WO2022220165A1 - 情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム - Google Patents

情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム Download PDF

Info

Publication number
WO2022220165A1
WO2022220165A1 PCT/JP2022/016909 JP2022016909W WO2022220165A1 WO 2022220165 A1 WO2022220165 A1 WO 2022220165A1 JP 2022016909 W JP2022016909 W JP 2022016909W WO 2022220165 A1 WO2022220165 A1 WO 2022220165A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological information
information processing
information
timing
processing apparatus
Prior art date
Application number
PCT/JP2022/016909
Other languages
English (en)
French (fr)
Inventor
泰久 金子
智英 平上
研二 永宮
暢也 北村
康幸 細野
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2023514611A priority Critical patent/JPWO2022220165A1/ja
Publication of WO2022220165A1 publication Critical patent/WO2022220165A1/ja
Priority to US18/481,202 priority patent/US20240029843A1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/40ICT specially adapted for the handling or processing of patient-related medical or healthcare data for data related to laboratory analysis, e.g. patient specimen analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing

Definitions

  • the present disclosure relates to an information processing device, an information processing system, an information processing method, and an information processing program.
  • Japanese Patent Application Laid-Open No. 2009-172397 describes setting the imaging conditions of an X-ray computed tomography apparatus when imaging the same subject based on the heart rate measured from the subject. It is
  • diabetic retinopathy which is a complication of diabetes, is diagnosed based on how lesions such as microaneurysms and retinal hemorrhages appear in fundus images obtained by photographing the fundus. These lesions associated with diabetic retinopathy may be prominent when the subject's blood sugar level is high. That is, if the fundus image can be captured at the timing when the blood sugar level of the subject is high, diabetic retinopathy can be diagnosed appropriately, contributing to early detection.
  • the present disclosure provides an information processing device, an information processing system, an information processing method, and an information processing program capable of measuring biological information for proper diagnosis.
  • a first aspect of the present disclosure is an information processing device comprising at least one processor, the processor acquires first biological information of a subject over time, and based on the first biological information, A timing suitable for measuring second biological information different from the first biological information of the examiner is derived.
  • the processor may derive the timing based on the time change of the first biometric information.
  • a third aspect of the present disclosure is the first aspect or the second aspect, wherein the processor derives start timing and end timing of a period suitable for measuring the second biological information based on the first biological information. You may
  • the processor derives the most suitable timing for measuring the second biological information based on the first biological information. You may
  • the processor predicts a time change of the first biometric information, and based on the predicted first biometric information, Timing may be derived.
  • the processor may predict temporal changes in the first biometric information based on past data relating to the first biometric information.
  • the processor may present the derived timing.
  • the processor before the start timing of the period suitable for measuring the second biological information, starts the period may be announced.
  • the processor before the end timing of the period suitable for measuring the second biological information, may be announced.
  • the processor causes the second measuring device that measures the second biological information to perform the second You may order to measure biometric information.
  • An eleventh aspect of the present disclosure is any one of the first to tenth aspects, wherein the first biological information varies aperiodically according to the behavior of the subject, good too.
  • a twelfth aspect of the present disclosure is any one of the first to eleventh aspects, wherein the first biological information includes body temperature, heart rate, electrocardiogram, myoelectricity, blood pressure, arterial blood oxygen saturation, blood sugar and lipid levels, and the second biological information includes electrocardiogram, electroencephalogram, medical images taken by a medical imaging device, hematological tests, infectious disease tests, biochemical tests, and urinalysis tests. at least one of the results may be shown.
  • a thirteenth aspect of the present disclosure is an information processing device according to any one of the first to twelfth aspects, comprising: a first measuring device that measures first biological information; and a second measuring device that performs the measurement.
  • a fourteenth aspect of the present disclosure is an information processing system comprising an information processing device according to any one of the first to twelfth aspects, and a first measuring device that measures first biological information. , and a second measuring device for measuring the second biological information.
  • a fifteenth aspect of the present disclosure is an information processing system comprising an information processing device according to any one of the first to twelfth aspects, and a first measuring device that measures first biological information.
  • the information processing apparatus may further include a second measuring device that measures the second biological information.
  • a sixteenth aspect of the present disclosure is an information processing system comprising an information processing device according to any one of the first to twelfth aspects, and a second measuring device that measures second biological information.
  • the information processing apparatus may further include a first measuring device that measures the first biological information.
  • a seventeenth aspect of the present disclosure is an information processing method, in which chronological first biological information of a subject is acquired, and based on the first biological information, different from the first biological information of the subject The computer executes the process of deriving the timing suitable for measuring the second biological information.
  • An eighteenth aspect of the present disclosure is an information processing program that obtains chronological first biological information of a subject, and based on the first biological information, is different from the first biological information of the subject This is for causing the computer to execute a process of deriving the timing suitable for measuring the second biological information.
  • the information processing device, information processing system, information processing method, and information processing program of the present disclosure can measure biological information for appropriate diagnosis.
  • FIG. 1 is a schematic configuration diagram of an information processing system; FIG. It is an example of 1st biometric information and 2nd biometric information. It is a block diagram which shows an example of the hardware constitutions of an information processing apparatus. 1 is a block diagram showing an example of a functional configuration of an information processing device; FIG. It is a figure for demonstrating the timing derivation
  • FIG. 4 is a flowchart showing an example of first information processing
  • 9 is a flowchart showing an example of timing derivation processing
  • It is an example of a screen on which a derived schedule is presented.
  • It is an example of a screen presenting a re-derived schedule.
  • 9 is a flowchart showing an example of second information processing
  • FIG. 11 is a schematic configuration diagram showing a modified example of the information processing system
  • FIG. 11 is a schematic configuration diagram showing a modified example of the information processing system
  • the information processing system 1 includes an information processing device 10 , at least one first measurement device 11 and at least one second measurement device 12 .
  • the information processing device 10 and the first measurement device 11, and the information processing device 10 and the second measurement device 12 can communicate with each other by wired or wireless communication.
  • the first measuring device 11 has a function of measuring the user's first biological information over time.
  • the first biological information may be, for example, information indicating at least one of body temperature, heartbeat, electrocardiogram, myoelectricity, blood pressure, arterial blood oxygen saturation (SpO2), blood sugar level, lipid level, and the like.
  • the first measuring device 11 includes, for example, a thermometer, a heart rate monitor, a blood glucose self-monitoring device, and a wearable terminal such as a smart watch equipped with a sensor for measuring biological information such as heart rate and arterial blood oxygen saturation. Applicable.
  • the first biological information varies aperiodically according to the subject's behavior.
  • the subject's behavior is, for example, eating, exercising, sleeping, and the like.
  • the blood sugar level which is an example of the first biological information
  • body temperature which is an example of the first biological information
  • the second measuring device 12 has a function of sporadically measuring the user's second biological information.
  • the second biometric information is a type of biometric information different from the first biometric information.
  • the second biological information is, for example, an electrocardiogram, an electroencephalogram, a medical image captured by a medical imaging device, and at least one result of a blood test, an infectious disease test, a biochemical test, and a urine test. It may be information indicating one.
  • Medical imaging equipment includes, for example, CR (Computed Radiography), CT (Computed Tomography), MRI (Magnetic Resonance Imaging), ultrasonic diagnostic imaging, fundus photography, It is a device that performs PET (Positron Emission Tomography) and PAI (PhotoAcoustic Imaging). By using these medical imaging devices as the second measuring device 12, a medical image can be obtained as the second biological information.
  • a hematological test is, for example, a test that obtains test results such as white blood cell count, red blood cell count, and hemoglobin concentration.
  • a biochemical test is, for example, a test that obtains various indexes related to enzymes, proteins, sugars, lipids, electrolytes, and the like as test results.
  • the infectious disease test is, for example, a test that obtains the presence or absence of infection with various infectious diseases such as influenza infection and novel coronavirus infection as test results.
  • a urinalysis is a test that obtains, for example, urinary sugar, urinary protein, and urinary occult blood as test results.
  • the first biometric information and the second biometric information are biometric information that are known in advance to be correlated with each other.
  • FIG. 2 shows an example of a set of first biometric information and second biometric information that are correlated with each other.
  • FIG. 2 also shows "disease name" diagnosed based on the second biological information.
  • the second biological information is biological information that is measured sporadically, so it is required that the patient is in a state suitable for diagnosis at the timing of measuring the second biological information.
  • Whether or not the second biological information is suitable for diagnosis can be estimated by monitoring the first biological information.
  • the peak of the postprandial hyperglycemia spike can be estimated by monitoring the blood sugar level as the first biological information.
  • the first measuring device 11 transmits the first biological information of the subject being measured over time to the information processing device 10 in real time.
  • the information processing device 10 acquires the first biological information of the subject over time from the first measuring device 11, and determines the timing suitable for measuring the second biological information of the subject based on the first biological information.
  • the "timing suitable for measuring the second biological information” is the timing at which the second biological information is in a state suitable for diagnosis (that is, the second biological information of the desired result is obtained). This does not mean that the second biometric information cannot be measured at any timing other than this timing.
  • the information processing device 10 may also command the second measuring device 12 to measure the second biological information at the derived timing.
  • the information processing apparatus 10 includes a CPU (Central Processing Unit) 21, a non-volatile storage section 22, and a memory 23 as a temporary storage area.
  • the information processing device 10 includes a display 24 such as a liquid crystal display, an input unit 25 such as a keyboard, a mouse and buttons, and a wired or It includes a network I/F (Interface) 26 for wireless communication.
  • a network I/F Interface
  • the CPU 21, the storage unit 22, the memory 23, the display 24, the input unit 25, and the network I/F 26 are connected via a bus 28 such as a system bus and a control bus so that various information can be exchanged with each other.
  • a bus 28 such as a system bus and a control bus so that various information can be exchanged with each other.
  • the information processing device 10 for example, a personal computer, a server computer, a tablet terminal, a smart phone, a wearable terminal, or the like can be applied.
  • the storage unit 22 is implemented by a storage medium such as a HDD (Hard Disk Drive), SSD (Solid State Drive), flash memory, or the like.
  • An information processing program 27 for the information processing apparatus 10 is stored in the storage unit 22 .
  • the CPU 21 reads out the information processing program 27 from the storage unit 22 , expands it in the memory 23 , and executes the expanded information processing program 27 .
  • CPU 21 is an example of a processor of the present disclosure.
  • the information processing device 10 includes an acquisition unit 30, a derivation unit 32, and a control unit 34.
  • the CPU 21 functions as an acquisition unit 30, a derivation unit 32, and a control unit .
  • the acquisition unit 30 acquires the chronological first biological information of the subject from the first measurement device 11 . Based on the first biological information acquired by the acquiring unit 30, the deriving unit 32 derives timing suitable for measuring the second biological information of the subject.
  • the control unit 34 performs control for presenting the timing derived by the deriving unit 32 and guidance corresponding to the timing using the display 24 .
  • FIG. 5 shows an example of changes in postprandial blood sugar level X measured over time, and an example of movements of signals L, M, and N that transition between 0 and 1 with blood sugar level X.
  • the recommended imaging period signal L is a signal that takes a state of 1 during the recommended imaging period suitable for imaging a fundus image.
  • the advance notice signal M is a signal for giving advance notice of the start and end of the recommended photographing period by transitioning the state prior to the state transition of the recommended photographing period signal L.
  • the best timing signal N is a signal that assumes a state of 1 when the blood sugar level X reaches the maximum value Xmax, which is most suitable for photographing a fundus image.
  • the state in which the signal L is 0 is indicated as L(0)
  • the state in which the signal L is 1 is indicated as L(1). The same is true for signals M and N.
  • FIG. 6 is a table summarizing the values taken by the blood sugar level and the transitions of the signals L, M and N at each time point t1 to t5 in FIG.
  • FIG. 7 shows an example of guidance presented by the control unit 34 using the display 24 in response to each of the signals L, M and N. As shown in FIG. Note that in FIG. 7, combinations that the signals L, M, and N cannot take (for example, combinations of L(0), M(0), and N(1)) are omitted.
  • the blood sugar level X is known to rise and fall sharply after meals.
  • a fundus image suitable for diagnosing diabetic retinopathy can be obtained by photographing the fundus at a timing near when the blood sugar level X reaches the maximum value Xmax.
  • the derivation unit 32 transitions the signals L, M, and N as shown in FIGS. 5 and 6 based on the blood sugar level as the first biological information acquired by the acquisition unit 30 .
  • the derivation unit 32 notifies the start of the recommended imaging period before the start timing of the recommended imaging period suitable for imaging (measurement) of the fundus image (second biological information). You may derive the timing to Specifically, as shown in FIGS. 5 and 6, the deriving unit 32 determines that the blood sugar level X becomes lower than the threshold TH by a predetermined width ds (X>(TH-ds) At time t1, the warning signal is changed from M(0) to M(1).
  • the threshold TH may be determined, for example, by a blood glucose level (140 mg/dL, etc.) generally used for diagnosing diabetes, or may be determined according to the degree of increase from the fasting blood glucose level for each subject. may be At time t1, each signal takes the states of L(0), M(1), and N(0), so as shown in FIG. , a guidance is presented that announces the start of the recommended fundus image capturing period.
  • the deriving unit 32 derives the start timing of the recommended imaging period suitable for capturing (measurement) of the fundus image (second biological information) based on the blood sugar level (first biological information). Specifically, as shown in FIGS. 5 and 6, the derivation unit 32 sets the recommended imaging period signal to L at time t2 when the blood sugar level X exceeds a predetermined threshold TH (when X>TH) (0) to L(1). At time t2, each signal takes the states of L(1), M(1), and N(0), so as shown in FIG. A guidance indicating that it is the recommended shooting period of .
  • the derivation unit 32 may derive the optimum timing for capturing (measuring) a fundus image (second biometric information) from the subject based on the blood sugar level (first biometric information). . Specifically, as shown in FIGS. 5 and 6, the derivation unit 32 changes the best timing signal from N(0) to N(1) at time t3 when the blood sugar level X reaches the maximum value Xmax. At time t3, each signal takes the states of L(1), M(1), and N(1), so as shown in FIG. Guidance is presented indicating that the timing is most suitable for photographing the fundus image.
  • FIG. 8 shows the time differential of the blood sugar level X in FIG. 5 with a dashed line.
  • the derivation unit 32 determines that the blood sugar level X reaches the maximum value Xmax when the time derivative of the blood sugar level X has decreased by a predetermined width dp after the start of the recommended imaging period (that is, after time t2).
  • the first derivative of the blood sugar level X is used to derive the time when the blood sugar level X reaches the maximum value Xmax.
  • Multiple differentiations may be used to derive the time point at which the blood glucose level X reaches the maximum value Xmax.
  • the derivation unit 32 may derive the timing of announcing the end of the period before the end timing of the recommended imaging period suitable for imaging (measurement) of the fundus image (second biological information). Specifically, as shown in FIGS. 5 and 6, after the blood sugar level X reaches the maximum value Xmax (i.e., after time t3), the derivation unit 32 reduces the threshold value TH by a predetermined width de. At time t4 when the value becomes high (when X ⁇ (TH+de)), the warning signal is changed from M(1) to M(0).
  • each signal assumes the states of L(1), M(0), and N(0), so as shown in FIG. , a guidance is presented that announces the end of the recommended fundus image capturing period.
  • the deriving unit 32 derives the end timing of the recommended imaging period suitable for imaging (measurement) of the fundus image (second biological information) based on the blood sugar level (first biological information). Specifically, as shown in FIGS. 5 and 6, the derivation unit 32 sets the recommended imaging period signal to L at time t5 when the blood sugar level X falls below a predetermined threshold TH (time when X ⁇ TH). (1) to L(0). At time t5, each signal takes the states of L(0), M(0), and N(0), so as shown in FIG. A guidance indicating that it is not the recommended period for taking a fundus image is presented.
  • the derivation of each timing by the derivation unit 32 is performed in real time according to fluctuations in the blood sugar level.
  • the derivation unit 32 may predict the time change of the blood sugar level (first biological information) and derive the above timings (that is, predict the above timings) based on the predicted blood sugar level. .
  • the derivation unit 32 may predict the time change of the blood sugar level based on the past data on the blood sugar level of the subject. Specifically, for example, a representative value (e.g., average value, median value, etc.) of past data pre-stored in the storage unit 22 may be used to predict the change in blood sugar level over time. Alternatively, for example, the change in blood sugar level over time may be predicted using a learned model that has been trained to input changes in blood sugar levels up to the current time and to output changes in blood sugar levels after the current time.
  • a representative value e.g., average value, median value, etc.
  • FIG. 9 shows an example of a screen D1 presented on the display 24 by the control unit 34.
  • FIG. The screen D1 in FIG. 9 is at time t1 in FIGS. 5 and 6 (that is, the timing for notifying the start of the recommended imaging period suitable for capturing the fundus image).
  • Time t1 corresponds to 13:00.
  • the actual blood sugar level up to 13:00 is indicated by a solid line
  • the prediction of the blood sugar level after 13:00 predicted by the derivation unit 32 is indicated by a dotted line.
  • control unit 34 may perform control to present the blood sugar level predicted by the derivation unit 32. Further, the control unit 34 may perform control to present the start timing, the end timing, and the best timing of the recommended imaging period derived based on the blood sugar level predicted by the derivation unit 32 . Further, as shown in FIG. 9 , the derivation unit 32 may predict the maximum blood sugar level, and the control unit 34 may perform control to present the maximum blood sugar level predicted by the derivation unit 32 .
  • control unit 34 may command the second measuring device 12 that measures the second biological information to measure the second biological information at each timing derived by the deriving unit 32 .
  • the fundus image is captured during the recommended imaging period t2 to t5 derived by the deriving unit 32 as suitable for capturing (measurement) of the fundus image (second biological information).
  • the control unit 34 may instruct the second measuring device 12 to do so.
  • the control unit 34 may be configured to capture the fundus image (second biological information) at time t3 when the derivation unit 32 derives the optimal timing for capturing (measuring) the fundus image (second biological information) from the subject. 2 measurement device 12 may be commanded.
  • FIG. 10 the CPU 21 executes the information processing program 27 to execute the first information processing shown in FIG. 10 and the timing derivation processing shown in FIG.
  • the first information processing is executed, for example, when the user gives an instruction to start execution via the input unit 25 .
  • the derivation unit 32 sets the recommended shooting period signal L, the advance notice signal M, and the best timing signal N to "0".
  • the acquisition unit 30 acquires the first biological information from the first measuring device 11 .
  • this first biological information (for example, blood sugar level) is assumed to be X.
  • the derivation unit 32 executes the timing derivation process shown in FIG. 11 based on the first biological information X acquired in step S12.
  • the states of the recommended shooting period signal L, the advance notice signal M, and the best timing signal N transition based on the first biological information X acquired in step S12. It should be noted that the state of each signal that has made a transition once is held until that state makes a transition again.
  • step S64 the derivation unit 32 changes the advance notice signal from M(1) to M(0), changes the best timing signal from N(1) to N(0), and outputs each signal L to the first information processing in FIG. , M and N.
  • the determination in step S62 is negative (that is, N(0)), it means that it corresponds to a point in time between time t2 and time t3 in FIGS. Instead, the signals L, M and N are returned to the first information processing of FIG.
  • step S70 the deriving unit 32 changes the shooting recommended period signal from L(1) to L(0), and returns the signals L, M and N to the first information processing in FIG. Further, if step S66 makes a negative determination (that is, X ⁇ Xmax), it means that none of the times t1 to t5 at which each signal transitions in FIGS. Each signal L, M and N is returned to the first information process of FIG. 10 without transition.
  • step S16 of FIG. 10 the control unit 34 performs control to use the display 24 to present guidance according to the current timing and the states of the recommended shooting period signal L, the advance notice signal M, and the best timing signal N.
  • step S18 the derivation unit 32 determines whether or not the recommended shooting period signal has changed from L(1) to L(0) in step S14 immediately before (that is, after executing step S70 in the immediately preceding timing derivation process). , has returned).
  • step S18 makes a negative determination (that is, if the shooting recommended period signal has not transitioned from L(1) to L(0) in step S14 immediately before), the current states of the signals L, M, and N are retained. Then, the process returns to step S12. On the other hand, if the determination in step S18 is affirmative (that is, if the recommended shooting period signal transitions from L(1) to L(0) in step S14 immediately before), it means that the current timing is the end timing of the recommended shooting period. Therefore, the first information processing ends.
  • the information processing apparatus 10 includes at least one processor.
  • the processor acquires the first biological information of the subject over time, and based on the first biological information, calculates the first biological information of the subject.
  • a timing suitable for measuring second biological information different from the first biological information is derived. That is, the timing at which the second biological information becomes a state suitable for diagnosis can be derived, so the second biological information for proper diagnosis can be measured.
  • the information processing apparatus 10 has, in addition to the functions of the first exemplary embodiment, a function of scheduling a period for measuring the second biological information for each subject.
  • a function of scheduling a period for measuring the second biological information for each subject An example of the functional configuration of the information processing apparatus 10 according to the present exemplary embodiment will be described below, but the description of the same configuration as that of the first exemplary embodiment will be partially omitted.
  • the acquisition unit 30 acquires chronological first biological information about each of a plurality of subjects. Based on the first biological information, the derivation unit 32 determines the timing suitable for measuring the second biological information different from the first biological information of the subject (the start timing and the end timing of the recommended imaging period) for each subject. , and the best shooting timing). In this case, the derivation unit 32 may predict the time change of the first biometric information for each subject and derive the above timings based on the predicted first biometric information. For each of the above timings, for example, the timing at which the predicted first biometric information reaches the threshold TH is set as the start timing and the end timing of the recommended imaging period, and the timing at which the predicted first biometric information reaches the maximum value is set as the best imaging timing. (see FIG. 5).
  • the derivation unit 32 predicts the time change of the first biological information for each of subjects A to C, and the recommended imaging period and the best imaging timing derived based on the predicted first biological information are presented.
  • An example of a screen D2 is shown.
  • the “glucose load time” in FIG. 12 is the time at which the subject ingests glucose to intentionally create a state of postprandial hyperglycemia spike (that is, a state suitable for measurement of the second biological information).
  • the derivation unit 32 predict the temporal change of the first biological information based on the past data regarding the first biological information for each subject.
  • the start timing and end timing of the recommended imaging period by the derivation unit 32, the specific derivation method of the best imaging timing, and the method of predicting the temporal change of the first biometric information are the same as in the first exemplary embodiment. Therefore, the explanation is omitted.
  • the derivation unit 32 schedules a period for measuring the second biological information for each subject based on the derived timings.
  • the recommended period for capturing the fundus image (second biological information) is indicated by a white frame for each subject A to C, and the scheduled period for capturing the fundus image is grayed out and predicted.
  • the best shooting timing that was set is indicated by an asterisk.
  • the deriving unit 32 schedules the periods (gray areas in FIG. 12) for measuring the second biological information for each of the subjects A to C so as not to overlap each other in terms of time.
  • the derivation unit 32 gives priority to the subject whose recommended imaging period is earlier in at least one of the start timing and the end timing. , scheduling a period for measuring the second biometric information. For example, as shown in FIG. 12 , the derivation unit 32 gives priority to the subject A whose end timing of the recommended imaging period is earlier than that of the subject A and the subject B whose recommended imaging periods partially overlap. Then, a period for measuring the second biological information may be scheduled. Further, for example, as shown in FIG. 12, the derivation unit 32 selects the subject B whose start timing of the recommended imaging period is early from the subject B and the subject C whose recommended imaging periods partially overlap. A period for measuring the second biological information may be scheduled with priority.
  • the derivation unit 32 sorts the subjects with the longest period from the start timing to the end timing of the recommended imaging period in intermediate order, A period for measuring the second biological information may be scheduled. For example, as shown in FIG. 12, the deriving unit 32 schedules the period for measuring the second biological information, placing the subject B, whose period from the start timing to the end timing of the recommended imaging period is the longest, in the middle order. You may By doing so, it becomes easier to perform rescheduling (details will be described later).
  • the schedule S in FIG. 12 measures the second biological information for each subject based on each timing derived based on the time change of the first biological information predicted for each subject by the derivation unit 32. It is a scheduled period. That is, since the schedule S in FIG. 12 is a schedule created based on the predicted temporal change of the first biometric information, it may not be consistent with the actual progress of the first biometric information.
  • the obtaining unit 30 may monitor the progress of the first biological information for each subject after scheduling the period for measuring the second biological information by the deriving unit 32 . Further, the derivation unit 32 measures the second biometric information when the difference between the progress of the first biometric information monitored by the acquisition unit 30 and the predicted time change of the first biometric information exceeds the allowable range. You may reschedule the period. Specifically, the derivation unit 32 re-predicts the temporal change of the first bio-information based on the progress of the first bio-information monitored by the acquisition unit 30, and Each timing may be re-derived based on changes. Further, the deriving unit 32 may reschedule the period for measuring the second biological information based on each re-derived timing.
  • FIG. 13 shows an example of the screen D3 presented when rescheduling is performed one hour later in FIG.
  • each timing changed from the initial prediction (recommended imaging period and best imaging timing in FIG. 12) is crossed out, and each timing after re-derivation is described.
  • the difference between the progress of the first biological information monitored by the acquisition unit 30 and the predicted time change of the first biological information exceeds the allowable range, and It is assumed that persons A and B are within the permissible range.
  • the deriving unit 32 re-predicts the time change of the first biological information regarding the subject C based on the progress of the first biological information monitored by the acquiring unit 30, and re-predicts the change over time. Each timing is re-derived based on the predicted temporal change of the first biometric information. Since the end timing of the recommended imaging period for subject C is earlier than that for subject B, the deriving unit 32 determines the period for measuring the second biological information so as to give priority to subject C over subject B. to reschedule.
  • the control unit 34 may also command the second measuring device 12 that measures the second biological information to measure the second biological information during the period scheduled by the deriving unit 32 .
  • the examiner C may instruct the second measuring device 12 to measure the second biological information between 13:30 and 13:50.
  • the CPU 21 executes the information processing program 27 to execute the second information processing shown in FIG.
  • the second information processing is executed, for example, when the user gives an instruction to start execution via the input unit 25 .
  • the acquisition unit 30 acquires the first biological information from the first measuring device 11.
  • the derivation unit 32 predicts the time change of the first biometric information for each subject based on the first biometric information acquired in step S20.
  • the derivation unit 32 determines the timing suitable for measuring the second biological information (for example, the start timing and end timing of the recommended imaging period and the best imaging period) based on the time change of the first biological information predicted in step S22 timing).
  • the derivation unit 32 schedules a period for measuring the second biological information for each subject based on each timing derived in step S24.
  • step S28 the acquisition unit 30 monitors the progress of the first biological information of each subject.
  • step S30 the derivation unit 32 determines that the difference between the progress of the first biological information monitored in step S28 and the time change of the first biological information predicted in step S22 falls within the allowable range for each subject. It is determined whether or not it exceeds. If step S30 is a negative determination (that is, if the difference between the progress of the first biological information monitored in step S28 and the time change of the first biological information predicted in step S22 exceeds the allowable range), step The processing of S22 to S28 is redone.
  • step S30 determines whether the progress of the first biometric information monitored in step S28 and the time change of the first biometric information predicted in step S22 is within the allowable range.
  • the information processing apparatus 10 includes at least one processor, the processor acquires the first biological information over time regarding each of a plurality of subjects, and obtains the first biological information for each subject. Based on the information, the timing suitable for measuring the second biological information different from the first biological information of the subject is derived, and based on the derived timing, the second biological information is measured for each subject. to schedule. That is, since the second biological information can be scheduled to be measured at the timing when the second biological information is in a state suitable for diagnosis, the second biological information for proper diagnosis can be measured.
  • the configuration of the information processing system 1 in each of the exemplary embodiments described above is not limited to the example shown in FIG.
  • some or all of the information processing device 10, the first measurement device 11, and the second measurement device 12 included in the information processing system 1 may be the same device.
  • the information processing device 10 may include a first measuring device 11 that measures first biological information and a second measuring device 12 that measures second biological information.
  • the information processing system 1 includes an information processing apparatus 10 including a first measuring apparatus 11 for measuring first biological information, and a second biological information according to a command from the information processing apparatus 10. and a second measuring device 12 for measuring information.
  • an information processing device 10 for example, a wearable terminal such as a smartwatch equipped with a blood sugar self-monitoring device and a sensor for measuring first biological information such as heart rate and SpO2 may be applied.
  • the information processing system 1 transmits the first biological information to the information processing device 10 including the second measuring device 12 for measuring the second biological information, and the information processing device 10.
  • the first measuring device 11 may be provided.
  • a modality such as a medical imaging apparatus may be applied.
  • the information processing system 1 includes a plurality of first measuring devices.
  • the measuring device 11 and a plurality of second measuring devices may be provided.
  • the plurality of first measuring devices 11 may each measure the same type of first biological information, or may measure different types of first biological information. good too.
  • the plurality of second measuring devices 12 may each measure the same type of second biological information, or may measure different types of second biological information.
  • the hardware structure of the processing unit that executes various processes such as the acquisition unit 30, the derivation unit 32, and the control unit 34 includes the following various processors (processor) can be used.
  • the various processors include, in addition to the CPU, which is a general-purpose processor that executes software (programs) and functions as various processing units, circuits such as FPGAs (Field Programmable Gate Arrays), etc.
  • Programmable Logic Device PLD which is a processor whose configuration can be changed, ASIC (Application Specific Integrated Circuit) etc. Circuits, etc. are included.
  • One processing unit may be composed of one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of multiple FPGAs, a combination of a CPU and an FPGA). combination). Also, a plurality of processing units may be configured by one processor.
  • a single processor is configured by combining one or more CPUs and software.
  • a processor functions as multiple processing units.
  • SoC System on Chip
  • the various processing units are configured using one or more of the above various processors as a hardware structure.
  • an electric circuit combining circuit elements such as semiconductor elements can be used.
  • the information processing program 27 is pre-stored (installed) in the storage unit 22, but the present invention is not limited to this.
  • the information processing program 27 is provided in a form recorded in a recording medium such as a CD-ROM (Compact Disc Read Only Memory), a DVD-ROM (Digital Versatile Disc Read Only Memory), and a USB (Universal Serial Bus) memory. good too.
  • the information processing program 27 may be downloaded from an external device via a network.
  • the technology of the present disclosure extends to a storage medium that non-temporarily stores an information processing program in addition to the information processing program.
  • the technology of the present disclosure can also appropriately combine the exemplary embodiments described above.
  • the description and illustration shown above are detailed descriptions of the parts related to the technology of the present disclosure, and are merely examples of the technology of the present disclosure.
  • the above descriptions of configurations, functions, actions, and effects are descriptions of examples of configurations, functions, actions, and effects of portions related to the technology of the present disclosure. Therefore, unnecessary parts may be deleted, new elements added, or replaced with respect to the above-described description and illustration without departing from the gist of the technology of the present disclosure. Needless to say.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

少なくとも1つのプロセッサを備え、前記プロセッサは、被検者の経時的な第1生体情報を取得し、前記第1生体情報に基づいて、前記被検者の前記第1生体情報とは異なる第2生体情報の測定に適したタイミングを導出する情報処理装置。

Description

情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム
 本開示は、情報処理装置、情報処理システム、情報処理方法及び情報処理プログラムに関する。
 従来、ある生体情報をモニタリングし、モニタリング結果に基づいて他の生体情報の測定に関する条件を設定する技術が知られている。例えば、特開2009-172397号公報には、被検者から測定されたハートレートに基づいて、同一の被検者を撮影する場合のX線コンピュータ断層撮影装置の撮影条件を設定することが記載されている。
 ところで、病気のなかには、被検者の状態(例えば、食後、運動後及び起床後等)に応じて、病変の現れ方が変化するものがある。例えば、糖尿病の合併症である糖尿病網膜症は、眼底を撮影して得られる眼底画像における毛細血管瘤及び網膜出血等の病変の現れ方に基づいて診断が行われる。糖尿病網膜症に関するこれらの病変は、被検者の血糖値が高い場合に顕著に表れる場合がある。すなわち、被検者の血糖値が高いタイミングで眼底画像の撮影ができれば、糖尿病網膜症の診断を適切に行うことができ、早期発見に寄与できる。
 近年、上記のように、被検者の状態に応じて病変の現れ方が変動する生体情報に関して、測定の適切なタイミングを提示することで、適切な診断のための生体情報を測定できる技術が望まれている。
 本開示は、適切な診断のための生体情報を測定できる情報処理装置、情報処理システム、情報処理方法及び情報処理プログラムを提供する。
 本開示の第1の態様は、情報処理装置であって、少なくとも1つのプロセッサを備え、プロセッサは、被検者の経時的な第1生体情報を取得し、第1生体情報に基づいて、被検者の第1生体情報とは異なる第2生体情報の測定に適したタイミングを導出する。
 本開示の第2の態様は、上記第1の態様において、プロセッサは、第1生体情報の時間変化に基づいて、タイミングを導出してもよい。
 本開示の第3の態様は、上記第1の態様又は第2の態様において、プロセッサは、第1生体情報に基づいて、第2生体情報の測定に適した期間の開始タイミング及び終了タイミングを導出してもよい。
 本開示の第4の態様は、上記第1の態様から第3の態様の何れか1つにおいて、プロセッサは、第1生体情報に基づいて、第2生体情報の測定に最も適したタイミングを導出してもよい。
 本開示の第5の態様は、上記第1の態様から第4の態様の何れか1つにおいて、プロセッサは、第1生体情報の時間変化を予測し、予測した第1生体情報に基づいて、タイミングを導出してもよい。
 本開示の第6の態様は、上記第5の態様において、プロセッサは、第1生体情報に関する過去のデータに基づいて、第1生体情報の時間変化を予測してもよい。
 本開示の第7の態様は、上記第1の態様から第6の態様の何れか1つにおいて、プロセッサは、導出したタイミングを提示してもよい。
 本開示の第8の態様は、上記第1の態様から第7の態様の何れか1つにおいて、プロセッサは、第2生体情報の測定に適した期間の開始タイミングとなる前に、期間の開始を予告してもよい。
 本開示の第9の態様は、上記第1の態様から第8の態様の何れか1つにおいて、プロセッサは、第2生体情報の測定に適した期間の終了タイミングとなる前に、期間の終了を予告してもよい。
 本開示の第10の態様は、上記第1の態様から第9の態様の何れか1つにおいて、プロセッサは、第2生体情報を測定する第2測定装置に対して、導出したタイミングにおいて第2生体情報を測定するよう命令してもよい。
 本開示の第11の態様は、上記第1の態様から第10の態様の何れか1つにおいて、第1生体情報は、被検者の行動に応じて非周期的に変動するものであってもよい。
 本開示の第12の態様は、上記第1の態様から第11の態様の何れか1つにおいて、第1生体情報は、体温、心拍、心電、筋電、血圧、動脈血酸素飽和度、血糖値及び脂質値のうち少なくとも1つを示し、第2生体情報は、心電、脳波、医用画像撮影装置により撮影された医用画像、並びに血液学的検査、感染症検査、生化学検査及び尿検査のうち少なくとも1つの結果、のうち少なくとも1つを示すものであってもよい。
 本開示の第13の態様は、上記第1の態様から第12の態様の何れか1つに係る情報処理装置は、第1生体情報を測定する第1測定装置と、第2生体情報を測定する第2測定装置と、を備えていてもよい。
 本開示の第14の態様は、情報処理システムであって、上記第1の態様から第12の態様の何れか1つに係る情報処理装置と、第1生体情報を測定する第1測定装置と、第2生体情報を測定する第2測定装置と、を備える。
 本開示の第15の態様は、情報処理システムであって、上記第1の態様から第12の態様の何れか1つに係る情報処理装置と、第1生体情報を測定する第1測定装置と、を備え、情報処理装置は、第2生体情報を測定する第2測定装置を更に備えていてもよい。
 本開示の第16の態様は、情報処理システムであって、上記第1の態様から第12の態様の何れか1つに係る情報処理装置と、第2生体情報を測定する第2測定装置と、を備え、情報処理装置は、第1生体情報を測定する第1測定装置を更に備えていてもよい。
 本開示の第17の態様は、情報処理方法であって、被検者の経時的な第1生体情報を取得し、第1生体情報に基づいて、被検者の第1生体情報とは異なる第2生体情報の測定に適したタイミングを導出する処理をコンピュータが実行するものである。
 本開示の第18の態様は、情報処理プログラムであって、被検者の経時的な第1生体情報を取得し、第1生体情報に基づいて、被検者の第1生体情報とは異なる第2生体情報の測定に適したタイミングを導出する処理をコンピュータに実行させるためのものである。
 上記態様によれば、本開示の情報処理装置、情報処理システム、情報処理方法及び情報処理プログラムは、適切な診断のための生体情報を測定できる。
情報処理システムの概略構成図である。 第1生体情報及び第2生体情報の一例である。 情報処理装置のハードウェア構成の一例を示すブロック図である。 情報処理装置の機能的な構成の一例を示すブロック図である。 第1生体情報に基づくタイミング導出処理を説明するための図である。 第1生体情報に基づくタイミング導出処理を説明するための図である。 各タイミングに対応する案内の一例を示す図である。 第1生体情報の最大値を検出する処理を説明するための図である。 導出された各タイミングが提示された画面の一例である。 第1情報処理の一例を示すフローチャートである。 タイミング導出処理の一例を示すフローチャートである。 導出されたスケジュールが提示された画面の一例である。 再導出されたスケジュールが提示された画面の一例である。 第2情報処理の一例を示すフローチャートである。 情報処理システムの変形例を示す概略構成図である。 情報処理システムの変形例を示す概略構成図である。
 以下、図面を参照して、本開示の技術を実施するための形態例を詳細に説明する。
 図1を参照して、本例示的実施形態に係る情報処理システム1の構成の一例について説明する。図1に示すように、情報処理システム1は、情報処理装置10と、少なくとも1台の第1測定装置11と、少なくとも1台の第2測定装置12とを備える。情報処理装置10と第1測定装置11、及び情報処理装置10と第2測定装置12は、それぞれ有線又は無線通信により互いに通信可能とされている。
 第1測定装置11は、ユーザの第1生体情報を経時的に測定する機能を有する。第1生体情報は、例えば、体温、心拍、心電、筋電、血圧、動脈血酸素飽和度(SpO2)、血糖値及び脂質値等のうち少なくとも1つを示す情報であってもよい。これらの場合、第1測定装置11としては、例えば、体温計、心拍計、血糖自己測定器、並びに、心拍及び動脈血酸素飽和度等の生体情報を測定するセンサを備えたスマートウォッチ等のウェアラブル端末を適用できる。
 第1生体情報は、被検者の行動に応じて非周期的に変動するものである。被検者の行動とは、例えば、食事、運動及び睡眠等である。例えば、第1生体情報の一例としての血糖値は、被検者が食事した後に上昇することが知られている。また例えば、第1生体情報の一例としての体温は、被検者が運動した後に上昇することが知られている。
 第2測定装置12は、ユーザの第2生体情報を単発的に測定する機能を有する。第2生体情報は、第1生体情報とは異なる種類の生体情報である。第2生体情報は、例えば、心電、脳波、医用画像撮影装置により撮影された医用画像、並びに血液学的検査、感染症検査、生化学検査及び尿検査のうち少なくとも1つの結果、のうち少なくとも1つを示す情報であってもよい。医用画像撮影装置とは、例えば、CR(Computed Radiography:コンピュータX線撮影)、CT(Computed Tomography:コンピュータ断層撮影)、MRI(Magnetic Resonance Imaging:磁気共鳴画像撮影)、超音波画像診断、眼底撮影、PET(Positron Emission Tomography:陽電子放出断層撮影)及びPAI(PhotoAcoustic Imaging:光超音波イメージング)等を行う装置である。第2測定装置12としてこれらの医用画像撮影装置を用いることで、第2生体情報としての医用画像を得ることができる。
 血液学的検査とは、例えば、白血球数、赤血球数及びヘモグロビン濃度等を検査結果として得る検査である。生化学検査とは、例えば、酵素、蛋白、糖、脂質及び電解質等に関する各種指標を検査結果として得る検査である。感染症検査は、例えば、インフルエンザ感染症及び新型コロナウイルス感染症等の各種感染症の感染有無を検査結果として得る検査である。尿検査は、例えば、尿糖、尿蛋白及び尿潜血等を検査結果として得る検査である。これらの各種検査結果を第2生体情報として用いる場合、第2測定装置12としては、例えば、血液及び尿等を被検体として分析を行う公知の分析装置を適用できる。
 本例示的実施形態において、第1生体情報と第2生体情報は、互いに相関のあることが予め分かっている生体情報である。図2に、互いに相関のある第1生体情報及び第2生体情報の組の一例を示す。また、図2には、第2生体情報に基づいて診断される「病名」も示している。
 上述したように、第2生体情報は単発的に測定される生体情報であるため、第2生体情報を測定するタイミングで、ちょうど診断に適した状態となっていることが求められる。第2生体情報が診断に適した状態となっているか否かは、第1生体情報をモニタリングすることで推定できる。例えば、糖尿病網膜症の診断のためには、食後のタイミング、具体的には食後高血糖スパイクのピーク付近において、第2生体情報としての眼底画像を撮影することが好ましい。食後高血糖スパイクのピークは、第1生体情報としての血糖値をモニタリングすることで推定できる。
 そこで、図1に示すように、第1測定装置11は、経時的に測定している被検者の第1生体情報を、リアルタイムで情報処理装置10に送信する。情報処理装置10は、第1測定装置11から被検者の経時的な第1生体情報を取得し、第1生体情報に基づいて、被検者の第2生体情報の測定に適したタイミングを導出する。なお、「第2生体情報の測定に適したタイミング」とは、第2生体情報が診断に適した状態となっている(すなわち所望の結果の第2生体情報が得られる)と推定されるタイミングであり、このタイミング以外で第2生体情報の測定ができないという意味ではない。また、情報処理装置10は、導出したタイミングにおいて第2生体情報を測定するよう、第2測定装置12に対して命令してもよい。
 以下、情報処理装置10の詳細な構成について説明する。まず、図3を参照して、本例示的実施形態に係る情報処理装置10のハードウェア構成の一例を説明する。図3に示すように、情報処理装置10は、CPU(Central Processing Unit)21、不揮発性の記憶部22、及び一時記憶領域としてのメモリ23を含む。また、情報処理装置10は、液晶ディスプレイ等のディスプレイ24、キーボード、マウス及びボタン等の入力部25、並びに第1測定装置11、第2測定装置12及び外部のネットワーク(不図示)との有線又は無線通信を行うネットワークI/F(Interface)26を含む。CPU21、記憶部22、メモリ23、ディスプレイ24、入力部25及びネットワークI/F26は、システムバス及びコントロールバス等のバス28を介して相互に各種情報の授受が可能に接続されている。情報処理装置10としては、例えば、パーソナルコンピュータ、サーバコンピュータ、タブレット端末、スマートフォン及びウェアラブル端末等を適用できる。
 記憶部22は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)及びフラッシュメモリ等の記憶媒体によって実現される。記憶部22には、情報処理装置10における情報処理プログラム27が記憶される。CPU21は、記憶部22から情報処理プログラム27を読み出してからメモリ23に展開し、展開した情報処理プログラム27を実行する。CPU21が本開示のプロセッサの一例である。
 次に、図4を参照して、本例示的実施形態に係る情報処理装置10の機能的な構成の一例について説明する。図4に示すように、情報処理装置10は、取得部30、導出部32及び制御部34を含む。CPU21が情報処理プログラム27を実行することにより、取得部30、導出部32及び制御部34として機能する。
 取得部30は、第1測定装置11から、被検者の経時的な第1生体情報を取得する。導出部32は、取得部30が取得した第1生体情報に基づいて、被検者の第2生体情報の測定に適したタイミングを導出する。制御部34は、導出部32が導出したタイミング及びタイミングに応じた案内を、ディスプレイ24を用いて提示する制御を行う。
 以下、第1生体情報の一例としての血糖値に基づいて、第2生体情報の一例としての眼底画像を撮影するタイミングを導出する例を挙げて説明する。図5は、経時的に測定された食後の血糖値Xの変動の一例と、血糖値Xに伴って0と1の状態が遷移する各信号L、M及びNの動きの一例を示す。撮影推奨期間信号Lは、眼底画像の撮影に適した撮影推奨期間において1の状態をとる信号である。予告信号Mは、撮影推奨期間信号Lの状態の遷移に先立って状態が遷移することで、撮影推奨期間の開始及び終了を予告するための信号である。ベストタイミング信号Nは、眼底画像の撮影に最も適した、血糖値Xが最大値Xmaxとなる時点において1の状態をとる信号である。以下、信号Lが0の状態をL(0)と示し、信号Lが1の状態をL(1)と示す。信号M及びNについても同様である。
 図6は、図5の各時点t1~t5において血糖値がとる値、並びに各信号L、M及びNの遷移を表にまとめたものである。図7は、各信号L、M及びNに応じて、制御部34がディスプレイ24を用いて提示する案内の一例を示している。なお、図7において、各信号L、M及びNがとり得ない組合せ(例えばL(0)、M(0)、N(1)の組合せ等)の記載は省略している。
 図5に示すように、血糖値Xは、食後において急上昇及び急降下することが知られている。血糖値Xが最大値Xmaxとなる付近のタイミングで眼底撮影を行うことにより、糖尿病網膜症の診断に適した眼底画像を得ることができる。導出部32は、取得部30が取得した第1生体情報としての血糖値に基づいて、図5及び図6に示すように各信号L、M及びNを遷移させる。
 例えば、医療現場においては、第2測定装置12により眼底画像の撮影を行う前に、第2測定装置12のセッティング及び被検者のポジショニング等の準備が必要になる場合がある。この準備の時間を設けるためにも、導出部32は、眼底画像(第2生体情報)の撮影(測定)に適した撮影推奨期間の開始タイミングとなる前に、当該撮影推奨期間の開始を予告するタイミングを導出してもよい。具体的には、図5及び図6に示すように、導出部32は、血糖値Xが閾値THよりも予め定められた幅dsだけ低い値となった時点(X>(TH-ds)の時点)t1において、予告信号をM(0)からM(1)にする。なお、閾値THは、例えば、一般的に糖尿病の診断に用いられる血糖値(140mg/dL等)により定められてもよいし、被検者ごとの空腹時血糖値からの上昇幅に応じて定められてもよい。この時点t1において、各信号はL(0)、M(1)、N(0)の状態をとるので、図7に示すように、制御部34は、「まもなく撮影可能になります。」といった、眼底画像の撮影推奨期間の開始を予告する案内を提示する。
 また例えば、導出部32は、血糖値(第1生体情報)に基づいて、眼底画像(第2生体情報)の撮影(測定)に適した撮影推奨期間の開始タイミングを導出する。具体的には、図5及び図6に示すように、導出部32は、血糖値Xが予め定められた閾値THを超えた時点(X>THの時点)t2において、撮影推奨期間信号をL(0)からL(1)にする。この時点t2において、各信号はL(1)、M(1)、N(0)の状態をとるので、図7に示すように、制御部34は、「撮影可能です。」といった、眼底画像の撮影推奨期間であることを示す案内を提示する。
 また例えば、導出部32は、血糖値(第1生体情報)に基づいて、眼底画像(第2生体情報)を被検者から撮影(測定)するのに最も適したタイミングを導出してもよい。具体的には、図5及び図6に示すように、導出部32は、血糖値Xが最大値Xmaxとなる時点t3において、ベストタイミング信号をN(0)からN(1)にする。この時点t3において、各信号はL(1)、M(1)、N(1)の状態をとるので、図7に示すように、制御部34は、「撮影のベストタイミングです。」といった、眼底画像の撮影に最も適したタイミングであることを示す案内を提示する。
 なお、血糖値Xが最大値Xmaxとなる時点の導出は、例えば、血糖値(第1生体情報)の時間変化に基づいて行うことができる。図8に、図5の血糖値Xの時間微分を破線で示す。図8に示すように、血糖値Xが最大値Xmaxとなる時点t3において、時間微分は降下することが分かる。したがって、導出部32は、撮影推奨期間の開始後(すなわち時点t2の後)に、血糖値Xの時間微分が予め定められた幅dpだけ下がった場合に、血糖値Xが最大値Xmaxとなったと導出してもよい。なお、図8の例では血糖値Xの1次微分を用いて血糖値Xが最大値Xmaxとなる時点を導出する例を説明しているが、これに限らず、2次~4次等の複数回の微分を用いて、血糖値Xが最大値Xmaxとなる時点を導出してもよい。
 また例えば、撮影推奨期間の終了を予告することで、予告された被検者を優先的に撮影する等の対応を行えるようにすることが好ましい場合がある。そこで、導出部32は、眼底画像(第2生体情報)の撮影(測定)に適した撮影推奨期間の終了タイミングとなる前に、当該期間の終了を予告するタイミングを導出してもよい。具体的には、図5及び図6に示すように、導出部32は、血糖値Xが最大値Xmaxをとった後(すなわち時点t3の後)、閾値THよりも予め定められた幅deだけ高い値となった時点(X<(TH+de)の時点)t4において、予告信号をM(1)からM(0)にする。また、この時点t4において、撮影のベストタイミングも終了していると考えられるので、ベストタイミング信号をN(1)からN(0)にする。この時点t4において、各信号はL(1)、M(0)、N(0)の状態をとるので、図7に示すように、制御部34は、「まもなく撮影に適さなくなります。」といった、眼底画像の撮影推奨期間の終了を予告する案内を提示する。
 また例えば、導出部32は、血糖値(第1生体情報)に基づいて、眼底画像(第2生体情報)の撮影(測定)に適した撮影推奨期間の終了タイミングを導出する。具体的には、図5及び図6に示すように、導出部32は、血糖値Xが予め定められた閾値THを下回った時点(X<THの時点)t5において、撮影推奨期間信号をL(1)からL(0)にする。この時点t5において、各信号はL(0)、M(0)、N(0)の状態をとるので、図7に示すように、制御部34は、「撮影に適しません。」といった、眼底画像の撮影推奨期間ではないことを示す案内を提示する。
 なお、上記の導出部32による各タイミングの導出は、血糖値の変動に応じてリアルタイムで行われる。一方、撮影者が撮影のスケジューリングをするためには、被検者の撮影推奨期間の開始タイミング及び終了タイミング、並びにベストタイミングを予め把握できるようにすることが好ましい。そこで、導出部32は、血糖値(第1生体情報)の時間変化を予測し、予測した血糖値に基づいて、上記の各タイミングを導出(すなわち、上記の各タイミングを予測)してもよい。
 なお、血糖値の時間変化の予測方法は、公知の方法を適宜採用できる。例えば、導出部32は、被検者の血糖値に関する過去のデータに基づいて、血糖値の時間変化を予測してもよい。具体的には、例えば、記憶部22に予め記憶された過去のデータの代表値(例えば平均値及び中央値等)を用いて、血糖値の時間変化を予測してもよい。また例えば、現時点までの血糖値の推移を入力とし、現時点以降の血糖値の推移を出力するよう学習された学習済みモデルを用いて、血糖値の時間変化を予測してもよい。
 図9に、制御部34によってディスプレイ24に提示される画面D1の一例を示す。図9の画面D1は、図5及び図6の時点t1(すなわち、眼底画像の撮影に適した撮影推奨期間の開始タイミングとなる前に、当該期間の開始を予告するタイミング)におけるものであり、時点t1は13時に対応する。図9には、13時までの血糖値の実績を実線で示し、導出部32が予測した13時以降の血糖値の予測を点線で示している。
 図9に示すように、制御部34は、導出部32が予測した血糖値を提示する制御を行ってもよい。また、制御部34は、導出部32が予測した血糖値に基づいて導出した撮影推奨期間の開始タイミング及び終了タイミング、並びにベストタイミングを提示する制御を行ってもよい。また、図9に示すように、導出部32は、最大血糖値を予測し、制御部34は、導出部32が予測した最大血糖値を提示する制御を行ってもよい。
 また、制御部34は、第2生体情報を測定する第2測定装置12に対して、導出部32が導出した上記の各タイミングにおいて第2生体情報を測定するよう命令してもよい。具体的には、例えば、図5及び図6の例において、導出部32が眼底画像(第2生体情報)の撮影(測定)に適すると導出した撮影推奨期間t2~t5において、眼底画像を撮影するよう、制御部34が第2測定装置12に対して命令してもよい。また例えば、導出部32が眼底画像(第2生体情報)を被検者から撮影(測定)するのに最も適したタイミングと導出した時点t3において、眼底画像を撮影するよう、制御部34が第2測定装置12に対して命令してもよい。
 次に、図10及び図11を参照して、本例示的実施形態に係る情報処理装置10の作用を説明する。情報処理装置10において、CPU21が情報処理プログラム27を実行することによって、図10に示す第1情報処理、及び図11に示すタイミング導出処理が実行される。第1情報処理は、例えば、ユーザによって入力部25を介して実行開始の指示があった場合に実行される。
 ステップS10で、導出部32は、撮影推奨期間信号L、予告信号M及びベストタイミング信号Nをそれぞれ「0」の状態にする。ステップS12で、取得部30は、第1測定装置11から第1生体情報を取得する。以下、この第1生体情報(例えば、血糖値)をXとする。ステップS14で、導出部32は、ステップS12で取得した第1生体情報Xに基づき、図11に示すタイミング導出処理を実行する。タイミング導出処理においては、ステップS12で取得した第1生体情報Xに基づいて、撮影推奨期間信号L、予告信号M及びベストタイミング信号Nの状態が遷移する。なお、一度遷移した各信号の状態は、再度その状態が遷移するまで保持される。
 ここで、図11を参照して、ステップS14で実行されるタイミング導出処理を説明する。ステップS50で、導出部32は、ステップS12で取得した第1生体情報Xが、予め定められた閾値THよりも予め定められた幅dsだけ低い値である(X=(TH-ds))か否かを判定する。ステップS50が肯定判定の場合(すなわちX=(TH-ds)の場合)は、撮影推奨期間の開始を予告するタイミング(図5及び図6の時点t1に対応)であることを意味し、ステップS52に移行する。ステップS52で、導出部32は、予告信号をM(0)からM(1)にして、図10の第1情報処理に各信号L、M及びNを戻す。
 一方、ステップS50が否定判定の場合(すなわちX≠(TH-ds)の場合)、ステップS54に移行する。ステップS54で、導出部32は、ステップS12で取得した第1生体情報Xが、予め定められた閾値THである(X=TH)か否かを判定する。ステップS54が肯定判定の場合(すなわちX=THの場合)、ステップS56に移行し、導出部32は、現在の撮影推奨期間信号Lが「0」の状態であるか否かを判定する。ステップS56が肯定判定の場合(すなわちL(0)の場合)は、撮影推奨期間の開始タイミング(図5及び図6の時点t2に対応)であることを意味し、ステップS58に移行する。ステップS58で、導出部32は、撮影推奨期間信号をL(0)からL(1)にして、図10の第1情報処理に各信号L、M及びNを戻す。
 一方、ステップS54が否定判定の場合(すなわちX≠THの場合)、ステップS60に移行する。ステップS60で、導出部32は、ステップS12で取得した第1生体情報Xが、予め定められた閾値THよりも予め定められた幅deだけ高い値である(X=(TH+de))か否かを判定する。ステップS60が肯定判定の場合(すなわちX=(TH+de)の場合)、ステップS62に移行し、導出部32は、現在のベストタイミング信号Nが「1」の状態であるか否かを判定する。ステップS62が肯定判定の場合(すなわちN(1)の場合)は、撮影推奨期間の終了を予告するタイミング(図5及び図6の時点t4に対応)であることを意味し、ステップS64に移行する。ステップS64で、導出部32は、予告信号をM(1)からM(0)にし、ベストタイミング信号をN(1)からN(0)にして、図10の第1情報処理に各信号L、M及びNを戻す。一方、ステップS62が否定判定の場合(すなわちN(0)の場合)は、図5及び図6の時点t2と時点t3の間の時点に対応することを意味するため、各信号を遷移させることなく、図10の第1情報処理に各信号L、M及びNを戻す。
 一方、ステップS60が否定判定の場合(すなわちX≠(TH+de)の場合)、ステップS66に移行する。ステップS66で、導出部32は、ステップS12で取得した第1生体情報Xが、最大値Xmaxである(X=Xmax)か否かを判定する。ステップS66が肯定判定の場合(すなわちX=Xmaxの場合)は、眼底画像の撮影に最も適したタイミング(図5及び図6の時点t3に対応)であることを意味し、ステップS68に移行する。ステップS68で、導出部32は、ベストタイミング信号をN(0)からN(1)にして、図10の第1情報処理に各信号L、M及びNを戻す。
 一方、ステップS56が否定判定の場合(すなわちX=THとなった時点においてL(1)の場合)、撮影推奨期間の終了タイミング(図5及び図6の時点t5に対応)であることを意味し、ステップS70に移行する。ステップS70で、導出部32は、撮影推奨期間信号をL(1)からL(0)にし、図10の第1情報処理に各信号L、M及びNを戻す。また、ステップS66が否定判定の場合(すなわちX≠Xmaxの場合)は、図5及び図6において各信号を遷移させる各時点t1~t5の何れにも該当しないことを意味するため、各信号を遷移させることなく、図10の第1情報処理に各信号L、M及びNを戻す。
 図10のステップS16で、制御部34は、現時点のタイミング、及び撮影推奨期間信号L、予告信号M及びベストタイミング信号Nの状態に応じた案内を、ディスプレイ24を用いて提示する制御を行う。ステップS18で、導出部32は、直前のステップS14において撮影推奨期間信号がL(1)からL(0)に遷移させられたか否か(すなわち、直前のタイミング導出処理においてステップS70を実行した後、戻ってきたか否か)を判定する。
 ステップS18が否定判定の場合(すなわち、直前のステップS14において撮影推奨期間信号がL(1)からL(0)に遷移していない場合)、現時点における各信号L、M及びNの状態を保持したまま、ステップS12に戻る。一方、ステップS18が肯定判定の場合(すなわち、直前のステップS14において撮影推奨期間信号がL(1)からL(0)に遷移した場合)、現時点が撮影推奨期間の終了タイミングであることを意味するため、本第1情報処理を終了する。
 以上説明したように、情報処理装置10は、少なくとも1つのプロセッサを備え、プロセッサは、被検者の経時的な第1生体情報を取得し、第1生体情報に基づいて、被検者の第1生体情報とは異なる第2生体情報の測定に適したタイミングを導出する。すなわち、第2生体情報が診断に適した状態となるタイミングを導出できるので、適切な診断のための第2生体情報を測定できる。
[第2例示的実施形態]
 上記第1例示的実施形態においては、第1生体情報に基づき、第2生体情報の測定に適したタイミングをリアルタイムで導出する形態について説明した。実際の医療現場においては、第2測定装置12の台数よりも多くの被検者が第2生体情報の測定を待機する場合がある。この場合、医療従事者が効率的に各被検者の測定を行えるように、各被検者について第2生体情報の測定に適したタイミングを予め導出することで、どの被検者をいつ測定するかのスケジューリングを支援することが望まれる。
 そこで、本例示的実施形態に係る情報処理装置10は、上記第1例示的実施形態の機能に加え、被検者ごとに第2生体情報を測定する期間をスケジューリングする機能を有する。以下、本例示的実施形態に係る情報処理装置10の機能的な構成の一例について説明するが、上記第1例示的実施形態と同様の構成については、一部説明を省略する。
 取得部30は、複数の被検者の各々に関する経時的な第1生体情報を取得する。導出部32は、被検者ごとに、第1生体情報に基づいて、被検者の第1生体情報とは異なる第2生体情報の測定に適したタイミング(撮影推奨期間の開始タイミング、終了タイミング、並びに撮影ベストタイミング)を導出する。この場合、導出部32は、被検者ごとに、第1生体情報の時間変化を予測し、予測した第1生体情報に基づいて、上記の各タイミングを導出してもよい。上記の各タイミングは、例えば、予測した第1生体情報が閾値THとなる時点を撮影推奨期間の開始タイミング及び終了タイミングとし、予測した第1生体情報が最大値となる時点を撮影ベストタイミングとすることで導出されてもよい(図5参照)。
 図12に、導出部32が被検者A~Cごとに第1生体情報の時間変化を予測し、予測した第1生体情報に基づいて導出した撮影推奨期間、及び撮影ベストタイミングが提示された画面D2の一例を示す。図12における「ブドウ糖負荷時刻」とは、食後高血糖スパイクの状態(すなわち、第2生体情報の測定に適した状態)を意図的に作るためのブドウ糖を被検者が摂取する時刻である。
 図12に示すように、ブドウ糖負荷時刻から撮影推奨期間の開始タイミングまでにかかる時間、及び撮影推奨期間の長さ等は個人差がある。そこで、導出部32は、被検者ごとの第1生体情報に関する過去のデータに基づいて、第1生体情報の時間変化を予測することが好ましい。なお、導出部32による撮影推奨期間の開始タイミング及び終了タイミング、並びに撮影ベストタイミングの具体的な導出方法及び第1生体情報の時間変化の予測方法は、上記第1例示的実施形態と同様であるので、説明を省略する。
 また、導出部32は、導出した上記の各タイミングに基づいて、被検者ごとに第2生体情報を測定する期間をスケジューリングする。図12のスケジュールSでは、被検者A~Cごとに、眼底画像(第2生体情報)の撮影推奨期間を白枠で表し、そのうちスケジューリングされた眼底画像を撮影する期間をグレーで塗りつぶし、予測された撮影ベストタイミングを星印で表している。図12に示すように、導出部32は、被検者A~Cごとの第2生体情報を測定する期間(図12のグレーの領域)が時間的に互いに重複しないようにスケジューリングする。
 具体的には、導出部32は、被検者A~Cごとに導出された撮影推奨期間が重複する場合、撮影推奨期間の開始タイミング及び終了タイミングの少なくとも一方が早い被検者を優先して、第2生体情報を測定する期間をスケジューリングする。例えば、図12に示すように、導出部32は、撮影推奨期間の一部が重複している被検者Aと被検者Bに関して、撮影推奨期間の終了タイミングが早い被検者Aを優先して、第2生体情報を測定する期間をスケジューリングしてもよい。また例えば、図12に示すように、導出部32は、撮影推奨期間の一部が重複している被検者Bと被検者Cに関して、撮影推奨期間の開始タイミングが早い被検者Bを優先して、第2生体情報を測定する期間をスケジューリングしてもよい。
 また、導出部32は、被検者A~Cごとに導出された撮影推奨期間が重複する場合、撮影推奨期間の開始タイミングから終了タイミングまでの期間が長い被検者を中間の順番にして、第2生体情報を測定する期間をスケジューリングするようにしてもよい。例えば、図12に示すように、導出部32は、撮影推奨期間の開始タイミングから終了タイミングまでの期間が最も長い被検者Bを中間の順番にして、第2生体情報を測定する期間をスケジューリングしてもよい。このようにすることで、再スケジューリング(詳細は後述)を行いやすくなる。
 図12のスケジュールSは、導出部32により被検者ごとに予測された第1生体情報の時間変化に基づいて導出された各タイミングに基づいて、被検者ごとに第2生体情報を測定する期間をスケジューリングしたものである。すなわち、図12のスケジュールSは、あくまで予測した第1生体情報の時間変化に基づいて作成されたスケジュールであるため、実際の第1生体情報の経過とは整合しない場合が生じ得る。
 そこで、取得部30は、導出部32による第2生体情報を測定する期間のスケジューリング後、被検者ごとに第1生体情報の経過をモニタリングしてもよい。また、導出部32は、取得部30がモニタリングしている第1生体情報の経過と、予測した第1生体情報の時間変化と、の差が許容範囲を超える場合、第2生体情報を測定する期間のスケジューリングをやり直してもよい。具体的には、導出部32は、取得部30がモニタリングしている第1生体情報の経過に基づいて、第1生体情報の時間変化の再予測をし、再予測した第1生体情報の時間変化に基づいて、各タイミングの再導出をしてもよい。また、導出部32は、再導出した各タイミングに基づいて、第2生体情報を測定する期間の再スケジューリングをしてもよい。
 図13は、図12の1時間後に再スケジューリングを行った場合に提示される画面D3の一例を示す。図13において、当初の予測(図12の撮影推奨期間及び撮影ベストタイミング)から変更された各タイミングには取り消し線を付して、再導出後の各タイミングを記載している。図13の例では、被検者Cに関しては、取得部30がモニタリングしている第1生体情報の経過と、予測した第1生体情報の時間変化と、の差が許容範囲を超え、被検者A及びBに関しては許容範囲内であるとする。
 図13に示すように、導出部32は、被検者Cに関して、取得部30がモニタリングしている第1生体情報の経過に基づいて、第1生体情報の時間変化の再予測をし、再予測した第1生体情報の時間変化に基づいて、各タイミングの再導出をする。導出部32は、被検者Bよりも被検者Cの撮影推奨期間の終了タイミングが早くなったため、被検者Bよりも被検者Cを優先するよう、第2生体情報を測定する期間を再スケジューリングする。
 また、制御部34は、第2生体情報を測定する第2測定装置12に対して、導出部32がスケジューリングした期間において第2生体情報を測定するよう命令してもよい。具体的には、例えば、図13の例において、被検者Aは13時10分~13時30分の間に、被検者Bは13時50分~14時10分の間に、被検者Cは13時30分~13時50分の間に、第2生体情報を測定するよう第2測定装置12に対して命令してもよい。
 次に、図14を参照して、本例示的実施形態に係る情報処理装置10の作用を説明する。情報処理装置10において、CPU21が情報処理プログラム27を実行することによって、図14に示す第2情報処理が実行される。第2情報処理は、例えば、ユーザによって入力部25を介して実行開始の指示があった場合に実行される。
 ステップS20で、取得部30は、第1測定装置11から第1生体情報を取得する。ステップS22で、導出部32は、ステップS20で取得した第1生体情報に基づき、被検者ごとに第1生体情報の時間変化を予測する。ステップS24で、導出部32は、ステップS22で予測した第1生体情報の時間変化に基づき、第2生体情報の測定に適したタイミング(例えば、撮影推奨期間の開始タイミング及び終了タイミング、並びに撮影ベストタイミング)を導出する。ステップS26で、導出部32は、ステップS24で導出した各タイミングに基づいて、被検者ごとに第2生体情報を測定する期間をスケジューリングする。
 ステップS28で、取得部30は、各被検者の第1生体情報の経過をモニタリングする。ステップS30で、導出部32は、被検者ごとに、ステップS28でモニタリングしている第1生体情報の経過と、ステップS22で予測した第1生体情報の時間変化と、の差が許容範囲を超えるか否かを判定する。ステップS30が否定判定の場合(すなわち、ステップS28でモニタリングしている第1生体情報の経過と、ステップS22で予測した第1生体情報の時間変化と、の差が許容範囲を超える場合)、ステップS22~S28の処理をやり直す。一方、ステップS30が肯定判定の場合(すなわち、ステップS28でモニタリングしている第1生体情報の経過と、ステップS22で予測した第1生体情報の時間変化と、の差が許容範囲内の場合)は、本第2情報処理を終了する。
 以上説明したように、情報処理装置10は、少なくとも1つのプロセッサを備え、プロセッサは、複数の被検者の各々に関する経時的な第1生体情報を取得し、被検者ごとに、第1生体情報に基づいて、被検者の第1生体情報とは異なる第2生体情報の測定に適したタイミングを導出し、導出したタイミングに基づいて、被検者ごとに第2生体情報を測定する期間をスケジューリングする。すなわち、第2生体情報が診断に適した状態となるタイミングで第2生体情報を測定するようスケジューリングできるので、適切な診断のための第2生体情報を測定できる。
 なお、上記各例示的実施形態における情報処理システム1の構成は、図1に示す例に限らない。例えば、情報処理システム1に含まれる情報処理装置10、第1測定装置11及び第2測定装置12のうち一部又は全部が、同一の装置であってもよい。例えば、情報処理装置10が、第1生体情報を測定する第1測定装置11と、第2生体情報を測定する第2測定装置12と、を備えていてもよい。
 また例えば、図15に示すように、情報処理システム1が、第1生体情報を測定する第1測定装置11を内包する情報処理装置10と、情報処理装置10からの命令に応じて第2生体情報を測定する第2測定装置12と、を備える構成であってもよい。このような情報処理装置10としては、例えば、血糖自己測定器、並びに心拍及びSpO2等の第1生体情報を測定するセンサを備えたスマートウォッチ等のウェアラブル端末を適用してもよい。
 また例えば、図16に示すように、情報処理システム1が、第2生体情報を測定する第2測定装置12を内包する情報処理装置10と、情報処理装置10に対して第1生体情報を送信する第1測定装置11と、を備える構成であってもよい。このような情報処理装置10としては、例えば、医用画像撮影装置等のモダリティを適用してもよい。
 なお、図1、図15及び図16には、第1測定装置11及び第2測定装置をそれぞれ1台ずつ図示しているが、これに限らず、情報処理システム1は、複数台の第1測定装置11及び複数台の第2測定装置を備えていてもよい。また、複数台の第1測定装置11は、各々が互いに同じ種類の第1生体情報を測定するものであってもよいし、各々が互いに異なる種類の第1生体情報を測定するものであってもよい。同様に、複数台の第2測定装置12は、各々が互いに同じ種類の第2生体情報を測定するものであってもよいし、各々が互いに異なる種類の第2生体情報を測定するものであってもよい。
 また、上記例示的実施形態において、例えば、取得部30、導出部32及び制御部34といった各種の処理を実行する処理部(processing unit)のハードウェア的な構造としては、次に示す各種のプロセッサ(processor)を用いることができる。上記各種のプロセッサには、前述したように、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPUに加えて、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。
 1つの処理部は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種又は異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせや、CPUとFPGAとの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。
 複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアント及びサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System on Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサの1つ以上を用いて構成される。
 更に、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(circuitry)を用いることができる。
 また、上記例示的実施形態では、情報処理プログラム27が記憶部22に予め記憶(インストール)されている態様を説明したが、これに限定されない。情報処理プログラム27は、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、及びUSB(Universal Serial Bus)メモリ等の記録媒体に記録された形態で提供されてもよい。また、情報処理プログラム27は、ネットワークを介して外部装置からダウンロードされる形態としてもよい。さらに、本開示の技術は、情報処理プログラムに加えて、情報処理プログラムを非一時的に記憶する記憶媒体にもおよぶ。
 本開示の技術は、上記例示的実施形態例を適宜組み合わせることも可能である。以上に示した記載内容及び図示内容は、本開示の技術に係る部分についての詳細な説明であり、本開示の技術の一例に過ぎない。例えば、上記の構成、機能、作用及び効果に関する説明は、本開示の技術に係る部分の構成、機能、作用及び効果の一例に関する説明である。よって、本開示の技術の主旨を逸脱しない範囲内において、以上に示した記載内容及び図示内容に対して、不要な部分を削除したり、新たな要素を追加したり、置き換えたりしてもよいことはいうまでもない。
 2021年4月15日に出願された日本国特許出願2021-069309号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (18)

  1.  少なくとも1つのプロセッサを備え、
     前記プロセッサは、
     被検者の経時的な第1生体情報を取得し、
     前記第1生体情報に基づいて、前記被検者の前記第1生体情報とは異なる第2生体情報の測定に適したタイミングを導出する
     情報処理装置。
  2.  前記プロセッサは、
     前記第1生体情報の時間変化に基づいて、前記タイミングを導出する
     請求項1に記載の情報処理装置。
  3.  前記プロセッサは、
     前記第1生体情報に基づいて、前記第2生体情報の測定に適した期間の開始タイミング及び終了タイミングを導出する
     請求項1又は請求項2に記載の情報処理装置。
  4.  前記プロセッサは、
     前記第1生体情報に基づいて、前記第2生体情報の測定に最も適したタイミングを導出する
     請求項1から請求項3の何れか1項に記載の情報処理装置。
  5.  前記プロセッサは、
     前記第1生体情報の時間変化を予測し、
     予測した前記第1生体情報に基づいて、前記タイミングを導出する
     請求項1から請求項4の何れか1項に記載の情報処理装置。
  6.  前記プロセッサは、
     前記第1生体情報に関する過去のデータに基づいて、前記第1生体情報の時間変化を予測する
     請求項5に記載の情報処理装置。
  7.  前記プロセッサは、
     導出した前記タイミングを提示する
     請求項1から請求項6の何れか1項に記載の情報処理装置。
  8.  前記プロセッサは、
     前記第2生体情報の測定に適した期間の開始タイミングとなる前に、前記期間の開始を予告する
     請求項1から請求項7の何れか1項に記載の情報処理装置。
  9.  前記プロセッサは、
     前記第2生体情報の測定に適した期間の終了タイミングとなる前に、前記期間の終了を予告する
     請求項1から請求項8の何れか1項に記載の情報処理装置。
  10.  前記プロセッサは、
     前記第2生体情報を測定する第2測定装置に対して、導出した前記タイミングにおいて前記第2生体情報を測定するよう命令する
     請求項1から請求項9の何れか1項に記載の情報処理装置。
  11.  前記第1生体情報は、被検者の行動に応じて非周期的に変動する
     請求項1から請求項10の何れか1項に記載の情報処理装置。
  12.  前記第1生体情報は、体温、心拍、心電、筋電、血圧、動脈血酸素飽和度、血糖値及び脂質値のうち少なくとも1つを示し、
     前記第2生体情報は、心電、脳波、医用画像撮影装置により撮影された医用画像、並びに血液学的検査、感染症検査、生化学検査及び尿検査のうち少なくとも1つの結果、のうち少なくとも1つを示す
     請求項1から請求項11の何れか1項に記載の情報処理装置。
  13.  前記第1生体情報を測定する第1測定装置と、
     前記第2生体情報を測定する第2測定装置と、
     を備えた請求項1から12の何れか1項に記載の情報処理装置。
  14.  請求項1から12の何れか1項に記載の情報処理装置と、
     前記第1生体情報を測定する第1測定装置と、
     前記第2生体情報を測定する第2測定装置と、
     を備えた情報処理システム。
  15.  請求項1から12の何れか1項に記載の情報処理装置と、
     前記第1生体情報を測定する第1測定装置と、
     を備え、
     前記情報処理装置は、前記第2生体情報を測定する第2測定装置を更に備える
     情報処理システム。
  16.  請求項1から12の何れか1項に記載の情報処理装置と、
     前記第2生体情報を測定する第2測定装置と、
     を備え、
     前記情報処理装置は、前記第1生体情報を測定する第1測定装置を更に備える
     情報処理システム。
  17.  被検者の経時的な第1生体情報を取得し、
     前記第1生体情報に基づいて、前記被検者の前記第1生体情報とは異なる第2生体情報の測定に適したタイミングを導出する
     処理をコンピュータが実行する情報処理方法。
  18.  被検者の経時的な第1生体情報を取得し、
     前記第1生体情報に基づいて、前記被検者の前記第1生体情報とは異なる第2生体情報の測定に適したタイミングを導出する
     処理をコンピュータに実行させるための情報処理プログラム。
PCT/JP2022/016909 2021-04-15 2022-03-31 情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム WO2022220165A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023514611A JPWO2022220165A1 (ja) 2021-04-15 2022-03-31
US18/481,202 US20240029843A1 (en) 2021-04-15 2023-10-04 Information processing apparatus, information processing system, information processing method, and information processing program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021069309 2021-04-15
JP2021-069309 2021-04-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/481,202 Continuation US20240029843A1 (en) 2021-04-15 2023-10-04 Information processing apparatus, information processing system, information processing method, and information processing program

Publications (1)

Publication Number Publication Date
WO2022220165A1 true WO2022220165A1 (ja) 2022-10-20

Family

ID=83639749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016909 WO2022220165A1 (ja) 2021-04-15 2022-03-31 情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム

Country Status (3)

Country Link
US (1) US20240029843A1 (ja)
JP (1) JPWO2022220165A1 (ja)
WO (1) WO2022220165A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015142664A (ja) * 2014-01-31 2015-08-06 セイコーエプソン株式会社 生体情報処理装置及び生体情報処理方法
WO2019188909A1 (ja) * 2018-03-28 2019-10-03 富士フイルム株式会社 血液検査支援装置、血液検査支援システム、血液検査支援方法、及びプログラム
JP2020014804A (ja) * 2018-07-27 2020-01-30 キヤノンメディカルシステムズ株式会社 医用画像診断装置、モダリティ制御装置および医用情報管理装置
US20200297256A1 (en) * 2019-03-19 2020-09-24 Samsung Electronics Co., Ltd. Electronic device and method for notification of biometric information by electronic device
JP2021026447A (ja) * 2019-08-02 2021-02-22 キヤノンメディカルシステムズ株式会社 医用情報処理装置、医用情報処理方法および電子カルテシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015142664A (ja) * 2014-01-31 2015-08-06 セイコーエプソン株式会社 生体情報処理装置及び生体情報処理方法
WO2019188909A1 (ja) * 2018-03-28 2019-10-03 富士フイルム株式会社 血液検査支援装置、血液検査支援システム、血液検査支援方法、及びプログラム
JP2020014804A (ja) * 2018-07-27 2020-01-30 キヤノンメディカルシステムズ株式会社 医用画像診断装置、モダリティ制御装置および医用情報管理装置
US20200297256A1 (en) * 2019-03-19 2020-09-24 Samsung Electronics Co., Ltd. Electronic device and method for notification of biometric information by electronic device
JP2021026447A (ja) * 2019-08-02 2021-02-22 キヤノンメディカルシステムズ株式会社 医用情報処理装置、医用情報処理方法および電子カルテシステム

Also Published As

Publication number Publication date
JPWO2022220165A1 (ja) 2022-10-20
US20240029843A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
CN102469957B (zh) 用于操作监测系统的方法
US20200185107A1 (en) Digital twin operation
JP2005328924A (ja) 血糖値予測装置、血糖値予測モデル作成装置、およびプログラム
WO2013136585A1 (ja) 糖尿病治療支援装置、糖尿病治療支援方法、糖尿病治療支援プログラム
US8610769B2 (en) Medical monitor data collection system and method
Halamka et al. The digital reconstruction of health care
JP2016214563A (ja) 生体情報測定装置
WO2022220165A1 (ja) 情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム
WO2022220166A1 (ja) 情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム
Valentín et al. Dealing with childhood obesity: Passive versus active activity monitoring approaches for engaging individuals in exercise
Zakaria et al. Fetal movements recording system using accelerometer sensor
KR20170112954A (ko) 생체 신호 또는 생체 인식에 근거한 분류 및 후속 에스컬레이션 방법 및 장치
JP7119754B2 (ja) 健康管理装置、健康管理方法、及びプログラム
Zulj et al. Supporting diabetic patients with a remote patient monitoring systems
WO2022231000A1 (ja) 情報処理装置、情報処理方法及び情報処理プログラム
WO2022231001A1 (ja) 情報処理装置、情報処理方法及び情報処理プログラム
JP6906179B2 (ja) 体動分析システム、体動分析方法及びプログラム
WO2020206331A1 (en) Traumatic brain injury diagnostics system and method
Srisuchinwong et al. Acquiring unobtrusive sleep-related signals through an ESP32-based data logger
WO2022186359A1 (ja) 情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム
WO2022114010A1 (ja) 情報処理装置、情報処理方法及び情報処理プログラム
Hashim et al. Abnormal heart rate detection through real-time heart monitoring application
US20190150773A1 (en) Continuous cardiac monitoring and real time episode detection system
Songthawornpong et al. Continuous Monitoring of Vital Signs After Hospital Discharge: A Feasibility Study
US20230270362A1 (en) Continuous health monitoring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22788090

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2023514611

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22788090

Country of ref document: EP

Kind code of ref document: A1