, and serves as a planar heating element in winter for the purpose of cold protection can be used as
도 1은 본 발명에 따른 반투명성 전도성 고분자 복합소재의 제조방법을 나타내는 순서도이다.1 is a flowchart showing a method of manufacturing a translucent conductive polymer composite material according to the present invention.
도 2는 본 발명에 따른 반투명성 전도성 고분자 복합소재의 구멍의 배열을 나타낸 모식도이다. 2 is a schematic view showing the arrangement of holes in the translucent conductive polymer composite material according to the present invention.
도 3은 본 발명에 따른 실시예 1 및 실시예 5에 따른 구멍 배열에 따른 인장 강도(Tensile strength), 인장 변형률(Tensile strain) 및 인장 응력(Tensile stress) 측정 결과(a 내지 c)와 Tensile 시험 후 시편의 사진(d)을 나타낸 것이다.3 is a tensile strength (Tensile strength), tensile strain (Tensile strain) and tensile stress (Tensile stress) measurement results (a to c) and Tensile test according to the hole arrangement according to Examples 1 and 5 according to the present invention; The photograph (d) of the specimen after that is shown.
도 4는 실시예 1 내지 실시예 8의 변형률에 따른 인장 응력(Tensile stress)을 나타낸 그래프이다. 4 is a graph showing tensile stress according to strain in Examples 1 to 8;
도 5는 본 발명에 있어서, 비교예 1 및 실시예 1에 따라 제조된 시편의 사진(a 및 b) 및 발열 특성(c 및 d)을 나타낸 이미지이다. 5 is an image showing photographs (a and b) and exothermic characteristics (c and d) of specimens prepared according to Comparative Example 1 and Example 1 in the present invention.
도 6은 본 발명에 있어서, 비교예 1 및 실시예 1에 따라 제조된 시편의 발열 온도 및 발열 사이클 특성을 나타낸 그래프이다[(a)비교예 1, (b)실시예 1, (c)비교예 1 vs 실시예 1].6 is a graph showing the exothermic temperature and exothermic cycle characteristics of the specimens prepared according to Comparative Example 1 and Example 1 in the present invention [(a) Comparative Example 1, (b) Example 1, (c) Comparison Example 1 vs Example 1].
도 7은 본 발명에 있어서, 비교예 1 및 실시예 1에 따라 제조된 시편의 40W에서 발열 속도 및 발열 사이클을 나타낸 그래프이다[(a)비교예 1, (b)실시예 1, (c)비교예 1 vs 실시예 1].7 is a graph showing the exothermic rate and exothermic cycle at 40W of the specimens prepared according to Comparative Examples 1 and 1 in the present invention [(a) Comparative Example 1, (b) Example 1, (c) Comparative Example 1 vs Example 1].
도 8은 본 발명에 따른 반투명성 전도성 고분자 복합소재를 창문에 설치하여 초점에 따라 촬영한 사진이다.8 is a photograph taken according to the focal point by installing the translucent conductive polymer composite material according to the present invention on a window.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 구체적으로 설명하고자 한다.Since the present invention can have various changes and can have various embodiments, specific embodiments are illustrated in the drawings and will be described in detail in the detailed description.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In the present invention, terms such as "comprises" or "have" are intended to designate that the features, numbers, steps, operations, components, parts, or combinations thereof described in the specification exist, but one or more other features It is to be understood that this does not preclude the possibility of the presence or addition of numbers, steps, operations, components, parts, or combinations thereof.
이하, 본 발명에 대하여 구체적으로 설명하기로 한다.Hereinafter, the present invention will be described in detail.
종래 고전도성 및 발열 특성을 갖는 탄소계 복합소재는 불투명하며, 투명성을 갖게 될 경우 특성이 달라지는 문제가 있어다. 이러한 문제를 해결하기 위해, 본 발명은 탄소계 고무 복합소재에 구멍을 형성하여 높은 전도성과 발열 특성을 그대로 갖는 반투명한 복합소재의 제조방법 및 이에 따라 제조된 반투명성 전도성 고분자 복합소재에 관한 것이다. Conventional carbon-based composite materials having high conductivity and heating properties are opaque, and there is a problem in that properties change when they have transparency. In order to solve this problem, the present invention relates to a method for manufacturing a translucent composite material having high conductivity and heat-generating properties as it is by forming a hole in a carbon-based rubber composite material, and to a translucent conductive polymer composite material manufactured according to the method.
본 발명은 (A) 브로모부틸고무(BIIR)와 헥산을 혼합하는 단계; (B) 탄소계 필러와 이소프로필알코올을 혼합한 후, 디메틸 실리콘 오일(MEP) 용액을 첨가하여 초음파 처리하는 단계; (C) 상기 (B)단계에서 혼합된 혼합물에 상기 (A)단계에서 혼합된 혼합물을 첨가하여 교반하는 단계; (D) 상기 (C)단계에서 혼합된 혼합물을 핫프레스에 주입하여 경화하는 단계; 및, (E) 상기 경화 후 레이저를 이용하여 다수의 구멍을 형성하는 단계를 포함하는 반투명성 전도성 고분자 복합소재의 제조방법을 제공한다.The present invention comprises the steps of (A) mixing bromobutyl rubber (BIIR) and hexane; (B) after mixing the carbon-based filler and isopropyl alcohol, sonicating by adding a dimethyl silicone oil (MEP) solution; (C) adding the mixture mixed in step (A) to the mixture mixed in step (B) and stirring; (D) hardening by injecting the mixture mixed in step (C) into a hot press; And, (E) provides a method for producing a translucent conductive polymer composite material comprising the step of forming a plurality of holes using a laser after the curing.
본 발명에서 브로모부틸고무(BIIR), 헥산, 탄소나노튜브(CNT), 카본블랙, 금속 섬유, 이소프로필알코올 및 디메틸 실리콘 오일(MEP)은 이 기술분야에서 널리 사용되는 것이므로 자세한 설명은 생략한다. In the present invention, bromobutyl rubber (BIIR), hexane, carbon nanotube (CNT), carbon black, metal fiber, isopropyl alcohol and dimethyl silicone oil (MEP) are widely used in the art, so detailed descriptions are omitted. .
이하, 본 발명을 도 1을 참조하여 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to FIG. 1 .
도 1은 본 발명에 따른 반투명성 전도성 고분자 복합소재의 제조방법을 나타내는 모식도이다.1 is a schematic view showing a method of manufacturing a translucent conductive polymer composite material according to the present invention.
도 1을 참조하면, 본 발명에 따른 반투명성 전도성 고분자 복합소재의 제조방법은 (A) 브로모부틸고무(BIIR)와 헥산을 혼합하는 단계; (B) 탄소계 필러와 이소프로필알코올을 혼합한 후, 디메틸 실리콘 오일(MEP) 용액을 첨가하여 초음파 처리하는 단계; (C) 상기 (B)단계에서 혼합된 혼합물에 상기 (A)단계에서 혼합된 혼합물을 첨가하여 교반하는 단계; (D) 상기 (C)단계에서 혼합된 혼합물을 핫프레스에 주입하여 경화하는 단계; 및, (E) 상기 경화 후 레이저를 이용하여 다수의 구멍을 형성하는 단계를 포함할 수 있다.Referring to FIG. 1, the method for producing a translucent conductive polymer composite material according to the present invention comprises the steps of (A) mixing bromobutyl rubber (BIIR) and hexane; (B) after mixing the carbon-based filler and isopropyl alcohol, sonicating by adding a dimethyl silicone oil (MEP) solution; (C) adding the mixture mixed in step (A) to the mixture mixed in step (B) and stirring; (D) hardening by injecting the mixture mixed in step (C) into a hot press; and (E) forming a plurality of holes using a laser after the curing.
먼저, 상기 (A)단계에서는 헥산에 브로모부틸고무(BIIR)를 첨가한 후, 휘저어 혼합한다.First, in step (A), bromobutyl rubber (BIIR) is added to hexane and mixed by stirring.
상기 브로모부틸고무(BIIR)는 유연성, 신축성, 화학적 안정성 및 가용성이 우수한 고분자 중 하나로서, 특히 자가치유성이 우수하여 타이어나 선박의 균열이나 비정형 구멍 등을 메우기 위한 물질로서 사용된다.The bromobutyl rubber (BIIR) is one of the polymers with excellent flexibility, elasticity, chemical stability and solubility, and in particular, has excellent self-healing properties and is used as a material for filling cracks or irregular holes in tires or ships.
상기 헥산은 비극성 용매 중 하나로서, 상기 브로모부틸고무(BIIR)를 균일하게 분산시키기 위한 용매로 사용된다.The hexane is one of the non-polar solvents and is used as a solvent for uniformly dispersing the bromobutyl rubber (BIIR).
상기 (A)단계에서 브로모부틸고무(BIIR)는 1 내지 10 w/v% 조성비로 혼합될 수 있고, 바람직하게는 4 w/v% 조성비로 혼합될 수 있다. 상기 4 w/v% 조성비에서 헥산 내 브로모부틸고무(BIIR)의 분산도가 높고 핸들링이 용이하여 보다 효과적으로 브로모부틸고무(BIIR)을 균일하게 분산시킬 수 있다.In the step (A), bromobutyl rubber (BIIR) may be mixed in a composition ratio of 1 to 10 w/v%, preferably in a composition ratio of 4 w/v%. At the 4 w/v% composition ratio, the dispersion degree of bromobutyl rubber (BIIR) in hexane is high and handling is easy, so that bromobutyl rubber (BIIR) can be more effectively dispersed uniformly.
다음으로, 상기 (B)단계에서는 탄소계 필러와 이소프로필알코올을 혼합하여 초음파 처리한 후, 디메틸 실리콘 오일(MEP)을 첨가하여 혼합할 수 있다.Next, in step (B), the carbon-based filler and isopropyl alcohol may be mixed and sonicated, and then dimethyl silicone oil (MEP) may be added and mixed.
상기 탄소계 필러와 이소프로필알코올을 혼합한 후 초음파로 10 내지 60분 동안 처리하며, 바람직하게는 30분 동안 처리될 수 있다. After mixing the carbon-based filler with isopropyl alcohol, it is treated with ultrasonic waves for 10 to 60 minutes, preferably for 30 minutes.
상기 탄소계 필러로는 상기 탄소계 필러는 탄소나노튜브(CNT), 그래핀, 인조흑연, 활성탄소, 카본블랙, 탄소섬유로 이루어진 군에서 선택된 1종인 것일 수 있다. 상기 건조된 탄소계 필러는 강하게 응집하려고 하는 경향이 있으며, 이는 반데르발스 힘(van der Waals force)에 의해 탄소계 필러가 다발을 형성하고 응집되어, 용매에 계면 접촉을 최소화함으로써 표면 에너지를 최소화하기 위한 작용이다.As the carbon-based filler, the carbon-based filler may be one selected from the group consisting of carbon nanotubes (CNT), graphene, artificial graphite, activated carbon, carbon black, and carbon fibers. The dried carbon-based filler tends to agglomerate strongly, which is caused by van der Waals force to form bundles and aggregate, thereby minimizing surface energy by minimizing interfacial contact with the solvent. is the action to do.
본 발명에서는 상기 응집된 탄소계 필러를 분산시키기 위하여 응집된 탄소계 필러를 이소프로필알코올과 혼합한 후 이를 초음파 처리하여 탄소계 필러를 분산시킨다.In the present invention, in order to disperse the agglomerated carbon-based filler, the agglomerated carbon-based filler is mixed with isopropyl alcohol and then sonicated to disperse the carbon-based filler.
상기 탄소계 필러와 혼합되는 용매는 추후 용매의 증발 시 우수한 전도성을 위하여 공기를 남기지 말고 증발되어야 하므로 이소프로필알코올을 사용하는 것이 바람직하다. 구체적으로, 상기 이소프로필알코올은 3개의 탄소와 1개의 산소로 구성된 안정한 구조를 가지고 있어서 소수성 파트 또는 친수성 파트를 갖는 물질이 탄소계 필러의 표면에 접촉하기에 용이하다. Since the solvent mixed with the carbon-based filler should be evaporated without leaving air for excellent conductivity when the solvent is evaporated later, it is preferable to use isopropyl alcohol. Specifically, the isopropyl alcohol has a stable structure composed of three carbons and one oxygen, so that a material having a hydrophobic part or a hydrophilic part easily contacts the surface of the carbon-based filler.
또한, 부분적으로 이소프로필알코올에 용해된 탄소계 필러는 초음파를 통해 완전하게 혼합된다.In addition, the carbon-based filler partially dissolved in isopropyl alcohol is completely mixed through ultrasonic waves.
상기 초음파 처리는 물리적인 힘이 가해짐으로써 응집되어 있는 탄소계 필러 뭉치(bundle)의 서로 간 표면 사이의 반 데르 발스 힘을 파괴하고 탄소계 필러를 단일 탄소계 필러로 분리한다. 본 발명에서 초음파 처리 방법은 욕조 초음파 법으로 10 내지 60분의 시간 내에 실온 이하, 바람직하게는 10 내지 23 ℃를 유지하면서 초음파 처리를 수행해야 탄소계 필러의 손상을 최소화할 뿐만 아니라 분산을 안정화시킬 수 있다.The ultrasonic treatment breaks the van der Waals force between the mutual surfaces of the aggregated carbon-based filler bundle by applying a physical force, and separates the carbon-based filler into a single carbon-based filler. In the present invention, the ultrasonic treatment method is a bath sonication method in which the ultrasonic treatment is performed while maintaining the temperature below room temperature, preferably 10 to 23 ° C. within a time of 10 to 60 minutes to minimize damage to the carbon-based filler as well as to stabilize the dispersion. can
상기 초음파는 주파수 약 40 내지 5,000 kHz 범위에서 강도(spatial peak pulse average intensity: ISPPA)가 약 50 내지 1,000 mW 사이를 변하는 초음파를 사용함으로써 탄소계 필러가 골고루 분산된 안정한 분산액을 얻을 수 있다.The ultrasonic wave intensity (spatial peak pulse average intensity: ISPPA) in the frequency range of about 40 to 5,000 kHz by using ultrasonic waves that vary between about 50 to 1,000 mW, it is possible to obtain a stable dispersion in which the carbon-based filler is evenly dispersed.
또한, 상기 용매로 이소프로필알코올 및 초음파 방법이 아닌 다른 용매 및 다른 물리적인 방법을 사용하는 경우에는 탄소계 필러를 완전히 분리하여 용매에 안정하게 분산시킬 수 없으므로, 이소프로필알코올과 초음파 처리를 함께 수행하는 것이 바람직하다.In addition, when using a solvent other than isopropyl alcohol and ultrasonic method as the solvent and other physical methods, the carbon-based filler cannot be completely separated and stably dispersed in the solvent, so isopropyl alcohol and ultrasonication are performed together It is preferable to do
상기 탄소계 필러와 이소프로필알코올은 1:50 내지 1:500의 중량비, 바람직하게는 1:95 내지 1:450의 중량비로 혼합된다. 탄소계 필러를 기준으로 이소프로필알코올의 중량비가 상기 범위를 벗어나는 경우에는 응집된 탄소계 필러가 분리되지 않을 뿐만 아니라 분리된 탄소계 필러도 이소프로필알코올에 안정하게 분산되지 못할 수 있다.The carbon-based filler and isopropyl alcohol are mixed in a weight ratio of 1:50 to 1:500, preferably 1:95 to 1:450 by weight. When the weight ratio of isopropyl alcohol based on the carbon-based filler is out of the above range, the aggregated carbon-based filler may not be separated and the separated carbon-based filler may not be stably dispersed in isopropyl alcohol.
또한, 상기 탄소계 필러가 탄소나노튜브(CNT)인 경우, 혼합물 내 탄소나노튜브(CNT)의 함량은 1 내지 35wt% 이며, 바람직하게는 5 내지 20wt% 일 수 있다. 상기 범위 내에서 탄소나노튜브(CNT)가 균일하게 분산되며, 탄소나노튜브(CNT)의 우수한 전기전도도, 열전도도 및 탄성 등의 특성을 유지하는 자가치유성 전도성 고무 복합소재를 제조할 수 있다.In addition, when the carbon-based filler is carbon nanotube (CNT), the content of carbon nanotube (CNT) in the mixture is 1 to 35 wt%, preferably 5 to 20 wt%. It is possible to prepare a self-healing conductive rubber composite material in which carbon nanotubes (CNTs) are uniformly dispersed within the above range, and maintain properties such as excellent electrical conductivity, thermal conductivity and elasticity of carbon nanotubes (CNTs).
상기 혼합된 혼합물에 디메틸 실리콘 오일(MEP) 용액을 첨가한 후, 초음파 처리한다.After adding a dimethyl silicone oil (MEP) solution to the mixed mixture, it is sonicated.
상기 초음파 처리는 상기 탄소계 필러와 이소프로필알코올에서 수행한 초음파 처리와 동일한 조건으로 수행하되 5 내지 20분, 바람직하게는 10 내지 15분 동안 수행한다. 초음파 처리시간이 상기 하한치 미만인 경우에는 디메틸 실리콘 오일(MEP)이 탄소계 필러를 감쌀 수 없으며, 상기 상한치 초과인 경우에는 오히려 디메틸 실리콘 오일(MEP)이 탄소계 필러를 감싸는 것을 방해할 수 있으며, 향후 브로모부틸고무(BIIR)와 섞일 수 없다.The ultrasonic treatment is performed under the same conditions as the ultrasonic treatment performed on the carbon-based filler and isopropyl alcohol, but for 5 to 20 minutes, preferably 10 to 15 minutes. If the ultrasonic treatment time is less than the lower limit, dimethyl silicone oil (MEP) cannot wrap the carbon-based filler, and if it exceeds the upper limit, it may rather prevent the dimethyl silicone oil (MEP) from wrapping the carbon-based filler, and in the future Immiscible with bromobutyl rubber (BIIR).
상기 디메틸 실리콘 오일(MEP)은 이소프로필알코올의 소수성 파트와 접촉하게 되고, 초음파 처리에 의해 상기 분산된 탄소계 필러를 감싼다.The dimethyl silicone oil (MEP) comes into contact with the hydrophobic part of isopropyl alcohol, and surrounds the dispersed carbon-based filler by ultrasonication.
상기 디메틸 실리콘 오일(MEP)의 점도는 70 내지 200 cSt, 바람직하게는 100 내지 150 cSt로서, 점도가 상기 하한치 미만인 경우에는 탄소계 필러를 감쌀 수 없으며, 상기 상한치 초과인 경우에는 탄소계 필러를 용액 내에 분산시키기 어려울 수 있다.The viscosity of the dimethyl silicone oil (MEP) is 70 to 200 cSt, preferably 100 to 150 cSt, and when the viscosity is less than the lower limit, the carbon-based filler cannot be wrapped, and when it exceeds the upper limit, the carbon-based filler is added to the solution It can be difficult to disperse within.
상기 디메틸 실리콘 오일(MEP) 용액은 농도가 0.1 내지 1%, 바람직하게는 0.2 내지 0.5%인 디메틸 실리콘 오일(MEP) 용액이다. 디메틸 실리콘 오일(MEP) 용액의 농도가 상기 하한치 미만인 경우에는 탄소계 필러를 감쌀 수 없으며, 상기 상한치 초과인 경우에는 더욱 안정된 분산액을 얻을 수 없다.The dimethyl silicone oil (MEP) solution is a dimethyl silicone oil (MEP) solution having a concentration of 0.1 to 1%, preferably 0.2 to 0.5%. When the concentration of the dimethyl silicone oil (MEP) solution is less than the lower limit, the carbon-based filler cannot be wrapped, and when it exceeds the upper limit, a more stable dispersion cannot be obtained.
다음으로, 상기 (C)단계에서는 상기 (B)단계에서 혼합된 혼합물에 상기 (A)단계에서 혼합된 혼합물을 첨가하여 교반한다.Next, in step (C), the mixture mixed in step (A) is added to the mixture mixed in step (B) and stirred.
상기 (C)단계에서 혼합된 혼합물을 500 내지 1,500 rpm에서 30 분 동안 스터링(stirring)하여 과량의 헥산과 이소프로필알코올이 먼저 섞이게 하고 브로모부틸고무(BIIR)가 탄소계 필러 용액에 완전히 용해되도록 하는 것일 수 있다. Stir the mixture mixed in step (C) at 500 to 1,500 rpm for 30 minutes so that excess hexane and isopropyl alcohol are first mixed and bromobutyl rubber (BIIR) is completely dissolved in the carbon-based filler solution. may be doing
다음으로, 상기 (C)단계에서 혼합된 혼합물을 핫프레스에 주입한 후 경화시킬 수 있다. 구체적으로, 상기 (C)단계에서 혼합된 혼합물을 성형틀인 핫프레스에 주입한 후 120℃, 4,000 psi에서 10 분 동안 경화시킬 수 있다.Next, the mixture mixed in step (C) may be injected into a hot press and then cured. Specifically, the mixture mixed in step (C) may be injected into a hot press, which is a molding die, and then cured at 120° C. and 4,000 psi for 10 minutes.
또한, 상기 (D)단계에서 혼합된 혼합물을 면상 발명체 필름 또는 창문의 형태로 제조하여 함으로써, 본 발명에 따른 반투명성 전도성 고분자 복합소재를 창문에 부착하거나 커튼으로 사용할 수 있으며, 겨울에는 면상발열체로서 방한 목적으로 사용할 수 있다.In addition, by preparing the mixture mixed in step (D) in the form of a planar invention film or window, the translucent conductive polymer composite material according to the present invention can be attached to a window or used as a curtain, and a planar heating element in winter It can be used for cold weather purposes.
상기 (C)단계 전에, 상기 (B)단계에서 혼합된 혼합물에 존재하는 용매를 증발시키는 단계를 추가 포함할 수 있다. Before step (C), the step of evaporating the solvent present in the mixture mixed in step (B) may be further included.
마지막으로, (E)단계에서는 상기 경화된 복합소재에 레이저를 이용하여 다수의 구멍을 형성하는 것일 수 있다. 상기 구멍을 형성함으로써 반투명성 전도성 고분자 복합소재를 제조할 수 있다. Finally, in step (E), a plurality of holes may be formed in the cured composite material using a laser. By forming the hole, a translucent conductive polymer composite material can be manufactured.
상기 레이저는 CO2 레이저 커팅 시스템을 사용하는 것일 수 있다.The laser may be using a CO 2 laser cutting system.
상기 구멍의 크기(직경)는 0.5 내지 2 mm, 바람직하게는 1 mm일 수 있으며, 구멍간의 간격은 0.5 내지 2 mm, 바람직하게는 1 mm일 수 있다.The size (diameter) of the holes may be 0.5 to 2 mm, preferably 1 mm, and the spacing between the holes may be 0.5 to 2 mm, preferably 1 mm.
상기 구멍은 나란한 배열 또는 엇갈림의 배열로 균일하게 형성하는 것일 수 있다. The holes may be uniformly formed in a side-by-side arrangement or a staggered arrangement.
도 2는 상기 반투명성 전도성 고분자 복합소재의 구멍의 배열을 나타낸 모식도이다. 2 is a schematic view showing the arrangement of holes in the translucent conductive polymer composite material.
도 2를 참조하면, 나란한 배열은 모든 행이 같은 열에 구멍이 형성되는 것이며, 엇갈림 배열은 행끼리 구멍이 엇갈려서 형성되는 것이 규칙적으로 반복되는 것일 수 있다. Referring to FIG. 2 , in a side-by-side arrangement, holes are formed in the same column in all rows, and in a staggered arrangement, holes are formed by alternating rows between rows.
상기 구멍은 나란한 배열 또는 엇갈림 배열에 따라 인장 강도는 유사할 수 있으나, 엇갈림 배열일 경우 나란한 배열의 복합소재에 비해 인장 변형률(Tensile strain)이 더 클 수 있다.The holes may have similar tensile strength according to the side-by-side arrangement or the staggered arrangement, but in the case of the staggered arrangement, the tensile strain may be greater than that of the side-by-side arrangement of the composite material.
상기 반투명성 전도성 고분자 복합소재는 용액(solution) 방식으로 제조가 진행되므로 핸들링이 용이하며, 챔버 내에서 진공 조건에서 제조되던 진공 방식과 달리 고가의 진공 장비가 필요하지 아니하여, 공정이 단순하고 공정 단가가 저렴한 효과가 있다. The translucent conductive polymer composite material is manufactured in a solution method, so it is easy to handle. It has a low cost effect.
본 발명의 반투명성 전도성 고분자 복합소재의 제조방법에 따라 제조된 반투명성 전도성 고분자 복합소재는 탄소계 필러(특히, 탄소나노튜브) 및 브로모부틸고무(BIIR) 두가지 물질의 우수한 특성인 높은 전도성 및 발열성을 가지며, 균일한 구멍을 형성하여 높은 전도성과 발열 특성을 그대로 갖는 반투명한 복합소재를 제조함으로써 종래 탄소소재의 투명성의 한계점을 해결할 수 있다.The semi-transparent conductive polymer composite material prepared according to the method for producing the semi-transparent conductive polymer composite material of the present invention has excellent properties of high conductivity and By producing a translucent composite material that has exothermic properties and uniform holes to form high conductivity and heat-generating properties as it is, it is possible to solve the limitations of transparency of conventional carbon materials.
또한, 본 발명은 일실시예에서, 상기 반투명성 전도성 고분자 복합소재의 제조방법에 따라 제조된 반투명성 전도성 고분자 복합소재를 제공한다. In addition, in one embodiment, the present invention provides a translucent conductive polymer composite material manufactured according to the method for manufacturing the translucent conductive polymer composite material.
본 발명에 따른 반투명성 전도성 고분자 복합소재는 부착하거나 커튼으로 사용할 수 있으며, 이는 외부의 풍경을 볼 수 있는 가시성이 있고, 외부에서 안이 안보이는 시선차단이 가능하며, 겨울에는 면상발열체로서 방한 목적으로 사용이 가능하다.The translucent conductive polymer composite material according to the present invention can be attached or used as a curtain, which has visibility to see the outside landscape, can block the view from the outside, and is used as a planar heating element in winter for cold protection purposes This is possible.
이하 본 발명에 따르는 실시예 등을 통해 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail through Examples and the like according to the present invention, but the scope of the present invention is not limited by the Examples presented below.
[실시예] [Example]
실시예 1. CNT 5 중량%를 포함하는 반투명성 전도성 고분자 복합소재의 제조(엇갈림 배열로 구멍 형성)Example 1. Preparation of Translucent Conductive Polymer Composite Material Containing 5% by Weight of CNTs (Forming Holes in Staggered Arrangement)
헥산에 4% (w/v)의 브로모부틸고무(BIIR) 용액을 제조하였다. 이후, 5% (w/w)의 탄소나노튜브(CNT)를 이소프로필알코올에 첨가하여 분산시키고 상기 탄소나노튜브(CNT) 용액에 4% (w/w)의 디메틸 실리콘 오일(MEP) 용액을 첨가하고 초음파 처리하였다. 이어서, 상기 브로모부틸고무(BIIR) 용액에 상기 탄소나노튜브(CNT) 용액에 천천히 첨가한 후 30분 동안 최대 속도로 혼합하였다. 이후, 용매로 사용된 이소프로필알코올과 헥산을 증발시키고 탄소나노튜브(CNT)-브로모부틸고무(BIIR) 복합소재를 핫프레스에 주입하고 0.5 마이크론의 두께 게이지를 이용하여 120℃, 4000 psi에서 10분간 경화시켰다. 상기 경화된 복합재를 레이저(CO2 레이저 커팅 시스템, 구멍 지름 1mm, 간격 1mm)를 이용하여 엇갈림의 배열로 다수의 구멍을 형성하여 반투명성 전도성 고분자 복합소재를 제조하였다.A 4% (w/v) solution of bromobutyl rubber (BIIR) in hexane was prepared. Then, 5% (w / w) of carbon nanotubes (CNT) was added to isopropyl alcohol to disperse, and 4% (w / w) of dimethyl silicone oil (MEP) solution was added to the carbon nanotube (CNT) solution. added and sonicated. Then, the bromobutyl rubber (BIIR) solution was slowly added to the carbon nanotube (CNT) solution and mixed at the maximum speed for 30 minutes. Thereafter, isopropyl alcohol and hexane used as solvents were evaporated, a carbon nanotube (CNT)-bromobutyl rubber (BIIR) composite material was injected into a hot press, and a 0.5 micron thickness gauge was used at 120° C., 4000 psi. It was cured for 10 minutes. A translucent conductive polymer composite material was prepared by forming a plurality of holes in a staggered arrangement using a laser (CO 2 laser cutting system, hole diameter 1 mm, spacing 1 mm) in the cured composite material.
실시예 2. CNT 10 중량%를 포함하는 반투명성 전도성 고분자 복합소재의 제조(엇갈림 배열로 구멍 형성)Example 2. Preparation of Translucent Conductive Polymer Composite Material Containing 10% by Weight of CNT (Forming Holes in Staggered Arrangement)
상기 실시예 1과 동일하게 실시하되, 10% (w/w)의 탄소나노튜브(CNT)를 사용하여 반투명성 전도성 고분자 복합소재를 제조하였다.A translucent conductive polymer composite material was prepared in the same manner as in Example 1, except that 10% (w/w) carbon nanotube (CNT) was used.
실시예 3. CNT 15 중량%를 포함하는 반투명성 전도성 고분자 복합소재의 제조(엇갈림 배열로 구멍 형성)Example 3. Preparation of Translucent Conductive Polymer Composite Material Containing 15% by Weight of CNTs (Formation of Holes in Staggered Arrangement)
상기 실시예 1과 동일하게 실시하되, 15% (w/w)의 탄소나노튜브(CNT)를 사용하여 반투명성 전도성 고분자 복합소재를 제조하였다.A translucent conductive polymer composite material was prepared in the same manner as in Example 1, except that 15% (w/w) carbon nanotube (CNT) was used.
실시예 4. CNT 20 중량%를 포함하는 반투명성 전도성 고분자 복합소재의 제조(엇갈림 배열로 구멍 형성)Example 4. Preparation of Translucent Conductive Polymer Composite Material Containing 20% by Weight of CNT (Forming Holes in Staggered Arrangement)
상기 실시예 1과 동일하게 실시하되, 20% (w/w)의 탄소나노튜브(CNT)를 사용하여 반투명성 전도성 고분자 복합소재를 제조하였다.A translucent conductive polymer composite material was prepared in the same manner as in Example 1, except that 20% (w/w) carbon nanotube (CNT) was used.
실시예 5. CNT 5 중량%를 포함하는 반투명성 전도성 고분자 복합소재의 제조(나란한 배열로 구멍 형성)Example 5 Preparation of Translucent Conductive Polymer Composite Material Containing 5% by Weight of CNT (Positioning Holes in Side by Side Arrangement)
상기 실시예 1과 동일하게 실시하되, 상기 경화된 복합재를 레이저를 이용하여 나란한 배열로 다수의 구멍을 형성하여 반투명성 전도성 고분자 복합소재를 제조하였다.A translucent conductive polymer composite material was prepared in the same manner as in Example 1, except that a plurality of holes were formed in a side by side arrangement in the cured composite material using a laser.
실시예 6. CNT 10 중량%를 포함하는 반투명성 전도성 고분자 복합소재의 제조(나란한 배열로 구멍 형성)Example 6. Preparation of Translucent Conductive Polymer Composite Material Containing 10% by Weight of CNT (Positioning Holes in Side by Side Arrangement)
상기 실시예 5와 동일하게 실시하되, 10% (w/w)의 탄소나노튜브(CNT)를 사용하여 반투명성 전도성 고분자 복합소재를 제조하였다.A translucent conductive polymer composite material was prepared in the same manner as in Example 5, except that 10% (w/w) carbon nanotube (CNT) was used.
실시예 7. CNT 15 중량%를 포함하는 반투명성 전도성 고분자 복합소재의 제조(나란한 배열로 구멍 형성)Example 7. Preparation of Translucent Conductive Polymer Composite Material Containing 15% by Weight of CNTs (Positioning Holes in Side by Side Arrangement)
상기 실시예 5와 동일하게 실시하되, 15% (w/w)의 탄소나노튜브(CNT)를 사용하여 반투명성 전도성 고분자 복합소재를 제조하였다.A translucent conductive polymer composite material was prepared in the same manner as in Example 5, except that 15% (w/w) carbon nanotube (CNT) was used.
실시예 8. CNT 20 중량%를 포함하는 반투명성 전도성 고분자 복합소재의 제조(나란한 배열로 구멍 형성)Example 8. Preparation of Translucent Conductive Polymer Composite Material Containing 20% by Weight of CNTs (Positioning Holes in Side by Side Arrangement)
상기 실시예 5와 동일하게 실시하되, 20% (w/w)의 탄소나노튜브(CNT)를 사용하여 반투명성 전도성 고분자 복합소재를 제조하였다.A translucent conductive polymer composite material was prepared in the same manner as in Example 5, except that 20% (w/w) carbon nanotubes (CNT) were used.
비교예 1: CNT 5 중량%를 포함하는 구멍이 없는 전도성 고분자 복합소재의 제조Comparative Example 1: Preparation of a conductive polymer composite material without pores containing 5 wt% of CNT
상기 실시예 1과 동일하게 실시하되, 구멍을 형성하는 단계 없이 경화 단계까지만 수행하여 제조하였다.It was prepared in the same manner as in Example 1, except that only the curing step was performed without the step of forming a hole.
비교예 2: CNT 10 중량%를 포함하는 구멍이 없는 전도성 고분자 복합소재의 제조Comparative Example 2: Preparation of non-porous conductive polymer composite material containing 10% by weight of CNT
상기 비교예 1과 동일하게 실시하되, 10% (w/w)의 탄소나노튜브(CNT)를 사용하여 수행하여 제조하였다.It was carried out in the same manner as in Comparative Example 1, but was prepared by using 10% (w/w) carbon nanotubes (CNT).
비교예 3: CNT 15 중량%를 포함하는 구멍이 없는 전도성 고분자 복합소재의 제조Comparative Example 3: Preparation of non-porous conductive polymer composite material containing 15% by weight of CNT
상기 비교예 1과 동일하게 실시하되, 15% (w/w)의 탄소나노튜브(CNT)를 사용하여 수행하여 제조하였다.It was carried out in the same manner as in Comparative Example 1, but was prepared by using 15% (w/w) carbon nanotubes (CNT).
비교예 4: CNT 20 중량%를 포함하는 구멍이 없는 전도성 고분자 복합소재의 제조Comparative Example 4: Preparation of a conductive polymer composite material without pores containing 20 wt% of CNT
상기 비교예 1과 동일하게 실시하되, 20% (w/w)의 탄소나노튜브(CNT)를 사용하여 수행하여 제조하였다.It was carried out in the same manner as in Comparative Example 1, but was prepared by using 20% (w/w) carbon nanotubes (CNT).
실험예 1: 표면 저항 및 전기전도도 측정Experimental Example 1: Measurement of surface resistance and electrical conductivity
하기 표 1은 각각 비교예 1 내지 4에 따라 제조된 카본계 전도성 고분자 복합소재의 표면 저항 및 전기전도도를 나타내는 표이다(실시예의 경우, 구멍으로 인하여 표면저항의 측정이 어려움).Table 1 below is a table showing the surface resistance and electrical conductivity of the carbon-based conductive polymer composite materials prepared according to Comparative Examples 1 to 4, respectively (in the case of Examples, it is difficult to measure the surface resistance due to holes).
Sample
(n=2)
Sample
(n=2)
Surface Resistivity
(Ohm/sq)
Surface Resistivity
(Ohm/sq)
Electrical Conductivity
(S/cm)
Electrical Conductivity
(S/cm)
비교예 1Comparative Example 1 45.40±9.8345.40±9.83 0.50±0.060.50±0.06
비교예 2Comparative Example 2 10.81±4.3310.81±4.33 1.95±0.581.95±0.58
비교예 3Comparative Example 3 5.92±1.515.92±1.51 3.12±0.913.12±0.91
비교예 4Comparative Example 4 1.88±2.241.88±2.24 3.76±0.423.76±0.42
표 1을 참조하면, 탄소나노튜브(CNT)의 함량이 증가함에 따라 표면 저항은 45.40±9.83에서 1.88±2.24 Ω/sq로 감소하였으며, 전기전도도는 0.56±0.06에서 3.76±0.42 S/cm로 증가하였다. 이를 통해, 브로모부틸고무(BIIR) 매트릭스에 균일하게 분산된 탄소나노튜브(CNT)는 전기전도성 엘라스토머 복합 필름에 효율적인 전기적 특성을 제공하여 튜브 사이의 균일한 연결을 유지하고 전도성 탄소나노튜브(CNT) 네트워크를 효과적으로 여과시킴을 확인하였다.Referring to Table 1, as the content of carbon nanotubes (CNT) increased, the surface resistance decreased from 45.40±9.83 to 1.88±2.24 Ω/sq, and the electrical conductivity increased from 0.56±0.06 to 3.76±0.42 S/cm. did. Through this, carbon nanotubes (CNTs) uniformly dispersed in a bromobutyl rubber (BIIR) matrix provide efficient electrical properties to the electrically conductive elastomer composite film to maintain a uniform connection between the tubes and conductive carbon nanotubes (CNTs). ) was confirmed to effectively filter the network.
실험예 2: 인장(Tensile) 분석Experimental Example 2: Tensile Analysis
상기 실시예 1 내지 실시예 5에 따른 시편을 크기 20×50 mm, head speed 500 mm/min 로 실험하였다.The specimens according to Examples 1 to 5 were tested at a size of 20×50 mm and a head speed of 500 mm/min.
도 3은 실시예 1 및 실시예 5에 따른 구멍 배열에 따른 인장 강도(Tensile strength) 및 인장 변형률(Tensile strain) 측정 결과와 tensile 시험 후 시편의 사진을 나타낸 것이다.Figure 3 shows the results of tensile strength and tensile strain (Tensile strain) measurement according to the hole arrangement according to Examples 1 and 5 and photographs of the specimen after the tensile test.
도 3을 참조하면, 구멍의 위치에 따라 인장 강도는 유사하나, 인장 변형률은 엇갈림 배열에서 더 큰 것을 확인할 수 있었다. Referring to FIG. 3 , it was confirmed that the tensile strength was similar depending on the location of the hole, but the tensile strain was larger in the staggered arrangement.
도 4는 실시예 1 내지 실시예 8의 변형률에 따른 인장 응력(Tensile stress)을 나타낸 그래프이다. 4 is a graph showing tensile stress according to strain in Examples 1 to 8;
도 4를 참조하면, 탄소나노튜브에 함량에 따라서는 구멍의 배열 마다 유사한 인장 응력을 나타내고, 구멍의 배열에 따라서는 엇갈린 배열이 나란한 배열보다 높은 것으로 나타났다.Referring to FIG. 4 , depending on the content of the carbon nanotubes, similar tensile stresses were exhibited for each arrangement of pores, and the staggered arrangement was higher than the side-by-side arrangement according to the arrangement of the pores.
실험예 3: 면상발열 특성 분석Experimental Example 3: Planar heating characteristic analysis
발열 조건: 비교예 1 및 실시예 1을 150×210 mm2 의 크기로 절단하고 전도성 구리 테이프를 양쪽 끝에 붙여 연결한 후, DC 전원 공급 장치로 전압 20~58V 및 전류 0.34~0.91A 를 공급하여 전력 10~50W에서 발열시켰다.Heating condition: After cutting Comparative Examples 1 and 1 to a size of 150 × 210 mm 2 and attaching conductive copper tape to both ends to connect them, a voltage of 20 to 58V and a current of 0.34 to 0.91A were supplied with a DC power supply. It was heated at 10-50W of power.
온도 변화 측정: FLIR IR 카메라를 사용하여 적외선 열 이미지를 촬영하여 온도 변화를 측정하였다.Temperature change measurement: An infrared thermal image was taken using a FLIR IR camera to measure temperature change.
발열 속도 측정: 비교예 1 및 실시예 1의 발열 속도는 DC 전원 공급 장치로 전압 평균 50V 및 전류 평균 0.8A 를 공급하여 평균 40W에서 측정하였고, 측정 환경은 평균 25℃, 42~48% 상대습도에서 측정하였다.Heating rate measurement: The heating rate of Comparative Example 1 and Example 1 was measured at an average of 40W by supplying an average voltage of 50V and an average current of 0.8A as a DC power supply, and the measurement environment was an average of 25°C, 42-48% relative humidity. was measured in
발열 사이클 측정: 비교예 1 및 실시예 1의 발열 사이클 측정은 상기의 발열 속도 측정과 같은 조건에서 측정하였고, 발열에 대한 안전성 및 연속성을 확인하기 위하여 전력 40W에서 5분 발열하고 5분 쿨링하면서 10번의 발열 사이클을 측정하였다.Measurement of exothermic cycle: The measurement of the exothermic cycle of Comparative Example 1 and Example 1 was measured under the same conditions as the measurement of the exothermic rate, and in order to check the safety and continuity of heat generation, heat was generated at 40W for 5 minutes and cooled for 5 minutes. One exothermic cycle was measured.
도 5는 비교예 1 및 실시예 1에 따라 제조된 시편의 사진 및 발열 특성을 나타낸 이미지이다. 구멍이 없는 비교예 1과 대비하여 균일한 엇갈림 구멍이 있는 실시예 1에서 반투명성을 나타내는 것을 알 수 있었으며, 최고 발열온도가 더 높고 발열 균일도 또한 더 좋은 것을 확인할 수 있었다. 5 is an image showing photographs and exothermic characteristics of specimens prepared according to Comparative Example 1 and Example 1. FIG. It was confirmed that the translucency was exhibited in Example 1 with uniform interlacing holes as compared with Comparative Example 1 without holes, and it was confirmed that the highest heating temperature was higher and the heating uniformity was also better.
도 6은 비교예 1 및 실시예 1에 따라 제조된 시편을 각각 10~50W로 발열하면서 발열 속도를 비교한 그래프이다[control은 비교예 1, ST(semi transparency)는 실시예 1이며, 이때 표시한 발열 온도는 150×150 mm 박스 내의 평균 발열 온도임]. 구멍이 없는 복합소재 대비 구멍이 형성된 반투명성 전도성 고분자 복합소재의 경우, 최고 발열 온도가 더 높고 균일한 구멍의 균일한 배열에 의한 열의 균일한 전달로 인하여 발열 속도 및 쿨링 속도가 더 빠른 특성을 확인할 수 있었다. 이는 발열체로서 이상적인 형태임을 알 수 있었다.6 is a graph comparing the heating rate while heating the specimens prepared according to Comparative Example 1 and Example 1 at 10 to 50 W, respectively [control is Comparative Example 1, ST (semi transparency) is Example 1, at this time One heating temperature is within a 150×150 mm box. average exothermic temperature]. In the case of the translucent conductive polymer composite material with holes formed compared to the composite material without holes, the maximum heating temperature is higher and the heat generation rate and cooling rate are faster due to the uniform transfer of heat due to the uniform arrangement of the holes. could It was found that this was an ideal shape as a heating element.
도 7은 비교예 1 및 실시예 1에 따라 제조된 시편의 40W에서 발열 속도 및 발열 사이클을 나타낸 그래프이다[(a)비교예 1, (b)실시예 1, (c)비교예 1 vs 실시예 1(control은 비교예 1, ST(semi transparency)는 실시예 1), 이때 표시한 발열 온도는 150×150 mm 박스 내의 평균 발열 온도임]. 이는 40W의 저전력에서도 높은 발열 효과를 나타내며, 발열 사이클에 따른 발열 안전성은 두 샘플 모두 동일하게 나타났다.7 is a graph showing the exothermic rate and exothermic cycle at 40W of the specimens prepared according to Comparative Examples 1 and 1 [(a) Comparative Example 1, (b) Example 1, (c) Comparative Example 1 vs. Example 1 (control is Comparative Example 1, ST (semi transparency) is Example 1), at this time, the indicated exothermic temperature is within a 150 × 150 mm box average exothermic temperature]. This shows a high heating effect even at a low power of 40W, and the thermal stability according to the heating cycle was the same for both samples.
도 5 내지 도 7을 참조하면, 구멍이 없는 복합소재 대비 구멍이 형성된 반투명성 전도성 고분자 복합소재의 발열 특성이 더 좋은 것을 알 수 있었다.Referring to FIGS. 5 to 7 , it was found that the heat-generating properties of the translucent conductive polymer composite material with holes were better than the composite material without holes.
실험예 4: 반투명성 분석Experimental Example 4: Translucency Analysis
상기 실시예 1에서 제조된 반투명성 전도성 고분자 복합소재를 창문에 설치하여 반투명성을 확인하였다.Translucency was confirmed by installing the translucent conductive polymer composite material prepared in Example 1 on a window.
도 8에 창문에 설치된 반투명성 전도성 고분자 복합소재의 초점에 따른 사진을 나타내었다.8 shows a photograph according to the focus of the translucent conductive polymer composite material installed on the window.
도 8을 참조하면, 초점을 복합소재에 맞춰서 촬영한 사진과 초점을 풍경에 맞춰서 촬영한 사진에서 본 발명에 따른 반투명성 전도성 고분자 복합소재는 반투명성을 갖는 것을 확인할 수 있었다.Referring to FIG. 8 , it was confirmed that the translucent conductive polymer composite material according to the present invention has translucency in the photograph taken with the focus on the composite material and the photograph with the focus on the landscape.

Claims (7)

  1. (A) 브로모부틸고무(BIIR)와 헥산을 혼합하는 단계;(A) mixing bromobutyl rubber (BIIR) and hexane;
    (B) 탄소계 필러와 이소프로필알코올을 혼합한 후, 디메틸 실리콘 오일(MEP) 용액을 첨가하여 초음파 처리하는 단계;(B) after mixing the carbon-based filler and isopropyl alcohol, sonicating by adding a dimethyl silicone oil (MEP) solution;
    (C) 상기 (B)단계에서 혼합된 혼합물에 상기 (A)단계에서 혼합된 혼합물을 첨가하여 교반하는 단계;(C) adding the mixture mixed in step (A) to the mixture mixed in step (B) and stirring;
    (D) 상기 (C)단계에서 혼합된 혼합물을 핫프레스에 주입하여 경화하는 단계; 및, (D) hardening by injecting the mixture mixed in step (C) into a hot press; and,
    (E) 상기 경화 후 레이저를 이용하여 다수의 구멍을 형성하는 단계를 포함하는 반투명성 전도성 고분자 복합소재의 제조방법.(E) A method for producing a translucent conductive polymer composite material comprising the step of forming a plurality of holes using a laser after the curing.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 (A)단계에서 브로모부틸고무(BIIR)는 1 내지 10 w/v% 조성비로 혼합되는 것을 특징으로 하는 반투명성 전도성 고분자 복합소재의 제조방법.In the step (A), bromobutyl rubber (BIIR) is mixed in a composition ratio of 1 to 10 w/v%. Method for producing a translucent conductive polymer composite material.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 (B)단계에서 탄소계 필러와 이소프로필알코올은 1:50 내지 1:500의 중량비로 혼합되는 것을 특징으로 하는 반투명성 전도성 고분자 복합소재의 제조방법.In the step (B), the carbon-based filler and isopropyl alcohol are mixed in a weight ratio of 1:50 to 1:500. Method for producing a translucent conductive polymer composite material.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 (B)단계의 탄소계 필러의 함량은 1 내지 35 wt%인 것을 특징으로 하는 반투명성 전도성 고분자 복합소재의 제조방법.The method for producing a translucent conductive polymer composite material, characterized in that the content of the carbon-based filler in step (B) is 1 to 35 wt%.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 (D)단계에서 구멍은 나란한 배열 또는 엇갈림의 배열로 균일하게 형성하는 것을 특징으로 하는 반투명성 전도성 고분자 복합소재의 제조방법.The method of manufacturing a translucent conductive polymer composite material, characterized in that in the step (D), the holes are uniformly formed in a side-by-side arrangement or a staggered arrangement.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 탄소계 필러는 탄소나노튜브(CNT), 그래핀, 인조흑연, 활성탄소, 카본블랙, 탄소섬유로 이루어진 군에서 선택된 1종인 것을 특징으로 하는 반투명성 전도성 고분자 복합소재의 제조방법.The carbon-based filler is a method of manufacturing a translucent conductive polymer composite material, characterized in that one selected from the group consisting of carbon nanotubes (CNT), graphene, artificial graphite, activated carbon, carbon black, and carbon fiber.
  7. 제 1 항 내지 제 6 항 중 어느 한 항의 제조방법에 따라 제조된 반투명성 전도성 고분자 복합소재.A semi-transparent conductive polymer composite material manufactured according to the method of any one of claims 1 to 6.
PCT/KR2021/009825 2021-04-13 2021-07-28 Method for manufacturing translucent polymer composite material, and translucent polymer composite material manufactured thereby WO2022220340A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0047512 2021-04-13
KR1020210047512A KR102420931B1 (en) 2021-04-13 2021-04-13 Method for manufacturing semi-transparent polymer composite and semi-transparent polymer composite prepared thereby

Publications (1)

Publication Number Publication Date
WO2022220340A1 true WO2022220340A1 (en) 2022-10-20

Family

ID=82700891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009825 WO2022220340A1 (en) 2021-04-13 2021-07-28 Method for manufacturing translucent polymer composite material, and translucent polymer composite material manufactured thereby

Country Status (2)

Country Link
KR (1) KR102420931B1 (en)
WO (1) WO2022220340A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100059595A (en) * 2008-11-26 2010-06-04 한국조폐공사 A high polymer screen printing plate using laser hole and a method for preparing the same
KR20150033867A (en) * 2013-09-25 2015-04-02 한국과학기술원 A stretchable conductor containing carbon nanotube-graphene hybrid and manufacturing method of the same
KR101774645B1 (en) * 2015-09-03 2017-09-19 한국과학기술원 Graphene-nano material complex, flexible and stretchable complex comprising the same and methods for manufacturing thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102012761B1 (en) 2018-01-04 2019-10-21 한국과학기술연구원 Self healing elastomer, self healing complex and self healing film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100059595A (en) * 2008-11-26 2010-06-04 한국조폐공사 A high polymer screen printing plate using laser hole and a method for preparing the same
KR20150033867A (en) * 2013-09-25 2015-04-02 한국과학기술원 A stretchable conductor containing carbon nanotube-graphene hybrid and manufacturing method of the same
KR101774645B1 (en) * 2015-09-03 2017-09-19 한국과학기술원 Graphene-nano material complex, flexible and stretchable complex comprising the same and methods for manufacturing thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM HEEJIN; YARIN ALEXANDER L.; LEE MIN WOOK: "Self-healing corrosion protection film for marine environment", COMPOSITES PART B, ELSEVIER, AMSTERDAM, NL, vol. 182, 20 November 2019 (2019-11-20), AMSTERDAM, NL, XP086038307, ISSN: 1359-8368, DOI: 10.1016/j.compositesb.2019.107598 *
KIM JEONG HUN, HWANG JI-YOUNG, HWANG HA RYEON, KIM HAN SEOP, LEE JOONG HOON, SEO JAE-WON, SHIN UEON SANG, LEE SANG-HOON: "Simple and cost-effective method of highly conductive and elastic carbon nanotube/polydimethylsiloxane composite for wearable electronics", SCIENTIFIC REPORTS, NATURE PUBLISHING GROUP, US, vol. 8, no. 1, 1 December 2018 (2018-12-01), US , pages 1375, XP055977440, ISSN: 2045-2322, DOI: 10.1038/s41598-017-18209-w *

Also Published As

Publication number Publication date
KR102420931B1 (en) 2022-07-18

Similar Documents

Publication Publication Date Title
WO2017188564A1 (en) Method for manufacturing graphene oxide fiber, graphene fiber, and graphene or graphene (oxide) composite fiber by using electric field-induced wet spinning process
WO2014003451A1 (en) Polyimide and polyimide film comprising the same
WO2017073921A1 (en) Polyimide film and method for producing same
WO2011105837A2 (en) Soft electrode material and manufacturing method thereof
WO2016117856A1 (en) Method for preparing polyimide film using porous particles, and low dielectric constant polyimide film
WO2012060662A2 (en) Insulating composition and electric cable comprising same
WO2019182331A1 (en) Graphene composite fiber and manufacturing method therefor
WO2018131896A1 (en) Liquid crystal composite carbon fiber and method for preparing same
WO2010035999A2 (en) Transparent electrode
WO2017155317A1 (en) Method for manufacturing sheet heating element comprising polyimide insulating layer
WO2014148705A1 (en) Method for producing carbon nanotube composite
WO2019083093A1 (en) Polyimide film for preparing roll type graphite sheet
WO2022220340A1 (en) Method for manufacturing translucent polymer composite material, and translucent polymer composite material manufactured thereby
WO2013100550A1 (en) Transparent electrode
WO2021091014A1 (en) Polyimide film having improved dielectric properties, and manufacturing method for same
WO2020091147A1 (en) Conductor-coating polyimide varnish for improving heat resistance of polyimide-coated product, and polyimide-coated product manufactured therefrom
WO2020105968A1 (en) Single molecule-bonded boron nitride nanotubes, and method for preparing colloid solution by using same
WO2016144043A1 (en) Conductive polymeric composite material and production method therefor
WO2016047988A1 (en) Surface modified boron nitride, composition having same dispersed therein, and wire coated with the composition
WO2019112227A1 (en) Silicone composite and method for producing same
WO2015178569A1 (en) Method for manufacturing conductive/heat-generating polymer for manufacturing heat-generating yarn
WO2020141925A1 (en) Method for manufacturing heat dissipation sheet
WO2019143000A1 (en) Highly thermally conductive polyimide film comprising two or more types of fillers
CN112712944B (en) High-thermal-conductivity insulating gasket and preparation method thereof
WO2014123327A1 (en) Non-crosslinked polyethylene composition for power cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937075

Country of ref document: EP

Kind code of ref document: A1