WO2022218389A1 - 超声与x光组合执行操作的方法、装置、系统及计算机可读存储介质 - Google Patents

超声与x光组合执行操作的方法、装置、系统及计算机可读存储介质 Download PDF

Info

Publication number
WO2022218389A1
WO2022218389A1 PCT/CN2022/086912 CN2022086912W WO2022218389A1 WO 2022218389 A1 WO2022218389 A1 WO 2022218389A1 CN 2022086912 W CN2022086912 W CN 2022086912W WO 2022218389 A1 WO2022218389 A1 WO 2022218389A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate system
operation target
ultrasound
ray
image
Prior art date
Application number
PCT/CN2022/086912
Other languages
English (en)
French (fr)
Inventor
柳建飞
潘鲁锋
胡润晨
周高峰
Original Assignee
诺创智能医疗科技(杭州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺创智能医疗科技(杭州)有限公司 filed Critical 诺创智能医疗科技(杭州)有限公司
Publication of WO2022218389A1 publication Critical patent/WO2022218389A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/12Arrangements for detecting or locating foreign bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5294Devices using data or image processing specially adapted for radiation diagnosis involving using additional data, e.g. patient information, image labeling, acquisition parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image

Definitions

  • the embodiments of the present application relate to the field of mechanical equipment and communication technologies, and in particular, to a method, apparatus, system, and computer-readable storage medium for performing operations in combination with ultrasound and X-ray.
  • Puncture guidance plays a leading role in minimally invasive surgery.
  • the current puncture guidance method is mainly to register three-dimensional CT images with endoscopes and X-ray machines.
  • the doctor judges the appropriate needle insertion based on the two-dimensional or three-dimensional scan images near the lesion. Point and needle insertion direction to complete the puncture operation.
  • CT and 3D reconstruction are used to confirm the location of the lesion in the 3D model of the human body and plan the path.
  • the virtual image in the system will be matched with the real-time image of the intraoperative endoscope, and the path planned in the human model before the operation will be matched to the real-time image. to guide the endoscope to the lesion.
  • the above method has the following technical defects:
  • the embodiments of the present application provide a method, a device, a system, and a computer-readable storage medium for performing an operation in combination with ultrasound and X-ray.
  • the real-time coordinates of the operation target in the mechanical coordinate system can be obtained by using the combined positioning method of ultrasound and X-ray. Improves the accuracy of positioning and further operations based on that location.
  • One aspect of the embodiments of the present application provides a method for performing an operation in combination with ultrasound and X-ray, including:
  • the position of the manipulation target is determined.
  • the embodiments of the present application further provide a device for performing operations in combination with ultrasound and X-ray, including: a memory and a processor;
  • the memory stores a computer program executable by the processor
  • the computer program includes:
  • an acquisition module configured to acquire an ultrasonic image of an operation target through an ultrasonic probe device provided with an ultrasonic probe marker;
  • the acquisition module is further configured to acquire the X-ray image of the ultrasound probe marker through an X-ray image acquisition device;
  • a positioning module configured to determine the position of the operation target based on the X-ray image and the ultrasound image.
  • an electronic device including:
  • the memory stores an executable computer program
  • the processor coupled with the memory invokes the executable computer program stored in the memory to execute each step in the above-mentioned method for performing operations in combination with ultrasound and X-ray.
  • An aspect of the embodiments of the present application further provides a system for performing operations in combination with ultrasound and X-ray, including: an ultrasound detection device, an X-ray image acquisition device, an ultrasound probe marker, a signal conversion device, and a processor;
  • the ultrasonic detection device includes a sheath tube and a catheter with a water bladder built in the sheath tube;
  • the ultrasound probe marker has a positioning structure for positioning the contour
  • the processor is configured to perform steps in the method for performing operations in combination with ultrasound and X-ray as described above.
  • An aspect of the embodiments of the present application further provides a computer-readable storage medium on which a computer program is stored, and when the computer program is run by a processor, implements the method for performing operations by combining ultrasound and X-ray as provided in the foregoing embodiments .
  • the ultrasound image of the operation target is obtained through the ultrasound probe device provided with the ultrasound probe marker
  • the X-ray image of the ultrasound probe marker is obtained through the X-ray image acquisition device. Based on the X-ray image and the ultrasound Image, determine the position of the operation target, and use the combined positioning method of ultrasound and X-ray to obtain the position of the operation target, which can improve the accuracy of positioning.
  • FIG. 1 is a schematic structural diagram of a system for performing operations in combination with ultrasound and X-ray provided by an embodiment of the present application;
  • FIG. 2 is a schematic cross-sectional view of the structure of the catheter of the ultrasound detection device in the system for performing operations in combination with ultrasound and X-ray shown in FIG. 1;
  • FIG. 3 is another structural schematic diagram of the catheter in the system for performing operations in combination with ultrasound and X-ray shown in FIG. 1;
  • FIG. 4 to 7 are schematic diagrams illustrating the working principle of the catheter in the system for performing operations in combination with ultrasound and X-ray shown in FIG. 1;
  • FIG. 8a to 8d are schematic diagrams of the shape of the ultrasound probe marker in the system for performing operations in combination with ultrasound and X-ray shown in FIG. 1;
  • FIG. 9 is a schematic cross-sectional view of another structure of the catheter of the ultrasonic detection device shown in FIG. 1;
  • FIG. 10 is a flowchart for realizing a method for performing an operation in combination with ultrasound and X-ray provided by an embodiment of the present application
  • FIG. 11 is a schematic diagram of the overall structure of an X-ray machine provided by an embodiment of the application.
  • Fig. 12 is a partial enlarged view of the X-ray machine shown in Fig. 11, which shows the Stewart platform of the transmitting end;
  • Fig. 13 is another partial enlarged view of the X-ray machine shown in Fig. 11, which shows the Stewart platform of the receiving end;
  • FIG. 14 is a flowchart for realizing the control method of an X-ray machine provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of the static platform coordinate system S tre -X stre Y stre Z stre and the moving platform coordinate system M re -X Mre Y Mre Z Mre of the Stewart platform at the receiving end;
  • 16 is a schematic diagram of the static platform coordinate system S ttr -X sttr Y sttr Z sttr and the moving platform coordinate system M tr -X Mtr Y Mtr Z Mtr of the Stewart platform at the transmitting end;
  • Figure 17 is a schematic diagram of a transmitter Stewart platform and a receiver Stewart platform facing each other;
  • FIG. 18 is a schematic diagram of the position change of the Stewart platform at the transmitting end and the Stewart platform at the receiving end;
  • Figure 19 is a schematic diagram of the main operator controlling the Stewart parallel platform at the X-ray transmitting end and the Stewart parallel platform at the X-ray receiving end;
  • Figure 20 is a schematic diagram of ultrasound image acquisition
  • Figure 21 is a schematic diagram of the probe coordinate system
  • Fig. 22 is the schematic diagram of the ultrasonic detection surface obtained by rotating again;
  • Figure 23 is a schematic diagram of the principle of ultrasonic detection and calculation of position
  • 24 is a schematic diagram of the spatial coordinates of the target point registered to the X-ray image obtained by the X-ray image acquisition device;
  • FIG. 25 is a schematic diagram of a lesion position registered to a virtual image obtained by a CT scan
  • Figure 26 is a schematic diagram of the comparison between the position of the needle tip of the puncture needle and the virtual target point obtained by this shooting;
  • FIG. 27 is a schematic structural diagram of a module of an apparatus for performing operations in combination with ultrasound and X-ray according to an embodiment of the application;
  • FIG. 28 is a schematic diagram of a hardware structure of an electronic device according to an embodiment of the present application.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , it can also be integrated; it can be a mechanical connection, an electrical connection, or a communication connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two components or two components. interactions, unless otherwise expressly defined.
  • the specific meanings of the above terms in this application can be understood according to specific situations.
  • the technical solutions of the present application will be described in detail below with specific examples. The following specific embodiments may be combined with each other, and the same or similar concepts or processes may not be repeated in some embodiments.
  • the operation target takes the lesion as an example
  • the parallel platform of the X-ray machine takes the Stewart parallel platform as an example.
  • FIG. 1 a schematic structural diagram of a system for performing operations in combination with ultrasound and X-ray provided by an embodiment of the present application.
  • the system for performing operations in combination with ultrasound and X-ray includes: an ultrasound detection device 101 , an X-ray image acquisition device 102 , an ultrasound probe marker 103 , a signal conversion device 104 and a processor 105 .
  • the ultrasonic probe marker 103 and the signal conversion device 104 are installed on the ultrasonic detection device 101 .
  • the ultrasound probe marker 103 and the signal conversion device 104 eg, an ultrasound transducer
  • the ultrasonic probe is optionally a mechanical probe, which needs to be rotated for imaging.
  • the ultrasound probe can also be a phased array probe that does not need to be rotated for imaging.
  • the ultrasonic probe can be controlled to stop rotating and the X-ray can be used to directly obtain the detection surface, the spatial position of the target, and the angle information of the target in the detection surface. There is no need to stop the probe to obtain the ultrasonic transducer. the starting direction of the device.
  • the catheter 111 of the ultrasound detection device 101 has a water bladder structure 112, which can be matched with the intravascular ultrasound catheter, so that the catheter 111 can be used in a gas environment.
  • the end of the sheath tube of the catheter 111 is provided with a water bladder structure and a sealing structure, and the sheath tube can be filled with water.
  • the sheath tube is used in combination with an intravascular ultrasound catheter without a water bladder structure. Insert the intravascular ultrasound catheter without a water balloon structure into the sheath, and the sheath takes the ultrasound catheter into the bronchus to avoid the ultrasound catheter being too soft and bending. After the sheath is filled with water, the ultrasound catheter is placed in a blood vessel-like environment for smoother rotation.
  • the water bladder at the end of the sheath can be inflated after water injection, so that the surface of the water bladder is in close contact with the tracheal wall, so that the ultrasound probe can obtain ultrasound images in a liquid environment.
  • the catheter 111 includes an adapter, a catheter body, and a water bladder.
  • One end of the catheter body is fixedly connected with the adapter, and the other end is fixedly connected with the water bladder.
  • One end of the adapter is used to connect the water injector, the other end is the sealing surface, and there is a small hole in the middle for the access of the ultrasonic catheter.
  • the working principle of the catheter 111 is that the water injector injects water into the sheath, so that the water bladder expands and contacts the tracheal wall, so that the intravascular ultrasound system obtains ultrasound images around the probe.
  • the ultrasound probe marker 103 may be a metal marker or an optical marker that can be visualized under X-rays.
  • the marker can reflect the position of the ultrasound probe, and can also reflect the posture of the ultrasound probe.
  • the marker is usually not a regular geometric object (such as a cube, a sphere, etc.), otherwise it is difficult to distinguish the posture under the projection of X-ray.
  • the marker can be a three-dimensional structure that can indicate orientation.
  • the ultrasound probe marker 103 includes a positioning structure, and the positioning structure is used to locate different positions on the contour of the ultrasound probe marker 103, thereby realizing the positioning of the position or direction of the ultrasound probe, for example, as shown in FIG. 23 .
  • Positioning structures 1031 including gaps and arrows are included on the marker.
  • the ultrasound probe marker 103 is preferably a metal marker, which is used to indicate the starting position of the ultrasound probe under X-ray. By measuring the position of the ultrasound probe marker 103, the angle between the target point in the detection surface and the starting position can be measured. , so as to obtain the specific coordinates of the target point in space.
  • the shape of the marker is not unique. As an example, the shape of the marker can be specifically shown in FIG. 8 a to FIG. 8 d . In practical applications, the marker may also have other forms as required, which is not specifically limited in this application.
  • the installation position of the ultrasonic probe marker 103 in the ultrasonic catheter is not unique. As shown in FIG. 2 , the ultrasonic probe marker 103 is preferably installed below the signal conversion device 104 . Alternatively, the ultrasound probe marker 103 can also be installed at other positions of the ultrasound catheter, as long as the ultrasound probe marker 103 is directed in the same direction as the signal conversion device 104 , such as above the signal conversion device 104 as shown in FIG. 9 .
  • the ultrasonic detection device 101 is used to collect an ultrasonic image of a certain part of the body to determine the orientation of the target point.
  • the ultrasonic detection device 101 may be a bronchoscope with an ultrasonic probe installed at the front end.
  • the X-ray image acquisition device 102 is used to acquire the X-ray image of the body part, and the body part locates the above-mentioned ultrasonic probe; the above-mentioned ultrasonic probe marker 103 (eg, a developing ring or a metal piece) placed in the ultrasonic detection device 101 is used for During X-ray imaging, the position of the ultrasonic detection device 101 relative to the target is determined; the signal conversion device 104 is used to convert the acoustic wave signal into an electrical signal; the processor 105 is configured to determine the position of the ultrasonic probe, convert the X-ray The radiographic image and the ultrasonic image are combined to determine the position of the ultrasonic detection device 101, and to solve the geometric orientation of the target point. For details, refer to the description of the embodiment shown in FIG. 10 .
  • the processor 105 is electrically coupled to the ultrasonic detection device 101, the X-ray image acquisition device 102 and the signal conversion device 104 respectively, and performs data interaction with the X-ray image acquisition device 102 and the ultrasonic detection device 101, or, with the X-ray image acquisition device 102 performs data interaction with the signal conversion device 104 , or performs data interaction with the X-ray image acquisition device 102 , the ultrasonic detection device 101 and the signal conversion device 104 .
  • the processor 105 implements the method for combining ultrasound and X-ray in the following embodiments according to the data sent by the X-ray image acquisition device 102 and the ultrasound detection device 101 and/or the signal conversion device 104 .
  • the signal conversion device 104 may directly output the data to the processor 105 , or forward the data to the processor 105 after being processed by the processor of the ultrasonic detection device 101 .
  • the processor 105 can also be used to plan a percutaneous puncture path, and the target point puncture path planning is mainly based on the position of the target point determined by a method combined with a medical image.
  • FIG. 2 and FIG. 9 only show part of the structure of the ultrasonic detection device 101 , and in practical applications, the ultrasonic detection device 101 may have more or less structures as required.
  • FIG. 10 a schematic flowchart of the implementation of the method for performing operations in combination with ultrasound and X-ray provided by an embodiment of the present application.
  • the method can be applied to the system shown in FIG. 1 that performs operations in combination with ultrasound and X-ray, and is implemented by the processor 105 .
  • the method can also be applied to a computer device that implements the method shown in FIG. 10 by utilizing data interaction with a system that performs operations in combination with ultrasound and X-ray.
  • the processor 105 may be configured independently in a computer device with a data processing function, or may also be integrated in the ultrasound detection device 101 or the X-ray image acquisition device 102 .
  • the computer equipment with data processing function may include, but is not limited to, for example, various mobile terminals such as mobile phones and tablet computers, desktop computers, servers, and robots with surgical navigation systems.
  • the method includes:
  • Step S201 obtaining an ultrasound image of an operation target through an ultrasound probe device provided with an ultrasound probe marker
  • the operation target is specifically a lesion
  • the target area is an area of a preset range around the operation target, which can be understood as the vicinity of the lesion.
  • the ultrasonic detection device may be a bronchoscope with an ultrasonic probe installed at the end. Existing technical means are used to control the distal end of the bronchoscope to reach the vicinity of the lesion.
  • the method further includes: controlling the ultrasonic probe device to enter a target area, where the target area contains the operation target.
  • Step S202 acquiring an X-ray image of the ultrasound probe marker through an X-ray image acquisition device
  • the X-ray images of the ultrasound probe marker are respectively captured at a plurality of different positions by the X-ray image acquisition device;
  • each X-ray image acquisition device is installed on a preset platform, and each X-ray image includes the relative positions of several contour feature points marking the ultrasound probe marker relative to the center point of the X-ray image.
  • Step S203 Determine the position of the operation target based on the X-ray image and the ultrasound image.
  • the position parameter of the operation target in the ultrasonic probe coordinate system is obtained, and the ultrasonic probe coordinate system is established based on the ultrasonic probe device;
  • the position coordinates of the ultrasonic probe marker in the mechanical coordinate system are obtained.
  • obtaining the position parameters of the operation target in the ultrasonic probe coordinate system includes:
  • the ultrasonic image of the operation target determine the relative position information of the ultrasonic probe marker and the operation target, and obtain the relative position information of the operation target in the ultrasonic probe coordinate system according to the relative position information of the ultrasonic probe marker and the operation target. positional parameters.
  • the relative position information includes the linear distance and included angle of the operation target, and the position parameters of the operation target in the ultrasonic probe coordinate system include the position coordinates and position matrix of the operation target in the ultrasonic probe coordinate system.
  • the ultrasonic detection surface of the operation target of the ultrasonic probe device is located in the XZ plane of the ultrasonic probe coordinate system, and the end of the ultrasonic probe marker is located on the Z axis of the ultrasonic probe coordinate system. Then, measure the linear distance l c and the included angle ⁇ c between the ultrasonic probe marker and the operation target;
  • lc is the linear distance between the end of the ultrasound probe marker on the ultrasound image of the operation target and the operation target; ⁇ c is the end of the ultrasound probe marker on the ultrasound image of the operation target and the operation target The included angle; lm is the straight-line distance between the end of the ultrasound probe marker on the ultrasound image of the target and the origin of the ultrasound probe coordinate system.
  • determining the position coordinates of the ultrasound probe marker in the pre-established mechanical coordinate system according to the X-ray image specifically including:
  • the image information includes the relationship between the relative position and the motion parameter.
  • the coordinates of several contour feature points of the ultrasound probe marker in the coordinate system of the platform are converted into the ultrasound probe marker
  • the position coordinates of several contour feature points of the object under the mechanical coordinate system specifically including: according to the transformation relationship between the coordinate system of the platform and the mechanical coordinate system, the xyz coordinates of each contour feature point are converted into the The position coordinates of the contour feature point under the mechanical coordinate system; in each X-ray image, according to the position coordinates of the contour feature point under the mechanical coordinate system, determine the ultrasonic probe marker under the mechanical coordinate system.
  • the method further includes: based on the position of the operation target, generating a virtual image of the operation target in the pre-established virtual image of the target area;
  • the position coordinates of the ultrasonic probe marker in the mechanical coordinate system are obtained, and the The position coordinates are registered in the pre-established virtual image of the target area, and the virtual image of the operation target is generated in the virtual image;
  • the virtual image may be a CT virtual image.
  • the attitude matrix of the ultrasonic probe coordinate system in the mechanical coordinate system is obtained, and according to the attitude matrix and the preset coordinate transformation matrix to obtain the coordinates of the operation target in the mechanical coordinate system;
  • Registration refers to the matching of geographic coordinates of different image patterns obtained by different imaging means in the same area. Including geometric correction, projection transformation and unified scale processing. Refer to the prior art for registration operations in the field of lesion localization.
  • the method further includes: planning an operation path according to the virtual image of the operation target, and controlling the operation robot arm according to the In the operation path, the instrument gripped by the operation robot arm is delivered to the operation target, and a preset operation is performed on the operation target.
  • the preset operation may be puncturing, that is, puncturing the lesion.
  • the X-ray image of the ultrasound probe marker is acquired by the X-ray image acquisition device installed on the robot, the position coordinates of the ultrasound probe marker in the mechanical coordinate system are determined according to the X-ray image, and the coordinates are determined according to the coordinates. position, and determine whether the preset operation performed by the instrument on the operation target complies with the preset completion condition.
  • the X-ray machine determines the position coordinates of the ultrasound probe marker in the mechanical coordinate system through the X-ray image. Refer to the following method for the coordinates of the three contour feature points A, B, and C of the contour of the ultrasound probe marker. , determine the position of the ultrasound probe marker with the position of the contour feature point, and by comparing the position of the ultrasound probe marker with the position of the operation target in the virtual image in step S204, it is judged that the instrument punctures the lesion Whether the preset depth completion condition is reached.
  • the system for performing operations in combination with ultrasound and X-rays and the method for performing operations in combination with ultrasound and X-rays is an X-ray machine, specifically a dual Stewart platform opposite-radiation X-ray machine, including: transmitting The end Stewart platform manipulator (hereinafter referred to as the transmitting end Stewart platform), the X-ray transmitter, the X-ray receiver, the receiving end Stewart platform manipulator, the position sensor and the control processing device.
  • the end Stewart platform manipulator hereinafter referred to as the transmitting end Stewart platform
  • the X-ray transmitter is fixed at the end of a mechanical arm of a surgical robot with a multi-degree-of-freedom mechanical arm
  • the receiver is installed under the operating bed board
  • a receiving end Stewart platform machine is movably installed on the operating bed base or floor.
  • the receiver is installed on the receiving end Stewart platform manipulator, and the receiving end Stewart platform manipulator (hereinafter referred to as the receiving end Stewart platform) can be used to adjust the position and angle of the receiver.
  • the two Stewart platform machines at the transmitter and receiver are used to flexibly adjust the positions of the X-ray transmitter and receiver, to ensure that the transmitter and receiver are always on the same axis, and to obtain fluoroscopic images of patients in different directions according to the needs of the doctor.
  • the control processing device receives the signals of the transmitter and the position sensor on the receiver, and controls the transmitter to reach the expected fluoroscopy position according to the needs of the doctor. Specifically, according to the known position information of the transmitter, the receiving position that the receiver should reach is calculated, and the Stewart platform of the receiving end is driven to adjust the receiver to reach the receiving position, so as to always ensure that the transmitter and the receiver are on the same axis, That is, the plane of the receiver is parallel to the plane of the transmitter in real time, and the vertical lines of the Stewart platform of the transmitting end and the Stewart platform of the receiving end coincide in real time, so that the X-rays emitted by the transmitting end can be received by the receiving end in real time, which can ensure the accuracy of fluoroscopic imaging. Effect.
  • FIG. 11 is a schematic structural diagram of an X-ray machine provided by an embodiment of the application.
  • the X-ray machine can be divided into an X-ray emitting end and an X-ray receiving end distributed on the upper and lower sides of the operating bed;
  • the transmitting end includes a robotic arm 10, a transmitting end Stewart platform 20 connected with the robotic arm 10, and an X-ray transmitter 30 connected with the transmitting end Stewart platform 20;
  • the X-ray receiver 40 of the X-ray, and the receiving end Stewart platform 50 connected with the X-ray receiver 40, wherein the X-ray transmitter 30 and the X-ray receiver 40 can be connected to the robot arm 10, the transmitting end Stewart platform 20, and Driven by the Stewart platform 50 at the receiving end, the axes are kept in alignment.
  • FIG. 12 is an enlarged schematic view of the Stewart platform 20 at the transmitting end of the X-ray machine shown in FIG. 11 .
  • the Stewart platform 20 at the transmitting end is a six-degree-of-freedom parallel mechanism, which includes a static platform 21 at the transmitting end, a moving platform 22 at the transmitting end, and a static platform 21 connected to the static platform 21 at the transmitting end and the moving platform at the transmitting end.
  • Six transmitting end telescopic elements 23 between the platforms 22 .
  • the static platform 21 at the transmitting end is connected to one end of the six telescopic elements 23 at the transmitting end by means of U-width hinge or spherical hinge.
  • the static platform 21 at the transmitting end can rotate in the X-axis and Y-axis directions, but the degree of freedom in the Z-axis direction is limited.
  • the telescopic element 23 at the transmitting end is composed of a motor and a lead screw, and the lead screw is driven by the motor to expand and contract freely, thereby changing the motion state of the moving platform 22 at the transmitting end.
  • the six telescopic elements 23 at the transmitting end are arranged according to a certain rule, so that the deflection angle of the telescopic elements 23 at the transmitting end is small.
  • the deflection angle between the telescopic element 23 at the transmitting end and the Z axis is within ⁇ 20°.
  • the diameter of the moving platform 22 at the transmitting end is smaller than the diameter of the static platform 21 at the transmitting end.
  • the motion state of the transmitting end moving platform 22 is controlled by the length changes of the six transmitting end telescopic elements 23, and can realize the rotation in three directions of the X axis, the Y axis and the Z axis.
  • the transmitting end static platform 21 of the transmitting end Stewart platform 20 is fixedly connected to the robotic arm 10
  • the transmitting end moving platform 22 of the transmitting end Stewart platform 20 is fixedly connected to the X-ray transmitter 30 .
  • the X-ray machine further includes a robot column 60 and a plurality of robotic arms 10 connected to the robot column 60 .
  • the X-ray transmitter 30 is located at the end of one of the robotic arms 10 of the plurality of robotic arms 10 .
  • the transmitting-end Stewart platform 20 is connected to the end of one of the robotic arms 10
  • the X-ray transmitter 30 is connected to the transmitting-end moving platform 22 of the transmitting-end Stewart platform 20 .
  • the robot arm 10 includes a rotation mechanism 11 , a first telescopic mechanism 12 , and a second telescopic mechanism 13 .
  • One end of the rotating mechanism 11 is rotatably connected to the robot column 60 , and the other end is connected to one end of the first telescopic mechanism 12 .
  • the other end of the first telescopic mechanism 12 is rotatably connected to one end of the second telescopic mechanism 13 .
  • the other end of the second telescopic mechanism 13 is connected to the transmitting end static platform 21 of the transmitting end Stewart platform 20 .
  • FIG. 13 is a partial enlarged view of the receiving end Stewart platform 50 of the X-ray machine shown in FIG. 11 .
  • the receiving end Stewart platform 50 is a six-degree-of-freedom parallel mechanism, including a receiving end static platform 51, a receiving end moving platform 52, and a receiving end moving platform 52.
  • the receiving end static platform 51 is connected to one end of the six receiving end telescopic elements 53 by means of U-width hinge or ball hinge.
  • the static platform 51 at the receiving end can rotate in the X-axis and Y-axis directions, but the degree of freedom in the Z-axis direction is limited.
  • the telescopic element 53 at the receiving end is composed of a motor and a lead screw, and the lead screw is driven by the motor to expand and contract freely, thereby changing the motion state of the moving platform 52 at the receiving end.
  • the six telescopic elements 53 at the receiving end are arranged according to a certain rule, so that the deflection angle of the telescopic elements 53 at the receiving end is small.
  • the deflection angle between the telescopic element 53 at the receiving end and the Z axis is within ⁇ 20°.
  • the diameter of the moving platform 52 at the receiving end is smaller than the diameter of the static platform 51 at the receiving end.
  • the movement state of the receiving end moving platform 52 is controlled by the length variation of the six receiving end telescopic elements 53, and can realize the rotation in three directions of the X axis, the Y axis and the Z axis.
  • the receiving end static platform 51 of the receiving end Stewart platform 50 is installed on the ground, specifically on a cross-shaped slide rail, and the receiving end moving platform 52 of the receiving end Stewart platform 50 is fixedly connected to the X-ray receiver 40 .
  • the X-ray machine further includes a transmitter position sensor, a receiver position sensor, and a control processor electrically connected with the transmitter position sensor and the receiver position sensor.
  • the transmitter position sensor is used to detect the position of the X-ray transmitter 30
  • the receiver position sensor is used to detect the position of the X-ray receiver 40 .
  • the control processor is used for receiving signals from the transmitter position sensor and the receiver position sensor, and controls the X-ray transmitter 30 and the X-ray receiver 40 to reach the expected position by controlling the transmitter Stewart platform 20 and the receiver Stewart platform 50 .
  • the doctor inputs the pre-planned position information based on the operating table 70 . If the transmitter position sensor detects that the X-ray transmitter 30 is not located at the target transmission position, the control processor controls the robotic arm 10 and the transmitter Stewart platform 20 to automatically move to the planned pose to realize the positioning of the X-ray transmitter 30 . Next, the control processor calculates the receiving position that the X-ray receiver 40 should reach according to the detected position information of the X-ray transmitter 30, and drives the Stewart platform 50 of the receiving end to adjust to the accurate receiving position accordingly, so as to ensure the X-ray receiver 40.
  • the light transmitter 30 and the X-ray receiver 40 are always on the same axis to complete transmission images in different directions and ensure the effect of fluoroscopic imaging.
  • control method of the X-ray machine specifically includes the following steps:
  • Step S301 establishing the static platform coordinate system Stre-X stre Y stre Z stre and the moving platform coordinate system Mre-X Mre Y Mre Z Mre of the receiving end Stewart platform;
  • the static platform coordinate system S tre -X stre Y stre Z stre and the moving platform coordinate system M re -X Mre Y Mre Z Mre of the receiving end Stewart platform are established.
  • the static platform coordinate system Sttr -X sttr Y sttr Z sttr and the moving platform coordinate system M tr -X Mtr Y Mtr Z Mtr of the Stewart platform of the transmitting end are established.
  • the establishment rules of the above coordinate system include: the origin of the receiving end static platform is located at the center of the static platform, and the directions of the XYZ axes are respectively parallel to the XYZ axes of the mechanical coordinate system; the origin of the receiving end moving platform is located at the center of the moving platform, and in the initial state The directions of the XYZ axes are each parallel to the XYZ axes of the machine coordinate system.
  • the mechanical coordinate system refers to the coordinate system OX O Y O Z O of the dual Stewart platform to the X-ray machine.
  • the mechanical coordinate system is set at the center of the base of the robot arm, the origin O of the mechanical coordinate system is at the center of the robot base, and the Z axis Vertically upward, the Y axis points to the robot arm from the origin, and the X axis points vertically to the column 60 of the robot.
  • the mechanical coordinate system is the world coordinate system of the robot.
  • the directions of the two crossed guide rails of the slide rail are respectively parallel to the X axis and the Y axis of the machine coordinate system.
  • Step S302 based on the establishment rule of the coordinate system, solve and obtain the transformation matrix between the coordinate system of the static platform of the receiving end and the mechanical coordinate system;
  • the following transformation matrix between the static platform coordinate system of the Stewart parallel platform at the X-ray receiving end and the mechanical coordinate system can be obtained through calculation:
  • x 0 , y 0 , z 0 are the coordinates of the origin of the coordinate system of the receiving end static platform at the initial position in the mechanical coordinate system; x re , y re are the movement of the receiving end static platform along the slide rail to the positive direction of the X axis, respectively The distance and the displacement of the receiving end static platform moving in the positive direction of the Y axis along the slide rail.
  • the transformation matrix between the known mechanical coordinate system and the static platform coordinate system of the transmitting end that is, the coordinate system calculated by the robotic arm Stewart
  • the transformation matrix between the coordinate system of the static platform of the receiving end, the coordinate system calculated by Stewart of the manipulator and the coordinate system of the user are:
  • the transformation matrix between the coordinate systems of the moving and static platforms at the transmitting end can be known. and the transformation matrix between the coordinate system of the moving and static platform at the receiving end
  • the transformation matrix between the coordinate system of the transmitting end moving platform, the mechanical coordinate system and the user coordinate system can be obtained and And, the transformation matrix between the coordinate system of the moving platform at the receiving end, the mechanical coordinate system and the user coordinate system
  • Step S303 using the transformation matrix and the preset control algorithm of the X-ray receiving end to control the movement of the Stewart platform of the receiving end.
  • control algorithm of the X-ray receiving end is as follows:
  • the distance between the Stewart platform at the transmitting end and the Stewart platform at the receiving end has no effect on the detection of lesions, so the coordinates of the origin of the coordinate system of the moving platform at the receiving end in the Z-axis direction of the mechanical coordinate system are fixed.
  • the Stewart platform of the receiving end has a wide range of movement in the XY plane of the slide rail, so the movement of the X-ray receiving end in the XY plane is realized through the slide rail, and the attitude rotation of the receiving end is realized by the Stewart platform of the receiving end.
  • mapping rules are as follows: The translational movement of the main hand is scaled by the displacement proportional coefficient K, and the rotation angle is mapped to the moving platform of the Stewart platform of the transmitting end according to the original proportion. .
  • the specific implementation method is as follows:
  • the pose matrix of the transmitting end moving platform coordinate system in the user coordinate system can be calculated. and will Save as known value.
  • the pose matrix T Mt of the end point of the master hand in the user coordinate system at the time T is obtained according to the forward kinematics of the master hand.
  • T Mtij is used to represent the element of the i-th row and the j-th column in the T Mt matrix.
  • mapping matrix T Map the pose matrix of the transmitting end moving platform coordinate system in the user coordinate system can be obtained
  • the motion parameters of the joints of the Stewart platform at the receiving end can be calculated to realize the correspondence between the moving platform at the receiving end and the moving platform at the transmitting end.
  • the origin of the moving platform coordinate system of the receiving end is located on the Z axis of the moving platform coordinate system of the transmitting end, the position vector of the origin of the moving platform coordinate system of the receiving end under the coordinate system of the moving platform of the transmitting end can be obtained.
  • the transformation matrix of the mechanical coordinate system and the coordinate system of the transmitting end moving platform can be used Solve to get the position vector of the origin of the moving platform coordinate system of the receiving end in the mechanical coordinate system
  • the main operator controls the Stewart parallel platform at the X-ray transmitting end and the Stewart parallel platform at the X-ray receiving end
  • the Stewart platform at the transmitting end controls the change of the angle of the X-ray transmitter from the initial position to the collection position and the change of the coordinates. changes, as well as the changes in the angle and coordinates of the X-ray receiver controlled by the Stewart platform at the receiving end from the initial position to the acquisition position, as shown in Figure 18 and Figure 19 .
  • puncture guidance In minimally invasive surgery, accurate and rapid surgical puncture is the basis for ensuring successful surgery and shortening treatment time.
  • the leading role in minimally invasive surgery is puncture guidance.
  • the main methods of puncture guidance are C-arm X-ray guidance and ultrasound guidance.
  • C-arm X-ray guidance cannot illuminate the outline of soft tissue, and ultrasound guidance has the problems of unclear puncture needle angiography, The guidance is not intuitive enough.
  • the doctor judges the appropriate needle insertion point and needle insertion direction through the 2D or 3D scan image near the lesion, and then manually completes the puncture operation based on experience, which makes it difficult for the doctor to grasp the puncture direction and depth.
  • the robot When using a puncture robot for surgery, the robot cannot locate lesions in certain parts of the human body with a single medical image. Taking pulmonary nodules as an example, due to the presence of gas in the lungs, it is not possible to directly detect the lesions in vitro with an ultrasound instrument. The entire lung is a soft tissue, and it is impossible to locate the lesions by irradiating X-rays in vitro.
  • the present application considers to locate the lesion in real time by combining the above two methods, and obtain the coordinates of the lesion in the mechanical coordinate system. Specifically, firstly, the ultrasound instrument is entered into the human lungs through the navigation instrument to check the lesion site, and the position of the lesion based on the ultrasound probe is obtained, and then the ultrasound probe based on the marker installed on the ultrasound probe that can be identified by the in vitro X-ray device is obtained. The position of the extracorporeal X-ray equipment can be obtained to obtain the position of the lesion based on the X-ray equipment, that is, the position of the lesion in the mechanical coordinate system can be obtained, and finally the precise registration of the target point and the human body can be achieved.
  • the working principle of a puncture robot with a surgical navigation system is as follows: First, the puncture robot or a third-party computer equipment 3D synthesizes the scanned two-dimensional images to form a three-dimensional image near the lesion. Then, the doctor judges the position of the target point and the appropriate needle entry path through the three-dimensional image and inputs it into the navigation system; after that, the navigation system calculates the current state and target point of the robot manipulator and plans a trajectory; finally, the operation The arm completes the puncture positioning according to the planned trajectory, and then the needle is inserted into the vicinity of the lesion through external needle puncture or through the interventional instrument, which avoids the error caused by pure manual operation.
  • the X-ray image acquisition device is integrated with the robot or installed on the robotic arm of the robot. Therefore, the coordinate system of the X-ray image acquisition device can be regarded as a mechanical coordinate system. Navigate according to the target position of the lesion in the mechanical coordinate system, for example, control the robot to perform a puncture operation on the lesion according to the target position, or perform other operations such as an ablation operation.
  • step 1 a preset path planning method is used to plan the surgical path, and the end of the bronchoscope (ie, the endoscope) is guided to reach the bronchi near the lesion.
  • the end of the bronchoscope ie, the endoscope
  • step 2 the ultrasonic probe of the ultrasonic detection device is put into the cavity of the sheath tube (the sheath tube is rotatable), and is inserted together through the endoscope forceps channel hole until it appears in the bronchoscope field of view.
  • step 3 the ultrasonic catheter of the ultrasonic detection device is then rotated to acquire an ultrasonic image.
  • the ultrasonic detection surface of the ultrasonic detection device is adjusted by advancing, retreating and bending the end of the sheath until it is found lesions.
  • step 4 find a better section of the lesion, and after finding the section, the bending angle of the sheath tube and the depth of the ultrasound probe are locked, and the rotation of the ultrasound catheter is stopped.
  • X-rays can be taken of the ultrasound catheter from two different angles by using the X-ray imaging system installed on the interventional surgery robot, and three feature points A, B, and C on the metal marker can be selected in the X-ray image. , and calculate the coordinates of A, B, and C in the mechanical coordinate system.
  • step 5 the ultrasonic catheter is rotated again to acquire the ultrasonic detection surface with the current pointing of the metal marker as the starting line, and the position information of the target point relative to the starting line in the ultrasonic detection surface is acquired.
  • step 6 the coordinates of the ultrasonic detection surface in the mechanical coordinate system are calculated according to the X-ray image obtained in step 4, and the coordinates of the target point in the ultrasonic detection surface are calculated according to the ultrasonic image obtained in step 5, and Through the preset coordinate conversion relationship, the spatial coordinates of the target point in the mechanical coordinate system are obtained by calculation.
  • step 7 the target point calculated in step 6 is registered to the X-ray image obtained in step 4 through the coordinate transformation relationship, as a basis for confirming the accuracy of the puncture.
  • the lesion calculated in step 6 can be registered to the CT virtual image, and then the CT three-dimensional model composed of the CT virtual image can perform a secondary planning path according to the new target point, and calculate the puncture depth; After the ultrasound probe is pulled out from the flexible sheath, the catheter is steered to point to the target according to the new navigation path; then, the puncture needle is inserted into the lumen of the flexible sheath to puncture the target; finally, when After the puncture is in place, take X-rays again at the same two angles as in step 4, compare the position of the needle tip with the image with the virtual target obtained in step 4, and confirm that the puncture needle is in place.
  • step 4 after finding a better lesion section suitable for the doctor's observation, lock the bending angle of the sheath tube and the depth of the ultrasonic probe, and stop the rotation of the ultrasonic catheter. Then, use the dual Stewart platform X-ray machine installed on the robot as shown in Fig. 6 to Fig. 8 to take X-rays of the ultrasonic catheter from two different shooting angles respectively.
  • the X-ray In the image select three contour feature points A, B, and C on the ultrasound probe marker that can be used to describe the contour of the ultrasound probe marker, as shown in Figure 21, which is the ultrasound corresponding to the ultrasound probe image shown in Figure 20.
  • the schematic diagram of the probe structure and the coordinate system of the ultrasonic probe and calculate the coordinates of the three points A, B, and C in the mechanical coordinate system. Taking the calculation of the coordinates of point A as an example, the method is as follows:
  • the master-slave control algorithm is used to calculate the motion posture of the X-ray emission Stewart platform at this time, that is, the transformation matrix from the moving platform to the static platform, which is recorded as
  • the doctor can use the main hand to control the robotic arm holding the X-ray emitting end to scan the human body.
  • the position of the lesion is found in the image, mark the position of the lesion relative to the center point in this image, which is recorded as ( x 1 , y 1 ).
  • control the X-ray emission end to deflect to another position where point A can be seen, and collect the X-ray image at this position.
  • mark the position of point A relative to the center point in this X-ray image for example, with the center point of the X-ray image as the origin, mark the coordinates of point A as (x 2 , y 2 ).
  • the master-slave control algorithm is used to calculate the motion posture of the X-ray emission Stewart platform at this time, that is, the transformation matrix from the moving platform to the static platform, which is recorded as
  • the coordinates of point A in the mechanical coordinate system (x A , y A , z A ) can be obtained.
  • the coordinates of points B and C in the mechanical coordinate system (x B , y B , z A ) can be obtained.
  • the coordinates of the lesions in the mechanical coordinate system can be determined according to the coordinates of the above-mentioned points A, B, and C in the mechanical coordinate system.
  • the joint information of other robotic arms can be used to locate the lesions in the mechanical coordinate system.
  • the coordinates in the mechanical coordinate system are converted to the Stewart calculation coordinate system of other surgical execution robotic arms,
  • the inverse kinematics of the Stewart parallel platform can be used to calculate the joint motion of the Stewart platform of the surgical execution manipulator, so that the end of the surgical execution manipulator is accurate. to reach the location of the lesion, so as to achieve precise localization of the lesion.
  • locating the lesions by the above method can also reduce the dependence on manual operation in the process of lesion positioning and registration, and improve the safety of the operation. As one of the clinical applications of surgical robots, there is no need to independently develop complex system, thus also reducing development costs.
  • the probe coordinate system needs to be established.
  • the specific establishment method is as follows:
  • the direction vector of the Y axis is represented by O d Y d . Since the Y axis is perpendicular to the Z axis and the X axis at the same time, the vector O d Y d can be calculated according to the vector product calculation formula:
  • T xyz T represents the transpose matrix of T xyz .
  • FIG. 22 is a schematic diagram of the ultrasonic detection surface obtained by rotating the ultrasonic probe again, and the ultrasonic detection surface with the current direction of the marker of the ultrasonic probe as the starting line is obtained, And obtain the position information of the target point relative to the starting line in the ultrasonic detection plane.
  • the coordinates of the target point in the probe coordinate system can be calculated according to ⁇ c and rc :
  • ⁇ c and rc can be measured manually, or can also be measured automatically by a processor.
  • the target point is a point in the lesion, for example, it can be the best puncture point selected by the doctor.
  • the position matrix of the lesions in the probe coordinate system can be obtained Among them, l z is the distance from the AB edge of the ultrasonic probe marker to the ultrasonic transmitting window of the ultrasonic transducer, that is, the distance from the AB edge to the ultrasonic detection surface. l z is a parameter set in advance and is a known quantity. According to the coordinate transformation relationship, the coordinates of the lesion in the mechanical coordinate system can be obtained
  • step 6 the spatial coordinates of the target point under the mechanical coordinate system are calculated, that is, the specific process of calculating the coordinate expression of the above-mentioned lesions under the mechanical coordinate system is as follows:
  • the ultrasound probe marker should not only reflect the position of the ultrasound probe, but also the posture of the ultrasound probe. Therefore, the ultrasound probe marker cannot be a regular geometric object, otherwise it is difficult to distinguish the posture under the X-ray projection.
  • the morphology of the ultrasound probe marker is not unique, here the shape depicted in Figure 23 is taken.
  • the shape is based on a right triangle, the position of the right angle is the origin position Od of the probe coordinate system, the direction of the right angle pointing to one of the acute angles is the Z-axis direction (that is, the direction of OdZd shown in Figure 23), and the direction of the right angle pointing to the other acute angle is the X-axis
  • the direction ie, the OdXd direction shown in FIG. 23
  • the Y-axis direction is obtained by the right-hand rule. Under X-ray projection, the position corresponding to each corner of the image can be identified.
  • the end of the ultrasonic probe is located on the Z axis of the probe coordinate system, and the ultrasonic detection surface is located in the XOZ plane of the probe coordinate system.
  • the coordinate calculation of the lesion in the mechanical coordinate system includes:
  • the ultrasound probe can be guided into the human body with the aid of medical navigation equipment, and the lesions can be displayed under the ultrasound image.
  • the direction vector of the Y axis is represented by O d Y d .
  • the vector O d Y d can be obtained as the vector product of O d Z d and O d X d :
  • the ultrasonic probe is a mechanical probe and needs to be rotated for imaging.
  • imaging can be performed without rotation.
  • X-rays can be directly used to obtain the spatial position of the detection surface and the target point, and it is not necessary to stop the phased array probe to obtain the starting direction of the ultrasonic transducer.
  • the mechanical ultrasound probe can be stopped from rotating and X-rays can be directly taken to obtain the angle information of the target point in the detection surface.
  • the puncture direction of the surgery can be grasped efficiently.
  • an ultrasonic probe marker such as a metal marker or an optical marker
  • the three-dimensional coordinate information of the lesion is obtained by using the conversion of 2D coordinates and 3D coordinates, which can realize The precise registration of the target point and the human body, and because the process of positioning and registration is less dependent on human operation, the operation is safer.
  • the coordinates of the lesion in the mechanical coordinate system can be converted to the Stewart calculation coordinate system of the surgical execution robot arm through the joint information of the surgical execution robot arm. Knowing the coordinates of the target point under the coordinate system calculated by the surgical execution manipulator Stewart, the joint motion of the surgical execution manipulator Stewart platform can be calculated through the inverse kinematics of the Stewart parallel platform, so that the end of the surgical execution manipulator can be accurately reached. lesion location.
  • the above-mentioned coordinates of the ultrasonic probe coordinate system under the mechanical coordinate system are obtained by calculating according to the X-ray image, and the Z-axis direction of the ultrasonic probe coordinate system is combined with the value of l z to obtain the coordinates of the ultrasonic detection surface in the mechanical coordinate system;
  • the coordinates of the target point in the probe coordinate system are obtained by the above calculation according to the ultrasonic image, and the coordinates of the target point in the ultrasonic detection plane can be obtained by combining the values of lz and z ; further, through the coordinate conversion relationship, the mechanical coordinates of the target point in the mechanical coordinates can be obtained by calculation.
  • the space coordinates under the system are obtained by calculating according to the X-ray image, and the Z-axis direction of the ultrasonic probe coordinate system is combined with the value of l z to obtain the coordinates of the ultrasonic detection surface in the mechanical coordinate system;
  • the coordinates of the target point in the probe coordinate system are obtained by the above calculation according to
  • the calculated spatial coordinates of the target point are registered to the X-ray image obtained by the X-ray image acquisition device through the coordinate transformation relationship, as a basis for confirming the accuracy of the puncture, as shown in FIG. 24 .
  • the position of the lesion calculated through the above steps is registered into the virtual image obtained by the CT scan.
  • a secondary planning path is carried out according to the new target point in the CT 3D model, and the puncture depth is calculated; after the ultrasound probe is pulled out from the sheath, the catheter is steered to point to the target according to the secondary planning path.
  • the target point enter the puncture needle from the sheath lumen to puncture the target point; after the puncture is in place, the X-ray image acquisition device captures X-rays from the two shooting angles again, and compares the position of the needle tip of the puncture needle with this shooting.
  • the obtained images with virtual targets are compared to confirm that the puncture needle is in place, as shown in Figure 26.
  • CT and 3D reconstruction methods used in this application are known methods.
  • CT and 3D reconstruction methods which are not specifically limited in this application.
  • the intravascular ultrasound catheter with a water bladder structure is adopted, so that it can be used in a gas environment;
  • the position of the ultrasonic probe is indicated by the metal marker at the end of the ultrasonic catheter to improve the accuracy of positioning;
  • the real-time coordinates of the lesion in the mechanical coordinate system can be obtained by combining ultrasound and X-ray positioning, which can improve the positioning accuracy.
  • FIG. 27 a schematic structural diagram of a module in an apparatus for performing operations in combination with ultrasound and X-ray provided by an embodiment of the present application.
  • the device can be configured independently in a computer device with data processing function, or can also be integrated in the ultrasonic detection device 101 or the X-ray image acquisition device 102, the device includes a memory and a processor, the memory stores all A computer program executed by the processor, the computer program comprising:
  • an acquisition module 31, configured to acquire an ultrasonic image of an operation target through an ultrasonic probe device provided with an ultrasonic probe marker;
  • the acquisition module 31 is further configured to acquire the X-ray image of the ultrasound probe marker through the X-ray image acquisition device;
  • the positioning module 32 is configured to determine the position of the operation target based on the X-ray image and the ultrasound image.
  • the computer program also includes:
  • control module for controlling the ultrasonic detection device to enter a target area, the target area containing the operation target
  • a generating module (not marked in the figure) for generating a virtual image of the operation target in the pre-established virtual image of the target area based on the position of the operation target;
  • the control module is further configured to plan an operation path according to the virtual image of the operation target, and control the operation robot arm to deliver the instrument held by the operation robot arm to the operation target according to the operation path, and to the operation target Perform preset actions.
  • the positioning module 32 is further configured to obtain the position parameter of the operation target in the ultrasonic probe coordinate system according to the ultrasonic image of the operation target, and the ultrasonic probe coordinate system is established based on the ultrasonic probe device;
  • the position coordinates of the ultrasonic probe marker in the mechanical coordinate system are obtained.
  • the positioning module 32 is also used to determine the relative position information of the ultrasound probe marker and the operation target according to the ultrasound image of the operation target, and obtain the relative position information of the ultrasound probe marker and the operation target according to the relative position information of the ultrasound probe marker and the operation target.
  • the position parameter of the operation target in the coordinate system of the ultrasound probe is also used to determine the relative position information of the ultrasound probe marker and the operation target according to the ultrasound image of the operation target, and obtain the relative position information of the ultrasound probe marker and the operation target according to the relative position information of the ultrasound probe marker and the operation target.
  • the relative position information includes the linear distance and included angle of the operation target; the position parameters of the operation target in the ultrasonic probe coordinate system include the position coordinates and position matrix of the operation target in the ultrasonic probe coordinate system.
  • the positioning module 32 is also used to measure the linear distance and included angle between the end of the ultrasound probe marker and the operation target scanned by the ultrasound image, and obtain the coordinates of the operation target at the ultrasound probe according to the linear distance and the included angle The position coordinates and position matrix under the system.
  • the ultrasonic detection surface of the operation target of the ultrasonic probe device is located in the XZ plane of the ultrasonic probe coordinate system, and the end of the ultrasonic probe marker is located on the Z axis of the ultrasonic probe coordinate system.
  • the positioning module 32 is further configured to determine the position coordinate S t of the operation target in the ultrasonic probe coordinate system by the following expression:
  • lc is the linear distance between the end of the ultrasound probe marker on the ultrasound image of the operation target and the operation target; ⁇ c is the end of the ultrasound probe marker on the ultrasound image of the operation target and the operation target The included angle; lm is the straight-line distance between the end of the ultrasound probe marker on the ultrasound image of the target and the origin of the ultrasound probe coordinate system.
  • the acquisition module 31 is further configured to capture X-ray images of the ultrasound probe marker at a plurality of different positions through the X-ray image acquisition device; wherein, the X-ray image acquisition device is installed on a preset platform, and each The X-ray image includes relative positions of several contour feature points marking the ultrasound probe marker relative to the center point of the X-ray image;
  • the positioning module 32 is further configured to acquire the motion parameter relationship of the platform where the X-ray image acquisition device is located when each X-ray image is acquired;
  • the image information includes the relationship between the relative position and the motion parameter
  • the coordinates of several contour feature points of the ultrasound probe marker in the coordinate system of the platform are converted into the ultrasound probe marker The position coordinates of several contour feature points in the mechanical coordinate system.
  • the positioning module 32 is also configured to, for each X-ray image, determine the contour feature point of the ultrasound probe marker based on the relative position of the contour feature point of the ultrasound probe marker with respect to the center point of the X-ray image.
  • the positioning module 32 is also used to convert the xyz coordinates of each contour feature point into the position coordinates of the contour feature point under the mechanical coordinate system according to the transformation relationship between the coordinate system of the platform and the mechanical coordinate system;
  • the position of the ultrasound probe marker in the mechanical coordinate system is determined according to the position coordinates of the contour feature point in the mechanical coordinate system.
  • the positioning module 32 is further configured to obtain the direction vector of each axis of the ultrasonic probe coordinate system according to the position coordinates of the contour feature points of the ultrasonic probe marker in the mechanical coordinate system;
  • the attitude matrix of the ultrasonic probe coordinate system in the mechanical coordinate system is obtained;
  • the attitude matrix and the preset coordinate transformation matrix According to the attitude matrix and the preset coordinate transformation matrix, the coordinates of the operation target in the mechanical coordinate system are obtained.
  • the acquisition module 31 is further configured to acquire the X-ray image of the ultrasound probe marker through the X-ray image acquisition device installed on the robot;
  • the positioning module 32 is further configured to determine the position coordinates of the ultrasound probe marker in the mechanical coordinate system according to the X-ray image;
  • the ultrasonic detection device provided with the ultrasonic probe marker is controlled to enter the target area, the target area contains the operation target, the ultrasonic image of the operation target is obtained through the ultrasonic probe device, and the ultrasonic probe is obtained through the X-ray image acquisition device
  • the X-ray image of the marker based on the X-ray image and ultrasound image, determines the position of the operation target, and uses the combined positioning method of ultrasound and X-ray to obtain the real-time coordinates of the operation target in the mechanical coordinate system, which can improve the accuracy of positioning and improve the accuracy of positioning.
  • the position coordinates are registered in the pre-established virtual image of the target area, based on the position of the operation target, a virtual image of the operation target is generated in the pre-established virtual image of the target area, and the operation is planned according to the virtual image of the operation target.
  • the operating mechanical arm is controlled to deliver the instrument held by the operating mechanical arm to the operating target, and the preset operation is performed on the operating target, which can improve the execution accuracy of the operating target.
  • FIG. 28 a schematic diagram of a hardware structure of an electronic device provided by an embodiment of the present application is shown.
  • the electronic device includes: a memory 281 and a processor 282 .
  • the memory 281 stores an executable computer program 283 therein.
  • the processor 282 coupled with the memory 281 invokes the executable computer program 283 stored in the memory to execute the method for performing operations by combining ultrasound and X-ray provided in the foregoing embodiments.
  • the computer program 283 may be divided into one or more modules/units, and the one or more modules/units are stored in the memory 281 and executed by the processor 282 to accomplish the present invention.
  • the one or more modules/units may include various modules in the apparatus for performing operations in combination with ultrasound and X-ray in the above embodiments, such as: an acquisition module 31 , a positioning module 32 , a control module and a generation module.
  • the device also includes:
  • At least one input device and at least one output device are At least one input device and at least one output device.
  • processor 282 memory 281, input device, and output device may be connected through a bus.
  • the input device may specifically be a camera, a touch panel, a physical button, a mouse, or the like.
  • the output device may be a display screen.
  • the apparatus may further include more components than shown, or combine some components, or different components, such as network access equipment, sensors, and the like.
  • the processor 282 may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), application specific integrated circuits (Application Specific Integrated Circuits, ASICs), field-available processors. Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 281 may be, for example, hard drive memory, non-volatile memory (such as flash memory or other electronically programmable limit erasure memory used to form solid state drives, etc.), volatile memory (such as static or dynamic random access memory, etc.) etc., the embodiments of the present application are not limited.
  • the memory 281 may be an internal storage unit of the electronic device, such as a hard disk or a memory of the electronic device.
  • the memory 281 can also be an external storage device of the electronic device, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash memory card (Flash card) equipped on the electronic device. Card), etc.
  • the memory 281 may also include both an internal storage unit of the electronic device and an external storage device.
  • the memory 281 is used to store computer programs and other programs and data required by the terminal.
  • the memory 281 may also be used to temporarily store data that has been output or will be output.
  • an embodiment of the present application further provides a computer-readable storage medium, which may be provided in the electronic device in the above-mentioned embodiments, and the computer-readable storage medium may be the one shown in FIG. 28 above. memory 281 in the illustrated embodiment.
  • a computer program is stored on the computer-readable storage medium, and when the program is executed by the processor, the method for performing operations by combining ultrasound and X-ray described in the foregoing embodiments is implemented.
  • the computer-storable medium may also be a USB flash drive, a removable hard disk, a read-only memory (ROM, Read-Only Memory), a RAM, a magnetic disk, or an optical disk and other media that can store program codes.
  • the disclosed apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical, mechanical or other forms.
  • modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, may be located in one place, or may be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist physically alone, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • the integrated modules are implemented in the form of software functional modules and sold or used as independent products, they may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a readable storage
  • the medium includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned readable storage medium includes: U disk, removable hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • a first feature "on” or “under” a second feature may be in direct contact with the first feature and the second feature, or the first feature and the second feature through an intermediate indirect contact with the media.
  • first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • a first feature “below”, “below” and “below” a second feature may mean that the first feature is directly or obliquely below the second feature, or simply means that the first feature is level below the second feature.
  • references to the terms “one embodiment,” “some embodiments,” “example,” “specific example,” or “some examples”, etc. means specific features described in connection with the embodiment or example. , structure, material or feature is included in at least one embodiment or example of the present application. In this specification, schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine the different embodiments or examples described in this specification, as well as the features of the different embodiments or examples, without conflicting each other.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Robotics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Gynecology & Obstetrics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声与X光组合执行操作的方法、装置、系统及计算机可读存储介质,其中该方法包括:通过超声探头装置,获得操作目标的超声影像,通过X光图像采集装置获取超声探头标记物的X光图像,基于X光图像和超声影像,确定操作目标的位置。本申请通过利用超声与X光组合定位的方式确定操作目标的位置,可提高对操作目标定位的精准度。

Description

超声与X光组合执行操作的方法、装置、系统及计算机可读存储介质 技术领域
本申请实施例涉及机械设备及通信技术领域,尤其涉及一种超声与X光组合执行操作的方法、装置、系统及计算机可读存储介质。
背景技术
在微创手术中起主导作用的是穿刺引导,目前穿刺引导的方法主要是将CT三维影像与内镜、X光机配准,医生通过病灶附近的二维或三维扫描图像判断合适的入针点和入针方向,完成穿刺操作。具体的,先通过CT和三维重建,在人体三维模型中确认病灶位置,并规划路径。然后,通过导航系统对人体虚拟模型和穿刺对象进行配准后,将系统中的虚拟影像会与术中内窥镜的实时影像匹配,并将术前在人体模型中规划的路径匹配到实时影像中,以引导内窥镜抵达病灶。当内窥镜抵达病灶附近后,从气管镜的钳道孔放入带穿刺针的导管直至其出现在内镜视野中,接着根据虚拟影像中给出的参考穿刺角度适当调整穿刺针导管,然后进行穿刺。最后,当穿刺到位后,再根据X光机拍摄的影像确认穿刺针是否刺中虚拟靶点。
上述方法存在以下技术缺陷:
1、CT影像与内窥镜影像的路径配准存在误差,对靶点的指向不够精准;
2、CT与X光机的靶点配准存在误差,影响穿刺的准确性。
发明内容
本申请实施例提供一种超声与X光组合执行操作的方法、装置、系统及计算机可读存储介质,可通过利用超声与X光组合定位的方式获取操作目标在机械坐标系下的实时坐标,提高定位和进一步基于该位置进行的操作的精准度。
本申请实施例一方面提供了一种超声与X光组合执行操作的方法,包括:
通过设置有超声探头标记物的超声探头装置,获得操作目标的超声影像;
通过X光图像采集装置获取所述超声探头标记物的X光图像;
基于所述X光图像和所述超声影像,确定所述操作目标的位置。
本申请实施例一方面还提供了一种超声与X光组合执行操作的装置,包括:存储器和处理器;
所述存储器存储有可被所述处理器执行的计算机程序;
所述计算机程序包括:
获取模块,用于通过设置有超声探头标记物的超声探头装置,获得操作目标的超声影像;
所述获取模块,还用于通过X光图像采集装置获取所述超声探头标记物的X光图像;
定位模块,用于基于所述X光图像和所述超声影像,确定所述操作目标的位置。
本申请实施例一方面还提供了一种电子装置,包括:
存储器和处理器;
所述存储器存储有可执行计算机程序;
与所述存储器耦合的所述处理器,调用所述存储器中存储的所述可执行计算机程序,执行如上述超声与X光组合执行操作的方法中的各步骤。
本申请实施例一方面还提供一种超声与X光组合执行操作的系统,包括:超声探测装置、X光图像采集装置、超声探头标记物、信号转换装置以及处理器;
其中,所述超声探测装置包括鞘管和内置在所述鞘管中带有水囊的导管;
所述超声探头标记物具有用于定位轮廓的定位结构;
所述处理器用于执行如上所述的超声与X光组合执行操作的方法中的各步骤。
本申请实施例一方面还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序在被处理器运行时,实现如上述实施例提供的超声与X光组合执行操作的方法。
从上述本申请各实施例可知,通过设置有超声探头标记物的超声探头装置,获得操作目标的超声影像,通过X光图像采集装置获取超声探头标记物的X光图像,基于X光图像和超声影像,确定操作目标的位置,利用超声与X光组合定位的方式获取该操作目标的位置,可提高定位的精准度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所 需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例提供的超声与X光组合执行操作的系统的结构示意图;
图2为图1所示超声与X光组合执行操作的系统中超声探测装置的导管的一结构切面示意图;
图3为图1所示超声与X光组合执行操作的系统中导管的另一结构示意图;
图4至图7为图1所示超声与X光组合执行操作的系统中导管的工作原理示意图;
图8a至图8d为图1所示超声与X光组合执行操作的系统中超声探头标记物的形态的示意图;
图9为图1所示超声探测装置的导管的另一结构切面示意图;
图10为本申请一实施例提供的超声与X光组合执行操作的方法的实现流程图;
图11为本申请一实施例提供的X光机的整体结构示意;
图12为图11所示X光机的一局部放大图,其显示所述发射端Stewart平台;
图13为图11所示X光机的另一局部放大图,其显示所述接收端Stewart平台;
图14为本申请一实施例提供的X光机控制方法的实现流程图;
图15为接收端Stewart平台的静平台坐标系S tre-X streY streZ stre和动平台坐标系M re-X MreY MreZ Mre的示意图;
图16为发射端Stewart平台的静平台坐标系S ttr-X sttrY sttrZ sttr和动平台坐标系M tr-X MtrY MtrZ Mtr的示意图;
图17为发射端Stewart平台和接收端Stewart平台对射示意图;
图18为发射端Stewart平台和接收端Stewart平台的位置变化示意图;
图19为主操作手对X光发射端Stewart并联平台以及X光接收端Stewart并联平台的控制示意图;
图20为超声影像获取示意图;
图21为探头坐标系的一示意图;
图22为再次旋转得到的超声探测面的示意图;
图23为超声探测计算位置的原理示意图;
图24为配准到X光图像采集装置获取的X光图像上的目标靶点的空间坐标的示意图;
图25为配准到CT扫描获得的虚拟影像中的病灶位置的示意图;
图26为穿刺针的针尖位置与本次拍摄获得的带虚拟靶点的对比示意图;
图27为本申请一实施例提供的超声与X光组合执行操作的装置的模块结构示意图;
图28为本申请一实施例提供的电子装置的硬件结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,也可以是成一体;可以是机械连接,也可以是电连接,也可以是通讯连接;可以是直接连接,也可以通过中间媒介的间接连接,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。下面以具体地实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
本申请实施例中操作目标以病灶为例,X光机的对射平台以Stewart并联平台为例。
参见图1,本申请一实施例提供的超声与X光组合执行操作的系统的结构示意图。如图1所示,该超声与X光组合执行操作的系统包括:超声探测装置101、X光图像采集装置102、超声探头标记物103、信号转换装置104以及处理器105。
其中,如图2所示,超声探头标记物103和信号转换装置104安装在超声探测装置101上。具体的,超声探头标记物103和信号转换装置104(如,超声换能器)配置在超声探测装置101的导管111 上,优选为导管111的内部,如超声探测装置101的导管111的前端的内部,如超声探头上。其中,该超声探头可选地为机械式探头,需要旋转成像。或者,该超声探头也可为相控阵式探头,不需要旋转即可成像。利用探头检测到病灶后,可控制超声探头停止旋转并直接用X光获取探测面、靶点的空间位置以及目标靶点在探测面内的角度信息,不需要使探头停转再获取超声换能器的起始方向。
超声探测装置101的导管111具有水囊结构112,可与血管内超声导管配合,以使得导管111能在气体环境中应用。导管111的鞘管末端设置有水囊结构以及密封结构,且鞘管可注水,该鞘管与不具备水囊结构的血管内超声导管结合使用。将不具有水囊结构的血管内超声导管插入鞘管内,鞘管带着该超声导管进入支气管,避免超声导管应过软而弯折。在鞘管中注水后,可使得超声导管处于类似于血管的环境中使旋转更顺畅。鞘管末端的水囊在注水后可膨胀,使水囊表面紧密接触气管壁,从而使超声探头在液体环境中得到超声影像。
如图3所示,导管111包括:转接头、导管本体、水囊。导管本体的一端与转接头固定连接,另一端与水囊固定连接。转接头一端用于连接注水器,另一端是密封面,中间有小孔,可供超声导管接入。结合图4至图7,导管111的工作原理在于:注水器将水注入鞘管,使水囊膨胀接触气管壁,从而使血管内超声系统获得探头周围的超声影像。
超声探头标记物103可以是在X射线下能够显影的金属标记物或光学标记物。在一个实施例中,该标记物可以反映出超声探头的位置,还可以反映出超声探头的姿态。在一个例子中,该标记物通常不为规则的几何物体(例如正方体、球体等),否则在X光的投影下难以辨别姿态。在一个例子中,该标记物可以为能指示方向的立体结构。优选的,超声探头标记物103包括定位结构,该定位结构用于定位超声探头标记物103的轮廓上的不同位置,进而实现对超声探头的位置或方向的定位,具体例如图23中所示的标记物上包括缺口和箭头的定位结构1031。
超声探头标记物103优选为金属标记物,用于在X光下指示超声探头的起始位置,通过测量超声探头标记物103的位置,可以测量目标靶点在探测面内与起始位置的角度,从而得到目标靶点在空间中的具体坐标。标记物的形态不是唯一的,作为示例,标记物的形态具体可参见图8a至图8d所示。在实际应用中,根据需要,标记物还可以具有其他形态,本申请不做具体限定。
超声探头标记物103在超声导管中的安装位置不唯一,如图2所示,优选地将超声探头标记物103安装在信号转换装置104的下方。或者,超声探头标记物103也可以安装在超声导管的其他位置,只需使超声探头标记物103指向与信号转换装置104的方向一致即可,如图9所示的信号转换装置104的上方。
超声探测装置101,用于采集身体内某一部位的超声图像,确定靶点的方位。超声探测装置101具体可以是前端安装有超声探头的气管镜。
X光图像采集装置102,用于采集身体部位的X射线图像,并且该身体部分定位上述超声探头;上述置入超声探测装置101中的超声探头标记物103(如,显影环或者金属片)用于在X射线影像成像时,确定超声探测装置101相对于靶点的位置;信号转换装置104用于将声波信号转换为电信号;处理器105被配置为用于确定超声探头的位置,将X射线图像和超声图像结合确定出超声探测装置101的位置,以及解算出靶点的几何方位。具体参见图10所示实施例的描述。
处理器105分别与超声探测装置101、X光图像采集装置102以及信号转换装置104电性耦合,并与X光图像采集装置102和超声探测装置101进行数据交互,或者,与X光图像采集装置102和信号转换装置104进行数据交互,或者,与X光图像采集装置102、超声探测装置101和信号转换装置104进行数据交互。处理器105根据X光图像采集装置102、以及、超声探测装置101和/或信号转换装置104发送的数据,实现以下实施例中的超声与X光组合执行操作的方法。其中,信号转换装置104可以直接将数据输出至处理器105,或者将数据经超声探测装置101的处理器处理后转发给处理器105。
在一个实施例中,处理器105还可用于规划经皮穿刺的路径,靶点穿刺路径规划主要通过与医学影像结合的方法确定的靶点的位置。
上述超声与X光组合执行操作的系统中各装置实现各自功能的具体过程可参考以下各方法实施例的相关描述,此处不再赘述。
可以理解的,为便于理解,图2和图9仅示出了超声探测装置101的部分结构,在实际应用中,超声探测装置101根据需要还可具有更多或更少的结构。
参见图10,本申请实施例提供的超声与X光组合执行操作的方法的实现流程示意图。该方法可应用于图1所示的超声与X光组合执行操作的系统,通过处理器105实现。或者,该方法也可应用于计算机设备,该计算机设备通过利用与超声与X光组合执行操作的系统之间的数据交互,实现图10所示的方法。其中,处理器105可单独配置在具有数据处理功能的计算机设备中,或者,也可以集成在超声探测装置101或X光图像采集装置102中。其中,具有数据处理功能的计算机设备可以但不限于包 括例如:手机、平板电脑等各类移动终端,台式计算机,服务器,以及具有手术导航系统的机器人等。
如图10所示,该方法包括:
步骤S201、通过设置有超声探头标记物的超声探头装置,获得操作目标的超声影像;
该操作目标具体为病灶,该目标区域即为该操作目标周围的预设范围的区域,可以理解为病灶附近。超声探测装置具体可以是末端安装有超声探头的气管镜。采用现有技术手段控制气管镜的末端到达病灶附近。
在通过设置有超声探头标记物的超声探头装置,获得操作目标的超声影像之前还包括:控制该超声探测装置进入目标区域,该目标区域中包含该操作目标。
步骤S202、通过X光图像采集装置获取该超声探头标记物的X光图像;
通过该X光图像采集装置在多个不同的位置,分别拍摄该超声探头标记物的X光图像;
其中,该X光图像采集装置安装在预设平台上,每张该X光图像中包括标记该超声探头标记物的若干轮廓特征点相对于该X光图像的中心点的相对位置。
在该超声探头标记物上确定若干轮廓特征点,并在每个不同的位置得到的该X光图像中,分别标记每个该轮廓特征点相对于该X光图像的中心点的位置的xy二维坐标;
步骤S203、基于该X光图像和该超声影像,确定该操作目标的位置。
具体地,根据该操作目标的超声影像,得到该操作目标在超声探头坐标系下的位置参数,该超声探头坐标系是基于该超声探头装置建立的;
根据该X光图像确定该超声探头标记物在预先建立的机械坐标系下的位置坐标;
根据该超声探头标记物在该机械坐标系下的位置坐标和该操作目标在该超声探头坐标系下的位置参数,得到该操作目标在该机械坐标系下的位置坐标。
其中,根据该操作目标的超声影像,得到该操作目标在超声探头坐标系下的位置参数包括:
根据该操作目标的超声影像,确定该超声探头标记物与该操作目标的相对位置信息,并根据该超声探头标记物与该操作目标的相对位置信息,得到该操作目标在超声探头坐标系下的位置参数。
该相对位置信息包括操作目标的直线距离和夹角,该操作目标在超声探头坐标系下的位置参数包括该操作目标在该超声探头坐标系下的位置坐标和位置矩阵。
具体地,测量操作目标的超声影像上的该超声探头标记物的末端与该超声影像扫描到的该操作目标的直线距离和夹角,并根据该直线距离和该夹角得到该操作目标在该超声探头坐标系下的位置坐标和位置矩阵。
进一步地,该超声探头装置对该操作目标的超声探测面位于该超声探头坐标系的XZ平面内,该超声探头标记物的末端位于该超声探头坐标系的Z轴上。则,测量该超声探头标记物与该操作目标的直线距离l c和夹角θ c
根据该操作目标的直线距离l c和夹角θ c,得到该操作目标在该超声探头坐标系下的位置坐标S t,通过如下表达式确定:S t=l c sin θ c,0,l c cos θ c+l m,以及,通过如下公式确定该操作目标在该超声探头坐标系下的位置矩阵
Figure PCTCN2022086912-appb-000001
其中,l c为该操作目标的超声影像上的该超声探头标记物的末端与该操作目标的直线距离;θ c为该操作目标的超声影像上的该超声探头标记物的末端与该操作目标的夹角;l m为该目标的超声影像上的该超声探头标记物的末端与该超声探头坐标系的原点之间的直线距离。
进一步地,根据该X光图像确定该超声探头标记物在预先建立的机械坐标系下的位置坐标,具体包括:
获取该X光图像采集装置所在平台在采集每张X光图像时的运动参数关系;基于各张X光图像分别对应的影像信息,确定该目标在平台坐标系下的坐标;根据预设的X图像采集装置的平台的坐标系与所述机械坐标系的转换关系,将该超声探头标记物的若干轮廓特征点在该平台的坐标系下的坐标,转换为该超声探头标记物的若干轮廓特征点在该所述机械坐标系下的位置坐标。
其中,该影像信息包括该相对位置和该运动参数关系。
基于各张X光图像分别对应的影像信息,确定该目标在平台坐标系下的坐标,具体包括:针对每张X光图像,基于该超声探头标记物的轮廓特征点相对于该X光图像的中心点的相对位置,确定该超声探头标记物的轮廓特征点在预设的平台的坐标系下的xy坐标;基于各张X光图像中该超声探头标记物的轮廓特征点在该平台的坐标系下的xy坐标,以及采集该X光影像时的运动参数关系,确定该超声 探头标记物的轮廓特征点在该平台的坐标系下的z坐标。
根据预设的X图像采集装置的平台的坐标系与所述机械坐标系的转换关系,将该超声探头标记物的若干轮廓特征点在该平台的坐标系下的坐标,转换为该超声探头标记物的若干轮廓特征点在该所述机械坐标系下的位置坐标,具体包括:根据该平台的坐标系与该机械坐标系的转换关系,将该每个轮廓特征点的xyz坐标,转换为该轮廓特征点在该机械坐标系下的位置坐标;在每个该X光图像中,按照该轮廓特征点在该机械坐标系下的位置坐标,确定该超声探头标记物在该机械坐标系下的位置。
进一步的,步骤S203之后还包括:基于该操作目标的位置,在预先建立的该目标区域的虚拟影像中生成该操作目标的虚拟影像;
具体地,根据该超声探头标记物在该机械坐标系下的位置坐标和该操作目标在该超声探头坐标系下的位置参数,得到该操作目标在该机械坐标系下的位置坐标,并将该位置坐标配准在预先建立的该目标区域的虚拟影像中,在该虚拟影像中生成该操作目标的虚拟影像;
该虚拟影像具体可以为CT虚拟影像。
根据该超声探头坐标系原点在该机械坐标系下的坐标,以及该超声探头坐标系的各轴的方向向量,得到该超声探头坐标系在该机械坐标系下的姿态矩阵,并根据该姿态矩阵和预设的坐标转换矩阵,得到该操作目标在该机械坐标系下的坐标;
配准(registration)是指同一区域内以不同成像手段所获得的不同图像图形的地理坐标的匹配。包括几何纠正、投影变换与统一比例尺三方面的处理。病变定位领域的配准操作参见现有技术。
进一步地,基于该操作目标的位置,在预先建立的该目标区域的虚拟影像中生成该操作目标的虚拟影像之后还包括;根据该操作目标的虚拟影像,规划操作路径,并控制操作机械臂根据该操作路径,将该操作机械臂所夹持的器械送达该操作目标,并对该操作目标执行预设操作。
该预设操作可以是穿刺,即对病灶进行穿刺。
进一步地,通过安装在机器人上的X光图像采集装置获取该超声探头标记物的X光图像,根据该X光图像确定该超声探头标记物在该机械坐标系下的位置坐标,并根据该坐标位置,判断该器械对该操作目标执行预设操作是否符合预设完成条件。
具体地,X光机通过该X光图像确定该超声探头标记物在该机械坐标系下的位置坐标,可以参看下面超声探头标记物的轮廓的3个轮廓特征点A、B、C坐标的方法,以轮廓特征点的位置确定该超声探头标记物的位置,通过通过对比该超声探头标记物的位置,与步骤S204中的虚拟影像中的该操作目标的位置,从而判断该器械对该病灶穿刺是否达到预设深度完成条件。
上述超声与X光组合执行操作的系统以及超声与X光组合执行操作的方法实施例中的X光图像采集装置102即为X光机,具体为双Stewart平台对射X光机,包括:发射端Stewart平台机械臂(以下简称发射端Stewart平台)、X光的发射器、X光的接收器、接收端Stewart平台机械臂、位置传感器和控制处理装置。
其中,X光发射器固定在具有多自由度机械臂的手术机器人的一只机械臂的末端,接收器在手术床板下方安装,在手术床底座或者地板上可移动的安装一个接收端Stewart平台机械臂,接收器安装在接收端Stewart平台机械臂上,接收端Stewart平台机械臂(以下简称接收端Stewart平台)可用于调节接收器得位置和角度。
利用发射端和接收端的两个Stewart平台机灵活调节X光的发射器和接收器的位置,保证发射器与接收器始终轴线重合,根据医生的需求获得病人不同方位的透视影像。
控制处理装置接收发射器和接收器上的位置传感器的信号,根据医生的需求,控制发射器到达预期的透视位置。具体地,根据已知的发射器的位置信息,计算接收器应到达的接收位置,并驱动接收端Stewart平台调整该接收器到达该接收位置,从而始终保证发射器和接收器在同一轴线上,即,接收器的平面实时与发射器的平面平行,且发射端Stewart平台和接收端Stewart平台的中垂线实时重合,这样发射端发出的X光线实时能被接收端接收,可保证透视成像的效果。
结合图11至图13,该X光机具体结构及控制方法如下:
参见图11,图11为本申请一实施例提供的X光机的结构示意图,该X光机可分为分布在手术床上下两侧的X光发射端和X光接收端;其中,X光发射端包括机械臂10、与机械臂10连接的发射端Stewart平台20,以及,与发射端Stewart平台20连接的X光发射器30;X光接收端包括用于接收来自X光发射器30发射的X射线的X光接收器40、以及与X光接收器40连接的接收端Stewart平台50,其中X光发射器30与X光接收器40能够在机械臂10、发射端Stewart平台20、以及接收端Stewart平台50的驱动下保持轴线重合。
通过采用两个Stewart平台(即发射端Stewart平台20与接收端Stewart平台50),可实现灵活精确的术中透视位置与角度调整,使得X光发射器30与X射线发射器40能位于同一轴线,从而保证X 射线透射成像效果,并解决了C型臂占用术中空间、与手术器械或者手术机器人发生干涉的问题。
图12为图11所示X光机的发射端Stewart平台20的放大示意图。如图12所示,在本实施例中,发射端Stewart平台20为一六自由度并联机构,包括发射端静平台21、发射端动平台22、以及连接于发射端静平台21和发射端动平台22之间的六个发射端伸缩元件23。
可选地,发射端静平台21与六个发射端伸缩元件23的一端采用U幅铰接或者球铰接的方法连接。本实施例中,发射端静平台21可以在X轴和Y轴方向转动,但是限制了Z轴方向的自由度。发射端伸缩元件23由电机和丝杠组成,通过电机驱动丝杠使其自由伸缩,从而改变发射端动平台22的运动状态。六个发射端伸缩元件23按照一定规律排列,使得发射端伸缩元件23的偏转角度较小。优选地,发射端伸缩元件23与Z轴的偏转角度范围在±20°之间。本实施例中,发射端动平台22的直径小于发射端静平台21的直径。发射端动平台22的运动状态由六个发射端伸缩元件23的长度变化控制,且可实现X轴、Y轴和Z轴三个方向的转动。
发射端Stewart平台20的发射端静平台21与机械臂10固定连接,发射端Stewart平台20的发射端动平台22与X光发射器30固定连接。
X光机还包括机器人立柱60、以及连接于机器人立柱60的多个机械臂10。X射线发射器30位于多个所述机械臂10的其中一个机械臂10的末端。具体地,发射端Stewart平台20连接于其中一个机械臂10的末端,X光发射器30连接于发射端Stewart平台20的发射端动平台22。
图11中,机械臂10包括旋转机构11、第一伸缩机构12、以及第二伸缩机构13。旋转机构11的一端与机器人立柱60可转动地连接,另一端与第一伸缩机构12的一端连接。第一伸缩机构12的另一端与第二伸缩机构13的一端可转动地连接。第二伸缩机构13的另一端与发射端Stewart平台20的发射端静平台21连接。
图13为图11所示X光机的接收端Stewart平台50的局部放大图,接收端Stewart平台50为一六自由度并联机构,包括接收端静平台51、接收端动平台52、以及连接于接收端静平台51和接收端动平台52之间的六个接收端伸缩元件53。
可选地,接收端静平台51与六个接收端伸缩元件53的一端采用U幅铰接或者球铰接的方法连接。本实施例中,接收端静平台51可以在X轴和Y轴方向转动,但是限制了Z轴方向的自由度。接收端伸缩元件53由电机和丝杠组成,通过电机驱动丝杠使其自由伸缩,从而改变接收端动平台52的运动状态。六个接收端伸缩元件53按照一定规律排列,使得接收端伸缩元件53的偏转角度较小。优选地,接收端伸缩元件53与Z轴的偏转角度范围在±20°之间。本实施例中,接收端动平台52的直径小于接收端静平台51的直径。接收端动平台52的运动状态由六个接收端伸缩元件53的长度变化控制,且可实现X轴、Y轴和Z轴三个方向的转动。
接收端Stewart平台50的接收端静平台51安装于地面,具体安装在一个十字型滑轨上,接收端Stewart平台50的接收端动平台52与X光接收器40固定连接。
X光机还包括发射端位置传感器、接收端位置传感器、以及与发射端位置传感器和接收端位置传感器电连接的控制处理器。发射端位置传感器用于检测X光发射器30的位置,接收端位置传感器用于检测X光接收器40的位置。控制处理器用于接收发射端位置传感器以及接收端位置传感器的信号,并通过控制发射端Stewart平台20和接收端Stewart平台50,来控制X光发射器30和X光接收器40到达预期位置。
手术中,医生输入预先规划好的基于手术床70的位置信息。若发射端位置传感器检测到X光发射器30没有位于目标透射位置,则控制处理器控制机械臂10和发射端Stewart平台20自动运动到规划好的位姿实现X光发射器30定位。接下来,控制处理器根据检测到的X光发射器30的位置信息,计算X光接收器40应到达的接收位置,并据此驱动接收端Stewart平台50调整到准确的接收位置,从而保证X光发射器30与X光接收器40始终在同一轴线上,完成不同方位的透射影像,保证透视成像的效果。
进一步地,该X光机的控制方法,如图14所示,该方法具体包括以下步骤:
步骤S301,建立接收端Stewart平台的静平台坐标系Stre-X streY streZ stre和动平台坐标系Mre-X MreY MreZ Mre
首先,如图15所示,建立接收端Stewart平台的静平台坐标系S tre-X streY streZ stre和动平台坐标系M re-X MreY MreZ Mre。对应地,如图16所示,建立发射端Stewart平台的静平台坐标系S ttr-X sttrY sttrZ sttr和动平台坐标系M tr-X MtrY MtrZ Mtr
上述坐标系的建立规则包括:接收端静平台的原点位于静平台中心,且XYZ轴的方向均各自与机械坐标系的XYZ轴平行;接收端动平台的原点位于动平台中心,且初始状态下XYZ轴的方向均各自与机械坐标系的XYZ轴平行。机械坐标系是指双Stewart平台对射X光机的坐标系O-X OY OZ O,机械 坐标系设置于机械臂的底座中心,机械坐标系的原点O位于机械人基座的中心,Z轴竖直向上,Y轴由原点指向机械臂,X轴垂直指向机器人的立柱60,该机械坐标系即为机器人的世界坐标系。滑轨的两条十字交叉的导轨方向分别平行于机械坐标系的X轴和Y轴。
步骤S302,基于坐标系的建立规则,解算得到接收端静平台坐标系与机械坐标系之间的转换矩阵;
具体的,基于上述坐标系的建立规则,可解算得到X光接收端stewart并联平台静平台坐标系与机械坐标系之间的以下转换矩阵:
Figure PCTCN2022086912-appb-000002
其中,x 0,y 0,z 0分别为初始位置下接收端静平台坐标系原点在机械坐标系下的坐标;x re,y re分别为接收端静平台沿滑轨向X轴正方向移动的距离和接收端静平台沿滑轨向Y轴正方向移动的位移。
进一步地,在已知
Figure PCTCN2022086912-appb-000003
以及,已知机械坐标系与发射端静平台坐标系(即机械臂Stewart计算坐标系)以及用户坐标系之间的转换矩阵
Figure PCTCN2022086912-appb-000004
可知接收端静平台坐标系与机械臂Stewart计算坐标系以及用户坐标系之间的转换矩阵
Figure PCTCN2022086912-appb-000005
Figure PCTCN2022086912-appb-000006
分别为:
Figure PCTCN2022086912-appb-000007
Figure PCTCN2022086912-appb-000008
根据预设的Stewart平台正逆运动学算法,可知发射端动静平台坐标系之间的转换矩阵
Figure PCTCN2022086912-appb-000009
和接收端动静平台坐标系之间的转换矩阵
Figure PCTCN2022086912-appb-000010
可求得发射端动平台坐标系与机械坐标系以及用户坐标系之间的转换矩阵
Figure PCTCN2022086912-appb-000011
Figure PCTCN2022086912-appb-000012
以及,接收端动平台坐标系与机械坐标系以及用户坐标系之间的转换矩阵
Figure PCTCN2022086912-appb-000013
Figure PCTCN2022086912-appb-000014
Figure PCTCN2022086912-appb-000015
Figure PCTCN2022086912-appb-000016
Figure PCTCN2022086912-appb-000017
步骤S303,利用该转换矩阵和预设的X光接收端的控制算法,控制该接收端Stewart平台运动。
于本步骤中,该X光接收端的控制算法具体如下:
如图17所示,在X光发射器的平面与X光接收器的平面互相平行且中垂线重合时,可保证X发射器发出的X光线实时能被X光接收器接收。
根据对射原理,发射端Stewart平台和接收端Stewart平台之间的距离对病灶检测没有影响,因此固定接收端动平台坐标系原点在机械坐标系Z轴方向的坐标。接收端Stewart平台在滑轨的XY平面内的移动范围较广,因此通过滑轨实现X光接收端在XY平面内的运动,由接收端Stewart平台实现接收端的姿态转动。
(一)首先将主手的运动映射到发射端Stewart平台上,映射规则如下:将主手的平移运动用位移比例系数K进行缩放,旋转角度按原比例映射至发射端Stewart平台的动平台上。具体实施方法如下:
1、在T0时刻,令主手末端点在用户坐标系下的位姿矩阵为四阶单位矩阵T M0
Figure PCTCN2022086912-appb-000018
2、在T0时刻,根据已知的被动臂的正运动学和Stewart平台正运动学,可解算得发射端动平台坐标系在用户坐标系下的位姿矩阵
Figure PCTCN2022086912-appb-000019
并将
Figure PCTCN2022086912-appb-000020
保存为已知值。
3、经过一个单位周期T,根据主手正运动学解算得到T时刻主手末端点在用户坐标系下的位姿矩阵T Mt
4、将主手的平移运动用位移比例系数K进行缩放,旋转角度按原比例映射至发射端动平台,映射矩阵记为T Map
Figure PCTCN2022086912-appb-000021
其中,用T Mtij表示T Mt矩阵中第i行第j列的元素。
(二)根据上述映射关系解算接收端Stewart平台的运动,具体实施方法如下:
1、根据映射矩阵T Map可得发射端动平台坐标系在用户坐标系下的位姿矩阵
Figure PCTCN2022086912-appb-000022
Figure PCTCN2022086912-appb-000023
2、根据用户坐标系与机械坐标系的转换矩阵
Figure PCTCN2022086912-appb-000024
可得发射端动平台坐标系在机械坐标系下的位姿矩阵
Figure PCTCN2022086912-appb-000025
Figure PCTCN2022086912-appb-000026
3、根据接收端动平台坐标系与发射端动平台坐标系平行且反向,解算接收端动平台在机械坐标系下的姿态矩阵
Figure PCTCN2022086912-appb-000027
4、根据机械坐标系与接收端静平台坐标系的转换矩阵,解算接收端动平台坐标系在接收端静平台坐标系下的姿态矩阵
Figure PCTCN2022086912-appb-000028
5、根据
Figure PCTCN2022086912-appb-000029
和接收端动平台的逆运动学原理,可解算得到接收端Stewart平台各关节的运动参数,实现接收端动平台与发射端动平台姿态的对应。
(三)根据上述映射关系解算接收端Stewart平台在滑轨(或导轨)上的运动参数,具体实施方法如下:
1、将接收端Stewart平台的动平台原点在机械坐标系下的Z坐标记为 0Z, 0Z为恒定值;
2、通过机械坐标系与发射端动平台的转换矩阵
Figure PCTCN2022086912-appb-000030
解算得到接收端动平台坐标系原点在发射端动平台坐标系下的Z轴坐标 MtrZ;
Figure PCTCN2022086912-appb-000031
由于接收端动平台坐标系原点位于发射端动平台坐标系Z轴上,可得接收端动平台坐标系原点在发射端动平台坐标系下的位置向量
Figure PCTCN2022086912-appb-000032
Figure PCTCN2022086912-appb-000033
3、可通过机械坐标系和发射端动平台坐标系的转换矩阵
Figure PCTCN2022086912-appb-000034
解算得到接收端动平台坐标系原点在机械坐标系下的位置向量
Figure PCTCN2022086912-appb-000035
Figure PCTCN2022086912-appb-000036
接收端动平台坐标系原点在机械坐标系XY方向的坐标,即接收端静平台坐标系原点在机械坐标系XY方向的坐标,从而可得接收端Stewart平台在十字型的滑轨上的运动x re和y re
Figure PCTCN2022086912-appb-000037
Figure PCTCN2022086912-appb-000038
在上述运动控制中,主操作手对X光发射端Stewart并联平台以及X光接收端Stewart并联平台的控制,发射端Stewart平台控制X光发射器从初始位置到采集位置的角度的变化和坐标的变化,以及接收端Stewart平台控制X光接收器从初始位置到采集位置的角度的变化和坐标的变化,如图18和图19所示。
通过利用上述方法控制X光接收端Stewart平台运动,获得实时X光图像,一方面由于只针对机器人的位置进行控制,因此具有较高的实时性,另一方面,通过将基于X对射平台主动端的运动映射到从动端的并联平台和滑轨上,增大了协作范围。
在微创手术中,准确、快速的手术穿刺时保证手术成功、缩短治疗时间的基础。在微创手术中起主导作用的是穿刺引导,目前穿刺引导的方法主要是C臂X光引导和超声引导,但是C臂X光引导无法照出软组织轮廓,超声引导存在穿刺针造影不清晰、引导不够直观等问题,医生通过病灶附近的二维或三维扫描图像判断合适的入针点和入针方向,然后凭借经验手动完成穿刺操作,导致医生难以把握穿刺方向和深度。当使用穿刺机器人进行手术时,机器人对于人体某些部位的病变,无法用单一的医学影像进行定位。以肺结节为例,由于肺部存在气体,无法直接用超声仪器在体外探测病灶,整个肺部均为软组织,也无法通过体外照射X光射线定位病灶。
有鉴于此,本申请考虑通过将上述两种方式结合来实时定位病灶,获取病灶在机械坐标系下的坐标。具体的,首先将超声仪器通过导航仪器进入人体肺部内查看病变部位,获得病灶基于超声探头的位置,然后再通过在超声探头上安装的可由体外X光设备识别的标记物,获得超声探头基于体外X光设备的位置,从而得到病灶基于X光设备的位置,即获得病灶在机械坐标系下的位置,最终实现目标靶点与人体的精确配准。
结合以下方法中的各步骤,以穿刺机器人为例,具有手术导航系统的穿刺机器人工作原理如下:首先,由穿刺机器人或第三方计算机设备,将扫描的二维图像进行三维合成形成病灶附近的三维图像;然后,由医生通过三维图像判断靶点位置和合适的入针路径并输入导航系统;之后,再由导航系统计算出机器人操作臂的当前状态和目标点并规划出一条轨迹;最后,操作臂按照规划的轨迹完成穿刺定位,再通过体外进针穿刺或通过介入器械抵达病灶附近进针穿刺,避免了纯手动操作带来的误差。
可以理解的,X光图像采集装置与机器人集成在一起,或安装在机器人的机械手臂上,因此,可将X光图像采集装置坐标系视为机械坐标系。根据病灶在机械坐标系下的目标位置进行导航,例如,根据该目标位置控制机器人对该病灶执行穿刺操作,或者,消融操作等其他操作。
具体的,上述各步骤具体可通过以下方式实现:
在步骤1,利用预设的路径规划方法规划手术路径,引导气管镜(即内窥镜)末端到达病灶附近的支气管。
在步骤2,将超声探测装置的超声探头放入鞘管(该鞘管可旋转)的空腔中,并一起从内镜钳道孔插入,直至出现在气管镜视野中。
在步骤3,接着旋转超声探测装置的超声导管并获取超声影像,同时,如图20所示,通过鞘管的推进、后撤和末端的调弯来调整超声探测装置的超声探测面,直至发现病灶。可以理解的,上述路径规划方法为已知方法,目前关于路径规划的方法有很多,本申请不做具体限定。
在步骤4,寻找病灶较优的切面,并在找到该切面后锁定鞘管的弯曲角度以及超声探头的深度,并停止超声导管的旋转。可选的,可通过利用介入手术机器人上安装的X光图像系统从两个不同的角度 对超声导管拍摄X光,在X光图像中选取金属标记物上的3个特征点A、B、C,并计算A、B、C在机械坐标系下的坐标。
在步骤5,重新使超声导管旋转,获取以当前金属标记物的指向为起始线的超声探测面,并获取该超声探测面内目标靶点相对起始线的位置信息。
在步骤6,根据在步骤4中获取的X光图像计算得到超声探测面在机械坐标系下的坐标,根据在步骤5中获取的超声影像计算得到目标靶点在超声探测面内的坐标,并通过预设的坐标转换关系,计算得到目标靶点在机械坐标系下的空间坐标。
在步骤7,将在步骤6中计算得到的目标靶点通过坐标转换关系配准到在步骤4中获取的X光图像上,以作为穿刺准确性的确认依据。
进一步的,可将在步骤6中计算得到的病灶配准到CT虚拟影像中,然后在CT虚拟影像构成的CT三维模型中根据新的靶点进行二次规划路径,并计算穿刺深度;之后,将超声探头从可调弯鞘管中抽出后,根据新的导航路径操纵导管指向目标靶点;然后,将穿刺针从可调弯鞘管腔内进入,对目标靶点进行穿刺;最后,当穿刺到位后,在与步骤4中相同的两个角度再次拍摄X光,将针尖位置与步骤4中获得的带虚拟靶点的图像作对比,确认穿刺针穿刺到位。
具体的,在步骤4中,在找到适合医生观测的较优的病灶切面后,锁定鞘管的弯曲角度以及超声探头的深度,并停止超声导管的旋转。然后,利用安装在机器人上的图6至图8所示的双Stewart平台对射X光机,分别从两个不同的拍摄角度对超声导管拍摄X光,得到X光图像之后,在该X光图像中选取超声探头标记物上可用于描述该超声探头标记物的轮廓的3个轮廓特征点A、B、C,如图21所示,图21为图20所示的超声探头影像对应的超声探头结构及超声探头坐标系的示意图,并计算A、B、C三个点在机械坐标系下的坐标,以计算A点坐标为例,方法如下:
首先,将A点标记在X光图像中相对于该X光图像的中心点的位置,例如,可以以X光图像的中心点为原点建立坐标系,并将A点的坐标记为(x 1,y 1)。同时,根据主操作手(简称主手)的运动,用主从控制算法解算出此时X光发射Stewart平台的运动姿态,即动平台至静平台的转换矩阵,记为
Figure PCTCN2022086912-appb-000039
在实际应用中,可由医生用主手操控持有X光发射端的机械臂对人体进行扫描,当在影像中发现病灶位置时,标记在这一影像中病灶相对于中心点的位置,记为(x 1,y 1)。
其次,操控X光发射端偏转至另一个能看到A点的位置,并采集在该位置下的X光图像。基于该X光图像,标记在这一X光图像中A点相对于中心点的位置,例如以该X光图像的中心点为原点,将A点的坐标记为(x 2,y 2),同时,根据主手的运动,用主从控制算法解算出此时X光发射Stewart平台的运动姿态,即动平台至静平台的转换矩阵,记为
Figure PCTCN2022086912-appb-000040
再次,将第一个位置A点在动平台坐标系下的坐标记为(x 1,y 1,z 1),其中x1,y1是已知量,z1是未知量。将该坐标表示为位置向量,记为
Figure PCTCN2022086912-appb-000041
根据转换矩阵
Figure PCTCN2022086912-appb-000042
可得A点在静平台下的坐标:
Figure PCTCN2022086912-appb-000043
然后,将第二个位置A点在动平台坐标系下的坐标(x 2,y 2,z 2)表示为位置向量,记为
Figure PCTCN2022086912-appb-000044
其中x 2,y 2是已知量,z 2是未知量,根据转换矩阵
Figure PCTCN2022086912-appb-000045
可得A点在静平台下的坐标:
Figure PCTCN2022086912-appb-000046
之后,根据A点在静平台坐标系下的位置是不动的,可得到以下方程组:
Figure PCTCN2022086912-appb-000047
其中
Figure PCTCN2022086912-appb-000048
表示向量
Figure PCTCN2022086912-appb-000049
中的第j个元素。
然后,求解上述方程组得到z 1,z 2,通过坐标转换矩阵将A点(或,病灶)在动平台下的坐标转换至机械坐标系下的坐标:
Figure PCTCN2022086912-appb-000050
基于上述方法,即可得到A点在机械坐标系下的坐标(x A,y A,z A),同理,可得B、C点在机械坐标系下的坐标(x B,y B,z B)和(x C,y C,z C)。
根据上述A、B、C点在机械坐标系下的坐标可确定病灶在机械坐标系下的坐标,当得到病灶在机械坐标系下的坐标后,即可通过其他机械臂的关节信息将病灶在机械坐标系下的坐标,转换到其他手术执行机械臂的Stewart计算坐标系下,
Figure PCTCN2022086912-appb-000051
然后,已知目标靶点在手术执行机械臂Stewart计算坐标系下的坐标,即可通过Stewart并联平台的逆运动学解算出手术执行机械臂Stewart平台的关节运动量,使手术执行机械臂器械末端精准的抵达病灶位置,从而实现对病灶的精准定位。此外,通过上述方法对病灶进行定位,还可减小病灶定位和配准的过程中对人为操作的依赖性,提高操作的安全行,且作为手术机器人的临床应用之一,不需要独立开发复杂的系统,因此还可降低开发成本。
进一步的,在上述步骤4中,还需要建立探头坐标系,结合图21,具体建立方式如下:
根据A、B、C这3个特征点在机械坐标系下的坐标,计算探头坐标系原点O d(x o,y o,z o),以及探头坐标系Z轴在机械坐标系下的方向向量O dZ d和X轴在机械坐标系下的方向向量O dX d
其中,O d(x o,y o,z o):x o=(x A+x B)/2;y o=(y A+y B)/2;z o=(z A+z B)/2;
O dX d=(x B-x A,y B-y A,z B-z A)
Figure PCTCN2022086912-appb-000052
Y轴的方向向量用O dY d表示,由于Y轴同时垂直于Z轴和X轴,可根据向量积计算公式计算得向量O dY d
O dY d=O dZ d×O dX d=(l,m,n);
其中,
Figure PCTCN2022086912-appb-000053
将X轴Y轴Z轴的向量单位化:
Figure PCTCN2022086912-appb-000054
Figure PCTCN2022086912-appb-000055
Figure PCTCN2022086912-appb-000056
将X轴Y轴Z轴的单位化向量组成3x3的向量矩阵
Figure PCTCN2022086912-appb-000057
已知探头坐标系原点在机械坐标系下的坐标O d(x o,y o,z o)以及X轴Y轴Z轴的向量矩阵T xyz,可得到探头坐标系在机械坐标系下的姿态矩阵
Figure PCTCN2022086912-appb-000058
Figure PCTCN2022086912-appb-000059
其中,T xyz T表示T xyz的转置矩阵。
进一步的,在步骤5中,再次旋转超声导管,参见图22,图22为超声探头再次旋转得到的超声探测面的示意图,获取以当前超声探头标记物的指向为起始线的超声探测面,并获取该超声探测面内目标靶点相对起始线的位置信息。
通过测量图22中的θ c和r c,根据θ c和r c可计算得到目标靶点在探头坐标系下的坐标:
S t(r c cos θ c,-r c sin θ c,l z)。
在实际应用中,θ c和r c可通过人工的方式测量,或者也由处理器自动测量。
可以理解的,目标靶点是病灶中的一个点,例如可以是医生选取的最佳穿刺点。
根据上述目标靶点在探头坐标系下的坐标,可得到病灶在探头坐标系下的位置矩阵
Figure PCTCN2022086912-appb-000060
其中l z为超声探头标记物的AB边到超声换能器超声发射窗口的距离,也即AB边到超声探测面的距离。l z为提前设置的参数,为已知量。根据坐标转换关系可得病灶在机械坐标系下的坐标
Figure PCTCN2022086912-appb-000061
Figure PCTCN2022086912-appb-000062
进一步的,在步骤6中,计算目标靶点在机械坐标系下的空间坐标,即计算上述病灶在机械坐标系下的坐标表达式的具体过程如下:
超声探头标记物除了要反映出超声探头的位置,还要反映出超声探头的姿态,因此超声探头标记物不能是规则的几何物体,否则在X光的投影下难以辨别姿态。超声探头标记物的形态不是唯一的,这里取图23中的描绘的形状。
该形状基于一个直角三角形,直角位置为探头坐标系原点位置Od,直角指向其中一个锐角的方向为Z轴方向(即图23中示出的OdZd方向),直角指向另一个锐角的方向为X轴方向(即图23中示出的OdXd方向),Y轴方向通过右手法则得到。在X光投影下,可辨别影像的每个角所对应的位置。
超声探头的末端位于探头坐标系的Z轴上,超声探测面位于探头坐标系的XOZ平面内。
进一步地,结合图23,病灶在机械坐标系下的坐标解算包括:
1、通过测量图23中的l c和θ c,可得病灶在探头坐标系下的坐标S t(l c sin θ c,0,l c cos θ c+l m),病灶在探头坐标系下的位置矩阵为
Figure PCTCN2022086912-appb-000063
在实际应用中,可在医学导航设备的辅助下将超声探测头引导至人体内,并使病灶显示在超声影像下。
2、按照上述计算A、B、C这3个特征点在机械坐标系下的坐标的方法,计算超声探头标记物的三个角的顶点的在机械坐标系下的坐标O d(x o,y o,z o),X d(x X,y X,z X),Z d(x Z,y Z,z Z),根据 三个顶点在机械坐标系下的坐标可将探头坐标系的Z轴的方向向量用O dZ d表示,X轴的方向向量用O dX d表示:
O dZ d=(x Z-x o,y Z-y o,z Z-z o),
O dX d=(x X-x o,y X-y o,z X-z o)。
Y轴的方向向量用O dY d表示,根据Y轴同时垂直于Z轴和X轴可得向量O dY d为O dZ d和O dX d的向量积:
O dY d=O dZ d×O dX d
3、已知探头坐标系原点在机械坐标系下的坐标O d(x o,y o,z o)以及三个坐标轴的方向向量O dZ d,O dX d,O dY d,可得探头坐标系在机械坐标系下的姿态矩阵
Figure PCTCN2022086912-appb-000064
4、根据坐标转换关系可得病灶在机械坐标系下的坐标
Figure PCTCN2022086912-appb-000065
Figure PCTCN2022086912-appb-000066
需要说明的是,超声探头为机械式探头,需要旋转成像,超声探头为相控阵式探头时,不需要旋转即可成像。用相控阵式探头检测到病灶后可直接用X光获取探测面以及靶点的空间位置,不需要使相控阵式探头停转再获取超声换能器的起始方向。找到病灶后,可使机械式超声探头停止旋转并直接拍摄X光来获取目标靶点在探测面内的角度信息。
由于超声造影清晰且引导直观,因此可高效地掌握手术的穿刺方向。本申请中通过在超声探测装置上加入超声探头标记物(例如金属标记或光学标记,在超声探测获取病灶3D图像的同时,利用2D坐标和3D坐标的转换,得到病灶的三维坐标信息,可实现目标靶点与人体的精确配准,且由于定位的配准的过程对人为操作的依赖性较小,因此操作更加安全。
需要说明的是,已知病灶在机械坐标系下的坐标,即可通过手术执行机械臂的关节信息将病灶在机械坐标系下的坐标,转换到手术执行机械臂的Stewart计算坐标系下,
Figure PCTCN2022086912-appb-000067
已知目标靶点在手术执行机械臂Stewart计算坐标系下的坐标,即可通过Stewart并联平台的逆运动学解算出手术执行机械臂Stewart平台的关节运动量,使手术执行机械臂器械末端精准的抵达病灶位置。
进一步地,上述根据X光图像计算得到超声探头坐标系在机械坐标系下的坐标,超声探头坐标系的Z轴方向结合l z的值,即可得到超声探测面在机械坐标系下的坐标;上述根据超声影像计算得到目标靶点在探头坐标系下的坐标,结合l z的值,可得到目标靶点在超声探测面内的坐标;进一步通过坐标转换关系,计算得到目标靶点在机械坐标系下的空间坐标。
进一步地,将计算得到的目标靶点的该空间坐标,通过坐标转换关系配准到X光图像采集装置获取的X光图像上,以作为穿刺准确性的确认依据,如图24所示。
进一步的,如图25所示,将通过上述步骤计算得到的病灶位置配准到CT扫描获得的虚拟影像中。
进一步的,通过CT和三维重建,在CT三维模型中根据新的靶点进行二次规划路径,并计算穿刺深度;将超声探头从鞘管中抽出后,根据二次规划的路径操纵导管指向目标靶点,将穿刺针从鞘管腔内进入,对目标靶点进行穿刺;穿刺到位后,X光图像采集装置再次从该两个拍摄角度拍摄X光,将穿刺针的针尖位置与本次拍摄获得的带虚拟靶点的图像作对比,确认穿刺针穿刺到位,如图26所示。
可以理解的,本申请中使用的CT和三维重建方法为已知方法,目前CT和三维重建的方法有很多,本申请不做具体限定。
结合上述各实施例,本申请至少具有以下创新点:
1、采用带水囊结构的血管内超声导管,使其能在气体环境中应用;
2、通过超声导管末端的金属标记物指示超声探头位置,提高定位的准确性;
3、用鞘管搭载超声导管,避免超声导管在进入气道接近目标靶点的过程中因质地过软而弯折,从而导致无法继续推进。
4、通过超声与X光组合定位的方式获取病灶在机械坐标系下的实时坐标;
5、通过二次导航修正配准误差。
本申请实施例,通过对超声定位与X光定位取长补短,利用超声与X光组合定位的方式获取病灶在机械坐标系下的实时坐标,可提高定位的精准度。
参见图27,本申请一实施例提供的超声与X光组合执行操作的装置中的模块的结构示意图。为了便于说明,仅示出了与本申请实施例相关的部分。该装置可单独配置在具有数据处理功能的计算机设备中,或者,也可以集成在超声探测装置101或X光图像采集装置102中,该装置包括存储器和处理 器,所述存储器存储有可被所述处理器执行的计算机程序,所述计算机程序包括:
获取模块31,用于通过设置有超声探头标记物的超声探头装置,获得操作目标的超声影像;
获取模块31,还用于通过X光图像采集装置获取该超声探头标记物的X光图像;
定位模块32,用于基于该X光图像和该超声影像,确定该操作目标的位置。
进一步地,该计算机程序还包括:
控制模块(图中未标示),用于控制该超声探测装置进入目标区域,该目标区域中包含该操作目标;
生成模块(图中未标示),用于基于该操作目标的位置,在预先建立的该目标区域的虚拟影像中生成该操作目标的虚拟影像;
该控制模块,还用于根据该操作目标的虚拟影像,规划操作路径,并控制操作机械臂根据该操作路径,将该操作机械臂所夹持的器械送达该操作目标,并对该操作目标执行预设操作。
进一步地,定位模块32,还用于根据该操作目标的超声影像,得到该操作目标在超声探头坐标系下的位置参数,该超声探头坐标系是基于该超声探头装置建立的;
根据该X光图像确定该超声探头标记物在预先建立的机械坐标系下的位置坐标;
根据该超声探头标记物在该机械坐标系下的位置坐标和该操作目标在该超声探头坐标系下的位置参数,得到该操作目标在该机械坐标系下的位置坐标。
进一步地,定位模块32,还用于根据该操作目标的超声影像,确定该超声探头标记物与该操作目标的相对位置信息,并根据该超声探头标记物与该操作目标的相对位置信息,得到该操作目标在超声探头坐标系下的位置参数。
该相对位置信息包括操作目标的直线距离和夹角;该操作目标在超声探头坐标系下的位置参数包括该操作目标在该超声探头坐标系下的位置坐标和位置矩阵。
定位模块32,还用于测量该超声探头标记物的末端与该超声影像扫描到的该操作目标的直线距离和夹角,并根据该直线距离和该夹角得到该操作目标在该超声探头坐标系下的位置坐标和位置矩阵。
进一步地,该超声探头装置对该操作目标的超声探测面位于该超声探头坐标系的XZ平面内,该超声探头标记物的末端位于该超声探头坐标系的Z轴上。
定位模块32,还用于通过如下表达式确定该操作目标在该超声探头坐标系下的位置坐标S t
S t=l c sin θ c,0,l c cos θ c+l m
通过如下公式确定该操作目标在该超声探头坐标系下的位置矩阵
Figure PCTCN2022086912-appb-000068
Figure PCTCN2022086912-appb-000069
其中,l c为该操作目标的超声影像上的该超声探头标记物的末端与该操作目标的直线距离;θ c为该操作目标的超声影像上的该超声探头标记物的末端与该操作目标的夹角;l m为该目标的超声影像上的该超声探头标记物的末端与该超声探头坐标系的原点之间的直线距离。
获取模块31,还用于通过该X光图像采集装置在多个不同的位置,分别拍摄该超声探头标记物的X光图像;其中,该X光图像采集装置安装在预设平台上,每张该X光图像中包括标记该超声探头标记物的若干轮廓特征点相对于该X光图像的中心点的相对位置;
定位模块32,还用于获取该X光图像采集装置所在平台在采集每张X光图像时的运动参数关系;
基于各张X光图像分别对应的影像信息,确定该目标在平台坐标系下的坐标;其中,该影像信息包括该相对位置和该运动参数关系;
根据预设的X图像采集装置的平台的坐标系与该机械坐标系的转换关系,将该超声探头标记物的若干轮廓特征点在该平台的坐标系下的坐标,转换为该超声探头标记物的若干轮廓特征点在该机械坐标系下的位置坐标。
进一步地,定位模块32,还用于针对每张X光图像,基于该超声探头标记物的轮廓特征点相对于该X光图像的中心点的相对位置,确定该超声探头标记物的轮廓特征点在预设的平台的坐标系下的xy坐标;
基于各张X光图像中该超声探头标记物的轮廓特征点在该平台的坐标系下的xy坐标,以及采集该X光影像时的运动参数关系,确定该超声探头标记物的轮廓特征点在该平台的坐标系下的z坐标。
定位模块32,还用于根据该平台的坐标系与该机械坐标系的转换关系,将该每个轮廓特征点的xyz坐标,转换为该轮廓特征点在该机械坐标系下的位置坐标;
在每个该X光图像中,按照该轮廓特征点在该机械坐标系下的位置坐标,确定该超声探头标记物在该机械坐标系下的位置。
进一步地,定位模块32,还用于根据该超声探头标记物的各该轮廓特征点在该机械坐标系下的位置坐标,得到该超声探头坐标系的各轴的方向向量;
根据该超声探头坐标系原点在该机械坐标系下的坐标,以及该超声探头坐标系的各轴的方向向量,得到该超声探头坐标系在该机械坐标系下的姿态矩阵;
根据该姿态矩阵和预设的坐标转换矩阵,得到该操作目标在该机械坐标系下的坐标。
获取模块31,还用于通过安装在机器人上的X光图像采集装置获取该超声探头标记物的X光图像;
定位模块32,还用于根据该X光图像确定该超声探头标记物在该机械坐标系下的位置坐标;
通过对比该位置坐标,与该虚拟影像中的该操作目标的位置,判断该器械对该操作目标执行预设操作是否符合预设完成条件。
上述各模块实现各自功能的具体过程可参考上述各实施例中的相关内容,此处不再赘述。
本实施例中,通过控制设置有超声探头标记物的超声探测装置进入目标区域,目标区域中包含操作目标,并通过超声探头装置,获得操作目标的超声影像,通过X光图像采集装置获取超声探头标记物的X光图像,基于X光图像和超声影像,确定操作目标的位置,利用超声与X光组合定位的方式获取该操作目标在机械坐标系下的实时坐标,可提高定位的精准度并将该位置坐标配准在预先建立的该目标区域的虚拟影像中,基于操作目标的位置,在预先建立的目标区域的虚拟影像中生成操作目标的虚拟影像,根据操作目标的虚拟影像,规划操作路径,并控制操作机械臂根据操作路径,将该操作机械臂所夹持的器械送达操作目标,并对操作目标执行预设操作,可提高对该操作目标的执行准确度。
参见图28,本申请一实施例提供的电子装置的硬件结构示意图。如图28所示,该电子装置包括:存储器281和处理器282。
其中,存储器281存储有可执行计算机程序283。与存储器281耦合的处理器282,调用存储器中存储的可执行计算机程序283,执行上述实施例提供的超声与X光组合执行操作的方法。
示例性的,该计算机程序283可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在存储器281中,并由处理器282执行,以完成本发明。所述一个或多个模块/单元可以包括上述实施例中的超声与X光组合执行操作的装置中的各个模块,如:获取模块31、定位模块32、控制模块和生成模块。
进一步地,该装置还包括:
至少一个输入设备以及至少一个输出设备。
上述处理器282、存储器281、输入设备和输出设备可通过总线连接。
其中,该输入设备具体可为摄像头、触控面板、物理按键或者鼠标等等。该输出设备具体可为显示屏。
进一步的,该装置还可包括比图示更多的部件,或者组合某些部件,或者不同的部件,例如网络接入设备、传感器等。
处理器282可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器281可以是例如硬盘驱动存储器,非易失性存储器(例如闪存或用于形成固态驱动器的其它电子可编程限制删除的存储器等),易失性存储器(例如静态或动态随机存取存储器等)等,本申请实施例不作限制。具体的,存储器281可以是该电子装置的内部存储单元,例如:该电子装置的硬盘或内存。存储器281也可以是该电子装置的外部存储设备,例如该电子装置上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器281还可以既包括该电子装置的内部存储单元也包括外部存储设备。存储器281用于存储计算机程序以及终端所需的其他程序和数据。存储器281还可以用于暂时地存储已经输出或者将要输出的数据。
进一步的,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质可以是设置于上述各实施例中的电子装置中,该计算机可读存储介质可以是前述图28所示实施例中的存储器281。该计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现前述各实施例中描述的超声与X光组合执行操作的方法。进一步的,该计算机可存储介质还可以是U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
需要说明的是,对于前述的各方法实施例,为了简便描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定都是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一特征和第二特征直接接触,或第一特征和第二特征通过中间媒介间接接触。
而且,第一特征在第二特征“之上”、“上方”和“上面”可以是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度低于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述,意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任意一个或者多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
以上为对本申请所提供的超声与X光组合执行操作的方法、装置、系统及计算机可读存储介质的描述,对于本领域的技术人员,依据本申请实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (15)

  1. 一种超声与X光组合执行操作的方法,其特征在于,包括:
    通过设置有超声探头标记物的超声探头装置,获得操作目标的超声影像;
    通过X光图像采集装置获取所述超声探头标记物的X光图像;
    基于所述X光图像和所述超声影像,确定所述操作目标的位置。
  2. 根据权利要求1所述的方法,其特征在于,所述通过设置有超声探头标记物的超声探头装置,获得操作目标的超声影像之前还包括:
    控制所述超声探测装置进入目标区域,所述目标区域中包含所述操作目标。
  3. 根据权利要求1所述的方法,其特征在于,所述基于所述X光图像和所述超声影像,确定所述操作目标的位置之后还包括:
    基于所述操作目标的位置,在预先建立的所述目标区域的虚拟影像中生成所述操作目标的虚拟影像;
    根据所述操作目标的虚拟影像,规划操作路径,并控制操作机械臂根据所述操作路径,将所述操作机械臂所夹持的器械送达所述操作目标,并对所述操作目标执行预设操作。
  4. 根据权利要求1-3任一项所述的方法,所述基于所述X光图像和所述超声影像,确定所述操作目标的位置,包括:
    根据所述操作目标的超声影像,得到所述操作目标在超声探头坐标系下的位置参数,所述超声探头坐标系是基于所述超声探头装置建立的;
    根据所述X光图像确定所述超声探头标记物在预先建立的机械坐标系下的位置坐标;
    根据所述超声探头标记物在所述机械坐标系下的位置坐标和所述操作目标在所述超声探头坐标系下的位置参数,得到所述操作目标在所述机械坐标系下的位置坐标。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述操作目标的超声影像,得到所述操作目标在超声探头坐标系下的位置参数,包括:
    根据所述操作目标的超声影像,确定所述超声探头标记物与所述操作目标的相对位置信息,并根据所述超声探头标记物与所述操作目标的相对位置信息,得到所述操作目标在超声探头坐标系下的位置参数。
  6. 根据权利要求5所述的方法,其特征在于,所述相对位置信息包括操作目标的直线距离和夹角,所述操作目标在超声探头坐标系下的位置参数包括所述操作目标在所述超声探头坐标系下的位置坐标和位置矩阵;
    所述根据所述操作目标的超声影像,确定所述超声探头标记物与所述操作目标的相对位置信息,并根据所述超声探头标记物与所述操作目标的相对位置信息,得到所述操作目标在超声探头坐标系下的位置参数包括:
    测量所述超声探头标记物的末端与所述超声影像扫描到的所述操作目标的直线距离和夹角,并根据所述直线距离和所述夹角得到所述操作目标在所述超声探头坐标系下的位置坐标和位置矩阵。
  7. 根据权利要求6所述的方法,其特征在于,所述超声探头装置对所述操作目标的超声探测面位于所述超声探头坐标系的XZ平面内,所述超声探头标记物的末端位于所述超声探头坐标系的Z轴上,则所述根据所述超声探头标记物与所述操作目标的相对位置信息,得到所述操作目标在超声探头坐标系下的位置参数包括:
    通过如下表达式确定所述操作目标在所述超声探头坐标系下的位置坐标S t
    S t=l csinθ c,0,l ccosθ c+l m
    通过如下公式确定所述操作目标在所述超声探头坐标系下的位置矩阵
    Figure PCTCN2022086912-appb-100001
    Figure PCTCN2022086912-appb-100002
    其中,l c为所述操作目标的超声影像上的所述超声探头标记物的末端与所述操作目标的直线距离;θ c为所述操作目标的超声影像上的所述超声探头标记物的末端与所述操作目标的夹角;l m为所述目标的超声影像上的所述超声探头标记物的末端与所述超声探头坐标系的原点之间的直线距离。
  8. 根据权利要求3所述的方法,其特征在于,所述通过X光图像采集装置获取所述超声探头标记物的X光图像包括:
    通过所述X光图像采集装置在多个不同的位置,分别拍摄所述超声探头标记物的X光图像;其中,所述X光图像采集装置安装在预设平台上,每张所述X光图像中包括标记所述超声探头标记物的若干 轮廓特征点相对于所述X光图像的中心点的相对位置;
    所述根据所述X光图像确定所述超声探头标记物在预先建立的机械坐标系下的位置坐标包括:
    获取所述X光图像采集装置所在平台在采集每张X光图像时的运动参数关系;
    基于各张X光图像分别对应的影像信息,确定所述目标在平台坐标系下的坐标;其中,所述影像信息包括所述相对位置和所述运动参数关系;
    根据预设的X图像采集装置的平台的坐标系与所述机械坐标系的转换关系,将所述超声探头标记物的若干轮廓特征点在所述平台的坐标系下的坐标,转换为所述超声探头标记物的若干轮廓特征点在所述机械坐标系下的位置坐标。
  9. 根据权利要求8所述的方法,其特征在于,所述基于各张X光图像分别对应的影像信息,确定所述目标在平台坐标系下的坐标包括:
    针对每张X光图像,基于所述超声探头标记物的轮廓特征点相对于所述X光图像的中心点的相对位置,确定所述超声探头标记物的轮廓特征点在预设的平台的坐标系下的xy坐标;
    基于各张X光图像中所述超声探头标记物的轮廓特征点在所述平台的坐标系下的xy坐标,以及采集所述X光影像时的运动参数关系,确定所述超声探头标记物的轮廓特征点在所述平台的坐标系下的z坐标;
    所述根据预设的X图像采集装置的平台的坐标系与所述机械坐标系的转换关系,将所述超声探头标记物的若干轮廓特征点在所述平台的坐标系下的坐标,转换为所述超声探头标记物的若干轮廓特征点在所述机械坐标系下的位置坐标包括:
    根据所述平台的坐标系与所述机械坐标系的转换关系,将每个所述轮廓特征点的xyz坐标,转换为所述轮廓特征点在所述机械坐标系下的位置坐标;
    在每个所述X光图像中,按照所述轮廓特征点在所述机械坐标系下的位置坐标,确定所述超声探头标记物在所述机械坐标系下的位置。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述超声探头标记物在所述机械坐标系下的位置坐标和所述操作目标在所述超声探头坐标系下的位置参数,得到所述操作目标在所述机械坐标系下的位置坐标包括:
    根据所述超声探头标记物的各所述轮廓特征点在所述机械坐标系下的位置坐标,得到所述超声探头坐标系的各轴的方向向量;
    根据所述超声探头坐标系原点在所述机械坐标系下的坐标,以及所述超声探头坐标系的各轴的方向向量,得到所述超声探头坐标系在所述机械坐标系下的姿态矩阵;
    根据所述姿态矩阵和预设的坐标转换矩阵,得到所述操作目标在所述机械坐标系下的坐标。
  11. 根据权利要求10所述的方法,其特征在于,所述控制操作机械臂根据所述操作路径,将所述操作机械臂所夹持的器械送达所述操作目标,并对所述操作目标执行预设操作之后还包括:
    通过安装在机器人上的X光图像采集装置获取所述超声探头标记物的X光图像,并根据所述X光图像确定所述超声探头标记物在所述机械坐标系下的位置坐标;
    通过对比所述位置坐标,与所述虚拟影像中的所述操作目标的位置,判断所述器械对所述操作目标执行预设操作是否符合预设完成条件。
  12. 一种超声与X光组合执行操作的装置,其特征在于,包括:
    存储器和处理器;
    所述存储器存储有可被所述处理器执行的计算机程序;
    所述计算机程序包括:
    获取模块,用于通过设置有超声探头标记物的超声探头装置,获得操作目标的超声影像;
    所述获取模块,还用于通过X光图像采集装置获取所述超声探头标记物的X光图像;
    定位模块,用于基于所述X光图像和所述超声影像,确定所述操作目标的位置。
  13. 一种电子装置,其特征在于,包括:
    存储器和处理器;
    所述存储器存储有可执行计算机程序;
    与所述存储器耦合的所述处理器,调用所述存储器中存储的所述可执行计算机程序,执行如权利要求1-11任一项所述的超声与X光组合执行操作的方法。
  14. 一种超声与X光组合执行操作的系统,其特征在于,包括:超声探测装置、X光图像采集装置、超声探头标记物、信号转换装置以及处理器;
    其中,所述超声探测装置包括鞘管和内置在所述鞘管中带有水囊的导管;
    所述超声探头标记物具有用于定位轮廓的定位结构;
    所述处理器用于执行如权利要求1-11任一项所述的超声与X光组合执行操作的方法中的各步骤。
  15. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,实现如权利要求1-11任一项所述的超声与X光组合执行操作的方法。
PCT/CN2022/086912 2021-04-17 2022-04-14 超声与x光组合执行操作的方法、装置、系统及计算机可读存储介质 WO2022218389A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202110415111 2021-04-17
CN202110415111.9 2021-04-17
CN202111679834.6 2021-12-31
CN202111679832.7 2021-12-31
CN202111679832.7A CN115211964A (zh) 2021-04-17 2021-12-31 超声与x光组合执行操作的方法、装置、系统及计算机可读存储介质
CN202111679834.6A CN115211961A (zh) 2021-04-17 2021-12-31 定位方法、装置、系统及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022218389A1 true WO2022218389A1 (zh) 2022-10-20

Family

ID=82828119

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2022/086912 WO2022218389A1 (zh) 2021-04-17 2022-04-14 超声与x光组合执行操作的方法、装置、系统及计算机可读存储介质
PCT/CN2022/086911 WO2022218388A1 (zh) 2021-04-17 2022-04-14 通过x光影像定位的方法、装置、x光机及可读存储介质
PCT/CN2022/086910 WO2022218387A1 (zh) 2021-04-17 2022-04-14 X光机控制方法、装置、x光机及可读存储介质

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/086911 WO2022218388A1 (zh) 2021-04-17 2022-04-14 通过x光影像定位的方法、装置、x光机及可读存储介质
PCT/CN2022/086910 WO2022218387A1 (zh) 2021-04-17 2022-04-14 X光机控制方法、装置、x光机及可读存储介质

Country Status (2)

Country Link
CN (6) CN115211964A (zh)
WO (3) WO2022218389A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115870678B (zh) * 2023-03-02 2023-08-18 成都熊谷加世电器有限公司 内焊机的姿态调节系统、方法、内焊机及存储介质
CN115890053B (zh) * 2023-03-02 2023-08-18 成都熊谷加世电器有限公司 内焊机对口方法、装置、内焊机及存储介质
CN117140540A (zh) * 2023-08-04 2023-12-01 上海智元新创技术有限公司 紧固系统及紧固系统的拾取紧固方法
CN117058146B (zh) * 2023-10-12 2024-03-29 广州索诺星信息科技有限公司 一种基于人工智能的超声数据安全监管系统及方法
CN117147699B (zh) * 2023-10-31 2024-01-02 江苏蓝格卫生护理用品有限公司 一种医用无纺布的检测方法及系统
CN117481791B (zh) * 2023-12-19 2024-05-28 真健康(珠海)医疗科技有限公司 微波消融设备的导航定位方法及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104883975A (zh) * 2012-12-28 2015-09-02 皇家飞利浦有限公司 将3d超声和2d x射线影像组合的实时场景建模
CN105496433A (zh) * 2015-12-17 2016-04-20 深圳圣诺医疗设备股份有限公司 三维乳腺x射线与三维彩超融合成像系统及方法
US20180008232A1 (en) * 2016-07-07 2018-01-11 Toshiba Medical Systems Corporation Ultrasonic diagnostic apparatus, scan support method, and medical image processing apparatus
CN107909624A (zh) * 2017-12-05 2018-04-13 南京大学 一种从三维断层成像中提取及融合二维图像的方法
CN110279467A (zh) * 2019-06-19 2019-09-27 天津大学 光学定位下的超声图像与穿刺活检针的术中信息融合方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8346344B2 (en) * 2007-09-11 2013-01-01 Siemens Aktiengesellschaft Device localization and guidance
CN104116517A (zh) * 2014-07-18 2014-10-29 北京航空航天大学 一种基于双机械臂协同的术中x光影像系统
CN104799933A (zh) * 2015-03-18 2015-07-29 清华大学 一种用于骨外科定位引导的手术机器人运动补偿方法
CN107374727B (zh) * 2017-07-28 2019-10-22 重庆金山医疗器械有限公司 一种微创外科手术机器人简化运动学模型的建模方法
CN110090036A (zh) * 2018-01-30 2019-08-06 邦盛医疗装备(天津)股份有限公司 多功能射线摄影装置及控制方法
CN110090033A (zh) * 2018-01-30 2019-08-06 邦盛医疗装备(天津)股份有限公司 智能型射线摄影装置及控制方法
CN109009348B (zh) * 2018-08-03 2020-07-28 广州医科大学附属第一医院 一种机器人穿刺系统
US10799206B2 (en) * 2018-09-28 2020-10-13 General Electric Company System and method for calibrating an imaging system
KR102203544B1 (ko) * 2019-03-13 2021-01-18 큐렉소 주식회사 C-arm 기반의 의료영상 시스템 및 2D 이미지와 3D 공간의 정합방법
CN210903064U (zh) * 2019-09-02 2020-07-03 中国医学科学院北京协和医院 血管造影机
CN111345898B (zh) * 2020-03-18 2021-06-04 上海交通大学医学院附属第九人民医院 激光手术路径引导方法、及其计算机设备和系统
CN112022356B (zh) * 2020-10-09 2021-09-24 杭州三坛医疗科技有限公司 手术机器人及其末端手术器械、配准方法、系统及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104883975A (zh) * 2012-12-28 2015-09-02 皇家飞利浦有限公司 将3d超声和2d x射线影像组合的实时场景建模
CN105496433A (zh) * 2015-12-17 2016-04-20 深圳圣诺医疗设备股份有限公司 三维乳腺x射线与三维彩超融合成像系统及方法
US20180008232A1 (en) * 2016-07-07 2018-01-11 Toshiba Medical Systems Corporation Ultrasonic diagnostic apparatus, scan support method, and medical image processing apparatus
CN107909624A (zh) * 2017-12-05 2018-04-13 南京大学 一种从三维断层成像中提取及融合二维图像的方法
CN110279467A (zh) * 2019-06-19 2019-09-27 天津大学 光学定位下的超声图像与穿刺活检针的术中信息融合方法

Also Published As

Publication number Publication date
CN115211964A (zh) 2022-10-21
CN115211961A (zh) 2022-10-21
WO2022218387A1 (zh) 2022-10-20
CN217219033U (zh) 2022-08-19
CN217723539U (zh) 2022-11-04
CN115211874A (zh) 2022-10-21
CN115222801A (zh) 2022-10-21
WO2022218388A1 (zh) 2022-10-20

Similar Documents

Publication Publication Date Title
WO2022218389A1 (zh) 超声与x光组合执行操作的方法、装置、系统及计算机可读存储介质
US20220346886A1 (en) Systems and methods of pose estimation and calibration of perspective imaging system in image guided surgery
CN110891469B (zh) 用于定位传感器的配准的系统和方法
CN110831486B (zh) 用于基于定位传感器的分支预测的系统和方法
US10575755B2 (en) Computer-implemented technique for calculating a position of a surgical device
US8926511B2 (en) Location system with virtual touch screen
US20080234570A1 (en) System For Guiding a Medical Instrument in a Patient Body
US20220378526A1 (en) Robotic positioning of a device
CN114340542B (zh) 用于位置传感器的基于权重的配准的系统和方法
CN110868937B (zh) 与声学探头的机器人仪器引导件集成
WO2022141153A1 (zh) 超声定位穿刺系统和存储介质
CN112754616B (zh) 超声定位穿刺系统和存储介质
CN113768527A (zh) 基于ct与超声影像融合的实时三维重建方法、装置及介质
CN115361919A (zh) 目标解剖特征定位
US20200359994A1 (en) System and method for guiding ultrasound probe
CN114007521A (zh) 用于机器人臂对准和对接的系统和方法
US20230210604A1 (en) Positioning system registration using mechanical linkages
WO2023233280A1 (en) Generating imaging pose recommendations
US11832898B2 (en) Robotically controllable field generators for aligning a guide with a target
WO2023161848A1 (en) Three-dimensional reconstruction of an instrument and procedure site
CN117813631A (zh) 用于三维视图中基于深度的测量的系统和方法
CN116456925A (zh) 机器人式可控场发生器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787611

Country of ref document: EP

Kind code of ref document: A1