WO2022219776A1 - Optical power monitoring circuit, optical module, station-side device, and optical power monitoring method - Google Patents

Optical power monitoring circuit, optical module, station-side device, and optical power monitoring method Download PDF

Info

Publication number
WO2022219776A1
WO2022219776A1 PCT/JP2021/015565 JP2021015565W WO2022219776A1 WO 2022219776 A1 WO2022219776 A1 WO 2022219776A1 JP 2021015565 W JP2021015565 W JP 2021015565W WO 2022219776 A1 WO2022219776 A1 WO 2022219776A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitor
optical
signal
current
monitor current
Prior art date
Application number
PCT/JP2021/015565
Other languages
French (fr)
Japanese (ja)
Inventor
啓祐 江草
英哲 井川
聡 吉間
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/015565 priority Critical patent/WO2022219776A1/en
Publication of WO2022219776A1 publication Critical patent/WO2022219776A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal

Definitions

  • the present disclosure relates to an optical power monitoring circuit, an optical module, a station-side device, and an optical power monitoring method.
  • An access network for providing multimedia services to each home widely uses an optical communication system called a PON (Passive Optical Network) system implemented by a public network using optical fibers.
  • a PON system consists of one OLT (Optical Line Terminal), which is an optical subscriber line terminal used as a station-side device, and a plurality of subscriber-side terminal devices connected via an optical star coupler. It is composed of ONUs (Optical Network Units), which are optical network devices.
  • OLT Optical Line Terminal
  • ONUs Optical Network Units
  • the OLT sends continuous signals to all ONUs.
  • an optical packet signal transmitted from each ONU is time-division multiplexed and received by the OLT.
  • an optical receiver provided in an OLT generally requires a burst reception function for instantaneously electrically regenerating an optical packet signal.
  • Optical transceivers used in OLT are widely used optical modules having functions and external shapes defined by specifications such as XFP (10 Gigabit Small Form Factor Pluggable) or SFP+ (Small Form Factor Pluggable Plus).
  • An XFP or SFP+ optical module is required to output a monitor signal for monitoring the optical intensity of a received packet. For example, a monitor signal is output several hundred ns after an RSSI (Received Signal Strength Indication) trigger signal is input from a MAC-IC (Media Access Control-Integrated Circuit).
  • RSSI Receiveived Signal Strength Indication
  • a power monitor circuit that satisfies such requirements generally comprises a current mirror circuit and a sample-and-hold circuit, as disclosed in US Pat.
  • an APD current which is a current proportional to the intensity of an optical signal input to an APD (Avalanche Photo Diode), which is a light receiving element
  • APD Anavalanche Photo Diode
  • the current mirror circuit generates a mirror current proportional to the APD current, the mirror current is converted into a voltage in the subsequent circuit, and the converted voltage is output.
  • a sample-and-hold circuit holds the voltage value of the converted voltage.
  • the voltage value held by the sample-and-hold circuit is converted into a digital value by AD (Analog to Digital) conversion. Using this digital value, it becomes possible to monitor the power of the received light.
  • AD Analog to Digital
  • multi-rate compatible systems such as MPM-PON (Multi Point Module PON) capable of receiving received signals of multiple rates are becoming widespread.
  • MPM-PON Multi Point Module PON
  • a circuit for receiving received light for each rate and monitoring the power of the received light is required. Therefore, there is a problem that the size of the optical receiver increases.
  • power consumption increases due to the plurality of circuits, and the cost of the device increases due to the increase in the number of parts.
  • An object of one or more aspects of the present disclosure is to integrate part of a circuit that receives received light and monitors the power of the received light.
  • An optical power monitoring circuit receives a first optical signal that is an optical signal at a first rate, and converts a current according to the optical power of the first optical signal into A first optical receiver that outputs a first monitor current that is a proportional current; a second optical receiver that outputs a second monitor current that is proportional to the current converted according to the optical power of the two optical signals; a path switching unit that receives an input and switches an output monitor current, which is a monitor current to be output, between the first monitor current and the second monitor current; and a control unit that generates a monitor signal for monitoring the optical power of the optical signal or the optical power of the second optical signal.
  • An optical power monitoring method receives a first optical signal, which is an optical signal at a first rate, and converts a current proportional to the optical power of the first optical signal.
  • part of the circuit that receives received light and monitors the power of the received light can be consolidated.
  • FIG. 1 is a block diagram schematically showing the configuration of an optical communication system including an OLT according to Embodiments 1-5;
  • FIG. 2 is a block diagram schematically showing the configuration of an optical receiver included in the OLT according to Embodiment 1;
  • FIG. FIG. 4 is a block diagram schematically showing the configuration of an optical receiver included in an OLT according to Embodiment 2;
  • FIG. 9 is a block diagram schematically showing the configuration of an optical receiver that is a modification of Embodiment 2;
  • FIG. 11 is a block diagram schematically showing the configuration of an optical receiver included in an OLT according to Embodiment 3;
  • FIG. 12 is a block diagram schematically showing the configuration of an optical receiver that is a modification of Embodiment 3; 14 is a block diagram schematically showing the configuration of an optical receiver included in an OLT according to Embodiment 4;
  • FIG. 12 is a block diagram schematically showing the configuration of an optical receiver that is a modification of Embodiment 4; 14 is a block diagram schematically showing the configuration of an optical receiver included in an OLT according to Embodiment 5;
  • FIG. FIG. 14 is a block diagram schematically showing the configuration of an optical receiver that is a modification of Embodiment 5;
  • FIG. 1 is a block diagram schematically showing the configuration of an optical communication system 100 including an OLT 110 according to Embodiment 1. As shown in FIG.
  • the optical communication system 100 is a PON system in the form of point-to-multipoint.
  • the optical communication system 100 includes one OLT 110 as a station-side device, a plurality of ONUs 101, and an optical star coupler 102 that passively branches or joins optical signals. All ONUs 101 are connected to OLT 110 via one or more optical star couplers 102 and optical fibers 103 .
  • the OLT 110 comprises a wavelength multiplexing coupler 112 , an optical transmitter 113 , an optical receiver 114 and a signal processor 115 .
  • one optical module 111 may be configured to include at least a wavelength multiplexing coupler 112, an optical transmitter 113 and an optical receiver 114.
  • the wavelength multiplexing coupler 112 outputs upstream and downstream signals with different optical wavelengths in predetermined directions.
  • the wavelength multiplexing coupler 112 outputs the optical signal output from the ONU 101 and transmitted through the optical fiber 103 to the optical receiver 114 side, and transmits the optical signal output from the optical transmitter 113 to the ONU 101. Output to the optical fiber 103 side.
  • the optical transmitter 113 modulates light emitted by a light emitting element such as a semiconductor laser with a transmission signal input from the signal processing section 115 .
  • An optical signal generated by modulation is output as a downstream signal via the wavelength multiplexing coupler 112 , transmitted through the optical fiber 103 , and received by each ONU 101 .
  • An upstream signal which is an optical signal transmitted from the ONU 101 and transmitted through the optical fiber 103 , is input to the optical receiver 114 via the wavelength multiplexing coupler 112 .
  • the optical receiver 114 photoelectrically converts the input optical signal, demodulates it into a received voltage signal in a subsequent circuit, and outputs it to the signal processing unit 115 .
  • the signal processing unit 115 includes a MAC-IC that processes transmitted and received signals.
  • the MAC-IC of the signal processing unit 115 generates a transmission signal based on the baseband signal input from the network 104 such as the Internet, and outputs the transmission signal to the optical transmitter 113 .
  • the signal processing unit 115 also converts the received signal input from the optical receiver 114 into a baseband signal and outputs the baseband signal to the network 104 .
  • FIG. 2 is a block diagram schematically showing the configuration of optical receiver 114 included in OLT 110 according to the first embodiment.
  • the optical receiver 114 functions as an optical power monitor circuit.
  • Embodiment 1 describes the case of receiving a continuous signal as the most basic configuration.
  • the optical receiver 114 in Embodiment 1 includes an optical receiver 120-1 as a first optical receiver, an optical receiver 120-2 as a second optical receiver, a path switching unit 130, and an MCU (Micro Controller Unit) 140.
  • an optical receiver 120-1 as a first optical receiver
  • an optical receiver 120-2 as a second optical receiver
  • a path switching unit 130 as a second optical receiver
  • an MCU Micro Controller Unit
  • the optical receiver 120-1 is a first optical receiver circuit that receives a first optical signal that is an optical signal at a certain rate.
  • the rate of the first optical signal is also called the first rate.
  • the optical receiver 120-1 outputs a first monitor current that is proportional to the current converted according to the optical power of the first optical signal.
  • the optical receiver 120-1 includes a light receiving element 121-1, a current mirror circuit 122-1, a power supply 123-1, and a power supply voltage controller 124-1.
  • the light receiving element 121-1 converts the received first optical signal into a current signal.
  • the light receiving element 121-1 gives the converted current signal as a first input current to the current mirror circuit 122-1.
  • the current mirror circuit 122-1 outputs to the path switching section 130 a first monitor current proportional to the first input current from the light receiving element 121-1.
  • a power supply 123-1 is a power supply for the light receiving element 121-1.
  • the power supply voltage control section 124-1 controls the power supply voltage of the power supply 123-1.
  • the optical receiver 120-2 is a second optical receiver circuit that receives a second optical signal that is an optical signal with a rate different from that of the first optical signal.
  • the rate of the second optical signal is also called the second rate.
  • the optical receiver 120-2 outputs a second monitor current that is proportional to the current converted according to the optical power of the second optical signal.
  • the optical receiver 120-2 includes a light receiving element 121-2, a current mirror circuit 122-2, a power supply 123-2, and a power supply voltage controller 124-2.
  • the light receiving element 121-2 converts the received second optical signal into a current signal.
  • the light receiving element 121-2 gives the converted current signal to the current mirror circuit 122-2 as a second input current.
  • the current mirror circuit 122-2 outputs to the path switching section 130 a second monitor current proportional to the second input current from the light receiving element 121-2.
  • a power supply 123-2 is a power supply for the light receiving element 121-2.
  • the power supply voltage control section 124-2 controls the power supply voltage of the power supply 123-2.
  • Path switching section 130 receives the input of the first monitor current from optical receiving section 120-1, receives the input of the second monitoring current from optical receiving section 120-2, and outputs monitor current, which is output monitor current. between the first monitor current and the second monitor current.
  • the path switching unit 130 is a path switching circuit that switches the monitor current output to the MCU 140 between the first monitor current and the second monitor current according to the path switching signal indicating the instruction from the signal processing unit 115. .
  • the path switching unit 130 connects the current mirror circuit 122-1 and the MCU 140 to monitor the second optical signal. When selected, the current mirror circuit 122-2 and the MCU 140 are connected.
  • the MCU 140 generates a monitor signal for monitoring the optical power of the first optical signal or the optical power of the second optical signal according to the output monitor current from path switching section 130 .
  • the MCU 140 converts the output of the current mirror circuit 122-1 or current mirror circuit 122-2 into a digital signal using an ADC (Analog to Digital Converter) 141, and generates a monitor signal based on the converted digital signal.
  • the output of the current mirror circuit 122-1 or current mirror circuit 122-2 is a current, and the MCU 140 generates a monitor signal by obtaining a digital-converted voltage value corresponding to the current.
  • the monitor signal is output to signal processing section 115 .
  • the MCU 140 includes a processor such as a CPU (Central Processing Unit) and memory.
  • the signal processor 115 outputs a path switching signal to the optical receiver 114 .
  • the signal processing unit 115 outputs a path switching signal to the path switching unit 130 when switching between monitoring the first optical signal and monitoring the second optical signal. It need not be output by the processing unit 115 .
  • the signal processing unit 115 receives a monitor signal from the MCU 140 and performs known processing.
  • Embodiment 1 it is possible to switch the optical signal to be monitored as needed, so that the path switching unit 130 and subsequent components of the optical receiver 114 can be integrated. Therefore, it is possible to realize miniaturization, low power consumption, and low cost of the OLT 110 .
  • Embodiment 2 describes a case of performing burst reception.
  • an optical communication system 200 including an OLT 210 according to Embodiment 2 includes one OLT 210 as a station-side device, a plurality of ONUs 201, and passively branch or join optical signals. and an optical star coupler 102 that All ONUs 201 are connected to OLT 210 via one or more optical star couplers 102 and optical fibers 103 .
  • the optical signal transmitted from each ONU 201 is a burst optical packet signal, and the optical signal obtained by time-division multiplexing them is input to the OLT 210 .
  • the OLT 210 includes an optical module 211 and a signal processing section 215 .
  • the optical module 211 transmits and receives optical signals.
  • the optical module 211 includes a wavelength multiplexing coupler 112 , an optical transmitter 113 and an optical receiver 214 .
  • the wavelength multiplexing coupler 112 and the optical transmitter 113 of the optical module 211 according to the second embodiment are the same as the wavelength multiplexing coupler 112 and the optical transmitter 113 of the optical module 111 according to the first embodiment.
  • the ONU 201 transmits burst optical packet signals as optical signals. Since each ONU 201 is connected to the OLT 210 via an arbitrary length of optical fiber 103 and an arbitrary number of optical star couplers 102, the intensity of the optical signal received by the optical receiver 214 of the OLT 210 is equal to the optical packet It varies greatly from signal to signal. Therefore, in order for the optical receiver 214 to stably receive the optical packet signal, it is necessary to have a power monitor function capable of quickly acquiring the optical input power of the optical signal with a wide dynamic range.
  • FIG. 3 is a block diagram schematically showing the configuration of optical receiver 214 included in OLT 210 according to the second embodiment.
  • Optical receiver 214 in the second embodiment includes optical receiver 120 - 1 , optical receiver 120 - 2 , path switching section 230 , MCU 240 , and S/H (Sample and Hold) circuit 250 .
  • Optical receiver 120-1 and optical receiver 120-2 of optical receiver 214 in the second embodiment are the same as optical receiver 120-1 and optical receiver 120-2 of optical receiver 114 in the first embodiment. is.
  • the path switching section 230 switches the monitor current output to the S/H circuit 250 between the first monitor current and the second monitor current according to the monitor request signal indicating the instruction from the signal processing section 215 .
  • the path switching unit 230 connects the current mirror circuit 122-1 and the S/H circuit 250 when receiving the first monitor request signal, and connects the current mirror circuit 122-1 and the S/H circuit 250 when receiving the second monitor request signal. connects the current mirror circuit 122 - 2 and the S/H circuit 250 .
  • the first monitor request signal is a signal requesting monitoring of the optical power of the first optical signal
  • the second monitor request signal is a signal requesting monitoring of the optical power of the second optical signal.
  • the response speed of the path switching unit 230 must satisfy system requirements. For example, considering the reception of burst signals, it is conceivable to use a switch IC or the like capable of responding in the order of several nanoseconds to several tens of nanoseconds as the path switching unit 230 .
  • the S/H circuit 250 is a sample-and-hold section that receives the input of the output monitor current from the path switching section 230, samples the monitor voltage corresponding to the output monitor current, and holds it.
  • the monitor voltage corresponding to the output of the current mirror circuit 122-1 or current mirror circuit 122-2 is sampled and held.
  • the monitor voltage from the current mirror circuit 122-1 is also called the first monitor voltage
  • the monitor voltage from the current mirror circuit 122-2 is also called the second monitor voltage.
  • the S/H circuit 250 samples and holds the monitor voltage corresponding to the first monitor current in response to the first monitor request signal, and responds to the second monitor request signal to respond to the second monitor request signal. sample and hold the monitor voltage corresponding to the monitor current of .
  • the first monitor request signal and the second monitor request signal are input at the same time, it is possible to respond by sequential processing by determining in advance in the system which one should be prioritized.
  • the MCU 240 converts the output from the S/H circuit 250 into a digital signal with the ADC 141 and generates a monitor signal based on the converted digital signal. For example, the MCU 240 generates a monitor signal by digitally converting the monitor voltage.
  • the signal processing unit 215 includes a MAC-IC that processes transmission/reception signals.
  • the MAC-IC of the signal processing unit 215 generates a transmission signal based on the baseband signal input from the network 104 such as the Internet, and outputs the transmission signal to the optical transmitter 113 .
  • the signal processing unit 215 also converts the received signal input from the optical receiver 214 into a baseband signal and outputs the baseband signal to the network 104 .
  • the signal processor 215 outputs the first monitor request signal or the second monitor request signal to the optical receiver 214 .
  • the signal processing unit 215 selects monitoring of the first optical signal
  • the signal processing unit 215 outputs the first monitor request signal to the path switching unit 230 and the S/H circuit 250, and monitors the second optical signal.
  • a second monitor request signal is output to the path switching unit 230 and the S/H circuit 250 .
  • the monitor request signal does not necessarily have to be output by the signal processing unit 215 .
  • the signal processing unit 215 receives a monitor signal from the MCU 240 and performs known processing.
  • the optical signal to be monitored is configured to be switched as necessary, it is possible to integrate the path switching unit 230 and the subsequent parts of the optical receiver 214. . This makes it possible to reduce the size, power consumption, and cost of the OLT 210 .
  • the signal processing section 215 outputs the first monitor request signal, the second monitor request signal, .
  • an optical communication system 300 including an OLT 310 according to Embodiment 3 includes one OLT 310 as a station-side device, a plurality of ONUs 201, and passively branch or join optical signals. and an optical star coupler 102 that All ONUs 201 are connected to OLT 210 via one or more optical star couplers 102 and optical fibers 103 .
  • ONU 201 in optical communication system 300 in the third embodiment is configured in the same manner as ONU 201 in optical communication system 200 in the second embodiment. Therefore, the optical signal transmitted from each ONU 201 is a burst optical packet signal, and the optical signal obtained by time-division multiplexing them is input to the OLT 310 .
  • the OLT 310 includes an optical module 311 and a signal processing section 315 .
  • the optical module 311 transmits and receives optical signals.
  • the optical module 311 includes a wavelength multiplexing coupler 112 , an optical transmitter 113 and an optical receiver 314 .
  • the wavelength multiplexing coupler 112 and the optical transmitter 113 of the optical module 311 according to the third embodiment are the same as the wavelength multiplexing coupler 112 and the optical transmitter 113 of the optical module 111 according to the first embodiment.
  • FIG. 5 is a block diagram schematically showing the configuration of optical receiver 314 included in OLT 310 according to the third embodiment.
  • Optical receiver 314 in Embodiment 3 includes optical receiver 120-1, optical receiver 120-2, path switching unit 330, MCU 240, and S/H circuit 250.
  • FIG. Optical receiver 120-1 and optical receiver 120-2 of optical receiver 314 in Embodiment 3 are the same as optical receiver 120-1 and optical receiver 120-2 of optical receiver 114 in Embodiment 1. is.
  • the S/H circuit 250 and the MCU 240 of the optical receiver 314 in the third embodiment are the same as the S/H circuit 250 and the MCU 240 in the second embodiment.
  • the path switching section 330 switches the monitor current output to the S/H circuit 350 between the first monitor current and the second monitor current according to the monitor request signal indicating the instruction from the signal processing section 315 .
  • path switching section 330 normally connects current mirror circuit 122 - 1 and S/H circuit 350 .
  • the path switching unit 330 connects the current mirror circuit 122-2 and the S/H circuit 250, and after a predetermined period elapses, the current mirror circuit 122 - 1 and the S/H circuit 250 . Therefore, the path switching unit 330 outputs the second monitor current as the output monitor current in response to the second monitor request signal, and outputs the first monitor current after a certain period of time has passed since receiving the second monitor request signal. Output current as output monitor current.
  • Path switching section 330 normally connects current mirror circuit 122-2 and S/H circuit 250, and path switching section 330 switches current mirror circuit 122-2 when receiving the second monitor request signal. -1 and the S/H circuit 250 may be connected, and the connection between the current mirror circuit 122-2 and the S/H circuit 250 may be restored after a predetermined period of time has elapsed. In this case, the path switching unit 330 outputs the first monitor current as the output monitor current in response to the first monitor request signal, and outputs the second monitor current after a certain period of time has passed since receiving the first monitor request signal. Output the monitor current as the output monitor current.
  • the signal processing unit 315 includes a MAC-IC that processes transmission/reception signals.
  • the MAC-IC of the signal processing unit 315 generates a transmission signal based on the baseband signal input from the network 104 such as the Internet, and outputs the transmission signal to the optical transmitter 113 .
  • the signal processing unit 315 also converts the received signal input from the optical receiver 314 into a baseband signal and outputs the baseband signal to the network 104 . Also in Embodiment 3, the signal processing unit 315 outputs the first monitor request signal or the second monitor request signal to the optical receiver 314, as will be described later.
  • the signal processing unit 315 outputs the first monitor request signal to the S/H circuit 250 when selecting the monitoring of the first optical signal, and outputs the first monitoring request signal when selecting the monitoring of the second optical signal. outputs a second monitor request signal to the path switching unit 330 and the S/H circuit 250 .
  • the monitor request signal does not necessarily have to be output by the signal processing section 315 .
  • the signal processing unit 315 receives a monitor signal from the MCU 240 and performs known processing.
  • the processing by the first monitor request signal is reduced. Effects similar to those of form 2 can be achieved.
  • the signal processing unit 315 outputs the first monitor request signal to the S/H circuit 250, and outputs the second monitor request signal, . Output to S/H circuit 250 .
  • an optical communication system 400 including an OLT 410 according to Embodiment 4 includes one OLT 410 as a station-side device, a plurality of ONUs 201, and passively branch or join optical signals. and an optical star coupler 102 that All ONUs 201 are connected to OLT 210 via one or more optical star couplers 102 and optical fibers 103 .
  • ONU 201 in optical communication system 400 in the fourth embodiment is configured in the same manner as ONU 201 in optical communication system 200 in the second embodiment. Therefore, the optical signal transmitted from each ONU 201 is a burst optical packet signal, and the optical signal obtained by time-division multiplexing them is input to the OLT 410 .
  • the OLT 410 includes an optical module 411 and a signal processing section 415 .
  • the optical module 411 transmits and receives optical signals.
  • the optical module 411 includes a wavelength multiplexing coupler 112 , an optical transmitter 113 and an optical receiver 414 .
  • the wavelength multiplexing coupler 112 and the optical transmitter 113 of the optical module 411 in the fourth embodiment are the same as the wavelength multiplexing coupler 112 and the optical transmitter 113 of the optical module 111 in the first embodiment.
  • FIG. 7 is a block diagram schematically showing the configuration of optical receiver 414 included in OLT 410 according to the fourth embodiment.
  • Optical receiver 414 in Embodiment 4 includes optical receiver 120-1, optical receiver 120-2, path switching unit 430, MCU 440, and S/H circuit 450.
  • FIG. Optical receiver 120-1 and optical receiver 120-2 of optical receiver 414 in Embodiment 4 are the same as optical receiver 120-1 and optical receiver 120-2 of optical receiver 114 in Embodiment 1. is.
  • the path switching unit 430 switches the output monitor current, which is the monitor current to be output to the S/H circuit 450, between the first monitor current and the second monitor current at a predetermined cycle. It should be noted that the cycle of switching the route of the route switching unit 430 must satisfy the system requirements.
  • the S/H circuit 450 samples and holds the monitor voltage.
  • the MCU 440 converts the monitor voltage held by the S/H circuit 450 into a digital signal using the ADC 141, and generates a monitor signal based on the converted digital signal.
  • the MCU 440 stores the generated monitor signal as the monitor value of the first optical signal.
  • the S/H circuit 450 samples and holds the monitor voltage.
  • the MCU 440 converts the monitor voltage held by the S/H circuit 450 into a digital signal using the ADC 141, and generates a monitor signal based on the converted digital signal.
  • the MCU 440 stores the generated monitor signal as the monitor value of the second optical signal.
  • the MCU 440 stores the monitor value of the first optical signal and the monitor value of the second optical signal. The MCU 440 then updates these monitor values according to the cycle at which the path switching unit 430 switches paths.
  • the MCU 440 When the first monitor request signal is input, the MCU 440 outputs the monitor value of the first optical signal as the monitor signal, and when the second monitor request signal is input, the MCU 440 outputs the monitor value of the second optical signal. Output the monitor value as a monitor signal.
  • the signal processing unit 415 includes a MAC-IC that processes transmission/reception signals.
  • the MAC-IC of the signal processing unit 415 generates a transmission signal based on the baseband signal input from the network 104 such as the Internet, and outputs the transmission signal to the optical transmitter 113 .
  • the signal processing unit 415 converts the received signal input from the optical receiver 414 into a baseband signal and outputs the baseband signal to the network 104 .
  • the signal processing unit 415 outputs the first monitor request signal or the second monitor request signal to the optical receiver 414, as will be described later.
  • the signal processing unit 415 outputs the first monitor request signal to the MCU 440 when selecting the monitoring of the first optical signal, and outputs the first monitor request signal to the MCU 440 when selecting the monitoring of the second optical signal. Output a second monitor request signal.
  • the monitor request signal does not necessarily have to be output by the signal processing unit 415 .
  • the signal processing unit 415 receives a monitor signal from the MCU 440 and performs known processing.
  • the MCU 440 can output each monitor value.
  • the signal processing section 415 outputs a first monitor request signal, a second monitor request signal, . . .
  • an optical communication system 500 including an OLT 510 according to Embodiment 5 includes one OLT 510 as a station-side device, a plurality of ONUs 201, and passively branch or join optical signals. and an optical star coupler 102 that All ONUs 201 are connected to OLT 210 via one or more optical star couplers 102 and optical fibers 103 .
  • ONU 201 in optical communication system 500 according to the fifth embodiment is configured similarly to ONU 201 in optical communication system 200 according to the second embodiment. Therefore, the optical signal transmitted from each ONU 201 is a burst optical packet signal, and the optical signal obtained by time-division multiplexing them is input to the OLT 510 .
  • the OLT 510 includes an optical module 511 and a signal processing section 515 .
  • the optical module 511 transmits and receives optical signals.
  • the optical module 511 includes a wavelength multiplexing coupler 112 , an optical transmitter 113 and an optical receiver 514 .
  • the wavelength multiplexing coupler 112 and the optical transmitter 113 of the optical module 511 according to the fifth embodiment are the same as the wavelength multiplexing coupler 112 and the optical transmitter 113 of the optical module 111 according to the first embodiment.
  • FIG. 9 is a block diagram schematically showing the configuration of optical receiver 514 included in OLT 510 according to the fifth embodiment.
  • Optical receiver 514 in Embodiment 5 includes optical receiver 120-1, optical receiver 120-2, path switching unit 530, MCU 540, and S/H circuit 550.
  • FIG. Optical receiver 120-1 and optical receiver 120-2 of optical receiver 514 in Embodiment 5 are the same as optical receiver 120-1 and optical receiver 120-2 of optical receiver 114 in Embodiment 1. is.
  • the MCU 540 When the first monitor request signal is input, the MCU 540 provides the path switching section 530 and the S/H circuit 550 with a first control signal, which is a control signal instructing monitoring of the first optical signal.
  • Path switching section 530 that has received the first control signal connects current mirror circuit 122 - 1 and S/H circuit 550 .
  • the S/H circuit 550 samples the monitor voltage corresponding to the output of the current mirror circuit 122-1 after a time sufficient for the path switching section 530 to switch paths. and hold.
  • MCU 540 generates a monitor signal based on the output voltage of S/H circuit 550 .
  • the MCU 540 provides the path switching section 530 and the S/H circuit 550 with a second control signal, which is a control signal instructing monitoring of the second optical signal.
  • the path switching section 530 Upon receiving the second control signal, the path switching section 530 connects the current mirror circuit 122-2 and the S/H circuit 550 to each other.
  • the S/H circuit 550 samples the monitor voltage corresponding to the output of the current mirror circuit 122-2 after a time sufficient for the path switching unit 530 to switch paths. and hold.
  • MCU 540 generates a monitor signal based on the output voltage of S/H circuit 550 .
  • the MCU 540 outputs the first control signal to the path switching unit 530 and the S/H circuit 550 in response to the first monitor request signal, and outputs the second control signal in response to the second monitor request signal.
  • a signal is output to the path switching section 530 and the S/H circuit 550 .
  • the path switching section 530 outputs the first monitor current as the output monitor current in response to the first control signal, and outputs the second monitor current as the output monitor current in response to the second control signal.
  • the S/H circuit 550 samples and holds the monitor voltage corresponding to the first monitor current in response to the first control signal, and the second monitor current in response to the second control signal. The monitor voltage corresponding to is sampled and held.
  • the system can determine in advance which one to prioritize, so that sequential processing can be performed.
  • the signal processing unit 515 includes a MAC-IC that processes transmission/reception signals.
  • the MAC-IC of the signal processing unit 515 generates a transmission signal based on the baseband signal input from the network 104 such as the Internet, and outputs the transmission signal to the optical transmitter 113 .
  • the signal processing unit 515 converts the received signal input from the optical receiver 514 into a baseband signal and outputs the baseband signal to the network 104 .
  • the signal processing unit 515 outputs the first monitor request signal or the second monitor request signal to the optical receiver 514, as will be described later.
  • the signal processing unit 515 outputs a first monitor request signal to the MCU 540 when selecting monitoring of the first optical signal, and outputs a signal to the MCU 540 when selecting monitoring of the second optical signal. Output a second monitor request signal.
  • the monitor request signal does not necessarily have to be output by the signal processing section 515 .
  • the signal processing unit 515 receives a monitor signal from the MCU 540 and performs known processing.
  • a plurality of monitor requests such as monitoring the first optical signal at 0 level and monitoring the second optical signal at 1 level can be combined into a single request. It can correspond to the system input by the signal line.
  • two optical receivers 120-1 and 120-2 are provided and correspond to two rates, but this number is not limited to two. .
  • the signal processing unit 515 outputs a first monitor request signal, a second monitor request signal, . . .
  • 100, 200, 300, 400, 500 optical communication system 101, 201 ONU, 102 optical star coupler, 103 optical fiber, 110, 210, 310, 410, 510 OLT, 111, 211, 311, 411, 511 optical module, 112 Wavelength multiplex coupler, 113 optical transmitter, 114, 214, 314, 414, 514 optical receiver, 115, 215, 315, 415, 515 signal processor, 120-1 optical receiver, 121-1 light receiving element, 122 -1 Current mirror circuit, 123-1 Power supply, 124-1 Power supply voltage control unit, 120-2 Optical receiver unit, 121-2 Light receiving element, 122-2 Current mirror circuit, 123-2 Power supply, 124-2 Power supply voltage control section, 130, 230, 330, 430, 530 path switching section, 140, 240, 440, 540 MCU, 141 ADC, 250, 450, 550 S/H circuit.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

The present invention comprises: an optical receiver (120-1) that receives a first optical signal having a first rate and outputs a first monitor current proportional to an electric current converted according to the optical power of the first optical signal; a receiver (120-2) that receives a second optical signal having a second rate different from the first rate and outputs a second monitor current proportional to an electric current converted according to the optical power of the second optical signal; a route switcher (130) that receives inputs of the first monitor current and the second monitor current and switches an output monitor current to be output between the first monitor current and the second monitor current; and an MCU (140) that generates a monitor signal for monitoring the optical power of the first optical signal or the optical power of the second optical signal depending on the output monitor current.

Description

光パワーモニタ用回路、光モジュール、局側装置及び光パワーモニタ方法Optical power monitor circuit, optical module, office equipment, and optical power monitor method
 本開示は、光パワーモニタ用回路、光モジュール、局側装置及び光パワーモニタ方法に関する。 The present disclosure relates to an optical power monitoring circuit, an optical module, a station-side device, and an optical power monitoring method.
 マルチメディアサービスを各家庭に提供するためのアクセスネットワークでは、光ファイバを用いた公衆回路網で実現するPON(Passive Optical Network)システムという光通信システムが広く用いられている。
 PONシステムは、局側装置として使用される光加入者線終端装置である一台のOLT(Optical Line Terminal)と、光スターカプラを介して接続される加入者側端末装置として使用される複数の光ネットワーク装置であるONU(Optical Network Unit)とにより構成される。
2. Description of the Related Art An access network for providing multimedia services to each home widely uses an optical communication system called a PON (Passive Optical Network) system implemented by a public network using optical fibers.
A PON system consists of one OLT (Optical Line Terminal), which is an optical subscriber line terminal used as a station-side device, and a plurality of subscriber-side terminal devices connected via an optical star coupler. It is composed of ONUs (Optical Network Units), which are optical network devices.
 PONシステムでは、OLTは、全ONUに対して連続信号を送信する。
 一方、各ONUから送信される光パケット信号は、時分割多重伝送されてOLTで受信される。このため、一般的にOLTに備えられる光受信器は、光パケット信号を瞬時に電気再生するバースト受信機能を必要とする。
In the PON system, the OLT sends continuous signals to all ONUs.
On the other hand, an optical packet signal transmitted from each ONU is time-division multiplexed and received by the OLT. For this reason, an optical receiver provided in an OLT generally requires a burst reception function for instantaneously electrically regenerating an optical packet signal.
 OLTで使用される光送受信器は、XFP(10Gigabit Small Form Factor Pluggable)又はSFP+(Small Form Factor Pluggable Plus)等の仕様で定められた機能及び外形を有する光モジュールが普及している。XFP又はSFP+の光モジュールは、受信しているパケットの光強度を監視するためのモニタ用の信号を出力することが要求されている。例えば、MAC-IC(Media Access Control-Integrated Circuit)からのRSSI(Received Signal Strength Indication)トリガ信号が入力されてから数100ns後にモニタ用の信号が出力される。 Optical transceivers used in OLT are widely used optical modules having functions and external shapes defined by specifications such as XFP (10 Gigabit Small Form Factor Pluggable) or SFP+ (Small Form Factor Pluggable Plus). An XFP or SFP+ optical module is required to output a monitor signal for monitoring the optical intensity of a received packet. For example, a monitor signal is output several hundred ns after an RSSI (Received Signal Strength Indication) trigger signal is input from a MAC-IC (Media Access Control-Integrated Circuit).
 このような要求を満足するパワーモニタ回路は、一般的に、特許文献1に開示されているように、カレントミラー回路と、サンプルアンドホールド回路とを備える。
 このようなパワーモニタ回路では、受光素子であるAPD(Avalanche Photo Diode)に入力された光信号の強度に比例した電流であるAPD電流がカレントミラー回路に入力される。カレントミラー回路は、APD電流に比例したミラー電流を生成し、そのミラー電流は、後段回路にて電圧に変換され、変換された電圧が出力される。サンプルアンドホールド回路は、変換された電圧の電圧値を保持する。サンプルアンドホールド回路で保持された電圧値は、AD(Analog to Digital)変換により、デジタル値に変換される。このデジタル値を用いて受信光のパワーをモニタすることが可能となる。
A power monitor circuit that satisfies such requirements generally comprises a current mirror circuit and a sample-and-hold circuit, as disclosed in US Pat.
In such a power monitor circuit, an APD current, which is a current proportional to the intensity of an optical signal input to an APD (Avalanche Photo Diode), which is a light receiving element, is input to a current mirror circuit. The current mirror circuit generates a mirror current proportional to the APD current, the mirror current is converted into a voltage in the subsequent circuit, and the converted voltage is output. A sample-and-hold circuit holds the voltage value of the converted voltage. The voltage value held by the sample-and-hold circuit is converted into a digital value by AD (Analog to Digital) conversion. Using this digital value, it becomes possible to monitor the power of the received light.
特開2015-103914号JP 2015-103914
 近年では複数レートの受信信号を受信可能なMPM-PОN(Multi Point Module PON)等のマルチレート対応システムの普及が進んでいる。
 従来の構成で複数レートの受信信号を受信可能なマルチレート化を行う場合、レート毎に受信光を受光して、その受信光のパワーをモニタする回路が必要である。そのため、光受信装置のサイズが大きくなってしまうという問題があった。また、複数回路により消費電力が増加するとともに部品点数の増加により装置のコストも増加してしまうという問題もあった。
In recent years, multi-rate compatible systems such as MPM-PON (Multi Point Module PON) capable of receiving received signals of multiple rates are becoming widespread.
In order to achieve multi-rate reception of received signals of a plurality of rates with the conventional configuration, a circuit for receiving received light for each rate and monitoring the power of the received light is required. Therefore, there is a problem that the size of the optical receiver increases. Moreover, there is also the problem that power consumption increases due to the plurality of circuits, and the cost of the device increases due to the increase in the number of parts.
 本開示の一又は複数の態様は、受信光を受光して、その受信光のパワーをモニタする回路の一部を集約できるようにすることを目的とする。 An object of one or more aspects of the present disclosure is to integrate part of a circuit that receives received light and monitors the power of the received light.
 本開示の一態様に係る光パワーモニタ用回路は、第一のレートの光信号である第一の光信号を受信して、前記第一の光信号の光パワーに応じて変換された電流に比例する電流である第一のモニタ電流を出力する第一の光受信部と、前記第一のレートとは異なる第二のレートの光信号である第二の光信号を受信して、前記第二の光信号の光パワーに応じて変換された電流に比例する電流である第二のモニタ電流を出力する第二の光受信部と、前記第一のモニタ電流及び前記第二のモニタ電流の入力を受けて、出力するモニタ電流である出力モニタ電流を、前記第一のモニタ電流及び前記第二のモニタ電流の間で切り替える経路切替部と、前記出力モニタ電流に応じて、前記第一の光信号の光パワー又は前記第二の光信号の光パワーをモニタするためのモニタ信号を生成する制御部と、を備えることを特徴とする。 An optical power monitoring circuit according to one aspect of the present disclosure receives a first optical signal that is an optical signal at a first rate, and converts a current according to the optical power of the first optical signal into A first optical receiver that outputs a first monitor current that is a proportional current; a second optical receiver that outputs a second monitor current that is proportional to the current converted according to the optical power of the two optical signals; a path switching unit that receives an input and switches an output monitor current, which is a monitor current to be output, between the first monitor current and the second monitor current; and a control unit that generates a monitor signal for monitoring the optical power of the optical signal or the optical power of the second optical signal.
 本開示の一態様に係る光パワーモニタ方法は、第一のレートの光信号である第一の光信号を受信して、前記第一の光信号の光パワーに応じて変換された電流に比例する電流である第一のモニタ電流を出力し、前記第一のレートとは異なる第二のレートの光信号である第二の光信号を受信して、前記第二の光信号の光パワーに応じて変換された電流に比例する電流である第二のモニタ電流を出力し、前記第一のモニタ電流及び前記第二のモニタ電流の入力を受けて、出力するモニタ電流である出力モニタ電流を、前記第一のモニタ電流及び前記第二のモニタ電流の間で切り替え、前記出力モニタ電流に応じて、前記第一の光信号の光パワー又は前記第二の光信号の光パワーをモニタするためのモニタ信号を生成することを特徴とする。 An optical power monitoring method according to one aspect of the present disclosure receives a first optical signal, which is an optical signal at a first rate, and converts a current proportional to the optical power of the first optical signal. receiving a second optical signal that is an optical signal at a second rate different from the first rate, and adjusting the optical power of the second optical signal to outputs a second monitor current that is a current proportional to the current converted according to , for switching between the first monitor current and the second monitor current and monitoring the optical power of the first optical signal or the optical power of the second optical signal in response to the output monitor current. is characterized by generating a monitor signal of
 本開示の一又は複数の態様によれば、受信光を受光して、その受信光のパワーをモニタする回路の一部を集約することができる。 According to one or more aspects of the present disclosure, part of the circuit that receives received light and monitors the power of the received light can be consolidated.
実施の形態1~5に係るOLTを含む光通信システムの構成を概略的に示すブロック図である。1 is a block diagram schematically showing the configuration of an optical communication system including an OLT according to Embodiments 1-5; FIG. 実施の形態1に係るOLTに含まれている光受信器の構成を概略的に示すブロック図である。2 is a block diagram schematically showing the configuration of an optical receiver included in the OLT according to Embodiment 1; FIG. 実施の形態2に係るOLTに含まれている光受信器の構成を概略的に示すブロック図である。FIG. 4 is a block diagram schematically showing the configuration of an optical receiver included in an OLT according to Embodiment 2; 実施の形態2の変形例である光受信器の構成を概略的に示すブロック図である。FIG. 9 is a block diagram schematically showing the configuration of an optical receiver that is a modification of Embodiment 2; 実施の形態3に係るOLTに含まれている光受信器の構成を概略的に示すブロック図である。FIG. 11 is a block diagram schematically showing the configuration of an optical receiver included in an OLT according to Embodiment 3; 実施の形態3の変形例である光受信器の構成を概略的に示すブロック図である。FIG. 12 is a block diagram schematically showing the configuration of an optical receiver that is a modification of Embodiment 3; 実施の形態4に係るOLTに含まれている光受信器の構成を概略的に示すブロック図である。14 is a block diagram schematically showing the configuration of an optical receiver included in an OLT according to Embodiment 4; FIG. 実施の形態4の変形例である光受信器の構成を概略的に示すブロック図である。FIG. 12 is a block diagram schematically showing the configuration of an optical receiver that is a modification of Embodiment 4; 実施の形態5に係るOLTに含まれている光受信器の構成を概略的に示すブロック図である。14 is a block diagram schematically showing the configuration of an optical receiver included in an OLT according to Embodiment 5; FIG. 実施の形態5の変形例である光受信器の構成を概略的に示すブロック図である。FIG. 14 is a block diagram schematically showing the configuration of an optical receiver that is a modification of Embodiment 5;
実施の形態1.
 図1は、実施の形態1に係るOLT110を含む光通信システム100の構成を概略的に示すブロック図である。
 光通信システム100は、ポイント・トゥ・マルチポイントの形式を採ったPONシステムである。
Embodiment 1.
FIG. 1 is a block diagram schematically showing the configuration of an optical communication system 100 including an OLT 110 according to Embodiment 1. As shown in FIG.
The optical communication system 100 is a PON system in the form of point-to-multipoint.
 光通信システム100は、局側装置である一台のOLT110と、複数のONU101と、光信号を受動的に分岐又は合流する光スターカプラ102とを備えている。全てのONU101は、一つ以上の光スターカプラ102と、光ファイバ103とを介して、OLT110に接続されている。 The optical communication system 100 includes one OLT 110 as a station-side device, a plurality of ONUs 101, and an optical star coupler 102 that passively branches or joins optical signals. All ONUs 101 are connected to OLT 110 via one or more optical star couplers 102 and optical fibers 103 .
 OLT110は、波長多重カプラ112と、光送信器113と、光受信器114と、信号処理部115とを備える。図1に示されているように、一つの光モジュール111内に、少なくとも波長多重カプラ112、光送信器113及び光受信器114が含まれるように構成されてもよい。 The OLT 110 comprises a wavelength multiplexing coupler 112 , an optical transmitter 113 , an optical receiver 114 and a signal processor 115 . As shown in FIG. 1, one optical module 111 may be configured to include at least a wavelength multiplexing coupler 112, an optical transmitter 113 and an optical receiver 114. FIG.
 波長多重カプラ112は、光波長の異なる上り信号及び下り信号を予め定められた方向に出力する。波長多重カプラ112は、ONU101から出力され、光ファイバ103を伝送されてきた光信号を、光受信器114側に出力し、光送信器113から出力される光信号を、ONU101が接続されている光ファイバ103側に出力する。 The wavelength multiplexing coupler 112 outputs upstream and downstream signals with different optical wavelengths in predetermined directions. The wavelength multiplexing coupler 112 outputs the optical signal output from the ONU 101 and transmitted through the optical fiber 103 to the optical receiver 114 side, and transmits the optical signal output from the optical transmitter 113 to the ONU 101. Output to the optical fiber 103 side.
 光送信器113は、半導体レーザ等の発光素子が発光する光を、信号処理部115から入力される送信信号で変調する。変調により生成された光信号は、下り信号として波長多重カプラ112を介して出力され、光ファイバ103を伝送し、各ONU101で受光される。 The optical transmitter 113 modulates light emitted by a light emitting element such as a semiconductor laser with a transmission signal input from the signal processing section 115 . An optical signal generated by modulation is output as a downstream signal via the wavelength multiplexing coupler 112 , transmitted through the optical fiber 103 , and received by each ONU 101 .
 ONU101から送信されて光ファイバ103を伝送してきた光信号である上り信号は、波長多重カプラ112を介して光受信器114に入力される。光受信器114は、入力された光信号を光電変換し、後段回路で電圧信号の受信信号に復調して、信号処理部115に出力する。 An upstream signal, which is an optical signal transmitted from the ONU 101 and transmitted through the optical fiber 103 , is input to the optical receiver 114 via the wavelength multiplexing coupler 112 . The optical receiver 114 photoelectrically converts the input optical signal, demodulates it into a received voltage signal in a subsequent circuit, and outputs it to the signal processing unit 115 .
 信号処理部115は、送受信信号の処理を行うMAC-ICを備える。信号処理部115のMAC-ICは、インターネット等のネットワーク104から入力されたベースバンド信号に基づいて送信信号を生成して光送信器113に対して出力する。また、信号処理部115は、光受信器114から入力された受信信号をベースバンド信号に変換し、ネットワーク104に出力する。 The signal processing unit 115 includes a MAC-IC that processes transmitted and received signals. The MAC-IC of the signal processing unit 115 generates a transmission signal based on the baseband signal input from the network 104 such as the Internet, and outputs the transmission signal to the optical transmitter 113 . The signal processing unit 115 also converts the received signal input from the optical receiver 114 into a baseband signal and outputs the baseband signal to the network 104 .
 図2は、実施の形態1に係るOLT110に含まれている光受信器114の構成を概略的に示すブロック図である。
 光受信器114は、光パワーモニタ用回路として機能する。
 実施の形態1は、最も基礎的な構成として、連続信号を受信する場合について説明する。
FIG. 2 is a block diagram schematically showing the configuration of optical receiver 114 included in OLT 110 according to the first embodiment.
The optical receiver 114 functions as an optical power monitor circuit.
Embodiment 1 describes the case of receiving a continuous signal as the most basic configuration.
 実施の形態1における光受信器114は、第一の光受信部としての光受信部120-1と、第二の光受信部としての光受信部120-2と、経路切替部130と、MCU(Micro Controller Unit)140とを備える。 The optical receiver 114 in Embodiment 1 includes an optical receiver 120-1 as a first optical receiver, an optical receiver 120-2 as a second optical receiver, a path switching unit 130, and an MCU (Micro Controller Unit) 140.
 光受信部120-1は、あるレートの光信号である第一の光信号を受信する第一の光受信回路である。第一の光信号のレートを第一のレートともいう。光受信部120-1は、第一の光信号の光パワーに応じて変換された電流に比例する電流である第一のモニタ電流を出力する。 The optical receiver 120-1 is a first optical receiver circuit that receives a first optical signal that is an optical signal at a certain rate. The rate of the first optical signal is also called the first rate. The optical receiver 120-1 outputs a first monitor current that is proportional to the current converted according to the optical power of the first optical signal.
 光受信部120-1は、受光素子121-1と、カレントミラー回路122-1と、電源123-1と、電源電圧制御部124-1とを備える。 The optical receiver 120-1 includes a light receiving element 121-1, a current mirror circuit 122-1, a power supply 123-1, and a power supply voltage controller 124-1.
 受光素子121-1は、受信された第一の光信号を電流信号に変換する。受光素子121-1は、変換された電流信号を第一の入力電流としてカレントミラー回路122-1に与える。
 カレントミラー回路122-1は、受光素子121-1からの第一の入力電流に比例するモニタ電流である第一のモニタ電流を経路切替部130に出力する。
 電源123-1は、受光素子121-1の電源である。
 電源電圧制御部124-1は、電源123-1の電源電圧を制御する。
The light receiving element 121-1 converts the received first optical signal into a current signal. The light receiving element 121-1 gives the converted current signal as a first input current to the current mirror circuit 122-1.
The current mirror circuit 122-1 outputs to the path switching section 130 a first monitor current proportional to the first input current from the light receiving element 121-1.
A power supply 123-1 is a power supply for the light receiving element 121-1.
The power supply voltage control section 124-1 controls the power supply voltage of the power supply 123-1.
 また、光受信部120-2は、第一の光信号とは異なるレートの光信号である第二の光信号を受信する第二の光受信回路である。第二の光信号のレートを第二のレートともいう。光受信部120-2は、第二の光信号の光パワーに応じて変換された電流に比例する電流である第二のモニタ電流を出力する。 Also, the optical receiver 120-2 is a second optical receiver circuit that receives a second optical signal that is an optical signal with a rate different from that of the first optical signal. The rate of the second optical signal is also called the second rate. The optical receiver 120-2 outputs a second monitor current that is proportional to the current converted according to the optical power of the second optical signal.
 光受信部120-2は、受光素子121-2と、カレントミラー回路122-2と、電源123-2と、電源電圧制御部124-2とを備える。 The optical receiver 120-2 includes a light receiving element 121-2, a current mirror circuit 122-2, a power supply 123-2, and a power supply voltage controller 124-2.
 受光素子121-2は、受信された第二の光信号を電流信号に変換する。受光素子121-2は、変換された電流信号を第二の入力電流としてカレントミラー回路122-2に与える。
 カレントミラー回路122-2は、受光素子121-2からの第二の入力電流に比例するモニタ電流である第二のモニタ電流を経路切替部130に出力する。
 電源123-2は、受光素子121-2の電源である。
 電源電圧制御部124-2は、電源123-2の電源電圧を制御する。
The light receiving element 121-2 converts the received second optical signal into a current signal. The light receiving element 121-2 gives the converted current signal to the current mirror circuit 122-2 as a second input current.
The current mirror circuit 122-2 outputs to the path switching section 130 a second monitor current proportional to the second input current from the light receiving element 121-2.
A power supply 123-2 is a power supply for the light receiving element 121-2.
The power supply voltage control section 124-2 controls the power supply voltage of the power supply 123-2.
 経路切替部130は、光受信部120-1から第一のモニタ電流の入力を受け、光受信部120-2から第二のモニタ電流の入力を受けて、出力するモニタ電流である出力モニタ電流を、第一のモニタ電流及び第二のモニタ電流の間で切り替える。
 例えば、経路切替部130は、信号処理部115からの指示を示す経路切替信号に従って、MCU140に出力するモニタ電流を、第一のモニタ電流及び第二のモニタ電流の間で切り替える経路切替回路である。具体的には、経路切替部130は、経路切替信号により第一の光信号のモニタが選択された場合、カレントミラー回路122-1と、MCU140とを接続し、第二の光信号のモニタが選択された場合、カレントミラー回路122-2と、MCU140とを接続する。
Path switching section 130 receives the input of the first monitor current from optical receiving section 120-1, receives the input of the second monitoring current from optical receiving section 120-2, and outputs monitor current, which is output monitor current. between the first monitor current and the second monitor current.
For example, the path switching unit 130 is a path switching circuit that switches the monitor current output to the MCU 140 between the first monitor current and the second monitor current according to the path switching signal indicating the instruction from the signal processing unit 115. . Specifically, when monitoring of the first optical signal is selected by the path switching signal, the path switching unit 130 connects the current mirror circuit 122-1 and the MCU 140 to monitor the second optical signal. When selected, the current mirror circuit 122-2 and the MCU 140 are connected.
 MCU140は、経路切替部130からの出力モニタ電流に応じて、第一の光信号の光パワー又は第二の光信号の光パワーをモニタするためのモニタ信号を生成する。
 MCU140は、カレントミラー回路122-1又はカレントミラー回路122-2の出力をADC(Analog to Digital Converter)141でデジタル信号に変換し、変換されたデジタル信号に基づいてモニタ信号を生成する。カレントミラー回路122-1又はカレントミラー回路122-2の出力は、電流であり、MCU140は、その電流に対応してデジタル変換された電圧値を求めることで、モニタ信号を生成する。モニタ信号については、信号処理部115に出力される。
 例えば、MCU140は、CPU(Centrral Prosessing Unit)等のプロセッサ及びメモリを備える。
MCU 140 generates a monitor signal for monitoring the optical power of the first optical signal or the optical power of the second optical signal according to the output monitor current from path switching section 130 .
The MCU 140 converts the output of the current mirror circuit 122-1 or current mirror circuit 122-2 into a digital signal using an ADC (Analog to Digital Converter) 141, and generates a monitor signal based on the converted digital signal. The output of the current mirror circuit 122-1 or current mirror circuit 122-2 is a current, and the MCU 140 generates a monitor signal by obtaining a digital-converted voltage value corresponding to the current. The monitor signal is output to signal processing section 115 .
For example, the MCU 140 includes a processor such as a CPU (Central Processing Unit) and memory.
 図1に戻り、信号処理部115は、光受信器114に、経路切替信号を出力する。例えば、信号処理部115は、第一の光信号のモニタと、第二の光信号のモニタとを切り替える場合に、経路切替部130に経路切替信号を出力するが、経路切替信号は、必ずしも信号処理部115により出力される必要はない。
 また、信号処理部115は、MCU140からモニタ信号を受け取り、公知の処理を行う。
Returning to FIG. 1 , the signal processor 115 outputs a path switching signal to the optical receiver 114 . For example, the signal processing unit 115 outputs a path switching signal to the path switching unit 130 when switching between monitoring the first optical signal and monitoring the second optical signal. It need not be output by the processing unit 115 .
Also, the signal processing unit 115 receives a monitor signal from the MCU 140 and performs known processing.
 以上に説明したように、実施の形態1によれば、必要に応じてモニタする光信号を切り替えることができるため、光受信器114の経路切替部130以降を集約することが可能となる。このため、OLT110の小型化、低消費電力化及び低コスト化を実現することができる。 As described above, according to Embodiment 1, it is possible to switch the optical signal to be monitored as needed, so that the path switching unit 130 and subsequent components of the optical receiver 114 can be integrated. Therefore, it is possible to realize miniaturization, low power consumption, and low cost of the OLT 110 .
実施の形態2.
 実施の形態2は、バースト受信を行う場合について説明する。
 図1に示されているように、実施の形態2に係るOLT210を含む光通信システム200は、局側装置である一台のOLT210と、複数のONU201と、光信号を受動的に分岐又は合流する光スターカプラ102とを備えている。全てのONU201は、一つ以上の光スターカプラ102と、光ファイバ103とを介して、OLT210に接続されている。
Embodiment 2.
Embodiment 2 describes a case of performing burst reception.
As shown in FIG. 1, an optical communication system 200 including an OLT 210 according to Embodiment 2 includes one OLT 210 as a station-side device, a plurality of ONUs 201, and passively branch or join optical signals. and an optical star coupler 102 that All ONUs 201 are connected to OLT 210 via one or more optical star couplers 102 and optical fibers 103 .
 実施の形態2においては、各ONU201から送信される光信号は、バースト状の光パケット信号であり、それらを時分割多重した光信号がOLT210に入力される。 In the second embodiment, the optical signal transmitted from each ONU 201 is a burst optical packet signal, and the optical signal obtained by time-division multiplexing them is input to the OLT 210 .
 OLT210は、光モジュール211と、信号処理部215とを備える。
 光モジュール211は、光信号の送受信を行う。光モジュール211は、波長多重カプラ112と、光送信器113と、光受信器214とを備える。
 実施の形態2における光モジュール211の波長多重カプラ112及び光送信器113は、実施の形態1における光モジュール111の波長多重カプラ112及び光送信器113と同様である。
The OLT 210 includes an optical module 211 and a signal processing section 215 .
The optical module 211 transmits and receives optical signals. The optical module 211 includes a wavelength multiplexing coupler 112 , an optical transmitter 113 and an optical receiver 214 .
The wavelength multiplexing coupler 112 and the optical transmitter 113 of the optical module 211 according to the second embodiment are the same as the wavelength multiplexing coupler 112 and the optical transmitter 113 of the optical module 111 according to the first embodiment.
 上述のように、実施の形態2においては、ONU201は、バースト状の光パケット信号を光信号として送信する。各ONU201は、任意の長さの光ファイバ103と、任意の個数の光スターカプラ102を介してOLT210に接続されているため、OLT210の光受信器214が受光する光信号の強度は、光パケット信号毎に大きく異なる。このため、光受信器214が安定して光パケット信号を受信するためには、広幅なダイナミックレンジの光信号の光入力パワーを高速に取得可能なパワーモニタ機能を備える必要がある。 As described above, in the second embodiment, the ONU 201 transmits burst optical packet signals as optical signals. Since each ONU 201 is connected to the OLT 210 via an arbitrary length of optical fiber 103 and an arbitrary number of optical star couplers 102, the intensity of the optical signal received by the optical receiver 214 of the OLT 210 is equal to the optical packet It varies greatly from signal to signal. Therefore, in order for the optical receiver 214 to stably receive the optical packet signal, it is necessary to have a power monitor function capable of quickly acquiring the optical input power of the optical signal with a wide dynamic range.
 図3は、実施の形態2に係るOLT210に含まれている光受信器214の構成を概略的に示すブロック図である。
 実施の形態2における光受信器214は、光受信部120-1と、光受信部120-2と、経路切替部230と、MCU240と、S/H(Sample and Hold)回路250とを備える。
 実施の形態2における光受信器214の光受信部120-1及び光受信部120-2は、実施の形態1における光受信器114の光受信部120-1及び光受信部120-2と同様である。
FIG. 3 is a block diagram schematically showing the configuration of optical receiver 214 included in OLT 210 according to the second embodiment.
Optical receiver 214 in the second embodiment includes optical receiver 120 - 1 , optical receiver 120 - 2 , path switching section 230 , MCU 240 , and S/H (Sample and Hold) circuit 250 .
Optical receiver 120-1 and optical receiver 120-2 of optical receiver 214 in the second embodiment are the same as optical receiver 120-1 and optical receiver 120-2 of optical receiver 114 in the first embodiment. is.
 経路切替部230は、信号処理部215からの指示を示すモニタ要求信号に従って、S/H回路250に出力するモニタ電流を、第一のモニタ電流及び第二のモニタ電流の間で切り替える。例えば、経路切替部230は、第一のモニタ要求信号を受けた場合には、カレントミラー回路122-1と、S/H回路250とを接続し、第二のモニタ要求信号を受けた場合には、カレントミラー回路122-2と、S/H回路250とを接続する。 The path switching section 230 switches the monitor current output to the S/H circuit 250 between the first monitor current and the second monitor current according to the monitor request signal indicating the instruction from the signal processing section 215 . For example, the path switching unit 230 connects the current mirror circuit 122-1 and the S/H circuit 250 when receiving the first monitor request signal, and connects the current mirror circuit 122-1 and the S/H circuit 250 when receiving the second monitor request signal. connects the current mirror circuit 122 - 2 and the S/H circuit 250 .
 ここで、第一のモニタ要求信号は、第一の光信号の光パワーのモニタを要求する信号であり、第二のモニタ要求信号は、第二の光信号の光パワーのモニタを要求する信号である。
 従って、経路切替部230は、第一のモニタ要求信号に応じて、第一のモニタ電流を出力モニタ電流として出力し、第二のモニタ要求信号に応じて、第二のモニタ電流を出力モニタ電流として出力する。
 なお、経路切替部230は、第一のモニタ要求信号が入力された時点で、既にカレントミラー回路122-1と、S/H回路250とを接続している場合は、その状態を維持する。また、経路切替部230は、第二のモニタ要求信号が入力された時点で、既にカレントミラー回路122-2と、S/H回路250とを接続している場合も、同様に状態を維持する。
Here, the first monitor request signal is a signal requesting monitoring of the optical power of the first optical signal, and the second monitor request signal is a signal requesting monitoring of the optical power of the second optical signal. is.
Therefore, the path switching section 230 outputs the first monitor current as the output monitor current in response to the first monitor request signal, and outputs the second monitor current as the output monitor current in response to the second monitor request signal. output as
If the path switching unit 230 has already connected the current mirror circuit 122-1 and the S/H circuit 250 when the first monitor request signal is input, the state is maintained. Further, even if the path switching unit 230 has already connected the current mirror circuit 122-2 and the S/H circuit 250 when the second monitor request signal is input, the state is similarly maintained. .
 ここで、経路切替部230の応答速度は、システム要求を満足する必要がある。例えば、バースト信号の受信を考慮し、経路切替部230として数nsから数十nsオーダで応答可能なスイッチIC等を用いることが考えられる。 Here, the response speed of the path switching unit 230 must satisfy system requirements. For example, considering the reception of burst signals, it is conceivable to use a switch IC or the like capable of responding in the order of several nanoseconds to several tens of nanoseconds as the path switching unit 230 .
 S/H回路250は、経路切替部230から出力モニタ電流の入力を受けて、出力モニタ電流に対応するモニタ電圧をサンプリングして、ホールドするサンプルアンドホールド部である。
 実施の形態2においては、S/H回路250は、第一のモニタ要求信号又は第二のモニタ要求信号が入力された後、経路切替部230が経路切替を行うのに十分な時間が経った後に、カレントミラー回路122-1又はカレントミラー回路122-2の出力に対応したモニタ電圧をサンプルして、ホールドする。ここで、カレントミラー回路122-1からのモニタ電圧を第一のモニタ電圧ともいい、カレントミラー回路122-2からのモニタ電圧を第二のモニタ電圧ともいう。
The S/H circuit 250 is a sample-and-hold section that receives the input of the output monitor current from the path switching section 230, samples the monitor voltage corresponding to the output monitor current, and holds it.
In the second embodiment, after the first monitor request signal or the second monitor request signal is input to the S/H circuit 250, a sufficient time has passed for the path switching unit 230 to switch paths. Later, the monitor voltage corresponding to the output of the current mirror circuit 122-1 or current mirror circuit 122-2 is sampled and held. Here, the monitor voltage from the current mirror circuit 122-1 is also called the first monitor voltage, and the monitor voltage from the current mirror circuit 122-2 is also called the second monitor voltage.
 従って、S/H回路250は、第一のモニタ要求信号に応じて、第一のモニタ電流に対応するモニタ電圧をサンプリングして、ホールドし、第二のモニタ要求信号に応じて、前記第二のモニタ電流に対応する前記モニタ電圧をサンプリングして、ホールドする。
 なお、第一のモニタ要求信号と、第二のモニタ要求信号とが同時に入力された場合は、どちらを優先するかを予めシステムで決定しておくことで、順次処理による対応が可能となる。
Therefore, the S/H circuit 250 samples and holds the monitor voltage corresponding to the first monitor current in response to the first monitor request signal, and responds to the second monitor request signal to respond to the second monitor request signal. sample and hold the monitor voltage corresponding to the monitor current of .
When the first monitor request signal and the second monitor request signal are input at the same time, it is possible to respond by sequential processing by determining in advance in the system which one should be prioritized.
 MCU240は、S/H回路250からの出力をADC141でデジタル信号に変換し、変換されたデジタル信号に基づいてモニタ信号を生成する。例えば、MCU240は、モニタ電圧をデジタル変換することで、モニタ信号を生成する。 The MCU 240 converts the output from the S/H circuit 250 into a digital signal with the ADC 141 and generates a monitor signal based on the converted digital signal. For example, the MCU 240 generates a monitor signal by digitally converting the monitor voltage.
 図1に戻り、信号処理部215は、送受信信号の処理を行うMAC-ICを備える。信号処理部215のMAC-ICは、インターネット等のネットワーク104から入力されたベースバンド信号に基づいて送信信号を生成して光送信器113に対して出力する。また、信号処理部215は、光受信器214から入力された受信信号をベースバンド信号に変換し、ネットワーク104に出力する。
 実施の形態2においては、信号処理部215は、光受信器214に、第一のモニタ要求信号又は第二のモニタ要求信号を出力する。例えば、信号処理部215は、第一の光信号のモニタを選択する場合には、経路切替部230及びS/H回路250に第一のモニタ要求信号を出力し、第二の光信号のモニタを選択する場合には、経路切替部230及びS/H回路250に第二のモニタ要求信号を出力する。なお、モニタ要求信号は、必ずしも信号処理部215により出力される必要はない。
 また、信号処理部215は、MCU240からモニタ信号を受け取り、公知の処理を行う。
Returning to FIG. 1, the signal processing unit 215 includes a MAC-IC that processes transmission/reception signals. The MAC-IC of the signal processing unit 215 generates a transmission signal based on the baseband signal input from the network 104 such as the Internet, and outputs the transmission signal to the optical transmitter 113 . The signal processing unit 215 also converts the received signal input from the optical receiver 214 into a baseband signal and outputs the baseband signal to the network 104 .
In Embodiment 2, the signal processor 215 outputs the first monitor request signal or the second monitor request signal to the optical receiver 214 . For example, when the signal processing unit 215 selects monitoring of the first optical signal, the signal processing unit 215 outputs the first monitor request signal to the path switching unit 230 and the S/H circuit 250, and monitors the second optical signal. is selected, a second monitor request signal is output to the path switching unit 230 and the S/H circuit 250 . Note that the monitor request signal does not necessarily have to be output by the signal processing unit 215 .
Also, the signal processing unit 215 receives a monitor signal from the MCU 240 and performs known processing.
 以上説明したように、実施の形態2においても、必要に応じてモニタする光信号を切り替えられるように構成されているため、光受信器214の経路切替部230以降を集約することが可能となる。これにより、OLT210の小型化、低消費電力化及び低コスト化を実現することができる。 As described above, even in the second embodiment, since the optical signal to be monitored is configured to be switched as necessary, it is possible to integrate the path switching unit 230 and the subsequent parts of the optical receiver 214. . This makes it possible to reduce the size, power consumption, and cost of the OLT 210 .
 なお、以上に記載した実施の形態2では、2つの光受信部120-1、120-2が設けられており、二つのレートに対応しているが、この数については、二つに限定されない。例えば、図4に示されている光受信器214#のように、光受信部120-1、光受信部120-2、・・・、光受信部120-N(Nは、3以上の整数)を備えることにより、三以上の任意の数のレートに対応することができる。
 このような場合、信号処理部215は、第一のモニタ要求信号、第二のモニタ要求信号、・・・、第Nのモニタ要求信号を経路切替部230及びS/H回路250に出力する。
In Embodiment 2 described above, two optical receivers 120-1 and 120-2 are provided, and two rates are supported, but this number is not limited to two. . For example, like the optical receiver 214# shown in FIG. 4, optical receivers 120-1, 120-2, . ), an arbitrary number of three or more rates can be supported.
In such a case, the signal processing section 215 outputs the first monitor request signal, the second monitor request signal, .
 実施の形態2を基に、このような構成をとることにより、経路切替部230の応答速度がシステム要求を満たす限りにおいて、レートの異なる任意の数の受信信号をモニタすることが可能となる。 By adopting such a configuration based on Embodiment 2, as long as the response speed of the path switching section 230 satisfies the system requirements, it is possible to monitor any number of received signals with different rates.
実施の形態3.
 実施の形態3も、バースト受信を行う場合について説明する。
 図1に示されているように、実施の形態3に係るOLT310を含む光通信システム300は、局側装置である一台のOLT310と、複数のONU201と、光信号を受動的に分岐又は合流する光スターカプラ102とを備えている。全てのONU201は、一つ以上の光スターカプラ102と、光ファイバ103とを介して、OLT210に接続されている。
Embodiment 3.
Embodiment 3 also describes the case of performing burst reception.
As shown in FIG. 1, an optical communication system 300 including an OLT 310 according to Embodiment 3 includes one OLT 310 as a station-side device, a plurality of ONUs 201, and passively branch or join optical signals. and an optical star coupler 102 that All ONUs 201 are connected to OLT 210 via one or more optical star couplers 102 and optical fibers 103 .
 実施の形態3における光通信システム300におけるONU201は、実施の形態2における光通信システム200におけるONU201と同様に構成されている。
 このため、各ONU201から送信される光信号は、バースト状の光パケット信号であり、それらを時分割多重した光信号がOLT310に入力される。
ONU 201 in optical communication system 300 in the third embodiment is configured in the same manner as ONU 201 in optical communication system 200 in the second embodiment.
Therefore, the optical signal transmitted from each ONU 201 is a burst optical packet signal, and the optical signal obtained by time-division multiplexing them is input to the OLT 310 .
 OLT310は、光モジュール311と、信号処理部315とを備える。
 光モジュール311は、光信号の送受信を行う。光モジュール311は、波長多重カプラ112と、光送信器113と、光受信器314とを備える。
 実施の形態3における光モジュール311の波長多重カプラ112及び光送信器113は、実施の形態1における光モジュール111の波長多重カプラ112及び光送信器113と同様である。
The OLT 310 includes an optical module 311 and a signal processing section 315 .
The optical module 311 transmits and receives optical signals. The optical module 311 includes a wavelength multiplexing coupler 112 , an optical transmitter 113 and an optical receiver 314 .
The wavelength multiplexing coupler 112 and the optical transmitter 113 of the optical module 311 according to the third embodiment are the same as the wavelength multiplexing coupler 112 and the optical transmitter 113 of the optical module 111 according to the first embodiment.
 図5は、実施の形態3に係るOLT310に含まれている光受信器314の構成を概略的に示すブロック図である。
 実施の形態3における光受信器314は、光受信部120-1と、光受信部120-2と、経路切替部330と、MCU240と、S/H回路250とを備える。
 実施の形態3における光受信器314の光受信部120-1及び光受信部120-2は、実施の形態1における光受信器114の光受信部120-1及び光受信部120-2と同様である。
 また、実施の形態3における光受信器314のS/H回路250及びMCU240は、実施の形態2におけるS/H回路250及びMCU240と同様である。
FIG. 5 is a block diagram schematically showing the configuration of optical receiver 314 included in OLT 310 according to the third embodiment.
Optical receiver 314 in Embodiment 3 includes optical receiver 120-1, optical receiver 120-2, path switching unit 330, MCU 240, and S/H circuit 250. FIG.
Optical receiver 120-1 and optical receiver 120-2 of optical receiver 314 in Embodiment 3 are the same as optical receiver 120-1 and optical receiver 120-2 of optical receiver 114 in Embodiment 1. is.
Also, the S/H circuit 250 and the MCU 240 of the optical receiver 314 in the third embodiment are the same as the S/H circuit 250 and the MCU 240 in the second embodiment.
 経路切替部330は、信号処理部315からの指示を示すモニタ要求信号に従って、S/H回路350に出力するモニタ電流を、第一のモニタ電流及び第二のモニタ電流の間で切り替える。例えば、経路切替部330は、通常、カレントミラー回路122-1と、S/H回路350とを接続する。そして、経路切替部330は、第二のモニタ要求信号を受けた場合に、カレントミラー回路122-2と、S/H回路250とを接続し、予め定められた期間の経過後に、カレントミラー回路122-1と、S/H回路250との接続に戻す。
 従って、経路切替部330は、第二のモニタ要求信号に応じて、第二のモニタ電流を出力モニタ電流として出力し、第二のモニタ要求信号を受けてから一定時間経過後に、第一のモニタ電流を出力モニタ電流として出力する。
The path switching section 330 switches the monitor current output to the S/H circuit 350 between the first monitor current and the second monitor current according to the monitor request signal indicating the instruction from the signal processing section 315 . For example, path switching section 330 normally connects current mirror circuit 122 - 1 and S/H circuit 350 . Then, upon receiving the second monitor request signal, the path switching unit 330 connects the current mirror circuit 122-2 and the S/H circuit 250, and after a predetermined period elapses, the current mirror circuit 122 - 1 and the S/H circuit 250 .
Therefore, the path switching unit 330 outputs the second monitor current as the output monitor current in response to the second monitor request signal, and outputs the first monitor current after a certain period of time has passed since receiving the second monitor request signal. Output current as output monitor current.
 なお、経路切替部330は、通常、カレントミラー回路122-2と、S/H回路250とを接続し、経路切替部330は、第二のモニタ要求信号を受けた場合に、カレントミラー回路122-1と、S/H回路250とを接続し、予め定められた期間の経過後に、カレントミラー回路122-2と、S/H回路250との接続に戻すようにしてもよい。
 この場合、経路切替部330は、第一のモニタ要求信号に応じて、第一のモニタ電流を出力モニタ電流として出力し、第一のモニタ要求信号を受けてから一定時間経過後に、第二のモニタ電流を出力モニタ電流として出力する。
Path switching section 330 normally connects current mirror circuit 122-2 and S/H circuit 250, and path switching section 330 switches current mirror circuit 122-2 when receiving the second monitor request signal. -1 and the S/H circuit 250 may be connected, and the connection between the current mirror circuit 122-2 and the S/H circuit 250 may be restored after a predetermined period of time has elapsed.
In this case, the path switching unit 330 outputs the first monitor current as the output monitor current in response to the first monitor request signal, and outputs the second monitor current after a certain period of time has passed since receiving the first monitor request signal. Output the monitor current as the output monitor current.
 図1に戻り、信号処理部315は、送受信信号の処理を行うMAC-ICを備える。信号処理部315のMAC-ICは、インターネット等のネットワーク104から入力されたベースバンド信号に基づいて送信信号を生成して光送信器113に対して出力する。また、信号処理部315は、光受信器314から入力された受信信号をベースバンド信号に変換し、ネットワーク104に出力する。
 実施の形態3においても、信号処理部315は、後述するように、光受信器314に、第一のモニタ要求信号又は第二のモニタ要求信号を出力する。例えば、信号処理部315は、第一の光信号のモニタを選択する場合には、S/H回路250に第一のモニタ要求信号を出力し、第二の光信号のモニタを選択する場合には、経路切替部330及びS/H回路250に第二のモニタ要求信号を出力する。なお、モニタ要求信号は、必ずしも信号処理部315により出力される必要はない。
 また、信号処理部315は、MCU240からモニタ信号を受け取り、公知の処理を行う。
Returning to FIG. 1, the signal processing unit 315 includes a MAC-IC that processes transmission/reception signals. The MAC-IC of the signal processing unit 315 generates a transmission signal based on the baseband signal input from the network 104 such as the Internet, and outputs the transmission signal to the optical transmitter 113 . The signal processing unit 315 also converts the received signal input from the optical receiver 314 into a baseband signal and outputs the baseband signal to the network 104 .
Also in Embodiment 3, the signal processing unit 315 outputs the first monitor request signal or the second monitor request signal to the optical receiver 314, as will be described later. For example, the signal processing unit 315 outputs the first monitor request signal to the S/H circuit 250 when selecting the monitoring of the first optical signal, and outputs the first monitoring request signal when selecting the monitoring of the second optical signal. outputs a second monitor request signal to the path switching unit 330 and the S/H circuit 250 . Note that the monitor request signal does not necessarily have to be output by the signal processing section 315 .
Also, the signal processing unit 315 receives a monitor signal from the MCU 240 and performs known processing.
 以上説明したように、実施の形態3においては、実施の形態2に比較して、第一のモニタ要求信号による処理を削減しているため、実施の形態2よりも簡易な構成で、実施の形態2と同様の効果を実現することができる。 As described above, in the third embodiment, as compared with the second embodiment, the processing by the first monitor request signal is reduced. Effects similar to those of form 2 can be achieved.
 なお、以上に記載した実施の形態3では、2つの光受信部120-1、120-2が設けられており、二つのレートに対応しているが、この数については、二つに限定されない。例えば、図6に示されている光受信器314#のように、光受信部120-1、光受信部120-2、・・・、光受信部120-N(Nは、3以上の整数)を備えることにより、三以上の任意の数のレートに対応することができる。
 このような場合、信号処理部315は、第一のモニタ要求信号をS/H回路250に出力し、第二のモニタ要求信号、・・・、第Nのモニタ要求信号を経路切替部330及びS/H回路250に出力する。
In Embodiment 3 described above, two optical receivers 120-1 and 120-2 are provided and two rates are supported, but this number is not limited to two. . For example, like the optical receiver 314# shown in FIG. 6, optical receivers 120-1, 120-2, . ), an arbitrary number of three or more rates can be supported.
In such a case, the signal processing unit 315 outputs the first monitor request signal to the S/H circuit 250, and outputs the second monitor request signal, . Output to S/H circuit 250 .
 実施の形態3を基に、このような構成をとることにより、経路切替部330の応答速度がシステム要求を満たす限りにおいて、レートの異なる任意の数の受信信号をモニタすることが可能となる。 By adopting such a configuration based on Embodiment 3, as long as the response speed of the path switching section 330 satisfies the system requirements, it is possible to monitor any number of received signals with different rates.
実施の形態4.
 実施の形態4も、バースト受信を行う場合について説明する。
 図1に示されているように、実施の形態4に係るOLT410を含む光通信システム400は、局側装置である一台のOLT410と、複数のONU201と、光信号を受動的に分岐又は合流する光スターカプラ102とを備えている。全てのONU201は、一つ以上の光スターカプラ102と、光ファイバ103とを介して、OLT210に接続されている。
Embodiment 4.
Embodiment 4 also describes the case of performing burst reception.
As shown in FIG. 1, an optical communication system 400 including an OLT 410 according to Embodiment 4 includes one OLT 410 as a station-side device, a plurality of ONUs 201, and passively branch or join optical signals. and an optical star coupler 102 that All ONUs 201 are connected to OLT 210 via one or more optical star couplers 102 and optical fibers 103 .
 実施の形態4における光通信システム400におけるONU201は、実施の形態2における光通信システム200におけるONU201と同様に構成されている。
 このため、各ONU201から送信される光信号は、バースト状の光パケット信号であり、それらを時分割多重した光信号がOLT410に入力される。
ONU 201 in optical communication system 400 in the fourth embodiment is configured in the same manner as ONU 201 in optical communication system 200 in the second embodiment.
Therefore, the optical signal transmitted from each ONU 201 is a burst optical packet signal, and the optical signal obtained by time-division multiplexing them is input to the OLT 410 .
 OLT410は、光モジュール411と、信号処理部415とを備える。
 光モジュール411は、光信号の送受信を行う。光モジュール411は、波長多重カプラ112と、光送信器113と、光受信器414とを備える。
 実施の形態4における光モジュール411の波長多重カプラ112及び光送信器113は、実施の形態1における光モジュール111の波長多重カプラ112及び光送信器113と同様である。
The OLT 410 includes an optical module 411 and a signal processing section 415 .
The optical module 411 transmits and receives optical signals. The optical module 411 includes a wavelength multiplexing coupler 112 , an optical transmitter 113 and an optical receiver 414 .
The wavelength multiplexing coupler 112 and the optical transmitter 113 of the optical module 411 in the fourth embodiment are the same as the wavelength multiplexing coupler 112 and the optical transmitter 113 of the optical module 111 in the first embodiment.
 図7は、実施の形態4に係るOLT410に含まれている光受信器414の構成を概略的に示すブロック図である。
 実施の形態4における光受信器414は、光受信部120-1と、光受信部120-2と、経路切替部430と、MCU440と、S/H回路450とを備える。
 実施の形態4における光受信器414の光受信部120-1及び光受信部120-2は、実施の形態1における光受信器114の光受信部120-1及び光受信部120-2と同様である。
FIG. 7 is a block diagram schematically showing the configuration of optical receiver 414 included in OLT 410 according to the fourth embodiment.
Optical receiver 414 in Embodiment 4 includes optical receiver 120-1, optical receiver 120-2, path switching unit 430, MCU 440, and S/H circuit 450. FIG.
Optical receiver 120-1 and optical receiver 120-2 of optical receiver 414 in Embodiment 4 are the same as optical receiver 120-1 and optical receiver 120-2 of optical receiver 114 in Embodiment 1. is.
 経路切替部430は、予め定められた周期で、S/H回路450に出力するモニタ電流である出力モニタ電流を、第一のモニタ電流及び第二のモニタ電流の間で切り替える。
 なお、経路切替部430の経路を切り替える周期は、システム要求を満足する必要がある。
The path switching unit 430 switches the output monitor current, which is the monitor current to be output to the S/H circuit 450, between the first monitor current and the second monitor current at a predetermined cycle.
It should be noted that the cycle of switching the route of the route switching unit 430 must satisfy the system requirements.
 経路切替部430によりカレントミラー回路122-1と、S/H回路450とが接続された場合、S/H回路450は、モニタ電圧をサンプルして、ホールドする。
 そして、MCU440は、S/H回路450でホールドされているモニタ電圧を、ADC141でデジタル信号に変換し、変換したデジタル信号に基づいてモニタ信号を生成する。MCU440は、生成されたモニタ信号を第一の光信号のモニタ値として記憶する。
When the path switching unit 430 connects the current mirror circuit 122-1 and the S/H circuit 450, the S/H circuit 450 samples and holds the monitor voltage.
The MCU 440 converts the monitor voltage held by the S/H circuit 450 into a digital signal using the ADC 141, and generates a monitor signal based on the converted digital signal. The MCU 440 stores the generated monitor signal as the monitor value of the first optical signal.
 また、経路切替部430によりカレントミラー回路122-2と、S/H回路450とが接続された場合、S/H回路450は、モニタ電圧をサンプルしてホールドする。
 そして、MCU440は、S/H回路450でホールドされているモニタ電圧を、ADC141でデジタル信号に変換し、変換したデジタル信号に基づいてモニタ信号を生成する。MCU440は、生成されたモニタ信号を第二の光信号のモニタ値として記憶する。
Further, when the current mirror circuit 122-2 and the S/H circuit 450 are connected by the path switching unit 430, the S/H circuit 450 samples and holds the monitor voltage.
The MCU 440 converts the monitor voltage held by the S/H circuit 450 into a digital signal using the ADC 141, and generates a monitor signal based on the converted digital signal. The MCU 440 stores the generated monitor signal as the monitor value of the second optical signal.
 言い換えると、MCU440は、第一の光信号のモニタ値と、第二の光信号のモニタ値とをそれぞれ記憶する。そして、MCU440は、これらのモニタ値を、経路切替部430が経路を切り替わる周期に従って、更新する。 In other words, the MCU 440 stores the monitor value of the first optical signal and the monitor value of the second optical signal. The MCU 440 then updates these monitor values according to the cycle at which the path switching unit 430 switches paths.
 そして、MCU440は、第一のモニタ要求信号が入力された場合、第一の光信号のモニタ値をモニタ信号として出力し、第二のモニタ要求信号が入力された場合、第二の光信号のモニタ値をモニタ信号として出力する。 When the first monitor request signal is input, the MCU 440 outputs the monitor value of the first optical signal as the monitor signal, and when the second monitor request signal is input, the MCU 440 outputs the monitor value of the second optical signal. Output the monitor value as a monitor signal.
 図1に戻り、信号処理部415は、送受信信号の処理を行うMAC-ICを備える。信号処理部415のMAC-ICは、インターネット等のネットワーク104から入力されたベースバンド信号に基づいて送信信号を生成して光送信器113に対して出力する。また、信号処理部415は、光受信器414から入力された受信信号をベースバンド信号に変換し、ネットワーク104に出力する。
 実施の形態4においても、信号処理部415は、後述するように、光受信器414に、第一のモニタ要求信号又は第二のモニタ要求信号を出力する。例えば、信号処理部415は、第一の光信号のモニタを選択する場合には、MCU440に第一のモニタ要求信号を出力し、第二の光信号のモニタを選択する場合には、MCU440に第二のモニタ要求信号を出力する。なお、モニタ要求信号は、必ずしも信号処理部415により出力される必要はない。
 また、信号処理部415は、MCU440からモニタ信号を受け取り、公知の処理を行う。
Returning to FIG. 1, the signal processing unit 415 includes a MAC-IC that processes transmission/reception signals. The MAC-IC of the signal processing unit 415 generates a transmission signal based on the baseband signal input from the network 104 such as the Internet, and outputs the transmission signal to the optical transmitter 113 . Also, the signal processing unit 415 converts the received signal input from the optical receiver 414 into a baseband signal and outputs the baseband signal to the network 104 .
Also in Embodiment 4, the signal processing unit 415 outputs the first monitor request signal or the second monitor request signal to the optical receiver 414, as will be described later. For example, the signal processing unit 415 outputs the first monitor request signal to the MCU 440 when selecting the monitoring of the first optical signal, and outputs the first monitor request signal to the MCU 440 when selecting the monitoring of the second optical signal. Output a second monitor request signal. Note that the monitor request signal does not necessarily have to be output by the signal processing unit 415 .
Also, the signal processing unit 415 receives a monitor signal from the MCU 440 and performs known processing.
 以上のように、実施の形態4によれば、第一のモニタ要求信号及び第二のモニタ要求信号が同時に入力された場合でも、MCU440は、各々のモニタ値を出力することができる。 As described above, according to Embodiment 4, even when the first monitor request signal and the second monitor request signal are input at the same time, the MCU 440 can output each monitor value.
 なお、以上に記載した実施の形態4では、2つの光受信部120-1、120-2が設けられており、二つのレートに対応しているが、この数については、二つに限定されない。例えば、図8に示されている光受信器414#のように、光受信部120-1、光受信部120-2、・・・、光受信部120-N(Nは、3以上の整数)を備えることにより、三以上の任意の数のレートに対応することができる。
 このような場合、信号処理部415は、第一のモニタ要求信号、第二のモニタ要求信号、・・・、第Nのモニタ要求信号をMCU440に出力する。
In Embodiment 4 described above, two optical receivers 120-1 and 120-2 are provided and two rates are supported, but this number is not limited to two. . For example, like the optical receiver 414# shown in FIG. 8, optical receivers 120-1, 120-2, . ), an arbitrary number of three or more rates can be supported.
In such a case, the signal processing section 415 outputs a first monitor request signal, a second monitor request signal, . . .
 実施の形態4を基に、このような構成をとることにより、経路切替部430の応答速度がシステム要求を満たす限りにおいて、レートの異なる任意の数の受信信号をモニタすることが可能となる。 By adopting such a configuration based on the fourth embodiment, as long as the response speed of the path switching section 430 satisfies the system requirements, it is possible to monitor any number of received signals with different rates.
実施の形態5.
 実施の形態5も、バースト受信を行う場合について説明する。
 図1に示されているように、実施の形態5に係るOLT510を含む光通信システム500は、局側装置である一台のOLT510と、複数のONU201と、光信号を受動的に分岐又は合流する光スターカプラ102とを備えている。全てのONU201は、一つ以上の光スターカプラ102と、光ファイバ103とを介して、OLT210に接続されている。
Embodiment 5.
Embodiment 5 also describes the case of performing burst reception.
As shown in FIG. 1, an optical communication system 500 including an OLT 510 according to Embodiment 5 includes one OLT 510 as a station-side device, a plurality of ONUs 201, and passively branch or join optical signals. and an optical star coupler 102 that All ONUs 201 are connected to OLT 210 via one or more optical star couplers 102 and optical fibers 103 .
 実施の形態5における光通信システム500におけるONU201は、実施の形態2における光通信システム200におけるONU201と同様に構成されている。
 このため、各ONU201から送信される光信号は、バースト状の光パケット信号であり、それらを時分割多重した光信号がOLT510に入力される。
ONU 201 in optical communication system 500 according to the fifth embodiment is configured similarly to ONU 201 in optical communication system 200 according to the second embodiment.
Therefore, the optical signal transmitted from each ONU 201 is a burst optical packet signal, and the optical signal obtained by time-division multiplexing them is input to the OLT 510 .
 OLT510は、光モジュール511と、信号処理部515とを備える。
 光モジュール511は、光信号の送受信を行う。光モジュール511は、波長多重カプラ112と、光送信器113と、光受信器514とを備える。
 実施の形態5における光モジュール511の波長多重カプラ112及び光送信器113は、実施の形態1における光モジュール111の波長多重カプラ112及び光送信器113と同様である。
The OLT 510 includes an optical module 511 and a signal processing section 515 .
The optical module 511 transmits and receives optical signals. The optical module 511 includes a wavelength multiplexing coupler 112 , an optical transmitter 113 and an optical receiver 514 .
The wavelength multiplexing coupler 112 and the optical transmitter 113 of the optical module 511 according to the fifth embodiment are the same as the wavelength multiplexing coupler 112 and the optical transmitter 113 of the optical module 111 according to the first embodiment.
 図9は、実施の形態5に係るOLT510に含まれている光受信器514の構成を概略的に示すブロック図である。
 実施の形態5における光受信器514は、光受信部120-1と、光受信部120-2と、経路切替部530と、MCU540と、S/H回路550とを備える。
 実施の形態5における光受信器514の光受信部120-1及び光受信部120-2は、実施の形態1における光受信器114の光受信部120-1及び光受信部120-2と同様である。
FIG. 9 is a block diagram schematically showing the configuration of optical receiver 514 included in OLT 510 according to the fifth embodiment.
Optical receiver 514 in Embodiment 5 includes optical receiver 120-1, optical receiver 120-2, path switching unit 530, MCU 540, and S/H circuit 550. FIG.
Optical receiver 120-1 and optical receiver 120-2 of optical receiver 514 in Embodiment 5 are the same as optical receiver 120-1 and optical receiver 120-2 of optical receiver 114 in Embodiment 1. is.
 MCU540は、第一のモニタ要求信号が入力された場合、第一の光信号のモニタを指示する制御信号である第一の制御信号を経路切替部530及びS/H回路550に与える。 When the first monitor request signal is input, the MCU 540 provides the path switching section 530 and the S/H circuit 550 with a first control signal, which is a control signal instructing monitoring of the first optical signal.
 第一の制御信号を受けた経路切替部530は、カレントミラー回路122-1と、S/H回路550とを接続する。
 S/H回路550は、第一の制御信号を受けると、経路切替部530が経路切替を行うのに十分な時間が経った後に、カレントミラー回路122-1の出力に対応したモニタ電圧をサンプルして、ホールドする。
 MCU540は、S/H回路550の出力電圧に基づいてモニタ信号を生成する。
Path switching section 530 that has received the first control signal connects current mirror circuit 122 - 1 and S/H circuit 550 .
Upon receiving the first control signal, the S/H circuit 550 samples the monitor voltage corresponding to the output of the current mirror circuit 122-1 after a time sufficient for the path switching section 530 to switch paths. and hold.
MCU 540 generates a monitor signal based on the output voltage of S/H circuit 550 .
 また、MCU540は、第二のモニタ要求信号が入力された場合、第二の光信号のモニタを指示する制御信号である第二の制御信号を経路切替部530及びS/H回路550に与える。 Also, when the second monitor request signal is input, the MCU 540 provides the path switching section 530 and the S/H circuit 550 with a second control signal, which is a control signal instructing monitoring of the second optical signal.
 第二の制御信号を受けた経路切替部530は、カレントミラー回路122-2と、S/H回路550とを接続する。
 S/H回路550は、第二の制御信号を受けると、経路切替部530が経路切替を行うのに十分な時間が経った後に、カレントミラー回路122-2の出力に対応したモニタ電圧をサンプルして、ホールドする。
 MCU540は、S/H回路550の出力電圧に基づいてモニタ信号を生成する。
Upon receiving the second control signal, the path switching section 530 connects the current mirror circuit 122-2 and the S/H circuit 550 to each other.
Upon receiving the second control signal, the S/H circuit 550 samples the monitor voltage corresponding to the output of the current mirror circuit 122-2 after a time sufficient for the path switching unit 530 to switch paths. and hold.
MCU 540 generates a monitor signal based on the output voltage of S/H circuit 550 .
 言い換えると、MCU540は、第一のモニタ要求信号に応じて、第一の制御信号を経路切替部530及びS/H回路550に出力し、第二のモニタ要求信号に応じて、第二の制御信号を経路切替部530及びS/H回路550に出力する。
 そして、経路切替部530は、第一の制御信号に応じて、第一のモニタ電流を出力モニタ電流として出力し、第二の制御信号に応じて、第二のモニタ電流を出力モニタ電流として出力する。
 さらに、S/H回路550は、第一の制御信号に応じて、第一のモニタ電流に対応するモニタ電圧をサンプリングして、ホールドし、第二の制御信号に応じて、第二のモニタ電流に対応するモニタ電圧をサンプリングして、ホールドする。
In other words, the MCU 540 outputs the first control signal to the path switching unit 530 and the S/H circuit 550 in response to the first monitor request signal, and outputs the second control signal in response to the second monitor request signal. A signal is output to the path switching section 530 and the S/H circuit 550 .
Then, the path switching section 530 outputs the first monitor current as the output monitor current in response to the first control signal, and outputs the second monitor current as the output monitor current in response to the second control signal. do.
Furthermore, the S/H circuit 550 samples and holds the monitor voltage corresponding to the first monitor current in response to the first control signal, and the second monitor current in response to the second control signal. The monitor voltage corresponding to is sampled and held.
 なお、第一のモニタ要求信号及び第二のモニタ要求信号が同時にMCU540に入力された場合は、どちらを優先するかを予めシステムで決定しておくことで、順次処理による対応が可能となる。 Note that when the first monitor request signal and the second monitor request signal are input to the MCU 540 at the same time, the system can determine in advance which one to prioritize, so that sequential processing can be performed.
 図1に戻り、信号処理部515は、送受信信号の処理を行うMAC-ICを備える。信号処理部515のMAC-ICは、インターネット等のネットワーク104から入力されたベースバンド信号に基づいて送信信号を生成して光送信器113に対して出力する。また、信号処理部515は、光受信器514から入力された受信信号をベースバンド信号に変換し、ネットワーク104に出力する。
 実施の形態5においても、信号処理部515は、後述するように、光受信器514に、第一のモニタ要求信号又は第二のモニタ要求信号を出力する。例えば、信号処理部515は、第一の光信号のモニタを選択する場合には、MCU540に第一のモニタ要求信号を出力し、第二の光信号のモニタを選択する場合には、MCU540に第二のモニタ要求信号を出力する。なお、モニタ要求信号は、必ずしも信号処理部515により出力される必要はない。
 また、信号処理部515は、MCU540からモニタ信号を受け取り、公知の処理を行う。
Returning to FIG. 1, the signal processing unit 515 includes a MAC-IC that processes transmission/reception signals. The MAC-IC of the signal processing unit 515 generates a transmission signal based on the baseband signal input from the network 104 such as the Internet, and outputs the transmission signal to the optical transmitter 113 . Also, the signal processing unit 515 converts the received signal input from the optical receiver 514 into a baseband signal and outputs the baseband signal to the network 104 .
Also in Embodiment 5, the signal processing unit 515 outputs the first monitor request signal or the second monitor request signal to the optical receiver 514, as will be described later. For example, the signal processing unit 515 outputs a first monitor request signal to the MCU 540 when selecting monitoring of the first optical signal, and outputs a signal to the MCU 540 when selecting monitoring of the second optical signal. Output a second monitor request signal. Note that the monitor request signal does not necessarily have to be output by the signal processing section 515 .
Also, the signal processing unit 515 receives a monitor signal from the MCU 540 and performs known processing.
 以上のように、実施の形態5によれば、例えば、0レベルで第一の光信号をモニタし、1レベルで第二の光信号をモニタする、というような複数のモニタ要求が単一の信号線で入力されるシステムに対応することができる。 As described above, according to the fifth embodiment, a plurality of monitor requests such as monitoring the first optical signal at 0 level and monitoring the second optical signal at 1 level can be combined into a single request. It can correspond to the system input by the signal line.
 なお、以上に記載した実施の形態5では、2つの光受信部120-1、120-2が設けられており、二つのレートに対応しているが、この数については、二つに限定されない。例えば、図10に示されている光受信器514#のように、光受信部120-1、光受信部120-2、・・・、光受信部120-N(Nは、3以上の整数)を備えることにより、三以上の任意の数のレートに対応することができる。
 このような場合、信号処理部515は、第一のモニタ要求信号、第二のモニタ要求信号、・・・、第Nのモニタ要求信号をMCU540に出力する。
In the fifth embodiment described above, two optical receivers 120-1 and 120-2 are provided and correspond to two rates, but this number is not limited to two. . For example, like optical receiver 514# shown in FIG. 10, optical receiver 120-1, optical receiver 120-2, . ), an arbitrary number of three or more rates can be supported.
In such a case, the signal processing unit 515 outputs a first monitor request signal, a second monitor request signal, . . .
 実施の形態5を基に、このような構成をとることにより、経路切替部530の応答速度がシステム要求を満たす限りにおいて、レートの異なる任意の数の受信信号をモニタすることが可能となる。 By adopting such a configuration based on Embodiment 5, as long as the response speed of the path switching section 530 satisfies the system requirements, it is possible to monitor any number of received signals with different rates.
 100,200,300,400,500 光通信システム、 101,201 ONU、 102 光スターカプラ、 103 光ファイバ、 110,210,310,410,510 OLT、 111,211,311,411,511 光モジュール、 112 波長多重カプラ、 113 光送信器、 114,214,314,414,514 光受信器、 115,215,315,415,515 信号処理部、 120-1 光受信部、 121-1 受光素子、 122-1 カレントミラー回路、 123-1 電源、 124-1 電源電圧制御部、 120-2 光受信部、 121-2 受光素子、 122-2 カレントミラー回路、 123-2 電源、 124-2 電源電圧制御部、 130,230,330,430,530 経路切替部、 140,240,440,540 MCU、 141 ADC、 250,450,550 S/H回路。 100, 200, 300, 400, 500 optical communication system, 101, 201 ONU, 102 optical star coupler, 103 optical fiber, 110, 210, 310, 410, 510 OLT, 111, 211, 311, 411, 511 optical module, 112 Wavelength multiplex coupler, 113 optical transmitter, 114, 214, 314, 414, 514 optical receiver, 115, 215, 315, 415, 515 signal processor, 120-1 optical receiver, 121-1 light receiving element, 122 -1 Current mirror circuit, 123-1 Power supply, 124-1 Power supply voltage control unit, 120-2 Optical receiver unit, 121-2 Light receiving element, 122-2 Current mirror circuit, 123-2 Power supply, 124-2 Power supply voltage control section, 130, 230, 330, 430, 530 path switching section, 140, 240, 440, 540 MCU, 141 ADC, 250, 450, 550 S/H circuit.

Claims (9)

  1.  第一のレートの光信号である第一の光信号を受信して、前記第一の光信号の光パワーに応じて変換された電流に比例する電流である第一のモニタ電流を出力する第一の光受信部と、
     前記第一のレートとは異なる第二のレートの光信号である第二の光信号を受信して、前記第二の光信号の光パワーに応じて変換された電流に比例する電流である第二のモニタ電流を出力する第二の光受信部と、
     前記第一のモニタ電流及び前記第二のモニタ電流の入力を受けて、出力するモニタ電流である出力モニタ電流を、前記第一のモニタ電流及び前記第二のモニタ電流の間で切り替える経路切替部と、
     前記出力モニタ電流に応じて、前記第一の光信号の光パワー又は前記第二の光信号の光パワーをモニタするためのモニタ信号を生成する制御部と、を備えること
     を特徴とする光パワーモニタ用回路。
    receiving a first optical signal, which is an optical signal at a first rate, and outputting a first monitor current, which is a current proportional to the current converted according to the optical power of the first optical signal; one optical receiver;
    receiving a second optical signal that is an optical signal at a second rate different from the first rate, and receiving a second optical signal that is proportional to the current converted according to the optical power of the second optical signal; a second optical receiver that outputs two monitor currents;
    A path switching unit that receives inputs of the first monitor current and the second monitor current and switches an output monitor current, which is a monitor current to be output, between the first monitor current and the second monitor current. When,
    and a control unit that generates a monitor signal for monitoring the optical power of the first optical signal or the optical power of the second optical signal according to the output monitor current. Circuit for monitoring.
  2.  前記出力モニタ電流の入力を受けて、前記出力モニタ電流に対応するモニタ電圧をサンプリングして、ホールドするサンプルアンドホールド部をさらに備え、
     前記制御部は、前記モニタ電圧をデジタル変換することで、前記モニタ信号を生成すること
     を特徴とする請求項1に記載の光パワーモニタ用回路。
    a sample-and-hold unit that receives an input of the output monitor current, samples a monitor voltage corresponding to the output monitor current, and holds the monitor voltage;
    2. The optical power monitor circuit according to claim 1, wherein the control unit generates the monitor signal by digitally converting the monitor voltage.
  3.  前記経路切替部は、前記第一の光信号の光パワーのモニタを要求する第一のモニタ要求信号に応じて、前記第一のモニタ電流を前記出力モニタ電流として出力し、前記第二の光信号の光パワーのモニタを要求する第二のモニタ要求信号に応じて、前記第二のモニタ電流を前記出力モニタ電流として出力し、
     前記サンプルアンドホールド部は、前記第一のモニタ要求信号に応じて、前記第一のモニタ電流に対応する前記モニタ電圧をサンプリングして、ホールドし、前記第二のモニタ要求信号に応じて、前記第二のモニタ電流に対応する前記モニタ電圧をサンプリングして、ホールドすること
     を特徴とする請求項2に記載の光パワーモニタ用回路。
    The path switching unit outputs the first monitor current as the output monitor current in response to a first monitor request signal requesting monitoring of the optical power of the first optical signal, outputting the second monitor current as the output monitor current in response to a second monitor request signal requesting monitoring of the optical power of the signal;
    The sample-and-hold section samples and holds the monitor voltage corresponding to the first monitor current in response to the first monitor request signal, and the 3. The optical power monitor circuit according to claim 2, wherein said monitor voltage corresponding to a second monitor current is sampled and held.
  4.  前記経路切替部は、前記第一の光信号の光パワーのモニタを要求する第一のモニタ要求信号に応じて、前記第一のモニタ電流を前記出力モニタ電流として出力し、前記第一のモニタ要求信号を受けてから一定時間経過後に、前記第二のモニタ電流を前記出力モニタ電流として出力し、
     前記サンプルアンドホールド部は、前記第一のモニタ要求信号に応じて、前記第一のモニタ電流に対応する前記モニタ電圧をサンプリングして、ホールドし、前記第二の光信号の光パワーのモニタを要求する第二のモニタ要求信号に応じて、前記第二のモニタ電流に対応する前記モニタ電圧をサンプリングして、ホールドすること
     を特徴とする請求項2に記載の光パワーモニタ用回路。
    The path switching unit outputs the first monitor current as the output monitor current in response to a first monitor request signal requesting monitoring of the optical power of the first optical signal, and outputs the first monitor current as the output monitor current. outputting the second monitor current as the output monitor current after a certain period of time has elapsed since receiving the request signal;
    The sample-and-hold unit samples and holds the monitor voltage corresponding to the first monitor current in response to the first monitor request signal, and monitors the optical power of the second optical signal. 3. The optical power monitor circuit according to claim 2, wherein said monitor voltage corresponding to said second monitor current is sampled and held in response to a requesting second monitor request signal.
  5.  前記経路切替部は、前記第一のモニタ電流及び前記第二のモニタ電流の間で、あらかじめ定められた周期で、前記出力モニタ電流を切り替え、
     前記サンプルアンドホールド部は、前記周期に応じて、前記第一のモニタ電流に対応する前記モニタ電圧をサンプリングして、ホールドし、前記第二の光信号の光パワーのモニタを要求する第二のモニタ要求信号に応じて、前記第二のモニタ電流に対応する前記モニタ電圧をサンプリングして、ホールドし、
     前記制御部は、前記サンプルアンドホールド部から、前記第一のモニタ電流に対応する前記モニタ電圧を取得して、前記モニタ信号を生成し、前記サンプルアンドホールド部から、前記第二のモニタ電流に対応する前記モニタ電圧を取得して、前記モニタ信号を生成し、前記第一の光信号の光パワーのモニタを要求する第一のモニタ要求信号に応じて、前記第一のモニタ電流に対応する前記モニタ電圧から生成された前記モニタ信号を出力し、前記第二のモニタ要求信号に応じて、前記第二のモニタ電流に対応する前記モニタ電圧から生成された前記モニタ信号を出力すること
     を特徴とする請求項2に記載の光パワーモニタ用回路。
    The path switching unit switches the output monitor current between the first monitor current and the second monitor current at a predetermined cycle,
    The sample-and-hold unit samples and holds the monitor voltage corresponding to the first monitor current according to the cycle, and performs a second request for monitoring the optical power of the second optical signal. sampling and holding the monitor voltage corresponding to the second monitor current in response to a monitor request signal;
    The control unit acquires the monitor voltage corresponding to the first monitor current from the sample and hold unit, generates the monitor signal, and outputs the second monitor current from the sample and hold unit. obtaining the corresponding monitor voltage to generate the monitor signal; and corresponding to the first monitor current in response to a first monitor request signal requesting monitoring of the optical power of the first optical signal. outputting the monitor signal generated from the monitor voltage, and outputting the monitor signal generated from the monitor voltage corresponding to the second monitor current in response to the second monitor request signal. 3. The optical power monitor circuit according to claim 2.
  6.  前記制御部は、前記第一の光信号の光パワーのモニタを要求する第一のモニタ要求信号に応じて、第一の制御信号を前記経路切替部及びサンプルアンドホールド部に出力し、前記第二の光信号の光パワーのモニタを要求する第二のモニタ要求信号に応じて、第二の制御信号を前記経路切替部及びサンプルアンドホールド部に出力し、
     前記経路切替部は、前記第一の制御信号に応じて、前記第一のモニタ電流を前記出力モニタ電流として出力し、前記第二の制御信号に応じて、前記第二のモニタ電流を前記出力モニタ電流として出力し、
     前記サンプルアンドホールド部は、前記第一の制御信号に応じて、前記第一のモニタ電流に対応する前記モニタ電圧をサンプリングして、ホールドし、前記第二の制御信号に応じて、前記第二のモニタ電流に対応する前記モニタ電圧をサンプリングして、ホールドすること
     を特徴とする請求項2に記載の光パワーモニタ用回路。
    The control section outputs a first control signal to the path switching section and the sample and hold section in response to a first monitor request signal requesting monitoring of the optical power of the first optical signal, outputting a second control signal to the path switching unit and the sample and hold unit in response to a second monitor request signal requesting monitoring of the optical power of the two optical signals;
    The path switching unit outputs the first monitor current as the output monitor current according to the first control signal, and outputs the second monitor current according to the second control signal. Output as monitor current,
    The sample-and-hold section samples and holds the monitor voltage corresponding to the first monitor current in response to the first control signal, and samples and holds the second monitor voltage in response to the second control signal. 3. The optical power monitor circuit according to claim 2, wherein said monitor voltage corresponding to the monitor current of is sampled and held.
  7.  請求項1から6の何れか一項に記載の光パワーモニタ用回路を備えること
     を特徴とする光モジュール。
    An optical module comprising the optical power monitor circuit according to claim 1 .
  8.  請求項1から6の何れか一項に記載の光パワーモニタ用回路を備えること
     を特徴とする局側装置。
    A station-side apparatus comprising the optical power monitor circuit according to any one of claims 1 to 6.
  9.  第一のレートの光信号である第一の光信号を受信して、前記第一の光信号の光パワーに応じて変換された電流に比例する電流である第一のモニタ電流を出力し、
     前記第一のレートとは異なる第二のレートの光信号である第二の光信号を受信して、前記第二の光信号の光パワーに応じて変換された電流に比例する電流である第二のモニタ電流を出力し、
     前記第一のモニタ電流及び前記第二のモニタ電流の入力を受けて、出力するモニタ電流である出力モニタ電流を、前記第一のモニタ電流及び前記第二のモニタ電流の間で切り替え、
     前記出力モニタ電流に応じて、前記第一の光信号の光パワー又は前記第二の光信号の光パワーをモニタするためのモニタ信号を生成すること
     を特徴とする光パワーモニタ方法。
    receiving a first optical signal, which is an optical signal at a first rate, and outputting a first monitor current, which is a current proportional to the current converted according to the optical power of the first optical signal;
    receiving a second optical signal that is an optical signal at a second rate different from the first rate, and receiving a second optical signal that is proportional to the current converted according to the optical power of the second optical signal; outputs two monitor currents,
    receiving inputs of the first monitor current and the second monitor current and switching an output monitor current, which is a monitor current to be output, between the first monitor current and the second monitor current;
    An optical power monitoring method, comprising generating a monitor signal for monitoring the optical power of the first optical signal or the optical power of the second optical signal according to the output monitor current.
PCT/JP2021/015565 2021-04-15 2021-04-15 Optical power monitoring circuit, optical module, station-side device, and optical power monitoring method WO2022219776A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015565 WO2022219776A1 (en) 2021-04-15 2021-04-15 Optical power monitoring circuit, optical module, station-side device, and optical power monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015565 WO2022219776A1 (en) 2021-04-15 2021-04-15 Optical power monitoring circuit, optical module, station-side device, and optical power monitoring method

Publications (1)

Publication Number Publication Date
WO2022219776A1 true WO2022219776A1 (en) 2022-10-20

Family

ID=83640233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015565 WO2022219776A1 (en) 2021-04-15 2021-04-15 Optical power monitoring circuit, optical module, station-side device, and optical power monitoring method

Country Status (1)

Country Link
WO (1) WO2022219776A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040208534A1 (en) * 2002-02-08 2004-10-21 Ar Card Method of WDM channel tagging and monitoring, and apparatus
JP2009182841A (en) * 2008-01-31 2009-08-13 Sumitomo Electric Ind Ltd Optical receiver
JP2009232221A (en) * 2008-03-24 2009-10-08 Fujitsu Ltd Optical communication system
JP2015103914A (en) * 2013-11-22 2015-06-04 三菱電機株式会社 Optical power monitor circuit, optical module, station-side device, optical power monitor method, and program
JP2015159414A (en) * 2014-02-24 2015-09-03 住友電気工業株式会社 Optical receiver and reception signal strength detection method
JP2017034310A (en) * 2015-07-28 2017-02-09 富士通オプティカルコンポーネンツ株式会社 Optical transmitter, and control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040208534A1 (en) * 2002-02-08 2004-10-21 Ar Card Method of WDM channel tagging and monitoring, and apparatus
JP2009182841A (en) * 2008-01-31 2009-08-13 Sumitomo Electric Ind Ltd Optical receiver
JP2009232221A (en) * 2008-03-24 2009-10-08 Fujitsu Ltd Optical communication system
JP2015103914A (en) * 2013-11-22 2015-06-04 三菱電機株式会社 Optical power monitor circuit, optical module, station-side device, optical power monitor method, and program
JP2015159414A (en) * 2014-02-24 2015-09-03 住友電気工業株式会社 Optical receiver and reception signal strength detection method
JP2017034310A (en) * 2015-07-28 2017-02-09 富士通オプティカルコンポーネンツ株式会社 Optical transmitter, and control method

Similar Documents

Publication Publication Date Title
KR101446909B1 (en) System and method for scheduling timeslots for transmission by optical nodes in an optical network
CN102209281B (en) 10G EPON OLT (Ethernet passive optical network optical line terminal) single-fiber three-dimensional optical module
KR20130095314A (en) Multiplex conversion for a passive optical network
CN104519419A (en) Optical signal processing method, optical module and optical line terminal
JP2011135280A (en) Optical communication system, optical communication method, and olt
US9450542B2 (en) Preamplifier, optical receiver, optical termination device, and optical communication system
KR102165074B1 (en) Optical signal monitoring device of wavelenth divisiono multiplexed passive optical network
CN106134107A (en) The method receiving wavelength division multiplexed light upward signal in optical access network
WO2017028803A1 (en) Olt optical transceiver module, and method and system for processing a plurality of pons
CN114402627B (en) Port replicator
JP4315165B2 (en) Station side device and optical receiving circuit
JP2008283461A (en) Optical line terminal in pon system
US20140119395A1 (en) Laser Driver Modulation and Bias Control Scheme
JP2010166279A (en) Optical communication system and optical line concentrator
WO2022219776A1 (en) Optical power monitoring circuit, optical module, station-side device, and optical power monitoring method
JP6075547B2 (en) Optical power monitoring circuit, optical module, station side device, and optical power monitoring method
JP2008277893A (en) Multi-rate pon system, and station-side device, terminal device, and transmission rate setting method thereof
CN102098106B (en) Optical line terminal for wavelength division multiplexing-time division multiplexing passive optical network
JP6079095B2 (en) Station side device control method, station side device, and optical communication system
EP2503712B1 (en) Hybrid electrical/optical splitting oeo pon
JP2011061790A (en) Optical network unit and method of operating the same
JP2010119036A (en) Data transfer system
JP5942751B2 (en) Station side apparatus and optical communication network system for WDM / TDM-PON system
JP5492323B1 (en) Discovery method
JP2022126601A (en) Automatic wavelength setting system for optical communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP