WO2022219925A1 - Filter device and power converting device - Google Patents

Filter device and power converting device Download PDF

Info

Publication number
WO2022219925A1
WO2022219925A1 PCT/JP2022/007043 JP2022007043W WO2022219925A1 WO 2022219925 A1 WO2022219925 A1 WO 2022219925A1 JP 2022007043 W JP2022007043 W JP 2022007043W WO 2022219925 A1 WO2022219925 A1 WO 2022219925A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
capacitor
positive
negative
filter device
Prior art date
Application number
PCT/JP2022/007043
Other languages
French (fr)
Japanese (ja)
Inventor
ジャア 李
正美 野原
宏文 清水
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2022219925A1 publication Critical patent/WO2022219925A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/09Filters comprising mutual inductance

Definitions

  • the present invention relates to a filter device and a power conversion device.
  • the power converters installed in hybrid and electric vehicles meet the independent standards established by each car manufacturer based on the high-voltage conduction noise standards added to the international standards regarding the handling of conductive noise generated by leakage current. There is a need.
  • demands for miniaturization and cost reduction are increasing in recent years. Therefore, there is a strong demand for a filter device provided in a power conversion device to improve high-frequency noise attenuation performance while maintaining cost reduction and miniaturization.
  • Patent Document 1 discloses a technique showing a structure in which an inductance component that passes low-frequency components and a resistance component that passes high-frequency components are connected in parallel in order to apply large currents.
  • a filter device of the present invention and a power conversion device including the same are a filter device having one end connected to a DC power supply side and the other end connected to a power conversion circuit side, comprising a positive wire, a negative wire, and the a first capacitor and a second capacitor connected in parallel between the positive electrode wiring and the negative electrode wiring; a second positive electrode connection portion connected to the second capacitor on the other end side; and the negative electrode wiring has a first negative electrode connection portion connected to the second capacitor on the one end side and a second negative electrode connecting portion connected to the second capacitor, wherein the positive electrode wiring and the negative electrode wiring intersect.
  • the present invention it is possible to provide a filter device and a power conversion device in which cost reduction, miniaturization, and noise reduction are all achieved.
  • FIG. 1 is a block diagram showing the overall configuration of a power converter according to an embodiment of the present invention
  • FIG. FIG. 2 is an equivalent circuit diagram of a noise filter for normal mode high voltage conduction noise reduction
  • FIG. 2 is an equivalent circuit diagram including parasitic components of the noise filter.
  • FIG. 4 is a characteristic diagram showing insertion loss of the noise filter of FIG. 3; It is a figure which shows an example of the structure of a noise filter.
  • FIG. 10 is an equivalent circuit diagram including parasitic components of a noise filter to which a conventional technique is applied;
  • FIG. 7 is a characteristic diagram showing insertion loss of the noise filter of FIG. 6; It is a diagram showing the structure of the noise filter according to the first embodiment.
  • FIG. 9 is a characteristic diagram showing insertion loss of the noise filter of FIG.
  • FIG. 1 is a block diagram showing the overall configuration of a power converter according to an embodiment of the present invention.
  • the power conversion device 1 (hereinafter referred to as the inverter 1) stores various circuit blocks and elements.
  • the inverter 1 is also connected to a high-voltage battery 2 that supplies a DC high voltage, and an electric motor 6 that is driven by an AC voltage converted from the DC voltage by the inverter 1 .
  • the housing of the inverter 1 is a metal case and is connected to a GND plane 9 via a GND strap 8. It is placed on an insulator 7 having a height of 5 mm, for example, in compliance with the international standard CISPR25. Configuration.
  • the inverter 1 has a switching circuit 14 for converting DC voltage into AC voltage.
  • the switching circuit 14 includes three unit switching circuits SW1 to SW3 having the same configuration, and switches these periodically.
  • the unit switching circuits SW1 to SW3 are provided with insulated gate bipolar transistors (hereinafter referred to as transistors) TR1 and TR2 and diodes D1 and D2, respectively.
  • the inverter 1 includes a control circuit board that generates control signals for the switching circuit 14 .
  • Diodes D1 and D2 are connected between the respective collectors and emitters of the transistors TR1 and TR2.
  • the collector of the transistor TR1 is electrically connected to a positive wiring 11, which is a DC wiring
  • the emitter of the transistor TR2 is electrically connected to a negative wiring 12, which is also a DC wiring.
  • the emitter of transistor TR1 is connected to the collector of transistor TR2.
  • a connection node connected between the emitter and the collector is an output node. W, respectively.
  • a switch control signal from a control circuit board (not shown) is supplied to gates of transistors TR1 and TR2 of unit switching circuits SW1 to SW3.
  • This switch control signal controls the switching of the transistors TR1 and TR2 so as to complementarily turn them on and off. Further, the transistors TR1 and TR2 complementarily turn on/off, so that the output node periodically outputs a positive voltage and a negative voltage, that is, an AC voltage.
  • stray capacitance parasitic capacitance
  • stray capacitance 1-Cs this stray capacitance is shown as stray capacitance 1-Cs.
  • the high voltage source impedance stabilization network (LISN) 3 will be explained.
  • a high voltage battery 2 feeds the inverter 1 via a high voltage source impedance stabilization network (LISN) 3 .
  • the housing 3 has a positive LISN circuit section 31 connected to the positive electrode terminal HVP of the high voltage battery 2 and a negative LISN circuit section 32 connected to the negative electrode terminal HVN of the high voltage battery 2. and are housed in a metal housing.
  • the housing of LISN 3 is connected to GND plane 9 .
  • the positive LISN circuit section 31 and the negative LISN circuit section 32 are electrically connected to the positive wiring 11 and the negative wiring 12 which are the DC wiring of the inverter 1 via the high voltage DC cable 4 .
  • the electric motor 6 will be explained.
  • the electric motor 6 is composed of a three-phase electric motor and has a rotor and a stator (not shown). Also, the housing of the electric motor 6 is connected to the GND plane 9 .
  • This electric motor 6 applies a three-phase AC voltage generated by the inverter 1 to three-phase coils 6-U, 6-V of U, V, and W arranged on a stator via a high-voltage AC cable 5. , 6-W.
  • the three-phase coils 6-U, 6-V, and 6-W generate magnetic fields corresponding to the three-phase AC voltages, and the rotor rotates.
  • stray capacitance parasitic capacitance generated between the three-phase coils 6-U, 6-V, 6-W and the housing of the motor 6 is shown as stray capacitance 6-Cs.
  • the housing of the electric motor 6 is connected to the GND plane 9 .
  • a smoothing capacitor Cx for smoothing the DC voltage and a noise filter device 13 are provided between the positive electrode wiring 11 and the negative electrode wiring 12.
  • the smoothing capacitor Cx suppresses ripple voltage and ripple current generated in the DC wirings 11 and 12, which are busbars connected to the high DC voltage, during the switching operation of the switching circuit 14.
  • the smoothing capacitors Cx1 and Cx2 are for normal mode noise reduction. The reduction effect or attenuation performance is generally expressed by the insertion loss of the filter. The reduction mechanism by the capacitor will be described below.
  • the principle is to suppress the outflow of noise to the outside by providing a low-impedance path between DC wirings by mounting a noise filter. Also, in order to suppress high-voltage conduction noise in a wide frequency band, generally two capacitors with different capacities connected in parallel are used.
  • the noise filter device 13 includes a magnetic core Lc surrounding DC wiring including a positive electrode wiring 11 and a negative electrode wiring 12, a first grounding capacitor Cy1 connected to the DC wirings 11 and 12 in a stage preceding the magnetic core Lc, a magnetic It has a second grounding capacitor Cy2 connected to the DC wirings 11 and 12 in the subsequent stage of the body core Lc.
  • the ground capacitors Cy1 and Cy2 and the magnetic core Lc are for common mode noise reduction.
  • the first grounded capacitor Cy1 is composed of a grounded capacitor Cy11 connected between the positive wiring 11 and the first grounding point G1, and a grounded capacitor Cy12 connected between the negative wiring 12 and the first grounding point G1.
  • the second grounding capacitor Cy2 includes a grounding capacitor Cy21 connected between the positive wiring 11 and the second grounding point G2, and a grounding capacitor Cy22 connected between the negative wiring 12 and the second grounding point G2. and consists of
  • the noise filter device 13 attenuates the noise of the DC high voltage supplied from the high voltage battery 2 and inputs the DC high voltage to the switching circuit 14, which is the power converter.
  • a noise current that causes noise is a current leaking from a power supply wiring or cable connected between the DC high voltage battery 2 and the inverter 1, and is a common mode current because it flows between GND.
  • the common mode current is due to voltage fluctuations to ground that occur during the switching operation in which the transistors TR1 and TR2 are periodically turned on/off. Due to the voltage fluctuation generated at the output of the switching circuit 14, the stray capacitance 1-Cs between the switching circuit 14 and the housing of the inverter 1 and the coils 6-U to W of the motor 6 and the housing A common mode current flows between the housings of the inverter 1 and the motor 6 through the stray capacitance 6-Cs present therebetween, and this current generates high-voltage conduction noise. Therefore, in order to reduce the high voltage conduction noise, it is necessary to reduce the common mode current. In the inverter 1, by using the configuration of the noise filter device 13, the noise current, which is the main cause of the high voltage conduction noise, is dealt with, and the noise is attenuated while complying with the high voltage conduction noise standard.
  • Noise standards The high voltage conducted noise standard will be explained. Noise standards generally define regulation values in a frequency band from 0.15 MHz to 108 MHz.
  • the high-voltage conduction noise standard is a standard added in CISPR25 Ed4, which is an international standard created by the International Special Committee on Radio Interference (CISPR) in October 2016. This regulates noise in the FM broadcast frequency band (76 MHz to 108 MHz), which is used in various applications, to be lower than in other frequency bands.
  • High-voltage conduction noise for example, may cause malfunctions of in-vehicle electrical and electronic equipment.
  • the inverter 1 employs the noise filter device 13 in order to conform to the high-voltage conduction noise standard and provide an effective filter configuration.
  • FIG. 2 is an equivalent circuit diagram of the noise filter device 13 for normal mode high voltage conduction noise reduction.
  • Capacitors Cx1 and Cx2 are connected in parallel to the positive DC wiring 11 and the negative DC wiring 12 .
  • P1 and N1 are connection portions between Cx1 and positive DC wiring 11 and negative DC wiring 12, respectively, and P2 and N2 are connection portions between Cx2 and positive DC wiring 11 and negative DC wiring 12, respectively.
  • Pin and Nin are input terminals on the positive and negative sides, respectively, and represent connections between the switching circuit 14 as a noise source and the positive DC wiring 11 and the negative wiring 12 .
  • Pout and Nout are output terminals on the positive and negative sides, respectively, and represent connections between the positive DC wiring 11 and the negative wiring 12 and the high-voltage DC cable 4 .
  • the noise reduction effect NS is expressed by the following equation (1) using an input voltage Vin (simulating a noise source) input between Pin and Nin and an output voltage Vout output between Pout and Nout. is represented by
  • capacitor parts and DC wiring have parasitic inductance (hereinafter referred to as ESL) components such as lead wires.
  • FIG. 3 is an equivalent circuit diagram including the parasitic components of the noise filter device 13 in FIG.
  • the parasitic inductances of the first capacitor Cx1 and the second capacitor Cx2 are represented by equivalent series inductances Lc1 and Lc2, respectively.
  • the inductance component of the positive DC wiring 11 between the positive connection portions P1 and P2 is an equivalent series inductance Lp1
  • the inductance component of the negative DC wiring 12 between the negative connection portions N1 and N2 is an equivalent series inductance Ln1.
  • Lp0 is the inductance component of the positive DC wiring between Pout-P1
  • Lp2 is the inductance component of the positive DC wiring between Pin-P2
  • Ln0 is the inductance component of the negative DC wiring between Nout-N1
  • Ln2 is the inductance component of the negative DC wiring between Nin-N2.
  • k1 is the coupling coefficient between inductors having inductances Lp1 and Ln1. Coupling coefficients between inductors having inductance components of Lp0 and Ln0 and Lp2 and Ln2 are not shown, but are used in actual calculations.
  • the * marks attached to the inductors Lp1 and Ln1 indicate the direction of magnetic field generation.
  • the power source Gn is an AC voltage source that simulates the noise voltage generated by the switching circuit 14, and V1 is a voltmeter that measures the power source Gn.
  • Resistors R3 and R4 simulate the internal resistance of the power supply Gn and the equivalent resistance of components connected to the output side, respectively.
  • V2 is a voltmeter that measures the voltage across resistor R4.
  • FIG. 4 is a characteristic diagram showing the insertion loss of the noise filter device 13 of FIG.
  • the horizontal axis indicates the frequency F (Frequency [MHz]), and the vertical axis indicates the insertion loss of the noise filter device 13, that is, the ratio of the voltages V2 and V1 shown in FIG. 3 in decibels (dB). represent.
  • F Frequency [MHz]
  • V1 decibels
  • a characteristic curve GLb1 shows changes in insertion loss with changes in the frequency F when the equivalent series inductances Lc1 and Lc2 of the capacitors Cx1 and Cx2 are respectively 0 nH.
  • the characteristic curve GLb0 shows changes in the insertion loss when the equivalent series inductances Lc1 and Lc2 are each set to a typical value of 40 nH.
  • the parameters of the circuit elements other than Lc1 and Lc2 when obtaining the characteristic curves GLb0 and GLb1 are the same.
  • the filter insertion loss of the characteristic curve GLb0 is worse than that of the characteristic curve GLb1 in the target frequency band of 20 MHz or higher.
  • the high voltage conduction noise standard defines the regulation value in the frequency band from 0.15MHz to 108MHz, and in particular, the 20MHz including the FM frequency band (76MHz to 108MHz) used in various applications In the above high frequency band, since it is regulated to be lower than other frequency bands, it is necessary to improve the insertion loss of the filter.
  • FIG. 5 is a diagram showing an example of the structure of a noise filter.
  • the wirings 111 and 121 between the connecting portions are each about 10 mm long and about 15 mm wide, and the calculated inductance component is about 10 nH. These values are used to calculate the insertion loss of the filter using the equivalent circuit (Fig. 6). The calculation results are illustrated in FIG.
  • FIG. 6 is an equivalent circuit diagram including parasitic components of a noise filter to which the prior art is applied.
  • connection wiring between the first capacitor Cx1 and the positive electrode wiring 11 and the connection wiring between the second capacitor Cx2 and the positive electrode wiring 11 are crossed.
  • An example in which the first capacitor Cx1 and the second capacitor Cx2 are structurally intersected using this circuit configuration is shown in FIG. 12(b) described later.
  • connection wiring Conventionally, as a technology to offset the ESL component, there is a technology to adopt a capacitor with a short lead wire or cut the lead wire to make it shorter, but it requires the addition of custom products and cutting work, and the manufacturing of power converters A new issue arises when prices rise. To solve this problem, the circuit configuration shown in FIG. 6 is used to cancel out the ESL components.
  • the inductance components Lp1 and Ln1 of the wiring between the connection parts can be aligned with the ESL components Lc1 and Lc2 of the capacitor. This can improve the insertion loss of the filter.
  • the ESL component is about several nH.
  • the inductance component of the wiring between the connecting parts can be matched with the ESL component of the capacitor.
  • the capacitors used in noise filters are of the high-voltage type. Compared to low-voltage/low-current applications such as control boards, it is larger, and is about 40 to 50 nH. In this case, it is necessary to increase the width of the DC wiring in order to maintain thermal feasibility, and since the space for arranging the DC wiring is limited due to the demand for miniaturization, it is also necessary to shorten the bus bar. That is, the inductance component of the DC wiring tends to decrease, making it difficult to match the ESL component of the capacitor, which increases. As a result, there arises a problem that the effect of improving the insertion loss of the filter cannot be obtained.
  • the present invention is to structurally solve this problem while utilizing the properties of the circuit shown in FIG.
  • FIG. 7 is a characteristic diagram showing the insertion loss of the noise filter of FIG.
  • a characteristic curve GLb2 shows changes in the insertion loss of the filter with changes in the frequency F when the inductors Lp1 and Ln1 are 10 nH.
  • a characteristic curve GLb0 shows changes in insertion loss when there is no crossing wire, and is the same as GLb0 in FIG.
  • the parameters of the circuit elements other than the wiring crossing configuration when obtaining the characteristic curves GLb0 and GLb2 are the same as those in FIG.
  • FIG. 8 is a diagram showing the structure of the noise filter device 13 according to the first embodiment.
  • FIG. 8(a) is a circuit diagram of the noise filter device 13 according to the first embodiment of the present invention
  • FIG. 8(b) is a diagram showing its three-dimensional structure.
  • one end (left side of FIG. 8(a)) of the circuit blocks and parts stored in the housing of the inverter 1 is connected to the DC power supply (high voltage battery 2) side, and the other end is connected to the DC power supply (high voltage battery 2) side.
  • a noise filter device 13 is shown whose end (right side in FIG. 8(a)) is connected to the power conversion circuit (switching circuit 14) side.
  • a feature of the present invention is that the positive electrode wiring 111 connecting the first positive electrode connecting portion P1 and the second positive electrode connecting portion P2 and the negative electrode wiring 121 connecting the first negative electrode connecting portion N1 and the second negative electrode connecting portion N2 are provided. , is to cross. This crossing portion is laminated as shown in FIG. It is possible to control and match the ESL components Lc1 and Lc2 of the first capacitor Cx1 and the second capacitor Cx2.
  • FIG. 9 is a characteristic diagram showing the insertion loss of the noise filter of FIG.
  • a characteristic curve GLb3 employing the present invention shows changes in insertion loss with changes in the frequency F when the inductance components of Lp1 and Ln1 are approximately 40 nH, and the insertion loss is 20 dB or more in a high frequency band of 20 MHz or more. improvement effect was obtained.
  • FIG. 10 is a diagram showing the structure of the noise filter device 13 according to the second embodiment. Note that FIG. 10(a) is the same as FIG. 8(a).
  • the intersections of the positive wiring 111 and the negative wiring 121 are arranged along multiple surfaces of the first capacitor Cx1 and the second capacitor Cx2, which are polyhedral capacitors. Also, when the capacitance of the capacitor Cx2 is smaller than that of the capacitor Cx1, the busbar crossing portion is along the lower surface of the capacitor Cx2. The lower surface of the capacitor Cx2 is the installation side to the case (housing of the inverter 1). As a result, the area for distributing the busbars can be further secured, and the inductance components of the positive electrode wiring 111 and the negative electrode wiring 121 can be increased.
  • the intersecting positive electrode wiring 111 and negative electrode wiring 121 are arranged along a plurality of surfaces of each of the first capacitor and the second capacitor, and the busbar intersections are arranged in a meandering manner. As a result, it is possible to further ensure the distribution area of the busbars.
  • the busbar intersection may be arranged along only the side surface of the capacitor on the side closer to the noise source or the side closer to the output terminal.
  • FIG. 11 is a diagram showing the structure of the noise filter device 13 according to the third embodiment. Note that FIG. 11(a) is the same view as FIGS. 8(a) and 10(a).
  • the intersection is arranged along only the side surface of the capacitor on the side closer to the noise source (power converter side). By doing so, it is possible to prevent an increase in size in the height direction.
  • FIG. 12 is a diagram showing a comparison between the prior art, the first embodiment, and the second embodiment.
  • 12(a) is a noise filter having the same structure as that of FIG. 5, and
  • FIG. 12(b) is a noise filter obtained by structuring the circuit diagram of FIG.
  • FIG. 12(c) shows the first embodiment
  • FIG. 12(d) shows the second embodiment.
  • FIG. 12 shows the case where FIG. 12(a) and FIG. 12(b) are implemented, and FIG. 12(c) which is the first embodiment and FIG. 12(d) which is the second embodiment. ) has an increased inductance component. Furthermore, in the second embodiment in which the busbar area is larger than that in the first embodiment, the inductance component is further increased than in the first embodiment.
  • the current flows in the same direction at the crossings, so magnetic fields in the same direction are generated. Therefore, the mutual coefficient and mutual inductance at this portion become positive values, and the inductance component of the entire wiring becomes larger. That is, as described above, by adjusting the area/interval of the intersection and the length/width of the wiring, the inductance component of the wiring can be controlled to match the ESL component of the capacitor. Thus, by canceling the ESL component of the capacitor, it is possible to improve the insertion loss characteristic of the filter and suppress the high frequency normal mode high voltage conduction noise.
  • the filter device 13 has one end connected to the DC power supply side and the other end connected to the power conversion circuit side.
  • One end of the positive electrode wiring 11 is connected to the first capacitor Cx1, and the other end is connected to the second capacitor Cx2.
  • the negative electrode wiring 12 has a first negative electrode connection portion N1 connected to the second capacitor Cx2 on one end side and a second negative electrode connection portion N1 connected to the second capacitor Cx2 on the other end side. , and the positive wiring 11 and the negative wiring 12 cross each other.
  • the intersections of the positive wiring 11 and the negative wiring 12 are laminated.
  • the inductance components of the positive electrode wiring 11 and the negative electrode wiring 12 can be controlled, and the first capacitor Cx1 and the second capacitor Cx2 can be controlled. It can be aligned with the ESL components Lc1 and Lc2.
  • the positive wiring 11 and the negative wiring 12 are arranged along multiple surfaces of the first capacitor Cx1 and the second capacitor Cx2, respectively. By doing so, the distribution area of the busbars 11 and 12 can be secured.
  • the intersection between the positive electrode wiring 11 and the negative electrode wiring 12 meanders. By doing so, the distribution area of the busbars 11 and 12 can be secured.
  • the inductance between the positive wire 11 and the negative wire 12 is substantially equal to the inductance of the first capacitor Cx1 or the second capacitor Cx2.
  • the present invention is not limited to the above embodiments, and various modifications and other configurations can be combined without departing from the scope of the invention. Moreover, the present invention is not limited to those having all the configurations described in the above embodiments, and includes those having some of the configurations omitted.
  • a power conversion device mounted on a vehicle such as a hybrid vehicle or an electric vehicle has been described as an example, but the present invention is not limited to these, but the power conversion device used in construction machinery and the like and railway vehicles. It can also be applied to devices.
  • Power converter (inverter) 1-Cs Switching circuit/stray capacitance between cases 2: High voltage battery 3: High voltage source impedance stabilization network (LISN) 31 Positive pole LISN circuit section 32 Negative pole LISN circuit section 4 High voltage DC cable 5 High voltage AC cable 6 Electric motor 6-U U phase coil 6 V V phase coil 6 W W phase coil 6 -Cs... Stray capacitance between coil and case 7... Insulator 8... GND strap 9... GND plane 10... Current 10a... Reverse current 10b... Same direction current 11... Positive electrode (DC) wiring 12...
  • DC Positive electrode
  • Noise filter device 14 Switching circuit 111 Positive wiring 121 connecting first positive connecting portion P1 and second positive connecting portion P2 Connecting first negative connecting portion N1 and second negative connecting portion N2 Negative electrode wiring SW1 to SW3 Unit switching circuits TR1, TR2 Insulated gate bipolar transistors D1, D2 Diode Cx Smoothing capacitor Gn Power supply Lc Magnetic cores Lc1, Lc2 Equivalent series inductance Lp0 to Lp3 Equivalent series inductance ( positive electrode wiring) Ln0 to Ln3 ...

Abstract

This filter device, one end of which is connected to the side of a DC power source and the other end of which is connected to the side of a power converting circuit, comprises: a positive polarity wiring; a negative polarity wiring; and a first capacitor and a second capacitor that are connected in parallel between the positive polarity wiring and the negative polarity wiring. The positive polarity wiring has, on the side of said one end, a first positive polarity connection part connected to the first capacitor and has, on the side of said other end, a second positive polarity connection part connected to the second capacitor. The negative polarity wiring has, on the side of said one end, a first negative polarity connection part connected to the second capacitor and has, on the side of said other end, a second negative polarity connection part connected to the second capacitor. The positive polarity wiring and the negative polarity wiring are crossed.

Description

フィルタ装置及び電力変換装置Filter device and power conversion device
 本発明は、フィルタ装置及び電力変換装置に関する。 The present invention relates to a filter device and a power conversion device.
 ハイブリッド自動車や電気自動車に搭載されている電力変換装置は、漏れ電流により発生する伝導性ノイズの対応について、国際規格に追加された高電圧伝導ノイズ規格に基づき各カーメーカーが制定した独自規格を満たす必要がある。それと同時に、電力変換装置は搭載される電気自動車の発展に合わせて、近年、小型化と低コスト化の要求が高まっている。そのため、電力変換装置に備わるフィルタ装置は、低コスト化及び小型化を維持させつつ高周波ノイズ減衰性能を向上させることが強く求められている。 The power converters installed in hybrid and electric vehicles meet the independent standards established by each car manufacturer based on the high-voltage conduction noise standards added to the international standards regarding the handling of conductive noise generated by leakage current. There is a need. At the same time, along with the development of electric vehicles in which power converters are mounted, demands for miniaturization and cost reduction are increasing in recent years. Therefore, there is a strong demand for a filter device provided in a power conversion device to improve high-frequency noise attenuation performance while maintaining cost reduction and miniaturization.
 本願発明の背景技術として、下記の特許文献1では、大電流適用のため、低周波成分を通すインダクタンス成分と高周波成分を通す抵抗成分を並列接続する構造を示す技術が開示されている。 As the background art of the present invention, Patent Document 1 below discloses a technique showing a structure in which an inductance component that passes low-frequency components and a resistance component that passes high-frequency components are connected in parallel in order to apply large currents.
特開2010-273207号公報JP 2010-273207 A
 車載インバータなど高電圧・大電流応用の場合には、高圧・大電流応用且つ小型化により限られた配置空間で、いかに直流配線のインダクタンス成分を自由にコントロールし、コンデンサのESL(Equivalent Series Inductance)成分に容易に揃えられるか、が課題となる。しかしながら、特許文献1の技術では、高圧・大電流応用且つ小型化により限られた配置空間において、低コスト化及び小型化を維持しながら、直流配線のインダクタンス成分をコンデンサのESL成分に揃えて高周波ノイズ減衰性能を向上させることが困難である。 In the case of high-voltage/high-current applications such as in-vehicle inverters, it is necessary to freely control the inductance component of the DC wiring in the limited layout space due to high-voltage/high-current applications and miniaturization, and how to control the ESL (Equivalent Series Inductance) of the capacitor. The challenge is whether it is easy to match the ingredients. However, in the technique of Patent Document 1, the inductance component of the DC wiring is aligned with the ESL component of the capacitor in the limited installation space due to high voltage / large current application and miniaturization, while maintaining low cost and miniaturization. It is difficult to improve noise attenuation performance.
 これを鑑みて、本発明は、低コスト化と小型化と低ノイズ化とを並立させたフィルタ装置及び電力変換装置を提供することが目的である。 In view of this, it is an object of the present invention to provide a filter device and a power conversion device that combine cost reduction, miniaturization, and noise reduction.
 本発明のフィルタ装置およびそれを備えた電力変換装置は、一端が直流電源側に接続され、他端が電力変換回路側に接続されるフィルタ装置であって、正極配線と、負極配線と、前記正極配線及び前記負極配線の間に並列に接続された第1コンデンサ及び第2コンデンサと、を備え、前記正極配線は、前記一端側に前記第1コンデンサと接続する第1正極接続部と、前記他端側に前記第2コンデンサと接続する第2正極接続部と、を有し、前記負極配線は、前記一端側に前記第2コンデンサと接続する第1負極接続部と、前記他端側に前記第2コンデンサと接続する第2負極接続部と、を有し、前記正極配線と前記負極配線とは交差する。 A filter device of the present invention and a power conversion device including the same are a filter device having one end connected to a DC power supply side and the other end connected to a power conversion circuit side, comprising a positive wire, a negative wire, and the a first capacitor and a second capacitor connected in parallel between the positive electrode wiring and the negative electrode wiring; a second positive electrode connection portion connected to the second capacitor on the other end side; and the negative electrode wiring has a first negative electrode connection portion connected to the second capacitor on the one end side and a second negative electrode connecting portion connected to the second capacitor, wherein the positive electrode wiring and the negative electrode wiring intersect.
 本発明によれば、低コスト化と小型化と低ノイズ化とを並立させたフィルタ装置及び電力変換装置を提供できる。 According to the present invention, it is possible to provide a filter device and a power conversion device in which cost reduction, miniaturization, and noise reduction are all achieved.
本発明の実施形態にかかる電力変換装置の全体構成を示すブロック図である。1 is a block diagram showing the overall configuration of a power converter according to an embodiment of the present invention; FIG. ノーマルモード高電圧伝導ノイズ低減用のノイズフィルタの等価回路図である。FIG. 2 is an equivalent circuit diagram of a noise filter for normal mode high voltage conduction noise reduction; 図2にノイズフィルタの寄生成分を含めた等価回路図である。FIG. 2 is an equivalent circuit diagram including parasitic components of the noise filter. 図3のノイズフィルタの挿入ロスを示す特性図である。FIG. 4 is a characteristic diagram showing insertion loss of the noise filter of FIG. 3; ノイズフィルタの構造の一例を示す図である。It is a figure which shows an example of the structure of a noise filter. 従来技術を適用したノイズフィルタの寄生成分を含めた等価回路図である。FIG. 10 is an equivalent circuit diagram including parasitic components of a noise filter to which a conventional technique is applied; 図6のノイズフィルタの挿入ロスを示す特性図である。FIG. 7 is a characteristic diagram showing insertion loss of the noise filter of FIG. 6; 第1の実施形態にかかるノイズフィルタの構造を示す図である。It is a diagram showing the structure of the noise filter according to the first embodiment. 図8のノイズフィルタの挿入ロスを示す特性図である。FIG. 9 is a characteristic diagram showing insertion loss of the noise filter of FIG. 8; 第2の実施形態にかかるノイズフィルタの構造を示す図である。It is a figure which shows the structure of the noise filter concerning 2nd Embodiment. 第3の実施形態にかかるノイズフィルタの構造を示す図である。It is a figure which shows the structure of the noise filter concerning 3rd Embodiment. 従来技術と第1の実施形態と第2の実施形態との比較を示す図である。It is a figure which shows the comparison of a prior art, 1st Embodiment, and 2nd Embodiment.
 以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description and drawings are examples for explaining the present invention, and are appropriately omitted and simplified for clarity of explanation. The present invention can also be implemented in various other forms. Unless otherwise specified, each component may be singular or plural.
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。 The position, size, shape, range, etc. of each component shown in the drawings may not represent the actual position, size, shape, range, etc. in order to facilitate the understanding of the invention. As such, the present invention is not necessarily limited to the locations, sizes, shapes, extents, etc., disclosed in the drawings.
(本発明の全体構成)
 図1は、本発明の実施形態にかかる電力変換装置の全体構成を示すブロック図である。
(Overall configuration of the present invention)
FIG. 1 is a block diagram showing the overall configuration of a power converter according to an embodiment of the present invention.
 電力変換装置1(以下、インバータ1)は種々の回路ブロックおよび素子が格納されている。また、インバータ1は、直流高電圧を給電する高電圧バッテリ2と、インバータ1で直流電圧から変換された交流電圧によって駆動される電気モータ6と、接続されている。 The power conversion device 1 (hereinafter referred to as the inverter 1) stores various circuit blocks and elements. The inverter 1 is also connected to a high-voltage battery 2 that supplies a DC high voltage, and an electric motor 6 that is driven by an AC voltage converted from the DC voltage by the inverter 1 .
 インバータ1の筐体は、金属ケースでありGNDストラップ8を介してGNDプレーン9に接続しており、国際規格CISPR25に準拠して、例えば高さが5mmの絶縁物7の上に置かれている構成である。 The housing of the inverter 1 is a metal case and is connected to a GND plane 9 via a GND strap 8. It is placed on an insulator 7 having a height of 5 mm, for example, in compliance with the international standard CISPR25. Configuration.
 インバータ1は、直流電圧を交流電圧に変換するために、スイッチング回路14を有している。スイッチング回路14は、互いに同じ構成を有する3個の単位スイッチング回路SW1~SW3を備えており、これらを周期的にスイッチングしている。また、単位スイッチング回路SW1~SW3は、それぞれ絶縁ゲート型バイポーラトランジスタ(以下、トランジスタ)TR1,TR2、およびダイオードD1,D2を備えている。なお、図示しないが、インバータ1は、スイッチング回路14の制御信号を生成する制御回路基板を備えている。 The inverter 1 has a switching circuit 14 for converting DC voltage into AC voltage. The switching circuit 14 includes three unit switching circuits SW1 to SW3 having the same configuration, and switches these periodically. The unit switching circuits SW1 to SW3 are provided with insulated gate bipolar transistors (hereinafter referred to as transistors) TR1 and TR2 and diodes D1 and D2, respectively. Although not shown, the inverter 1 includes a control circuit board that generates control signals for the switching circuit 14 .
 トランジスタTR1,TR2のそれぞれのコレクタ-エミッタ間にダイオードD1,D2が接続されている。トランジスタTR1のコレクタは、直流配線である正極配線11に電気的に接続され、トランジスタTR2のエミッタは、おなじく直流配線である負極配線12に電気的に接続されている。トランジスタTR1のエミッタは、トランジスタTR2のコレクタに接続されている。また、このエミッタとコレクタとの間に接続されている接続ノードは出力ノードであり、各単位スイッチング回路SW1~SW3から高電圧ACケーブル5を介して、電気モータ6のコイル6-U~6-Wにそれぞれ接続されている。 Diodes D1 and D2 are connected between the respective collectors and emitters of the transistors TR1 and TR2. The collector of the transistor TR1 is electrically connected to a positive wiring 11, which is a DC wiring, and the emitter of the transistor TR2 is electrically connected to a negative wiring 12, which is also a DC wiring. The emitter of transistor TR1 is connected to the collector of transistor TR2. A connection node connected between the emitter and the collector is an output node. W, respectively.
 インバータ1の制御信号の流れを説明する。図示しない制御回路基板からのスイッチ制御信号が、単位スイッチング回路SW1~SW3のトランジスタTR1およびTR2のゲートに供給される。このスイッチ制御信号によってトランジスタTR1とTR2は、相補的にオン状態/オフ状態となるようにスイッチング制御される。さらに、トランジスタTR1とTR2とが相補的にオン状態/オフ状態となることによって、出力ノードには、周期的に正極電圧と負極電圧、つまり交流電圧が出力される。 The flow of control signals for the inverter 1 will be explained. A switch control signal from a control circuit board (not shown) is supplied to gates of transistors TR1 and TR2 of unit switching circuits SW1 to SW3. This switch control signal controls the switching of the transistors TR1 and TR2 so as to complementarily turn them on and off. Further, the transistors TR1 and TR2 complementarily turn on/off, so that the output node periodically outputs a positive voltage and a negative voltage, that is, an AC voltage.
 なお、トランジスタTR1,TR2の周期的なオン/オフによる出力部の電圧変動によって、スイッチング回路14とインバータ1の筐体との間に、浮遊容量(寄生容量)が発生する。図1では、この浮遊容量を、浮遊容量1-Csとして示している。 Note that stray capacitance (parasitic capacitance) is generated between the switching circuit 14 and the housing of the inverter 1 due to voltage fluctuations in the output section caused by the periodic on/off of the transistors TR1 and TR2. In FIG. 1, this stray capacitance is shown as stray capacitance 1-Cs.
 高電圧電源インピーダンス安定回路網(LISN)3について説明する。高電圧バッテリ2は、高電圧電源インピーダンス安定回路網(LISN)3を介して、インバータ1に給電する。この筐体3は、高電圧バッテリ2の正極電極端子HVPに接続される正極LISN回路部31と、高電圧バッテリ2の負極電極端子HVNに接続される負極LISN回路部32と、を有しており、これらが金属製の筐体に格納されている。LISN3の筐体は、GNDプレーン9に接続されている。正極LISN回路部31と負極LISN回路部32は、高電圧DCケーブル4を介して、インバータ1の直流配線である正極配線11及び負極配線12に、電気的に接続されている。 The high voltage source impedance stabilization network (LISN) 3 will be explained. A high voltage battery 2 feeds the inverter 1 via a high voltage source impedance stabilization network (LISN) 3 . The housing 3 has a positive LISN circuit section 31 connected to the positive electrode terminal HVP of the high voltage battery 2 and a negative LISN circuit section 32 connected to the negative electrode terminal HVN of the high voltage battery 2. and are housed in a metal housing. The housing of LISN 3 is connected to GND plane 9 . The positive LISN circuit section 31 and the negative LISN circuit section 32 are electrically connected to the positive wiring 11 and the negative wiring 12 which are the DC wiring of the inverter 1 via the high voltage DC cable 4 .
 電気モータ6について説明する。電気モータ6は3相電気モータによって構成されており、図示しない回転子と固定子を備えている。また、電気モータ6の筐体はGNDプレーン9と接続されている。この電気モータ6は、インバータ1によって生成された3相の交流電圧を、高電圧ACケーブル5を介して固定子に配置されたU,V,Wの3相のコイル6-U,6-V,6-Wへ供給させている。これにより、三相のコイル6-U,6-V,6-Wが、それぞれ3相の交流電圧に応じた磁界を発生させ、回転子が回転することになる。なお、図1では三相のコイル6-U,6-V,6-Wとモータ6の筐体との間に発生する浮遊容量(寄生容量)を、浮遊容量6-Csとして示している。なお、特に制限されないが、電気モータ6の筐体はGNDプレーン9と接続されている。 The electric motor 6 will be explained. The electric motor 6 is composed of a three-phase electric motor and has a rotor and a stator (not shown). Also, the housing of the electric motor 6 is connected to the GND plane 9 . This electric motor 6 applies a three-phase AC voltage generated by the inverter 1 to three-phase coils 6-U, 6-V of U, V, and W arranged on a stator via a high-voltage AC cable 5. , 6-W. As a result, the three-phase coils 6-U, 6-V, and 6-W generate magnetic fields corresponding to the three-phase AC voltages, and the rotor rotates. In FIG. 1, stray capacitance (parasitic capacitance) generated between the three-phase coils 6-U, 6-V, 6-W and the housing of the motor 6 is shown as stray capacitance 6-Cs. Although not particularly limited, the housing of the electric motor 6 is connected to the GND plane 9 .
 インバータ1において、正極配線11と負極配線12との間には、直流電圧を平滑化するための平滑コンデンサCxと、ノイズフィルタ装置13を備えている。平滑コンデンサCxは、スイッチング回路14のスイッチング動作時に、直流高電圧と接続するバスバである直流配線11,12において発生するリプル電圧やリプル電流を抑制する。なお、平滑コンデンサCx1とCx2は、ノーマルモードノイズ低減用である。その低減効果または減衰性能は一般的にフィルタの挿入ロスで表現する。以下、コンデンサによる低減メカニズムを説明する。その原理は、ノイズフィルタの実装により直流配線間に低インピーダンス経路を設けることによって、ノイズの外部への流出を抑制することである。また、幅広い周波数帯域での高電圧伝導ノイズを抑制するため、一般的には、並列接続される容量が異なる2つのコンデンサが用いられる。 In the inverter 1, a smoothing capacitor Cx for smoothing the DC voltage and a noise filter device 13 are provided between the positive electrode wiring 11 and the negative electrode wiring 12. The smoothing capacitor Cx suppresses ripple voltage and ripple current generated in the DC wirings 11 and 12, which are busbars connected to the high DC voltage, during the switching operation of the switching circuit 14. FIG. The smoothing capacitors Cx1 and Cx2 are for normal mode noise reduction. The reduction effect or attenuation performance is generally expressed by the insertion loss of the filter. The reduction mechanism by the capacitor will be described below. The principle is to suppress the outflow of noise to the outside by providing a low-impedance path between DC wirings by mounting a noise filter. Also, in order to suppress high-voltage conduction noise in a wide frequency band, generally two capacitors with different capacities connected in parallel are used.
 ノイズフィルタ装置13は、正極配線11及び負極配線12を含んだ直流配線を囲む磁性体コアLcと、磁性体コアLcの前段において直流配線11,12と接続される第1接地コンデンサCy1と、磁性体コアLcの後段において直流配線11,12と接続される第2接地コンデンサCy2とを有している。なお、接地コンデンサCy1とCy2および磁性体コアLcは、コモンモードノイズ低減用である。 The noise filter device 13 includes a magnetic core Lc surrounding DC wiring including a positive electrode wiring 11 and a negative electrode wiring 12, a first grounding capacitor Cy1 connected to the DC wirings 11 and 12 in a stage preceding the magnetic core Lc, a magnetic It has a second grounding capacitor Cy2 connected to the DC wirings 11 and 12 in the subsequent stage of the body core Lc. The ground capacitors Cy1 and Cy2 and the magnetic core Lc are for common mode noise reduction.
 第1接地コンデンサCy1は、正極配線11と第1接地点G1との間に接続される接地コンデンサCy11と、負極配線12と第1接地点G1との間に接続される接地コンデンサCy12と、から構成される。同様に、第2接地コンデンサCy2は、正極配線11と第2接地点G2との間に接続される接地コンデンサCy21と、負極配線12と第2接地点G2との間に接続される接地コンデンサCy22と、から構成される。 The first grounded capacitor Cy1 is composed of a grounded capacitor Cy11 connected between the positive wiring 11 and the first grounding point G1, and a grounded capacitor Cy12 connected between the negative wiring 12 and the first grounding point G1. Configured. Similarly, the second grounding capacitor Cy2 includes a grounding capacitor Cy21 connected between the positive wiring 11 and the second grounding point G2, and a grounding capacitor Cy22 connected between the negative wiring 12 and the second grounding point G2. and consists of
 ノイズフィルタ装置13は、高電圧バッテリ2から供給される直流高電圧のノイズを減衰させつつ、電力変換部であるスイッチング回路14に直流高電圧を入力する。ノイズを引き起こすノイズ電流は、直流高電圧バッテリ2とインバータ1との間に接続する電源配線またはケーブルに漏れている電流であり、GND間に流れているためコモンモード電流である。 The noise filter device 13 attenuates the noise of the DC high voltage supplied from the high voltage battery 2 and inputs the DC high voltage to the switching circuit 14, which is the power converter. A noise current that causes noise is a current leaking from a power supply wiring or cable connected between the DC high voltage battery 2 and the inverter 1, and is a common mode current because it flows between GND.
 コモンモード電流は、トランジスタTR1,TR2が、周期的にオン状態/オフ状態となるスイッチング動作時に発生する、対地電圧変動によるものである。このスイッチング回路14の出力部に発生した電圧変動により、スイッチング回路14とインバータ1の筐体との間に寄生する浮遊容量1-Csや、モータ6のコイル6-U~Wと筐体との間に存在する浮遊容量6-Csを通して、インバータ1およびモータ6の筐体間にコモンモード電流が流れ、その電流により高電圧伝導ノイズが発生する。よって、高電圧伝導ノイズを低減するためには、コモンモード電流を低減する必要がある。インバータ1では、ノイズフィルタ装置13の構成を用いることにより、高電圧伝導ノイズの主な発生要因であるノイズ電流に対応させ、高電圧伝導ノイズ規格にも対応しながらノイズを減衰させている。 The common mode current is due to voltage fluctuations to ground that occur during the switching operation in which the transistors TR1 and TR2 are periodically turned on/off. Due to the voltage fluctuation generated at the output of the switching circuit 14, the stray capacitance 1-Cs between the switching circuit 14 and the housing of the inverter 1 and the coils 6-U to W of the motor 6 and the housing A common mode current flows between the housings of the inverter 1 and the motor 6 through the stray capacitance 6-Cs present therebetween, and this current generates high-voltage conduction noise. Therefore, in order to reduce the high voltage conduction noise, it is necessary to reduce the common mode current. In the inverter 1, by using the configuration of the noise filter device 13, the noise current, which is the main cause of the high voltage conduction noise, is dealt with, and the noise is attenuated while complying with the high voltage conduction noise standard.
(ノイズ規格について)
 高電圧伝導ノイズ規格についての説明をする。ノイズ規格は、一般的に0.15MHzから108MHzまでの周波数帯での規制値を規定するものである。高電圧伝導ノイズ規格は、2016年10月に国際無線障害特別委員会(CISPR)が作成した国際規格であるCISPR25 Ed4において追加された規格である。これは、特に種々の用途で用いられているFM放送周波数帯域(76MHz~108MHz)のノイズを、他の周波数帯域に比べて低くするように規制する内容である。高電圧伝導ノイズは、たとえば、車載電気電子機器の誤動作を引き起こす恐れがある。そのため、出荷前の段階においてインバータ1で発生する高電圧伝導ノイズ量を実測し、そのノイズ発生量が、各国法規制及び顧客要求仕様で規定される規制値以下にならなければならない。そこで、インバータ1では高電圧伝導ノイズ規格に適合させ、効果的なフィルタ構成にするためにノイズフィルタ装置13が採用されている。
(About noise standards)
The high voltage conducted noise standard will be explained. Noise standards generally define regulation values in a frequency band from 0.15 MHz to 108 MHz. The high-voltage conduction noise standard is a standard added in CISPR25 Ed4, which is an international standard created by the International Special Committee on Radio Interference (CISPR) in October 2016. This regulates noise in the FM broadcast frequency band (76 MHz to 108 MHz), which is used in various applications, to be lower than in other frequency bands. High-voltage conduction noise, for example, may cause malfunctions of in-vehicle electrical and electronic equipment. Therefore, the amount of high-voltage conduction noise generated in the inverter 1 must be measured before shipment, and the amount of generated noise must be below the regulation value stipulated by the laws and regulations of each country and the specifications required by customers. Therefore, the inverter 1 employs the noise filter device 13 in order to conform to the high-voltage conduction noise standard and provide an effective filter configuration.
 図2は、ノーマルモード高電圧伝導ノイズ低減用のノイズフィルタ装置13の等価回路図である。 FIG. 2 is an equivalent circuit diagram of the noise filter device 13 for normal mode high voltage conduction noise reduction.
 正極直流配線11と負極直流配線12にコンデンサCx1とCx2が並列接続される。P1とN1はCx1とそれぞれ正極直流配線11と負極直流配線12との接続部であり、P2とN2はCx2とそれぞれ正極直流配線11と負極直流配線12との接続部である。また、PinとNinはそれぞれ正極側と負極側の入力端子であり、ノイズ源であるスイッチング回路14と正極直流配線11、負極配線12との接続部を表している。同様に、PoutとNoutはそれぞれ正極側と負極側の出力端子であり、正極直流配線11、負極配線12と高電圧DCケーブル4との接続部を表している。 Capacitors Cx1 and Cx2 are connected in parallel to the positive DC wiring 11 and the negative DC wiring 12 . P1 and N1 are connection portions between Cx1 and positive DC wiring 11 and negative DC wiring 12, respectively, and P2 and N2 are connection portions between Cx2 and positive DC wiring 11 and negative DC wiring 12, respectively. Pin and Nin are input terminals on the positive and negative sides, respectively, and represent connections between the switching circuit 14 as a noise source and the positive DC wiring 11 and the negative wiring 12 . Similarly, Pout and Nout are output terminals on the positive and negative sides, respectively, and represent connections between the positive DC wiring 11 and the negative wiring 12 and the high-voltage DC cable 4 .
 ノイズ低減効果NSは、PinとNinとの間に入力される入力電圧Vin(ノイズ源を模擬)と、PoutとNoutとの間に出力される出力電圧Voutを用いて、下記の式(1)で表される。 The noise reduction effect NS is expressed by the following equation (1) using an input voltage Vin (simulating a noise source) input between Pin and Nin and an output voltage Vout output between Pout and Nout. is represented by
 NS=|Vout/Vin|…式(1) NS=|Vout/Vin|... Formula (1)
 所望のノイズ低減効果NSを得るためには、理想的には対象周波数帯域で低インピーダンスとなるようなコンデンサCx1とCx2の定数を選択するのみでよいが、実際の部品(素子)には寄生成分が存在する。例えば、コンデンサ部品や直流配線はリード線などの寄生インダクタンス(以下、ESL)成分が存在する。 In order to obtain the desired noise reduction effect NS, ideally, it is only necessary to select the constants of the capacitors Cx1 and Cx2 so that the impedance is low in the target frequency band. exists. For example, capacitor parts and DC wiring have parasitic inductance (hereinafter referred to as ESL) components such as lead wires.
 図3は、図2にノイズフィルタ装置13の寄生成分を含めた等価回路図である。 FIG. 3 is an equivalent circuit diagram including the parasitic components of the noise filter device 13 in FIG.
 図3には、第1コンデンサCx1と第2コンデンサCx2が有する寄生インダクタンスをそれぞれ等価直列インダクタンスLc1,Lc2で表している。また、正極接続部P1とP2との間の正極直流配線11が有するインダクタンス成分は等価直列インダクタンスLp1、負極接続部N1とN2との間の負極直流配線12が有するインダクタンス成分は、等価直列インダクタンスLn1で表される。同様に、Lp0はPout-P1間、Lp2はPin-P2間にある正極直流配線が有するインダクタンス成分であり、Ln0はNout-N1間、Ln2はNin-N2間にある負極直流配線が有するインダクタンス成分である。 In FIG. 3, the parasitic inductances of the first capacitor Cx1 and the second capacitor Cx2 are represented by equivalent series inductances Lc1 and Lc2, respectively. The inductance component of the positive DC wiring 11 between the positive connection portions P1 and P2 is an equivalent series inductance Lp1, and the inductance component of the negative DC wiring 12 between the negative connection portions N1 and N2 is an equivalent series inductance Ln1. is represented by Similarly, Lp0 is the inductance component of the positive DC wiring between Pout-P1, Lp2 is the inductance component of the positive DC wiring between Pin-P2, Ln0 is the inductance component of the negative DC wiring between Nout-N1, and Ln2 is the inductance component of the negative DC wiring between Nin-N2. is.
 k1はインダクタンスLp1とLn1を有するインダクタ同士の結合係数である。なお、Lp0とLn0、Lp2とLn2のインダクタンス成分を有するインダクタ間の結合係数は図示されていないが実計算には使用されている。また、インダクタLp1とLn1に付された*印は、磁界の発生方向を示している。 k1 is the coupling coefficient between inductors having inductances Lp1 and Ln1. Coupling coefficients between inductors having inductance components of Lp0 and Ln0 and Lp2 and Ln2 are not shown, but are used in actual calculations. The * marks attached to the inductors Lp1 and Ln1 indicate the direction of magnetic field generation.
 電源Gnはスイッチング回路14により発生するノイズ電圧を模擬するAC電圧源で、V1は電源Gnを計測する電圧計である。抵抗R3とR4はそれぞれ電源Gnの内部抵抗と出力側に接続する部品の等価抵抗を模擬する。V2は抵抗R4の電圧を計測する電圧計である。 The power source Gn is an AC voltage source that simulates the noise voltage generated by the switching circuit 14, and V1 is a voltmeter that measures the power source Gn. Resistors R3 and R4 simulate the internal resistance of the power supply Gn and the equivalent resistance of components connected to the output side, respectively. V2 is a voltmeter that measures the voltage across resistor R4.
 図4は、図3のノイズフィル装置13の挿入ロスを示す特性図である。 FIG. 4 is a characteristic diagram showing the insertion loss of the noise filter device 13 of FIG.
 図4の特性図は、横軸が周波数F(Frequency[MHz])を示し、縦軸がノイズフィルタ装置13の挿入ロス、すなわち図3に示した電圧V2とV1の比をデシベル(dB)で表している。電圧V2とV1の比は小さくすればするほど、フィルタの挿入ロスが高くなり、減衰性能が良くなる。 In the characteristic diagram of FIG. 4, the horizontal axis indicates the frequency F (Frequency [MHz]), and the vertical axis indicates the insertion loss of the noise filter device 13, that is, the ratio of the voltages V2 and V1 shown in FIG. 3 in decibels (dB). represent. The smaller the ratio of the voltages V2 and V1, the higher the insertion loss of the filter and the better the attenuation performance.
 特性曲線GLb1は、コンデンサCx1とCx2の等価直列インダクタンスLc1とLc2をそれぞれ0nHとしたときの周波数Fの変化に伴う挿入ロスの変化を示している。一方、特性曲線GLb0は、等価直列インダクタンスLc1とLc2をそれぞれ典型的な値である40nHとしたときの挿入ロスの変化を示している。なお、特性曲線GLb0とGLb1を求めるときのLc1とLc2以外の回路素子のパラメータは、同じである。 A characteristic curve GLb1 shows changes in insertion loss with changes in the frequency F when the equivalent series inductances Lc1 and Lc2 of the capacitors Cx1 and Cx2 are respectively 0 nH. On the other hand, the characteristic curve GLb0 shows changes in the insertion loss when the equivalent series inductances Lc1 and Lc2 are each set to a typical value of 40 nH. The parameters of the circuit elements other than Lc1 and Lc2 when obtaining the characteristic curves GLb0 and GLb1 are the same.
 特性曲線GLb0とGLb1を比較すると、対象周波数帯域である20MHz以上の高周波帯域では、特性曲線GLb0のフィルタの挿入ロスは特性曲線GLb1と比較して悪化している。前述したように、高電圧伝導ノイズ規格は0.15MHzから108MHzまでの周波数帯域での規制値を規定し、特に、種々の用途で用いられているFM周波数帯域(76MHz~108MHz)を含めた20MHz以上の高周波帯域では、他の周波数帯域に比べて低くするように規制する内容となっているため、フィルタの挿入ロスの改善が必要になる。 Comparing the characteristic curves GLb0 and GLb1, the filter insertion loss of the characteristic curve GLb0 is worse than that of the characteristic curve GLb1 in the target frequency band of 20 MHz or higher. As mentioned above, the high voltage conduction noise standard defines the regulation value in the frequency band from 0.15MHz to 108MHz, and in particular, the 20MHz including the FM frequency band (76MHz to 108MHz) used in various applications In the above high frequency band, since it is regulated to be lower than other frequency bands, it is necessary to improve the insertion loss of the filter.
 図5は、ノイズフィルタの構造の一例を示す図である。 FIG. 5 is a diagram showing an example of the structure of a noise filter.
 このノイズフィルタの構造例は、接続部間の配線111と121はそれぞれ長さが約10mmで、幅が約15mmであり、そのインダクタンス成分は計算すると、約10nHである。これらの値を使って、等価回路(図6)を用いてフィルタの挿入ロスを計算する。計算結果は図7に図示する。 In this noise filter structure example, the wirings 111 and 121 between the connecting portions are each about 10 mm long and about 15 mm wide, and the calculated inductance component is about 10 nH. These values are used to calculate the insertion loss of the filter using the equivalent circuit (Fig. 6). The calculation results are illustrated in FIG.
(従来技術とその課題)
 図6は、従来技術を適用したノイズフィルタの寄生成分を含めた等価回路図である。
(Conventional technology and its problems)
FIG. 6 is an equivalent circuit diagram including parasitic components of a noise filter to which the prior art is applied.
 図6は、図3に示した等価回路において、第1コンデンサCx1と正極配線11との接続配線と、第2コンデンサCx2と正極配線11との接続配線と、を交差させている。なお、この回路構成を用いて、第1コンデンサCx1と第2コンデンサCx2を構造的に交差させた例を、後述の図12(b)に示す。 6, in the equivalent circuit shown in FIG. 3, the connection wiring between the first capacitor Cx1 and the positive electrode wiring 11 and the connection wiring between the second capacitor Cx2 and the positive electrode wiring 11 are crossed. An example in which the first capacitor Cx1 and the second capacitor Cx2 are structurally intersected using this circuit configuration is shown in FIG. 12(b) described later.
 この接続配線の交差の意図について説明する。従来、ESL成分を相殺させる技術として、リード線が短いコンデンサを採用したり、リード線を切断し短くしたりする技術があるが、カスタム品の追加や切断作業が必要となり、電力変換装置の製造価格が上昇する課題が新たに生まれる。この課題解決のために、図6に示す回路構成を用いてESL成分を相殺させる。 I will explain the intention of this intersection of connection wiring. Conventionally, as a technology to offset the ESL component, there is a technology to adopt a capacitor with a short lead wire or cut the lead wire to make it shorter, but it requires the addition of custom products and cutting work, and the manufacturing of power converters A new issue arises when prices rise. To solve this problem, the circuit configuration shown in FIG. 6 is used to cancel out the ESL components.
 この構成のもう1つの要点として、接続部間の配線のインダクタンス成分Lp1とLn1をコンデンサのESL成分であるLc1とLc2に揃えることができる点である。これにより、フィルタの挿入ロスを改善できる。例えば、制御基板など低電圧・小電流応用の場合、コンデンサはリード線無しの面実装タイプが多くESL成分が数nH程度であるため、基板配線トレースの長さ・幅などを調整すると、容易に接続部間の配線のインダクタンス成分をコンデンサのESL成分に揃えることができる。 Another important point of this configuration is that the inductance components Lp1 and Ln1 of the wiring between the connection parts can be aligned with the ESL components Lc1 and Lc2 of the capacitor. This can improve the insertion loss of the filter. For example, in the case of low-voltage, low-current applications such as control boards, most capacitors are surface mount type without lead wires, and the ESL component is about several nH. The inductance component of the wiring between the connecting parts can be matched with the ESL component of the capacitor.
 しかし、車載インバータなど高電圧・大電流応用の場合は、ノイズフィルタに用いられるコンデンサは高電圧対応タイプであり、リード線付きでサイズも低電圧対応タイプに比べると大きいため、それに合わせてESL成分制御基板など低電圧・小電流応用のものに比べて大きくなり、約40~50nH程度になっている。この場合、熱成立性を維持するため、直流配線を幅太くする必要があり、小型化の要求により直流配線の配置空間も限られるため、バスバを短くする必要もある。つまり、直流配線のインダクタンス成分は小さくなる方向となり、大きくなるコンデンサのESL成分に揃えることが困難となる。この結果、フィルタの挿入ロスの改善効果が得られなくなる課題が生まれる。本発明は、図6に示した回路の性質を利用しつつ、構造的にこの課題を解決するためのものである。 However, in the case of high-voltage/high-current applications such as in-vehicle inverters, the capacitors used in noise filters are of the high-voltage type. Compared to low-voltage/low-current applications such as control boards, it is larger, and is about 40 to 50 nH. In this case, it is necessary to increase the width of the DC wiring in order to maintain thermal feasibility, and since the space for arranging the DC wiring is limited due to the demand for miniaturization, it is also necessary to shorten the bus bar. That is, the inductance component of the DC wiring tends to decrease, making it difficult to match the ESL component of the capacitor, which increases. As a result, there arises a problem that the effect of improving the insertion loss of the filter cannot be obtained. The present invention is to structurally solve this problem while utilizing the properties of the circuit shown in FIG.
 図7は、図6のノイズフィルタの挿入ロスを示す特性図である。 FIG. 7 is a characteristic diagram showing the insertion loss of the noise filter of FIG.
 特性曲線GLb2は、インダクタLp1とLn1を10nHとしたときの周波数Fの変化に伴うフィルタの挿入ロスの変化を示している。特性曲線GLb0は、交差配線がないときの挿入ロスの変化を示し、図4のGLb0と同じである。なお、特性曲線GLb0とGLb2を求めるときの配線交差構成以外の回路素子のパラメータは、図3と同じである。 A characteristic curve GLb2 shows changes in the insertion loss of the filter with changes in the frequency F when the inductors Lp1 and Ln1 are 10 nH. A characteristic curve GLb0 shows changes in insertion loss when there is no crossing wire, and is the same as GLb0 in FIG. The parameters of the circuit elements other than the wiring crossing configuration when obtaining the characteristic curves GLb0 and GLb2 are the same as those in FIG.
 図7に示すように、寄生インダクタンスとコンデンサESL成分を揃えないと、特性曲線GLb0とGLb2にほぼ変化がないように、フィルタの挿入ロスに改善効果が得られなくなる。 As shown in FIG. 7, unless the parasitic inductance and the capacitor ESL components are aligned, the effect of improving the insertion loss of the filter cannot be obtained so that the characteristic curves GLb0 and GLb2 are almost unchanged.
(第1の実施形態)
 図8は、第1の実施形態にかかるノイズフィルタ装置13の構造を示す図である。
(First embodiment)
FIG. 8 is a diagram showing the structure of the noise filter device 13 according to the first embodiment.
 図8(a)は、本発明の第1の実施形態に係わるノイズフィルタ装置13の回路図、図8(b)はその3次元構造の構成を示す図である。図8(a)には、インバータ1の筐体に格納されている回路ブロックおよび部品のうち、一端(図8(a)の左側)が直流電源(高電圧バッテリ2)側に接続され、他端(図8(a)の右側)が電力変換回路(スイッチング回路14)側に接続されるノイズフィルタ装置13が示されている。 FIG. 8(a) is a circuit diagram of the noise filter device 13 according to the first embodiment of the present invention, and FIG. 8(b) is a diagram showing its three-dimensional structure. In FIG. 8(a), one end (left side of FIG. 8(a)) of the circuit blocks and parts stored in the housing of the inverter 1 is connected to the DC power supply (high voltage battery 2) side, and the other end is connected to the DC power supply (high voltage battery 2) side. A noise filter device 13 is shown whose end (right side in FIG. 8(a)) is connected to the power conversion circuit (switching circuit 14) side.
 本発明の特徴は、第1正極接続部P1と第2正極接続部P2とを接続する正極配線111と、第1負極接続部N1と第2負極接続部N2とを接続する負極配線121とが、交差することである。この交差部は、図8(b)に示すように積層になっており、この部分の面積・間隔及び配線の長さ・幅を調整することで、正極配線111と負極配線121のインダクタンス成分をコントロールでき、第1コンデンサCx1及び第2コンデンサCx2のESL成分であるLc1とLc2に揃えることができる。 A feature of the present invention is that the positive electrode wiring 111 connecting the first positive electrode connecting portion P1 and the second positive electrode connecting portion P2 and the negative electrode wiring 121 connecting the first negative electrode connecting portion N1 and the second negative electrode connecting portion N2 are provided. , is to cross. This crossing portion is laminated as shown in FIG. It is possible to control and match the ESL components Lc1 and Lc2 of the first capacitor Cx1 and the second capacitor Cx2.
 図9は、図8のノイズフィルタの挿入ロスを示す特性図である。 FIG. 9 is a characteristic diagram showing the insertion loss of the noise filter of FIG.
 本発明を採用した特性曲線GLb3は、Lp1とLn1のインダクタンス成分を概ね40nH、としたときの周波数Fの変化に伴う挿入ロスの変化を示しており、20MHz以上の高周波帯域で挿入ロスは20dB以上の改善効果が得られるようになった。 A characteristic curve GLb3 employing the present invention shows changes in insertion loss with changes in the frequency F when the inductance components of Lp1 and Ln1 are approximately 40 nH, and the insertion loss is 20 dB or more in a high frequency band of 20 MHz or more. improvement effect was obtained.
(第2の実施形態)
 図10は、第2の実施形態にかかるノイズフィルタ装置13の構造を示す図である。なお、図10(a)は図8(a)と同じである。
(Second embodiment)
FIG. 10 is a diagram showing the structure of the noise filter device 13 according to the second embodiment. Note that FIG. 10(a) is the same as FIG. 8(a).
 図10(b)は、正極配線111と負極配線121の交差部を多面体形状キャパシタである第1コンデンサCx1及び第2コンデンサCx2の複数面に沿うように配置されている。また、コンデンサCx2の容量がコンデンサCx1よりも小さい場合、バスバ交差部がコンデンサCx2の下面に沿う。コンデンサCx2の下面はケース(インバータ1の筐体)への設置側である。これにより、バスバの配回しの面積をさらに確保でき、より正極配線111と負極配線121のインダクタンス成分を稼ぐことができる。 In FIG. 10(b), the intersections of the positive wiring 111 and the negative wiring 121 are arranged along multiple surfaces of the first capacitor Cx1 and the second capacitor Cx2, which are polyhedral capacitors. Also, when the capacitance of the capacitor Cx2 is smaller than that of the capacitor Cx1, the busbar crossing portion is along the lower surface of the capacitor Cx2. The lower surface of the capacitor Cx2 is the installation side to the case (housing of the inverter 1). As a result, the area for distributing the busbars can be further secured, and the inductance components of the positive electrode wiring 111 and the negative electrode wiring 121 can be increased.
 また、交差する正極配線111と負極配線121とは、第1コンデンサおよび第2コンデンサそれぞれの複数面に沿って配置され、さらに、バスバ交差部は蛇行するように配回されている。これにより、さらにバスバの配回し面積を確保することができる。 In addition, the intersecting positive electrode wiring 111 and negative electrode wiring 121 are arranged along a plurality of surfaces of each of the first capacitor and the second capacitor, and the busbar intersections are arranged in a meandering manner. As a result, it is possible to further ensure the distribution area of the busbars.
 なお、例えば、バスバ交差部はキャパシタのノイズ源に近い側若しくは出力端子に近い側の側面のみに沿わせて配置する構成でも良い。 It should be noted that, for example, the busbar intersection may be arranged along only the side surface of the capacitor on the side closer to the noise source or the side closer to the output terminal.
(第3の実施形態)
 図11は、第3の実施形態にかかるノイズフィルタ装置13の構造を示す図である。なお、図11(a)は、図8(a)、図10(a)と同じ図である。
(Third Embodiment)
FIG. 11 is a diagram showing the structure of the noise filter device 13 according to the third embodiment. Note that FIG. 11(a) is the same view as FIGS. 8(a) and 10(a).
 図11(b)はキャパシタのノイズ源(電力変換装置側)に近い側の側面のみに沿わせて交差部を配置している。このようにすることで、高さ方向のサイズの大型化を防ぐことができる。 In FIG. 11(b), the intersection is arranged along only the side surface of the capacitor on the side closer to the noise source (power converter side). By doing so, it is possible to prevent an increase in size in the height direction.
 図12は、従来技術と第1の実施の形態と第2の実施形態との比較を示す図である。なお、図12(a)は図5と同じ構造のノイズフィルタであり、図12(b)は図6の回路図を構造化させたノイズフィルタである。また、図12(c)は第1の実施形態、図12(d)は第2の実施形態を示した図である。 FIG. 12 is a diagram showing a comparison between the prior art, the first embodiment, and the second embodiment. 12(a) is a noise filter having the same structure as that of FIG. 5, and FIG. 12(b) is a noise filter obtained by structuring the circuit diagram of FIG. Also, FIG. 12(c) shows the first embodiment, and FIG. 12(d) shows the second embodiment.
 図12には、図12(a)や図12(b)を実施した場合、と比較して、第1の実施形態である図12(c)や第2の実施形態である図12(d)は、インダクタンス成分が増加している。さらに、バスバ面積が第1の実施形態よりも多い第2の実施形態は、第1の実施形態よりもインダクタンス成分がさらに増加している。 FIG. 12 shows the case where FIG. 12(a) and FIG. 12(b) are implemented, and FIG. 12(c) which is the first embodiment and FIG. 12(d) which is the second embodiment. ) has an increased inductance component. Furthermore, in the second embodiment in which the busbar area is larger than that in the first embodiment, the inductance component is further increased than in the first embodiment.
 図12(c)と図12(d)の配線構造からわかるように、交差部は電流の流れる方向が、同じ方向になるため、同じ方向の磁界を発生する。そのため、この部分での相互係数及び相互インダクタンスは正の値となり、配線全体のインダクタンス成分がより大きくなる方向となる。つまり、前述の通り、交差部の面積・間隔及び配線の長さ・幅を調整することにより、配線のインダクタンス成分をコントロールしてコンデンサのESL成分に揃えることができる。これにより、コンデンサのESL成分をキャンセルすることにより、フィルタの挿入ロス特性を改善させ、高周波ノーマルモード高電圧伝導ノイズを抑制することができる。 As can be seen from the wiring structures in FIGS. 12(c) and 12(d), the current flows in the same direction at the crossings, so magnetic fields in the same direction are generated. Therefore, the mutual coefficient and mutual inductance at this portion become positive values, and the inductance component of the entire wiring becomes larger. That is, as described above, by adjusting the area/interval of the intersection and the length/width of the wiring, the inductance component of the wiring can be controlled to match the ESL component of the capacitor. Thus, by canceling the ESL component of the capacitor, it is possible to improve the insertion loss characteristic of the filter and suppress the high frequency normal mode high voltage conduction noise.
 以上説明した本発明の第1~第3の実施形態によれば、以下の作用効果を奏する。 According to the first to third embodiments of the present invention described above, the following effects are achieved.
(1)フィルタ装置13は、一端が直流電源側に接続され、他端が電力変換回路側に接続され、正極配線11と、負極配線12と、正極配線11及び負極配線12の間に並列に接続された第1コンデンサCx1及び第2コンデンサCx2と、を備え、正極配線11は、一端側に第1コンデンサCx1と接続する第1正極接続部P1と、他端側に第2コンデンサCx2と接続する第2正極接続部P2と、を有し、負極配線12は、一端側に第2コンデンサCx2と接続する第1負極接続部N1と、他端側に第2コンデンサCx2と接続する第2負極接続部N2と、を有し、正極配線11と負極配線12とは交差する。このようにしたことで、低コスト化と小型化と低ノイズ化とを並立させたフィルタ装置及び電力変換装置を提供できる。 (1) The filter device 13 has one end connected to the DC power supply side and the other end connected to the power conversion circuit side. One end of the positive electrode wiring 11 is connected to the first capacitor Cx1, and the other end is connected to the second capacitor Cx2. The negative electrode wiring 12 has a first negative electrode connection portion N1 connected to the second capacitor Cx2 on one end side and a second negative electrode connection portion N1 connected to the second capacitor Cx2 on the other end side. , and the positive wiring 11 and the negative wiring 12 cross each other. By doing so, it is possible to provide a filter device and a power conversion device in which cost reduction, miniaturization, and noise reduction are achieved in parallel.
(2)フィルタ装置13において、正極配線11と負極配線12との交差部は、積層している。このようにしたことで、この部分の面積・間隔及び配線の長さ・幅を調整することで、正極配線11と負極配線12のインダクタンス成分をコントロールでき、第1コンデンサCx1及び第2コンデンサCx2のESL成分であるLc1とLc2に揃えることができる。 (2) In the filter device 13, the intersections of the positive wiring 11 and the negative wiring 12 are laminated. By doing so, by adjusting the area/interval of this portion and the length/width of the wiring, the inductance components of the positive electrode wiring 11 and the negative electrode wiring 12 can be controlled, and the first capacitor Cx1 and the second capacitor Cx2 can be controlled. It can be aligned with the ESL components Lc1 and Lc2.
(3)フィルタ装置13において、正極配線11と負極配線12とは、第1コンデンサCx1および第2コンデンサCx2それぞれの複数面に沿って配置される。このようにしたことで、バスバ11,12の配回し面積を確保することができる。 (3) In the filter device 13, the positive wiring 11 and the negative wiring 12 are arranged along multiple surfaces of the first capacitor Cx1 and the second capacitor Cx2, respectively. By doing so, the distribution area of the busbars 11 and 12 can be secured.
(4)フィルタ装置13において、第2コンデンサCx2の容量が第1コンデンサCx1の容量よりも小さいとき、正極配線11と負極配線12とは、第2コンデンサCx2の下面で交差する。このようにしたことで、バスバ11,12の配回し面積を確保することができる。 (4) In the filter device 13, when the capacity of the second capacitor Cx2 is smaller than the capacity of the first capacitor Cx1, the positive wiring 11 and the negative wiring 12 intersect at the lower surface of the second capacitor Cx2. By doing so, the distribution area of the busbars 11 and 12 can be secured.
(5)フィルタ装置13において、正極配線11と負極配線12との交差部は、蛇行している。このようにしたことで、バスバ11,12の配回し面積を確保することができる。 (5) In the filter device 13, the intersection between the positive electrode wiring 11 and the negative electrode wiring 12 meanders. By doing so, the distribution area of the busbars 11 and 12 can be secured.
(6)フィルタ装置13において、正極配線11と負極配線12とのインダクタンスは、第1コンデンサCx1または第2コンデンサCx2のインダクタンスと略等しい。このようにしたことで、フィルタの挿入ロスを改善できる。 (6) In the filter device 13, the inductance between the positive wire 11 and the negative wire 12 is substantially equal to the inductance of the first capacitor Cx1 or the second capacitor Cx2. By doing so, the insertion loss of the filter can be improved.
 なお、本発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲内で様々な変形や他の構成を組み合わせることができる。また本発明は、上記の実施形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。例えば、上述した実施の形態では、ハイブリッド自動車又は電気自動車等の車両に搭載される電力変換装置を例に説明したが、本発明はこれらに限らず建設機械等や鉄道の車両に用いられる電力変換装置にも適用することができる。 It should be noted that the present invention is not limited to the above embodiments, and various modifications and other configurations can be combined without departing from the scope of the invention. Moreover, the present invention is not limited to those having all the configurations described in the above embodiments, and includes those having some of the configurations omitted. For example, in the above-described embodiment, a power conversion device mounted on a vehicle such as a hybrid vehicle or an electric vehicle has been described as an example, but the present invention is not limited to these, but the power conversion device used in construction machinery and the like and railway vehicles. It can also be applied to devices.
1…電力変換装置(インバータ)
1-Cs…スイッチング回路・筐体間浮遊容量
2…高電圧バッテリ
3…高電圧電源インピーダンス安定回路網(LISN)
 31…正極LISN回路部
 32…負極LISN回路部
4…高電圧DCケーブル
5…高電圧ACケーブル
6…電気モータ
6-U…U相コイル
6-V…V相コイル
6-W…W相コイル
6-Cs…コイル・筐体間浮遊容量
7…絶縁物
8…GNDストラップ
9…GNDプレーン
10…電流
 10a…逆向きの電流
 10b…同向きの電流
11…正極(直流)配線
12…負極(直流)配線
13…ノイズフィルタ装置
14…スイッチング回路
111…第1正極接続部P1と第2正極接続部P2とを接続する正極配線
121…第1負極接続部N1と第2負極接続部N2とを接続する負極配線
SW1~SW3…単位スイッチング回路
TR1、TR2…絶縁ゲート型バイポーラトランジスタ
D1、D2…ダイオード
Cx…平滑コンデンサ
Gn…電源
Lc…磁性体コア
Lc1、Lc2…等価直列インダクタンス
Lp0~Lp3…等価直列インダクタンス(正極配線)
Ln0~Ln3…等価直列インダクタンス(負極配線)
k1…正極直流配線・負極直流配線間の結合係数
Cy1、Cy2…接地コンデンサ
Cy11、Cy21…正極直流配線・筐体間の接地コンデンサ
Cy12、Cy22…負極直流配線・筐体間の接地コンデンサ
Cx1…正極直流配線・負極直流配線間の第1コンデンサ
Cx2…正極直流配線・負極直流配線間の第2コンデンサ
P1…第1コンデンサCx1と正極配線11の接続部である第1正極接続部
P2…第2コンデンサCx2と正極配線11の接続部である第2正極接続部
N1…第1コンデンサCx1と負極配線12の接続部である第1負極接続部
N2…第2コンデンサCx2と負極配線12の接続部である第2負極接続部
1... Power converter (inverter)
1-Cs: Switching circuit/stray capacitance between cases 2: High voltage battery 3: High voltage source impedance stabilization network (LISN)
31 Positive pole LISN circuit section 32 Negative pole LISN circuit section 4 High voltage DC cable 5 High voltage AC cable 6 Electric motor 6-U U phase coil 6 V V phase coil 6 W W phase coil 6 -Cs... Stray capacitance between coil and case 7... Insulator 8... GND strap 9... GND plane 10... Current 10a... Reverse current 10b... Same direction current 11... Positive electrode (DC) wiring 12... Negative electrode (DC) Wiring 13 Noise filter device 14 Switching circuit 111 Positive wiring 121 connecting first positive connecting portion P1 and second positive connecting portion P2 Connecting first negative connecting portion N1 and second negative connecting portion N2 Negative electrode wiring SW1 to SW3 Unit switching circuits TR1, TR2 Insulated gate bipolar transistors D1, D2 Diode Cx Smoothing capacitor Gn Power supply Lc Magnetic cores Lc1, Lc2 Equivalent series inductance Lp0 to Lp3 Equivalent series inductance ( positive electrode wiring)
Ln0 to Ln3 ... Equivalent series inductance (negative wiring)
k1 Coupling coefficients between positive DC wiring and negative DC wiring Cy1, Cy2 Grounding capacitors Cy11, Cy21 Grounding capacitors between positive DC wiring and housing Cy12, Cy22 Grounding capacitors between negative DC wiring and housing Cx1 Positive electrode A first capacitor Cx2 between the DC wiring and the negative DC wiring... A second capacitor P1 between the positive DC wiring and the negative DC wiring... A first positive connecting part P2 which is a connecting part between the first capacitor Cx1 and the positive wiring 11... A second capacitor A second positive connection portion N1, which is a connection portion between Cx2 and the positive electrode wiring 11. A first negative connection portion N2, which is a connection portion between the first capacitor Cx1 and the negative electrode wiring 12. Second negative electrode connection

Claims (7)

  1.  一端が直流電源側に接続され、他端が電力変換回路側に接続されるフィルタ装置であって、
     正極配線と、負極配線と、前記正極配線及び前記負極配線の間に並列に接続された第1コンデンサ及び第2コンデンサと、を備え、
     前記正極配線は、前記一端側に前記第1コンデンサと接続する第1正極接続部と、前記他端側に前記第2コンデンサと接続する第2正極接続部と、を有し、
     前記負極配線は、前記一端側に前記第2コンデンサと接続する第1負極接続部と、前記他端側に前記第2コンデンサと接続する第2負極接続部と、を有し、
     前記正極配線と前記負極配線とは交差する
     フィルタ装置。
    A filter device having one end connected to a DC power supply side and the other end connected to a power conversion circuit side,
    a positive wiring, a negative wiring, and a first capacitor and a second capacitor connected in parallel between the positive wiring and the negative wiring,
    The positive electrode wiring has a first positive electrode connection portion connected to the first capacitor on the one end side and a second positive electrode connection portion connected to the second capacitor on the other end side,
    the negative electrode wiring has a first negative electrode connection portion connected to the second capacitor on the one end side, and a second negative electrode connection portion connected to the second capacitor on the other end side;
    The filter device, wherein the positive wiring and the negative wiring intersect.
  2.  請求項1に記載されたフィルタ装置であって、
     前記正極配線と前記負極配線との交差部は、積層している
     フィルタ装置。
    A filter device according to claim 1,
    A crossing portion of the positive electrode wiring and the negative electrode wiring is laminated. The filter device.
  3.  請求項2に記載されたフィルタ装置であって、
     前記正極配線と前記負極配線とは、前記第1コンデンサおよび第2コンデンサそれぞれの複数面に沿って配置される
     フィルタ装置。
    A filter device according to claim 2,
    The positive wiring and the negative wiring are arranged along multiple surfaces of the first capacitor and the second capacitor, respectively.
  4.  請求項2に記載されたフィルタ装置であって、
     前記第2コンデンサの容量が前記第1コンデンサの容量よりも小さいとき、前記正極配線と前記負極配線とは、前記第2コンデンサの下面で交差する
     フィルタ装置。
    A filter device according to claim 2,
    When the capacity of the second capacitor is smaller than the capacity of the first capacitor, the positive wiring and the negative wiring cross each other on the lower surface of the second capacitor.
  5.  請求項2に記載されたフィルタ装置であって、
     前記交差部は、蛇行している
     フィルタ装置。
    A filter device according to claim 2,
    The intersection is meandering. The filter device.
  6.  請求項1に記載されたフィルタ装置であって、
     前記正極配線と前記負極配線とのインダクタンスは、前記第1コンデンサまたは前記第2コンデンサのインダクタンスと略等しい
     フィルタ装置。
    A filter device according to claim 1,
    An inductance between the positive electrode wiring and the negative electrode wiring is substantially equal to an inductance of the first capacitor or the second capacitor.
  7.  請求項1から6に記載されたフィルタ装置を備えた
     電力変換装置。
    A power converter comprising the filter device according to any one of claims 1 to 6.
PCT/JP2022/007043 2021-04-12 2022-02-21 Filter device and power converting device WO2022219925A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-067298 2021-04-12
JP2021067298A JP2022162441A (en) 2021-04-12 2021-04-12 Filter device and power conversion device

Publications (1)

Publication Number Publication Date
WO2022219925A1 true WO2022219925A1 (en) 2022-10-20

Family

ID=83639618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007043 WO2022219925A1 (en) 2021-04-12 2022-02-21 Filter device and power converting device

Country Status (2)

Country Link
JP (1) JP2022162441A (en)
WO (1) WO2022219925A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010273207A (en) * 2009-05-22 2010-12-02 Denso Corp Noise filter
WO2017017987A1 (en) * 2015-07-28 2017-02-02 株式会社村田製作所 Circuit board, filter circuit using same, and capacitance element
WO2018025342A1 (en) * 2016-08-03 2018-02-08 三菱電機株式会社 Noise filter circuit
JP2018098891A (en) * 2016-12-13 2018-06-21 日立オートモティブシステムズ株式会社 Bus bar structure and power conversion equipment using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010273207A (en) * 2009-05-22 2010-12-02 Denso Corp Noise filter
WO2017017987A1 (en) * 2015-07-28 2017-02-02 株式会社村田製作所 Circuit board, filter circuit using same, and capacitance element
WO2018025342A1 (en) * 2016-08-03 2018-02-08 三菱電機株式会社 Noise filter circuit
JP2018098891A (en) * 2016-12-13 2018-06-21 日立オートモティブシステムズ株式会社 Bus bar structure and power conversion equipment using the same

Also Published As

Publication number Publication date
JP2022162441A (en) 2022-10-24

Similar Documents

Publication Publication Date Title
US10694619B2 (en) Filter comprising printed circuit board and busbars
US10491180B2 (en) Board-type noise filter and electronic device
KR102036203B1 (en) Emc-filter for suppressing noise signals
WO2016088460A1 (en) Dual-mode choke coil and high-frequency filter using same, and on-board motor integrated electric power steering and on-board charging device
US9610847B2 (en) Power conversion device
JP6643972B2 (en) Bus bar structure and power conversion device using the same
US11257616B2 (en) Power conversion device and high-voltage noise filter
CN112186454A (en) Filter with bus bar assembly
WO2021229908A1 (en) Filter device and power conversion device
WO2022107809A1 (en) Power conversion device
WO2021152888A1 (en) Noise filter, noise filter device, and power conversion device
WO2022219925A1 (en) Filter device and power converting device
WO2021049091A1 (en) Electric power conversion device and railway vehicle electric system
WO2021250728A1 (en) Noise filter and power conversion device using same
JP6447789B1 (en) Noise filter
WO2023090263A1 (en) Power conversion device and method for manufacturing same
WO2019102937A1 (en) Noise filter circuit and power supply circuit
WO2023013343A1 (en) Switching power supply device
WO2023276796A1 (en) Switching power supply device
WO2024048052A1 (en) Power conversion device
JP6910412B2 (en) Power converter
JP2022050013A (en) Noise suppression member
JP2020014374A (en) Power conversion circuit substrate and electric compressor
JP2017169431A (en) Power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787853

Country of ref document: EP

Kind code of ref document: A1