WO2022218736A1 - Dispositif de commande d'un onduleur/redresseur - Google Patents

Dispositif de commande d'un onduleur/redresseur Download PDF

Info

Publication number
WO2022218736A1
WO2022218736A1 PCT/EP2022/058854 EP2022058854W WO2022218736A1 WO 2022218736 A1 WO2022218736 A1 WO 2022218736A1 EP 2022058854 W EP2022058854 W EP 2022058854W WO 2022218736 A1 WO2022218736 A1 WO 2022218736A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
temperature
rectifier
inverter
sensor
Prior art date
Application number
PCT/EP2022/058854
Other languages
English (en)
Inventor
Paul Armiroli
Original Assignee
Valeo Equipements Electriques Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR2103766A external-priority patent/FR3121804A1/fr
Application filed by Valeo Equipements Electriques Moteur filed Critical Valeo Equipements Electriques Moteur
Priority to EP22720436.9A priority Critical patent/EP4324087A1/fr
Priority to CN202280038612.2A priority patent/CN117413456A/zh
Publication of WO2022218736A1 publication Critical patent/WO2022218736A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/46Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency
    • H02P25/026Synchronous motors controlled by supply frequency thereby detecting the rotor position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/03Synchronous motors with brushless excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/62Controlling or determining the temperature of the motor or of the drive for raising the temperature of the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/64Controlling or determining the temperature of the winding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/66Controlling or determining the temperature of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/66Controlling or determining the temperature of the rotor
    • H02P29/662Controlling or determining the temperature of the rotor the rotor having permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/05Determination of the rotor position by using two different methods and/or motor models

Definitions

  • the present invention relates to a device for controlling an inverter/rectifier capable of being electrically connected to the electrical stator winding of a rotating electrical machine, this rotating electrical machine having in particular a rotor with permanent magnets.
  • the invention is for example integrated into a vehicle, for example an automobile or any other form of mobility with hybrid or electric propulsion, and the rotating electric machine provides electric or hybrid propulsion for this vehicle.
  • the inverter/rectifier can, in this application, be interposed between the electric stator winding of the machine and the on-board network of the vehicle.
  • the temperature of active parts of the rotating electrical machine for example the stator and/or the rotor, by using the measurement provided by a sensor of temperature.
  • This taking into account of the temperature makes it possible, in known manner, to thermally protect the machine by adapting its control to the temperature of all or part of its components in order to avoid excessive heating of the latter.
  • This temperature sensor is for example a temperature probe such as a CTN or a CPN.
  • the use of such sensors may prove to be insufficient, in particular to obtain sufficient precision over the entire operating range of the rotating electrical machine.
  • sensor(s) can prove to be restrictive, a calibration of this sensor with respect to the electrical machine being necessary.
  • the invention aims to meet this need and it achieves this, according to one of its aspects, with the aid of a device for controlling an inverter/rectifier capable of being electrically connected to the electric stator winding of a rotating electrical machine also comprising a rotor, in particular for a vehicle, the device comprising:
  • At least one temperature sensor capable of providing a representative measurement of the temperature of the rotor and/or of the stator of the rotating electrical machine
  • a temperature estimator module able to provide an estimate representative of the temperature of this rotor and/or of this stator, the control device generating, in a main mode of operation, setpoints for the inverter/rectifier using as signal representative of the temperature: the measurement provided by the temperature sensor, and the estimate provided by the temperature estimator module, for all or part of the rotational speeds of the rotor.
  • the invention makes it possible to add additional robustness for taking into account the temperature of the rotating electrical machine when developing the control of inverter/rectifier since both a temperature measurement and a temperature estimate are available for this processing in the main mode of operation.
  • This command can then be compatible with the Asil B or Asil C criticality levels in terms of motor vehicle operating safety.
  • the temperature sensor can be one or more temperature probes, of CTN or CPN type. As a variant or in addition, it may be one or more thermocouples. This or these sensors can be arranged at the level of the coil ends of the stator, or opposite, axially speaking, the end of the rotor. When the rotor is with permanent magnets, such a positioning can make it possible to obtain a temperature measurement close to these permanent magnets whose performance is sensitive to temperature.
  • the temperature estimator module can implement a thermal model of the rotating electrical machine, for example a map linking temperature and phase currents in the electrical stator winding.
  • This thermal model can implement correlations:
  • the aforementioned correlations can be carried out both statically, that is to say at a constant speed, and dynamically, for the aforementioned currents or voltages.
  • the control device can merge these data to generate the setpoints for the inverter/ rectifier.
  • the measurement provided by the temperature sensor can by default be the only one used as a signal representative of the temperature and, during this use, the motor torque setpoint is compared to this motor torque as estimated at using the values of the phase currents of the electrical stator winding. If the difference between the torque setpoint and the torque as estimated exceeds a given value, the estimate provided by the temperature estimator module is used as a signal representative of the temperature instead of the measurement provided by the temperature sensor. temperature.
  • the control device may include:
  • At least one position sensor capable of providing a measurement representative of the position of the rotor
  • control device can then:
  • the control can then use as a signal representing the position of the rotor:
  • the device can benefit both in the first speed range and in the second speed range from the measurement supplied by the position sensor, and:
  • this position measurement is not used to control inverter/rectifier, it can however be compared with the estimate coming from the position estimator module to check the correct operation of this estimator module.
  • the device can benefit both in the first speed range and in the second speed range from the estimate supplied by the position estimator module, even if it does not use this estimate as a signal representative of the rotor position only in the second speed range.
  • this estimate is not used to control the inverter/rectifier, it can however be compared with the measurement from the position sensor to check the correct operation of this sensor and consequently detect a possible failure of this sensor.
  • the device can merge these data to generate the setpoints for the inverter/ rectifier.
  • the measurement provided by the speed sensor can by default be the only one used as a signal representative of the position of the rotor in and, during this use, the setpoint is compared in motor torque at this motor torque as estimated using the values of the phase currents of the electrical stator winding. If the difference between the torque setpoint and the torque as estimated exceeds a given value, the estimate provided by the position estimator module is used as a signal representative of the position of the rotor instead of the measurement provided by the position sensor.
  • a signal representing the position of the rotor includes a speed or acceleration signal, the position then being obtained by one or more integration operations, and/or also includes a frequency signal of the phase voltages in the electric stator winding of rotating electric machine,
  • a position sensor also includes a speed or acceleration sensor, or a phase voltage frequency sensor in the electrical stator winding,
  • a position estimator module also includes a speed or acceleration or phase voltage frequency estimator module in the electrical stator winding,
  • the main mode of operation of the inverter/rectifier is a mode in which no failure in the rotating electrical machine and in the on-board network of the vehicle is detected by the control device,
  • the control device as described above may have sufficient redundancy to be compatible with the Asil B or Asil C criticality levels in terms of motor vehicle operating safety.
  • the position sensor can be chosen from: a Hall effect sensor, a resolver, an inductive sensor, or a sensor at the end of the rotor shaft.
  • the position sensor may have an accuracy of less than or equal to 1 electrical degree, in absolute value.
  • a sensor with such precision can be advantageous in that it can make it possible to obtain a torque precision of less than or equal to 1 N.m, in absolute value.
  • Such a sensor can, in one example, have a harmonic rate of less than 2% per harmonic, for speeds up to 20,000 rpm.
  • the position estimator module can be self-calibrating. This estimator module uses, for example, data in masked time to adjust itself.
  • the upper limit of the first range of speeds can be confused with the lower limit of the second range of speeds, this common limit being for example greater than 100 rpm, for example 200 rpm or at 300 rpm, being in particular equal to 500 rpm.
  • the position sensor and the temperature sensor can be grouped together in the same packaging, being for example overmolded by the same shell.
  • the control device may have an auxiliary mode of operation in which it generates setpoints for G inverter/rectifier by using as signal representative of the position of the rotor only the estimate provided by the position estimator module, for all or part of the speeds rotation of the rotor.
  • Such an auxiliary mode may correspond to the detection of a failure of the position sensor, in which case the control device may decide to no longer use the measurement provided by this position sensor even though this measurement would still be available.
  • Such an operating mode may correspond to the return to garage mode already mentioned.
  • the device can generate setpoints for G inverter/rectifier by using as signal representative of the temperature only the estimate provided by the temperature estimator module, for all or part of the speeds of rotation of the rotor. We can thus take into counts the detection of a temperature sensor failure.
  • control device can be a digital processing circuit, implementing logic gates, counters and a memory.
  • the electronic component is for example an integrated circuit of the ASIC (“Application-specific integrated circuit”) type.
  • Another subject of the invention is a device for controlling an inverter/rectifier capable of being electrically connected to the electrical stator winding of a rotating electrical machine also comprising a rotor, in particular for a vehicle, the device comprising:
  • At least one position sensor capable of providing a measurement representative of the position of the rotor
  • a position estimator module able to provide an estimate representative of the position of the rotor, the control device having a main mode of operation in which:
  • a propulsion assembly for an electric or hybrid vehicle comprising:
  • a rotating electrical machine comprising a stator and a rotor, in particular with permanent magnets,
  • an inverter/rectifier electrically connected to the electrical stator winding and able to be connected to the vehicle's on-board network
  • the rotating electrical machine can have a nominal supply voltage of 48V. Alternatively, this rotating electrical machine may have a nominal voltage supply greater than 200V.
  • the rotor can be permanent magnets.
  • the rotor for example, has no electrical excitation winding.
  • the rotor can be formed by a stack of laminations inside which the permanent magnets are arranged.
  • the electrical stator winding can be polyphase. Regardless of its number of phases, the electrical stator winding can be formed by wires or by conductive bars connected to each other. Each notch of the stator carcass can receive several conductors, for example 2, 4 or 6.
  • the rotating electrical machine may include a stator cooling circuit in which fluid such as air or liquid circulates.
  • fluid such as air or liquid circulates.
  • This liquid can be water or oil.
  • the rotor can be cooled by this same cooling circuit or by another cooling circuit in which air or liquid such as oil circulates.
  • the rotor may comprise any number of pairs of poles, for example three, four, six, or eight pairs of poles.
  • the rotating electrical machine may have a nominal electrical power of 4 kW, 8 kW, 15 kW, 25 kW or more.
  • the on-board network of the vehicle comprises for example two sub-networks between which is interposed a switching system defining a DC/DC voltage converter.
  • One of the inverter/rectifier and the DC/DC voltage converter can implement controllable electronic switches, such as galium nitride (GaN), silicon carbide (SiC), or silicon transistors.
  • controllable electronic switches such as galium nitride (GaN), silicon carbide (SiC), or silicon transistors.
  • the first electrical sub-network being the one capable of being connected to the inverter/rectifier, has for example a nominal voltage of 48V or a nominal voltage of a value greater than 200V, and the second electrical sub-network has for example a voltage nominal 12V.
  • the first sub-network may have a battery and an electrical energy storage unit formed by one or more capacitors and arranged in parallel with the DC output of the inverter/rectifier.
  • the capacity of this electrical energy storage unit is in particular between 2000 pF and 4000m F, for example of the order of 3000m F.
  • Another subject of the invention is a hybrid or electric vehicle powertrain, comprising:
  • gearbox comprising pinions, defining gearbox ratios
  • the shaft of the electric machine can be integral in rotation with the crankshaft of the heat engine of the vehicle, when the powertrain comprises such a heat engine.
  • the rotating electrical machine may comprise a pulley or any other means of connection to the rest of the vehicle's powertrain.
  • the electric machine is for example connected, in particular via a belt, to the crankshaft of the heat engine of the vehicle.
  • the powertrain can include a double clutch, dry or wet, each of the output shafts of the double clutch then forming an input shaft for the gearbox.
  • Another subject of the invention is a method for controlling an inverter/rectifier electrically connected to the electrical stator winding of a rotating electrical machine having a rotor, in particular with permanent magnets, in particular for a vehicle, method in which, according to a main mode of operation, setpoints are generated for the inverter/rectifier by using as a signal representative of the temperature: the measurement representative of this temperature supplied by a temperature sensor and the representative estimate of this temperature supplied by a temperature estimator module, for all or part of the rotational speeds of the rotor.
  • FIG. 1 schematically and partially represents a powertrain to which an example of implementation of the invention can be applied
  • FIG. 2 schematically shows an example of a rotating electrical machine of the system of Figure 1, bathed in oil
  • FIG. 3 shows in isolation an example of a rotor of the rotating electrical machine of Figure 2
  • - Figure 4 schematically shows the electrical circuit of the rotating electrical machine of the powertrain of Figures 1 and 2
  • - Figure 5 schematically shows an example of control of the inverter / rectifier of the circuit of Figure 4 depending on the position of the rotor.
  • the powertrain 1 here comprises a double clutch 6 which can be dry or wet, with discs or lamellae.
  • This double clutch has two output shafts 2 and 3 which are here concentric. Each of these shafts defines a gearbox input shaft 4.
  • the gearbox 4 comprises, inside an oil-filled casing, a plurality of pinions defining a plurality of speed ratios Rl-Rn .
  • Shaft 2 is here associated with odd gear ratios and shaft 3 is associated with even gear ratios.
  • the torque at the output of gearbox 4 is transmitted to the wheels of the vehicle, in order to ensure propulsion of this vehicle.
  • the powertrain 1 is hybrid or electric, comprising a rotating electric machine 7
  • This rotating machine 7 is installed inside the casing of the gearbox 4.
  • the shaft of the rotating machine 7 is capable of cooperating by meshing with a pinion 8 secured to the input shaft 2 of the gearbox associated with the odd speed ratios, but other positions are possible for the rotary electrical machine 7, for example its meshing with a pinion integral with the input shaft 3 of the gearbox associated with the even gear ratios. Locations of the rotating electrical machine 7 outside the housing of the gearbox 4 are also possible.
  • This rotating electric machine 7 can form a source of electric propulsion for the vehicle.
  • the rotating electrical machine 7 comprises a housing not shown in Figure 2. Inside this housing, it further comprises a shaft 13, a rotor 12 integral in rotation with the shaft 13, and a stator 10 surrounding the rotor 12. The rotational movement of the rotor 12 takes place around an axis X.
  • the rotating electric machine 7 is here a synchronous machine.
  • the housing may comprise a front bearing and a rear bearing which are assembled together, and each may have a hollow shape and centrally carry a respective ball bearing for the rotational mounting of the shaft 13.
  • the stator 10 comprises a carcass 15 in the form of a stack of laminations provided with notches, for example of the semi-closed or open type, equipped with notch insulation for mounting the electric winding polyphase of the stator.
  • Each phase comprises a winding passing through the notches of the carcass 15 and forming, with all the phases, a front bun 16 and a rear bun 17 on both sides. other side of the carcass 15 of the stator.
  • the windings are for example obtained from a continuous wire covered with enamel or from conductive elements in the form of a bar such as pins connected together.
  • Each notch can receive several conductors, for example 2 or 4 or 6 conductors.
  • the electrical winding of the stator here defines a double three-phase system, only one of these systems being represented in FIG. 4, each of these three-phase systems then implementing a star or delta connection whose outputs are connected to an inverter/ rectifier 20.
  • the electrical winding of the stator may define a single three-phase system.
  • the rotor f2 of FIG. 2 is formed by a stack of sheets, as represented in FIG. 3.
  • the number of pairs of poles defined by the rotor 12 can be arbitrary, for example be between three and eight, being for example equal three, four, six or eight.
  • the rotor 12 receives a plurality of permanent magnets not shown in these figures 2 and 3 but received in housings made in the stack of sheets.
  • the machine comprises a sensor 40 for measuring the position of the rotor, not shown in FIG. 2.
  • This sensor implements, for example, three Hall effect cells interacting with a magnetic target integral in rotation with the rotor, but other sensors are possible such as a resolver, an inductive sensor or a rotor shaft end sensor.
  • the sensor measures for example the position of the rotor.
  • a rotor position estimator module 41 is also provided.
  • the machine further comprises, in the example considered, one or more temperature sensors not shown. These are, for example, thermocouples or NTCs. These sensors can measure the temperature of the permanent magnets of the rotor, being then positioned axially speaking in front of the end of the rotor. A module estimating the temperature of the permanent magnets is also provided, in the example considered.
  • the electric stator winding of the rotating electric machine 7 belongs to an electric circuit comprising the inverter/rectifier 20.
  • This inverter/rectifier 20 is interposed between the electric winding of the stator and a first sub-network of the on-board network of the vehicle whose nominal voltage is in the example described equal to 48V.
  • the inverter/rectifier 20 comprises for example several switching arms, each arm implementing two transistors connected in series and separated by a midpoint. Each transistor is for example a galium nitride (GaN), silicon carbide (SiC), or silicon transistor.
  • the first sub-network of the on-board network also comprises in the example described a battery 21 connected to the rest of this first sub-network by a disconnect switch
  • the first subnet may or may not still include one or more consumers
  • an electrical energy storage unit 25 which is for example formed by a capacitor or by the assembly of several capacitors.
  • This electrical energy storage unit 25 has for example a capacity of between 3000m F and 4000m F.
  • the electric circuit also comprises in the example considered a DC/DC voltage converter 27 interposed between the first sub-network and a second sub-network of the on-board network. Similar to G inverter/rectifier 20, the DC/DC voltage converter comprises for example transistors which may be of the same type as those mentioned previously.
  • the second sub-network of the on-board network has for example a nominal voltage of 12V.
  • this second sub-network can comprise a battery 30 as well as consumers, not shown, which can be chosen from the following non-exhaustive list: lighting system, electric power steering system, braking system, system air conditioning or car radio system.
  • the electrical circuit further comprises in the example considered a control unit 32, which can be the central computer of the vehicle or be dedicated to all or part of the powertrain 1.
  • This control unit 32 communicates via a data network 33, which is for example of the CAN type, with different components of the electrical circuit, as can be seen in Figure 4.
  • the control unit 32 can receive a control device 35 which will now be described.
  • the control device 35 is for example an ASIC.
  • the invention is however not limited to the case where the control device 35 is integrated into the control unit 32.
  • the control device 35 generates setpoints for G inverter/rectifier 20 as a function of the speed of rotation of the rotor of the rotating electrical machine 7 and as a function of the temperature of the active parts of this machine 7, including for example the temperature of the permanent magnets of this rotor.
  • control device 35 For this purpose, and according to a main mode of operation, an example of which will be described with reference to Figure 5, the control device 35:
  • the first speed range corresponds for example to speeds below 500 rpm and the second speed range then corresponds to speeds above 500 rpm.
  • a block 50 receives as input:
  • This block 50 performs, in the second range of values, a fusion between these two position inputs on the basis of which it develops an estimate of the motor torque on the shaft of the rotor of the machine.
  • This torque estimate is received at the input of a block 51 which compares this torque estimate with a torque request received via a block 52.
  • Block 51 works out, to control the inverter/rectifier 20, setpoints for the phase currents and the phase voltages in the electrical stator winding.
  • Block 53 performs a measurement of these phase currents, this measurement being received at the input of block 50, as we have already seen.
  • the block 50 receives as input the estimate provided by the position estimator module 41, this information is not taken into account by this block 50 in the main operating mode to control G inverter / rectifier 20. Only the measurement provided by the position sensor 40 is used in this first range of speeds by the control device 35 to generate the instructions for the phase currents and the phase voltages in the electrical stator winding.
  • control of G inverter/rectifier 20 by the control device 35 takes into account, in the example described in the main mode of operation, the temperature of the permanent magnets of the rotor. For the entire operating range in this main mode, the control device 35 can generate setpoints for the inverter/rectifier 20 using as a signal representative of the temperature the measurement provided by the aforementioned temperature sensor and the estimate provided by the aforementioned temperature estimator module.
  • the block 50 of FIG. 5 still receives for example as input:
  • the block 50 carries out, for all the speed values in this main mode of operation, a merger between these two temperature inputs when it develops the aforementioned estimate of the motor torque on the shaft of the rotor, estimate received at the input of the block 51 of Figure 5.
  • the failure of the position sensor 40 and/or the temperature sensor can be detected.
  • the control device 35 can, independently of the value of the rotational speed of the rotor, only use the estimate supplied by the estimator module 41 as a signal representative of the position of the rotor and/or only use that the estimate provided by the estimator module as a signal representative of the temperature of the permanent magnets to generate the instructions for
  • Such an auxiliary mode of operation may correspond to a return-to-garage mode.
  • the invention is not limited to what has just been described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Dispositif de commande d'un onduleur/redresseur (20) apte à être électriquement connecté à l'enroulement électrique de stator (10) d'une machine électrique tournante (7) comprenant également un rotor, notamment pour un véhicule, le dispositif comprenant: au moins un capteur de température, apte à fournir une mesure représentative de la température du rotor et/ou du stator de la machine électrique tournante; et un module estimateur de température, apte à fournir une estimation représentative de la température de ce rotor et/ou de ce stator le dispositif de commande générant, dans un mode de fonctionnement principal, des consignes pour l'onduleur/redresseur en utilisant comme signal représentatif de la température: la mesure fournie par le capteur de température, et l'estimation fournie par le module estimateur de température, pour tout ou partie des vitesses de rotation du rotor.

Description

Dispositif de commande d’un onduleur/redresseur
La présente invention concerne un dispositif de commande d’un onduleur/redresseur apte à être électriquement connecté à l’enroulement électrique de stator d’une machine électrique tournante, cette machine électrique tournante ayant notamment un rotor à aimants permanents. L’invention est par exemple intégrée à un véhicule, par exemple une automobile ou toute autre forme de mobilité à propulsion hybride ou électrique, et la machine électrique tournante fournit une propulsion électrique ou hybride pour ce véhicule.
L’onduleur/redresseur peut, dans cette application, être interposé entre l’enroulement électrique de stator de la machine et le réseau de bord du véhicule.
Il est connu de prendre en compte, pour commander dans un mode de fonctionnement principal G onduleur/redresseur, la température de parties actives de la machine électrique tournante, par exemple le stator et/ou le rotor, en utilisant la mesure fournie par un capteur de température. Cette prise de compte de la température permet, de façon connue, de protéger thermiquement la machine en adaptant sa commande à la température de tout ou partie de ses composants pour éviter un échauffement excessif de ces derniers. Ce capteur de température est par exemple une sonde de température tel qu’une CTN ou une CPN. L’emploi de tels capteurs peut s’avérer insuffisant, notamment pour obtenir une précision suffisante sur toute la plage de fonctionnement de la machine électrique tournante. Par ailleurs, un tel emploi de capteur(s) peut s’avérer contraignant, un calibrage de ce capteur par rapport à la machine électrique étant nécessaire.
Il existe un besoin pour remédier à l’inconvénient précité.
L’invention vise à répondre à ce besoin et elle y parvient, selon l’un de ses aspects, à l’aide d’un dispositif de commande d’un onduleur/redresseur apte à être électriquement connecté à l’enroulement électrique de stator d’une machine électrique tournante comprenant également un rotor, notamment pour un véhicule, le dispositif comprenant :
- au moins un capteur de température, apte à fournir une mesure représentative de la température du rotor et/ou du stator de la machine électrique tournante, et
- un module estimateur de température, apte à fournir une estimation représentative de la température de ce rotor et/ou de ce stator, le dispositif de commande générant, dans un mode de fonctionnement principal, des consignes pour l’onduleur/redresseur en utilisant comme signal représentatif de la température : la mesure fournie par le capteur de température, et l’estimation fournie par le module estimateur de température, pour tout ou partie des vitesses de rotation du rotor.
L’invention permet d’ajouter une robustesse supplémentaire pour la prise en compte de la température de la machine électrique tournante lors de l’élaboration de la commande de onduleur/redresseur puisqu’ aussi bien une mesure de température qu’une estimation de température sont disponibles pour cette élaboration dans le mode de fonctionnement principal. Cette commande peut alors être compatible avec les niveaux de criticité Asil B ou Asil C en termes de sûreté de fonctionnement des véhicules automobiles.
Cette disponibilité de la mesure fournie par le capteur de température et de l’estimation fournie par le module estimateur de température pour élaborer la commande de G onduleur/redresseur peut exister dans le mode de fonctionnement principal sur toute la plage de fonctionnement de la machine.
Le capteur de température peut être une ou plusieurs sondes de température, de type CTN ou CPN. En variante ou en complément, il peut s’agir d’un ou plusieurs thermocouples. Ce ou ces capteurs peuvent être disposés au niveau des têtes de bobine du stator, ou en face, axialement parlant de l’extrémité du rotor. Lorsque le rotor est à aimants permanents, un tel positionnement peut permettre d’obtenir une mesure de température à proximité de ces aimants permanents dont les performances sont sensibles à la température.
Le module estimateur de température peut mettre en œuvre un modèle thermique de la machine électrique tournante, par exemple une cartographie reliant température et courants de phase dans l’enroulement électrique de stator. Ce modèle thermique peut mettre en œuvre des corrélations :
- entre la mesure des courants de phase dans l’enroulement électrique de stator et la force électromotrice de la machine telle que recalculée sur la base des consignes pour ces courants de phase, ou
- entre la mesure de ces courants de phase et la cartographie de la machine.
Les corrélations précitées peuvent être effectuées aussi bien en statique, c’est-à-dire à une vitesse constante, qu’en dynamique, pour les courants ou tensions précitées.
Lorsqu’il utilise comme signal représentatif de la température à la fois l’estimation fournie par le module estimateur de température et la mesure fournie par le capteur de température, le dispositif de commande peut fusionner ces données pour générer les consignes pour l’onduleur/redresseur. Dans un exemple, la mesure fournie par le capteur de température peut être par défaut la seule utilisée comme signal représentatif de la température et, lors de cette utilisation, on compare la consigne en couple moteur à ce couple moteur tel qu’estimé à l’aide des valeurs des courant de phase de l’enroulement électrique de stator. Si l’écart entre la consigne en couple et le couple tel qu’estimé dépasse une valeur donnée, on utilise l’estimation fournie par le module estimateur de température comme signal représentatif de la température à la place de la mesure fournie par le capteur de température. Le dispositif de commande peut comprendre :
- au moins un capteur de position, apte à fournir une mesure représentative de la position du rotor, et
- un module estimateur de position, apte à fournir une estimation représentative de la position du rotor, et, dans le mode de fonctionnement principal, le dispositif de commande peut alors:
- générer des consignes pour onduleur/redresseur en utilisant comme signal représentatif de la position du rotor uniquement la mesure fournie par le capteur de position, pour une première plage de vitesses de rotation du rotor, et
- générer des consignes pour onduleur/redresseur en utilisant comme signal représentatif de la position du rotor au moins l’estimation fournie par le module estimateur de position, notamment cette estimation et la mesure fournie par le capteur de position, pour une deuxième plage de vitesses de rotation du rotor dont les valeurs sont supérieures à celles de la première plage.
La commande peut alors utiliser comme signal représentatif de la position du rotor :
- uniquement la mesure issue du capteur de position pour la première plage de vitesses, et
- uniquement l’estimation issue du module estimateur de position pour la deuxième plage de vitesses, ou la mesure issue du capteur de position et l’estimation issue du module estimateur de position pour la deuxième plage de vitesses.
On peut ainsi, pour déterminer la position du rotor de la machine électrique tournante, combiner les avantages d’un signal obtenu par mesure et d’un signal obtenu par estimation puisque : pour la première plage de vitesses, on bénéficie de la précision du capteur de position qui a été calibré chez l’équipementier, et pour la deuxième plage de vitesses, on bénéficie de la meilleure précision en couple du module estimateur de position pour ces vitesses et le cas échéant toujours du capteur de position.
Dans le mode de fonctionnement principal, le dispositif peut bénéficier aussi bien dans la première plage de vitesses que dans la deuxième plage de vitesse de la mesure fournie par le capteur de position, et :
- ne l’utiliser comme signal représentatif de la position du rotor que dans la première plage de vitesses pour la commande de l’onduleur/redresseur, seule l’estimation fournie par le module estimateur de position étant alors utilisée comme signal représentatif de la position du rotor dans la deuxième plage de vitesses pour cette commande, ou
- l’utiliser comme signal représentatif de la position du rotor dans la première plage de vitesses et dans la deuxième plage de vitesses pour la commande de G onduleur/redresseur.
Lorsque cette mesure de position n’est pas utilisée pour commander onduleur/redresseur, elle peut cependant être comparée à l’estimation issue du module estimateur de position pour vérifier le bon fonctionnement de ce module estimateur.
Dans ce même mode de fonctionnement principal, le dispositif peut bénéficier aussi bien dans la première plage de vitesses que dans la deuxième plage de vitesse de l’estimation fournie par le module estimateur de position, même s’il n’utilise cette estimation comme signal représentatif de la position du rotor que dans la deuxième plage de vitesses. Lorsque cette estimation n’est pas utilisée pour commander l’onduleur/redresseur, elle peut cependant être comparée à la mesure issue du capteur de position pour vérifier le bon fonctionnement de ce capteur et en conséquence détecter une éventuelle défaillance de ce capteur.
Lorsqu’il utilise comme signal représentatif de la position du rotor à la fois l’estimation fournie par le module estimateur de position et la mesure fournie par le capteur de position, le dispositif peut fusionner ces données pour générer les consignes pour l’onduleur/redresseur. Dans un exemple de ce cas, même dans la deuxième plage de vitesses, la mesure fournie par le capteur de vitesse peut être par défaut la seule utilisée comme signal représentatif de la position du rotor dans et, lors de cette utilisation, on compare la consigne en couple moteur à ce couple moteur tel qu’estimé à l’aide des valeurs des courant de phase de l’enroulement électrique de stator. Si l’écart entre la consigne en couple et le couple tel qu’estimé dépasse une valeur donnée, on utilise l’estimation fournie par le module estimateur de position comme signal représentatif de la position du rotor à la place de la mesure fournie par le capteur de position.
Au sens de la présente demande :
- un signal représentatif de la position du rotor englobe un signal de vitesse ou d’accélération, la position s’obtenant alors par une ou plusieurs opérations d’intégration, et/ou englobe également un signal de fréquence des tensions de phase dans l’enroulement électrique de stator de la machine électrique tournante,
- un capteur de position englobe également un capteur de vitesse ou d’accélération, ou un capteur de fréquence des tensions de phase dans l’enroulement électrique de stator,
- un module estimateur de position englobe également un module estimateur de vitesse ou d’accélération ou de fréquence des tensions de phase dans l’enroulement électrique de stator,
- le mode de fonctionnement principal de l’onduleur/redresseur est un mode dans lequel aucune défaillance dans la machine électrique tournante et dans le réseau de bord du véhicule n’est détectée par le dispositif de commande,
- « axialement » signifie « parallèlement à l’axe de rotation de l’arbre », - « radialement » signifie « dans un plan perpendiculaire à l’axe de rotation de l’arbre et le long d’une droite coupant cet axe de rotation », et
- « circonférentiellement » signifie « dans un plan perpendiculaire à l’axe de rotation de l’arbre et en se déplaçant autour de cet axe ».
Le dispositif de commande tel que décrit ci-dessus peut présenter suffisamment de redondance pour être compatible avec les niveaux de criticité Asil B ou Asil C en termes de sûreté de fonctionnement des véhicules automobiles.
Dans tout ce qui précède, le capteur de position peut être choisi parmi : un capteur à effet Hall, un résolveur, un capteur inductif, ou un capteur en bout d’arbre rotor.
Dans tout ce qui précède, le capteur de position peut présenter une précision inférieure ou égale à 1° électrique, en valeur absolue. Un capteur avec une telle précision peut être avantageux en ce qu’il peut permettre d’obtenir une précision en couple inférieure ou égale à 1 N.m, en valeur absolue. Un tel capteur peut, dans un exemple, présenter un taux d’harmonique inférieur à 2% par harmonique, pour des vitesses allant jusqu’à 20000 tr/min.
Le module estimateur de position peut être autocalibrable. Ce module estimateur utilise par exemple des données en temps masqué pour se régler.
Dans tout ce qui précède, la borne supérieure de la première plage de vitesses peut être confondue avec la borne inférieure de la deuxième plage de vitesses, cette borne commune étant par exemple supérieure à 100 tr/min, par exemple à 200 tr/min ou à 300 tr/min, étant notamment égale à 500 tr/min.
Le capteur de position et le capteur de température peuvent être regroupés dans un même packaging, étant par exemple surmoulés par une même coque.
Le dispositif de commande peut présenter un mode de fonctionnement auxiliaire dans lequel il génère des consignes pour G onduleur/redresseur en utilisant comme signal représentatif de la position du rotor uniquement l’estimation fournie par le module estimateur de position, pour tout ou partie des vitesses de rotation du rotor. Un tel mode auxiliaire peut correspondre à la détection d’une défaillance du capteur de position, auquel cas le dispositif de commande peut décider de ne plus utiliser la mesure fournie par ce capteur de position quand bien même cette mesure serait encore disponible. Un tel mode de fonctionnement peut correspondre au mode de retour au garage déjà mentionné.
Indépendamment ou en complément, dans ce mode de fonctionnement auxiliaire, le dispositif peut générer des consignes pour G onduleur/redresseur en utilisant comme signal représentatif de la température uniquement l’estimation fournie par le module estimateur de température, pour tout ou partie des vitesses de rotation du rotor. On peut ainsi prendre en compte la détection d’une défaillance du capteur de température.
Dans tout ce qui précède, le dispositif de commande peut être un circuit de traitement numérique, mettant en œuvre des portes logiques, des compteurs et une mémoire. Le composant électronique est par exemple un circuit intégré de type ASIC (« Application- specific integrated circuit » en anglais).
L’invention a encore pour objet, selon un autre de ses aspects, un dispositif de commande d’un onduleur/redresseur apte à être électriquement connecté à l’enroulement électrique de stator d’une machine électrique tournante comprenant également un rotor, notamment pour un véhicule, le dispositif comprenant :
- au moins un capteur de position, apte à fournir une mesure représentative de la position du rotor, et
- un module estimateur de position, apte à fournir une estimation représentative de la position du rotor, le dispositif de commande présentant un mode de fonctionnement principal dans lequel :
- il génère des consignes pour l’onduleur/redresseur en utilisant comme signal représentatif de la position du rotor uniquement la mesure fournie par le capteur de position, pour une première plage de vitesses de rotation du rotor, et
- il génère des consignes pour l’onduleur/redresseur en utilisant comme signal représentatif de la position du rotor au moins l’estimation fournie par le module estimateur de position, notamment cette estimation et la mesure fournie par le capteur de position, pour une deuxième plage de vitesses de rotation du rotor dont les valeurs sont supérieures à celles de la première plage.
Tout ce qui a été mentionné précédemment s’applique à cet autre aspect de l’invention, notamment le choix de valeurs pour la borne supérieure de la première plage de vitesses de rotation, que cette borne supérieure soit égale ou non à la borne inférieure de la deuxième plage de vitesses de rotation, et notamment la sensibilité du capteur de position.
L’invention a encore pour objet, selon un autre de ses aspects, un ensemble de propulsion d’un véhicule électrique ou hybride, comprenant :
- une machine électrique tournante, comprenant un stator et un rotor, notamment à aimants permanents,
- un onduleur/redresseur connecté électriquement à l’enroulement électrique de stator et apte à être connecté au réseau de bord du véhicule, et
- le dispositif de commande tel que défini ci-dessus.
La machine électrique tournante peut avoir une tension nominale d’alimentation de 48V. En variante, cette machine électrique tournante peut avoir une tension nominale d’ alimentation supérieure à 200V.
Le rotor peut être à aimants permanents. Le rotor est par exemple dépourvu d’enroulement électrique d’excitation. Le rotor peut être formé par un paquet de tôles à l’intérieur duquel sont disposés les aimants permanents.
Dans tout ce qui précède, l’enroulement électrique de stator peut être polyphasé. Indépendamment de son nombre de phases, l’enroulement électrique de stator peut être formé par des fils ou par des barres conductrices reliées les unes les autres. Chaque encoche de la carcasse de stator peut recevoir plusieurs conducteurs, par exemple 2, 4 ou 6.
Dans tout ce qui précède, la machine électrique tournante peut comprendre un circuit de refroidissement du stator dans lequel circule du fluide tel que de l’air ou du liquide. Ce liquide peut être de l’eau ou de l’huile.
Le rotor peut être refroidi par ce même circuit de refroidissement ou par un autre circuit de refroidissement dans lequel circule de l’air, ou du liquide tel que de l’huile.
Dans tout ce qui précède, le rotor peut comprendre un nombre de paires de pôles quelconque, par exemple trois, quatre, six, ou huit paires de pôles.
La machine électrique tournante peut présenter une puissance électrique nominale de 4 kW, 8 kW, 15 kW, 25 kW ou plus.
Le réseau de bord du véhicule comprend par exemple deux sous-réseaux entre lesquels est interposé un système de commutation définissant un convertisseur de tension continu/continu.
L’un de l’onduleur/redresseur et du convertisseur de tension continu/continu peut mettre en œuvre des interrupteurs électroniques commandables, tels que des transistors en nitrure de galium (GaN), en carbure de silicium (SiC), ou en silicium.
Le premier sous-réseau électrique, étant celui apte à être connecté à l’onduleur/redresseur, présente par exemple une tension nominale de 48V ou une tension nominale de valeur supérieure à 200V, et le deuxième sous-réseau électrique présente par exemple une tension nominale de 12V.
Le premier sous-réseau peut présenter une batterie et une unité de stockage d’énergie électrique formée par un ou plusieurs condensateurs et disposée en parallèle de la sortie continue de l’onduleur/redresseur. La capacité de cette unité de stockage d’énergie électrique est notamment comprise entre 2000 pF et 4000m F, par exemple de l’ordre de 3000m F.
L’invention a encore pour objet, selon un autre de ses aspects, un groupe motopropulseur de véhicule hybride ou électrique, comprenant :
- l’ensemble défini ci-dessus, et - une boîte de vitesses, comprenant des pignons, définissant des rapports de boîte, et
- un essieu avant et un essieu arrière, l’arbre de la machine électrique tournante étant solidaire en rotation :
- d’un arbre d’entrée de la boîte de vitesses, ou
- de l’arbre de sortie de la boîte de vitesses, ou
- de pignons fous de la boîte de vitesses, ou
- de l’essieu avant ou de l’essieu arrière.
En variante, l’arbre de la machine électrique peut être solidaire en rotation du vilebrequin du moteur thermique du véhicule, lorsque le groupe motopropulseur comprend un tel moteur thermique. Dans un tel cas, la machine électrique tournante peut comprendre une poulie ou tout autre moyen de liaison vers le reste du groupe motopropulseur du véhicule. La machine électrique est par exemple reliée, notamment via une courroie, au vilebrequin du moteur thermique du véhicule.
Le groupe motopropulseur peut comprendre un double embrayage, à sec ou humide, chacun des arbres de sortie du double embrayage formant alors un arbre d’entrée pour la boîte de vitesses.
L’invention a encore pour objet, selon un autre de ses aspects, un procédé de commande d’un onduleur/redresseur électriquement connecté à l’enroulement électrique de stator d’une machine électrique tournante ayant un rotor, notamment à aimants permanents, notamment pour un véhicule, procédé dans lequel, selon un mode de fonctionnement principal on génère des consignes pour l’onduleur/redresseur en utilisant comme signal représentatif de la température : la mesure représentative de cette température fournie par un capteur de température et l’estimation représentative de cette température fournie par un module estimateur de température, pour tout ou partie des vitesses de rotation du rotor.
Tout ou partie de ce qui précède s’applique encore à cet autre aspect de l’invention. L’invention pourra être mieux comprise à la lecture de la description qui va suivre d’exemples non limitatifs de celle-ci et à l’examen du dessin annexé sur lequel :
- la figure 1 représente de façon schématique et partiel un groupe motopropulseur auquel peut s’appliquer un exemple de mise en œuvre de l’invention,
- la figure 2 représente de façon schématique un exemple de machine électrique tournante du système de la figure 1, baignant dans l’huile,
- la figure 3 représente de façon isolée un exemple de rotor de la machine électrique tournante de la figure 2,
- la figure 4 représente de façon schématique, le circuit électrique de la machine électrique tournante du groupe motopropulseur des figures 1 et 2, et - la figure 5 représente de façon schématique un exemple de commande de l’onduleur/redresseur du circuit de la figure 4 en fonction de la position du rotor.
On a représenté sur la figure 1 un groupe motopropulseur 1 auquel peut s’appliquer l’invention. Le groupe motopropulseur 1 comprend ici un double embrayage 6 pouvant être à sec ou humide, à disques ou à lamelles.
Ce double embrayage présente deux arbres de sortie 2 et 3 qui sont ici concentriques. Chacun de ces arbres définit un arbre d’entrée de boîte de vitesses 4. La boite de vitesses 4 comprend, à l’intérieur d’un carter rempli d’huile, une pluralité de pignons définissant une pluralité de rapports de vitesse Rl-Rn. L’arbre 2 est ici associé à des rapports de vitesse impairs et l’arbre 3 est associé à des rapports de vitesse pairs.
Le couple en sortie de la boîte de vitesses 4 est transmis aux roues du véhicule, afin d’assurer une propulsion de ce véhicule.
Le groupe motopropulseur 1 est hybride ou électrique, comprenant une machine élec trique tournante 7 Cette machine tournante 7 est implantée à l’intérieur du carter de la boîte de vitesses 4. Dans l’exemple considéré, l’arbre de la machine tournante 7 est apte à coopérer par engrènement avec un pignon 8 solidaire de l’arbre 2 d’entrée de la boîte de vitesses associé aux rapports de vitesse impairs, mais d’autres positions sont possibles pour la machine électrique tournante 7, par exemple son engrènement avec un pignon solidaire de l’arbre 3 d’entrée de la boîte de vitesses associé aux rapports de vitesse pairs. Des emplacements de la machine électrique tournante 7 en dehors du carter de la boîte de vitesses 4 sont par ailleurs possibles.
Cette machine électrique tournante 7 peut former une source de propulsion électrique du véhicule. La machine électrique tournante 7 comporte un carter non représenté sur la figure 2. A l'intérieur de ce carter, elle comporte, en outre, un arbre 13, un rotor 12 solidaire en rotation de l’arbre 13, et un stator 10 entourant le rotor 12. Le mouvement de rotation du rotor 12 se fait autour d’un axe X. La machine électrique tournante 7 est ici une machine synchrone.
Bien que non représenté, le carter peut comporter un palier avant et un palier arrière qui sont assemblés ensemble, et peuvent chacun avoir une forme creuse et porter centralement un roulement à billes respectif pour le montage à rotation de l'arbre 13.
Dans cet exemple de réalisation, le stator 10 comporte une carcasse 15 en forme d'un paquet de tôles doté d'encoches, par exemple du type semi fermée ou ouverte, équipées d’isolant d’encoches pour le montage de l’enroulement électrique polyphasé du stator. Chaque phase comporte un enroulement traversant les encoches de la carcasse 15 et formant, avec toutes les phases, un chignon avant 16 et un chignon arrière 17 de part et d'autre de la carcasse 15 du stator. Les enroulements sont par exemple obtenus à partir d’un fil continu recouvert d’émail ou à partir d’éléments conducteurs en forme de barre tels que des épingles reliées entre elles. Chaque encoche peut recevoir plusieurs conducteurs, par exemple 2 ou 4 ou 6 conducteurs.
L’ enroulement électrique du stator définit ici un double système triphasé, un seul de ces systèmes étant représenté sur la figure 4, chacun de ces systèmes triphasés mettant alors en œuvre un montage en étoile ou en triangle dont les sorties sont reliées à un onduleur/redresseur 20. En variante, l’enroulement électrique du stator peut définir un unique système triphasé.
Le rotor f2 de la figure 2 est formé par un empilement de tôles, comme représenté sur la figure 3. Le nombre de paires de pôles défini par le rotor 12 peut être quelconque, par exemple être compris entre trois et huit, étant par exemple égal à trois, quatre, six ou huit. Le rotor 12 reçoit une pluralité d’aimants permanents non représentés sur ces figures 2 et 3 mais reçus dans des logements ménagés dans l’empilement de tôles.
On constate encore sur la figure 2 que l’arbre 13 est creux, de l’huile circulant à travers celui-ci. Des ouvertures ménagées dans l’arbre 13 et visibles sur la figure 2 permettent la projection radiale d’huile dans la machine, de sorte que le rotor et le stator baignent dans l’huile, dans l’exemple considéré.
Dans l’exemple considéré, la machine comprend un capteur 40 de mesure de la position du rotor, non représenté sur la figure 2. Ce capteur met par exemple en œuvre trois cellules à effet Hall interagissant avec une cible magnétique solidaire en rotation du rotor, mais d’autres capteurs sont possibles tels qu’un résolveur, un capteur inductif ou un capteur de bout d’arbre rotor. Le capteur mesure par exemple la position du rotor. Comme on le verra par la suite, un module estimateur 41 de la position du rotor est également prévu.
La machine comprend encore, dans l’exemple considéré, un ou plusieurs capteurs de température non représentés. Il s’agit par exemple de thermocouples ou de CTN. Ces capteurs peuvent mesurer la température des aimants permanents du rotor, étant alors positionnés axialement parlant en face de l’extrémité du rotor. Un module estimateur de la température des aimants permanents est également prévu, dans l’exemple considéré.
L’ enroulement électrique de stator de la machine électrique tournante 7 appartient à un circuit électrique comprenant l’onduleur/redresseur 20. Cet onduleur/redresseur 20 est interposé entre l’enroulement électrique du stator et un premier sous-réseau du réseau de bord du véhicule dont la tension nominale est dans l’exemple décrit égale à 48V. L’onduleur/redresseur 20 comprend par exemple plusieurs bras de commutation, chaque bras mettant en œuvre deux transistors montés en série et séparés par un point milieu. Chaque transistor est par exemple un transistor en nitrure de galium (GaN), en carbure de silicium (SiC), ou en silicium.
Le premier sous-réseau du réseau de bord comprend également dans l’exemple décrit une batterie 21 reliée au reste de ce premier sous-réseau par un interrupteur de déconnexion
22. Le premier sous-réseau peut encore comprendre ou non un ou plusieurs consommateurs
23, dont par exemple, mais de façon non limitative, un compresseur électrique de suralimentation.
Aux bornes de la sortie continue 24 de G onduleur/redresseur 20, dont la tension est mesurée dans l’exemple considéré, est disposée dans l’exemple décrit une unité de stockage d’énergie électrique 25, qui est par exemple formée par un condensateur ou par l’assemblage de plusieurs condensateurs. Cette unité de stockage d’énergie électrique 25 a par exemple une capacité comprise entre 3000m F et 4000m F.
Le circuit électrique comprend également dans l’exemple considéré un convertisseur de tension continu/continu 27 interposé entre le premier sous-réseau et un deuxième sous- réseau du réseau de bord. Similairement à G onduleur/redresseur 20, le convertisseur de tension continu/continu comprend par exemple des transistors qui peuvent être du même type que ceux mentionnés précédemment. Le deuxième sous-réseau du réseau de bord présente par exemple une tension nominale de 12V.
De façon connue, ce deuxième sous- réseau peut comprendre une batterie 30 ainsi que des consommateurs non représentés, pouvant être choisi(s) dans la liste suivante non limitative: système d’éclairage, système de direction assistée électrique, système de freinage, système de climatisation ou système d’autoradio.
Le circuit électrique comprend encore dans l’exemple considéré une unité de contrôle 32, qui peut être le calculateur central du véhicule ou être dédiée à tout ou partie du groupe motopropulseur 1. Cette unité de contrôle 32 communique via un réseau de données 33, qui est par exemple de type CAN, avec différents composants du circuit électrique, comme on peut le voir sur la figure 4.
L’unité de contrôle 32 peut recevoir un dispositif de commande 35 qui va maintenant être décrit. Le dispositif de commande 35 est par exemple un ASIC. L’invention n’est cependant pas limitée au cas où le dispositif de commande 35 est intégré à l’unité de contrôle 32. Dans l’exemple décrit, le dispositif de commande 35 génère des consignes pour G onduleur/redresseur 20 en fonction de la vitesse de rotation du rotor de la machine électrique tournante 7 et en fonction de la température des parties actives de cette machine 7, incluant par exemple la température des aimants permanents de ce rotor.
Dans ce but, et selon un mode de fonctionnement principal dont un exemple va être décrit en référence à la figure 5, le dispositif de commande 35 :
- génère des consignes pour onduleur/redresseur 20 en utilisant comme signal représentatif de la position du rotor uniquement la mesure fournie par le capteur de position 40, pour une première plage de vitesses de rotation du rotor, et
- génère des consignes pour onduleur/redresseur 20 en utilisant comme signal représentatif de la position du rotor l’estimation fournie par le module estimateur de position 41 et la mesure fournie par le capteur de position 40, pour une deuxième plage de vitesses de rotation du rotor dont les valeurs sont supérieures à celles de la première plage.
La première plage de vitesses correspond par exemple aux vitesses inférieures à 500 tr/min et la deuxième plage de vitesse correspond alors aux vitesses supérieures à 500 tr/min.
Selon cet exemple, un bloc 50 reçoit en entrée :
- l’estimation fournie par le module estimateur 41 de position,
- la mesure fournie par le capteur de position 40, et
- la mesure des courants de phase dans l’enroulement électrique de stator.
Ce bloc 50 réalise, dans la deuxième plage de valeurs, une fusion entre ces deux entrées en position sur la base desquelles il élabore une estimation du couple moteur sur l’arbre du rotor de la machine. Cette estimation du couple est reçue en entrée d’un bloc 51 qui compare cette estimation de couple avec une requête en couple reçue via un bloc 52.
Le bloc 51 élabore, pour commander l’onduleur/redresseur 20, des consignes pour les courants de phase et les tensions de phase dans l’enroulement électrique de stator. Le bloc 53 effectue une mesure de ces courants de phase, cette mesure étant reçue en entrée du bloc 50, comme on l’a déjà vu.
Dans la première plage de vitesses, bien que le bloc 50 reçoive en entrée l’estimation fournie par le module estimateur 41 de position, cette information n’est pas prise en compte par ce bloc 50 dans le mode de fonctionnement principal pour commander G onduleur/redresseur 20. Seule la mesure fournie par le capteur de position 40 est utilisée dans cette première plage de vitesses par le dispositif de commande 35 pour générer les consignes pour les courants de phase et les tensions de phase dans l’enroulement électrique de stator.
Bien que non représenté sur la figure 5, la commande de G onduleur/redresseur 20 par le dispositif de commande 35 prend en compte dans l’exemple décrit dans le mode de fonctionnement principal la température des aimants permanents du rotor. Pour toute la plage de fonctionnement dans ce mode principal, le dispositif de commande 35 peut générer des consignes pour l’onduleur/redresseur 20 en utilisant comme signal représentatif de la température la mesure fournie par le capteur de température précité et l’estimation fournie par le module estimateur de température précité.
Le bloc 50 de la figure 5 reçoit par exemple encore en entrée :
- l’estimation fournie par le module estimateur de température, et - la mesure fournie par le capteur de température.
Le bloc 50 réalise, pour toutes les valeurs de vitesse dans ce mode de fonctionnement principal, une fusion entre ces deux entrées en température lorsqu’il élabore l’estimation précitée du couple moteur sur l’arbre du rotor, estimation reçue en entrée du bloc 51 de la figure 5. Dans un mode de fonctionnement auxiliaire, la défaillance du capteur de position 40 et/ou du capteur de température peut être détectée. Dans ce cas, le dispositif de commande 35 peut, indépendamment de la valeur de la vitesse de rotation du rotor, n’utiliser que l’estimation fournie par le module estimateur 41 comme signal représentatif de la position du rotor et/ou n’utiliser que l’estimation fournie par le module estimateur comme signal représentatif de la température des aimants permanents pour générer les consignes pour
G onduleur/redresseur 20. Un tel mode de fonctionnement auxiliaire peut correspondre à un mode de retour au garage.
L’invention n’est pas limitée à ce qui vient d’être décrit.

Claims

Revendications
1. Ensemble de propulsion d’un véhicule électrique ou hybride, comprenant :
- une machine électrique tournante (7) comprenant un stator (10) et un rotor (12), à aimants permanents,
- un onduleur/redresseur (20) connecté électriquement à G enroulement électrique de stator et apte à être connecté au réseau de bord du véhicule, et
- un dispositif de commande (35) de l’onduleur/redresseur (20), le dispositif comprenant :
- au moins un capteur de température, apte à fournir une mesure représentative de la température des aimants permanents du rotor, et
- un module estimateur de température, apte à fournir une estimation représentative de la température de ces aimants permanents du rotor, le dispositif de commande (35) générant, dans un mode de fonctionnement principal, des consignes pour l’onduleur/redresseur (20) en utilisant comme signal représentatif de la température : la mesure fournie par le capteur de température, et l’estimation fournie par le module estimateur de température, pour tout ou partie des vitesses de rotation du rotor.
2. Ensemble selon la revendication 1 , dans lequel le capteur de température est une sonde de température de type CTN ou CTP ou un thermocouple.
3. Ensemble selon la revendication 1 ou 2, dans lequel le module estimateur de température met en œuvre un modèle thermique de la machine électrique tournante (7), notamment une cartographie reliant température et courants de phase dans l’enroulement électrique de stator.
4. Ensemble selon l’une quelconque des revendications précédentes, le dispositif de commande comportant :
- au moins un capteur (40) de position, apte à fournir une mesure représentative de la position du rotor, et
- un module estimateur (41) de position, apte à fournir une estimation représentative de la position du rotor, le dispositif de commande (35) générant, dans le mode de fonctionnement principal:
- des consignes pour l’onduleur/redresseur (20) en utilisant comme signal représentatif de la position du rotor uniquement la mesure fournie par le capteur de position (40), pour une première plage de vitesses de rotation du rotor, et
- des consignes pour l’onduleur/redresseur (20) en utilisant comme signal représentatif de la position du rotor au moins l’estimation fournie par le module estimateur (41) de position, notamment l’estimation fournie par le module estimateur (41) de position et la mesure fournie par le capteur de position (40), pour une deuxième plage de vitesses de rotation du rotor dont les valeurs sont supérieures à celles de la première plage.
5. Ensemble selon la revendication 4, dans lequel le capteur de position (40) est choisi parmi : un capteur à effet Hall, un capteur inductif, un résolveur, ou un capteur en bout d’arbre rotor.
6. Ensemble selon la revendication 4 ou 5, dans lequel la borne supérieure de la première plage de vitesses est confondue avec la borne inférieure de la deuxième plage de vitesses, cette borne commune étant supérieure à 200 tr/min, étant notamment égale à 500 tr/min.
7. Ensemble selon l’une quelconque des revendications précédentes, présentant un mode de fonctionnement auxiliaire dans lequel il génère des consignes pour G onduleur/redresseur (20) en utilisant comme signal représentatif de la température uniquement l’estimation fournie par le module estimateur de température, pour tout ou partie des vitesses de rotation du rotor.
8. Ensemble selon la revendication 7 et l’une quelconque des revendications 4 à 6, dans lequel, dans le mode de fonctionnement auxiliaire, le dispositif génère des consignes pour G onduleur/redresseur (20) en utilisant comme signal représentatif de la position du rotor uniquement l’estimation fournie par le module estimateur (41) de position, pour tout ou partie des vitesses de rotation du rotor.
9.Ensemble selon l’une quelconque des revendications précédentes, la machine électrique (7) tournante ayant une tension nominale de 48V.
10. Groupe motopropulseur (1) de véhicule hybride ou électrique, comprenant :
- l’ensemble selon l’une quelconque des revendications précédentes,
- une boîte de vitesses (4), comprenant des pignons, définissant des rapports de boîte, et
- un essieu avant et un essieu arrière, l’arbre de la machine électrique tournante (7) étant solidaire en rotation :
- d’un arbre d’entrée de la boîte de vitesses, ou
- de l’arbre de sortie de la boîte de vitesses, ou
- de pignons fous de la boîte de vitesses, ou
- de l’essieu avant ou de l’essieu arrière.
11. Groupe motopropulseur (1) selon la revendication 10, comprenant un double embrayage (6), à sec ou humide, chacun des arbres de sortie (2, 3) du double embrayage (6) formant alors un arbre d’entrée pour la boîte de vitesses (4).
12. Procédé de commande d’un onduleur/redresseur (20) électriquement connecté à l’enroulement électrique de stator (10) d’une machine électrique tournante (7) ayant un rotor (12) à aimants permanents, notamment pour un véhicule, procédé dans lequel, selon un mode de fonctionnement principal, on génère des consignes pour onduleur/redresseur (20) en utilisant comme signal représentatif de la température des aimants permanents du rotor (12): la mesure représentative de cette température fournie par un capteur de température et l’estimation représentative de cette température fournie par un module estimateur de température, pour tout ou partie des vitesses de rotation du rotor.
PCT/EP2022/058854 2021-04-12 2022-04-04 Dispositif de commande d'un onduleur/redresseur WO2022218736A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22720436.9A EP4324087A1 (fr) 2021-04-12 2022-04-04 Dispositif de commande d'un onduleur/redresseur
CN202280038612.2A CN117413456A (zh) 2021-04-12 2022-04-04 用于控制逆变器/整流器的装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FRFR2103766 2021-04-12
FR2103764 2021-04-12
FR2103766A FR3121804A1 (fr) 2021-04-12 2021-04-12 Dispositif de commande d’un onduleur/redresseur
FRFR2103764 2021-04-12

Publications (1)

Publication Number Publication Date
WO2022218736A1 true WO2022218736A1 (fr) 2022-10-20

Family

ID=81454789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/058854 WO2022218736A1 (fr) 2021-04-12 2022-04-04 Dispositif de commande d'un onduleur/redresseur

Country Status (2)

Country Link
EP (1) EP4324087A1 (fr)
WO (1) WO2022218736A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040046519A1 (en) * 2002-09-11 2004-03-11 Ford Global Technologies, Inc. Diagnostic strategy for an electric motor using sensorless control and a position sensor
US20130207589A1 (en) * 2010-07-28 2013-08-15 Moritz Margner Method and Device for Regulating Separately Excited Synchronous Machines
EP2860869A1 (fr) * 2013-10-09 2015-04-15 Valeo Embrayages Actionneur électrique pour système de transmission de véhicule
US20170334297A1 (en) * 2016-05-19 2017-11-23 GM Global Technology Operations LLC Permanent Magnet Electric Machine
EP3319227A1 (fr) * 2015-07-02 2018-05-09 NTN Corporation Dispositif d'entraînement par moteur
US20180244169A1 (en) * 2017-02-28 2018-08-30 Ford Global Technologies, Llc Systems and methods for charging an onboard energy storage device in a hybrid vehicle
US20200313586A1 (en) * 2019-03-26 2020-10-01 GM Global Technology Operations LLC Method of controlling current in an interior permanent magnet motor with thermal adaptation and powertrain with same
FR3096525A1 (fr) * 2019-05-20 2020-11-27 Valeo Embrayages Module de propulsion d’un véhicule électrique ou hybride

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040046519A1 (en) * 2002-09-11 2004-03-11 Ford Global Technologies, Inc. Diagnostic strategy for an electric motor using sensorless control and a position sensor
US20130207589A1 (en) * 2010-07-28 2013-08-15 Moritz Margner Method and Device for Regulating Separately Excited Synchronous Machines
EP2860869A1 (fr) * 2013-10-09 2015-04-15 Valeo Embrayages Actionneur électrique pour système de transmission de véhicule
EP3319227A1 (fr) * 2015-07-02 2018-05-09 NTN Corporation Dispositif d'entraînement par moteur
US20170334297A1 (en) * 2016-05-19 2017-11-23 GM Global Technology Operations LLC Permanent Magnet Electric Machine
US20180244169A1 (en) * 2017-02-28 2018-08-30 Ford Global Technologies, Llc Systems and methods for charging an onboard energy storage device in a hybrid vehicle
US20200313586A1 (en) * 2019-03-26 2020-10-01 GM Global Technology Operations LLC Method of controlling current in an interior permanent magnet motor with thermal adaptation and powertrain with same
FR3096525A1 (fr) * 2019-05-20 2020-11-27 Valeo Embrayages Module de propulsion d’un véhicule électrique ou hybride

Also Published As

Publication number Publication date
EP4324087A1 (fr) 2024-02-21

Similar Documents

Publication Publication Date Title
EP1766422B1 (fr) Procede de mesure du courant electrique dans une pluralite de conducteurs
EP1632019A1 (fr) Circuit de commande a modulation en largeur d'impulsions pour machine electrique multi mode et machine electrique multi mode equipee d'un tel circuit de commande
FR2894735A1 (fr) Generateur-moteur synchrone a enroulement de champ
FR2843658A1 (fr) Procede de commande par table de consultation d'un moteur
WO2021121770A1 (fr) Dispositif de détermination de la position angulaire d'un rotor de machine électrique tournante
FR2917917B1 (fr) Detection de position d'un rotor a l'arret et a vitesse reduite
WO2022084017A1 (fr) Dispositif de détermination de la position angulaire d'un rotor de machine électrique tournante
EP4324087A1 (fr) Dispositif de commande d'un onduleur/redresseur
FR3121804A1 (fr) Dispositif de commande d’un onduleur/redresseur
EP3095171B1 (fr) Procede de commande d'un module electronique de puissance apte a fonctionner en redresseur synchrone, dispositif de commande correspondant et machine electrique tournante de vehicule electrique comprenant un tel dispositif
WO2022199957A1 (fr) Composant électronique de commande d'un onduleur/redresseur
FR3077446A1 (fr) Procede d'estimation d'un courant continu genere par une machine electrique tournante
EP1974456B1 (fr) Dispositif de pilotage d'une machine tournante polyphasee
FR3124909A1 (fr) Convertisseur de tension pour une machine électrique tournante
FR3121001A1 (fr) Machine électrique tournante
EP4331108A1 (fr) Procede de determination du couple d'une machine electrique
EP4292207A1 (fr) Procédé de décharge d'au moins une unité de stockage d'énergie électrique d'un circuit
EP4113822A1 (fr) Convertisseur de tension pour une machine électrique tournante
FR3070801A1 (fr) Procede de protection thermique d'une machine electrique tournante
WO2022223756A1 (fr) Convertisseur de tension comprenant un dispositif de protection
FR3136132A1 (fr) Système de propulsion pour véhicule
WO2024083879A1 (fr) Dispositif de détermination de la position angulaire d'un rotor
FR3138744A1 (fr) Dispositif de détermination de la position angulaire d’un rotor de machine électrique tournante
FR3083385A1 (fr) Machine electrique tournante munie d'un capteur de courant et d'un module de diagnostic
EP1974458A1 (fr) Machine tournante polyphasee equipee d'un dispositif de pilotage perfectionne

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22720436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18555175

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022720436

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022720436

Country of ref document: EP

Effective date: 20231113

WWE Wipo information: entry into national phase

Ref document number: 202280038612.2

Country of ref document: CN