WO2022219690A1 - スペクトル波形の制御方法、レーザ装置、露光装置、及び電子デバイスの製造方法 - Google Patents

スペクトル波形の制御方法、レーザ装置、露光装置、及び電子デバイスの製造方法 Download PDF

Info

Publication number
WO2022219690A1
WO2022219690A1 PCT/JP2021/015234 JP2021015234W WO2022219690A1 WO 2022219690 A1 WO2022219690 A1 WO 2022219690A1 JP 2021015234 W JP2021015234 W JP 2021015234W WO 2022219690 A1 WO2022219690 A1 WO 2022219690A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
laser
chromatic aberration
longitudinal chromatic
evaluation value
Prior art date
Application number
PCT/JP2021/015234
Other languages
English (en)
French (fr)
Inventor
貴光 古巻
敏浩 大賀
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to JP2023514201A priority Critical patent/JPWO2022219690A1/ja
Priority to PCT/JP2021/015234 priority patent/WO2022219690A1/ja
Priority to CN202180095600.9A priority patent/CN116982005A/zh
Publication of WO2022219690A1 publication Critical patent/WO2022219690A1/ja
Priority to US18/467,361 priority patent/US20240001486A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/707Auxiliary equipment for monitoring laser beam transmission optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • G02B27/1093Beam splitting or combining systems operating by diffraction only for use with monochromatic radiation only, e.g. devices for splitting a single laser source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0652Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising prisms

Definitions

  • the present disclosure relates to a spectral waveform control method, a laser apparatus, an exposure apparatus, and an electronic device manufacturing method.
  • a KrF excimer laser device that outputs laser light with a wavelength of about 248 nm and an ArF excimer laser device that outputs laser light with a wavelength of about 193 nm are used.
  • the spectral line width of the spontaneous oscillation light of the KrF excimer laser device and the ArF excimer laser device is as wide as 350-400 pm. Therefore, if the projection lens is made of a material that transmits ultraviolet light, such as KrF and ArF laser light, chromatic aberration may occur. As a result, resolution can be reduced. Therefore, it is necessary to narrow the spectral line width of the laser light output from the gas laser device to such an extent that the chromatic aberration can be ignored. Therefore, in the laser resonator of the gas laser device, a line narrow module (LNM) including a band narrowing element (etalon, grating, etc.) is provided in order to narrow the spectral line width.
  • LNM line narrow module
  • a gas laser device whose spectral line width is narrowed will be referred to as a band-narrowed gas laser device.
  • a spectral waveform control method is a spectral waveform control method of laser light output from a laser device to an exposure device, in which longitudinal chromatic aberration of the exposure device is obtained, and longitudinal chromatic aberration and the spectral waveform are obtained. setting the target value of the evaluation value using the relationship with the evaluation value of and controlling the spectrum waveform using the target value.
  • a laser device is a laser device connectable to an exposure device, and includes a laser oscillator that outputs laser light, a spectral waveform adjuster that adjusts the spectral waveform of the laser light, and a processor. obtains the longitudinal chromatic aberration of the exposure apparatus, sets a target value for the evaluation value using the relationship between the longitudinal chromatic aberration and the spectral waveform evaluation value, and controls the spectral waveform adjuster using the target value.
  • a processor
  • An exposure apparatus is an exposure apparatus that can be connected to a laser device, and includes a projection optical system that forms an image on a wafer surface using laser light output from the laser device; a sensor for measuring contrast, a stage for moving the sensor along the optical path axis of the laser beam, and a processor, which obtains the longitudinal chromatic aberration of the exposure apparatus using the stage and the sensor, and measures the longitudinal chromatic aberration and the spectral waveform of the laser beam. and a processor configured to set a target value for the evaluation value using the relationship between the evaluation value and the target value for transmitting the target value to the laser device.
  • An electronic device manufacturing method acquires longitudinal chromatic aberration of an exposure apparatus, and the relationship between the longitudinal chromatic aberration and the evaluation value of the spectrum waveform of laser light output from a laser apparatus connected to the exposure apparatus. is used to set a target value for the evaluation value, and the target value is used to control the spectral waveform to generate a laser beam that is output to the exposure device, and the laser light is produced on the photosensitive substrate in the exposure device in order to manufacture the electronic device. exposing to laser light.
  • FIG. 1 schematically shows the configuration of an exposure system in a comparative example.
  • FIG. 2 schematically shows the configuration of a laser device according to a comparative example.
  • FIG. 3 is a block diagram illustrating functions of a spectrum measurement control processor in a comparative example.
  • FIG. 4 is a graph showing an example of an estimated spectral waveform I( ⁇ ) of laser light.
  • FIG. 5 schematically shows differences in focus due to the projection optical system according to the spectrum of laser light.
  • FIG. 6 is a graph showing the distribution of focus positions of laser light in an exposure apparatus.
  • FIG. 7 schematically shows the focus difference according to the longitudinal chromatic aberration K of the projection optical system.
  • FIG. 1 schematically shows the configuration of an exposure system in a comparative example.
  • FIG. 2 schematically shows the configuration of a laser device according to a comparative example.
  • FIG. 3 is a block diagram illustrating functions of a spectrum measurement control processor in a comparative example.
  • FIG. 4 is a graph showing an
  • FIG. 8 is a graph showing the relationship between the longitudinal chromatic aberration K and the contrast at the first position F1 when the spectrum waveform is constant.
  • FIG. 9 schematically shows the configuration of a laser device according to an embodiment of the present disclosure.
  • FIG. 10 shows an example of a reticle pattern used for measuring longitudinal chromatic aberration K.
  • FIG. 11 schematically shows part of an exposure apparatus according to an embodiment.
  • FIG. 12 shows the light intensity distribution measured by the sensor when the wafer surface moves to position Za.
  • FIG. 13 shows the light intensity distribution measured by the sensor when the wafer surface moves to position Zb.
  • FIG. 14 shows the light intensity distribution measured by the sensor when the wafer surface moves to position Zc.
  • FIG. 12 shows the light intensity distribution measured by the sensor when the wafer surface moves to position Za.
  • FIG. 13 shows the light intensity distribution measured by the sensor when the wafer surface moves to position Zb.
  • FIG. 14 shows the light intensity distribution measured by the sensor when the wafer surface moves to position Zc.
  • FIG. 15 is a graph showing an example of contrast measurement results while moving the workpiece table in a direction parallel to the Z-axis.
  • FIG. 16 is a graph showing the relationship between the position of the wafer surface and the contrast when two different wavelengths are used.
  • FIG. 17 is a graph showing still another example of the spectrum waveform of laser light.
  • FIG. 18 is a graph showing still another example of the spectrum waveform of laser light.
  • FIG. 19 shows a rectangular imaging pattern used for evaluation of imaging performance.
  • FIG. 20 is a graph showing simulation results of imaging performance in the exposure apparatus.
  • FIG. 21 is a graph showing simulation results of imaging performance in an exposure apparatus.
  • FIG. 22 is a flow chart showing the procedure for measuring the spectrum evaluation value V in the embodiment.
  • FIG. 23 shows an imaging pattern used for comparison of usefulness of spectral evaluation value V and spectral line width E95.
  • FIG. 24 is a graph showing the relationship between spectral line width E95 and ⁇ CD in the imaging pattern of FIG. 25 is a graph showing the relationship between the spectrum evaluation value V and ⁇ CD in the imaging pattern of FIG. 23.
  • FIG. 26 shows another imaging pattern used to compare the usefulness of spectral evaluation value V and spectral linewidth E95.
  • FIG. 27 is a graph showing the relationship between spectral line width E95 and ⁇ CD in the imaging pattern of FIG. 28 is a graph showing the relationship between the spectrum evaluation value V and ⁇ CD in the imaging pattern of FIG. 26.
  • FIG. 29 is a graph showing the relationship between the spectral evaluation value V of Equation 4 and ⁇ CD in the imaging pattern of FIG.
  • FIG. 30 is a graph showing the relationship between the spectrum evaluation value V of Equation 4 and ⁇ CD in the imaging pattern of FIG.
  • FIG. 31 is a graph showing the relationship between the longitudinal chromatic aberration K and the focus distribution evaluation value DK when the spectrum waveform is constant.
  • FIG. 32 is a graph showing the relationship between longitudinal chromatic aberration K and spectral evaluation value V set in the embodiment.
  • FIG. 33 shows a table showing the relationship between the longitudinal chromatic aberration K and the spectral evaluation value V set in the embodiment.
  • FIG. 34 is a graph showing the relationship between the longitudinal chromatic aberration K and the contrast at the focus position when the spectrum evaluation value V is set so that the focus distribution evaluation value DK is constant.
  • FIG. 35 is a flow chart showing the procedure of table generation in the embodiment.
  • FIG. 36 is a flow chart showing the procedure of spectrum control in the embodiment.
  • FIG. 37 is a flow chart showing processing for obtaining longitudinal chromatic aberration K by the laser device.
  • FIG. 38 is a flow chart showing processing for acquiring longitudinal chromatic aberration K by the exposure apparatus.
  • FIG. 39 is a flow chart showing the process of spectrum control by the laser device using the target value Vt.
  • FIG. 40 is a flow chart showing the process of spectral control performed by the exposure apparatus using the target value Vt.
  • Comparative Example FIG. 1 schematically shows the configuration of an exposure system in a comparative example.
  • the comparative examples of the present disclosure are forms known by the applicant to be known only by the applicant, and not known examples to which the applicant admits.
  • the exposure system includes a laser device 1 and an exposure device 100.
  • Laser device 1 includes a laser control processor 30 .
  • the laser control processor 30 is a processing device that includes a memory 132 storing a control program and a CPU (central processing unit) 131 that executes the control program.
  • Laser control processor 30 is specially configured or programmed to perform the various processes contained in this disclosure.
  • the laser device 1 is configured to output laser light toward the exposure device 100 .
  • Exposure apparatus 100 includes illumination optical system 101 , projection optical system 102 , and exposure control processor 110 .
  • the illumination optical system 101 illuminates a reticle pattern of a reticle (not shown) placed on the reticle stage RT with laser light incident from the laser device 1 .
  • the projection optical system 102 reduces and projects the laser beam transmitted through the reticle to form an image on a workpiece (not shown) placed on the workpiece table WT.
  • the workpiece is a photosensitive substrate such as a semiconductor wafer coated with a resist film, and is movable by the stage 103 .
  • the exposure control processor 110 is a processing device that includes a memory 112 storing a control program and a CPU 111 that executes the control program. Exposure control processor 110 is specially configured or programmed to perform the various processes contained in this disclosure. The exposure control processor 110 supervises the control of the exposure apparatus 100 and transmits/receives various data and various signals to/from the laser control processor 30 .
  • the exposure control processor 110 transmits the wavelength target value data, the pulse energy target value data, and the trigger signal to the laser control processor 30 .
  • the laser control processor 30 controls the laser device 1 according to these data and signals.
  • the exposure control processor 110 synchronously translates the reticle stage RT and the workpiece table WT in opposite directions. As a result, the workpiece is exposed with laser light reflecting the reticle pattern. A reticle pattern is transferred to the semiconductor wafer by such an exposure process. After that, an electronic device can be manufactured through a plurality of steps.
  • FIG. 2 schematically shows the configuration of a laser apparatus 1 according to a comparative example.
  • the laser device 1 includes a laser oscillator 20 , a power supply 12 , a monitor module 16 , a laser control processor 30 , a wavelength measurement controller 50 and a spectrum measurement control processor 60 .
  • the laser device 1 is connectable to the exposure device 100 .
  • the laser oscillator 20 includes a laser chamber 10, a discharge electrode 11a, a band narrowing module 14, and a spectral waveform adjuster 15a.
  • the band narrowing module 14 and the spectral waveform adjuster 15a constitute a laser resonator.
  • a laser chamber 10 is arranged in the optical path of the laser resonator. Windows 10a and 10b are provided at both ends of the laser chamber 10.
  • FIG. Inside the laser chamber 10, a discharge electrode 11a and a discharge electrode (not shown) paired therewith are arranged.
  • a discharge electrode (not shown) is positioned so as to overlap the discharge electrode 11a in the direction of the V-axis perpendicular to the paper surface.
  • the laser chamber 10 is filled with a laser gas containing, for example, argon gas or krypton gas as a rare gas, fluorine gas as a halogen gas, and neon gas as a buffer gas.
  • the power supply 12 includes a switch 13 and is connected to the discharge electrode 11a and a charger (not shown).
  • the band narrowing module 14 includes a plurality of prisms 14a and 14b and a grating 14c.
  • the prism 14b is supported by a rotating stage 14e.
  • the rotating stage 14e is configured to rotate the prism 14b about an axis parallel to the V-axis in accordance with the drive signal output from the wavelength driver 51.
  • FIG. The selected wavelength of the band narrowing module 14 is changed by rotating the prism 14b.
  • the spectral waveform adjuster 15a includes a cylindrical plano-convex lens 15b, a cylindrical plano-concave lens 15c, and a linear stage 15d.
  • a cylindrical plano-concave lens 15c is positioned between the laser chamber 10 and the cylindrical plano-convex lens 15b.
  • the cylindrical plano-convex lens 15b and the cylindrical plano-concave lens 15c are arranged so that the convex surface of the cylindrical plano-convex lens 15b faces the concave surface of the cylindrical plano-concave lens 15c.
  • the convex surface of the cylindrical plano-convex lens 15b and the concave surface of the cylindrical plano-concave lens 15c each have a focal axis parallel to the direction of the V-axis.
  • a flat surface located on the opposite side of the convex surface of the cylindrical plano-convex lens 15b is coated with a partially reflective film.
  • the monitor module 16 is arranged in the optical path of the laser light between the spectral waveform adjuster 15 a and the exposure apparatus 100 .
  • the monitor module 16 includes beam splitters 16 a , 16 b and 17 a , an energy sensor 16 c , a highly reflective mirror 17 b , a wavelength detector 18 and a spectroscope 19 .
  • the beam splitter 16a is located in the optical path of the laser light output from the spectral waveform adjuster 15a.
  • the beam splitter 16a is configured to transmit part of the laser light output from the spectral waveform adjuster 15a toward the exposure apparatus 100 with high transmittance and reflect the other part.
  • the beam splitter 16b is located in the optical path of the laser beam reflected by the beam splitter 16a.
  • the energy sensor 16c is positioned in the optical path of the laser light reflected by the beam splitter 16b.
  • the beam splitter 17a is located on the optical path of the laser light that has passed through the beam splitter 16b.
  • the high reflection mirror 17b is positioned in the optical path of the laser beam reflected by the beam splitter 17a.
  • the wavelength detector 18 is arranged in the optical path of the laser light that has passed through the beam splitter 17a.
  • the wavelength detector 18 includes a diffuser plate 18a, an etalon 18b, a condenser lens 18c, and a line sensor 18d.
  • the diffusion plate 18a is positioned on the optical path of the laser light transmitted through the beam splitter 17a.
  • the diffusion plate 18a has a large number of irregularities on its surface, and is configured to transmit and diffuse laser light.
  • the etalon 18b is positioned in the optical path of the laser light transmitted through the diffuser plate 18a.
  • Etalon 18b includes two partially reflective mirrors. The two partially reflecting mirrors face each other with an air gap of a predetermined distance, and are bonded together via spacers.
  • the condenser lens 18c is positioned on the optical path of the laser beam that has passed through the etalon 18b.
  • the line sensor 18d is located on the focal plane of the condenser lens 18c on the optical path of the laser beam that has passed through the condenser lens 18c.
  • the line sensor 18d is a light distribution sensor including a large number of light receiving elements arranged one-dimensionally.
  • an image sensor including a large number of light receiving elements arranged two-dimensionally may be used as the light distribution sensor.
  • the line sensor 18d may have a processor (not shown).
  • the line sensor 18d receives interference fringes formed by the etalon 18b and the condenser lens 18c.
  • An interference fringe is an interference pattern of laser light and has a shape of concentric circles, and the square of the distance from the center of the concentric circles is proportional to the change in wavelength.
  • a processor (not shown) may be configured to statistically process and output data reflecting the interference pattern.
  • the spectroscope 19 is arranged in the optical path of the laser beam reflected by the high reflection mirror 17b.
  • the spectroscope 19 includes a diffuser plate 19a, an etalon 19b, a condenser lens 19c, and a line sensor 19d.
  • the line sensor 19d may have a processor (not shown). These configurations are the same as those of the diffuser plate 18a, etalon 18b, condenser lens 18c, and line sensor 18d included in the wavelength detector 18, respectively.
  • etalon 19b has a smaller free spectral range than etalon 18b.
  • the condenser lens 19c has a longer focal length than the condenser lens 18c.
  • the spectrum measurement control processor 60 is a processing device including a memory 61 storing a control program, a CPU 62 executing the control program, and a counter 63 .
  • Spectral instrumentation control processor 60 is specially configured or programmed to perform various processes contained in this disclosure.
  • the memory 61 also stores various data for calculating spectral line widths.
  • Various data include the device function S( ⁇ ) of the spectroscope 19 .
  • the counter 63 counts the number of pulses of the laser light by counting the number of times the electrical signal containing the data of the pulse energy output from the energy sensor 16c is received. Alternatively, the counter 63 may count the number of pulses of laser light by counting oscillation trigger signals output from the laser control processor 30 .
  • the wavelength measurement control unit 50 is a processing device including a memory (not shown) storing a control program, a CPU (not shown) that executes the control program, and a counter (not shown).
  • a counter included in the wavelength measurement control unit 50 also counts the number of pulses of laser light, like the counter 63 .
  • the laser control processor 30, the wavelength measurement control unit 50, and the spectrum measurement control processor 60 are described as separate components, but the laser control processor 30 includes the wavelength measurement control unit 50 and the spectrum measurement control. It may also serve as the processor 60 .
  • the laser control processor 30 receives setting data for the target pulse energy and target wavelength of laser light from the exposure control processor 110 included in the exposure apparatus 100 .
  • Laser control processor 30 receives a trigger signal from exposure control processor 110 .
  • the laser control processor 30 transmits setting data for the voltage applied to the discharge electrode 11a to the power supply 12 based on the target pulse energy.
  • the laser control processor 30 transmits target wavelength setting data to the wavelength measurement control unit 50 .
  • the laser control processor 30 transmits an oscillation trigger signal based on the trigger signal to the switch 13 included in the power supply 12 .
  • the switch 13 is turned on when receiving an oscillation trigger signal from the laser control processor 30 .
  • the power supply 12 When the switch 13 is turned on, the power supply 12 generates a pulsed high voltage from electric energy charged in a charger (not shown) and applies this high voltage to the discharge electrode 11a.
  • a discharge occurs inside the laser chamber 10 when a high voltage is applied to the discharge electrode 11a.
  • the energy of this discharge excites the laser medium inside the laser chamber 10 to shift to a high energy level.
  • the excited laser medium shifts to a lower energy level, it emits light with a wavelength corresponding to the energy level difference.
  • Light generated inside the laser chamber 10 is emitted to the outside of the laser chamber 10 through windows 10a and 10b.
  • Light emitted from the window 10a of the laser chamber 10 is expanded in beam width by the prisms 14a and 14b and enters the grating 14c.
  • Light incident on the grating 14c from the prisms 14a and 14b is reflected by the plurality of grooves of the grating 14c and diffracted in directions corresponding to the wavelength of the light.
  • Prisms 14a and 14b reduce the beam width of the diffracted light from grating 14c and return the light to laser chamber 10 through window 10a.
  • the spectral waveform adjuster 15a transmits and outputs part of the light emitted from the window 10b of the laser chamber 10 and reflects another part back into the laser chamber 10 through the window 10b.
  • the light emitted from the laser chamber 10 reciprocates between the band narrowing module 14 and the spectral waveform adjuster 15a, and is amplified every time it passes through the discharge space inside the laser chamber 10. This light is band-narrowed each time it is folded back by the band-narrowing module 14 .
  • the laser-oscillated and narrow-band light is output as laser light from the spectral waveform adjuster 15a.
  • a linear stage 15d included in the spectrum waveform adjuster 15a moves the cylindrical plano-concave lens 15c along the optical path between the laser chamber 10 and the cylindrical plano-convex lens 15b according to the drive signal output from the spectrum driver 64.
  • the wavefront of the light traveling from the spectral waveform adjuster 15a to the band narrowing module 14 changes.
  • a change in the wavefront causes a change in the spectral waveform and spectral linewidth of the laser light.
  • the energy sensor 16 c detects the pulse energy of the laser light and outputs pulse energy data to the laser control processor 30 , the wavelength measurement control section 50 and the spectrum measurement control processor 60 .
  • the pulse energy data is used by the laser control processor 30 to feedback-control setting data for the applied voltage applied to the discharge electrode 11a.
  • the electrical signal containing the pulse energy data can be used by the wavelength measurement controller 50 and the spectrum measurement control processor 60 to count the number of pulses, respectively.
  • the wavelength detector 18 generates interference fringe waveform data from the amount of light in each of the light receiving elements included in the line sensor 18d.
  • the wavelength detector 18 may use an integrated waveform obtained by integrating the amount of light in each of the light receiving elements as the waveform data of the interference fringes.
  • the wavelength detector 18 may generate an integrated waveform a plurality of times, and use an average waveform obtained by averaging the multiple integrated waveforms as the waveform data of the interference fringes.
  • the wavelength detector 18 transmits the waveform data of the interference fringes to the wavelength measurement control section 50 according to the data output trigger output from the wavelength measurement control section 50 .
  • the spectroscope 19 generates a raw waveform reflecting the amount of light in each of the light receiving elements included in the line sensor 19d that received the interference fringes.
  • the spectroscope 19 generates an integrated waveform Oi by integrating the raw waveform over Ni pulses.
  • the spectroscope 19 generates the integrated waveform Oi Na times, and generates an average waveform Oa by averaging the Na integrated waveforms Oi.
  • the integrated pulse number Ni is, for example, 5 pulses or more and 8 pulses or less, and the average number of times Na is, for example, 5 times or more and 8 times or less.
  • the spectrum measurement control processor 60 counts the integrated pulse number Ni and the averaged number Na, and the spectroscope 19 may generate the integrated waveform Oi and the average waveform Oa according to the trigger signal output from the spectrum measurement control processor 60 .
  • the memory 61 of the spectrum measurement control processor 60 may store setting data for the number of integrated pulses Ni and the number of times of averaging Na.
  • the spectroscope 19 extracts a partial waveform corresponding to the free spectral range from the average waveform Oa.
  • the extracted part of the waveform shows the relationship between the distance from the center of the concentric circles forming the interference fringes and the light intensity.
  • the spectroscope 19 acquires the measured spectral waveform O( ⁇ ) by coordinate-converting this waveform into the relationship between the wavelength and the light intensity. Coordinate transformation of a part of the average waveform Oa into the relationship between the wavelength and the light intensity is also called mapping to the spectrum space.
  • the measured spectrum waveform O( ⁇ ) corresponds to the measured waveform in the present disclosure.
  • the spectroscope 19 transmits the measured spectrum waveform O( ⁇ ) to the spectrum measurement control processor 60 according to the data output trigger output from the spectrum measurement control processor 60 .
  • Any or all of the calculation processing of the integrated waveform Oi, the calculation processing of the average waveform Oa, and the processing of acquiring the measured spectrum waveform O( ⁇ ) by mapping to the spectral space are performed by the spectroscope 19, but the spectrum measurement control is performed. Processor 60 may do so. Both the process of generating the average waveform Oa and the process of acquiring the measured spectrum waveform O( ⁇ ) may be performed by the spectrum measurement control processor 60 instead of the spectroscope 19 .
  • the wavelength measurement control unit 50 receives target wavelength setting data from the laser control processor 30 .
  • the wavelength measurement control unit 50 also calculates the center wavelength of the laser light using the waveform data of the interference fringes output from the wavelength detector 18 .
  • the wavelength measurement control unit 50 feedback-controls the center wavelength of the laser light by outputting a control signal to the wavelength driver 51 based on the target wavelength and the calculated center wavelength.
  • Spectrum measurement control processor 60 Spectral measurement control processor 60 receives measured spectral waveform O( ⁇ ) from spectrometer 19 .
  • spectral instrumentation control processor 60 may receive raw waveforms from spectrometer 19, integrate and average the raw waveforms, map them into spectral space, and obtain a measured spectral waveform O( ⁇ ).
  • the spectrum measurement control processor 60 may receive the integrated waveform Oi from the spectroscope 19, average the integrated waveform Oi, map it to the spectral space, and acquire the measured spectral waveform O( ⁇ ).
  • the spectral instrumentation control processor 60 may receive the average waveform Oa from the spectrometer 19 and map the average waveform Oa to the spectral space to obtain the measured spectral waveform O( ⁇ ).
  • the spectrum measurement control processor 60 calculates the estimated spectrum waveform I( ⁇ ) from the measured spectrum waveform O( ⁇ ) as follows.
  • FIG. 3 is a block diagram illustrating functions of the spectrum measurement control processor 60 in the comparative example.
  • the spectroscope 19 has instrument-specific measurement characteristics, which are represented by an instrument function S( ⁇ ) as a function of the wavelength ⁇ .
  • an instrument function S( ⁇ ) as a function of the wavelength ⁇ .
  • the measured spectral waveform O( ⁇ ) is given by the following equation 1: It is represented by the convolution integral of the unknown spectrum waveform T( ⁇ ) and the instrument function S( ⁇ ) as follows.
  • a convolution integral means a composite product of two functions.
  • the convolution integral can be expressed using the symbol * as follows.
  • O( ⁇ ) T( ⁇ )*S( ⁇ )
  • the Fourier transform F(O( ⁇ )) of the measured spectral waveform O( ⁇ ) is the Fourier transform F(T( ⁇ )) and F(S ( ⁇ )).
  • F(O( ⁇ )) F(T( ⁇ )) ⁇ F(S( ⁇ )) This is called the convolution theorem.
  • the spectrum measurement control processor 60 measures the instrument function S( ⁇ ) of the spectroscope 19 in advance and stores it in the memory 61 .
  • coherent light having a wavelength substantially the same as the central wavelength of the laser light output from the laser device 1 and having a narrow spectral line width that can be regarded as a ⁇ function. is incident on the spectroscope 19 .
  • the spectral waveform of the coherent light measured by the spectroscope 19 can be used as the device function S( ⁇ ).
  • the CPU 62 included in the spectrum measurement control processor 60 deconvolves the measured spectrum waveform O( ⁇ ) of the laser light with the device function S( ⁇ ) of the spectroscope 19 .
  • Deconvolution refers to the computational process of estimating an unknown function that satisfies the convolution equation.
  • a waveform obtained by deconvolution is assumed to be an estimated spectral waveform I( ⁇ ).
  • the estimated spectral waveform I( ⁇ ) indicates the relationship between the wavelength of the estimated unknown spectral waveform T( ⁇ ) and the light intensity.
  • the deconvolution integral using the Fourier transform and the inverse Fourier transform is susceptible to noise components contained in the measurement data. Therefore, it is desirable to calculate the deconvolution integral using an iterative method such as the Jacobi method or the Gauss-Seidel method that can suppress the influence of noise components.
  • FIG. 4 is a graph showing an example of an estimated spectral waveform I( ⁇ ) of laser light.
  • the horizontal axis of FIG. 4 indicates the wavelength deviation ⁇ from the central wavelength.
  • the estimated spectrum waveform I( ⁇ ) is a waveform that indicates the light intensity for each wavelength component included in the wavelength range of the estimated spectrum waveform I( ⁇ ).
  • a value obtained by integrating the estimated spectral waveform I( ⁇ ) in a certain wavelength range is called spectral energy in that wavelength range.
  • the full width of the portion that occupies 95% of the spectral energy of the entire wavelength range of the estimated spectral waveform I( ⁇ ) is called spectral line width E95.
  • the estimated spectral waveform I( ⁇ ) of the first laser beam having a spectral linewidth E95 of 0.3 pm is indicated by a solid line
  • the estimated spectral waveform I( ⁇ ) of the second laser beam having a spectral linewidth E95 of 0.4 pm is shown by a solid line
  • the estimated spectral waveform I( ⁇ ) is indicated by a dashed line. Since the angle of refraction on the surface of the lens differs depending on the wavelength of the laser light, the exposure performance of the exposure apparatus 100 differs if the spectrum waveform differs.
  • FIG. 5 schematically shows differences in focus by the projection optical system 102 according to the spectrum of laser light.
  • FIG. 5 shows a case where a first laser beam with a spectral linewidth E95 of 0.3 pm and a second laser beam with a spectral linewidth E95 of 0.4 pm enter the projection optical system 102, respectively.
  • the central wavelengths of the first and second laser beams are the same.
  • the focus position of the center wavelength component which is the peak wavelength
  • the focus position of the wavelength component 0.1 pm longer than the central wavelength is the second position F2, which is farther from the projection optical system 102 than the first position F1.
  • the imaging performance of that wavelength component at the first position F1 is lower than that of the central wavelength component.
  • the focus position of the central wavelength component and the focus position of the wavelength component 0.1 pm longer than the central wavelength are the same as the first and second positions F1 and F2, respectively. be.
  • the second laser light contains more wavelength components 0.1 pm longer than the center wavelength than the first laser light. The higher the ratio of wavelength components different from the center wavelength, the lower the imaging performance at the first position F1.
  • the second laser light also contains a wavelength component 0.2 pm longer than the central wavelength.
  • the focus position of the wavelength component 0.2 pm longer than the central wavelength is the third position F3, which is farther from the projection optical system 102 than the second position F2.
  • the imaging performance may differ if the spectral line width E95 differs.
  • FIG. 6 is a graph showing the distribution of focus positions of laser light in the exposure apparatus 100.
  • the vertical axis indicates the focus position along the Z-axis shown in FIG. 1, and the horizontal axis indicates the light intensity of the wavelength component focused on each focus position.
  • the spectral linewidth E95 of laser light is 0.3 pm.
  • the longitudinal chromatic aberration K of the projection optical system 102 of the exposure apparatus 100 that is, the distribution of the focus position when the difference in the focus position per wavelength difference of 1 pm is 250 nm/pm is shown by the solid line. is 500 nm/pm, the distribution of focus positions is indicated by a dashed line.
  • FIG. 7 schematically shows the focus difference according to the longitudinal chromatic aberration K of the projection optical system 102.
  • FIG. When the focus position of the central wavelength component is fixed at the first position F1 regardless of the longitudinal chromatic aberration K, the focus position of the wavelength component 0.1 pm longer than the central wavelength differs depending on the longitudinal chromatic aberration K.
  • FIG. If the longitudinal chromatic aberration K is 250 nm/pm, the focus position of the wavelength component will be the second position F2, which is 25 nm away from the focus position of the central wavelength component.
  • a fourth position F4 which is 50 nm away from the position.
  • the focus position of the wavelength component 0.1 pm longer than the central wavelength differs depending on the longitudinal chromatic aberration K.
  • FIG. As the focus position of the wavelength component is farther from the first position F1, the imaging performance of the wavelength component at the first position F1 is degraded. Therefore, even if the focus position of the central wavelength component is the same, the imaging performance may differ if the longitudinal chromatic aberration K differs.
  • FIG. 8 is a graph showing the relationship between the longitudinal chromatic aberration K and the contrast at the first position F1 when the spectrum waveform is constant.
  • FIG. 8 shows the case of using a line-and-space reticle pattern in which the line and space widths are each 100 nm. The line-and-space reticle pattern will be described later with reference to FIG. Even if the spectrum waveform is constant, if the longitudinal chromatic aberration K of the projection optical system 102 changes, the contrast of the central wavelength component at the focus position changes. . Therefore, there is a possibility that the conventional spectrum control using the spectral line width E95 as an index cannot sufficiently control the imaging performance. Contrast will be described later.
  • FIG. 9 schematically shows the configuration of a laser device 1a according to an embodiment of the present disclosure.
  • the memory 61 included in the spectrum measurement control processor 60 stores data 611 that stores the relationship between the longitudinal chromatic aberration K and the spectrum evaluation value V.
  • FIG. Data 611 will be described later.
  • FIG. 10 shows an example of a reticle pattern used for measuring longitudinal chromatic aberration K.
  • FIG. 10 In order to measure the longitudinal chromatic aberration K of the projection optical system 102, a line-and-space reticle pattern in which transmissive portions and non-transmissive portions are alternately arranged as shown in FIG. 10 is formed on the reticle stage RT (see FIG. 1). placed above.
  • FIG. 11 schematically shows part of the exposure apparatus 100 according to the embodiment.
  • a sensor 43 is arranged on the workpiece table WT.
  • the sensor 43 may be a light distribution sensor including a large number of light receiving elements arranged one-dimensionally like the line sensor 18d (see FIGS. 2 and 9), or an image sensor including a large number of light receiving elements arranged two-dimensionally.
  • a sensor may be used.
  • the workpiece table WT can be moved in a direction parallel to the Z-axis by a stage 103 (see FIG. 1). Movement of the workpiece table WT allows the position of the wafer surface to move to positions Za, Zb, and Zc shown in FIG.
  • 12 to 14 show light intensity distributions measured by the sensor 43 when the wafer surface moves to positions Za to Zc, respectively. 12 to 14, the horizontal axis indicates the position in the Y-axis direction, and the vertical axis indicates the light intensity I at each position.
  • the minimum value Imin of the light intensity I is included in the light intensity in the dark area.
  • Imax be the maximum value of the light intensity I in the bright portion surrounded by the dark portions at both ends. It can be evaluated that the larger the difference between the maximum value Imax and the minimum value Imin, the greater the contrast.
  • the definition of contrast may be the difference between the highest value Imax and the lowest value Imin, or the difference between the highest value Imax and the lowest value Imin divided by the sum of the highest value Imax and the lowest value Imin.
  • FIG. 15 is a graph showing an example of the result of contrast measurement while moving the workpiece table WT in the direction parallel to the Z axis.
  • the position of the wafer surface changes, and the contrast changes accordingly.
  • the contrast becomes the maximum value at the position Zb on the wafer surface
  • the position Zb becomes the focus position.
  • FIG. 16 is a graph showing the relationship between the position of the wafer surface and the contrast when two different wavelengths are used.
  • Z1 be the first focus position when using the first wavelength ⁇ 1
  • Z2 be the second focus position when using the second wavelength ⁇ 2 shorter than the first wavelength ⁇ 1.
  • FIGS. 17 and 18 are graphs showing still other examples of spectrum waveforms of laser light.
  • the horizontal axis indicates the wavelength deviation ⁇ from the central wavelength.
  • the spectral line widths E95 of spectral waveforms #1 to #3 shown in FIG. 17 and spectral waveforms #4 to #6 shown in FIG. 18 are all 0.3 pm, but these spectral waveforms #1 to #6 They differ in shape from each other.
  • Spectral waveforms #1 to #3 have an asymmetric spectral distribution in which the peak wavelength is shifted to the longer wavelength side than the center wavelength, and the difference between the center wavelength and the peak wavelength is different.
  • the center wavelength here is, for example, the center of the wavelength width having a light intensity of 1/e 2 or more of the peak intensity.
  • Spectral waveforms #4 to #6 are symmetrical, but spectral waveform #4 has a gentler curve near the peak compared to the Gaussian-distributed spectral waveform (see FIG. 4).
  • Spectral waveforms #5 and #6 have spectral distributions in which the peak wavelengths are separated into two, and the difference between the center wavelength and the peak wavelength is different from each other.
  • FIG. 19 shows a rectangular imaging pattern used for evaluation of imaging performance.
  • the longitudinal chromatic aberration K of the projection optical system 102 was set to 250 nm/pm.
  • the spectral waveforms #1 to #6 were used, the deviation ⁇ CD of the vertical dimension from 76 nm was obtained by simulation when the exposure amount was adjusted so that the horizontal dimension of the imaged pattern on the wafer surface was 38 nm. .
  • FIG. 20 and 21 are graphs showing simulation results of the imaging performance of the exposure apparatus 100.
  • FIG. 20 shows the case of using spectral waveforms #1 to #3 shown in FIG. 17, and
  • FIG. 21 shows the case of using spectral waveforms #4 to #6 shown in FIG.
  • the greater the difference between the center wavelength and the peak wavelength and the greater the asymmetry the greater the dimensional error on the wafer surface.
  • the greater the difference from the Gaussian distribution the greater the dimensional error on the wafer surface.
  • the spectrum evaluation value V considering the shape of the spectrum waveform is defined as follows.
  • centroid wavelength ⁇ c of the estimated spectral waveform I( ⁇ ) is defined by Equation 2 below.
  • the numerator of Equation 2 is a value obtained by integrating the product of the light intensity indicated by the estimated spectral waveform I( ⁇ ) and the wavelength ⁇ with respect to the wavelength range of the estimated spectral waveform I( ⁇ ).
  • the denominator of Equation 2 is a value obtained by integrating the light intensity indicated by the estimated spectral waveform I( ⁇ ) with respect to the wavelength range of the estimated spectral waveform I( ⁇ ).
  • the centroid wavelength ⁇ c is an example of a representative wavelength in the present disclosure.
  • a spectral evaluation value V of the estimated spectral waveform I( ⁇ ) is defined by Equation 3 below.
  • the numerator of Equation 3 integrates the product of the light intensity indicated by the estimated spectral waveform I( ⁇ ) and the function ( ⁇ c) 2 of the wavelength deviation from the centroid wavelength ⁇ c with respect to the wavelength region of the estimated spectral waveform I( ⁇ ). This is the value obtained by The spectrum evaluation value V corresponds to the evaluation value in the present disclosure.
  • the denominator of Equation 3 is the product of the constant ⁇ s and the value obtained by integrating the light intensity indicated by the estimated spectral waveform I( ⁇ ) with respect to the wavelength range of the estimated spectral waveform I( ⁇ ).
  • the constant ⁇ s may be any one of (1) to (4) below. (1) 1 (2) Centroid wavelength ⁇ c (3) Spectral line width E95 of estimated spectral waveform I( ⁇ ) (4) standard deviation of the Gaussian distribution shape spectral waveform having the same spectral line width E95 as the estimated spectral waveform I( ⁇ )
  • the spectrum evaluation value V is the dimension of the square of the wavelength ⁇ , whereas the function of the wavelength ⁇ as in (2) to (4) above By dividing by the constant ⁇ s obtained from , the spectrum evaluation value V can be made the dimension of the wavelength ⁇ .
  • FIG. 22 is a flow chart showing the procedure for measuring the spectrum evaluation value V in the embodiment.
  • the spectrum measurement control processor 60 generates an integrated waveform Oi and an average waveform Oa from the interference pattern of laser light, and calculates an estimated spectrum waveform I( ⁇ ) and a spectrum evaluation value V as follows.
  • the spectrum measurement control processor 60 reads the integrated pulse number Ni and the averaging number Na from the memory 61 .
  • the spectrum measurement control processor 60 receives the raw waveform reflecting the amount of light in each of the light receiving elements included in the line sensor 19d, and integrates over Ni pulses to generate an integrated waveform Oi.
  • the spectrum measurement control processor 60 generates the integrated waveform Oi Na times, and generates the average waveform Oa by averaging the Na integrated waveforms Oi.
  • the spectrum measurement control processor 60 generates the measured spectrum waveform O( ⁇ ) by mapping the average waveform Oa into the spectrum space.
  • the spectrum measurement control processor 60 reads the instrument function S( ⁇ ) of the spectroscope 19 from the memory 61 .
  • the spectral measurement control processor 60 calculates the estimated spectral waveform I( ⁇ ) by deconvoluting the measured spectral waveform O( ⁇ ) with the device function S( ⁇ ).
  • the spectrum measurement control processor 60 calculates the barycenter wavelength ⁇ c of the estimated spectrum waveform I( ⁇ ) using Equation (2). In S339, the spectrum measurement control processor 60 calculates the spectrum evaluation value V of the estimated spectrum waveform I( ⁇ ) using Equation (3). After S339, the spectrum measurement control processor 60 ends the processing of this flowchart.
  • FIG. 23 shows an imaging pattern used for comparison of usefulness of spectral evaluation value V and spectral line width E95.
  • the imaging patterns shown in FIG. 23 include two types of patterns, a DENCE pattern in which a plurality of exposure areas are densely arranged, and an ISO pattern in which the exposure areas are separated from other exposure areas.
  • ⁇ CD be the deviation from the standard dimension of the ISO pattern when the exposure amount is adjusted so that the dimension of the DENCE pattern is 45 nm.
  • the standard dimension of the ISO pattern is the dimension of the ISO pattern when the spectral line width E95 is 0.01 pm.
  • FIG. 24 is a graph showing the relationship between the spectral line width E95 and ⁇ CD in the imaging pattern of FIG. 23, and FIG. 25 is a graph showing the relationship between the spectral evaluation value V and ⁇ CD in the imaging pattern of FIG. be.
  • simulations were performed using a number of variations including the spectral waveforms illustrated in Figures 17 and 18, and ⁇ CD was plotted.
  • FIG. 26 shows another imaging pattern used for comparison of usefulness of spectral evaluation value V and spectral line width E95.
  • the imaging patterns shown in FIG. 26 include two types of patterns, a LINE pattern imitating wiring and a SPACE pattern imitating a gap between adjacent wirings.
  • ⁇ CD be the deviation of the SPACE pattern from the standard dimension when the exposure amount is adjusted so that the dimension of the LINE pattern is 100 nm.
  • FIG. 27 is a graph showing the relationship between the spectral line width E95 and ⁇ CD in the imaging pattern of FIG. 26, and FIG. 28 is a graph showing the relationship between the spectral evaluation value V and ⁇ CD in the imaging pattern of FIG. be.
  • simulations were performed using a number of variations including the spectral waveforms illustrated in FIGS. 17 and 18, and ⁇ CD was plotted.
  • Equation 3 the square of the wavelength deviation ⁇ c from the centroid wavelength ⁇ c ( ⁇ c) 2 is used, but the present disclosure is not limited to this.
  • the spectrum evaluation value V may be calculated by Equation 4 below.
  • Equation 4 differs from Equation 3 in that instead of squaring the wavelength deviation ⁇ c in Equation 3, the absolute value of the wavelength deviation ⁇ c is raised to the Nth power.
  • the exponent N is a positive number. Equation 4 when the exponent N is set to 2 is equivalent to Equation 3 when ⁇ s is set to 1.
  • FIG. 29 is a graph showing the relationship between the spectral evaluation value V of Equation 4 and ⁇ CD in the imaging pattern of FIG.
  • FIG. 30 is a graph showing the relationship between the spectrum evaluation value V of Equation 4 and ⁇ CD in the imaging pattern of FIG.
  • the simulation results when the value of the exponent N in Equation 4 is 1, 2, and 3 are shown together with the respective regression lines.
  • a correlation is recognized between the spectrum evaluation value V and ⁇ CD in any case where the value of the exponent N is set to 1, 2, or 3.
  • the coefficient of determination which indicates the goodness of fit of the regression line, is the highest when the value of the exponent N is 2 in both FIGS. It is preferable that the value of exponent N be 1.9 or more and 2.1 or less.
  • FIG. 31 is a graph showing the relationship between the vertical chromatic aberration K and the focus distribution evaluation value DK when the spectrum waveform is fixed without being changed.
  • the focus distribution evaluation value DK is an evaluation value that enables the evaluation of the imaging performance by adding the longitudinal chromatic aberration K to the spectrum evaluation value V, and is calculated by Equation 5 below.
  • Equation 5 corresponds to equation 3 with the wavelength ⁇ replaced by the product K ⁇ of the longitudinal chromatic aberration K and the wavelength ⁇ and the constant ⁇ s set to one.
  • the focus distribution evaluation value DK is approximately proportional to the square of the longitudinal chromatic aberration K.
  • the spectrum evaluation value V is controlled so that the focus distribution evaluation value DK is constant regardless of the longitudinal chromatic aberration K.
  • FIG. 32 is a graph showing the relationship between longitudinal chromatic aberration K and spectral evaluation value V set in the embodiment.
  • the relationship between the longitudinal chromatic aberration K and the spectrum evaluation value V is set so that the focus distribution evaluation value DK is constant regardless of the longitudinal chromatic aberration K.
  • FIG. As a result, the relationship between the longitudinal chromatic aberration K and the spectral evaluation value V shown in FIG.
  • the memory 61 included in the spectral measurement control processor 60 may store the relational expression between the longitudinal chromatic aberration K and the spectral evaluation value V as the data 611 storing the relationship between the longitudinal chromatic aberration K and the spectral evaluation value V.
  • FIG. 33 shows a table showing the relationship between the longitudinal chromatic aberration K and the spectral evaluation value V set in the embodiment.
  • the relationship between the longitudinal chromatic aberration K and the spectrum evaluation value V is set so that the focus distribution evaluation value DK is constant regardless of the longitudinal chromatic aberration K.
  • FIG. The memory 61 included in the spectrum measurement control processor 60 may store a table that associates the longitudinal chromatic aberration K and the spectral evaluation value V as data 611 that stores the relationship between the longitudinal chromatic aberration K and the spectral evaluation value V. .
  • FIG. 34 is a graph showing the relationship between the longitudinal chromatic aberration K and the contrast at the focus position when the spectrum evaluation value V is set so that the focus distribution evaluation value DK is constant. Since the spectral evaluation value V is set so that the focus distribution evaluation value DK is constant using the relationship shown in FIG. 32 or 33, the contrast at the focus position is substantially constant regardless of the longitudinal chromatic aberration K. . That is, when the spectral evaluation value V is controlled so that the focus distribution evaluation value DK is constant, the change in contrast corresponding to the change in the longitudinal chromatic aberration K is smaller than when the spectral evaluation value V is fixed. . By setting the spectrum evaluation value V so that the focus distribution evaluation value DK is constant, the exposure performance can be stabilized regardless of the machine difference of the exposure apparatus 100 .
  • Equation 5 replaces the wavelength ⁇ in Equation 3 with the product K ⁇ of the longitudinal chromatic aberration K times the wavelength ⁇
  • the present disclosure is not limited thereto.
  • the wavelength ⁇ may be replaced by the product K ⁇ .
  • the focus distribution evaluation value DK obtained when the spectral waveform is fixed without being changed is approximately proportional to the longitudinal chromatic aberration K raised to the Nth power.
  • the spectral evaluation value V is set so that the focus distribution evaluation value DK is constant regardless of the longitudinal chromatic aberration K , the spectral evaluation value V is substantially inversely proportional to the vertical chromatic aberration K raised to the Nth power.
  • FIG. 35 is a flow chart showing the procedure for generating a table in the embodiment.
  • the spectrum measurement control processor 60 generates a table showing the relationship between the longitudinal chromatic aberration K and the spectrum evaluation value V as follows.
  • the spectrum measurement control processor 60 calculates the focus distribution evaluation value DK using Equation (5).
  • the spectral measurement control processor 60 calculates spectral evaluation values V that make the focus distribution evaluation values DK constant for a plurality of values of the longitudinal chromatic aberration K , and associates the spectral evaluation values V with the longitudinal chromatic aberration K. and store it in the memory 61. After S202, the spectrum measurement control processor 60 ends the processing of this flowchart.
  • FIG. 36 is a flow chart showing the spectrum control procedure in the embodiment.
  • the spectrum control shown in FIG. 36 may be performed by the exposure control processor 110, the laser control processor 30, or the spectrum measurement control processor 60.
  • FIG. The exposure control processor 110, the laser control processor 30, and the spectrum measurement control processor 60 each correspond to processors in the present disclosure. In the description of FIG. 36, these processors are collectively referred to simply as "processors".
  • the processor sets the target value Vt of the spectrum evaluation value V using the longitudinal chromatic aberration K as follows, and controls the spectrum waveform adjuster 15a.
  • the processor acquires the longitudinal chromatic aberration K of the projection optical system 102 of the exposure apparatus 100.
  • the details of S1 will be described with reference to FIGS. 37 and 38.
  • FIG. 37 is a diagrammatic representation of S1 of S1 of S1 of the projection optical system 102 of the exposure apparatus 100.
  • the processor refers to the data 611 storing the relationship between the longitudinal chromatic aberration K and the spectral evaluation value V, and based on the longitudinal chromatic aberration K, sets the target value Vt of the spectral evaluation value V.
  • the relational expression described with reference to FIG. 32 may be used, or the table described with reference to FIGS. 33 and 35 may be used.
  • the processor performs spectrum control using the target value Vt. Details of S3 will be described with reference to FIGS. 39 and 40. FIG. After S3, the processor ends the processing of this flowchart.
  • FIG. 37 is a flow chart showing processing for acquiring longitudinal chromatic aberration K by the laser device 1a.
  • the processing shown in FIG. 37 corresponds to the first example of the subroutine of S1 in FIG.
  • the laser control processor 30 controls the laser oscillator 20 to output laser light having the first wavelength ⁇ 1 to the exposure apparatus 100 .
  • the laser control processor 30 receives from the exposure apparatus 100 the first focus position Z1 measured by the exposure apparatus 100 using the laser light having the first wavelength ⁇ 1.
  • the laser control processor 30 controls the laser oscillator 20 to output laser light having a second wavelength ⁇ 2 shorter than the first wavelength ⁇ 1 to the exposure apparatus 100 .
  • the laser control processor 30 receives from the exposure apparatus 100 the second focus position Z2 measured by the exposure apparatus 100 using the laser light having the second wavelength ⁇ 2.
  • the laser control processor 30 calculates the longitudinal chromatic aberration K based on the first and second wavelengths ⁇ 1 and ⁇ 2 and the first and second focus positions Z1 and Z2. After S15a, the laser control processor 30 ends the processing of this flowchart and returns to the processing shown in FIG.
  • FIG. 38 The processing shown in FIG. 38 corresponds to a second example of the subroutine of S1 in FIG.
  • the exposure control processor 110 transmits a setting signal of the first wavelength ⁇ 1 to the laser device 1a.
  • the exposure control processor 110 measures the first focus position Z1 using the laser light having the first wavelength ⁇ 1.
  • the exposure control processor 110 transmits a setting signal of a second wavelength ⁇ 2 shorter than the first wavelength ⁇ 1 to the laser device 1a.
  • the exposure control processor 110 measures the second focus position Z2 using the laser light having the second wavelength ⁇ 2.
  • the exposure control processor 110 calculates the longitudinal chromatic aberration K based on the first and second wavelengths ⁇ 1 and ⁇ 2 and the first and second focus positions Z1 and Z2. After S15b, the exposure control processor 110 ends the processing of this flowchart and returns to the processing shown in FIG.
  • FIG. 39 is a flowchart showing a process of spectrum control using the target value Vt by the laser device 1a.
  • the processing shown in FIG. 39 corresponds to the first example of the subroutine of S3 in FIG.
  • the laser control processor 30 outputs an oscillation trigger signal.
  • the oscillation trigger signal is output, laser light is output from the laser oscillator 20 .
  • the laser control processor 30 measures the spectrum evaluation value V using the laser light output from the laser oscillator 20 .
  • the process of S33 is performed by the spectrum measurement control processor 60 according to the procedure described with reference to FIG.
  • the laser control processor 30 compares the spectrum evaluation value V with the target value Vt, and determines whether the spectrum evaluation value V is within the allowable range. For example, it is determined whether or not the absolute value of the difference between the spectrum evaluation value V and the target value Vt is smaller than the allowable error Ve.
  • the target value Vt used here is the target value Vt set by the laser control processor 30, the spectrum measurement control processor 60, or the exposure control processor 110 in S2 of FIG.
  • the laser control processor 30 proceeds to S35.
  • the laser control processor 30 transmits the determination result of S ⁇ b>34 to the spectrum measurement control processor 60 .
  • the spectrum measurement control processor 60 drives the spectrum driver 64 to control the spectrum waveform adjuster 15a.
  • the spectrum measurement control processor 60 controls the spectrum waveform adjuster 15a to reduce the spectral line width when the spectrum evaluation value V is larger than the target value Vt, for example, and the spectrum evaluation value V is larger than the target value Vt. If it is small, the spectral waveform adjuster 15a is controlled so as to increase the spectral line width.
  • the laser control processor 30 returns the process to S32.
  • the laser control processor 30 terminates the processing of this flowchart. Thereafter, the laser device 1a continues to output laser light while fixing the setting of the spectrum waveform adjuster 15a. Alternatively, the laser control processor 30 may return the process to S32 and repeat measurement and determination of the spectrum evaluation value V while continuing to output laser light.
  • FIG. 40 is a flowchart showing a process of spectrum control using the target value Vt by the exposure apparatus 100 .
  • the processing shown in FIG. 40 corresponds to a second example of the subroutine of S3 in FIG.
  • the exposure control processor 110 transmits the target value Vt of the spectral evaluation value V to the laser device 1a.
  • the laser device 1a that has received the target value Vt performs spectrum control using the target value Vt.
  • the operation of the laser device 1a in this case may be the same as in FIG.
  • the exposure control processor 110 ends the processing of this flowchart and returns to the processing shown in FIG.
  • the spectral waveform control method of the laser light output from the laser device 1a to the exposure device 100 obtains the longitudinal chromatic aberration K of the exposure device 100 and corrects the longitudinal chromatic aberration It includes setting a target value Vt of the spectrum evaluation value V using the relationship between K and the spectrum evaluation value V, and using the target value Vt to control the spectrum waveform. According to this, since the longitudinal chromatic aberration K is obtained and the target value Vt of the spectrum evaluation value V is set, appropriate spectrum control can be performed according to the machine difference of the exposure apparatus 100, and the required exposure performance can be obtained. .
  • obtaining the longitudinal chromatic aberration K is performed by the laser device 1a outputting a laser beam having the first wavelength ⁇ 1 to the exposure device 100, and the laser device 1a is transmitted from the exposure device 100 to the first wavelength ⁇ 1.
  • the laser device 1a outputs a laser beam having a second wavelength ⁇ 2 different from the first wavelength ⁇ 1 to the exposure device 100, and the laser device 1a emits a second wavelength ⁇ 2 from the exposure device 100.
  • Including receiving a focus position Z2 It also includes calculating longitudinal chromatic aberration K using the first and second wavelengths ⁇ 1 and ⁇ 2 and the first and second focus positions Z 1 and Z 2 . According to this, the longitudinal chromatic aberration K of the exposure device 100 can be accurately calculated by the laser device 1a acquiring the focus positions of the two wavelengths.
  • the exposure apparatus 100 transmits a setting signal for setting the first wavelength ⁇ 1 to the laser apparatus 1a, and the exposure apparatus 100 sets the first wavelength ⁇ 1 by measuring a first focus position Z1. Further, the exposure apparatus 100 transmits a setting signal for setting the second wavelength ⁇ 2 different from the first wavelength ⁇ 1 to the laser apparatus 1a, and the exposure apparatus 100 sets the second focus position Z by the second wavelength ⁇ 2. including measuring 2 . It also includes calculating longitudinal chromatic aberration K using the first and second wavelengths ⁇ 1 and ⁇ 2 and the first and second focus positions Z 1 and Z 2 . According to this, the longitudinal chromatic aberration K of the exposure apparatus 100 can be accurately calculated by the exposure apparatus 100 measuring the focus positions of the two wavelengths.
  • obtaining the longitudinal chromatic aberration K is performed by the exposure apparatus 100 when the laser light having the first wavelength ⁇ 1 and the first wavelength ⁇ 1 is incident on the exposure apparatus 100.
  • obtaining the longitudinal chromatic aberration K is the ratio of the difference between the first and second focus positions Z1 and Z2 to the difference between the first and second wavelengths ⁇ 1 and ⁇ 2 Including getting the According to this, the longitudinal chromatic aberration K can be obtained by simple calculation.
  • the relationship between the longitudinal chromatic aberration K and the spectral evaluation value V is such that the change in contrast according to the change in the longitudinal chromatic aberration K is smaller than the change in contrast when the spectral evaluation value V is fixed. It is determined to be According to this, even in the exposure apparatus 100 having different longitudinal chromatic aberrations K, stable exposure performance can be obtained by controlling the spectral evaluation value V.
  • the relationship between the longitudinal chromatic aberration K and the spectral evaluation value V is determined so that the spectral evaluation value V is inversely proportional to the power of the longitudinal chromatic aberration K with the exponent N being 1 or more.
  • the spectral evaluation value V can be set to an appropriate value according to the longitudinal chromatic aberration K.
  • the relationship between the longitudinal chromatic aberration K and the spectral evaluation value V is determined such that the spectral evaluation value V is inversely proportional to the square of the longitudinal chromatic aberration K. According to this, the spectrum evaluation value V can be set to a more appropriate value according to the longitudinal chromatic aberration K.
  • the relationship between the longitudinal chromatic aberration K and the spectral evaluation value V is stored in a table in which the longitudinal chromatic aberration K and the spectral evaluation value V are associated with each other. According to this, by searching the table based on the longitudinal chromatic aberration K, an appropriate spectrum evaluation value V can be set.
  • the spectral waveform control method obtains the measured spectral waveform O( ⁇ ) from the interference pattern of the laser light output from the laser device 1a, and uses the measured spectral waveform O( ⁇ ) It further includes calculating a spectrum evaluation value V. Also, the spectrum waveform is controlled using the spectrum evaluation value V and the target value Vt. According to this, the spectrum waveform is controlled so that the spectrum evaluation value V acquired from the interference pattern approaches the target value Vt, so the spectrum evaluation value V can be controlled to an appropriate value.
  • the estimated spectral waveform I( ⁇ ) indicating the relationship between the wavelength ⁇ and the light intensity is calculated using the measured spectral waveform O( ⁇ ), and the wavelength region of the estimated spectral waveform I( ⁇ ) using the integrated value obtained by integrating the product I( ⁇ )( ⁇ c) 2 of the function of the wavelength deviation from the centroid wavelength ⁇ c and the light intensity with respect to the wavelength range
  • a spectrum evaluation value V is calculated. According to this, an appropriate spectral evaluation value V can be calculated even for laser light having a spectral waveform different from the Gaussian distribution spectral waveform. Also, spectral waveform control can be applied to various imaging pattern shapes.
  • the laser device 1a connectable to the exposure apparatus 100 includes a laser oscillator 20 that outputs laser light, a spectral waveform adjuster 15a that adjusts the spectral waveform of the laser light, and a laser control processor 30. And prepare.
  • Laser control processor 30 acquires longitudinal chromatic aberration K of exposure apparatus 100, sets target value Vt of spectral evaluation value V using the relationship between longitudinal chromatic aberration K and spectral evaluation value V, and uses target value Vt to obtain spectral It controls the waveform adjuster 15a. According to this, since the target value Vt of the spectrum evaluation value V is set by obtaining the longitudinal chromatic aberration K, appropriate spectrum control can be performed according to the machine difference of the exposure apparatus 100 .
  • the laser control processor 30 controls the laser oscillator 20 to output the laser light having the first wavelength ⁇ 1 to the exposure apparatus 100, and the exposure apparatus 100 outputs the first wavelength ⁇ 1.
  • the laser oscillator 20 is controlled to output a laser beam having a second wavelength ⁇ 2 different from the first wavelength ⁇ 1 to the exposure device 100, and the second wavelength ⁇ 2 from the exposure device 100 is emitted.
  • Receive focus position Z2 the longitudinal chromatic aberration K is calculated using the first and second wavelengths ⁇ 1 and ⁇ 2 and the first and second focus positions Z 1 and Z 2 . According to this, the longitudinal chromatic aberration K of the exposure device 100 can be accurately calculated by the laser device 1a acquiring the focus positions of the two wavelengths.
  • the exposure apparatus 100 connectable to the laser apparatus 1 a includes the projection optical system 102 , the sensor 43 , the stage 103 and the exposure control processor 110 .
  • the projection optical system 102 forms an image on the wafer surface using the laser beam output from the laser device 1a.
  • a sensor 43 measures the contrast on the wafer surface.
  • the stage 103 moves the sensor 43 along the optical path axis of the laser light.
  • the exposure control processor 110 acquires the longitudinal chromatic aberration K of the exposure apparatus 100 using the stage 103 and the sensor 43, and uses the relationship between the longitudinal chromatic aberration K and the spectrum evaluation value V of the laser beam to determine the target value Vt of the spectrum evaluation value V. is set, and the target value Vt is transmitted to the laser device 1a. According to this, since the target value Vt of the spectrum evaluation value V is set by obtaining the longitudinal chromatic aberration K, appropriate spectrum control can be performed according to the machine difference of the exposure apparatus 100 .
  • the exposure control processor 110 transmits a setting signal for setting the first wavelength ⁇ 1 to the laser device 1a, and measures the first focus position Z1 at the first wavelength ⁇ 1. do. Also, a setting signal for setting a second wavelength ⁇ 2 different from the first wavelength ⁇ 1 is transmitted to the laser device 1a, and a second focus position Z 2 at the second wavelength ⁇ 2 is measured. Also, the longitudinal chromatic aberration K is calculated using the first and second wavelengths ⁇ 1 and ⁇ 2 and the first and second focus positions Z 1 and Z 2 . According to this, the longitudinal chromatic aberration K of the exposure apparatus 100 can be accurately calculated by the exposure apparatus 100 measuring the focus positions of the two wavelengths.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)

Abstract

投影光学系の縦色収差Kに応じてスペクトル波形を制御することで、求められる露光性能を得ることを目的とする。 レーザ装置から露光装置に出力されるレーザ光のスペクトル波形の制御方法は、露光装置の縦色収差を取得し(S1)、縦色収差とスペクトル波形の評価値との関係を用いて評価値の目標値を設定し(S2)、目標値を用いてスペクトル波形を制御する(S3)ことを含む。

Description

スペクトル波形の制御方法、レーザ装置、露光装置、及び電子デバイスの製造方法
 本開示は、スペクトル波形の制御方法、レーザ装置、露光装置、及び電子デバイスの製造方法に関する。
 近年、半導体露光装置においては、半導体集積回路の微細化及び高集積化につれて、解像力の向上が要請されている。このため、露光用光源から放出される光の短波長化が進められている。たとえば、露光用のガスレーザ装置としては、波長約248nmのレーザ光を出力するKrFエキシマレーザ装置、ならびに波長約193nmのレーザ光を出力するArFエキシマレーザ装置が用いられる。
 KrFエキシマレーザ装置及びArFエキシマレーザ装置の自然発振光のスペクトル線幅は、350~400pmと広い。そのため、KrF及びArFレーザ光のような紫外線を透過させる材料で投影レンズを構成すると、色収差が発生してしまう場合がある。その結果、解像力が低下し得る。そこで、ガスレーザ装置から出力されるレーザ光のスペクトル線幅を、色収差が無視できる程度となるまで狭帯域化する必要がある。そのため、ガスレーザ装置のレーザ共振器内には、スペクトル線幅を狭帯域化するために、狭帯域化素子(エタロンやグレーティング等)を含む狭帯域化モジュール(Line Narrow Module:LNM)が備えられる場合がある。以下では、スペクトル線幅が狭帯域化されるガスレーザ装置を狭帯域化ガスレーザ装置という。
国際公開第2002/073670号 米国特許出願公開第2011/200922号明細書
概要
 本開示の1つの観点に係るスペクトル波形の制御方法は、レーザ装置から露光装置に出力されるレーザ光のスペクトル波形の制御方法であって、露光装置の縦色収差を取得し、縦色収差とスペクトル波形の評価値との関係を用いて評価値の目標値を設定し、目標値を用いてスペクトル波形を制御することを含む。
 本開示の1つの観点に係るレーザ装置は、露光装置に接続可能なレーザ装置であって、レーザ光を出力するレーザ発振器と、レーザ光のスペクトル波形を調整するスペクトル波形調整器と、プロセッサであって、露光装置の縦色収差を取得し、縦色収差とスペクトル波形の評価値との関係を用いて評価値の目標値を設定し、目標値を用いてスペクトル波形調整器を制御するように構成されたプロセッサと、を備える。
 本開示の1つの観点に係る露光装置は、レーザ装置に接続可能な露光装置であって、レーザ装置から出力されたレーザ光を用いてウエハ面に像を形成する投影光学系と、ウエハ面におけるコントラストを計測するセンサと、センサをレーザ光の光路軸に沿って移動させるステージと、プロセッサであって、ステージ及びセンサを用いて露光装置の縦色収差を取得し、縦色収差とレーザ光のスペクトル波形の評価値との関係を用いて評価値の目標値を設定し、目標値をレーザ装置に送信するように構成されたプロセッサと、を備える。
 本開示の1つの観点に係る電子デバイスの製造方法は、露光装置の縦色収差を取得し、縦色収差と露光装置に接続されたレーザ装置から出力されるレーザ光のスペクトル波形の評価値との関係を用いて評価値の目標値を設定し、目標値を用いてスペクトル波形を制御して生成されるレーザ光を露光装置に出力し、電子デバイスを製造するために、露光装置内で感光基板上にレーザ光を露光することを含む。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、比較例における露光システムの構成を概略的に示す。 図2は、比較例に係るレーザ装置の構成を模式的に示す。 図3は、比較例におけるスペクトル計測制御プロセッサの機能を説明するブロック図である。 図4は、レーザ光の推定スペクトル波形I(λ)の例を示すグラフである。 図5は、レーザ光のスペクトルに応じた投影光学系によるフォーカスの違いを模式的に示す。 図6は、露光装置におけるレーザ光のフォーカス位置の分布を示すグラフである。 図7は、投影光学系の縦色収差Kに応じたフォーカスの違いを模式的に示す。 図8は、スペクトル波形を一定とした場合の、縦色収差Kと第1の位置F1でのコントラストとの関係を示すグラフである。 図9は、本開示の実施形態に係るレーザ装置の構成を模式的に示す。 図10は、縦色収差Kの測定に用いられるレチクルパターンの例を示す。 図11は、実施形態に係る露光装置の一部を模式的に示す。 図12は、位置Zaにウエハ面が移動したときにセンサによって計測される光強度分布を示す。 図13は、位置Zbにウエハ面が移動したときにセンサによって計測される光強度分布を示す。 図14は、位置Zcにウエハ面が移動したときにセンサによって計測される光強度分布を示す。 図15は、ワークピーステーブルをZ軸に平行な方向に動かしながらコントラストを測定した結果の例を示すグラフである。 図16は、2つの異なる波長を用いた場合のウエハ面の位置とコントラストとの関係を示すグラフである。 図17は、レーザ光のスペクトル波形のさらに他の例を示すグラフである。 図18は、レーザ光のスペクトル波形のさらに他の例を示すグラフである。 図19は、結像性能の評価に用いられた長方形の結像パターンを示す。 図20は、露光装置における結像性能のシミュレーション結果を示すグラフである。 図21は、露光装置における結像性能のシミュレーション結果を示すグラフである。 図22は、実施形態におけるスペクトル評価値Vの計測の手順を示すフローチャートである。 図23は、スペクトル評価値V及びスペクトル線幅E95の有用性の比較に用いられた結像パターンを示す。 図24は、図23の結像パターンにおけるスペクトル線幅E95とΔCDとの関係を示すグラフである。 図25は、図23の結像パターンにおけるスペクトル評価値VとΔCDとの関係を示すグラフである。 図26は、スペクトル評価値V及びスペクトル線幅E95の有用性の比較に用いられた別の結像パターンを示す。 図27は、図26の結像パターンにおけるスペクトル線幅E95とΔCDとの関係を示すグラフである。 図28は、図26の結像パターンにおけるスペクトル評価値VとΔCDとの関係を示すグラフである。 図29は、図23の結像パターンにおける式4のスペクトル評価値VとΔCDとの関係を示すグラフである。 図30は、図26の結像パターンにおける式4のスペクトル評価値VとΔCDとの関係を示すグラフである。 図31は、スペクトル波形を一定とした場合の、縦色収差Kとフォーカス分布評価値Dとの関係を示すグラフである。 図32は、実施形態において設定される縦色収差Kとスペクトル評価値Vとの関係を示すグラフである。 図33は、実施形態において設定される縦色収差Kとスペクトル評価値Vとの関係を示すテーブルを示す。 図34は、フォーカス分布評価値Dが一定となるようにスペクトル評価値Vが設定された場合の、縦色収差Kとフォーカス位置でのコントラストとの関係を示すグラフである。 図35は、実施形態におけるテーブル生成の手順を示すフローチャートである。 図36は、実施形態におけるスペクトル制御の手順を示すフローチャートである。 図37は、レーザ装置が縦色収差Kを取得する処理を示すフローチャートである。 図38は、露光装置が縦色収差Kを取得する処理を示すフローチャートである。 図39は、レーザ装置が目標値Vtを用いてスペクトル制御する処理を示すフローチャートである。 図40は、露光装置が目標値Vtを用いてスペクトル制御する処理を示すフローチャートである。
実施形態
<内容>
1.比較例
 1.1 露光装置100の構成
 1.2 露光装置100の動作
 1.3 レーザ装置1の構成
  1.3.1 レーザ発振器20
  1.3.2 モニタモジュール16
  1.3.3 各種処理装置
 1.4 動作
  1.4.1 レーザ制御プロセッサ30
  1.4.2 レーザ発振器20
  1.4.3 モニタモジュール16
  1.4.4 波長計測制御部50
  1.4.5 スペクトル計測制御プロセッサ60
 1.5 比較例の課題
2.縦色収差Kに応じてスペクトル波形を制御するレーザ装置1a
 2.1 構成
 2.2 縦色収差Kの測定
 2.3 スペクトル評価値Vの測定
 2.4 スペクトル評価値Vとスペクトル線幅E95との比較
 2.5 スペクトル評価値Vの変形例
 2.6 縦色収差Kに応じたスペクトル評価値Vの制御
 2.7 テーブルの生成
 2.8 スペクトル制御の動作
  2.8.1 レーザ装置1aによる縦色収差Kの取得
  2.8.2 露光装置100による縦色収差Kの取得
  2.8.3 レーザ装置1aによる目標値Vtを用いたスペクトル制御
  2.8.4 露光装置100による目標値Vtを用いたスペクトル制御
 2.9 作用
3.その他
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.比較例
 図1は、比較例における露光システムの構成を概略的に示す。本開示の比較例とは、出願人のみによって知られていると出願人が認識している形態であって、出願人が自認している公知例ではない。
 露光システムは、レーザ装置1と、露光装置100と、を含む。レーザ装置1は、レーザ制御プロセッサ30を含む。レーザ制御プロセッサ30は、制御プログラムが記憶されたメモリ132と、制御プログラムを実行するCPU(central processing unit)131と、を含む処理装置である。レーザ制御プロセッサ30は本開示に含まれる各種処理を実行するために特別に構成又はプログラムされている。レーザ装置1は、レーザ光を露光装置100に向けて出力するように構成されている。
 1.1 露光装置100の構成
 露光装置100は、照明光学系101と、投影光学系102と、露光制御プロセッサ110と、を含む。
 照明光学系101は、レーザ装置1から入射したレーザ光によって、レチクルステージRT上に配置された図示しないレチクルのレチクルパターンを照明する。
 投影光学系102は、レチクルを透過したレーザ光を、縮小投影してワークピーステーブルWT上に配置された図示しないワークピースに結像させる。ワークピースはレジスト膜が塗布された半導体ウエハ等の感光基板であり、ステージ103によって移動可能とされている。
 露光制御プロセッサ110は、制御プログラムが記憶されたメモリ112と、制御プログラムを実行するCPU111と、を含む処理装置である。露光制御プロセッサ110は本開示に含まれる各種処理を実行するために特別に構成又はプログラムされている。露光制御プロセッサ110は、露光装置100の制御を統括するとともに、レーザ制御プロセッサ30との間で各種データ及び各種信号を送受信する。
 1.2 露光装置100の動作
 露光制御プロセッサ110は、波長の目標値のデータ、パルスエネルギーの目標値のデータ、及びトリガ信号をレーザ制御プロセッサ30に送信する。レーザ制御プロセッサ30は、これらのデータ及び信号に従ってレーザ装置1を制御する。
 露光制御プロセッサ110は、レチクルステージRTとワークピーステーブルWTとを同期して互いに逆方向に平行移動させる。これにより、レチクルパターンを反映したレーザ光でワークピースが露光される。
 このような露光工程によって半導体ウエハにレチクルパターンが転写される。その後、複数の工程を経ることで電子デバイスを製造することができる。
 1.3 レーザ装置1の構成
 図2は、比較例に係るレーザ装置1の構成を模式的に示す。レーザ装置1は、レーザ発振器20と、電源12と、モニタモジュール16と、レーザ制御プロセッサ30と、波長計測制御部50と、スペクトル計測制御プロセッサ60と、を含む。レーザ装置1は露光装置100に接続可能とされている。
  1.3.1 レーザ発振器20
 レーザ発振器20は、レーザチャンバ10と、放電電極11aと、狭帯域化モジュール14と、スペクトル波形調整器15aと、を含む。
 狭帯域化モジュール14とスペクトル波形調整器15aとが、レーザ共振器を構成する。レーザチャンバ10は、レーザ共振器の光路に配置されている。レーザチャンバ10の両端にはウインドウ10a及び10bが設けられている。レーザチャンバ10の内部に、放電電極11a及びこれと対をなす図示しない放電電極が配置されている。図示しない放電電極は、紙面に垂直なV軸の方向において放電電極11aと重なるように位置している。レーザチャンバ10には、例えばレアガスとしてアルゴンガス又はクリプトンガス、ハロゲンガスとしてフッ素ガス、バッファガスとしてネオンガス等を含むレーザガスが封入される。
 電源12は、スイッチ13を含むとともに、放電電極11aと図示しない充電器とに接続されている。
 狭帯域化モジュール14は、複数のプリズム14a及び14bとグレーティング14cとを含む。プリズム14bは、回転ステージ14eに支持されている。回転ステージ14eは、波長ドライバ51から出力される駆動信号に従ってプリズム14bをV軸に平行な軸周りに回転させるように構成されている。プリズム14bを回転させることにより狭帯域化モジュール14の選択波長が変化する。
 スペクトル波形調整器15aは、シリンドリカル平凸レンズ15bと、シリンドリカル平凹レンズ15cと、リニアステージ15dと、を含む。レーザチャンバ10とシリンドリカル平凸レンズ15bとの間に、シリンドリカル平凹レンズ15cが位置する。
 シリンドリカル平凸レンズ15b及びシリンドリカル平凹レンズ15cは、シリンドリカル平凸レンズ15bの凸面とシリンドリカル平凹レンズ15cの凹面とが向かい合うように配置されている。シリンドリカル平凸レンズ15bの凸面とシリンドリカル平凹レンズ15cの凹面はそれぞれV軸の方向に平行な焦点軸を有する。シリンドリカル平凸レンズ15bの凸面の反対側に位置する平らな面は、部分反射膜でコーティングされている。
  1.3.2 モニタモジュール16
 モニタモジュール16は、スペクトル波形調整器15aと露光装置100との間のレーザ光の光路に配置されている。モニタモジュール16は、ビームスプリッタ16a、16b、及び17aと、エネルギーセンサ16cと、高反射ミラー17bと、波長検出器18と、分光器19と、を含む。
 ビームスプリッタ16aは、スペクトル波形調整器15aから出力されたレーザ光の光路に位置する。ビームスプリッタ16aは、スペクトル波形調整器15aから出力されたレーザ光の一部を露光装置100に向けて高い透過率で透過させるとともに、他の一部を反射するように構成されている。ビームスプリッタ16bは、ビームスプリッタ16aによって反射されたレーザ光の光路に位置する。エネルギーセンサ16cは、ビームスプリッタ16bによって反射されたレーザ光の光路に位置する。
 ビームスプリッタ17aは、ビームスプリッタ16bを透過したレーザ光の光路に位置する。高反射ミラー17bは、ビームスプリッタ17aによって反射されたレーザ光の光路に位置する。
 波長検出器18は、ビームスプリッタ17aを透過したレーザ光の光路に配置されている。波長検出器18は、拡散プレート18aと、エタロン18bと、集光レンズ18cと、ラインセンサ18dと、を含む。
 拡散プレート18aは、ビームスプリッタ17aを透過したレーザ光の光路に位置する。拡散プレート18aは、表面に多数の凹凸を有し、レーザ光を透過させるとともに拡散させるように構成されている。
 エタロン18bは、拡散プレート18aを透過したレーザ光の光路に位置する。エタロン18bは、2枚の部分反射ミラーを含む。2枚の部分反射ミラーは、所定距離のエアギャップを有して対向し、スペーサを介して貼り合わせられている。
 集光レンズ18cは、エタロン18bを透過したレーザ光の光路に位置する。
 ラインセンサ18dは、集光レンズ18cを透過したレーザ光の光路であって、集光レンズ18cの焦点面に位置する。ラインセンサ18dは、一次元に配列された多数の受光素子を含む光分布センサである。あるいは、ラインセンサ18dの代わりに、二次元に配列された多数の受光素子を含むイメージセンサが光分布センサとして用いられてもよい。ラインセンサ18dは、図示しないプロセッサを備えてもよい。
 ラインセンサ18dは、エタロン18b及び集光レンズ18cによって形成される干渉縞を受光する。干渉縞はレーザ光の干渉パターンであって、同心円状の形状を有し、この同心円の中心からの距離の2乗は波長の変化に比例する。図示しないプロセッサは、干渉パターンを反映したデータを統計処理して出力するよう構成されてもよい。
 分光器19は、高反射ミラー17bによって反射されたレーザ光の光路に配置されている。分光器19は、拡散プレート19aと、エタロン19bと、集光レンズ19cと、ラインセンサ19dと、を含む。ラインセンサ19dは、図示しないプロセッサを備えてもよい。これらの構成は、波長検出器18に含まれる拡散プレート18a、エタロン18b、集光レンズ18c、及びラインセンサ18dとそれぞれ同様である。但し、エタロン19bはエタロン18bよりも小さいフリースペクトラルレンジを有する。また、集光レンズ19cは集光レンズ18cよりも長い焦点距離を有する。
  1.3.3 各種処理装置
 スペクトル計測制御プロセッサ60は、制御プログラムが記憶されたメモリ61と、制御プログラムを実行するCPU62と、カウンタ63と、を含む処理装置である。スペクトル計測制御プロセッサ60は本開示に含まれる各種処理を実行するために特別に構成又はプログラムされている。
 メモリ61は、スペクトル線幅を算出するための各種データも記憶している。各種データは分光器19の装置関数S(λ)を含む。カウンタ63は、エネルギーセンサ16cから出力されるパルスエネルギーのデータを含む電気信号の受信回数をカウントすることにより、レーザ光のパルス数をカウントする。あるいは、カウンタ63は、レーザ制御プロセッサ30から出力される発振トリガ信号をカウントすることにより、レーザ光のパルス数をカウントしてもよい。
 波長計測制御部50は、制御プログラムが記憶された図示しないメモリと、制御プログラムを実行する図示しないCPUと、図示しないカウンタと、を含む処理装置である。波長計測制御部50に含まれるカウンタも、カウンタ63と同様に、レーザ光のパルス数をカウントする。
 本開示では、レーザ制御プロセッサ30と、波長計測制御部50と、スペクトル計測制御プロセッサ60と、を別々の構成要素として説明しているが、レーザ制御プロセッサ30が波長計測制御部50及びスペクトル計測制御プロセッサ60を兼ねていてもよい。
 1.4 動作
  1.4.1 レーザ制御プロセッサ30
 レーザ制御プロセッサ30は、レーザ光の目標パルスエネルギー及び目標波長の設定データを露光装置100に含まれる露光制御プロセッサ110から受信する。
 レーザ制御プロセッサ30は、露光制御プロセッサ110からトリガ信号を受信する。
 レーザ制御プロセッサ30は、目標パルスエネルギーに基づいて、放電電極11aに印加される印加電圧の設定データを電源12に送信する。レーザ制御プロセッサ30は、目標波長の設定データを波長計測制御部50に送信する。また、レーザ制御プロセッサ30は、トリガ信号に基づく発振トリガ信号を電源12に含まれるスイッチ13に送信する。
  1.4.2 レーザ発振器20
 スイッチ13は、レーザ制御プロセッサ30から発振トリガ信号を受信するとオン状態となる。電源12は、スイッチ13がオン状態となると、図示しない充電器に充電された電気エネルギーからパルス状の高電圧を生成し、この高電圧を放電電極11aに印加する。
 放電電極11aに高電圧が印加されると、レーザチャンバ10の内部に放電が起こる。この放電のエネルギーにより、レーザチャンバ10の内部のレーザ媒質が励起されて高エネルギー準位に移行する。励起されたレーザ媒質が、その後低エネルギー準位に移行するとき、そのエネルギー準位差に応じた波長の光を放出する。
 レーザチャンバ10の内部で発生した光は、ウインドウ10a及び10bを介してレーザチャンバ10の外部に出射する。レーザチャンバ10のウインドウ10aから出射した光は、プリズム14a及び14bによってビーム幅を拡大させられて、グレーティング14cに入射する。
 プリズム14a及び14bからグレーティング14cに入射した光は、グレーティング14cの複数の溝によって反射されるとともに、光の波長に応じた方向に回折させられる。
 プリズム14a及び14bは、グレーティング14cからの回折光のビーム幅を縮小させるとともに、その光を、ウインドウ10aを介してレーザチャンバ10に戻す。
 スペクトル波形調整器15aは、レーザチャンバ10のウインドウ10bから出射した光のうちの一部を透過させて出力し、他の一部を反射してウインドウ10bを介してレーザチャンバ10の内部に戻す。
 このようにして、レーザチャンバ10から出射した光は、狭帯域化モジュール14とスペクトル波形調整器15aとの間で往復し、レーザチャンバ10の内部の放電空間を通過する度に増幅される。この光は、狭帯域化モジュール14で折り返される度に狭帯域化される。こうしてレーザ発振し狭帯域化された光が、スペクトル波形調整器15aからレーザ光として出力される。
 スペクトル波形調整器15aに含まれるリニアステージ15dは、スペクトルドライバ64から出力される駆動信号に従って、レーザチャンバ10とシリンドリカル平凸レンズ15bとの間の光路に沿ってシリンドリカル平凹レンズ15cを移動させる。これにより、スペクトル波形調整器15aから狭帯域化モジュール14へ向かう光の波面が変化する。波面が変化することにより、レーザ光のスペクトル波形及びスペクトル線幅が変化する。
  1.4.3 モニタモジュール16
 エネルギーセンサ16cは、レーザ光のパルスエネルギーを検出し、パルスエネルギーのデータをレーザ制御プロセッサ30、波長計測制御部50、及びスペクトル計測制御プロセッサ60に出力する。パルスエネルギーのデータは、レーザ制御プロセッサ30が放電電極11aに印加される印加電圧の設定データをフィードバック制御するのに用いられる。また、パルスエネルギーのデータを含む電気信号は、波長計測制御部50及びスペクトル計測制御プロセッサ60がそれぞれパルス数をカウントするのに用いることができる。
 波長検出器18は、ラインセンサ18dに含まれる受光素子の各々における光量から干渉縞の波形データを生成する。波長検出器18は、受光素子の各々における光量を積算した積算波形を干渉縞の波形データとしてもよい。波長検出器18は、積算波形を複数回生成し、複数個の積算波形を平均した平均波形を干渉縞の波形データとしてもよい。
 波長検出器18は、波長計測制御部50から出力されるデータ出力トリガに従って、干渉縞の波形データを波長計測制御部50に送信する。
 分光器19は、干渉縞を受光したラインセンサ19dに含まれる受光素子の各々における光量を反映した生波形を生成する。あるいは、分光器19は、生波形をNiパルスにわたって積算した積算波形Oiを生成する。分光器19は、積算波形OiをNa回生成し、Na個の積算波形Oiを平均した平均波形Oaを生成する。積算パルス数Niは例えば5パルス以上8パルス以下であり、平均化回数Naは例えば5回以上8回以下である。
 積算パルス数Niと平均化回数Naのカウントはスペクトル計測制御プロセッサ60が行い、分光器19はスペクトル計測制御プロセッサ60から出力されるトリガ信号に従って積算波形Oi及び平均波形Oaを生成してもよい。スペクトル計測制御プロセッサ60のメモリ61が、積算パルス数Ni及び平均化回数Naの設定データを記憶していてもよい。
 分光器19は、平均波形Oaからフリースペクトラルレンジに相当する一部分の波形を抽出する。抽出された一部分の波形は、干渉縞を構成する同心円の中心からの距離と光強度との関係を示している。分光器19は、この波形を波長と光強度との関係に座標変換することにより、計測スペクトル波形O(λ)を取得する。平均波形Oaの一部を波長と光強度との関係に座標変換することをスペクトル空間へのマッピングともいう。計測スペクトル波形O(λ)は、本開示における計測波形に相当する。
 分光器19は、スペクトル計測制御プロセッサ60から出力されるデータ出力トリガに従って、計測スペクトル波形O(λ)をスペクトル計測制御プロセッサ60に送信する。
 積算波形Oiの算出処理、平均波形Oaの算出処理、及びスペクトル空間へのマッピングにより計測スペクトル波形O(λ)を取得する処理のいずれか又はすべてを、分光器19が行うのではなくスペクトル計測制御プロセッサ60が行ってもよい。平均波形Oaを生成する処理と計測スペクトル波形O(λ)を取得する処理との両方を、分光器19が行うのではなくスペクトル計測制御プロセッサ60が行ってもよい。
  1.4.4 波長計測制御部50
 波長計測制御部50は、目標波長の設定データをレーザ制御プロセッサ30から受信する。また、波長計測制御部50は、波長検出器18から出力される干渉縞の波形データを用いてレーザ光の中心波長を算出する。波長計測制御部50は、目標波長と算出された中心波長とに基づいて波長ドライバ51に制御信号を出力することにより、レーザ光の中心波長をフィードバック制御する。
  1.4.5 スペクトル計測制御プロセッサ60
 スペクトル計測制御プロセッサ60は、分光器19から計測スペクトル波形O(λ)を受信する。あるいはスペクトル計測制御プロセッサ60は、分光器19から生波形を受信して、生波形を積算及び平均化し、スペクトル空間へのマッピングを行い、計測スペクトル波形O(λ)を取得してもよい。あるいは、スペクトル計測制御プロセッサ60は、分光器19から積算波形Oiを受信し、積算波形Oiを平均化してスペクトル空間へのマッピングを行い、計測スペクトル波形O(λ)を取得してもよい。あるいは、スペクトル計測制御プロセッサ60は、分光器19から平均波形Oaを受信し、平均波形Oaをスペクトル空間へマッピングして、計測スペクトル波形O(λ)を取得してもよい。
 スペクトル計測制御プロセッサ60は、計測スペクトル波形O(λ)から以下のようにして推定スペクトル波形I(λ)を算出する。
 図3は、比較例におけるスペクトル計測制御プロセッサ60の機能を説明するブロック図である。
 分光器19は、装置固有の計測特性を有しており、その計測特性は波長λの関数として装置関数S(λ)で表される。ここで、未知のスペクトル波形T(λ)を有するレーザ光が装置関数S(λ)を有する分光器19に入射して計測された場合の計測スペクトル波形O(λ)は、以下の式1のように未知のスペクトル波形T(λ)と装置関数S(λ)との畳み込み積分で表される。
Figure JPOXMLDOC01-appb-M000001
 すなわち、畳み込み積分とは、2つの関数の合成積を意味する。
 畳み込み積分は記号*を用いて以下のように表すことができる。
   O(λ)=T(λ)*S(λ)
 計測スペクトル波形O(λ)のフーリエ変換F(O(λ))は、以下のように2つの関数T(λ)及びS(λ)それぞれのフーリエ変換F(T(λ))及びF(S(λ))の積に等しい。
   F(O(λ))=F(T(λ))×F(S(λ))
これを畳み込みの定理という。
 スペクトル計測制御プロセッサ60は、分光器19の装置関数S(λ)を予め測定し、メモリ61に保持している。装置関数S(λ)を測定するには、レーザ装置1から出力されるレーザ光の中心波長とほぼ同じ波長を有し、かつ、ほぼδ関数とみなすことのできる狭いスペクトル線幅を有するコヒーレント光を、分光器19に入射させる。分光器19によるコヒーレント光の計測スペクトル波形を装置関数S(λ)とすることができる。
 スペクトル計測制御プロセッサ60に含まれるCPU62は、レーザ光の計測スペクトル波形O(λ)を分光器19の装置関数S(λ)により逆畳み込み積分する。逆畳み込み積分とは、畳み込み積分の式を満たす未知の関数を推定する演算処理を意味する。逆畳み込み積分によって得られる波形を推定スペクトル波形I(λ)とする。推定スペクトル波形I(λ)は、推定された未知のスペクトル波形T(λ)の波長と光強度との関係を示す。推定スペクトル波形I(λ)は逆畳み込み積分を表す記号*-1を用いて以下のように表される。
   I(λ)=O(λ)*-1S(λ)
 逆畳み込み積分は、理論上は以下のように算出することができる。まず、畳み込みの定理から以下の式が導かれる。
   F(I(λ))=F(O(λ))/F(S(λ))
この式の両辺をフーリエ逆変換することにより、逆畳み込み積分の算出結果が得られる。すなわち、フーリエ逆変換の記号をF-1とすると推定スペクトル波形I(λ)は以下のように表される。
   I(λ)=F-1(F(O(λ))/F(S(λ)))
 但し、実際の数値計算においては、フーリエ変換及びフーリエ逆変換を用いた逆畳み込み積分は、計測データに含まれるノイズ成分の影響を受けやすい。このためヤコビ法(Jacobi Method)、ガウス・ザイデル法(Gauss-Seidel Method)等の、ノイズ成分の影響を抑制し得る反復法を用いて逆畳み込み積分を算出することが望ましい。
 1.5 比較例の課題
 図4は、レーザ光の推定スペクトル波形I(λ)の例を示すグラフである。図4の横軸は中心波長からの波長偏差Δλを示す。推定スペクトル波形I(λ)は、推定スペクトル波形I(λ)の波長域に含まれる波長成分ごとの光強度を示す波形である。推定スペクトル波形I(λ)をある波長範囲で積分して得られた値を、その波長範囲におけるスペクトルエネルギーという。推定スペクトル波形I(λ)の波長域全体のスペクトルエネルギーのうちの95%を占める部分の全幅をスペクトル線幅E95という。図4には、スペクトル線幅E95が0.3pmである第1のレーザ光の推定スペクトル波形I(λ)が実線で示され、スペクトル線幅E95が0.4pmである第2のレーザ光の推定スペクトル波形I(λ)が破線で示されている。
 レーザ光の波長に応じてレンズの表面での屈折角が異なるため、スペクトル波形が異なると露光装置100における露光性能が異なってくる。
 図5は、レーザ光のスペクトルに応じた投影光学系102によるフォーカスの違いを模式的に示す。図5においては、スペクトル線幅E95が0.3pmである第1のレーザ光及び0.4pmである第2のレーザ光がそれぞれ投影光学系102に入射した場合を示す。第1及び第2のレーザ光の中心波長は同一である。
 第1のレーザ光が投影光学系102に入射した場合、ピーク波長である中心波長成分のフォーカス位置は投影光学系102から所定距離の第1の位置F1となる。中心波長より0.1pm長い波長成分のフォーカス位置は、第1の位置F1よりもさらに投影光学系102から離れた第2の位置F2となる。その波長成分の第1の位置F1での結像性能は、中心波長成分の結像性能より低くなる。
 第2のレーザ光が投影光学系102に入射した場合、中心波長成分のフォーカス位置及び中心波長より0.1pm長い波長成分のフォーカス位置は、第1及び第2の位置F1及びF2とそれぞれ同一である。但し、第2のレーザ光は中心波長より0.1pm長い波長成分を第1のレーザ光よりも多く含んでいる。中心波長と異なる波長成分の比率が多いほど、第1の位置F1での結像性能は低くなる。
 さらに、第2のレーザ光は中心波長より0.2pm長い波長成分も含んでいる。中心波長より0.2pm長い波長成分のフォーカス位置は、第2の位置F2よりもさらに投影光学系102から離れた第3の位置F3となる。中心波長との波長差が大きいほど、その波長成分の第1の位置F1での結像性能は低くなる。
 従って、中心波長成分のフォーカス位置が同じであっても、スペクトル線幅E95が異なれば結像性能が異なることがある。
 図6は、露光装置100におけるレーザ光のフォーカス位置の分布を示すグラフである。縦軸は図1に示されるZ軸に沿ったフォーカス位置を示し、横軸は各フォーカス位置にフォーカスする波長成分の光強度を示す。レーザ光のスペクトル線幅E95は0.3pmである。露光装置100の投影光学系102の縦色収差K、すなわち、波長差1pmあたりのフォーカス位置の差を250nm/pmとした場合のフォーカス位置の分布が実線で示され、投影光学系102の縦色収差Kを500nm/pmとした場合のフォーカス位置の分布が破線で示されている。
 図7は、投影光学系102の縦色収差Kに応じたフォーカスの違いを模式的に示す。縦色収差Kに関わらず中心波長成分のフォーカス位置を第1の位置F1で一定とした場合、中心波長より0.1pm長い波長成分のフォーカス位置は、縦色収差Kによって異なる。その波長成分のフォーカス位置は、縦色収差Kが250nm/pmであれば中心波長成分のフォーカス位置から25nm離れた第2の位置F2となり、縦色収差Kが500nm/pmであれば中心波長成分のフォーカス位置から50nm離れた第4の位置F4となる。
 このように、中心波長より0.1pm長い波長成分のフォーカス位置は、縦色収差Kによって異なる。その波長成分のフォーカス位置が第1の位置F1から遠くなるほど、その波長成分の第1の位置F1での結像性能が低下する。
 従って、中心波長成分のフォーカス位置が同じであっても、縦色収差Kが異なれば結像性能が異なることがある。
 図8は、スペクトル波形を一定とした場合の、縦色収差Kと第1の位置F1でのコントラストとの関係を示すグラフである。図8は、ライン及びスペースの幅がそれぞれ100nmであるラインアンドスペース状のレチクルパターンが用いられた場合を示す。ラインアンドスペース状のレチクルパターンについては図10を参照しながら後述する。
 スペクトル波形が一定であっても、投影光学系102の縦色収差Kが変わると中心波長成分のフォーカス位置でのコントラストが変わるため、露光装置100の機差によって結像性能が変わってしまうことがある。従って、従来のスペクトル線幅E95を指標としたスペクトル制御では結像性能を十分にコントロールできない可能性がある。コントラストについては後述する。
 以下に説明する実施形態においては、投影光学系102の縦色収差Kに応じてスペクトル波形を制御することで、求められる露光性能を得ることを可能としている。
2.縦色収差Kに応じてスペクトル波形を制御するレーザ装置1a
 2.1 構成
 図9は、本開示の実施形態に係るレーザ装置1aの構成を模式的に示す。レーザ装置1aにおいて、スペクトル計測制御プロセッサ60に含まれるメモリ61は、縦色収差Kとスペクトル評価値Vとの関係を記憶したデータ611を記憶している。データ611については後述する。
 2.2 縦色収差Kの測定
 図10は、縦色収差Kの測定に用いられるレチクルパターンの例を示す。投影光学系102の縦色収差Kを測定するために、図10に示されるような透過部と非透過部とが交互に配置されたラインアンドスペース状のレチクルパターンがレチクルステージRT(図1参照)上に配置される。
 図11は、実施形態に係る露光装置100の一部を模式的に示す。縦色収差Kを測定するため、ワークピーステーブルWTにはセンサ43が配置される。センサ43は、ラインセンサ18d(図2及び図9参照)と同様に一次元に配列された多数の受光素子を含む光分布センサでもよいし、二次元に配列された多数の受光素子を含むイメージセンサでもよい。
 ワークピーステーブルWTは、ステージ103(図1参照)によってZ軸に平行な方向に移動可能となっている。ワークピーステーブルWTの移動によって、ウエハ面の位置は図11に示される位置Za、Zb、及びZcに移動できる。
 図12~図14は、それぞれ位置Za~Zcにウエハ面が移動したときにセンサ43によって計測される光強度分布を示す。図12~図14において、横軸はY軸方向の位置を示し、縦軸は各位置における光強度Iを示す。図12~図14に示される光強度分布には、図10に示されるレチクルパターンに対応して明部と暗部とが交互に表れている。暗部における光強度に、光強度Iの最低値Iminが含まれる。両端の暗部に囲まれた明部のうちの光強度Iの最高値をImaxとする。最高値Imaxと最低値Iminとの差が大きいほど、コントラストが大きいと評価できる。コントラストの定義は最高値Imaxと最低値Iminとの差でもよいし、最高値Imaxと最低値Iminとの差を最高値Imaxと最低値Iminとの和で除算したものでもよい。
 図15は、ワークピーステーブルWTをZ軸に平行な方向に動かしながらコントラストを測定した結果の例を示すグラフである。ワークピーステーブルWTを動かすことでウエハ面の位置が変化し、それに応じてコントラストが変化する。ウエハ面の位置Zbにおいてコントラストが最高値となる場合、位置Zbがフォーカス位置となる。
 図16は、2つの異なる波長を用いた場合のウエハ面の位置とコントラストとの関係を示すグラフである。第1の波長λを用いた場合の第1のフォーカス位置をZとし、第1の波長λより短い第2の波長λを用いた場合の第2のフォーカス位置をZとする。このとき、以下の式で縦色収差Kを定義することができる。
   K=(Z-Z)/(λ-λ
 すなわち、縦色収差Kは、第1及び第2の波長の差λ-λに対する第1及び第2のフォーカス位置の差Z-Zの比率で与えられる。
 2.3 スペクトル評価値Vの測定
 図17及び図18は、レーザ光のスペクトル波形のさらに他の例を示すグラフである。図17及び図18の各々において、横軸は中心波長からの波長偏差Δλを示す。図17に示されるスペクトル波形#1~#3及び図18に示されるスペクトル波形#4~#6のスペクトル線幅E95はいずれも0.3pmであるが、これらのスペクトル波形#1~#6は互いに形状が異なる。スペクトル波形#1~#3は中心波長よりも長波長側にピーク波長がずれた非対称なスペクトル分布を有し、中心波長とピーク波長との差が互いに異なる。ここでいう中心波長は、例えば、ピーク強度の1/e以上の光強度を有する波長幅の中心である。スペクトル波形#4~#6は対称形であるが、スペクトル波形#4はガウス分布状のスペクトル波形(図4参照)と比べてピーク付近における曲線が緩やかである。スペクトル波形#5及び#6はピーク波長が2つに分離したスペクトル分布を有し、中心波長とピーク波長との差が互いに異なる。
 スペクトル波形#1~#6を用いて露光装置100における結像性能を以下のように評価した。
 図19は、結像性能の評価に用いられた長方形の結像パターンを示す。ガウス分布状のスペクトル波形を用いた場合に、ウエハ面に横寸法38nm、縦寸法76nmの長方形の結像パターンが投影光学系102によって形成されるように設計されたマスクを用いた。投影光学系102の縦色収差Kを250nm/pmとした。スペクトル波形#1~#6を用いた場合に、ウエハ面における結像パターンの横寸法が38nmとなるように露光量が調整された場合の、縦寸法の76nmからのずれΔCDをシミュレーションによって求めた。
 図20及び図21は、露光装置100における結像性能のシミュレーション結果を示すグラフである。図20は図17に示されるスペクトル波形#1~#3を用いた場合を示し、図21は図18に示されるスペクトル波形#4~#6を用いた場合を示す。
 図20に示されるように、中心波長とピーク波長との差が大きくなり、非対称性が大きくなるほど、ウエハ面における寸法誤差が大きくなり得る。また図21に示されるように、対称形のスペクトル分布であっても、ガウス分布との違いが大きくなるほど、ウエハ面における寸法誤差が大きくなり得る。
 このように、スペクトル線幅E95が同じであっても露光装置100における結像性能が異なる場合があり、スペクトル線幅E95を目標値に合わせるだけでは、求められる露光性能を得られないことがあり得る。
 そこで、スペクトル波形の形状を考慮したスペクトル評価値Vを以下のように定義する。
 まず、推定スペクトル波形I(λ)の重心波長λcを以下の式2で定義する。
Figure JPOXMLDOC01-appb-M000002
 式2の分子は、推定スペクトル波形I(λ)で示される光強度と波長λとの積を推定スペクトル波形I(λ)の波長域に関して積分して得られた値である。式2の分母は、推定スペクトル波形I(λ)で示される光強度を推定スペクトル波形I(λ)の波長域に関して積分して得られた値である。重心波長λcは本開示における代表波長の一例である。
 推定スペクトル波形I(λ)のスペクトル評価値Vは、以下の式3により定義される。
Figure JPOXMLDOC01-appb-M000003
 式3の分子は、推定スペクトル波形I(λ)で示される光強度と重心波長λcからの波長偏差の関数(λ-λc)との積を推定スペクトル波形I(λ)の波長域に関して積分して得られた値である。スペクトル評価値Vは本開示における評価値に相当する。
 式3の分母は、定数λsと推定スペクトル波形I(λ)で示される光強度を推定スペクトル波形I(λ)の波長域に関して積分して得られた値との積である。定数λsは、以下の(1)~(4)のいずれでもよい。
(1)1
(2)重心波長λc
(3)推定スペクトル波形I(λ)のスペクトル線幅E95
(4)推定スペクトル波形I(λ)と同じスペクトル線幅E95を有するガウス分布形状のスペクトル波形の標準偏差
 上記(1)のように定数λsを1とした場合には、スペクトル評価値Vが波長λの2乗の次元となるのに対し、上記(2)~(4)のように波長λの関数から得られる定数λsで除算することにより、スペクトル評価値Vを波長λの次元とすることができる。
 図22は、実施形態におけるスペクトル評価値Vの計測の手順を示すフローチャートである。
 スペクトル計測制御プロセッサ60は、以下のようにしてレーザ光の干渉パターンから積算波形Oi及び平均波形Oaを生成し、推定スペクトル波形I(λ)及びスペクトル評価値Vを算出する。
 S331において、スペクトル計測制御プロセッサ60は、メモリ61から積算パルス数Ni及び平均化回数Naを読み込む。
 S332において、スペクトル計測制御プロセッサ60は、ラインセンサ19dに含まれる受光素子の各々における光量を反映した生波形を受信し、Niパルスにわたって積算することにより、積算波形Oiを生成する。
 S333において、スペクトル計測制御プロセッサ60は、積算波形OiをNa回生成し、Na個の積算波形Oiを平均した平均波形Oaを生成する。
 S334において、スペクトル計測制御プロセッサ60は、平均波形Oaをスペクトル空間にマッピングすることにより、計測スペクトル波形O(λ)を生成する。
 S335において、スペクトル計測制御プロセッサ60は、メモリ61から分光器19の装置関数S(λ)を読み込む。
 S336において、スペクトル計測制御プロセッサ60は、計測スペクトル波形O(λ)を装置関数S(λ)により逆畳み込み積分することにより、推定スペクトル波形I(λ)を算出する。
 S338において、スペクトル計測制御プロセッサ60は、推定スペクトル波形I(λ)の重心波長λcを式2により算出する。
 S339において、スペクトル計測制御プロセッサ60は、推定スペクトル波形I(λ)のスペクトル評価値Vを式3により算出する。
 S339の後、スペクトル計測制御プロセッサ60は、本フローチャートの処理を終了する。
 2.4 スペクトル評価値Vとスペクトル線幅E95との比較
 次に、スペクトル評価値V及びこれを用いた評価方法の有用性について、スペクトル線幅E95と比較しながら説明する。以下に説明するように、スペクトル評価値Vは様々な結像パターンの形状に適用できる。
 図23は、スペクトル評価値V及びスペクトル線幅E95の有用性の比較に用いられた結像パターンを示す。図23に示される結像パターンは、複数の露光領域が密集したDENCEパターンと、他の露光領域から離れた位置にあるISOパターンとの2種類のパターンを含む。DENCEパターンの寸法が45nmとなるように露光量が調整された場合の、ISOパターンの基準寸法からのずれをΔCDとする。ISOパターンの基準寸法は、スペクトル線幅E95を0.01pmとした場合のISOパターンの寸法である。
 図24は、図23の結像パターンにおけるスペクトル線幅E95とΔCDとの関係を示すグラフであり、図25は、図23の結像パターンにおけるスペクトル評価値VとΔCDとの関係を示すグラフである。図24及び図25の各々について、図17及び図18に例示されたスペクトル波形を含む多数のバリエーションを用いてシミュレーションを行い、ΔCDをプロットした。
 図24においては、スペクトル線幅E95の変化に対するΔCDの変化の割合に2通りの傾向が認められる。このため、スペクトル線幅E95を測定しても、ウエハ面における結像性能を正確に知ることができない場合がある。
 図25においては、スペクトル評価値VとΔCDとの関係がほぼ1本の直線状となっている。このため、スペクトル評価値Vを測定することで、ウエハ面における結像性能を知ることができる。スペクトル評価値Vを一定の目標値に制御することで、求められる結像性能を達成し得る。
 図26は、スペクトル評価値V及びスペクトル線幅E95の有用性の比較に用いられた別の結像パターンを示す。図26に示される結像パターンは、配線を模したLINEパターンと、隣の配線との間隙を模したSPACEパターンとの2種類のパターンを含む。LINEパターンの寸法が100nmとなるように露光量が調整された場合の、SPACEパターンの基準寸法からのずれをΔCDとする。
 図27は、図26の結像パターンにおけるスペクトル線幅E95とΔCDとの関係を示すグラフであり、図28は、図26の結像パターンにおけるスペクトル評価値VとΔCDとの関係を示すグラフである。図27及び図28の各々について、図17及び図18に例示されたスペクトル波形を含む多数のバリエーションを用いてシミュレーションを行い、ΔCDをプロットした。
 図27においては、スペクトル線幅E95の変化に対するΔCDの変化の割合に2通りの傾向が認められる。このため、スペクトル線幅E95を測定しても、ウエハ面における結像性能を正確に知ることができない場合がある。
 図28においては、スペクトル評価値VとΔCDとの関係がほぼ1本の直線状となっている。このため、スペクトル評価値Vを測定することで、ウエハ面における結像性能を知ることができる。スペクトル評価値Vを一定の目標値に制御することで、求められる結像性能を達成し得る。
 2.5 スペクトル評価値Vの変形例
 式3においては、重心波長λcからの波長偏差λ-λcの2乗(λ-λc)が用いられているが、本開示はこれに限定されない。スペクトル評価値Vは以下の式4により算出されてもよい。
Figure JPOXMLDOC01-appb-M000004
 式4は、式3において波長偏差λ-λcを2乗した代わりに、波長偏差λ-λcの絶対値をN乗した点で式3と異なる。べき指数Nは正数である。べき指数Nの値を2とした場合の式4は、λsを1とした場合の式3と等価である。
 図29は、図23の結像パターンにおける式4のスペクトル評価値VとΔCDとの関係を示すグラフである。図30は、図26の結像パターンにおける式4のスペクトル評価値VとΔCDとの関係を示すグラフである。図29及び図30においては、式4におけるべき指数Nの値を1、2、及び3とした場合のシミュレーション結果がそれぞれの回帰直線とともに示されている。べき指数Nの値を1、2、及び3とした場合のいずれにおいてもスペクトル評価値VとΔCDとの間に相関が認められる。このようなスペクトル評価値Vを測定することで、ウエハ面における結像性能を知ることができる。
 回帰直線の当てはまりの良さを示す決定係数は、図29及び図30のいずれにおいてもべき指数Nの値が2である場合に最も高い。べき指数Nの値は1.9以上、2.1以下とすることが好ましい。
 2.6 縦色収差Kに応じたスペクトル評価値Vの制御
 図31は、スペクトル波形を変化させずに固定した場合の、縦色収差Kとフォーカス分布評価値Dとの関係を示すグラフである。フォーカス分布評価値Dは、スペクトル評価値Vに縦色収差Kを加味したことで結像性能の評価を可能とした評価値であり、以下の式5により算出される。
Figure JPOXMLDOC01-appb-M000005
 式5は、式3において波長λを縦色収差Kと波長λとの積Kλに置き換え、定数λsを1としたものに相当する。スペクトル波形を変化させずに固定した場合、フォーカス分布評価値Dは縦色収差Kの2乗にほぼ比例する。フォーカス分布評価値Dが大きいほど基準寸法からのずれΔCDが大きくなり得ることを示す。
 実施形態においては、フォーカス分布評価値Dが縦色収差Kに関わらず一定となるように、スペクトル評価値Vを制御する。
 図32は、実施形態において設定される縦色収差Kとスペクトル評価値Vとの関係を示すグラフである。縦色収差Kとスペクトル評価値Vとの関係は、フォーカス分布評価値Dが縦色収差Kに関わらず一定となるように設定される。その結果、図32に示される縦色収差Kとスペクトル評価値Vとの関係は、スペクトル評価値Vが縦色収差Kの2乗にほぼ反比例した関係となる。スペクトル計測制御プロセッサ60に含まれるメモリ61は、縦色収差Kとスペクトル評価値Vとの関係を記憶したデータ611として、縦色収差Kとスペクトル評価値Vとの関係式を記憶してもよい。
 図33は、実施形態において設定される縦色収差Kとスペクトル評価値Vとの関係を示すテーブルを示す。縦色収差Kとスペクトル評価値Vとの関係は、フォーカス分布評価値Dが縦色収差Kに関わらず一定となるように設定される。スペクトル計測制御プロセッサ60に含まれるメモリ61は、縦色収差Kとスペクトル評価値Vとの関係を記憶したデータ611として、縦色収差Kとスペクトル評価値Vとを対応付けたテーブルを記憶してもよい。
 図34は、フォーカス分布評価値Dが一定となるようにスペクトル評価値Vが設定された場合の、縦色収差Kとフォーカス位置でのコントラストとの関係を示すグラフである。図32又は図33に示される関係を用いてフォーカス分布評価値Dが一定となるようにスペクトル評価値Vが設定されるので、フォーカス位置でのコントラストは縦色収差Kに関わらずほぼ一定となる。すなわち、フォーカス分布評価値Dが一定となるようにスペクトル評価値Vを制御した場合には、スペクトル評価値Vを固定した場合よりも、縦色収差Kの変化に応じたコントラストの変化が小さくなる。フォーカス分布評価値Dが一定となるようにスペクトル評価値Vが設定されることで、露光装置100の機差に関わらず、露光性能を安定化することができる。
 式5は、式3において波長λを縦色収差Kと波長λとの積Kλに置き換えているが、本開示はこれに限定されない。式4において波長λを積Kλに置き換えてもよい。その場合、スペクトル波形を変化させずに固定した場合のフォーカス分布評価値Dは縦色収差KのN乗にほぼ比例する。フォーカス分布評価値Dが縦色収差Kに関わらず一定となるようにスペクトル評価値Vを設定した場合には、スペクトル評価値Vが縦色収差KのN乗にほぼ反比例した関係となる。
 2.7 テーブルの生成
 図35は、実施形態におけるテーブル生成の手順を示すフローチャートである。スペクトル計測制御プロセッサ60は、以下のようにして縦色収差Kとスペクトル評価値Vとの関係を示すテーブルを生成する。
 S201において、スペクトル計測制御プロセッサ60は、フォーカス分布評価値Dを式5により算出する。
 S202において、スペクトル計測制御プロセッサ60は、フォーカス分布評価値Dが一定となるようなスペクトル評価値Vを、縦色収差Kの複数の値について算出し、スペクトル評価値Vと縦色収差Kとを対応付けてメモリ61に保存する。
 S202の後、スペクトル計測制御プロセッサ60は本フローチャートの処理を終了する。
 2.8 スペクトル制御の動作
 図36は、実施形態におけるスペクトル制御の手順を示すフローチャートである。図36に示されるスペクトル制御は、露光制御プロセッサ110が行ってもよいし、レーザ制御プロセッサ30、又はスペクトル計測制御プロセッサ60が行ってもよい。露光制御プロセッサ110、レーザ制御プロセッサ30、及びスペクトル計測制御プロセッサ60はそれぞれ本開示におけるプロセッサに相当する。図36の説明においてはこれらのプロセッサをまとめて単に「プロセッサ」という。プロセッサは、以下のようにして縦色収差Kを用いてスペクトル評価値Vの目標値Vtを設定し、スペクトル波形調整器15aを制御する。
 S1において、プロセッサは、露光装置100の投影光学系102の縦色収差Kを取得する。S1の詳細については図37及び図38を参照しながら説明する。
 S2において、プロセッサは、縦色収差Kとスペクトル評価値Vとの関係を記憶したデータ611を参照し、縦色収差Kに基づいてスペクトル評価値Vの目標値Vtを設定する。データ611として、図32を参照しながら説明した関係式が用いられてもよいし、図33及び図35を参照しながら説明したテーブルが用いられてもよい。
 S3において、プロセッサは、目標値Vtを用いてスペクトル制御を行う。S3の詳細については図39及び図40を参照しながら説明する。
 S3の後、プロセッサは本フローチャートの処理を終了する。
  2.8.1 レーザ装置1aによる縦色収差Kの取得
 図37は、レーザ装置1aが縦色収差Kを取得する処理を示すフローチャートである。図37に示される処理は図36のS1のサブルーチンの第1の例に相当する。
 S11aにおいて、レーザ制御プロセッサ30は、第1の波長λを有するレーザ光を露光装置100に出力するようにレーザ発振器20を制御する。
 S12aにおいて、レーザ制御プロセッサ30は、第1の波長λを有するレーザ光を用いて露光装置100によって計測された第1のフォーカス位置Zを露光装置100から受信する。
 S13aにおいて、レーザ制御プロセッサ30は、第1の波長λより短い第2の波長λを有するレーザ光を露光装置100に出力するようにレーザ発振器20を制御する。
 S14aにおいて、レーザ制御プロセッサ30は、第2の波長λを有するレーザ光を用いて露光装置100によって計測された第2のフォーカス位置Zを露光装置100から受信する。
 S15aにおいて、レーザ制御プロセッサ30は、第1及び第2の波長λ及びλと第1及び第2のフォーカス位置Z及びZとに基づいて、縦色収差Kを算出する。
 S15aの後、レーザ制御プロセッサ30は本フローチャートの処理を終了し、図36に示される処理に戻る。
  2.8.2 露光装置100による縦色収差Kの取得
 図38は、露光装置100が縦色収差Kを取得する処理を示すフローチャートである。図38に示される処理は図36のS1のサブルーチンの第2の例に相当する。
 S11bにおいて、露光制御プロセッサ110は、第1の波長λの設定信号をレーザ装置1aに送信する。
 S12bにおいて、露光制御プロセッサ110は、第1の波長λを有するレーザ光を用いて第1のフォーカス位置Zを計測する。
 S13bにおいて、露光制御プロセッサ110は、第1の波長λより短い第2の波長λの設定信号をレーザ装置1aに送信する。
 S14bにおいて、露光制御プロセッサ110は、第2の波長λを有するレーザ光を用いて第2のフォーカス位置Zを計測する。
 S15bにおいて、露光制御プロセッサ110は、第1及び第2の波長λ及びλと第1及び第2のフォーカス位置Z及びZとに基づいて、縦色収差Kを算出する。
 S15bの後、露光制御プロセッサ110は本フローチャートの処理を終了し、図36に示される処理に戻る。
  2.8.3 レーザ装置1aによる目標値Vtを用いたスペクトル制御
 図39は、レーザ装置1aが目標値Vtを用いてスペクトル制御する処理を示すフローチャートである。図39に示される処理は図36のS3のサブルーチンの第1の例に相当する。
 S32において、レーザ制御プロセッサ30は、発振トリガ信号を出力する。発振トリガ信号が出力されると、レーザ発振器20からレーザ光が出力される。
 S33において、レーザ制御プロセッサ30は、レーザ発振器20から出力されたレーザ光を用いてスペクトル評価値Vを計測する。S33の処理は、図22を参照しながら説明した手順でスペクトル計測制御プロセッサ60が行う。
 S34において、レーザ制御プロセッサ30は、スペクトル評価値Vと目標値Vtとを比較し、スペクトル評価値Vが許容範囲内か否かを判定する。例えば、スペクトル評価値Vと目標値Vtとの差の絶対値が許容誤差Veより小さいか否かを判定する。ここで用いられる目標値Vtは、図36のS2において、レーザ制御プロセッサ30、スペクトル計測制御プロセッサ60、あるいは露光制御プロセッサ110が設定した目標値Vtである。
 S34においてスペクトル評価値Vが許容範囲内ではない場合(S34:NO)、レーザ制御プロセッサ30は、S35に処理を進める。
 S35において、レーザ制御プロセッサ30は、スペクトル計測制御プロセッサ60にS34の判定結果を送信する。スペクトル計測制御プロセッサ60は、スペクトルドライバ64を駆動することによりスペクトル波形調整器15aを制御する。スペクトル計測制御プロセッサ60は、例えば、スペクトル評価値Vが目標値Vtよりも大きい場合にはスペクトル線幅を小さくするようにスペクトル波形調整器15aを制御し、スペクトル評価値Vが目標値Vtよりも小さい場合にはスペクトル線幅を大きくするようにスペクトル波形調整器15aを制御する。
 S35の後、レーザ制御プロセッサ30は、S32に処理を戻す。
 S34においてスペクトル評価値Vが許容範囲内である場合(S34:YES)、レーザ制御プロセッサ30は、本フローチャートの処理を終了する。その後、レーザ装置1aはスペクトル波形調整器15aの設定を固定したままレーザ光の出力を続ける。あるいは、レーザ制御プロセッサ30は、S32に処理を戻し、レーザ光の出力を続けながらスペクトル評価値Vの計測と判定を繰り返し行ってもよい。
  2.8.4 露光装置100による目標値Vtを用いたスペクトル制御
 図40は、露光装置100が目標値Vtを用いてスペクトル制御する処理を示すフローチャートである。図40に示される処理は図36のS3のサブルーチンの第2の例に相当する。
 S36において、露光制御プロセッサ110は、スペクトル評価値Vの目標値Vtをレーザ装置1aに送信する。目標値Vtを受信したレーザ装置1aは、目標値Vtを用いてスペクトル制御を行う。この場合のレーザ装置1aの動作は図39と同様でもよい。
 S36の後、露光制御プロセッサ110は本フローチャートの処理を終了し、図36に示される処理に戻る。
 2.9 作用
 (1)本開示の実施形態によれば、レーザ装置1aから露光装置100に出力されるレーザ光のスペクトル波形の制御方法は、露光装置100の縦色収差Kを取得し、縦色収差Kとスペクトル評価値Vとの関係を用いてスペクトル評価値Vの目標値Vtを設定し、目標値Vtを用いてスペクトル波形を制御することを含む。
 これによれば、縦色収差Kを取得してスペクトル評価値Vの目標値Vtを設定するので、露光装置100の機差に応じて適切なスペクトル制御を行い、求められる露光性能を得ることができる。
 (2)実施形態によれば、縦色収差Kを取得することは、レーザ装置1aが第1の波長λを有するレーザ光を露光装置100に出力し、レーザ装置1aが露光装置100から第1の波長λによる第1のフォーカス位置Zを受信することを含む。また、レーザ装置1aが第1の波長λと異なる第2の波長λを有するレーザ光を露光装置100に出力し、レーザ装置1aが露光装置100から第2の波長λによる第2のフォーカス位置Zを受信することを含む。また、第1及び第2の波長λ及びλと第1及び第2のフォーカス位置Z及びZとを用いて縦色収差Kを算出することを含む。
 これによれば、レーザ装置1aが2波長のフォーカス位置を取得することで露光装置100の縦色収差Kを正確に算出することができる。
 (3)実施形態によれば、縦色収差Kを取得することは、露光装置100が第1の波長λを設定する設定信号をレーザ装置1aに送信し、露光装置100が第1の波長λによる第1のフォーカス位置Zを計測することを含む。また、露光装置100が第1の波長λと異なる第2の波長λを設定する設定信号をレーザ装置1aに送信し、露光装置100が第2の波長λによる第2のフォーカス位置Zを計測することを含む。また、第1及び第2の波長λ及びλと第1及び第2のフォーカス位置Z及びZとを用いて縦色収差Kを算出することを含む。
 これによれば、露光装置100が2波長のフォーカス位置を計測することで露光装置100の縦色収差Kを正確に算出することができる。
 (4)実施形態によれば、縦色収差Kを取得することは、第1の波長λと、第1の波長λを有するレーザ光を露光装置100に入射させた場合の露光装置100における第1のフォーカス位置Zと、第1の波長λと異なる第2の波長λと、第2の波長λを有するレーザ光を露光装置100に入射させた場合の露光装置100における第2のフォーカス位置Zと、を用いて縦色収差Kを算出することを含む。
 これによれば、2波長のフォーカス位置を用いることで露光装置100の縦色収差Kを正確に算出することができる。
 (5)実施形態によれば、縦色収差Kを取得することは、第1及び第2の波長λ及びλの差に対する第1及び第2のフォーカス位置Z及びZの差の比率を取得することを含む。
 これによれば、簡易な計算により縦色収差Kを取得することができる。
 (6)実施形態によれば、縦色収差Kとスペクトル評価値Vとの関係は、縦色収差Kの変化に応じたコントラストの変化が、スペクトル評価値Vを固定した場合のコントラストの変化よりも小さくなるように定められている。
 これによれば、縦色収差Kの異なる露光装置100においても、スペクトル評価値Vを制御することにより安定した露光性能を得ることができる。
 (7)実施形態によれば、縦色収差Kとスペクトル評価値Vとの関係は、スペクトル評価値Vが、べき指数Nを1以上とする縦色収差Kのべき乗に反比例するように定められている。
 これによれば、縦色収差Kに応じてスペクトル評価値Vを適切な値に設定することができる。
 (8)実施形態によれば、縦色収差Kとスペクトル評価値Vとの関係は、スペクトル評価値Vが縦色収差Kの2乗に反比例するように定められている。
 これによれば、縦色収差Kに応じてスペクトル評価値Vをより適切な値に設定することができる。
 (9)実施形態によれば、縦色収差Kとスペクトル評価値Vとの関係は、縦色収差Kとスペクトル評価値Vとを対応付けたテーブルに記憶されている。
 これによれば、縦色収差Kに基づいてテーブルを検索することで適切なスペクトル評価値Vを設定することができる。
 (10)実施形態によれば、スペクトル波形の制御方法は、レーザ装置1aから出力されるレーザ光の干渉パターンから計測スペクトル波形O(λ)を取得し、計測スペクトル波形O(λ)を用いてスペクトル評価値Vを算出することをさらに含む。また、スペクトル評価値Vと目標値Vtとを用いてスペクトル波形を制御する。
 これによれば、干渉パターンから取得したスペクトル評価値Vを目標値Vtに近づけるようにスペクトル波形を制御するので、スペクトル評価値Vを適切な値に制御することができる。
 (11)実施形態によれば、計測スペクトル波形O(λ)を用いて波長λと光強度との関係を示す推定スペクトル波形I(λ)を算出し、推定スペクトル波形I(λ)の波長域に含まれる重心波長λcを算出し、重心波長λcからの波長偏差の関数と光強度との積I(λ)(λ-λc)を波長域に関して積分して得られた積分値を用いてスペクトル評価値Vを算出する。
 これによれば、ガウス分布状のスペクトル波形と異なるスペクトル波形を有するレーザ光であっても適切なスペクトル評価値Vを算出することができる。また、スペクトル波形の制御を様々な結像パターンの形状に適用できる。
 (12)実施形態によれば、露光装置100に接続可能なレーザ装置1aは、レーザ光を出力するレーザ発振器20と、レーザ光のスペクトル波形を調整するスペクトル波形調整器15aと、レーザ制御プロセッサ30と、を備える。レーザ制御プロセッサ30は、露光装置100の縦色収差Kを取得し、縦色収差Kとスペクトル評価値Vとの関係を用いてスペクトル評価値Vの目標値Vtを設定し、目標値Vtを用いてスペクトル波形調整器15aを制御する。
 これによれば、縦色収差Kを取得してスペクトル評価値Vの目標値Vtを設定するので、露光装置100の機差に応じて適切なスペクトル制御を行うことができる。
 (13)実施形態によれば、レーザ制御プロセッサ30は、第1の波長λを有するレーザ光を露光装置100に出力するようにレーザ発振器20を制御し、露光装置100から第1の波長λによる第1のフォーカス位置Zを受信する。また、第1の波長λと異なる第2の波長λを有するレーザ光を露光装置100に出力するようにレーザ発振器20を制御し、露光装置100から第2の波長λによる第2のフォーカス位置Zを受信する。また、第1及び第2の波長λ及びλと第1及び第2のフォーカス位置Z及びZとを用いて縦色収差Kを算出する。
 これによれば、レーザ装置1aが2波長のフォーカス位置を取得することで露光装置100の縦色収差Kを正確に算出することができる。
 (14)実施形態によれば、レーザ装置1aに接続可能な露光装置100は、投影光学系102と、センサ43と、ステージ103と、露光制御プロセッサ110と、を備える。投影光学系102は、レーザ装置1aから出力されたレーザ光を用いてウエハ面に像を形成する。センサ43は、ウエハ面におけるコントラストを計測する。ステージ103は、センサ43をレーザ光の光路軸に沿って移動させる。露光制御プロセッサ110は、ステージ103及びセンサ43を用いて露光装置100の縦色収差Kを取得し、縦色収差Kとレーザ光のスペクトル評価値Vとの関係を用いてスペクトル評価値Vの目標値Vtを設定し、目標値Vtをレーザ装置1aに送信する。
 これによれば、縦色収差Kを取得してスペクトル評価値Vの目標値Vtを設定するので、露光装置100の機差に応じて適切なスペクトル制御を行うことができる。
 (15)実施形態によれば、露光制御プロセッサ110は、第1の波長λを設定する設定信号をレーザ装置1aに送信し、第1の波長λによる第1のフォーカス位置Zを計測する。また、第1の波長λと異なる第2の波長λを設定する設定信号をレーザ装置1aに送信し、第2の波長λによる第2のフォーカス位置Zを計測する。また、第1及び第2の波長λ及びλと第1及び第2のフォーカス位置Z及びZとを用いて縦色収差Kを算出する。
 これによれば、露光装置100が2波長のフォーカス位置を計測することで露光装置100の縦色収差Kを正確に算出することができる。
3.その他
 上述の説明は、制限ではなく単なる例示を意図している。従って、特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかである。また、本開示の実施形態を組み合わせて使用することも当業者には明らかである。
 本明細書及び特許請求の範囲全体で使用される用語は、明記が無い限り「限定的でない」用語と解釈されるべきである。たとえば、「含む」、「有する」、「備える」、「具備する」などの用語は、「記載されたもの以外の構成要素の存在を除外しない」と解釈されるべきである。また、修飾語「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。また、「A、B及びCの少なくとも1つ」という用語は、「A」「B」「C」「A+B」「A+C」「B+C」又は「A+B+C」と解釈されるべきである。さらに、それらと「A」「B」「C」以外のものとの組み合わせも含むと解釈されるべきである。

Claims (20)

  1.  レーザ装置から露光装置に出力されるレーザ光のスペクトル波形の制御方法であって、
     前記露光装置の縦色収差を取得し、
     前記縦色収差と前記スペクトル波形の評価値との関係を用いて前記評価値の目標値を設定し、
     前記目標値を用いて前記スペクトル波形を制御する
    ことを含む、制御方法。
  2.  請求項1記載の制御方法であって、
     前記縦色収差を取得することは、
      前記レーザ装置が第1の波長を有するレーザ光を前記露光装置に出力し、
      前記レーザ装置が前記露光装置から前記第1の波長による第1のフォーカス位置を受信し、
      前記レーザ装置が前記第1の波長と異なる第2の波長を有するレーザ光を前記露光装置に出力し、
      前記レーザ装置が前記露光装置から前記第2の波長による第2のフォーカス位置を受信し、
      前記第1及び第2の波長と前記第1及び第2のフォーカス位置とを用いて前記縦色収差を算出する
    ことを含む、制御方法。
  3.  請求項1記載の制御方法であって、
     前記縦色収差を取得することは、
      前記露光装置が第1の波長を設定する設定信号を前記レーザ装置に送信し、
      前記露光装置が前記第1の波長による第1のフォーカス位置を計測し、
      前記露光装置が前記第1の波長と異なる第2の波長を設定する設定信号を前記レーザ装置に送信し、
      前記露光装置が前記第2の波長による第2のフォーカス位置を計測し、
      前記第1及び第2の波長と前記第1及び第2のフォーカス位置とを用いて前記縦色収差を算出する
    ことを含む、制御方法。
  4.  請求項1記載の制御方法であって、
     前記縦色収差を取得することは、第1の波長と、前記第1の波長を有するレーザ光を前記露光装置に入射させた場合の前記露光装置における第1のフォーカス位置と、前記第1の波長と異なる第2の波長と、前記第2の波長を有するレーザ光を前記露光装置に入射させた場合の前記露光装置における第2のフォーカス位置と、を用いて前記縦色収差を算出する
    ことを含む、制御方法。
  5.  請求項4記載の制御方法であって、
     前記縦色収差を取得することは、前記第1及び第2の波長の差に対する前記第1及び第2のフォーカス位置の差の比率を取得することを含む、制御方法。
  6.  請求項1記載の制御方法であって、
     前記関係は、前記縦色収差の変化に応じたコントラストの変化が、前記評価値を固定した場合の前記コントラストの変化よりも小さくなるように定められている、
    制御方法。
  7.  請求項1記載の制御方法であって、
     前記関係は、前記評価値が、べき指数を1以上とする前記縦色収差のべき乗に反比例するように定められている、
    制御方法。
  8.  請求項1記載の制御方法であって、
     前記関係は、前記評価値が前記縦色収差の2乗に反比例するように定められている、
    制御方法。
  9.  請求項1記載の制御方法であって、
     前記関係は、前記縦色収差と前記評価値とを対応付けたテーブルに記憶されている
    制御方法。
  10.  請求項1記載の制御方法であって、
     前記レーザ装置から出力されるレーザ光の干渉パターンから計測波形を取得し、
     前記計測波形を用いて前記評価値を算出する
    ことをさらに含み、
     前記評価値と前記目標値とを用いて前記スペクトル波形を制御する
    制御方法。
  11.  請求項10記載の制御方法であって、
     前記計測波形を用いて波長と光強度との関係を示す前記スペクトル波形を算出し、
     前記スペクトル波形の波長域に含まれる代表波長を算出し、
     前記代表波長からの波長偏差の関数と前記光強度との積を前記波長域に関して積分して得られた積分値を用いて前記評価値を算出する、
    制御方法。
  12.  露光装置に接続可能なレーザ装置であって、
     レーザ光を出力するレーザ発振器と、
     レーザ光のスペクトル波形を調整するスペクトル波形調整器と、
     プロセッサであって、
      前記露光装置の縦色収差を取得し、
      前記縦色収差と前記スペクトル波形の評価値との関係を用いて前記評価値の目標値を設定し、前記目標値を用いて前記スペクトル波形調整器を制御するように構成された前記プロセッサと、
    を備えるレーザ装置。
  13.  請求項12記載のレーザ装置であって、
     前記プロセッサは、
      第1の波長を有するレーザ光を前記露光装置に出力するように前記レーザ発振器を制御し、
      前記露光装置から前記第1の波長による第1のフォーカス位置を受信し、
      前記第1の波長と異なる第2の波長を有するレーザ光を前記露光装置に出力するように前記レーザ発振器を制御し、
      前記露光装置から前記第2の波長による第2のフォーカス位置を受信し、
      前記第1及び第2の波長と前記第1及び第2のフォーカス位置とを用いて前記縦色収差を算出する、レーザ装置。
  14.  請求項12記載のレーザ装置であって、
     前記関係は、前記縦色収差の変化に応じたコントラストの変化が、前記評価値を固定した場合の前記コントラストの変化よりも小さくなるように定められている、
    レーザ装置。
  15.  請求項12記載のレーザ装置であって、
     前記関係は、前記評価値が、べき指数を1以上とする前記縦色収差のべき乗に反比例するように定められている、
    レーザ装置。
  16.  レーザ装置に接続可能な露光装置であって、
     前記レーザ装置から出力されたレーザ光を用いてウエハ面に像を形成する投影光学系と、
     前記ウエハ面におけるコントラストを計測するセンサと、
     前記センサをレーザ光の光路軸に沿って移動させるステージと、
     プロセッサであって、
      前記ステージ及び前記センサを用いて前記露光装置の縦色収差を取得し、
      前記縦色収差とレーザ光のスペクトル波形の評価値との関係を用いて前記評価値の目標値を設定し、
      前記目標値を前記レーザ装置に送信するように構成された前記プロセッサと、
    を備える露光装置。
  17.  請求項16記載の露光装置であって、
     前記プロセッサは、
      第1の波長を設定する設定信号を前記レーザ装置に送信し、
      前記第1の波長による第1のフォーカス位置を計測し、
      前記第1の波長と異なる第2の波長を設定する設定信号を前記レーザ装置に送信し、
      前記第2の波長による第2のフォーカス位置を計測し、
      前記第1及び第2の波長と前記第1及び第2のフォーカス位置とを用いて前記縦色収差を算出する、露光装置。
  18.  請求項16記載の露光装置であって、
     前記関係は、前記縦色収差の変化に応じた前記コントラストの変化が、前記評価値を固定した場合の前記コントラストの変化よりも小さくなるように定められている、
    露光装置。
  19.  請求項16記載の露光装置であって、
     前記関係は、前記評価値が、べき指数を1以上とする前記縦色収差のべき乗に反比例するように定められている、
    露光装置。
  20.  電子デバイスの製造方法であって、
     露光装置の縦色収差を取得し、
     前記縦色収差と前記露光装置に接続されたレーザ装置から出力されるレーザ光のスペクトル波形の評価値との関係を用いて前記評価値の目標値を設定し、
     前記目標値を用いて前記スペクトル波形を制御して生成されるレーザ光を前記露光装置に出力し、
     前記電子デバイスを製造するために、前記露光装置内で感光基板上にレーザ光を露光する
    ことを含む電子デバイスの製造方法。
PCT/JP2021/015234 2021-04-12 2021-04-12 スペクトル波形の制御方法、レーザ装置、露光装置、及び電子デバイスの製造方法 WO2022219690A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023514201A JPWO2022219690A1 (ja) 2021-04-12 2021-04-12
PCT/JP2021/015234 WO2022219690A1 (ja) 2021-04-12 2021-04-12 スペクトル波形の制御方法、レーザ装置、露光装置、及び電子デバイスの製造方法
CN202180095600.9A CN116982005A (zh) 2021-04-12 2021-04-12 谱波形的控制方法、激光装置、曝光装置和电子器件的制造方法
US18/467,361 US20240001486A1 (en) 2021-04-12 2023-09-14 Spectrum waveform control method, laser apparatus, exposure apparatus, and electronic device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015234 WO2022219690A1 (ja) 2021-04-12 2021-04-12 スペクトル波形の制御方法、レーザ装置、露光装置、及び電子デバイスの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/467,361 Continuation US20240001486A1 (en) 2021-04-12 2023-09-14 Spectrum waveform control method, laser apparatus, exposure apparatus, and electronic device manufacturing method

Publications (1)

Publication Number Publication Date
WO2022219690A1 true WO2022219690A1 (ja) 2022-10-20

Family

ID=83640245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015234 WO2022219690A1 (ja) 2021-04-12 2021-04-12 スペクトル波形の制御方法、レーザ装置、露光装置、及び電子デバイスの製造方法

Country Status (4)

Country Link
US (1) US20240001486A1 (ja)
JP (1) JPWO2022219690A1 (ja)
CN (1) CN116982005A (ja)
WO (1) WO2022219690A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243752A (ja) * 2002-02-21 2003-08-29 Gigaphoton Inc ガスレーザ装置
JP2004537176A (ja) * 2001-07-27 2004-12-09 サイマー インコーポレイテッド リソグラフィ処理のためのレーザスペクトルエンジニアリング
JP2005079591A (ja) * 2003-08-29 2005-03-24 Asml Netherlands Bv リトグラフ装置、デバイス製造方法およびデバイス
JP2007511074A (ja) * 2003-11-03 2007-04-26 サイマー インコーポレイテッド Relaxガス放電レーザリソグラフィ光源
JP2012518286A (ja) * 2009-02-17 2012-08-09 カール・ツァイス・エスエムティー・ゲーエムベーハー 投影露光方法、投影露光装置、レーザ放射線源、及びレーザ放射線源用の帯域幅狭化モジュール
JP2014022496A (ja) * 2012-07-17 2014-02-03 Canon Inc 露光装置、露光方法及びデバイス製造方法
JP2019532334A (ja) * 2016-10-17 2019-11-07 サイマー リミテッド ライアビリティ カンパニー ウェーハベースの光源パラメータ制御

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004537176A (ja) * 2001-07-27 2004-12-09 サイマー インコーポレイテッド リソグラフィ処理のためのレーザスペクトルエンジニアリング
JP2003243752A (ja) * 2002-02-21 2003-08-29 Gigaphoton Inc ガスレーザ装置
JP2005079591A (ja) * 2003-08-29 2005-03-24 Asml Netherlands Bv リトグラフ装置、デバイス製造方法およびデバイス
JP2007511074A (ja) * 2003-11-03 2007-04-26 サイマー インコーポレイテッド Relaxガス放電レーザリソグラフィ光源
JP2012518286A (ja) * 2009-02-17 2012-08-09 カール・ツァイス・エスエムティー・ゲーエムベーハー 投影露光方法、投影露光装置、レーザ放射線源、及びレーザ放射線源用の帯域幅狭化モジュール
JP2014022496A (ja) * 2012-07-17 2014-02-03 Canon Inc 露光装置、露光方法及びデバイス製造方法
JP2019532334A (ja) * 2016-10-17 2019-11-07 サイマー リミテッド ライアビリティ カンパニー ウェーハベースの光源パラメータ制御

Also Published As

Publication number Publication date
US20240001486A1 (en) 2024-01-04
JPWO2022219690A1 (ja) 2022-10-20
CN116982005A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
CN108352673B (zh) 窄带化激光装置和谱线宽度计测装置
KR101302244B1 (ko) 노광 장치, 노광 방법 및 디바이스 제조 방법, 및 시스템
JP5157004B2 (ja) 狭帯域化レーザのスペクトル幅調整方法
JP7244436B2 (ja) エキシマレーザ装置、及び電子デバイスの製造方法
TWI395072B (zh) 成像特性變動預測方法、曝光設備、及裝置製造方法
US10615565B2 (en) Line narrowed laser apparatus
WO2015008365A1 (ja) 露光装置
JP6113426B2 (ja) マスタオシレータシステムおよびレーザ装置
JP6655601B2 (ja) 放射をスペクトル的に拡大するための方法及び装置
WO2022219690A1 (ja) スペクトル波形の制御方法、レーザ装置、露光装置、及び電子デバイスの製造方法
WO2022219689A1 (ja) レーザ装置、レーザ光のスペクトルの評価方法、及び電子デバイスの製造方法
JP5730428B2 (ja) 狭帯域化レーザ装置及びそのスペクトル幅調整方法
WO2022172382A1 (ja) レーザシステム、スペクトル波形算出方法、及び電子デバイスの製造方法
JP2631553B2 (ja) レーザの波長制御装置
CN115023657A (zh) 曝光系统、激光控制参数的生成方法和电子器件的制造方法
JP5580256B2 (ja) 狭帯域化レーザのスペクトル幅調整方法
WO2022157897A1 (ja) レーザシステムの制御方法、レーザシステム、及び電子デバイスの製造方法
WO2021186740A1 (ja) 狭帯域化ガスレーザ装置、その制御方法、及び電子デバイスの製造方法
WO2023166583A1 (ja) レーザ装置、スペクトル線幅の計測方法、及び電子デバイスの製造方法
WO2023135773A1 (ja) フォトマスクの作成方法、データ作成方法、及び電子デバイスの製造方法
US20240044711A1 (en) Wavelength measurement apparatus, narrowed-line laser apparatus, and method for manufacturing electronic devices
WO2023007685A1 (ja) 放電励起型レーザ装置の制御方法、放電励起型レーザ装置、及び電子デバイスの製造方法
WO2021234835A1 (ja) 狭帯域化ガスレーザ装置、波長制御方法、及び電子デバイスの製造方法
JP2009076688A (ja) 露光装置及びデバイスの製造方法
CN111194510A (zh) 准分子激光装置和电子器件的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936893

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023514201

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180095600.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936893

Country of ref document: EP

Kind code of ref document: A1